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Chapter 1: Introduction

The paét few decades have seen helicopters evolve into
truly multi-purpose machines. In the cities, radio stations
use them to provide motorists with va;uable - traffic

information, and in some of the largest they have become just

" one more form of commutingf In the battlefield, helicopters

have proved themselves effective tools in rescue operations,
as well és for the transport of troops and supplies to
otherwise inaccessible regions. In either role, civilian or
military, they are expected to do their job as quietly as
possible.

Everyone haé heard the unpleasant "slapping" noise from
an approaching helicopter. When preSent, and it often is, in
hover, it wusually dominates all other sources of helicopter
noise = including engine noise. Investigators generzally
agree(l) that for moderate subsonic tip Mach numbers a great
part of each slap signal has its origin in the impulsive load
a blade feels upon passage over a vortex ¢trailing from
another. For higher tip speeds, however, Boxwell, et, alfq
have demonstrated experimentally that blade slap can be
mostly due another aerodynamic effect: the presence of
tip-region shocks on the advancing side of the rotor. Here
we develop aerocacoustic models to predict blade slap due to'
blade-vortex interac;ion alone.

Normally, heavier helicopters operate fﬁaster turning
rotors for greater values of needed lift (instead, the number

of blades can sometimes be increased). The analysis to
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determine the unsteady blade force and associated aéoustic
field for a blade-vortex interaction at high subsonic
tip-Mach numbers is fundamentally different from that for low
tip=-Mach numbers; compressibility effects then . become
important in the calculation of a section of the signal's
spectrum which may contain a substantial fraction of the
signal's acoustic energy. Also, compressibility changes the
qualitative character of acoustic radiation: pulsés from
blade surface dipoles firing at different values of retarted
time t-r'/co may nevertheless reach the far-field point r

simultaneously at time ¢t; for high subsonic M, these.

‘differences in firing time A(t-r/co)'s in general are not

small in comparison to the period of oscillation of
high=level spectral components of the total slap signature.
In the present study we develop models to predict
theoretically this important part of the signal's spectrum,
the part which causes our blade to Dbehave largely as a
noncompacﬁ acoustic source. We shall see that in the
boundary-value problems we need to solve compressibility and
high-frequency effects appear lumped in two parameters, both
proportionél to reduced frequency divided by 1-M2.

In the linear models developed here, we split the
aeroacoustic problem of blade-vortex interaction into a sum
of simpler gust problems; each gust represents a component of
the spectrum of the vortex-induced upwash on ”the plane of
flight. It is important to poini out that apgiication of our

models for blade-gust interaction is not 1limited to
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predictions of noise due to blade-vortex interaction, ocut
that they could also be used, for example, to calculate
unsteady forces acting on compressor blades in the presence
of- nonuniform incident flows, or to predict the acoustic
field surrounding a thin wing cutting through confined
regions of turbulence.

In earlier theoretical studies of helicopter-blade
slapxa’“) investigators have applied incompressible flow
models to calculate unsteady sectional 1loads acting on a
blade passing over a vortex. They used this computed lift
force in three-dimensional acoustic models to represent the
strength of simple point dipoles along a chosen portion of
the blade 1length. Application of such chordwise-compact
aeroacoustic models of blade-vortex interaction to predict
noise for practical cases of interest was justified whenever
interaction parameters met one of the following two
conditions: (1) Large vertical blade-vortex separation to
chord ratio for moderate Mach numbers; (2) very low Mach
numbers for arbitrary blade-vortex separations.

Actual helicopter blades often operate such that neither

of these two compactness criteria is satisfied, however, and

"noncompact aerocacoustic theories such as those developed here

become necessary. The natural uncoupling that exists between
an acoustic field and its -~ aerodynamic source (in
two-dimensions, the loading along the chord) disappears when

the latter is acoustically noncompact;‘ there 1is no

incompressible flow region surrounding the airfoil then, and
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the acoustic field begins at the airfoil surface. Instead of
radiation from a simple dipole, we expect a more complicated
acoustic field due to a distribution of dipoles over the
chord with large differences in phase. Kaji has discussed in
detail noncompactness effects in ref. 5.

Only a few of many important three-dimensional 'problems
in unsteady.aerodynamics have been solved in closed form for
subsonic flow; for example, until very recently an unsteady
lifting-line theory was not available (ref. 6). Another
three-dimensional, but chordwise-~ compact, model is that due
to Chu(7ﬁz who developed a numerical lifting-surface theory.
for.a semi-infinite blade passing through a gust, and then
applied it to predict noise due to blade-vortex interaction.
Many past efforts(“ﬁ) in modelling the strength of acoustic
sources due to bladé-vortex interaction, however, have been
based on two-dimensional aerodynamic theories. These models
assumed that at most spanwise positions on a blade
three-diménsional tip effects can be neglected; they become
more and more valid as the vertical blade-vortex separation
is reduced and the loading at each section along the length
of the blade is dominated tWO-diménsionally by 1loecal
chordwise unsteadiness.

Landahl(lo)

has shown that the surface pressure
distribution for a thin two-dimensional airfoil passing
subsonically through a gust of arbitrary wavelength may be
determined by means of an iterative schemé';pplied in the

aerodynamic reference frame (fixed on the airfoil). In the
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first step the chord is allowed to extend infinitely in the
downstream direction from the leading edge; this eliminates
the Kutta condition and the wake from the problem. The
solution to this leading-edge problem satisfies both the
upstream boundary condition ¢=0 and the flow tangency
boundary condition on the airfoil. .A trailing-edge problem
is then solved in order to correct the leading-edge solution
in the wake. The sum of these two reéults satisfies flow
tangency on the airfoil and pressure continuity across the
wake; however-it violates the <condition of ¢ =0 upstream.
Further iterations may Dbe carried out to provide a more.
accurate solution. l

Landahlhi)has shown that the series which results from
aplication of his iteration scheme converges uniformly; but
that due to the strong communication that exists between
leading and trailing edges when the gust wavelength is much
longer than the airfoil chord, many terms would be needed to
obtain a good approximation to a solution which is easily
available by simpler methods because the source region is
then acoustically compact. Landahl's iteration scheme
becomes useful when the gust wavelength is much shorter than
the airfoil chord, Then the leading edge and the trailing
edge become largely independent of each other, and only a few |
terms in his series are needed to approximate a solution
which is difficult to obtain by any method known because the
source region is acoustically noncompé;;. In the

short-wavelength limit the solution is given by the first
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term in the series: the relatively simple result from the
leading-edge problem.

Adamczyk 12has also given an infinite-series solution
for a two-diﬁensional airfoil passing through a gust of
arbitrary wavelength. His approach was quite different to
that ofr Landahl's and the terms in his series of Mathieu
functions cannot be interpreted physically as edge effects.
He. presented numerical results for some values of the
acoustic directivity in the aerodynamic reference frame
showing enhancement of the acoustic signal in the downstream
direction. |

(12) .

Adamezyk has also determined the response of an
infinite-span swept wing to an oblique gust convected by a
subsonic freestream. His expression for the pressure
distribution on the wing was the sum of the first two terms
of the series from the iteration scheme described above,
Although he presented numerically calculated 1loads on an
airfoil passing over a potential vortex in this work, he did
not report any acoustic results, not even for the gust
problem,
(2 .
Amiet gave numerical results for the power-spectral
density of the three-dimensional acoustic far field in the
aerodynamic reference frame due the interaction of
small-scale turbulence with a high-speed thin wing of finite
spah. He replaced the surface of the wing with | a

i
distribution of point dipoles of strengths given by

Adameczyk's two=dimensional response function for a
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short-wavelength gust, which he fhen used 1in a spanwise
superposition to model finite-span effects. His
three-dimensional acoustic model for numerical calculations
is valid in-the high-frequency limit, or alternativgly, in
the 1limit of infinite aspect ratio. Amietfls) has estimated
the power-spectral density of the acoustic far field due to a
fast climbing rotor cutting through small-scale turbulence.
The small-scale character of the turbulence allowed him to
consider spanwise blade elements as moving in a loecally

rectilinear fashion. The results were given in a coordinate

system fixed to the rotor hub.

(1¢)

13
has also generalized Adamczyk's ?) original

Amiet
two-dimensiohal high=-frequency theory by considering a gust
not convected by the freestream. In addition ¢to the gust
problem, in this work he also investigated plunging motion of
the airfoil; no acoustic analysis was performed, however.

In chapter 2 we develop a two-dimensional aerocacoustic
model for a blade of infinite span passing through an oblique

gust of short wavelength. We apply Landahl's concept of edge

separation and obtain an expression for the pressure field

.due to the airfoil-gust interaction. The result is

approximate Dbecause it is the sum of the first two terms in
the iteration scheme of edge separation: the first
leading-edge solution; and the first trailing-edge solution.
Both of these two problems are ' solved in the aerodynamic
reference frame by' the Wiener-Hopf technfaae. The ﬁotal

solution contains the aerodynamices at the airfoil surface,



that is, the surface pressure distribution, and the acoustics
of the interaction in a rather ccmpact analytic expression.
Letting the field point in the solution comel down on the
airfoil, we recover Adamczyk's two-dimensional aerodynamic
result for the case of zero sweep. Letting the field point
g0 to infinity, we obtain the two-dimensional acoustic field
in the airfoil reference frame due to the interaction of an
oblique short-wavelength gust with a subsonic airfoil. This
section of our presentation is a review of part of the work
reported in ref. 9.

In chapter 3 we perform a spanwise superposition of the
two-dimensional solution from chapter 2 to approximate the
three-dimensional pressure field for a rotating rectangular
wing with subsonic tip-Mach number passing through a gust;
this last result is given 1in the acoustic, or ground,
reference frame. We calculate the three-dimensional acoustic
far field by allowing the observer's coordinates to go to
infinity, and obtain a <closed-form expression for the
.acoustic directivity pattern which does not require numerical
computation.

In ref. 9 the author performed a spanwise superposition
of the two-dimensional result of chapter 2 which is different
from the one presented here.. The earlier one in ref. 9 is
actually valid only in the infinite frequency limit, whereas
the one wWe develop here in chabter 3 is valid for arbitrary
high frequencies, not just the infinite limitjt” As we will

see, the analysis 1in ref. 9 hid some interesting physical
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features of the solution for cases in which the disturbance
through the fluid has a supersonic trace speed. Also, the
three-dimensional model developed in ref. 9 »used a "box"
spanwise superposition in which inboard blade sections
reached the same maximum value of loading as sections near
the Dblade tip. Here we develop a much better model for the
unsteady loading on a rotating blade, whidh in reality sees é
freestream lineérly increasing from hub to tip: We model the
three-dimensional unsteady blade load by the two-dimensional
value at the tip, and say that it decreases from this value
linearly to zero at the blade hub; the Mach number in the
two-dimensional solution is used as the tip-Mach number in
the three-dimensional solution.

The actual 1loading on a helicopter blade, however,
vanishes at the ¢tip as /f:§: a functional behavior with
infinite slope at y=L, where we therefore expect to find
generation of strong trailing vorticity. It follows that our
aerodynamic superposition model is not consistent with
reality near the tip: it overestimates the strength of
acoustic dipoles there, and also gives a wrong representation
for their phase. As we discussed earlier, however, at high
frequencies the spanwise extent of aerodynamic influence of
the tip 18 reduced; blade sections react then mainly to
strong local shed vorticity. Acoustic fields predicted by
the model in éhapter 3 should be good approximations to those
we would obtain wusing a model with correéﬁﬂmagnitude and

phase of tip dipoles.
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Lima" has applied the three-dimensional acoustic
theory developed in ref. 9 in a study of effects of
tip-vortex structure on radiated noise. He ﬁsed Betz's(la)
theory to construct vortices from assuﬁed forms of steady
loading on a helicopter blade, and then computéd numerically
the spectrum of the wupwash which each vortex investigated
induced on the plane of flight.

In the second ‘section of <chapter 3 we apply the
leading-edge part of the acoustic theory developed in the
first section to <calculate the no{se signature for the
interaction with a potential vortex. The result is given in.
closed form. It may be used also to predict noise due to the
interaction with a real vortex, which has a viscous core.
This follows from Widnall'spﬁ suggestion that the aerodynamic
effect of a real Qortex may be modelled by a potential vortex
at a somewhat 1larger effective distance below the flight
plane.

We also should point out here, as we did in ref. 9, that
results equivalent to those obtained by our approach could be
reached by an alternate method: By using the airfoil surface
pressure distribution already availabléla’lsgs the strength
of point dipoles in a Green's function integral. With the
present technique, however, the whole pressure field 1is
obtained at once, so_that the solution is both more elegant
and compact. Also, the results here in terms of contour

integrals make the far-field calculations stréightforward and

unambiguous., For example, the phases of.certain quantities
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are always obvious by the present complex-variables method.
Finally, our solutions at a general field point may be used
immediately to calculate other off-airfoil flow properties of
interest besides the acoustic field - the shed vorticity in
the wake, for instance.

We have said earlier that for very short wavelengths the
blade loading is well approximated by the two-dimensional
result only at a distance away from the tip. It turns out,
however, that in single-rotor helicopters blade-vortex
interactions frequently occur in which only outboard sections
of each blade aré actually expected to radiate noise. The
purpose of chapter 4 1is to develop a three-dimensional
aeroacoustic model for a blade tip passing through a gust.
The objective 1is to determine  the actual magnitude and
spanwise ‘phase variation of tip dipoles. Such a tip model
should replace chapter 3's whenever conditions of
noncompactness prevail, but frequencies are not high enough
to ignore three-dimensional tip effects.

| Due to the complexity of the problem in general, we
consider here the case of a square tip with side edge. Also,

(2,13)

since earlier studies have 'demonstrated that in very
noncompact situations the trailing edge can be neglected, we
simplify the model further: We remove the trailing edge and

determine the unsteady pressure field for a quarter-infinite.
D

plate with side edge passing through a gust at high subsonic

speed.
— ('.19) :
Miles solved exactly a problem similar to the one we



consider here, but for supersonic flow. For the subsonic
flow case no simple procedure yielding an exact closed-form
result is available. In chapter 4 we obtain an approximate
solution analytically for the pressure field everywhere 1in
space; we apply a procedure similar to that Carrier(zo)has
used to solve a three-dimensional diffusion problemn. By
allowing the field point down on the plate's surface we are
able, with some work, to obtain a relatively simple
expression for the tip loading valid for high.frequencies and
for large values of the interaction angle A. In fact, this
load expression turns out to be simple enough to enable us,
in chapter 5, to reintroduce the trailing edge into the
analyéis and so arrive at an aerodynamic model for a
rectangular-tip blade of semi-infinite span, with Yy
side-edge loading behavior, passing through an oblique gust.
We then proceed to calculate the associated acoustic field in
closed form.

We end this introductory chapter with a very brief
qualitative discussion on how we should expect a typical

21
( ) tells

blade-slap signal to look. General acoustic theory
us that a blade-slap pulse is proportional to the first time
derivative of the unsteady blade force induced by the
iﬂteraction. Fig.1la shows a rotor turning at angular speed
Q; the position of rolled-up tip vortices is indicated.
Consider the particular blade-vortex interaction for which we

have drawn the symbol A, for the interaction angle: The

position of the vortex relative to the blade at that instant
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corresponds to time 1 in fig. 1.1b. Point 1 in fig.l.lc
indicates the value of unsteady blade force F(t) at time 1;
because 1its positive part nearly cancels its negative part
there, the totai load magnitude is relativély small. . At time
3, however, F(t) reaches its largest negative value, and its
time derivative dF/dt quickly shoots up as the vortex
suddenly crosses outboard of the tip. At time U4 the net

force is small again.



Chapter 2: Two-dimensional aeroacoustic theory for
noncompact blade-gust interaction

In this chapter we apply the concept of ' separation of
leading- and trailing-edge effects at high reduced

frequencies to obtain an approximate solution for the

- two-dimensional pressure field for an infinite-span wing

passing through an oblique gust. The result is the sum of
the solutions of the first leading- and ¢trailing-edge
problems. Before using it to calculate the two-dimensional
acoustic field, we bring the field point down to the airfoil
surface and recover the expression ‘in ref. 13 for - the
pressure distribution due to the interaction with the gust;A
this suggests that our result for the pressure at a general
field point in space must be correct. We then proceed to
calculate the acoustic field by letting the field point in
the solution go to infinity. The resulting expression for
the directivity of sound 1is our contribution to the
noncompact two=dimensional theory of‘ airfoil-gust
interaction; it first appeared in ref. 9.

Following Amiet's formulationsls) we have in the
aerodynamic reference frame a rigid flat-plate airfoil on the
x-y plane with its chord extending from x=0 to x=2. It
interacts at an angle A with a short-wavelength sinusoidal
gust convected by the freestream (fig. 2.1). The linearized

equation for the perturbation velocity potential ¢ is

[.4 ..

o - L D22 _
Qxx‘l"@yy"' 2z 'c% Dt- (2.1);
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with boundary conditions

$( x<0,Y,0,t) =0 ' (2.2a),

iwt
@z(OQ<2,Y,O,t)= —bw(x’y) e (2.2b),
D$
ﬁ' (X>,2,.Y’°at) =0 . (2.2(2);

where the spatial variables have been nondimensionalized with
respect to the airfoil semichord b. D/Dt denotes
3/3 t+(U/b)3/3x, the linearized substantial derivative. For a.

sinusoidal gust of small amplitude w the gust downwash

0!
w(x,y) becomes woexp[i(mt-kxx-kyy)]; for one convected by the
freestream, the nondimensionalized gust wavenumber in the <«
direction k, 1is then b/U, the reduced frequency, and the
spanwisé wavenumber ky=(mb/U)tanA. Boundary condition (2.2b)
is a statement of flow tangency on the airfoil surface. From
the linear relation between potential and pressure, i.e.,
P:-po(D¢/Dt), boundary condition (2.2c¢) requires that there
be no pressure discontinuities at the ¢trailing edge and
across the‘wake.

Since the plate is infinite in the y direction, the
potential ¢ will have the y dependence of the input gust, a

traveling sinusoid; we therefore assume a harmonic behavior

iwt=ik,y L
¢&’lest)=¢b(12’) e Y f

according to (2.2b). We also make the change of dependent



variable

$(x2)= 6,(x2) e —;%—M;“-
and compress the z coordinate by the change V- z=Z. The
objeect of these 1last two transformations is to reduce the
relatively complicated convected wave equation to the more
familiar Helmholtz equation.

The boundary-value problem for ¢, becomes

2
.+ ¢, +ud, =0 (2.3)
o TExx %o % 3),
with
¢¢. ‘(X<0,0) p— 0 (2.’48),
-‘k
047 (05x<2,0) = - bwg o (2.ub),
AN
ikx 3 ( ) =
[ng *'7;3 ¢, (x> 2,00 =0 (2.8c);
where
2 k&M Kk kZotan?A (M2 LK M2 _tan2A
H T2 152 = M%) % |sinh T-RZ | T-HZ2
: . a (2.44),

and is one of the two wavenumber-related similarity
parameters in the problem; the other is kx/(1=-M?). The
parameter u®> is negative for M/sinA<1 (tanA>M/ =M%, This

case corresponds physically to a subsonic speed of
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propagation of the disturbance due to the passage of the
infinite-span wing‘ through the stationary gust. Since a
subsonically traveling - disturbance of infinite extent
radiates no sound, we expect no sound radiation for those
Mach number and interaction angle combinations.for which u?

is negative.

Leading-edge problem

The boundary-value problem for ¢£l) ;s the velocity
potential field due to the interaction of the gust with a
semi-infinite chord airfoil extending downstream from the.

leading edge, is

(1)

+ 1-124)* = 0 (2.5);

‘with

¢§” (x<0,0) =0

(2.6a),
) (40,0) = -b k]
xy 20 bwy  exp [ -ikgx
YT-H2 1= (2.6b).

The problem may be readily solved by the Wiener-Hopf

technique. We define the transform pair

1 ) y
«t:,(( Mx,2) = /% e‘ux?ﬁ(mz)

R

(2.7a),

® dx euxfb(]) 7 .
j dx < (x,2) (2.7b);

-
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where
3:(1,2)=$@(>»,Z) + ?ﬁ@(k,z)
that is,
¢ (A,2) = ° dx M ox(%,Z2) '
° .J; 4 (2.8a),
35@(1,2)? J/%—& o 1AX d:*m(x',z) (2.8b).
() T

The contour C and the regions of analyticity C), GB in the.
complex X plane are yet to be determined by the physical
requirement that acoustic waves propagate away from the
airfoil, the Sommerfeld radiation condition. Transforming
(2.5) and solving the resulting equation, we obtain that for
this lifting problem
5 (ze)= £ 5 (1,00 o LA (2.9);
where the branch of YA~y is chosen so that its argument.
vanishes as IAI goes to infinity along C. We initially take
i as a positive constant corresponding to M/sinA>1. The
results may be analytically continued later to include the
negative p? case.
Since an exp(iwt) dependence was assumed, outward
propagation requires that kx, and thus also é;fandli, have a

small negétive imaginary part. The regions of C) and C)
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analyticity in the complex A plane for (2.8a,b) are then
given by Im(A)>Im(u), Im(A)<Im(-4), respectivély, as shown in
Fig. 2.2. The contour C- runs pelow the feal axis for
Re(A)<Re(-yu) and above the real axis and the point k,/(1-M?)
for Re{i)>Re(y).

From (2.6a,b) and (2.8a,b) the following Wiener-Hopf
equation is obtained (B:=@?

-ibwg 1 1 1 . 13O0
Yy 2m /T2 (O~ k YA+ R A+ 8z
ib‘-’lo ) ]
/—- k - Vk-u a‘(k,o.*') (2.10),
2w e +u (l-kx ) @ _
-M T-M2

the left side of (2.10) being a @ function and the right a(®.
They are, therefore, analytic continuations of each other and
so they are both at least entire functions of A, If ;, &i/az
are assumed to be well behaved a A=z, (the Riemann-Lebesgue

lemma) Liouville's théorem then states that both sides of

(2.10) are independently equal to zero. The 'right side of

the equality says that

$ (\,0)zibwo | 1 1 ] 1)
2.11);
-}42 ; H
. Y 27T 7/‘ 4 |T<_>’EM2+H /}\Tu' (l-‘}‘i 2)
=

and so, from (2.9) and (2.7a)

' -idx - |z | AFE
il)(X’z)=ian 2/1z] f dAe 1 i 212y
2w/ T2 ke . ﬁ . o ( ) . .

- k ’
T-HZ . ToRZ



Arguments similar to those made for .the time and vy
dependence of the velocity potential also apply to the
pressure. Making the same changes of dependent and

independent variables made before for the potential, we have

P(x,y,2,t) = plx,2) e @t~ Tkyy (2.13a),

- z ThoM2 x
p(x,2) = p,(x2) exp—XTr ] (2.130).

From the relationship between pressure and velocity

(1

potential, the pressure p, kx,Z) corresponding to ¢S)(x,2) is

obtained:
m iAx- iZI\/)\z-u‘
N ,2)= =poqwa U zZ/ |z dA__®
s T j 7A-u (2.14).
2wyl =M 2 b, c :
Tz TH

For x50, Z=0+, the contour C may be deformed to ¢® in

fig. 2.3 so that

. -iT .
(],) (x>0, %) = * povo U ] e g WX

‘-2. -
/TT/IM/EM2+H Y x

in agreement with the aerodynamic result in ref. 13.

(2.15), T

Trailihé-edge problem
The solution to the trailing-edge problem is a pressure
p}?)such that p£9+pi2)is zero at the trailing edge and in the
i

wake. From the 1linear relation between potential and

pressure, we note that aﬁ)(x,z) also satisfies Helmholtz's
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) _
equation. We also require that.apﬁ)/az vanish upstream of
the trailing edge and that it be continuous for all x. With
x=x'+2, the trailing-edge correction boundary-value problem

(2)

for p, ‘in the x'=Z coordinate system is

(2) (2) 2 (2) .
prxk T opg, T opx 0 (2.16);
with'
2) .
ap.( (x'+2,0) = 0 for x'<0 (2.17a),
32
o2 (x4 2,08 = - {1 x1e2,08) forx'>0  (2.17b).

w

This problem may also be solved by the Wiener~Hopf

technique. We define the transform pair

. .
o2 (x',2) = J a e P(T) (2.18a),
¢ V2r
-~ @« - 1
P (A,2) = I ii.—' e 12X 2 (x',2) (2.18b);
: 7
inere Fe g hy tmt 15
° . : .
P@(A,Z) = J dgelkg p'.(':Z) (E,Z) (2."‘1‘93)’
-
T (2.19b).

P2 = Ldae”‘g p{ (g,2)

Transforming (2.16), solving the resulting equation and



2
invoking the continuity of api)/az for all x', we obtain

5,28 =+ B (1,00 & AT (2.20);

where E(x,O+)=§:§x,0+)+§:§k,0+), the arbitrary functicn of A
to be determined by the.Wiener-Hopf technique.

From  boundary condition (2.17a), we see that
ﬁ%jk,O)/BZ:O. From boundary condition (2.17b), and
.recalling the result in (2.15), é:}A@OjQ may be calculated:

+ ve  =12X im/h
P =2 ke e ™0 ) e T ¢ [20-m)] (2.21);.
V- V2 '
a dt eit

a Fresnel integral; E[2(0\ -u)] therefore

where E(a)=’
o 72nt
has a branch point at A=y.

The Wiener-Hopf equation in this case is (@Q=@)

: ~ . P in/k
Xt P@(A,o+)+K T:;E e 21*{/_?_ - £ [2(x-w) ]}
I' 2

-]

-im/4 :
e ds -2‘€ -~ b
- E+u e .
=% /& 1 ¥D -kt f(n) (2.22);
Wz [ SAYE == (A,04) - X
u = oz ®
| where
K€ = ooy cin/h 1
o™ iz
T-nz *H

a constant, and K*ECD denotes that additive part of /A+u
§C51,0+) which is analytic in the upper half )\ plane. The
standard procedure of splitting an arbitrary fﬁnction into a

sum of two, one (OQand the other@), is treated in detail in
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-—

ref. 22. Making the usual assumptions regarding the good
behavior  of %:§A,O+) and aész,o)/az, we have that
(Liouville's  theorem) both sides of (2.22) vanish
independently. This gives %ﬁ§l,0+). Adding (2.21) to it, we
obtain ;(A,O+), and substituting into (2.20) and by means of
(2.18a), we finally have that

sz)(x:Z) ==ipgWg U Z/1Z |

2‘“27 I'M 5_&_2+u
| 1=

J i om1Ax=2)- 2 | /AT de_ [T -2ig

— E=A - (2023);
¢ /i CC s

where the contour C is indented above the real axis at A=z &
Total Solution

Adding (2.14) and (2.23) and applying (2.13b), we obtain
the two-term approximation to the two-dimensional pressure

field for the passage of an infinite-span wing through an

oblique gust

P(m?)gpﬁ)(mﬂ +pm)(xJ) (2.24).
The pressure distribution on the airfoil, with its chord

extending from x=0 to x=2, is calculated from (2.24) which

now says that

p (0<x2,0+) % o1 (x0,0%) + p?) (x/.<'2_,0+) (2.25).

1
The part p()(x>0,0+) has already been determined and is
2
given by (2.15) and (2.13b). To obtain p( %x<2,0+), we start
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with (2.23) and observe that for Zz=0+, x<2, the integral

. . -2ig
. i d_ [zrn
I(u,x,2%) = j dr e~ 1AMx-2)-Z/A%-2 J E-xVE-n (2.26)
-

c A

may be deformed to

] -2i§
-3 (%= d /[E+u -
/Aty - M

where the contour C**is shown in fig. 2.4.

i Interchanging orders of integration we have
= -2i <iA(x=2)
I(y, x,0+) = - J dg fgtue ~™ di e 1 5.28
Ve o w20

The term 1/(A=&) attains its. maximum magnitude of =1/2u

when £=pand X-p. and goes to zero as £+ or as A* -« along

1 C*t or both. We can expect then that the largest
contribution to I(u,x,0) comes from values of & near the

lower limit. We therefore make the following approximation:

(-]

) Y -i -2 .
I (nx,0) ¥ o 7T (x-2) [ e[ ibaten
T — )
= 0-Da /" e i) e Lu(z0 D) (2.29);

where E* is the complex conjugate of E as defined in (2.21).

P
. Substituting for I(u,x,0+) in p*zkx<2,0+), we have
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~im/4-iux

—= 1-(1+i)E*[2u(2-x)1Y (2.30); .
’/E/ﬁ?" %m (1-(1+i)E*[2p

from which (2.25) becomes

: - ; 2
p(0<x<2,0+) 23 pawa_ U 1 e! %{EQL Xa iuxfi%
T v1-M2 vk,
T-m2 M
‘ ] - (2.31);
— - —= |1-(1+i) E* [2u(2-x)] LR -
ST [ ) :

so that the Kutta condition is satisfied at x=2 as required.
The result in (2.31) agrees with that given in ref. 13 for
the preséure distribution on an infinite-span wing passing
through an oblique short-wavelength gust. It serves as a
check for the expression in (2.24) that we have derived for
the pressure p(x,Z) at a general field point.
Two-dimensional acoustic far field in the airfoil frame of
reference

Here we start with the two-dimensional pressure field
P(x,y,Z,t) due to the passage of an infinite~span wing
through an oblique gust as given by (2.24) and (2.132a). We
determine the two-dimensional far field in the airfoil
reference frame by allowing the field point to go to
infinity. The calculated directivity of  sound is
theoretically that which would be measured in a wind tunnel
experiment.

From (2.24) and (2.13a) we have
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G0t = Thyy + ikeMi

P (xy,Z,t) = - PgWo U Z7/]Z| T-H

2m /]-Mav/%xﬁ? 1

J dA 1 + .Ie2'l>\ J‘” dE /+_u e_z-ig e_.i}“_lz‘}wkE.BZ)._
c YA-u m TR AT &-A £ - 1 E

We notice that in order to obtain a nonvanishing far

field the largést contribution to P(x,y,Z,t) asyxZ+Z2% +» must
come from values of A such that/xZ =u2<0 or |A| <, and so it
follows that in the far field, the largest contribution ¢to
the 4inside integral in (2.32) comes from its lower limit.

Integrating by parts, we thus obtain that as/x2%+Z? +~ »

e Y a2n e N a-(sieEr[2(u-A) ]} (2.33).

Jdi Fm e 218y
2} Y H-A

Substituting this into (2.32), the asymptotic behavior
of the A integral asvyx*+Z°% »» may be determined by steepest
23
descents (Noble} ) pp. 33-=36) to be

: | o2 .
P, y,2:8) ,,  pawgV e @ETRyYIT ~ikedtcos o 5/ yZ5in2e / XFE
Y X+ Z‘.m /1? M

T DTz

T -cos (8%/2) - (1 + i) E* [2p (1-cosg*)]
(] - M2 sin?%9 )1/“ . (2.314);

where the substitution 2=/1=M%z has been made so that
-1 - [‘i’ )
- @O=tan (z/x) and o =tan (YT-M2tan® . The expression in (2.34)

shows that for negative u? (u ==iY=u%) there is no acoustic
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field -(the solution in (2.34) is exponentially damped). We
had anticipated that this should be the case since the
disturbance due to the passage of the infinite-span wing
through the gust then travels subsonically through the fluid.
The quantity in brackets 1is the two-dimensional acoustic
directivity D(@) in the airfoil reference frame; we plot it
for different values of the Mach number M in figs. 2.5a,b.
For values of 1 foot for the semichord b and 1100 ft/sec for
the sound speed <c,, the acoustic signals corresponding to
these patterns are sound tones of 280 and 315 Hz,
respectively.

We can apﬁreciate the dramatic effect of noncompactness
on acoustic radiation if while we look at these we recall the
directivity pattern for a simple dipole - the acoustic field
for a compact region. Note the sensitivity of the lobing to
a relatively small change in Mach number. The parameter
which actually controls the amount of noncompactness of
course is u , which 1lumps frequency and ‘compressibility
effects together and without which the Helmholtz equation
(2.3) becomes the Laplacian, the governing equation for
compact aerodynamic régions; it appears alone in the
directivity part of (2.34).

(26)

13 ’
Amiet and Adamczyé' ) have compared the predicted

aerodynamic loading (2.31) to numerical results obtained by

(2¢)

Graham for a wide range of y values., They have determined

i -
that the two-term theory (one 1leading- and trailing-edge

problem) gives good results for loading when u>.7,
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approximately, for yu real. For imaginary u (2.31) remains
valid in a wider range, apparently because the trailing-edge
part of the loading converges then much faster; the Fresnel
integral turns into an Error function and the loading-bécomes

hydrodynamic in character.
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Chapter 3: Approximate aeroacoustié model for a rotating
blade of finite span passing through a gust. Application for
a potential vortex

In chapter 2 we derived an expression for the pressure
field everywhere in space for the two-dimensional interaction
of a subsonic infinite-span airfoil with an oblique gust. In
this chapter we use that two-dimensional solution 1in a
superposition procedure which will enable us to model the
three-dimensional acoustic field radiated by a rectangular

blade rotating with high subsoniec tip-Mach number. We find

that when the disturbance due to the interaction travels

- supersonically through the fluid, the model breaks down along

certain directions. For cases of subsonic trace speed of the
disturbance, we present typical examples of acoustic
directivity patterns and compare one case to the
corresponding two-dimensional result in chapter 2.

AmietGS) has pointed out that the contribution to the
acoustic field from the acceleration effect of sources of
souﬁd on é rotating blade may be neglected when w , the
acoustic frequency, is much larger than 2, the blade angular
speed. Qur three-dimensional model for the acoustic field
uses this simplifying fact, and so 'we assume that each
spanwise section of the.blade passes rectilinearly through
the gust with local speed varying from hub to tip.

In addition, the associated three-dimensional
aerodynamic model makes the following ”two related

i

assumptions: (1) the chordwise unsteadiness dominates the

three-dimensional tip effect over all of the span; and (2)
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that the spanwise 1loading may adequately modelled by a
triangular shape with maximum loading at the tip (in reality
the actual loading near the tip must vanish asvL-y).

We close the chapter by applying the leading-edge part
of our result to prediect acoustic signatures for the
interaction with a potential vortex. The veortex in the model
is located a distance h chords below the flight plane.

We start by defining the three-dimensional pressure
field P3_§x,y,z,t) due to the passage of a rotating blade of
span L through an oblique gust; as before I= A=-M2z. We
require that this three-dimensional pressure equal the'
two-dimensional pressure P given in (2.32) on Z=0+, y=L, and
that it decrease from this value to zero linearly at =0+,

y=0. We make the changes

jwt + kM2
P3-D(x,y,2,t) = P* (x,._‘,’,Z) e1 115{'4 * (3-1),

and Yz:A=M2y so that P. satisfies

2
P* + P*YY + P*ZZ + [ k.4 P* =0
N T-M? (3.2)
subject to the boundary condition
Pe(xs¥,0) =f Y Pap.p (X,¥,0%) for 0<Y</T-MZ L
LT ' '
0 otherwise (3.3),
where
-ikx tanAY
Pas_p (x,Y, 0+) =-Powg U 1 o lkx tanAy
20 Y1-M2

—M<
2n/1-M ‘/'lk-Mz y



' [ ae”™ )1, el | ok o741 |
c ey /A U £=4 &-u (3.4).

as may be seen from eqn. (2.32).
We now define the transform pair
Polx,Y,2) = (T dndiz e ArwihaY 5y, ay:7)
l { (2m)? | (3.5a),

-— 03
-]

B (Arsh232) = } I o dY e YMX F ALY 5 0y g

-] (305b)o
{ Transforming (3.2) and solving, we obtain that
P (desZi)= £ 7 (A,de,04) e L/AT AAEKE
| (306),

Wwhere we have called kXM/(l-MZLK, for convenience. From

(3.5b) and (3.4) it follows that

F (A1) G (iz- ke tanA\

F (Al alz 90+)

AR | (3.7,
where
Y1-12L
. G(;z- kx tanA) - dy Y eu(Az-kxtanA)Y
: /112 t — ¥ 117
| » /TR (3.8),
A and
F(A) =- Wy 1) 21)1 < 3 .
= EriVi oL
Jﬁz“- /?\1 -u AN £-21 &- H
11 | (309)-

From (3.7), (3.6), (3.43), and (3.1) we have therefore



that

oL it ikyM2x
P3_D(X,Y,Z,‘L) = @ _ + —TiLM-z—
ixeiroY - 7/ATEERE
[ I d)\]d)n? e MX 1A2Y _)>‘1+)\2 }
(z1)2 F (\) 6 kz-kxtanAj
" V]"'M (3110)0

We now translate the solution in (3.10) from the airfoil
frame of reference to the ground, or acoustic, reference
frame. We let A;:b.)‘\fn-ls(_M”/U-MZ ), A,=br/ /T-M2, and express the
result in (3.10) in terms of the original unstretched Yy, 2

variables. We also introduce a ' -t Fourier transform so

that .
. « 1 -.~ b -.~ b
Po_D(&QY,Z,t) = _Eidxxd%z & 'e1w.t i bx-iA2by
~ zrm)? .
et -
; N
\ o A ] (blz-k tanA
) 42 a n,l I_{ F ‘!‘kl P"z _x_
exp{b%J/ggﬁr__ X1-Xa )5 fw'-(w-X;U)] F (bXy EM| ) G — )
0 - .

(3.11),
where k&:(w+ip)b/u. Next, we express the §-function

appearing in (3.11) 1in terms of one of its well known

limiting forms, e.g., d&(al)=lim %’s?fa and interchange the

- ~ €30
orders of A\, integration with the w' integral:
@ 3,03 ® _-’\' B _.'\.r
P3_D(%£y,z,t) = Lim b2 Gy le@ T dX dX,e 141Dx, - 1A;by
e+0 (2T
"Ry ~ - -0
-ibz (& -A1 =Xz J v
</ 1 [w-(w-X1)U] Vv P n '

e c - - T F (DX{+ kyk Exs- k
y1-M2
(3.12).

Here bxasz-Ut, the "a" subscript denoting the acoustic

reference frame. The last step is to evaluate P3D in the far



field; this may be readily done by approximating the Xy A2

25
integrals using the method of stationary phase (Whitham,( P.

392). Before we do this, however, we may use the
approximation indicated in (2.33) for the integral appearing
in F in (3.9). The final result for the sound signal in the
three-dimensional acoustic field which a listener on the
ground hears as the rotating blade of spaﬁ L énd tip Mach

number M passes through a stationary gust of short wavelength

is
.. (t=bra) z
P3.p(xsy:2:8) =~jogko “/F; & e 0300 y‘ U
. 2“’(]“M2) / _A. + r‘a ‘ . (]'{'M &- )2
| ©(3.13),
/
where
D X z z 1
3-D ( s y — = £
a T3 Ty Ta < A Xa + M) /M tanZA. 172
TR m) 1-H*
\
i M2 1/4
. "/i{—ﬂ-m - tanzA} L - ()
2 2 }1/2
ﬁ“_r_ tanZA - [M (%14-?*1)]
lﬁii +M X3
Ty \
: Z-+ / -thA
el 2 [[F oy L M GEew) &G[ e )]
Az AT J‘.R1'(1+M>;_a) =
a ——
/ : .
‘-', (301}43),

and

M



1 My/ra_ -kl (:anA - My/ra_ )
— G kg - tanA = e X
1+M Xa : 1+M Xa
e iy
L (kx| tanp -
] Xa
ra
- My T
vi el -1 kL (tanA M i Ma a>
k, [tanp- My/ Ta a
X < 41 %as) : (3.14b).

The distance ra=/£§I§TIET and the direction cosines x3/ry,
y/ra, 2z/rz3 specify the position of the observer on the
ground. D3_éxa/ra,y/ra,z/ra) is the three-dimensionai
acoustic directivity not including the factor (1+Mxy/r3)

which gives the usual forward enhancement of the acoustic
signal from a moving source, in this case, the blade

traveling in the -x_, direction; 1+Mx,/r, also represents the

a
position-dependent Doppler shift of the tone, as indicated in
the exponential in (3.13).

The expressiéns in (3.13), (3.14a) stand as are for
M/sinA>1 (tanA<M/YT=M?), that is, for supersonic trace speeds

df the disturbance., For subsonic trace speeds, sin >M, and

we recall from chapter 2 that u :-i/:ﬁz, so that may then

- 20 = af tan<a- M
1/?%%[ tan<A 1 A 5=

in (3.13), (3.14a). Before we make this <change for the

write

subsonic cases, however, we notice that the first term inside
brackets in (3.14a), the contribution from the leading-edge

problem, blows up in the direction given by



-J-Ea- = - .ﬂz_ - M - 2
ey . (o tan<A
M oM

m—— Mz
= 1 " ta"ZA_ (3.15).

As fig. 3.1 shows, this 1is the direction taken by

acoustic rays born at the line foried by the intersection of
the downstream part of a typical Mach cone and the Xa=y
plane. The breakdown of the leading-edge solution in this
direction can be explained mathématically as follows: Since
the chord extends downstream to infinity, in the above
operations we have in fact tried to calculate tge acoustic
field of a. distribution of supersonic sources which is
infinite in extent; the surfaces of the associated system of
Mach cones do not interfere and so, even those farthest from
the leading edge will have an acoustic effect. But thé
determination of such an acoustic field is a badly poséd
problem for the method of stationary phase, which relies on
the existence of a single point in physical space (and also
in wavenumber space) where the acoustic effecé of the entire
source distribution may be modelled by one equivalent sdurce
of arbitrary complexity.

Similarly, we notice that the second term in Dbrackets
in (3.14a), the contribution from the trailing-edge problem,
blows up along two different directions: one of these 1is

given in (3.15), and the other by the solution of

[T T 5. M xa Y
- tanfA + — (r + M) 0
. =N [CEZESY)

Ta

which is
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! >
in

= - |2, tan2p
T -

2
CHY ;QT - tan2p
L . .

They are the directions of acoustic propagation from the two
lines formed by the intersection of the Mach cones and the
3=y plane. That the trailing-edge part of the solution
breaks down in both directions should not surprise us if we
recall that although it was constructed to c¢ancel the
leading-edge result in the Qake, it was also nonzero (thoﬁgh
small) upstream of the plate. Since the trailing-edge
solution cancels the 1leading-edge solution in the wake,
however, we would expect it to cancel also the breakdown
because, in effect, it changes the leadiﬁg edge's region of
semi-infinite extent - the blade chord plus the wake, into
one of finite extent - just the blade chord. Below we verify
that this 1is in fact the case. Unfortunately, we still end
up with a part of the ¢trailing-edge solution which breaks
down in the upstream direction given by (3.16); to correct
it, a second leadingtedge problem would have to be solved.
But even then our problems would not be over, for we would
'still have a semi-infinite region of supersonic sources, now
in the downstream direction.

In the direction given by (3.15), we find that

] . =
2 Xa ¥ 2"
{'-%’ -tan?y - [ A bt W)
LR
%
/'Zg tanz%]/‘l 244) s _tanzAg
—ﬂri]+M Xa5

J
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so that the part in curly brackets of the trailing-edge
contribution to the directivity pattern in (3.14a) (the
Fresnel integral vanishes since 1its argument vanishes)

becomes

_ri—— ('% + M) Mz 2 ]/2
M7 — - - tanA
]

(1 + MXa) M2
Ta

thus cancelling that from the leading edge. If we now 1look
at the high-frequency behavior of the term inside the large

curly brackets, we obtain that for large kx, it becomes
1

— 12 1/2
Y2 {;%%r- tan2A§

- tan2A

-4 ST
e (1) JemE YA i
2k ¢ S

f - X3 1/2
AT tanza ¢ o Rt M)
[ -4 /T-MZ (T + M Xa/ra)

We conclude that in the high-frequency 1limit ky==, the

far-field we have calculated for supersonic trace speeds is
well behaved everywhere, even along the direétion given by
(3.16). However, since the 1limiting processes cannot be
interchanged, that is, the solution is not well behaved if we
first approach the direction of (3.16) and then let Ko 5 We
note that for supersonic trace speeds the uniform convergence

1(11)

promised by Landah in two dimensions does not carry to

three.
We notice from (3.13) and (3.14a,b), that,for large ky
the predicted acoustic spectrum (not including wo) decays as

1/ky, the behavior of the second term on the right side of
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(3.14b) in the expression for G//1-M . this large-k, behavior
has an associated small-time behavior for the transient
signal which may or may not be correct - recall that the
present aerodynamic model does not predict well radiation
from tip dipoles. However, as we will see 1in chapter 5,
where we develop a better aerodynamic model for the blade tip
edge, the 1/ky behavior is the correct one after all; so that
in fact, for small times the expressions in (3.13), (3.1%4a,b)
are off by at most a multiplicative constant.

Since the trailing-edge part of the solution hardly
' contributes for small times (the high-frequency behavior is
given by the leading-edge solution, whose directivity does
not depend on frequency), essentially all the phase
information in contained in G//1-M2, which can be traced baqk
to the 2, transform of the spanwise 1linear 1loading. Also,
since G//T-MZ =L/2 at k=0, we see that the predicted
spectrum takes on a constant value at kxzo.

We now express (3.14a,b) for the <case of a subsonic
trace speed of disturbances. Also, we introduce the
spherical coordinate system (ra,7,¢) shown in fig. 3.2, in
order to define the position of a listener on the ground.

We have then, that

Dy p (¥54) =cos¢ 1 B
sind cosy . . — 1/2
[/]_42(1+M §1n¢COS(J+ P/ tanth 1%2' ]

i /7 fran2a- Mz}v»
{ 1-M2 ' 1-(1+1).

- = 1/2
2 M_ (sind cosyt M)?
{tanzA- M+ [ T + Msin¢COSy }

1=M7 1-M%

-



E* 2Kx (‘i// tanA- M< 'y (sindcosy+)

Y1-M% T-H ~— (1+M singcos-
v1-M2 ¢ Dl (3.17a),
: Msindésiny
G kx( T+M singcosy tanA) /T
w tr. [Msindsiny - =~z . -ik L (tanA-Msinésiny )
G__kx (1+M S1n¢cosY tand}  /1-H e E .1 IHisingcosy

L fky [tanA - Msinésiny } )
1+Msingcosy
i a-ikxl (tanA- Msindsiny )
+ 1+M4sineCOSy
ki (tan A- Msin¢siny/(1+sin¢ COSy)

(3.17b).
For large A, the imaginary term iﬁ the argument of the
Fresnel integral dominates the real part. As a result, the
Fresnel integral has essentially an Error=function behavior
which, as a function of Y,%, does not provide for much lobing
in the directivity pattern - certainly not as much as we had
in the two-dimensional patterns of chapter 2. This .is
generally apparent in part (a) of figs. 3.3-3.8 for the
three-dimensional directivity function D3 ¥ ,®¢) for a number
of cases of interest. Actually, in order to make comparisons
with the. results from chapter 2, we have plotted here the
quantity

-8V e D3-p (1i0) M
2 /r (1+Msin¢cosy)?

The différence in the acoustic spreading effect between two
and three dimensions (the 1/ and 1/r'a factors) is not taken

into -account in the comparison. In order to include this
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effect, wé would multiply the above expression by 1/*@§3

In fig. 3.3a=-d we have selected a set of ©physical
parameters (M,A,wb/U) so that the resulting value of |p?|
matches that of fig. 2.5a. Notice the decreased efficiency
of the wing as an acoustic radiator for the present
three-dimensional case with 1load fronts which traiel
qéubsonically through the still fluid., The cos b G//T-M7 part
is then a slowly varying function of'Y,¢§ essenfially it has
a radiation pattern on the plane Y =90°, -n/2<¢<n/2 (normal to
the flight direction) equivalent to that for a strong ¢tip
dipcle plus a somewhat weaker dipole located at some distance
inboard. On the plane parallel to the flight direction
(y=0°, -n/2<¢p<n/2), the contribution of <cos¢ G/Y1-M% is just
that of a simple dipole. As previously discussed, for the
two=dimensional case from chapter 2 the speed of the
disturbance through the fluid was supersonic, and so, every
section along the blade's infinite span radiated noise.

Figs. 3.3, 3.4, and 3.5 show the differences in the
directivity patterns for three different tones. The
"rippling"™ increases with reduced frequency, and the
magnitudes decrease. Figs. 3.4 and 3.6 illustrate the effect
of a change in Mach number. Compress;bility has the same
effect of increasing the rippling of the pattern - again,
bringing out the lumped character of compressibility and
frequency effecﬁs for our noncompact bl;de. | Another

important high=-speed effect is the increased forward

enhancement of -signals (compare fig. 3.4a to fig. 3.6a).
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From figs. 3.5 and 3.7, we see the effect of a change in
A, the interaction angle, on the radiation field. Notice
that the greatest qualitative differences occur on the
azimuth v=90% This 1is consistent with the .earliér
interpretation of_the radiation field on the plane normal to
the flight direction as essentially due to a strong ¢tip
dipole and a weak inboard dipole: changes in mostly affect
their differénce in phase. Also, notice the reduced 1levels
for =809 The reason for this is somewhat more subtle: for
larger , the effective trace Mach number of the load fronts
has a lower value; as a result G/ A=W in (3.17b) is farther
for A=80° than for A=62° from assuming its peaky maximum
value for a given frequency. Physically, there can be more
cancellation of acoustic signals for the greater value of
A=80°,

Finally, in fig. 3.8 we consider a case in which the
trace speed of sources through the fluid is nearly transonic:
we choosé our parameters M,A,w/U so that p? takes on the
relatively small value of -1, Since the imaginary part of
the Fresnel integral in (3.17a) is then small (tanA;M//T=M?,
or sinA;M), we would expect the latter to behave as one,
rather than as an Error function. The obgerved complexity of
the pattern for ?:180°, 0<¢<m/2 clearly shows the increased
participation of the trailing-edge part of the solution. For
the v=1355 15b° azimuths, we notice that G//T:F2 is reaching
its peaky behavior, indicating physically éﬁat a preferred

direction of strong radiation is about to appear normal to

the load fronts (the transonic Mach plane).



Application of leading-edge theory to prediction of noise for
a potential vortex

We consider a potential vortex in the still fluid
oriented at interaction angle A, measured from the leading
edge (fig. 3.9a). The vortex is located a distance h chords
below the plane of flight, where it induces the upwash
pattern in a plane normal to its own axis indicated in fig.

3.9b, and given by the Biot=Savart law:

w(g)=-I/b  _¢
v ET+hT

(3.18),
where T is the vortex strength, in ft?/sec. By Fourier's
theorem, we may express fthis upwash as a sum of sinusoidal

gusts

w(é;)=j dke™ KE (k)

=@ (3.19).

Since £=xjcosA+ysinA, we have that

(k) = dxady e Kxatikyy
(2mR w(xyCosp+ysinA) =¢ (ky-kxtanA) M(kx/cosh)
cosh

— - (3.20) )
from which
. e~kyxa~ 1K ~ik.x.- ik, tanA
w{x cosA+ysina) = dkydkx (k) = J dky e ﬂaa?kx/zosozy
! . COSA (3.21).

If we now recall that bxasz-Ut, Wwhere x is fixed on the

wing, we see that (3.21) becomes



] Ut - dkyx - ik
w(xacosA+ysind) = dkx Y Wo (xx/cosAJS

-0

tand y

(3.22),
where we have called W(kx/cosA)/cosAzwo(kx/cos\), and
identified it as the magnitude of the convected gust (as seen
by an observer on the airfoil) in all our work up to this
point. Notice that 'ka/b=m, the acoustic frequehcy it
Ky=w/U, the reduced frequency.

In chapter 2 and the first part bf the present chapter
wé have determined the tone emitted by the passage of a blade
through a gust, the integrand in (3.22). In order to
calculate the acoustic field for the passage over the vortex,.
we simply superpose the solution of the gﬁst problems
properly weighted by the function wo(kx/cosA). We have then,
for the transient signal p(r,t), that

p (r,t) = j dky P (F,t5ky)
= (3.23).
We now want to evaluate p(F,t) for the model developed
in this chapter, that 1is, for P(Fr,t;ky) given by (3.,16),
(3.17a,b). We have shown that for the high part of the
spectrum P may be adequately approximated.by the leading-edge
part of thé solution, which we rewrite here for convenience

with a few changes in notation:

P(ritsk, )= = ipg U wg(ky/cosh) (1-n%) /4 Méose
an Y1-1[tand] %_ M2 } 72( 1+MsTngcos )

Sinph



o iky U T
1 = 5 b (T+Msingcosy) ___ _
M (sinecosy+M) . . | P a
f 1+4sin¢Cosy + 1] tand -%?52{.
L
-ik A- Msindcosy ¢ '
J %?_ . 1+Hsin¢cosy (3.24),
0

o the source, or retarted time.

If we now let t™=1/(1+Msin¢cos¥), substitute for P into

where r:t-ba/c

(3.23) and apply the convolution theorem, we find that

x©

B(r,T*) = I dr'g(t') flar-c)
2T (3.25),
LA
where
g(t*) = 2mt* for o<t*<L tanA- Msinésiny (3.26a),
L T1+Msingcosy

* Y = ikxt*
flre ) J dk e ;0 (k,/cosA)

- (3 026b) 3

For a potential vortex, we find that

w (&) = -ip/b ko, e=h_ lkx|

0 *cosA . cosA

4mcosA lkXT (3 27) ;
so that
f(x*)= /b I
+

2mcosA T (h/cosA) (3.28).

With f and g so given, the integral in Z3.25> may be

evaluated 1in closed form. The final result for the acoustic



signature which a listener on the ground hears br/c, time

units after the blade has passed over the vortex is

P (Far)=-ipal_ (qa)l/A - 1 coss
2w y2 ra . cu)?
ﬂ//ﬁ-i Pars {%anzA- M2 } / (1+Msingcosy)
TMZ

1
_ r/b RSO, W
. 172 VAaneA - - . . .
?i;;q¢c05y+M) + i|tanA| /TH /2% Leosh I-L tanA-Msinesiny s
1n¢cosy STnZL 1+Msingcosy -

.h__arctan |T/(1+Msinécosy)| _ _h _ arctan T - Medniesdn e
COSh [ n/cosA Cosh TFMsingcosy ~ - (tanA ¥§%§%§%§g§ﬂ
h/cosA

-T2 (1+MsindcosY)]

- ’ \“'
—_— . L (tanA-Msindasiny) 12 2 M <|-Mz)
1+fs indcosy 1+#Msinecosy| T (/cosk) on fra g MEindsmd 1%
log - . " 2 [‘ta“ -\+Ms;-+cnsz
[T/(1+Msingcosy)]* + (h/cosA )
(3.29).

where T = TW/L
For the present noncompact situation, there is no

guarantee that the maximum values of the acoustic signal
(3.29) will coincide with the field point where its tones
individually reach their maximum amplitudes. From figs.
3.3-3.5, we see that the far-field point where each tone had
its maximum is not a very strong function of ffequency; 50
that essentially they all had large amplitudes at
$=65°,y=180, for the cases 1in figs. 3.3-3.5. Still, the
phases of the spectral components could conspire to cause a
great deal of cancellation, and the far-field point of
maximum peak level might be where we least.exp;ct it: at some

point where the tone amplitudes are not particularly high,



- 52 -

but where their phases reinforce strongly.

Such fears and suspicions prompted the calculation of
part the directivity pattern, shown in fig. 3.10, of.the peak
signal for the case of M=.8, A=62°, the case corresponding to
the tones of figs. 3.3-3.5. We used a value‘of 238 ft ¥sec
for the maximum sectional circulation (assumed occurring at
the 75% span). Eor. M=.8 this choice implies a maximum
sectional lift Lmaxzqycor=u98 lb/ft, which, if assumed as
acting at the ©blade tip and decreasing linearly to zero at
the hub, gives a value of 3735 lb of 1lift for each 15-ft
blade. ,

We find that although the point ¢=65 ,y=180° is in fact
where the signature reaches its maximum level, substantial
variations exist: for example, the peak level at $=70°,y=15C
was only 114 dB for h/b=.1, compared to that at ¢=65°,y=180°,
where the signal had the maximum level of 131 dB for the same
value of blade-vortex separation h. From just looking at the
patterns in parts (a) and (e), for $=65°, y=T0°,
respectively, of figs. 3.3-3.5, one should never have
expected such a large difference,

Fig. 3.11a,b shows predicted signatures at the point
$=65°,y=180°, where the signal was loudest for h/b=z=.1 (fig.
3.11b). The value of ry is 1000 ft. The case for h/b=.5
(fig. 3.11a) had a lower peak value of 126 - dB. This is to be
~ expected, since dF/dt on the Slade should then‘?g less.

The purpose of fig. 3.11c is to show, upég comparison to

fig. 3.11b, that our closed-form solution (3.29) contains
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the Doppler-shift information of the blade-slap signature.
As indicated, the signal in fig. 3.11¢ was evaluated at a
point also on the plane parallel to the flighf direction (for
¥=180°, 0<¥m/2), ‘but at a higher elevation angle ¢ so that
it should be less shifted. And it is.

Fig. 3.12 shows the spectra of signals corresponding to
the M, A cases of figs. 3.3-3.8. They were calculated at the
field position where each tone reached its maximum amplitude.
As previously noted, for M=0.8, A:62o this point coincided
with the maximum peak level; the same may not be true of the
othefé. .The main objective of the figure is to show the
large differences which exist in the rates of decay of the
spectra between the h/b=.5 and h/b=.1 cases, and to indicate,
for one of the cases, the value of frequency above which the
present noncompact model is valid. We recall from the
discussion at the end of chapter 2 that effects of
noncompactness become significant for u >.7, for supersonic
trace speeds, and for u- greater than some value less than
.7 for subsonic trace speeds. For A=629 M=z.8, w>.,7 for
£>819 Hz, This is the section of the spectrum which should
be predicted using a noncompact theory; as we clearly see,
for h/b=.1 it contains a substantial amount of the

signature's acoustic energy.
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Chapter 4: Quarter-infinite plate with side edge passing
through a gust ’

The acoustic model developed in chapter 3- overestimated
the strength and phase of acoustic dipoles near the tip of a
rotating blade. This must be so, since there we simbly cut
off the loading abruptly at the tip, where in reality we know
it must vanish as vE:§T Yet, when the load fronts due to the
interaction travel subsonically through the fluid, that is,
for M/sinA<1, only outboard sections actually radiate sound.
Because this type of interaction is generally believed to
occur often in single~-rotor helicopters, it 1is important,
therefore, that ‘we be able to model the strength of tip
dipoles more accurately than we did in chapter 3. fhat is
the purpose of the present chapter.

The model we develop here is more rudimentary in some
ways than that worked out earlier: for simplicity we remove
the trailing edge and allow the wing to have a‘ semi-infinite
span; also we cannot model blade rotation here. Still, the
theory we develop below for a quater-infinite plate passing
through a gust proves itself useful in chapter 5, where we
make a rational simplification which allows us to reintroduce
the trailing edge and so, to predict acoustic radiation from
a blade of semi-infinite span with correct side-edge loading
passing through a gust.

We start here by stating the boundary-value problem for
the three-dimensional velocity potential fiekdﬂé, due to the
interaction of a quarter-infinite plate with side edge with

an oblique gust. Again, the obligque gust is that wavenumber
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component of amplitude w, of the upwash on the plane of
flight induced by a vortex convected at angle of obliqueness
A by a subsonic freestream (fig. 4.1). The governing
equation - the 1linearized convected-wave equation, and

the boundary conditions are

(4.1)

o, Fo  + O _ - ] D2¢ _ d
XX yy b4 o7 T ¢ 0

: @z(x>0,y>0,0,t) = ~wgs e'iwt-ikxx -‘ikxtani\ y (4,2a),

8(x,y<0,0,t) = #(x<0,y,0,t) = 0 (4.2b);

where we use the symbol §< for the reduced frequency as we
did in chapters 2 and 3. Here however, kx:ms/U, s being a
characteristic length in the préblem which at this point we
leave unspecified. The reason for this ambiguity is that
although the only characteristic 1length for now 1is the
acoustic wavelength itself, in chapter 5 we reintroduce the
trailing edge, and with it, the ©blade semichord - a more
useful characteristic length for the model.

The three-dimensional pressure field P(x,y,z,t) is also
required to satisfy (4.1) and (4.2b). In addition, we expect

it to have the following behavior near the edges

Pl 0+,y50,0,t) ~ 1//%  (5.3a),

P(x >0,y+0+,0 ,t)wy (4,3b).



As before in chapter 3,
notice, however, that
included. We make the
Similar changes are made

for ¢, becomes

we let ¢=dexplilwt+kyM *x/(1=M2)];
the exp[-ikxtanAy] term is not
changes y=Y//T=W7%, 2=2/ /11" .

for P. The boundary-value problem

rgx F eyt obagz F K0 = 0 (4.4),

with

e (>0,1>0,0) =-o3 eikex o dkxtandY oy ooy

A_W 1-M m

b (X<0,y,0) e (x,y<0,0)= 0 (4,5b).

We define the transform pair

6,(x,Y,2) = [ dy, e 12t [Qb_ e AX 31, A232)

G G
’(B(A,Az;Z) = J J d; 4y e1k1X+ iAzY ¢*(X,Y,Z) (u.6b);
T

where Ci1, and C2 denote complex integration contours in the

A1+ A, Dlanes, respectively. We apply (4.6b) to (4.4)., The

solution for positive Z is

¢,.(x,Y,Z) = J d_l:eﬂ‘xj
yar
] G

Q.

A, e iA - DATTAZKT S o 04) (s 7).

»N

3|
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Since #(x,¥<0,0)=0, it follows from (4.7) with Z=0 that
50q,A9 must be an analytic function of X, in the upper half j,
plane. Using standard nomenclature, we therefore say that
5=§:y From (4.7) we may calcﬁlate.%g(x,Y,O), the vertical
velocity field from the solution on the plane of the plate:

"&Z(X,y,o-;-): - d_k_;e'”‘lx da e~ 1Y %8.1&2;0*!') YAT+A3-K (4.8).
Y 2m /2n -
1 C2
The boundary-value problem posed by (4.4), (4.5a,b)
cannot be solved exactly for subsonic flow by any simple
analytical procedﬁre known. The assumptions which follow,
however, allow us to obtain an approximate solution which
later we show 1is valid and wuseful for short acoustic

wavelengths; effectively, by making them we relax the

requirement of ¢ (x<0,Y,Z)=0. We let

'; (A1,X2,0+) ATRAIKS = (A1.ha) + ;(Kxalz) (4.9),

where

0 for Y<0
2-D UPWASH for Y>0

r(x,Y) (4.10a),

v(x,Y) ? for Y<0 (4,10b).

0 for Y>0
From chapter 2, equation (2.12), the upwash on the plane

2=0 of the two=-dimensional solution turns out to be



. -4 ' -iAx
r(x.¥,0) = dvos ¢ Bf;%& T L & A (8 11),
2'11' ]_MZ - kx 1 T%ﬁz- . -

, 1-m2 T ¥ g
where C,; is as C in fig. 2.2. We therefore find that

Fuae) = Ay) (4.12)
. ?

Az~ kyFank
ST
where
A(Ay) = -WosYXitu mlkx )
2TTT./]-M2_‘/\<T§W 1y T-WZ

In the solution we are construeting, v(x,Y>0)=0 as
stated in (4.10b). It follows, therefore, that v(i,,A) must

be an analytic function of ), in the lower half A, plane, and

-~ -~

So we write \-;(AI,Az):;@()\l,AQ). Substituting for r and v in

(4.9), and factoring the term /A3+*A3-K* , we have that

o(A2)VAz-(RZ-AZW2 = A(A1) 1 . VA2,)
@ Az-kxtan[\\ .+ (Kz Zy1/2 s VT 2(“.13).;
= | 2 ‘;\1) /Az"' (K -}\1) /

where we have written ;@(AQ instead of :1;@(A1,>\2) to avoid
confusion as to the meaning of the symbol@, which refers
here to the analyticity of c;in "the upper half of the ‘A
plane, not the X,plane.

We recall now that since an exp(im.tj behavior for the
harmonic time dependence was made, the condition of outward
wave propagation requires us, to allow w, and so ky and y, to

[.
. have a small negative imaginary part. Also, we notice from

(4.13) that the two radicals )/XZ-IRZ-X%S’#, and YA2+(KZ-A3 ?’écontain
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the quantity ?Kz-kf, a function of A1 which has branch points

‘at M=zK. We choose that branch of YA1-K° with vanishing
argument as |A1]*®° along the Ci contour. This choice now
implies two new branch cuts in the A; plane, which now is as
shown in fig. 4.2a. Fig. 4.2b indicates the bosition of the
singuiarities in the A, plane and the corresponding regions of
® and @ analyticity.

If we split in the usual way the first term on the right
side of (4.13) into a sum of two functions, one (¥ and the
other GB, we obtain a Wiener-Hopf equation of the form C):()
from which we may find ;C)in a straigﬁtfcrward manner; the.
details parallel those for +the leading-edge problem in

chapter 2 and so will not be repeated here. We find that

f\’ - .
¢@(.12)-. -A(A1) 1 . 1 (1.18).
_LQ_ + (KZ )\2) /" 2 ( K2 ‘A‘z)l/z ()\2‘ ~kxtanA )
A-MZ -1

Substituting for A and by means of (4.7) we obtain
;(x,Y,Z).- From the linearized relation between pressure and
velocity potential p*=-(%U/s)((ikx/(1-M2)gfagjax), we may

also calculate p*(x;Y,Z+). The final results are:

= ot ‘ ‘i)\xx.
qb*({,Y.,Z) WS 1 i\ erres

47~
/‘ -MT - '
\/‘](-MT +yu [E¥ gﬁ?) kytarA 172
Ao+ (K -ad)

i\, o-12sY - ZAT 5% 1 . (4.15),
( “tanA) P CTIY:
C2



-ihx
Pa- (x,Y,2) = = iogwg U de S
A / ARxEand/ T 4 (k2-a3)
T
dage”12Y - L YAIRAZ-RT (4.16).
(X2- kgtanA/v/T-M7) Va2 (RZ-A2) /2

C.
Asymptotic behavior of solution near the edgés

By construction, the integrand of the X2 integral is an
analytic function of X2 in the upper half X2 plane, and
consequently p (x,Y<0,0)=0. However, the integrand of the A1
integral is not an analytiec function of A1 in the upper half
A1 plane. As a result, the solution in (4.16) does not
satisfy the condition of p,.(x<0,Y,0)=0. The next step in our
analysis is to determine how severely the result in (4.16)
violates this upstream condition and also to find whether it
has the required behavior near the edges. We therefore set
Z=0+ and obtain from (4.16), after evaluating the Az integral

in closed form, that

-1kytanAy
P L(x,¥0,0+) = (i-1) m\ U e~ = :
5 YT-H -iAy
< . .
)/] -M } dk] e E Y k)'LtanA - ,
1-M . ————— »/T-—MT - YK '-}\1
o, Th¥ (4.17)

In order to investigate the solution for small values of
X, that is, near the leading edge, we 1look at the large-kf
asymptotic form for the integrand (at the same time with Y
not small). Expanding the Fresnel aintegral for large

argument, we have

em /T-M% —
AW [Ry v
/]-M o

¢



-3mi dA, P -Y/A3-K?

4 [--]
+ e (-i) 2n+1 ]
,: Z Zznn i W{ /M—-ll (]—;tan/\ /—2—2' )TH']/Z (4, 18))
oo T
Ci1

sb that the leading term in the Sehavior near the -leading
edge 1is the two-dimensional leading-edge solution in chapter
2's equation (2.15), which vanishes for x<0 and behaves .as
1/vx for x=0+. The part of the solution which does not
vanish upstream of the plate appears as an asymptotic series
in 1inverse powers of Y, the distance from the side edge
normalized by the characteristic length s; it also represents
the three dimensional effect of the side edge on the 1loading
P«(x,Y>0,0).
To calculate the coefficients of the asymptotic series
in (4.,18), we must evaluate the integral
~iX x-Y/AEKZ
In(x,v>o)=J e 1
¥

kxtanA 4,-z—-}n*" /2
/112

for Y20, x+ 0+. By the convolution theorem, we may rewrite

(4.19)

it as
I (x,y50) = - iﬁ agt, 2 (x MxETE ) f(E)y.20),
)\", + Y
where

-i)qu
f (X) = d)\l e 1 '
n ZTI. )Al'u %ﬂ-al—]l\- \/K -Al ‘[?’1/2 (u021).
C1 ‘

TR

Pd

The integrand in ﬂ1(X) has branch-point singularities at
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A;=+K. Besides these, we also find that as A;+*p

1
- n+l/2 o 2kytanA 1
Kytana ¥ eRXERA nyr2on 4,22
%/)li-%"' - ’K‘-ﬁ)i ¢ ) AR ex =T TRV Vs

so that in addition we have a pole of order n+! at i; = u and

another branch point at);=-yi. We write therefore that

TH +K o, (4.23a),
f(x) = = (x) * = (x)
In(x) = I%y(x) + Iiﬂ(x)

n (4.23b);

where
i) = -iAx
=(x) = 1 2 kytand (n+Y2| da, " TAMIX
n L 172 (4,24
Yo ( ATy ) Ux-u)"” m)m- ! ( 2)s
1
+K ] - ’ i \
f-— X) = — . e 1A1>\ - 1172 .
n ( N dl, v btﬁ“f\ -_‘/Ez-kf n+ Y/ (4.24b);
Branch line
and at 11=iﬁ

Bi(x,¥) = -i/g I aenl2) (TR kv Mz ) (4.250),

2 Y(%=g)*+ VT
Kix,1) =i [T J den{?) (R TRETFVEY Ky *K(g) (u.250)
2 A7E)ZF T2

-

H
For n=0,1 fy (x) can be calculated by deforming the
contour Cj in fig. 4.3 to Cf, or Cf*, for x>0, x<0,
respectively.

We then obtain



_1 (katanA )—-( 2#1?

e"iux {] for x>0 (u’026a)’
T " /2 ‘

- (1+i) E*[2u(-x)] for x<0

RTI kytand /2 (-2¢i) e'iux
f="(x) = ( ) ar
(x) Y 21 /1-M¢ _ aTT
Tix - %ﬁ' for x>0
4]" dE[1-(1+1) EX(25)] = g [1-(1+1)E*2u(-x)2]
.(_-X)‘ 25
-(ri) TV /X for x<0 (4.26b).
/Tu' T

We have been able to calculate f%u(x) analytically for
n=0,1. Unfortunately, ¢the same cannot be done for the more
complicated integrals in f%K(x), the contributions to %(x)
from the branch cuts at A; =+K. However, we notice that thése
branch points are weak, and so, their contribution to f£(§&)
for large £ should be small in comparison to that from
f?“@-»w). With this in mind we make the following

dapproximation in (4.25b):
+1/K

2X(x,) = f/é j o) @G W fF G,

K Y(x=£)%+ Y?

+
where we may now replace fKK(S) by its small-& behavior. The
T %%

latter may be calculated by deforming C, to C, and C, in
fig. 4.4 for x>0, x<0, respectively. The integrals which
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result turn out to be related to the well-known Exponential
integral, which for small argument (here, Kx=0) has the
behavior indicated by Bender and Orszag}ZS) pp. 251=252. The

final expressions for f%g(i) are

2 g B Pl [1n—‘.l (¢ T- ) D K T
. J=1
+ ()™ Y ad e J
f%xm: LR k(-5 en [K(-sn-jgo P K pon e
: i i
. )
JZ “‘”sm[ (v 3] L(—'J,}-” (- b

1
ki
-1 = jam
ﬁn—,l (ke)en <x<e:)-z ;];%_ngKg)J tores0 (4.28),

where v, is Euler's constant, approximately .577.

Since we are interested in the small-x and large-Y
behavior of I%?x,Y), we may approximate the Hankel function
in (4,20) by its form for large argument. Equation (4.25a3)

then becomes

it . kxg
I-I?‘(X,Y) Tk o4 1KY rdg e lY& fi)J ()

(4,29)
/Y ’

-0

and similarly for I%K(X,Y) but with 1limits of integration

-1/K and +1/X. In (x Y) we may also make the
approximation exp(iKx ej/Y)=1+1Kx &Y.
tu C XK
Performing the integrations in In and In y and

substituting the resulting expressions into (4.18), we obtain

the first two terms in the asymptotic expansion for the
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loading as we approach the leading edge
, 'E-- 1KY K
- (i-1) mw, U e (=)
Pe= P + U
20 /T /k_— /— /—

(’.‘M/)?‘] §L-2}_(C°+1XC°) }‘*‘
Y

J1-MZ (T-Kx)
nERVARES

Y Zn ST A<y
u
2 /Z
i -2 -3 +2 - /2 R
((]"—"i‘-) (/mi ) T X ) (s
Wy W /i W
T Y Y

where Asoundstands for the acoustic wavelength and

= - (2‘47) *1- Jz:‘] J J-i-] (4.318),
° _ J
C=-1 (2 r- (1 - (4.31b)
S At e U Z sl 3180
J =
1 L j+ (4.31¢),
Grzlrz-2 "7 4, L_L_! 5-1) )
= i+ (4.,31d)
1 1) 1 .
C2 =‘§(7f°+% H-3 - Z I (-1

Figure 4.5a is a plot vs. x/y of the magnitude of the
first term in square brackets for n=0 in the asymptotic
series (4.30) for the <correction to the two-dimensional

loading near the leading edge; the values of M andA are 0.8
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and 621 Since we interested here in the case ‘of subsonic

trace speed of the disturbance, in the plot the quantity H

has been replaced by -i/-uz, as previously discussed. Note
that the first corrective term is larger on the plate side
than upstream, as we should expect. Figure 4.5b is a similar
graph for the second term in square brackets appearing in
(4.30), corresponding to the n=1 term in the asymptptic. As
indicated, this term is to be multiplied by the ratio of the
acoustic wavelength to the distance from the side edge.

Next we investigate the behavior of (4.17) near the side
edge Y=0+. Expanding the Fresnel integral for small
arguments we have that as Y approaches 0+

p*(an>030) = (i"1) poWa U
2n/T-MZ Kx £y

1-M
- 2N +1/2 -iXx n+i/2
2 E: (-)%2 _at " de (kytanA - /KZ-XZ
T Tzt = Ky tanh MAs.32).
=0 7A1-H /T2
Ci
We now call |
()= | dae ™M g tan n+1 /2
n (== -v&*=x7)
Ve STHE P (4.33),
i

and recall (4.22) in order to study the contributions from

the points A;=+u. It follows that

~tu oyt
In(x) = 1 -iAix

7 keank\ n +1/2 e Baan) a2y sy,
< /T=H c '
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-+
" which indicates that Iﬁy(x>0)=0. For x<0 we deform C, to C*

in fig. 4.3 and find that

HMxs0) = (1) eI dn dhaet R ) (-x) (g2 /2
(2 kxtanA)n+1/z d(-x)n
C**

1-M2 3
= 21" sin Gelnt)IThd)  gn giulx)
(2 R d(-xN (-x)™3
T
(4.35).
~+K

In order to calculate ﬂ; (x) for x>0 and x<0, we deform

C, to C,* and C,** in figure 4.4, respectively. The results

are
THK, . k -l T s KX g ysg
I (x) = (1-i)¥7 (-{-—f—?—l"‘—A-) i l\—:]' 4 ;_) %/T for x (4.36a),
~+K K x
I;]-(X) 2 - (]+i)/7_1: EﬂA n'l/ZL (n+]/2) ?._x‘)3/z forx<0 (u036b).
| Y1-M% Vv K ’
+K

Substituting for E;ﬂkx) and 3; (x) back into (4.32), we

obtain the behavior of p, near the side edge (the n=0 term):

1
Py ¥ (i-1) mywy U o
4T THE R K tank
JTwE /T

[(1-1) &M (1e0) /T Ty L

'KxK+u : o .
. =1 i
(]-1)_/1-(‘—11 ¢ —x—l7-z- for x>0 (4.37),

for x<0
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which has the required behavior for Y=0+ for x>0. For both
x<0 and x>0 we see that the solution behaves as 1/|x|3{2where
x, recall, is normalized by the acoustic wavelength.

In summary, in this chapter we have obtained an
approximate solution for the pressufe field surrounding a
quarter-infinite plate . passing at high speed through an
oblique gust. The problem was motivated by the need for a
better model for the.strength of acoustic dipoles near the.
tip of a blade passing over a vortex when the interaction
angle is such that the resulting disturbance travels
subsonically through the still fluid; that developed in-
chapter 3 overestimated the strength of these ¢tip acoustic
dipoles. .

We arrived at an expression for the loading on the plate
(eqn. (4.17)) which we later went on to show satisfied the
required edge conditions. Also, we showed that away from the
side edge this result approached asymptotically that obtained
earlier in chapter 2 for the two-dimensional loading, which
vanishes upstream and has the 1/yX behavior on the plate; it
turned out that this was by far the dominant term in the
calculated asymptotic series. We conclude then that the
result in (4.15), from which the loading was calculated by
setting Z=0, is a good approximation for the pressure field
for high-reduced frequencies,

Normally, the next step at this peint wou;g have been to

translate the sclution from the present reference frame fixed

on the plate to one fixed on the ground or still fluid.



- 69 -

Unfortunately, the small amount by which we violate the
upstream boundary condition of P(x<0,y>0,0)=0 then Dbecomes
unfairly magnified by the forward enhancement effect of
traveling sources, essentially the same (1+an/r'a)-2 . factor
present in eqn (3.14) for that other ground-frame solution.
The only course lef£ for us now seems ¢to be to extract
rationally from (4.17) an approximate representation for the
loading which keeps the physical features we have worked so
hard to get - the edge behaviors, but that at the same time
vanishes upstream. This task we undertake in the first part
of chapter 5 and obtain a relatively simple expression which
allows us to reintroduce the trailing edge 1into the model.
Since so much of the analysis in chapter 5 depends on the
loading expression in (4.17), we rederive the latter next by
an independent method, a method based on the idea of source
(lo)to

cancellations and first used by Landahl solve unsteady

transonic flow problems.

Appendix: Calculation of loading by source cancellations

We seek a load function és)(x,Y,O) which when added ¢to

P, (x,Y,0), the two-dimensional loading from the leading-edge
1
problem given in eqn. (2.15), we will have p£)+p£sL0 for ¥<0.

The superscri?S s stands for "side-edge”. The boundary-value
S
problem for p* 1is

pfS) 4 8] & () 4 gap(s)
XX YY

*7Z * =0 (4.38),



with

(4.39a),

p{5) (x,¥<0,0) = - p{1(x,¥,0)

ps) (x,¥50,0)

u
o

(4.39b) ?

We define the transform pair

(S)(A1,Y 0) j d—x eillx éi)(X,Y,O) (’4.1‘08),
(s) o Y2T
(x,Y,0) = [® o~iA1x ~(s)
J' dy e (A1,Y,0) ¢4y,
- ver
and apply (4.40a) to (4.38) and (4.39a,b). The resulting
As) g

boundary=-value problem for T

(s) , «(s) 2 .2y «(s)
p + + (K -A =
*YY p*ZZ ( 1) Py 0 (4.41),
with
. .p.'S'S) (AI’Y<O’0) = - 51(1-])(11,‘{,0) (4.u2a),
pg)(l“bo’o) = (4.42b).
t9 ~(S)

Landahl -has shown that py @41,Y>0) may be obtained by the

integral

i

-~ - -. - +Y
o{s)(2,,¥50,0) = -1 rdn 20,0 Rl )(u.u3).
1) = [
e}
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Substituting for p%x , which from eqn. (2.14) we see is (with
the expl-ik tant ¥//T-M°] term included) .
B£1)(A1,Y,O+) = -piy _U 1 ] o ikxtandy

oo TR
/2x T [ X . .y
into (4.43) we obtain that for Y>O0,
p{S) (31,950,0) =g _1 ] 1 q%ﬁ‘:u
2r  /1-M¢ /K YAy -
/ Tt e
. kxtanA (4.44),
{1 - (1-1) E[Y ( - /KEA9) 1}
: YT-M%
so that for Y>0
s s g8 o (521) gowy U elkxtamd ¥ ELY (kxtand _pryr)]
e ek AL v e 1
VaPs (4.45),

from which we finally find that

(1)

ol (s) _ = (i-1) cowp U -ikytanAY

+p :
* T = q T (4,46).,

‘@ e MR E Y (gtam  RTIRT )]
YA:i- U Yl-Mz
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Chapter 5: Aerocacoustic model for a blade of semi-infinite
span with improved side-edge loading

In chapter 2 we saw that the effect of the passage of a
two-dimensional airfoil through a gust is essentially one of
diffraction. That is, the pressure field and loading.for the
interaction with a single gust of wavenumber wb/U is given by
a continuum of wavenumber solutions - recall eqn. (2.14) for
the leading-edge effect, for éxample.

For the three-dimensional wing with side edge, a similar
diffraction of the gust spanwise wavenumber kxtanA must occur
in the y direction. With Z=0+, the X, integral in eqn.
(4.16) gives thé side-edge diffraction loading predicted in
our model. We observe that besides the pole at
Azzkxtanh//T:ET, the integrand also has a branch point at
Xy s¥K%=A5. For large Y, the pole term gives the predicted
spanwise locading the same simple sinusoid‘al
exp(-ikxtanAY//Tzﬁi) behavior as that of the infinite-span
wing - the spanwise variation of the input gu§t upwash; it is
the only term present in the Y transform of the cut-off
loading model later developed in this chapter (see eqn.
(5.21) below). The branch point singularity at A, =K =A%,
therefore, is responsible for the deﬁarture of .the loading in
(4.16) (for Z=0) from its two-dimensional form for 'arbitrary
Y. We may say that this is the part of the A, integrand
which pkovides the spanwise diffractioﬁ effect for the
loading: it allows the loading to behave in ‘m&gnitude és/jf
at the side edge and, as we find from the analysis below,

causes it to have a phase variation near the side very
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different from that assumed in chapter 3 and in the cut-off
model of this chapter. Notice that (4.16) also indicates
that the predicted leadihg- and ‘'side-edge diffractions are
not independent (even for Z=0). If they were, the integrand
would be a product of two functions: one depending on A
alone; and the other on A2, Rather, we observe a coupling.

The analysis here begins with (4.17). Rationally, we
make a high-frequency and l;rge interaction angle A
approximation which essentially -eliminates the coupling
between the leading- and side-edge effects. This allows us
to obtain an approximate, but <c¢losed-form, 1lifting-surface
theory for the passage of a quarter-infinite plate through an
oblique gust. The resulting aerodynamic model predicts the
strength and phase of tip dipoles more accurately than that
of chapter 3. Yet, it is still simple enough to allow us to
caleculate the acoustic field in closed form.

As mentioned above, in this chapter we also develop a
cut-off aéroacoustic model analogous to that of chapter 3: we
look at the acoustic field due to a3 loading pattern given by
the two-dimensional loading from chapter 2 for y>0, and by 0
for y<0. |

Approximate lifting-surface theory
In chapter 4 we developed an. approximate expression for
the 1loading on a quarter-infinite plate passing through a

gust. This result was derived first by the Wiener-Hopf

technique and given in eqn. (4.17), and then again by the
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method of source cancellations and presented in (4.46). For

convenience we write it once more.

<«

Pe = (i-1) oowg U e-}%ﬁ%gﬂﬁY Q&__e'ikx

2/ T-H% k.xM . Zen

- o

E [y (kxtanA - /ET_TZ—)-](5~1__),:_
YT-MZ

The integral in this solution may be re-expressed by

means of the convolution theorem as

(-1 [ g e (5.2),
o] /g
where o
gx) = | @ &g [y (KB proym
/2n da (5.3).

We now split the integral in (5.3) into three segments,
as indicated by (5.4); and then for each segment interchange
orders of integration with the Fresnel integrals. The

resulting set of integrals is given in (5.5).
-K K ™

2w g(x) = ¥ ¥ (5.4).

fv/Kz- (t _ kxtana y?
Y ATw

dre” 1AX

f—

/T-W? 2 >
;W/K - (t - kytana)? +
| YA
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Y kxtanA + e

k tanA . -3 . .
y X== it < Ax it s
‘ SR LT[ e f A e hg'
vent - Y kytanA vemt /KZ- (€ - Kgtanh)?
/T-MZ /T-WZ
) © Y kgtank -K
A . ..
] + J dte't dae~TAX
) vent
-/K3- t  kyxtanAy,
Y kytand ., it oit / (7- - —-’S—M )
/i-Mz }\x' l'
2rt dre”?

j (5.5).

Y kxtanA
' . /T2

These may be further manipulated into a new set of
terms, (5.6), where we number each term (1) through (5) for

t ease of reference in the discussion which follows:

(1)  2ms8(x) E [Y (kxtanA _ K)] +
/1=

(2 -2 sin kx {E [Y kxtanA} - € [ Y (ketana _ KU +

/T-M% YT-M%
(3) 2md(x) [ kgtand o
[ e
. Y kgtanA V21t *
YT-W% '
* (4) Y kxtanA - -
JT-W% it eit Ké- (%__ kxtanA )
— YT-M% -iAx
y(kxtana 2nt - sze +
JMZ - ) _/K -(é_ - kxtanA) .



(5)

¥ kytand | 4, KZ-( ~Rx_tanh tanA)
1/i..Mz ] .
Y ketand  TETE L poT & kctanhy”
YI-M Y ﬂ-Mz (5-6)0

Since E(=)=(1+1i)/2, we observe that for large Y terms
(2)=(5) vanish; we are left with (1) only.

For Y=0+, integrals (3) and (5) may be deformed in the
complex t plane from the positive real axis to the positive
imaginary axis (and the contribution from the arc at infinity

is zero). We then obtain, for terms (3) and (5) respectively

. KTV
o 1774 dge™5 dre”1AX (5.7a),
° yZmg - KT
in/4 dge”®
e EE . 211,6 (X) (5-7b)7

For Y+ 0+, the inside integral in (5.7a) becomes 28 (x);
so that the first-order contribution of (3) + (5) to (5.6)
near the side edge 1is zero. Higher-order contributions
vanish as well.

In order to obtain the ©behavior of integral (4) for

Y+ 0+, we integrate by parts as follows:

/K - (t _ ketanh )2 | t =Y kytan
Y-+ T de -1 Ax
:/Kz (t kxtanA. tanA) (5.8a),
L £ =y (kxtand _y,

M2



- \/:2'. ikxtanh¥ memiy — 2 sinKx
Te AW J M T7 X (5.8b),

Wwhich may be interpreted as the small-Y behavior of

2im (4) = 2sin Kx '
=0+  — x E| Y kg tamd (5.9).
YT-M%

We conclude that near the side edge integral (4) cancels
the first term of (2); so that the behavior of the sum of all

terms in (5.6) for Y+0+ is

V2w g(x)= {218(x) + 2 sin Kx} E Y(kx tand _,
* e

)} (5.10a),

from which

/27 g(x-£) l’gz T8(X-E) + 2sin [K(X-E)]} E | yckgtand -K)| (5.10b)
X- ¢ e

We note now .that near the leading edge (x>~ 0), the
second term in curly brackets in (5.10b) behaves essentially
as 2K for £=0. In‘the convolution (5.2), it contributes a
term proportional to the constant K/v/Tu[ , which besides being
small for large interaction angles A  (|u|l >>K), does not
contain the 1/ /& singularity for the loading near x=0+, and
so may be neglected in favor of the 2w§(x=E) term iﬁ (5.10b).

In summary, we find that for both near éﬁ; side edge,

and away from it, we may make the approximation



Y2m g(x-g) = 2w5(x-g) E [-y (kx_tand -X)
vV 1-M2
Evaluating the convolution (5.2), we finally obtain ‘the °
‘approximate 1lifting-surface result for a quarter-infinite
plate passing through a gust a large interaction angleA

(subsonic trace speed of disturbances):

. ~jux-1 kyytanA
Pe(x,¥50,0) = 1 2 poWo U e SE L gy (e tant g

T n-M‘/&_ 3 T-M% (5.11a),

1Mz T H

which, since E(a ¥ 0) 7_’2: va e1? indicates that
T

PR . -iux -iKY 12
P*(X,Y-*O :0)" 1 g. M_T_E_ 1 e /_Y kx tanA -K
T-M% -

We find that the Y variation of the loading phase near
the side is given by exp(=1iKY), rather than by
exp(=-ik, tanpY/ /=W ), as in chapter 3 and in the cut-off
model developed later in the present chapter. Since the rate
of decay of the dipole strength near the side is given by the
constant (kxtanA-K;{ZWhich is >>X for. large A, we notice that
the spanwise variation of dipole phase is small throughout
the region we call the "tip region” (fig. 5.1). For large A,
therefore, the phase of the spanwise loading may be regarded

as constant for Y=0+. ‘
The uncoupling of the load 1into the product of a

function of x and one of Y allows us now to cancel the



solution in the wake by the procedure used in chapter 2 for
the trailing-edge problem. As we would expect at this point,
the expression for the pressure distribution on the

semi-infinite spah blade with side edge turns out to be

-ikytanA  Y-iux

P, (x>0,Y>0,0) = 1JZ oowg U e
* = T

Tt

e tand g 10 1 1_1-*2_}
e [ K)]{& 5 L 1o e (

bl 5.12).

which becomes the two-dimensional loading far from the side
edge as it should.
Acoustic field for a semi-infinité span blade with side edge
passing through an oblique gust

As we noted above, the simplified 1loading expression
allows us to solve a new trailing edge problem; the details
of this analysis are no different from those in chapter 2 and
'so will be omitted here. We now define a  pressure
P(x,Y,Z,t):é}x,Y,Z,t)exp(imt+ig(sz/(1-M2)), which is a

solution of

-~

- -~ 2" =
Prgy * Payy * Pagz ¥ K2p, = 0 (5.13),

subject to

-~

Px(x,Y,0) = p, (x,Y,0) (5.14),



the load we have calculated above for a semi-infinite bla&e
passing through a gust. The solution procedure of this
boundary-value problem is similar to that in chapter: 3 for
the rectangular rotating blade. Only one new integral comes
up which we did not have before: the Fourier transform of a

Fresnel integral;

o

[ gy ol Ru-k tanh) Y o Ty 0 anp ) (5.15)
o YT-M? ‘ \- Tz

which exists for ImQ, )>Im(kxtanA//1-M2) and may be readily
calculated either by integration by parts, or by
interchanging orders of integration. Thus, we obtain that it

is equal to

3ri
Jr e 4 kxtanA -K
Y1-112
A,- kyetanh\ s— (5.16),
Yi-M2 ’

At this point we allow r X3+y“+2° »= , and obtain the

a:
far-field pressure by the method of stationary phase. The
procedure is completely analogous to that presented in detail
in chapter 3. The final result for the acoustic signal

P(%p{,¢,t) perceived by an observer on the ground is

A / tand M "L(.t-bra/ca)
PrasYsdst) = -iggig U M and - 7o e Msingcosy ?T/; (¥:9)
+¢ 2 kT r +Msingcos
T 0 a $cosy}

a
X
(5.17),
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where the "/y" subscript on D)—(Y,¢) stands for Jy-load
y

behavior at the side edge. D/-(Y,<w was found to be:
Y

—_ (Y:¢) =
coso M s1n¢cosy+M 11/2 *
éﬁ-7$r (1+Ms1n¢cosy} * 1,/ tan“A- -M S
i vz [tanzA - 12 __]‘/ ‘
. ]_\'lAJ .
. 2) 1/2
tan2A- M o ¥ sinscosy + M
47 7-M2 oz | 1+Msingcosy :
)
T - (1+) £’ — -iy tan2p - ﬂi—r - sIngcosy+H
Y1-1Z X TN T | T#Hisingcosy
e 1 ] (5.18),
sinosiny —
L — - tanA - (-117)74 sinasiny’
~1+Ms1n¢co¢\ ) v/~l T1+Msingcosy

the three-dimensional function which describes the acoustic
directivity pattern in terms of the spherical angles v,¢ in
fig. 5.2.

Notice that the blade's tip is located at the origin,
so that its semi-infinite span extends out from Y=0. This is
in contrast to the system we had in chapter 3, where the
blade tip was rightfully "outboard." Still, here as in
chapter 3 the interaction angle A is such that the trace
velocity of the unsteady blade loading is in the positive Y

.
i

direction.
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Acoustic field for a semi-infinite blade with square cut-off
loading

Here we write down the solution of the boundary-value

problem for p*(x,Y,Z):

Px  Fpx  t s

+ K2;* =0 (5019),
XX YY Z

with

~

Pxlx:Y:0) = Py _py (x,Y,0) for Y> 0 (5.20a),

;* (x,Y,0) = 0 for Y<0 (5.20b);

-~

where ps gx,Y,O) is given in eqn. (3.4).
In the solution process for ﬁhe present problem, we find
that the spanwise Y transform of the loading reduces to the

evaluation of the simple integral

T N "szjkxﬂﬂ (5.21),
YT-H
which converges for Im(lz)>Im(kxtanAﬁfT:ﬁz). vMultiplied by
(1+1i)/2, this result for the cut-off solution replaces that
in (5.16) for the spanwise spectrum of the blade loading with
improved side-edge behavior. -

| The acoustic far field for a semi-infinite span wing

with square cut-off . of the loading at the side edge is
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jw VC_%E‘
1+Msingcosy
P oalt U MOVt 1 e Dc.o(r,¢) j2 (5.22),
T - - +l‘l+ d
AT 3 Jio T {1+Mi+1ndcos

where the "c.o." subseript in D¢ o{y,¢) denotes M"cut off."

D o{Y, 9 was found to be

D. . (v,6) = cos ?/, ]

c.0. Y10 | v (sin¢cosy+M e 1/2 4
Z{——; 1+ sin¢cos~{) _/ Tz

Y1-M 1=-M

i 2 {tanzA - }J/K

S1n¢c05y+ M
{tanzA' E/T Mz 1+Ms1'n¢cosY )]Y

E* 2kx -1 ftan® - M¢ M ( sindcosy ¥ M id\
J/T-M2 1-M¢  /1-M*¢ ‘1+Msingcosy __I

1

( Msingsiny
1+Msinécosy

T-(1+1)

- tan A)
(5023)0

Predicted directivity patterns for D{y and Dc.o.

The examples we show next of Dﬁ} and qLO. focus on the
acoustic effect of satisfying the side-edge 1loading
condition. We do not, therefore, investigate here again the
effect of the trailing edge on radiation (see fig. 3.8),
because this is a chordwise effect. Nor do we look_ for
changes due to variations of Mach number :-although most

compressibility effects cannot be extricated from those of
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frequency, we saw in chapter 3 that changes only in the Mach
number affect the forward enhancement of the:signal; so that
we may choose to regard M as really a chordwise, or
flight-direction parameter.

Here we investigate the acoustic effect of reduced
frequency kx, which affects the phase and magnitude of the
loading near the sidej and of A, which besides also affecting
the side-edge loading, controls the trace speed U/tanA of
disturbances along the span and the absolute speed U/sing of
load~fronts through the still fluid for a given M. If we
change A and keep M constant, we may compare the degree of
cancellation of signals radiated by the semi-infinite blade
span for the blade with improved side-edge loading, to that
for the blade with cut-off loading.

So that we may also compare D ﬁfyg<ﬁ to those for the

rotating wing of chapter 3, we have plotted the quantity

D*_ (y,4) = “ﬁ”""z/ tank- _M_ 0 (v.9)
YI-M%  (14M singcosy)?

in figs. 5.3-5.5; and fof a similar. reason, the quantity

J
Dc.o(.'Y’ ¢)

D*. 5. (vs0)= HO=M2) D o (¥:9)
2/ vy

in figs. 5.6=5.8. As in chapter 3, every figure shows the.
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above functions in five planes, each corresponding to a fixed
value of the azimuthvy.

From figs. 5.3 and 5.6 for the correct side-edge loaded
blade and the ©blade with cut-off loading, respectively, we

*

note that IF ;s generally greater than D{? on the planes
shown in p;;gé (a)-(c) of the figures. U (y=150%0<¢<r/2) in
fig. 5.3e, however, takes on values fg;éer than those for
DZJ£Y=1SO%O<¢<"/2) in fig. 5.6e. This perhaps unexpected
peak in D*/y(7=150’,¢=79°-) ‘can be attributed to a loecal
reinforcement of acoustic signals - recall that the spanwise
variatidn of the phase of tip dipoles is different for the
models from which D27 and D, jwere calculated.

As we noted earlier, we would expect the differences 1in
the directivity patterns between the two models to increase
as A increases, because even though the region near the tip
where dipole strengths differ substantially is reduced in
extent, the differences in spanwise variation of the phase of
tip dipoles are then larger. This is in fact the case, as we
may see from figs. 5.4 and 5.7: the differences in radiation
patterns between cut-off and improved side-edge loadings are
greater for A=80° than for A=62% Notiée also that for both
types of 1loading the overall radiation- for' 1=8C is
substantially reduced. As in chapter 3, we attribute this
reduction to the fact that the effective Mach number of load
fronts M/sinp far from the side edge is lowerigor A=8C than

for A=62? so that in both loading cases there 1is then more

cancellation in the acoustic field radiated by the
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semi-infinite span of the blade. We conclude that. the
differences due to <c¢hanges in M/sindA in spanwise loading
phase between the correct and cut-off models may cause
' significant differences in the predicted acoustic fields,

By varying A while keeping wb/U and M constant, we
observed differences between 527 and Dz.o_essentially due to
the different way each of the two acoustic models reacted to
a change in the absolute Mach number M/sindA of load fronts
far from the side -edge. But the tip-loading expressions
derived earlier indicate that a change in K (by changing
wb/U, wieh M/sinA coﬂstant), also affects the differences in
spanwise variation of tip-loading phase between the two
models, and should, therefore, also affect their acoustic
fields. Figs. - 5.5 and 5.8 show D;? and %;63 respectively,
for wb/U=10 while keeping the same M and A values of figs.’
5.4 and 5.6. They indicate that the differences between F/y
and Dé,mfor wb/U=10 are not much greater than those for
wb/U=4; So that pure frequency effects on spanwise phase
differences between the two models have a lesser acoustic
effect than does a change in M/sinA.

Finally, we observe from (5.17). and (5.22) that the
acoustic models developed in this chapter share with that of
chapter 3 the 1/kx behavior for large kx. This means that
they all predict acoustic signals which are qualitatively
similar for small times. We note, however, ﬁgat for kkzo
(large times) the models developed in this chébter for a wing

‘of semi-infinite span are not well behaved. The physical



reason. for the large-time breakdown of the theories 1is that
an infinitely long time is required for pulses radiated near
Y=o to reach the observer, and so, to contfibute to the
signature which he hears. This issue'of convergence. in time
did not arise in chapter 3 because the ©blade there was of

finite span.



Chapter 6: Summary and Conclusions

We have developed here three basic aeroacoustic. models
for noncompact blade-gust interaction in subsonic flow. We

now briefly summarize our results and draw some conclusions.

Infinite-span airfoil passing through a gust

In chapter 2 we found that frequency and compressibility
effects combine into 2 single parameter which sets the
criterion for chordwise noncompactness. We observed that an
airfoil responds ¢to an input single-wavelength gust
essentially as an aerodynamicsally diffracting surface - the
solution has a continuous wavenumber spectrum. The
closed-form expression Qe have derived for the acoustic field
in a laboratory frame indicates that tone radiation patterns
from compact, and noncompact airfoil loadings may differ
dramaticaily. The complicated lobing present in the
noncompact case is caused by the reinforcement and
cancellation of signals from a chordwise distribution of
dipoles with 1large differences in phase. The unsteady
loading for an airfoil which is acoustically compact may be
represented by a simple dipole, which in turn radiates a
simple dipole acoustic field.

We verified the expected 1lack of aéoust;c field for
interaction angle-Mach number combinationslﬁhich give load

fronts a propagation speed less than that of sound.



Rotating blade of finite span passing through a gust

In chapter 3 we used chapter 2's two-dimensional
solution 1in a superposition scheme to model radiation from a
rotating blade of finite span. We found that the acoustic
field could be calculated only for cases with subsoniec
disturbances; the impossibility of extending the analysis to
include supersonic trace speeds 1is an artifact of the
. solution procedure, which is based on Landahl's(lﬂ edge
independence concept. We studied Mach number, frequency, and
interaction-angle effects on the radiation pattern of a
single tone.' The results were presented on the ground, or in
the acoustic frame of reference. We refer the reader to the
discussion at the end of that chapter for detailed
conclusions. We found that for a given set of physical
parameters describing the wing-gust interaction, ie. M,A,
and gust amplitude W,y the noncompact theory predicts that
the tone amplitude at every field point decays algebraically
as 1/kx, where kk is the reduced frequency. This is in
contrast to the high-frequency behavior of the tone amplitude
predicted' by compact theories (see, e.g. ref. 3); these
predict that for given values of M, A, W at high frequencies
the tone amplitude "levels off™" aSymptotically to a constant
value,

We applied the leading-edge part of the theory to
predict the transient signal emmitted by a ffﬁite-span blade

passing over a potential vortex. We found that the level of
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the signature was a sensitive function of spatial position.
We attributed this sensitivity of the total signal ¢to
cancellation and reinforcement effects of the tones making it
up - another consequence of having a noncompact loading.
Semi-infinite rectangular blade with improved side-edge
loading

Although we realized in chapter 3 that the model
developed there overestimatea the strength of dipoles near
the blade tip, we had no way of knowing how badly we were
modelling the spanwise variation of the loading phase. 1In
chapter 4 we calculate an approximaté solution for the
three-dimensional pressure field surrounding a cofner plate
passing through a gust. We find that for large interaction
angles the spanwise component of tip-loading phase is nearly
constant. The actual variation of the tip-loading phase
implies a different pattern of reinforcement and cancellation
for signals in the far field.

In chapter 5 we simplify further the aerodynamic result
of chapter U4; we then use the new result to calculate the
acoustic field for a semi-infinite span rectaqgular blade,
Qith improved side-edge loading, passing through a gust. We
also calculate the acoustic field for a similar blade, but
with loading given by the two-dimensional response of chapter
2 abruptly cut off at the ¢tip. This cut off loading is
anaiogous to that used in chapter‘3 for a finite ©blade in
that the spanwise loading contains onlélﬂthe spanwise

wavenumber of the input gust. We find that the directivity



patterns differ mostly when A , the interaction angle, is
large. The difference can be explained by noting that the
two models then differ greatly in the .way they predict the
phase of tip dipoles.

We observed that the three-dimensional models developed
in chapter 5 share with that of chapter 3 the 1/kx decay of
the tone amplitude as a functibn of high-reduced frequency.
As discussed above in chapter 3's summary, this algebraic
falloff indicates a fundamental difference in the way
radiation patterns are predicted by noncompact and compact
models; for given values of M, A, and w, the latter predict
that at high-reduced frequencies the amplitude of a tone

reaches a constant value.

Conclusions

The signal from a blade which radiates as a noncompact
acoustic source probably has a maximum peak value which is
smaller than that for a similar signal from "a blade which
radiates as a compact source. This.conclusion is based on
comparison of the high-frequency behavior of the amplitude of
tones which make up the acoustic signal as predicted by
compact theories developed elsewhere ' with that predicted by
the noncompact theories developed here. Unfortunately,
because the predicted signals in ref. U4 were calculated for
supersonic trace speeds only, direct comparison of those

results to those computed here is not possiblé;

As noted above in the summaries of chapter 3 and 5, for
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given . values of M, j, Ww,, we expect a rapid decrease of the
level .of high-frequency components for _a noncompact
situation. For given values of M, 4, Woo compact theories
prédict a spectrum which reaches a constant value at
high-reduced frequencies, thus suggesting . that tone

reinforcement could result in a louder signal.
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Fig. 2.1 The passage of an
oblique gust.
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Fig. 2.3 Deformed contour C*, for x>0.
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Fig. 2.4 Deformed contour C**, for x<2.
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Fig. 2.5 Magnitude of two-dimensional acoustic directivity,
D(0), in the airfoil frame of reference. ;
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fal4

Fig. 3.1a,b Typical acoustic Mach cone for a source
travelling supersonically through the still fluid; (b) shows
top view and propagation directions given by eqns. (3.15),
(3.16). :
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Fig. 3.2 Spherical coordinate system defining the position
of a listener in the ground reference frame. -
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Fig. 3.4a~e Plot of the magnitude of the three-dimensional
acoustic directivity Dg_fY,¢) for k, =4, M=.8, A=62°, L/b=15.
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(e)

4Fig. 3.5a-e Plot of the magnitude of the three-dimensioﬁal'
acoustic directivity Dy_fv,¢) for k =10, M=.8,A =62, L/b=15,
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Fig. 3.6a-e Plot of the magnitude of the three-dimensional
acoustic directivity Dy (Y ,9) for ky=4, M=.T, ‘£=627 L/b=15.
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Fig. 3.7a~-e Plot of the magnitude of the three-dimensional
acoustic directivity D3_Y,9) for ky=4, M=.8, A=8C°, L/b=15.
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Fig. 3.9a,b Coordinate systems used to model the
blade-vortex interaction of fig.-la,b.
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Fig. 4.1 The passage of a quarter-infinite flat-plate wing
through an oblique gust.
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Fig. 5.3a-e Plot of the magnitude of the  three-dimensional
acoustic directivity D:}y(y, ¢) for k=4, M=.8, A=625
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Fig. S5.4a-e Plot of the magnitude of the/ ‘three-dimensional
acoustic directivity DtggY,¢) for ky=t, M=.8, A=80%
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Fig. 5.5a-e Plot of the magnitude of the three-dimensional
acoustic directivity D};(Y,¢) for k,=10, M=.8, A=62"
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Fig. 5.Ta-e Plot of the magnitude of the ‘three-dimensional
acoustic directivity D%(§Y,¢) for kx=4, M=.8, A=80°
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