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Abstract. We examine the possibility that the strong heating produced at

temperature-minimw:: '.;-els during solar flares is due to resistive dissipa-

tion of Alfven waves generated by the primary energy release process in the

corona. It is shown how, for suitable parameters, these waves can carry

their energy essentially undamped into the temperature-minimum layers and

can then produce a degree of heating consistent with observations.
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1. Introduction

There now exists substantial observational evidence for strong heating

of the temperature-minimum (T min ) region in solar flares (Machado et al.,

1978; Cook, 1979; Cook and Brueckner, 1979; Canfield at al.. 1980). This

observed temperature rise amounts to some 100-20G K, corresponding to a

specific energy input of some 10-20-erg cm 3s 1 at these levels (Machado

et al., 1978). It appears to be difficult to reconcile this amount of heat-
1

ing with a primary flare energy release in the corona and subsequent transport

of this energy through the atmosphere by either particles or radiation

f	 (Machado et al., 1978; Emslie and Machado, 1979). Emslie and Machado ( 1979),
I

`

	

	 among others (e.g., Sturrock, 1980), have therefore proposed that the Tin

region is heated by joule dissipation of currents. They do not consider

the generation of these currents, but they do point out that such currents

must have a very fine spatial structure (^ 106 can) since otherwise the

magnetic field associated with them would be unacceptably large.

According to Machado et al. ( 1978), the total energy dissipated at Tmin

levels during flares is small compared to the total flare energy budget. Thus,

in explaining Tmin heating, the total energy release requirement is not

difficult to meet. The problem instead is to find a mechanism for transport-

ing this energy efficiently from the primary release site to the Tmin level

of the atmosphere (or to explain how part of the energy can be released at the

Tmin level).

Emalie and Machado (1979) note that, because of the relatively low tempera-

tures and low fractional ionization level of the plasma at Tmin levels, the

plasma resistivity in there is much larger than at any other point in the

solar atmosphere (see Figure 1). Hence the energy carried by electric currents

generated in the corona may reach the Tin layers of the atmosphere, essen-

tially unattenuated, and then be efficiently damped due to the large resistivity.
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The transverse scale of such coronal current patterns generated during

flares may well be small enough (see Section 3) to satisfy the constraints

imposed by Bmslie and Machado (1979).

In this paper we therefore investigate the possibility that electric

currents associated with Alfvdn-jwave perturbations, generated by the primary

flare energy release in the corona, ars responsible for heating this tempera-

ture-minimum region during flares. In Section 2 we discuss the propagation

and damping of these waves. In Section 3 we investigate the heating rates

effected by this mechanism for a range of model parameters and so place

constraints on these parameters if the mechanism is to be effective at Tmin

heating. In Section 4 we discuss the results obtained.

2 • Propagation and Damping of Alfven Waves in the Solar Atmosphere

We wish to analyze the transmission of energy along magnetic field lines

from corenal heights down to the temperature-minimum region. In the MHD

approximation, there are three modes of propagation: the slow and the fast

mangetoacoustic modes, and the Alfvin mode. In a complex situation involving

non-uniform plasma and magnetic field, the group velocity of the magneto-

n:ouptic modes must be expected in the course of propagation to depart from

the direction of the magnetic field, even if the group velocity is initially

directed along the field (Weinberg, 1962). On the other hand, the group

velocity of Alfvdn waves is always parallel to the magnetic field. Energy in

the Alfvin erode will therefore remain in that mode as long as the wavelength

is small compared with the length scale for variations of the field and plasma.

The scale height for variation of the plasma properties varies over a

wide range in the sun's atmosphere. The wavelength of a propagating Alfv4n

wave also varies with height since the Alfvin speed varies. We find that, for

i
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waves of interest, the wavelength is much less than the scale height for

variation of density (for instance) throughout the corona and in the upper part of

the transition region (see Section 3). We begin by considering this ' region

and postpone until later in this section discussion of the lower transition

region in which the density varies abruptly.

Since we are concerned only with the propagation of energy along magnetic

field lines, we shall ignore the magnetoacoustic modes and consider only the

Alfvan mode. We begin by considering a simple model in which the magnetic

field is uniform and vertical, !^At we shall allow for non-zero resisitivity

and for variation of density with height. We shall subsequently consider the

additional effect of slow variation of the magnetic field e,^rength with height.

The equation of motion of the plasma is

p d - Zp + jXB ,	 (2.1)

where we use modified Gaussian units ;Jackson, 1962) for electromagnetic

quantities, and we have ignored the gravitational force since we shall be

concerned with wave frequencies much higher than the Brunt-Vaisala frequency

(Unno et al., 1979). The unperturbed state is characterized by the density

po (z) , the-pressure p° (z) and magnetic field strength B o (z) _ (O ,O,Bo) .

To first order, the perturbation in the equilibrium state of the plasma and

field satisfies

dd^r

PO dt = - Vp + 610

On using the Maxwell equations

a

Ft _ -

(2.2)

(2.3)
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and

XX4 - 411k	 (2.4)

and the Ohm's law relationship

ro, - k + ;rxk ,	 (2.5)

where the resistivity n is taken to be a scalar, we obtain

a

at - X" (.%Xk) 
+ 4a n X2^ - 4tr qX qXj	 (2.6)

On combining equations (2.2), (2.4) and the appropriate perturbed form of
(2.6), we obtain the wave equation

a28^ - ^x I[- p (xap) + 4ttp qxq) x ^o x doat	 o

as	 as

	

r	 1+ n n X2	 'and'_	 (2.7)\ft/

Since the A1fv6n mode is transverse, we may without loss of generality consider

that ak - (0, aBy , 0) . Purther, since the Alfvdn mode involves divergence-

free motion, the pressure gradient plays no role. (Our assumption that the

wavelength is small compared with the scale height in fact makes it possible

to neglect this term not only for the Alfvdn mode but also for the fast and

slow magnetosonic modes.) Hance we may write

aBy - b (
z)ei(kxx - wt) *	 (2.8)
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Equation (2.1) then reduces to

- w2b -1 d (V2 dh - icy d^ db - i- c^a /- k
2 + ^` b	 (2.9)

dz ` dz	 0 dz dz 4n	 ` x dz

where V is the Alfvgn speed given by

BV2	 o

	

vnpo
	

(2.10)

If P  (_.smce V) is independent of z and if n - 0 , then b

varies as eAzz where k  satisfies the dispersion relation for Alfvdn

waves:

	

W2 - V2 k2	 (2.11)
z

Since, for the problem if interest, n 0 0 , the Alfvdn waves will be damped.

If V varies slowly with z , then an Alfvin wave will retain its identity

but its amplitude will vary in the course of propagation. We may consider

both of these effects at the same time by expressing b(z) in the form

b(z) - A(z) exp [ 	 kz (z' )dz' J
	(2.12)

0

Wo find that, to lowest order in the effects of n and the variation of V

the expression given by (2.12) indeed satisfies the wave equation (2.9) if

the amplitude A(z) varies as follows:

(	 l 1 ^2	 r	 ^

	

A(z) 1-A(0) \V(0) /	
expl- 2	

Lz^)J	
(2.13)

0	 J
i

In deriving this expression, we have assumed that the wave is propagating in

the z-direction. The "damping length" L  is expressible as
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N,

	

• 1 +.L	 (2.14)

LD 	 LA-L;,

where Ll and L„ , the "transverse" and "parallel" damping lengths, are

given by the expressions

L	
40	 41rV 12	

2.15)1-	
cn

and

L„ ' 4-03'
	

(2.16)

and we write	 1Z for (kX)
-1 .

i
If the energy flux being carried by an Alfvdn wave is represented by

S , and if the actual perturbation in the magnetic field due to the wave is

given by the real part of expression (2.12), then

S 
L 

VAZ	(2.17)

lience, from Equation (2.13),

SW - S(0) exp J 
dz'	

(2.18)

0

This equation will be used to estimate the damping of Alfvin waves in the

'	 neighborhood - f the temperature -minimum region.

As an Alfv6n wave of given frequency propagates down through the corona

1
into the transition region, it encounters a density gradient which is

initially small but becomes larger and larger. At some location, the assump-

tion that the wave length is small compared with the characteristic length

scale of variation of density becomes invalid. Below that point, the density

gradient becomes very steep, so that there is in fact a sharp change in
I

i'
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density in less than one wavelength. In this situation, part of the wave

enargy will be transmitted and part will be reflected.

The component of the wave vector parallel to the z-axis is given by

k  - W V 1- OJB 1 (4wmpn) 1/2 ,	 (2.19)

where n is the number density both of electrons and protons. To a fair

approximation, the transition region may be regarded as a region in which

the hest flux F (erg cm 2s-1 ) is constant Whey, 1976). Then, using

the Spitzer (1962) conductivity, the characteristic length scale for the

temperature change LT , defined by

LT - T (dT/dz)
-1
 ,	 (2.20)

is given by

LT - aT7/2 F 'l ,	 (2.21)

where a 4b, 10-6 erg cm 1
8
 1K 7/2 . The gas pressure, given by

P - 2nkT ,	 (2.22)

is approximately constant in the transition region so that the density

scale height is equal to the temperature scale height L T . Hence the

critical condition that the density gradient is comparable with the Alf-An

wave number may be expressed as

k  LT - 1 .	 (2.23)

On using Equations (2.19), (2.21) and (2.22), we find that this condition

occurs at the "critical" layer where the density and temperature are n 

and Tr , given by

M.
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a - 1012.4 p-.'/3  p7/6	 1/3 011/3
C

(2.24)

i
i and

Tc - 103 .2 F1 /3 P-1  /6 B1 /3 W-1 /3	 .	 (2.25)

As far as transmission and reflection are concerned, the important quantity

is the jump in density in going from this critical region into the chromosphere,

which w! t write as .

0 - 
PC	

nch - 
T
S	 (2.26)

c	 c	 ch

We see from Equation (2.25) that this may be expressed as

0 - 103.2 T 1 F1/3 P 1/6 B1/3	 1/3	 (2.27)
ch

We write the wave amplitude on the coronal side of the transition region as

i[k_(z-z ) - wt]	 I[-k-(z-z ) - wt]
b_ (Z.t) = As	 J	 + RB As	 J	 (2.20

and the wave amplitude on the chromospheric (transmitted) side as

i[k+(z-zJ) - wt]
b+ 4.0 - TB As	 !	 (2.29)

where the jump is assumed to occur at z - z i . On noting that b is con-

tiuuous across the jump and, from Equation (2.9), that

db	 db

	

v? _ = v2 ±	 (2.30)
dz	 + dz

we find that the reflection and tranamission coefficients are given by

Z
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a,*

el /2 _ 1	 z 01 /2
- el/^ ' TB ' el 12. + 1	

c2.31)

On noting that the energy flux is proporti;^al to b 2V , we sea that the

coefficients for the reflection and tranamic3ion of energy are given by

(el /2 - 1) 2
	

4e, /2
,el /2 + 1) 2 ' 

TE ' 
(el /2 + 1^ 2	

(2.32)

If energy is suddenly released at the top of a loop, then a fraction 78

of that energy is transmitted to the chromosphere and photosphera after a time

t l , where t l is the time it takes for an Alfv[n wave to propagate from the

top of the loop to the base. After an additional time 2t 1 , an additional

fractions RETE is transmitted, ate. (We have assumed that the wave is not

significantly damped in the corona: this will be verified a Eosteriori in Section

3.) Hance we see that the characteristic decay time T D of the energy flow to

the lower atmosphere is given by

2t1

TD - =
	

(2.33)

For example, consider the range of values 0 . 10 - 100 . For this range,

we find that RE - .27 -- .67 , so that T D/e l a 1.5 - 5.0 . In a symmetrical

configuration, the energy will escape equally through both feat of the loop.

We have so far considered that the magnetic field is uniform and vertical.

In a real solar flux tube, neither of these conditions will be satisfied. Wein-

berg (1962) has discussed very generally the effect upon wave propagation of

variations in the parameters entering the wave equation. His analysis confirms

that for AlfvIn waves, even in a general magnetic -field configuration, energy

propagates along magnetic Veld lines and that the ware amplitude varies accord-

ing to Equation (2.13).
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dk

a • - 2K kds
(2.34)

However, Weinberg's analysis also sheds light on the variation of the

wave vector during propagation. If we consider propagation along a field line

which is -urved but Use in a plane, we find that the components of the wave

vector along Cle field line (k„) and normal to the plane (k a) are un-

affected by the curvature, but the rate of change of the component kl

normal to the field line acquires the following contribution

where K(s) is the curvature v` the field line. In order to asses& the influ-

once of this effect, we ray consider the 
case that a wave begins at the top of

a loop (s - 0) with kl - 0 . Than at the base of the loop, where a - L ,

kl(L,`	
2-	 LdsK s-	 (2.35)

k„(L)	
o	

(s) V(L)

As a result of the rapid increase in dena .ty as s approaches L , the dominant

contribution to the integral coaes from the last (the lowest) density scale

height. If, as is likely, the angular deflection ,/K(s)ds of a magnetic

field line is small in the lowest density scale height, we may neglect the

change in the wave vector duo to curvature of the field lines.

The wave vector will also be modified during propagatior by the convergence

or divergence of the field lines. If the convergence is "one-dimensional” in

the sense that there is convergence or divergence in one of the transverse

directions (x , say) but not in the other direction (y) , then k  scales

with the magnetic field strength but k  is unaffected. If, es another example,

the field configuratiaa has cylindrical s-,^ootry, than both o f the transverse

components of the wave vector scale as 5 1 ''4 . We shall, for definiteness,

consider the latter case in the examples to be discussed in the next section. 	 {

i^
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3. Nodal Parameters

Table 1	
The variation of b(z) with s asiven b 	 (.2.28)R	 y $luacions (2.13),

and (2.29), uspends not only on the vak.as of the wa ve parameters W and

Ro ( 2 R at the top of the loop), but also on the features of the flare loop

itself. We have investigated four poc+sible loop models, ohm in Table 1.

Those models differ only in their magnetic field strengths and geometries,

with the coronal field strengths in the range 100-300 G and the field strengths

near the footpoints of the loop in the range 100-900 G. We consider a narrow

flux tube with "cylindrical" symmetry. For the purposes of calculation, a

convenient fora for the variation of Bo with z is the model considered by

Antxochos and Sturrock (1976),

B (z)

B (0) a 
sect ` L arc cos T 1/2 ) ,	 (3.1)

0

(although this model was derived for a field configuration of somewhat differ-

ent symmetry). The area factor ("compression ratio") T for each model con-

sidered is tabulated in Table i. Below z a L , the backgrru:nd field strength

a
was taken to be uniform and equal to B o (L) . The chromospheric variations of

temperature, density, ionization level and reristivity with height were

taken from model 1 71' o+ Machado at al. (1980) and are showa In Figure 1,

plotted against the column number density N (cm Z ) as independent variable.

The resistivity was assumed classical (Spf.tzer, 1962), with allowance made for

the affect of ion-neutral collisions near the temperature minima (Emslie and

Machado, 1979). The possibility of anomalous resistiv; ty in the region of

flare energy release will be considered below.

Figure 1	
We solved the relevant equations for each atmospheric model for a range

Figure 2

of both v(- w/2fr) and t o , the resulting behavior of the quantity Q (local

energy deposition rate per -xAt volume) is shown in Figure 2. The results in

12
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the figure correspond to an initial perturbation amplitude b(0) - 1G for

other values of b(0) , the energy deposition rate scales as [b(0)]2 	 The

shaded areas in the figure represent the approximate location of the strong

a 
T^ temperature enhancements reported by Machado at al. (1978); the maximum	 1

'	 of Q(N) must lie in this region if the heating mechanism proposed in the

present paper is to be effective. For R o values much larger than 106 cm

the L„ term in Equation (2.14) completely dominates [cf. Equations (2.15) and

(I.16)J,and so the results are similar to those for j  - 10 6 cm . Similarly,

for v << 1 Hz , the L1 term dominates, so that results for such low frequen-

cies need not be shown either.	 2

It is immediately obvious from the figure that the proposed mechanism is
;-0

effective at heating Tmin layers only if the parameters v and !Go fall

within the ranges

v	 10 Hz	 (3.2)

and

to 	 10 5 cm	 (3.3)

Further, only for models with high photospheric magne tic field strengths [result-

iag in higher Alfv4n velocities and so lower damping rates in the chromosphere

- see Equations (2.15) and (2.16)) is a satisfactory situation found (e.g.

models c, d in the case 10 - 105 cm , v - 1 Hz) . This result is encouraging,

since the results of Tarbell et al. ( 19419) indicate that such high values of

the magnetic field strength at the photosphere are indeed appropriate.

The required values of v and Z  may be compared with independent esti-

mates of their likely values. Recent analyses of the time structure of flare-

associated hard X-ray bursts (Dennis et al., 1981) reveal structures with time-

scales of the order of a few tenths of a second, with no significant structure 	 1

13



on time-scales smaller than this. Thus, based on this data, we would expect the

highest frequency of any flare-aasociated disturbance to be of order 10 Hz ,

in good agreement with the values required (Figure 2). Further, on the basis

that magnetic reconnection in an unstable arch is the source of the primary energy

release, we should expect 
t0 

to be comparable to the width of a magnetic

"island" 
RI 

(Spicer, 1976, 1977). From Spicer's (1976) Equations (4.35) and

(4.54) (see also Furth st al., 1963), we find that

1/5

aI x (4nK3BZ )	
.	 (3.4)

0

where K is the wavenumber of the perturbation inducing the magnetic reconnec-

tion. Inserting numerical values and noting that K % C 1 , we obtain, using

the coronal model given in Table I,

p L
1I k 105.5
	 3(T- 3 ) 1 /5 

ti 10
3.3 

cm	 (3.5)

(see also Van Hoven, 1976). In deriving this value we have used the classical

plasma resistivity (Spitzer, 1962). The presence of turbulence in the reconnec-

tion region will increase n and so L  . For instance, iI is increased to
ti 10 5 cm if the turbulent resistivity exceeds the Spitzer resistivity by a

factor of about 2 X 104 . Hence the required value 
t0 ti 

10 5 cm is not incom-

patible with the "island thickness" likely to arise during reconnection.

As mentioned in Section 1, the observations and empirical model-fitting of

Machado et al. (1978) indicate flare-associated temperature rises of some 100-

200 K at Tmin levels, corresponding [cf. their Equations (18) and (19)1 to

a specific energy deposition rate of some 10-20 erg cm 3 s 1 , depending on

whether the observed structure is "average" or "bright". From the results of

Figure 2 (which, we recall, are nornalized to unit initial perturbation ampli-

lP
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tuds b(0)) , we therefore deduce that the required value of the magnetic-

`	 field fluctuation generated by reconnection should have the value

b(0) k 5G
	

(3.6)

in order for Q to agree with these observationally deduced values. This

value of b(0) also corresponds to a total (i.e. depth-integrated) energy

deposition rate of some SX10 7 erg cm-28-1 in the Tin layers (see dashed

curves in Figure 2); this is also in good agreement with Machado at al.'s

(1978) estimates.

Such a value of b(0) results in a value of b of % 15 G just below

the transition zone [see Equation (2.31)]. The value of b further increases

to % 40 G at a column depth N It 3x1022 C%72 , because the increase of p and

the corresponding decrease of V (Equation (2.10)], leads to an increase of b

(Equation (2.13)]. For larger N , b falls off due to resistive damping of

the waves which overcomes any increase in b due to the effect of increasing

density. These values of b are much smaller than the ambient field strength

Bo in the models of interest, as is necessary to justify the linear analysis of

Section 2. Finally, we note that. for the values of v and t  emerging from

our study, the wavelength in the corona is much less than the temperature length

scale in that region. Also, both L 11 and L, [Equations (2.15) and ( 2.16)] are,

for classical resistivity, much larger than L , so that the wave damping in the

corona (z < z i ) is negligible. In fact, even if the resistivity in the region

of maguetic reconnection exceeds the Spitzer ( 1962) value by the factor of % 104

required to reconcile t  
with the thickness of the reconnection region (see

above), it is still easily demonstrated that both L,, and Ll are large compared

to the size of such a region. We thus see that the modeling assumptions of

X << LT and LD >> L made in Section 2 are justified.

15
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4. Discussion and Conclusions

As pointed out above (Section 1), the total energy liberated at Tmin

leve13 during solar flares is a relatively small factor in the total energy

budget of a flare, and therefore the constraint that the observed strong heat-

ing at Tmin levels places on a candidate heating mechanism does not hinge

upon the total energy supply but simply upon the existence of a mechanism to

transport energy throughout the solar atmosphere from the corona until it is

efficiently damped at Tmin levels. The mechanism proposed in the present

paper permits virtually undamped propagation of energy through the corona and

upper chromosphere, coupled with an efficient damping mechanism at Tmin

levels.

We conclude from the results of the previous section that Alfvftn waves

of moderate amplitude can, through resistive dissipation of their associated

alternating currents, account for the observed temperature enhancements at

Tmin levels during solar flares. However, it is interesting to note that

the propagation of energy from the primary release site in the corona to the

Tmin level is relatively slow, with an associated timescale

di
T	

dz

For the coronal and chromospheric models adopted in this paper (Table 1), we

can readily compute this integral numerically; we find that (with T measured

in seconds)

4
T = BO

o, ph

where Booph (gauss) is the strength of the photospheric magnetic field Ithe exact

field geometry in the corona is unimportant, since the disturbance travel time

(4.1)

(4.2)

16
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in the corona represents only a small contribution to T; see Equation (2.33)].

This is much larger than the time -scale quoted by Emslie at al. ( 1978) for an

MHD disturbance to propagate in the upper chromosphere, because of the much

larger densities (and correspondingly low AlfvSn velocities) appropriate to

the 
Tmin 

region. Nevertheless, for the plausible range of values Bo,ph

k 300 G , the timescale is much smaller than the 10 minute delay time between

the impulsive phase of the flare and the Tmin enhancements observed by

Machado et al. ( 1978). This therefore implies that, for the proposed heating

model to be valid, magnetic disturbances must be generated in the corona (or

elsewhere) long after the impulsive phase of the flare. It is possible that

tiaose disturbances can reveal themselves in other observational signatures,

such as radio emission; however, it is unlikely that their associated currents

will produce observationally detectable effects in locations other than the

Tmin region, because of the very low resistivity in all other parts of the

atmosphere.

Finally, we note that Equation (4.2) represents a strong observational

test of the present model. If Equation (4.2) is valid, no enhancement at the

Tmin level should be detected until a time measurably later than the impulsive

phase of the flare -- as indicated, for example, by the hard X-ray burst. It

appears that data do not yet exist against which to check this consequence

of the model.
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Figure Captions

Figure 1. Chromospheric model adopted (from Machado et al., 1980, model 'F11).

Shown, as a function of column depth N , are x - the ionization

fraction, n - the number density, T - the temperature, h - the

height above the photosphere (T5000 - 1), and n - the plasma

resistivity, assumed classical (see Emslie and Machado, 1979).

Figure 2. Energy 

fQdz

deposition rate Q (solid) and depth-integrated deposition

rate 	 (dashed) versus N . Each diagram refers to a different

sef of (v, Z0) values as shown around the border, while within

each diagram the letters a through d refer to the coronal magnetic

field geometry of the model (see Table I). The shaded areas

correspond to the location of the temperature minimum (cf. Figure

1); Q should peak in this depth interval for the model to be

effective at heating Tmin levels of the atmosphere.
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