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Chapter 1: Introduction 

The past few decades have seen helicopters evolve into 

truly multi-purpose machines. In the cities, radio stations 

use them to provide· motorists with valuable . traffic 

information, and in some of the largest they have become just 

one more form of commuting.· In the battlefield, helicopters 

have proved themselves effective tools in rescue operations, 

as well as for the transport of troops and supplies to 

otherwise inaccessible regions. In either role, civilian or 

military, they are expected to do their job as quietly as 

possible. 

Everyone has heard the unpleasant "slapping" noise from 

an approaching helicopter. When present, and it often is, in 

hover, it usually dominates all other sources of helicopter 

noise - including engine noise. Investigators generally 

that for moderate subsonic tip Mach numbers a great 

part of each slap signal has its origin in the impulsive load 

a blade feels upon passage over a vortex trailing from 

another. For higher tip speeds, however, Boxwell, et~ al!~ 
have demonstrated experimentally that blade slap can be 

~ mostly due another aerodynamic effect: the presence of 

tip-region shocks on the advancing side of the rotor. .Here 

we develop aeroacoustic models to predict blade slap due to 

blade-vortex interaction alone. 

Normally, heavier helicopters operate .(~ster 
I· 

turning 

rotors for greater values of needed lift (instead, the number 

of blades can sometimes be increased). The analysis to 
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determine the unsteady blade force and associated acoustic 

field for a blade-vortex interaction at high subsonic 

tip-Mach numbers is fundamentally different from that for low 

tip-Mach numbers; compressibility effects then become 

important in the calculation of a section of the signal's 

spectrum which may contain a substantial fraction of the 

signal's acoustic energy. Also, compressibility changes the 

qualitative character of acoustic radiation: pulses from 

blade surface dipoles firing at different values of retarted 

time t-r/co may nevertheless reach the far-field pOint r 

simultaneously at time t . , for high subsonic M, these. 

differences in firing time ~(t-r/co) 's in general are not 

small in comparison to the period of oscillation of 

high-level spectral components of the total slap signature. 

In the present study we develop models to predict 

theoretically this important part of the Signal's spectrum, 

the part which causes our blade to behave largely as a 

noncompact acoustic source. We shall see that in the 

boundary-value problems we need to solve compressibility and 

high-frequency effects appear lumped in two parameters, both 

proportional to reduced frequency divided by 1-M2. 

In the linear models developed here, we split the 

aeroacoustic problem of blade-vortex interaction into a sum 

of Simpler gust problems; each gust represents a component of 

the spectrum of the vortex-induced upwash on the plane of . ~. 

i . 

flight. It is important to pOint out that application of our 

models for blade-gust interaction is not limited to 



• 

I 

- 9 

predictions of noise due to blade-vortex interaction, but 

that they could also be used, for example, to calculate 

unsteady forces acting on compressor blades in the presence 

of nonuniform incident flows, or to predict the acoustic 

field surrounding a thin wing cutting through confined 

regions of turbulence. 

In earlier theoretical studies of helicopter-blade 

slap,(3,~) investigators have applied incompressible flow 

models to calculate unsteady sectional loads acting on a 

blade passing over a vortex. They used this computed lift 

force in three-dimensional acoustic models to represent the 

strength of simple point dipoles along a chosen portion of 

the blade length. Application of such chordwise-compact 

aeroacoustic models of blade-vortex interaction to predict 

noise for practical cases of interest was justified whenever 

interaction parameters met one of the following two 

conditions: (1) Large vertical blade-vortex separation to 

chord ratio for moderate Mach numbersj (2) very low Mach 

numbers for arbitrary blade-vortex separations. 

Actual helicopter blades often operate such that neither 

~ of these two compactness criteria is satisfied, however, and 

'noncompact aeroacoustic theories such as those developed here 

become necessary. The natural uncoupling that exists between 

an acoustic field and its aerodynamic source (in 

two-dimensions, the loading along the chord) disappears when 
; ... 

the latter is acoustically noncompactj there is no 

incompressible flow region surrounding the airfoil then, and 
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the acoustic field begins at the airfoil surface. Instead of 

radiation. from a simple dipole, we expect a more complicated 

acoustic field due to a distribution of dipoles over the 

chord with large differences in phase. Kaji has disc~ssed in 

detail noncompactness effects in ref. 5. 

Only a few of many important three-dimensional problems 

in unsteady aerodynamics have been solved in closed form for 

subsonic flow; for example, until very recently an unsteady 

lifting-line theory was not available (ref. 6). Another 

three-dimensional, but chordwise- compact, model is that due 

to Chu(7,s: who developed a numerical lifting-surface theory 

for a semi-infinite blade passing thr~ugh a gust, and then 

applied it to predict noise due to blade-vortex interaction. 
( ~ ,9) 

Many past efforts' in modelling the strength of acoustic 

sources due to blade-vortex interaction, however, have been 

based on two-dimensional aerodynamic theories. These models 

assumed that at most spanwise pOSitions on a blade 

three-dimensional tip effects can be neglected; they become 

more and more valid as the vertical blade-vortex separation 

is reduced and the loading at each section along the length 

of the blade is dominated two-dimensionally by local 

chordwise unsteadiness. 

Landahl (10) has shown that the surface pressure 

distrib~tion for a thin two-dimensional airfoil passing 

subsonically through a gust of arbitrary wavelength may be 
? , • . . 

determined by means of an iterative scheme applied in the 

aerodynamic reference frame (fixed on the airfoil). In the 

. ... 
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first step the chord is allowed to extend infinitely in the 

downstream direction from the leading edge; this eliminates 

the Kutta condition and the wake from the problem. The 

solution to this leading-edge problem satisfies both the 

upstream boundary condition ~=O and the flow tangency 

boundary condition on the airfoil. A trailing-edge problem 

is then solved in order to correct the leading-edge solution 

in the wake. The sum of these two results satisfies flow 

tangency on the airfoil and pressure continuity across the 

wake; however it violates the condition of ~ =0 upstream. 

Further iterations may be carried out to provide a more 

accurate solution. 
(11 ) 

Landahl· has shown that the series which results from 

aplication of his iteration scheme converges uniformly; but 

that due to the strong communication that exists between 

leading and trailing edges when the gust wavelength is much 

longer than the airfoil chord, many terms would be needed to 

obtain a good approximation to a solution which is easily 

available by simpler methods because the source region is 

then acoustically compact. Landahl's iteration scheme 

~ becomes usef'ul when the gust wavelength is much shorter than 

the airfoil chord. Then the leading edge and the trailing 

edge become largely independent of each other, and only a few 

terms in his series are needed to approximate a solution 

which is, difficul t to obtain by any method known because the 
, ' 

source region is acoustically noncompact. In the 

short-wavelength limit the solution is given by the first 
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term in the series: the relatively simple result from the 

leading-edge problem. 
(12) 

Adamczyk has also given an infinite-series solution 

for a two-dimensional airfoil passing through a. gust of 

arbitrary wavelength. His approach was quite different to 

that of Landahl's and the terms in his series of Mathieu 

functions cannot be interpreted physically as edge effects. 

He presented numerical results for some values of the 

acoustic directivity in the aerodynamic reference frame 

showing enhancement of the acoustic. signal in the downstream 

direction. 
(13) 

Adamczyk' has also determined the response of an 

infinite-span swept wing to an oblique gust convected by a 

subsonic freestream. His expression for the pressure 

distribution on the wing was the sum of the first two terms 

of the series from the iteration scheme described above. 

Although he presented numerically calculated loads on an 

airfoil passing over a potential vortex in this work, he did 

not report any acoustic results, not even for the gust 

problem. 

Amiet (14)gave numerical results for the power-spectral 

d~nsity of the three-dimensional acoustic far field in the 

aerodynamic reference frame due the interaction of 

small-scale turbulence with a high-speed thin wing of finite 

span. He replaced the surface of the wing with a 
i. ~. 

distribution of point dipoles of strengths given by 

Adamczyk's two-dimensional response function for a 
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short-wavelength gust, which he then used in a spanwise 

superposition to model finite-span effects. His 

three-dimensional acoustic model for numerical calculations 

is valid in' the high-frequency limit, 

the limit of infinite aspect ratio. 

or alternatively, in 
(15) . 

Amiet has estimated 

the power-spectral density of the acoustic far field due to a 

fast climbing rotor cutting through small-scale turbulence. 

The small-scale character of the turbulence allowed him to 

consider spanwise blade elements as moving in a locally 

rectilinear fashion. The results were given in a coordinate 

system fixed to the rotor hub. 
(16) (13) 

Amiet has also generalized Adamczyk's' original 

two-dimensional high-frequency theory by considering a gust 

not convected by the freestream. In addition to the gust 

problem, 1n this work he also investigated plunging motion of 

the airfoil; no acoustic analysis was performed, however. 

In chapter 2 we develop a two-dimensional aeroacoustic 

model fora blade of infinite span passing through an oblique 

gust of short wavelength. We apply Landahl's concept of edge 

separation and obtain an expression for the pressure field 

. due to the airfoil-gust interaction. result is 

approximate because it is the sum of the first two terms in 

the iteration scheme of edge separation: the first 

leading-edge solution; and the first trailing-edge solution. 

Both of these two problems are' solved in the aerodynamic 

reference frame by the Wiener-Hopf techn{~ue. The total 

solution contains the aerodynamics at the airfoil surface, 
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that is, the surface pressure distribution, and the acoustics 

of the interaction in a rather compact analytic expression. 

Letting the field point in the solution come down on the 

airfoil, we recover Adamczyk's two-dimensional aer~dynamic 

result for the case of zero sweep. Letting the field point 

go to infinity, we obtain the two-dimensional acoustic field 

in the airfoil reference frame due to the interaction of an 

oblique short-wavelerigth gust with a subsonic airfoil. This 

section of our presentation is a review of part of the work 

reported in ref. 9. 

In chapter 3 we perform a spanwise superposition of the 

two-dimensional solution from chapter 2 to approximate the 

three-dimensional pressure field for a rotating rectangular 

wing with subsonic tip-Mach number passing through a gust; 

this last result is given in the acoustic, or ground, 

reference frame. We calculate the three-dimensional acoustic 

far field by allowing the observer's coordinates to go to 

infinity, and obtain a closed-form expression for the 

acoustic directivity pattern which does not require numerical 

computation. 

In ref. 9 the author performed a spanwise superposition 

of the two-dimensional result of chapter 2 which is different 

from the one presented here. The earlier one in ref. 9 is 

actually valid only in the infinite frequency limit, whereas 

the one we develop here in chapter 3 is valid for arbitrary . ' 
high frequencies, not just the infinite limit. As we will 

see, the analysis in ref. 9 hid some interesting physical 



- 15 -

features of the solution for cases in which the disturbance 

through the fluid has a supersonic trace speed. Also, the 

three-dimensional model developed in ref. 9 used a "box" 

spanwise superpositi~n in which inboard blade ~ections 

reached the same maximum value of loading as sections near 

the blade tip. Here we develop a much better model for the 

unsteady loading on a rotating blade, which in reality sees a 

freestream linearly increasing from hub to tip: We model the 

three-dimensional unsteady blade load by the two-dimensional 

value at the tip, and say that it decreases from this value 

linearly to zero at the blade hub; the Mach number in the 

two-dimensional solution is used as the tip-Mach number in 

the three-dimensional solution. 

The actual loading on a helicopter blade, however, 

vanishes at the tip as ,IL-y, a functional behavior wi th 

infinite slope at y=L, where we therefore expect to find 

generation of strong trailing vorticity. It follows that our 

aerodynamic superposition model is not consistent with 

reality near the tip: it overestimates the strength of 

acoustic dipoles there, and also gives a wrong representation 

~ for their phase. As we discussed earlier, however, at high 

frequencies the spanwise extent of.aerodynamic influence of 

the tip is reduced; blade sections react then mainly to 

strong local shed vorticity. Acoustic fields predicted by 

the model in chapter 3 should be good approximations to those 
;," 

we would obtain using a model with correct magnitude and 

phase of tip dipoles. 
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Lima ~ 17) has applied the three-dimensional acoustic 

theory developed in ref. 9 in a study of effects of 
(18 ) 

tip-vortex structure on radiated noise. He used Betz's 

theory to construct vortices from assumed forms of steady 

loading on a helicopter blade, and then computed numerically 

the spectrum of the upwash which each vortex investigated 

induced on the plane of flight. 

In the second section of chapter 3 we apply the 

leading-edge part of the acoustic theory developed in the 

first section to calculate the noise signature for the 

interaction with a potential vortex. The result is given in. 

closed form. It may be used also to ~redict noise due to the 

interaction with a real vortex, which has a viscous core. 

This follows from Widnall's(4) suggestion that the aerodynamic 

effect of a real vortex may be modelled by a potential vortex 

at a somewhat larger effective distance below the flight 

pI ane. 

We also should point out here, as we did in ref. 9, that 

results equivalent to those obtained by our approach could be 

reached by an alternate method: By using the airfoil surface 
(13,.16 ) 

pressure distribution already available as the strength 

of point dipoles in a Green's function integral. With the 

present technique, however, the whole pressure field is 

obtained at once, so that the solution is both more elegant 

and compact. Also, the results here in terms of contour 
7 I .• . . 

integrals make the far-field calculations straightforward and 

unambiguous. For example, the phases of· certain quantities 
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are always obvious by the present complex-variables method. 

Finally, our solutions at a general field point may be used 

immediately to calculate other off~airfoil flow properties of 

interest besides the acoustic field - the shed vorti~ity in 

the wake, for instance. 

We have said earlier that for very short wavelengths the 

blade loading is well approximated by the two-dimensional 

result only at a distance away from the tip. It tUrns out, 

however, that in single-rotor helicopters blade-vortex 

interactions frequently occur in which only outboard sections 

of each blade are actually expected to radiate noise. The 

purpose of chapter 4 is to develop a three-dimensional 

aeroacoustic model for a blade tip passing through a gust. 

The objective is to determine. the actual magnitude and 

spanwise phase variation of tip dipoles. Such a tip model 

should replace chapter 3's whenever conditions of 

noncompactness prevail, but frequencies are not high enough 

to ignore three-dimensional tip effects. 

Due to the complexity of the problem in general, we 

consider here the case of a square tip with side edge. Also, 

" since earlier stUdies (
9

,13). have demonstra ted that in very 

noncompact situations the trailing edge can be neglected, we 

simplify the model further: We remove the trailing edge and 

determine the unsteady pressure field for a quarter-infinite. 
"'7 

plate with side edge passing through a gust at high subsonic 

speed. -.. 
----- t19) 

Miles solved exactly a problem similar to the one we 
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consider here, but for supersonic flow. For the subsonic 

flow case no simple procedure yielding an exact closed-form 

result is available. In chapter 4 we obtain an approximate 

solution analytically for the pressure field everywhere in 
. (2. 0) . 

space; we apply a procedure similar to that Carrier qas 

used to solve a three-dimensional diffusion problem. By 

allowing the field point down on the plate's surface we are 

able, with some work, to obtain a relatively simple 

expression for the tip loading valid for high.frequencies and 

for large values of the interaction angle A. In fact, this 

load expression turns out to be simple enough to enable us, 

in chapter 5, to reintroduce the trailing edge into the 

analysis and so arrive at an aerodynamic model for a 

rectangular-tip blade of semi-infinite span, with IY 
side-edge loading behavior, passing through an oblique gust. 

We then proceed to calculate the associated acoustic field in 

closed form. 

We end this introductory chapter with a very brief 

qualitative discussion on 

blade-slap signal to look. 

how we should expect a typical 

General acoustic theory·(21) tells 

us that a blade-slap pulse is proportional to the first time 

derivative of the unsteady blade force induced by the 

interaction. Fig.1Ja shows a rotor turning at angular speed 

~; the position of rolled-Up tip vortices is indicated. 

Consider the particular blade-vortex interaction for which we 
. 

have drawn the symbol A, for the interaction angle: The 

position of the vortex relative to the blade at that instant 
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corresponds to time 1 in fig.1.1b. Point 1 in fig.1.1c 

indicates the value of unsteady blade force F(t) at time 1 • , 
because its positive part nearly cancels its negative part 

there, the total load magnitude is relatively small •. At time 

3, however, F(t) reaches its largest negative value, and its 

time derivative dF/dt quickly shoots up as the vortex 

suddenly crosses outboard of the tip. 

force is small again • 

At time 4 the net 

;. ~. 
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Chapter 2: Two-dimensional aeroacoustic theory for 
noncompact blade-gust interaction 

In this chapter we apply the concept of separation of 

leading- and trailing-edge effects at high reduced 

frequencies to obtain an approximate solution for the 

two-dimensional pressure field for an infinite-span wing 

pas~ing through an oblique gust. The result is the sum of 

the solutions of the first leading- and trailing-edge 

problems. Before using it to calculate the two-dimensional 

acoustic field, we bring the field point down to the airfoil 

surface and recover the expression 'in ref. 13 for· the 

pressure distribution due to the interaction with the gust; 

this suggests that our result for the pressure at a general 

field point in space must be correct. We then proceed to 

calculate the acoustic field by letting the field point in 

the solution go to infinity. The resulting expression for 

the directivity of sound is our contribution to the 

noncompact two-dimensional theory of airfoil-gust 

interaction; it first appeared in ref. 9. 

Following Amiet's formulation~i6} we have in the 

aerodynamic reference frame a rigid flat-plate airfoil on the 

x-y plane with its chord extending from x=O to x=2. It 

interacts at an angle A with a short-wavelength sinusoidal 

gust convected by the freestream (fig. 2.1). The linearized 

equation for the perturbation velocity potential ~ is 

1 
~xx + ~yy + ~zz - ca 

; .. " 

= 0 (2.1); 

, 
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with boundary conditions 

~(x<o,y,o,t) = 0 

~ (o<X<2,y,o,t)= -bW(x,y) e 
z 

09· 
Ot (~2 ,Y , a , t) = 0 

C2.2a), 

iwt 
C2.20), 

C2.2c); 

where the spatial variables have been nondimensionalized with 

respect to the airfoil semichord b. DIDt denotes 

a/at+CU/b)a/ax, the linearized substantial derivative. For a. 

sinusoidal gust of small amplitude wo ' the gust downwash 

wCx,y) becomes woeXP[iCwt-kxX-kyY)]; for one convected by the 

freestream, the nondimensionalized gust wavenumber in the x 

direction kx is then wb/U, the reduced frequency, and the 

spanwise wavenumber ky=Cwb/U)tanA. Boundary condition (2.2b) 

is a statement of flow tangency on the airfoil surface. From 

the linear relation·between potential and pressure, i.e., 

P=-p (D~/Dt), boundary condition (2.2c) requires that there o 
be no pressure discontinuities at the trailing edge and 

across the wake. 

Since the plate is infinite in the y direction, the 

potential ~ will have the y dependence of the input gust, a 

traveling sinusoid; we therefore assume a harmonic behavior 

~(x,y,z,t)=</l(x,Z') e 
iwt-ikyy ;." 

according to (2.2b). We also make the change of dependent 
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variable 

and compress the z coordina te by the change ;r:r:r z=z. The 

object of these last two transformations is to reduce the 

relatively complicated convected wave equation to the more 

familiar Helmholtz equation. 

The boundary-value problem for <p* becomes 

(2.3) , 

with 

(2.4a) , 

<P*z (osx<2,O) = - bWQ 
-ikxx 
e~· ·(2.4b), 

v1-W" 

(2.4c); 

where 

and is one of the two wavenumber-related similarity 

parameters in the problem; the other is kx/(1-M~). The 

parameter j.l2 is negative for M/sinA<1 (tanA)Mi II-HZ). This 

case corresponds physically to a subsonic speed of 

, 
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propag~tion of the disturbance due to the passage of the 

infinite-span wing through , the stationary gust. Since a 

subsonically traveling' disturbance of infinite extent 

radiates no sound, we expect no sound radiation f9r those 

Mach number and interaction angle combinations for which u2 

is negative. 

Leading-edge probl~m 

The boundary-value problem 
( 1 ) 

for q,* , the veloci ty 

potential field due to the interaction of the gust with a 

semi-infinite chord airfoil extending downstream from the 

leading edge, is 

q,i 1) + q,~gi + U2q,~~ 1 ) os 0 (2.5); 
.. xx 

with 

q,i 1) (X<O,O) os 0 
(2.6a), 

q,i.1 ) (x~O, 0) = -bwjJ exp [ -ik~x "z 
I1-M2 l-M2 

(2.6b). 

The problem may be readily solved by the Wiener-Hopf 

technique. We define the transform pair 

<piil{x,Z) = 1 At e-i~X~(~)Z) 
/' ," 

(2.7a),· 

~ ()., 1) (2.7b)j 
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where 

that is, 

- 0 

EJ).'Z) = J 
(2.8a) , 

-cc 

cc 

(2.8b). 

The contour C and the regions of analyticity~, ~ in the 

complex X plane are yet to be determined by the physical 

I requirement that acoustic waves propagate away from the 

airfoil, the Sommerfeld radiation condition. Transforming 

(2.5) and solving the resulting equation, we obtain that for 

this lifting problem 

(2.9); 

where the branch of IA2_~2 is chosen so that its argument 

vanishes as 11..1 goes to infini-ty along C. We initially take 

~_ as a positive constant corresponding to M/sinA>1. The 

results may be analytically continued later to include the 

negative 112 case. 

Since an exp(iwt) dependence was assumed, outward 

propagati_on requires that kx' and thus also ky and ~, have a 

small negative imaginary part. The regions of ~ and ~ 

'1 
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analyticity in the complex A plane for (2.8a,b) are then 

given by. ImCU>Im(ll), ImCU<Im(-lJ), respectively, as shown in 

Fig. 2.2. The contour C runs below the real axis for 

Re(A)<Re(-lJ) and above the real axis and the point kx/(1-M 2 ) 

for ReO,,) >Re( ll) • 

From (2.6a,b) and (2.8a,b) the following Wiener-Hopf 

equati on is obtained (8 = @) 

- i c!"O -1- + 1 _ a;P8(A ,0) .. 
IA +lJ h__ a z 

...l..- - v'A-lJ ~ (A ,0+) 
(A-~) ~. 

I-M2 

(2.10),. 

I the left side of (2.10) being a e fUnction and the right a G. 
They are, therefore, analytic continuations of each other and 

-so they are both at least entire functions of A. If ~, act> I'd Z 

are assumed to be well behaved a A: co, ("the Riemann-Lebesgue 

lemma) Liouville's theorem then states that both sides of 

'(2.10) are independently equal to zero. The -right side of 

the equality says that 

~ (A, 0 +) =_i b W 0 

I21T 

and so, from (2.9) and (2.7a) 

(2.11); 
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Arguments similar to those made for ,the time and y 

dependence of the velocity potential also apply to the 

pressure. Making the same changes of dependent and 

independent variable~ made before for the potential, ~e have 

( ) () iwt - i k.yY P x,y,z,t = P x,z e 
(2.13a), 

(2.13b). 

From the relationship between pressure and velocity 

potential, the pressure p*0~x,Z) corresponding to ~)(x,Z) is 

obtained: 

p~1) (x,Z)=-oowo U Z/IZL f 
2i1'/Ht 2 j ~ C 

1 ~M2 +11 

(2.14). 

For x>O, Z:O+, the contour C may be defo'rmed to C* in 

fig. 2.3 so that 

e 
-iii' ""'4 - illX 

(2.15), 

in agreement with the aerodynamic result in ref. 13. 

Trailing-edge problem 

The solution to the trailing-edge problem ~s a pressure 

p Cqsuch that pi,1)+p12) is zero at the trailing edge and in the 
* i, .. 

wake. From the linear relation between potential and 

pressure, we note that p(2}(X,Z) also satisfies Helmholtz's 
* 
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equation • We also require that.3 Pi,2)/az vanish upstream of 

the trailing edge and that it be continuous for all x. With 

x=x '+2, the trailing-edge correction boundary-value problem 

for pi
2

} in the XI_Z coordinate system is 

with 

(21 
P*xx' 

+ (2) 
'*'ZZ 

(X"+2,0) =- 0 for X I <0 

= -

+ 4 (2) 
lJ p* =- 0 

• for X >0 

(2.16); 

(2.17a), 

(2. 17b) • 

This problem may also be solved by the Wiener-Hopf 

technique. We define the transform pair 

(2.18a), 

= 
P (A,ZJ· = f dx' 

'.fijf 

(2.18b); 

-= 
- -

where p= '<=r P@ that is, 

-GO 

.(2.19b). 

Transforming (2.16), solving the resulting equation and 
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(2) 
invoking the continui ty of a p* laZ for all x I, we obtain 

... 
p{).,z+) = + P ().,O+) (2.20) ; 

... ... ... 
where P().,o+)=P~Cx,o+)+PE9CA'O+), the arbitrary function of ). 

to be determined by the Wiener-Hopf technique. 

From boundary condition (2.17a), we see that 
... 

ape). ,o)/az=o. From boundary condition (2.17b), and 
-

.recalling the result in (2.15), P@C ).,0+) may be calculated: 

rs (). 0 +) = + K~·' e - i 2), 
<±)' - ----:-

. l>"-ll 

f ~ i11'/4 

t12 
( 2 .21 ) ;. 

i~ dt it 
where E(a)=' e a Fresnel 

o 1211't 
integral; therefore 

has a branch point at ).=~. 

The Wiener-Hopf equation in this case is (~=~) 

IA+~ ;;e(A.O+)+Ky~:~ e -2;A t;in/4_ E [2(A"~)]} 

- i11'/4 e -2i~] e 1 
= --

.;;...~ 
~~e (;"',0+) - K* f®().) (2.22); 

where 

K* = ~ U e - i1T/4 

IiTJ~+ l-M2 II 

a constant, and * K f® denotes that additive part of I;...~ 

which is analytic in the upper half ;... plane. The ... 
/ . ' 

standard procedure of splitting an arbitrary function into a 

sum of two, one (3 and the other@', is treated in detail in 
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ref. 22. Making the usual assumptions regarding the good 

behavior of Pee). ,0+) and dPG} ).,0) / d Z, we have that 

(Liouville's theorem) both sides of (2.22) vanish 

independently. This gives Pe()', 0+). Adding (2.21) to it, we 

obtain P()',O+), and substituting into (2.20) and by means of 

(2.18a), we finally have that 

p;2)(x,Z) =-;PowQU ZllZl 
211 2;-r-r;p 11~ +, I 

, l_M2 ~ 

f 
d)' e -i').(x-2)- IZ I/AL1,l2 

C IA+1,l J 
= ~ ~£!U_ e-2;~ 

;-A ~-u 

1,l 

(2.23); 

where the contour C is indented above the real axis at A= ~ 

t Total Solution 

.. 

Adding (2.14) and (2.23) and applying (2.13b), we obtain 

the two-term approximation to the two-dimensional pressure 

field for the passage of an infinite-span wing through an 

oblique gust 

(2.24) • 

The pressure distribution on the airfoil, with its chord 

extending from x=O to x=2, is calculated from (2.24) which 

now says that 

(2.25). 

(1 ) 
The part p (X)O,O+) has already been determined and is 

(2) 
given by "(2.15) and (2.13b). To obtain p (x<2,0+), we start 
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with (2.23) and observe that for Z=O+, x<2, the integral 

I( Z+) - I d' -iA(x-2)-Z/A2-~~ .ll ~ x ~ - 1\ e . 
C IA+ll 

may be deformed to 

where the contour C**is shown in fig. 2.4. 

Interchanging orders of integration we have 

-2i~ e 

(2.26) 

( 2 .27) ; 

(2.28). 

The term 1 I (A -~) attains its. maximum magnitude of -1/211 

when ~= II and ).:-ll: and goes to zero as ~-MO or as A~ - OQ along 

** C , or both. We can expect then that the largest 

contribution to I(~,x,O) comes from values of ~ near the 

lower limit. We therefore make the following approximation: 

-ill (x-2) 
e 

." 

where E* is the complex conjugate of E as defined in (2.21). 

Substituting for I(ll,X,O+) in pi2~X<2,O+), we ~~ve 
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(2) 'IJ -i;r/4-;l1x 
p * (>;<2,0+) = (lo\"~ e 

I2iTIi -Hi j!sL. +lJ. " l .. M':: 

from which (2.25) becomes 

IV -p(0<x<2 ,0+) = + poWn U 1 

/iT Il-MZ y'~ 
l-M~ +ll 

{1-(1+i)E*[211(2-x)]1 (2.30); . 

-~ [1-(1+;) E* [2~(2-X)]]~ 
so that the Kutta condition is satisfied at x:2 as required. 

The result in (2.31) agrees with that given in ref. 13 for 

the pressure distribution on an infinite-span wing passing 

through an oblique short-wavelength gust. It serves as a 

, check for the expression in (2.24) that we have derived for 

the pressure p(~,Z) at a general field point. 

.. 

Two-dimensional acoustic far field in the airfoil frame of 
reference 

Here we start with the two-dimensional pressure field 

P(x,y,Z,t) due to the passage of an infinite-span wing 

through an oblique gust as given by (2.24) and (2.13a). We 

determine the two-dimensional far field in the airfoil 

reference frame by allowing the field point to go to 

infinity. The calculated directivity . of sound is 

theoretically that which would be measured in a wind tunnel 

experimen"t. 

From (2.24) and (2.13a) we have 
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P (x-~y,Z,t) = -

f dAr 1 

c &i-ll 
- 1., -1I.x - 1 1\ -ll e e 2 ' j , , I Z I /' 2 Z (2. 3 2) • 

We notice that in order to obtain a nonvanishing far 

field the largest contri bution to P( x, y, Z, t) as/x2 +Z 2 ~ must 

come from values of A such tha t/A~ -1l2 <0 or I A I -< ii, and so it 

follows that in the far field, the largest contribution to 

the inside integral in (2.32) comes from its lower iimit. 

Integrating by parts, we thus obtain that as/x2+~ + ~ 

Substituting this into (2.32), the asymptotic behavior 

of the A integral as -Ix'" +Z 2 ~ may be determined by steepest 
( 23) 

descents (Noble, pp. 33-36) to be 

P~,y,z,t) '" 
Ix'"+ Z'-)o<I) 

, t 'k ' 'I M2 " "1 U e 1W -1 .. V-l1T -1 ~x ~ 
~QY'Q y- 4 l-M2 -

liT ~ jk 1 
1 :l~z- +ll (X2+Z2)i?+ 

- cos (.0*/2) - (1 + i) E* [211 (l-cose*)] 1 
(1 - M2 sin2e ) l/~ ~ (2.34) ; 

where the substitution Z=/1-M 2z has been made so that 
; - " 

The expression in (2.34) 

shows that for negative ll2 (ll =-i~) there is no acoustic 
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field (the solution in (2.34) is exponentially damped). We 

had" anticipated that this should be the case since the 

disturbance due to the passage of the infinite-span wing 

through the gust then travels subsonically through the fluid. 

The quantity in brackets is the two-dimensional acoustic 

directivity D(e) in the airfoil reference frame; we plot it 

for different values of the Mach number M in figs. 2.5a,b. 

For values of 1 foot for the semichord band 1'00 ft/sec for 

the sound speed co' the acoustic signals corresponding to 

these patterns are sound tones of 280 

respectively. 

and 315 Hz, 

We can appreciate the dramatic effect of noncompactness 

on acoustic radiation if while we look at these we recall the 

directivity pattern for a simple dipole - the acoustic field 

for a compact region. Note the sensitivity of the lobing to 

a relatively small change in Mach number. The par"ameter 

which actually controls the amount of noncompactness of 

course is ~, which lumps frequency and 'compressibility 

effects together and without which the Helmholtz equation 

(2.3) becomes the Laplacian, the governing equation for 

compact aerodynamic regions; it appears alone" in the 

directivity part of (2.34)~ 

Amiet l16} and AdamcZyJ·13) have compared the predicted 

aerodynamic loading (2.31) to numerical results obtained by 

Graham(2~)for a wide range of 1..1 values. They have determined 
i· .. 

that the two-term theory (one leading- and trailing-edge 

problem) gives good results for loading when 1..1 >.7 , 
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approximately, for ~ real. For imaginary ~ (2.31) remains 

valid in a wider range, apparently because the trailing-edge 

part of the loading converges then much faster; the Fresnel 

integral turns into an Error function and the loading. becomes 

hydrodynamic in character. 

, . 

~ .. 



, 
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Chapter 3:. Approximate aeroacoustic model 
blade of finite span passing through a gust. 
a potential vortex 

for a rotating 
Application for 

In chapter 2 we derived an expression for the pressure 

field everywhere in space for the two-dimensiona~ interaction 

of a subsonic infinite-span airfoil with an oblique gust. In 

this chapter we use that two-dimensional solution in a 

superposition procedure which will enable us to model the 

three-dimensional acoustic field radiated by a rectangular 

blade rotating with high subsonic tip-Mach number. We find 

that when the disturbance due to the interaction travels 

supersonical~y through the fluid, the model breaks down along 

certain directions. For cases of subsonic trace speed of the 

disturbance, we present typical examples of acoustic 

directivity patterns and compare one case to the 

corresponding two-dimensional result in chapter 2. 
~l 5 ) 

Amiet has pointed out that the contribution to the 

acoustic field from the acceleration effect of sources of 

sound on a rotating blade may be neglected when w, the 

acoustic frequency, is much larger than a, the blade angular 

speed. Our three-dimensional model for the acoustic field 

uses this simplifying fact, and so we assume that each 

spanwise section of the blade passes rectilinearly through 

the gust with local speed varying from hub to tip. 

In addition, the associated three-dimensional 

aerodynamic model makes the following two related 
i· .. 

assumptions: (1) the chordwise unsteadiness dominates the 

three-dimensional tip effect over all of the span; and (2) 
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that the spanwise loading may adequately modelled by a 

triangular shape with maximum loading at the tip (in reality 

the actual loading near the tip must vanish asIL-y). 

We close the chapter by applying the leading-edge part 

of our result to predict acoustic signatures for the 

interaction with a potential vortex. The vortex in the model 

is located a distance h chords below the flight plane. 

We start by defining the three-dimensional pressure 

field P3_Jx,y,Z,t) due to the passage of a rotating blade of 

span L through an oblique gust; as before Z= 11_Ml z. We 

require that this three-dimensional pressure equal the 

two-dimensional pressure P given in (2.32) on Z=O+, y=L, and 

that it decrease from this value ta zero linearly at Z=O+, 

y=O. We make the changes 

and y~y so that P* satisfies 

(3.2) 

subject to the boundary conditio~ 

P*2-D (x,y,O+) for O<Y<if:MT L 

where 

otherv.ti se (3 3) . , 

-ikx tanAY 
e 

Il-f't12 
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CD 

J 
dAe-iAX [ 1 + ie

2iA I 
C fA -ll 'I1'v'l+ll 1l 

d~ jfZE. e-2i~ 1 
~-i ~-ll j (3.4). 

as may be seen from eqn. (2.32). 

We now define the transform pair 

P*(x,Y,Z) = JCDJ dA,dA2 e-iA1X"iA2Y P(Al,Af;Z) 
(2'11')2 

- c» 

_ CD 

(3.Sa) , 

(3.Sb). 

Transforming (3.2) and solving, we obtain that 

(3.6) , 

where we have called kxM/(1-M 2bK, for convenience. From 

(3.5b) and (3.4) it follows that 

where 

G(\').- kx tanA) = 
\' Il-W' 

(3.8) , 

and 

.<!L j§+... ~ e-2i~1· 
~-Al ~- J.l ) 

,. 
( 3 .9) • 

From (3.7), (3.6), (3.4a), and (3.1) we have therefore 
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dA1dA,- e-Alx-iAZY 

(2n)2 F (AI) 

We now tr~nslate the solution in (3.10) from the airfoil 

frame of reference to the ground, or acoustic, reference 

frame. We let Al=b~tkx"M~ I( 1_M2), A2=b~/I1-M2, and express the 

resul t in (3.10) in terms of the original unstretched y, z 

variables. We also introduce a 1 -t Fourier transform so w 

that 

(3.11), 

where k'x=(w+~P)b/U. Next, we express the <5 -function 

appearing in (3.11) in terms of one of its well known 

limiting forms, e.g., <5 (a)=lim ~~ 2 and interchange the 
E~ 7T Ea 

orders of AuA2 integration wi th the Wi integral: 
= 

P3_0(y~y,z,t) = Lim b2 1= du 'aiw't J J dXld~2e-;~lbXa-;~2bY 
~-+-o cZTif 

~ -~ 

j W' 2 /v~ ",2 
-ibz ~ -Xl -A2 1 

e Co if 

... 
f . ' 

;"J-t12 
(3.12). 

Here bxa=bx-Ut, the "a" subscript denoting the acoustic 

reference frame. Th e 1 as t s t e pis toe val u ate POi nth e far 
3-
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field; this may be readily done by approximating the ~~ 12 
(25) 

integrals using the method of stationary phase (Whitham, p. 

392). Before we do this, however, we may use the 

approximation indicated in (2.33) for the integral appearing 

in F in (3.9). The final result for the sound signal in the 

three-dimensional acoustic field which a listener on the 

ground hears as the rotating blade of span L and tip Mach 

number M passes through a stationary gust of short wavelength 

is 

where 

and 

1 - (1+i) 

~1 (~t.;. l~) \] 
;;::F.t (1 + M Xa)} 

ra 

G [k (t.1y/ ra -tan',\)j
x If-t1 xa 

ra 

j. 
(3.14a), 
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= -ikxL .ltanA - l<1y/r.,L) 
e \. W l+M Xa 

ra 

L k* [tanA - ~y/r-a ~ +. M Xa 
ra 

(3.14b). 

The distance r~:'x:+yt+zz and the direction cosines xi/rat 

y/rat z/ra specify the position of the observer on the 

ground. 

acoustic 

D 3-d Xa / rat Y / rat z/ r a)· is 

directivity not including 

the three-dimensional 
_2 

the factor (1 +Mx a/ ra ) 

which gives the usual forward enhancement of the acoustic 

signal from a moving source, in this ca se, the bl ade 

traveling in the -xa direction; 1+Mxa/ra also represents the 

position-dependent Doppler shift of the tone, as indicated in 

the exponential in (3.13). 

The expressions in (3.13), (3.14a) stand as are for 

M/sinA>1 (tanA<M/~)t that is, for supersonic trace speeds 

of the disturbance. For subsonic trace speeds t sin )M, and 

we recall from cha pter 2 that j.l:- i I-l} , so tha t may then 

write 

in (3.13), (3.14a). Before we make this change for the 

subsonic cases, however, we notice that the fiirs·t term inside 

brackets in (3.14a), the contribution from the leading-edge 

problem, blows up in the direction given by 

- 1 



- 41 

(12 -j-1~.~ - tan 2
/\ -

vHF 
fvl -~ -

rW l-M2 - tan 2 f1. (3.15). 

As fig. 3.1 shows, this is th~ direction taken by 
. 

acoustic rays born at the line formed by the intersection of 

the downstream part of a typical. Mach cone and the xa-y 

pl ane. The breakdown of the leading-edge solution in this 

direction can be explained mathematically as follows: Since 

the chord extends downstream to infinity, in the· above 

operations we have in fact tried to calculate the acoustic 

field of a. distribution of supersonic sources which is 

infinite in extent; the surfaces of the associated system of 

Mach cones do not interfere and so, even those farthest from 

the leading edge will have an acoustic effect. But the 

determination of such an acoustic field is a badly posed 

problem for the method of stationary phase, which relies on 

the existence of a single point in physical space (and also 

in wavenumber space) where the acoustic effect of the entire 

source distribution may be modelled by one equivalent source 

of arbitrary complexity. 

Similarly, we notice that the second term in brackets 

in (3.14a), the contribution from the trailing-edge problem, 

blows up along two different directions: one of these is 

given in (3.15), and the other by the solution of 

... 
i . 

tun'-/\ + (~ + 1·1) ra = 0 

which is 
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2 

(3.16). 

They are the dir~ctions of acoustic propagation from the two 

lines formed by the intersection of the Mach cones and the 

Xa-Y plane. That the trailing-edge part of the solution 

breaks down in both directions should not surprise us if we 

recall that although it was constructed to cancel the 

leading-edge result in the wake, it was also nonzero (though 

small) upstream of the plate. Since the trailing-edge 

solution cancels the leading-edge solution in the wake, 

however, we would expect it to cancel also the breakdown 

because, in effect, it changes the leading edge's region of 

semi-infinite extent - the blade chord plus the wake, into 

one of finite extent - just the blade chord. Below we verify 

that this is in fact the case. Unfortunately, we still end 

up with a part of the trailing-edge solution which breaks 

down in the upstream direction given by (3.16); to correct 

it, a second leadingLedge problem would have to be solved. 

But even then our problems would not be over, for we would 

still have a semi-infinite region of supersonic sources, now 

in the downstream direction. 

In the direction given by (3.15), we find that 
1 

{ a. + l~)i7. 1/{= 
~ -I 

"(;+1'1 ~)J . 
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so that the part in curly brackets of the trailing-edge 

contribution to the directivity pattern in (3.14a) (the 

Fresnel integral vanishes since its argument vanishes) 

becomes 
1 

thus cancelling that from the leading edge. If we now look 

at the high-frequency behavior of the term inside the large 

curly brackets, we obtain that for large kx' it becomes 
1 

/ 

We conclude that in the high-frequency limit kx=~' the 

far-field we have calculated for supersonic trace speeds is 

well behaved everywhere, even along the direction given by 

(3.16). However, since the limiting processes cannot be 

interchanged, that is, the solution is not well behaved if we 

first approach the direction of (3.16) and then let ~ , we 

note that for supersonic trace speeds the uniform convergence 

promised by Landaht11)in two dimensions does not carry to 

three. 

We notice from (3.13) and (3.14a,b), that;Por large kx 

the predicted acoustic speqtrum (not including wo) decays as 

1/kx , the behavior of the second term on the right side of 
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(3 .14b) in the expression for G/ 11-M2. this large-kx behavior 

has an associated small-time behavior for the transient 

signal which mayor may not be correct recall that the 

present aerodynamic model does not predict well radiation 

from tip dipoles. However, as we will see in chapter 5, 

where we develop a better aerodynamic model for the blade tip 

edge, the 1/kx behavior is the correct one after all; so that 

in fact, for small ti~es the expressions in (3.13), (3.14a,b) 

are off by at most a multiplicative constant. 

Since the trailing-edge part of the solution hardly 

contributes for small times (the high-frequency behavior is 

given by the leading-edge solution, whose directivity does 

not depend on frequency), essentially all the phase 

information in contained in G/11-M2, which can be traced back 

to the ~2 transform of the spanwise linear loading. Also, 

since G/ /1_M2 =-l/2 at kx =0, we see that the predicted 

spectrum takes on a constant value at kx=O. 

We now express (3.14a,b) for the case of a subsonic 

trace speed of disturbances. Also, we introduce the 

spherical coordinate system (ra,y,cp) shown in fig. 3.2, in 

order to define the position of a listener on the ground. 

We have then, t~at 

il2 
: , . . ' 

t-<]+il . 

+ 
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E* [~ (-:; 
If-W 

-G [k (MSinpSiny _ 
x 1+M s;ncpcasy . 

tanA ~ 
l]j (3.17a), 

/!T=W 

G _f .. kx· (Ms;npsinx -t 1+t~ sincpeasy - tanA~ ~ __ -ik L 
/ 1l-1\1~ .'X 

. e -ikxL (tanA- l1sinPsiny ) 
+ 1 l+f~sintpeasx 

kx (tan A- Msinepsiny;(l+f'.1sinepeoSy) 
(3. 17b) • 

For large A, the imaginary term in the argument of the 

Fresnel integral dominates the real part. As a result, the 

Fresnel integral has essentially an Error-function behavior 

which, as a function of y,ep, does not provide for much lobing 

in the directivity pattern - certainly not as much as we had 

in the two-dimensional patterns of chapter 2. This _is 

generally apparent in part (a) of figs. -3.3-3.8 for the 

three-dime~sional directivity function D3_~y ,ep) for a number 

of cases of interest. Actually, in order to make comparisons 

with the results from chapter 2, we have plotted here the 

quantity 

(l_M2) 1/4 IkX 
2frr 

03-0 (y,g,) M 
(1 +t1s i nepeasy) 2 

The difference in the acoustic spreading effect between two 

and three dimensions (the 1/ rr and 1/ r a factors) is not taken 

into -account in the comparison. In order to include this 
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effect, we would multiply the above expression by 1/~·. 

In fig. 3.3a-d we have selected a set of physical 

parameters CM,A,Wb/U) so that the resulting value of lu1 1 
matches that of fig. 2.5a. Notice the decreased effi~iency 

of the wing as an acoustic radiator for the present 

three-dimensional case with· load fronts which travel 

subsonlcally through the still fluid. The cos $ G/~ part 

is then a slowly vary ing functi on of Y ,<I>; essenti ally it has 

a radiation pattern on the plane Y = 90°, -"./2< <1><".12 C normal to 

the flight direction) equivalent to that for a strong tip 

dipole plus a somewhat weaker dipole located at some distance 

inboard. On the plane parallel to the flight direction 

(y=OO, -"./2<<1><"./2), the contribution of cos <I> GI";1-~12 is just 

that of a simple dipole. As previously discussed, for the 

two-dimensional case fr.om chapter 2 the speed of the 

disturbance through the fluid was supersonic, and so, every 

section along the blade's infinite span radiated noise. 

Figs. 3.3, 3.4, and 3.5 show the differences in the 

directivity patterns for three different tones. The 

"rippling" increases with reduced frequency, and the 

magnitudes decrease. Figs. 3.4 and 3.6 illustrate the effect 

of a change in Mach number. Compressibility has the same 

effect of increasing the rippling of the pattern again, 

bringing out the lumped character of compressibility and 

frequency effects for our noncompact blade. Another 

important high-speed effect is the increased forward 

enhancement of-signals (compare fig. 3.4a to fig. 3.6a). 
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From figs. 3.5 and 3.7, we see the effect of a change in 

A, the interaction angle, on the radiation field. Notice 

that the greatest qualitative differences occur on the 

azimuth y=90~ This is consistent with the . earlier 

interpretation of the radiation field on the plane normal to 

the flight direction as essentially due to a strong tip 

dipole and a weak inboard dipole: changes in mostly affect 

their difference in phase. Also, notice the reduced levels 

for A=80~ The reason for this is somewhat more subtle: for 

larger , the effective trace Mach number of the load fronts 

has a lower. value; as a result G/~ in (3.17b) is farther 

for 11::800 than for 11::620 from assuming its peaky maximum 

value for a given frequency. Physically, there can be more 

cancellation of acoustic signals for the greater value of 

A=8oo. 

Finally, in fig. 3.8 we consider a case in which the 

trace speed of sources through the fluid is nearly transonic: 

we choose our parameters M,A,wb/U so that·~z takes on the 

relatively small value of -1. Since the imaginary part of 
-the Fresnel integral in (3.17a) is then small (tanA=MIII-A%, 

-or sinA=M), we would expect the latter to behave as one, 

rather than as an Error function. The observed complexity of 

the pattern for 1=180°, 0<~<~/2 clearly shows the increased 

participation of the trailing-edge part of the solution. For 

the Y=135~ 150 0 azimuths, we notice that G/~ is reaching 

its peaky behavior, indicating physically that a preferred 

direction of strong radiation is about to appear normal to 

the load fronts (the transonic Mach plane). 
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Application of leading-edge theory to prediction of noise for 
a potential vortex 

We consider a potential vortex in the still fluid 

oriented at interaction angle A, measured from the leading 

edge (fig. 3.9a). The vortex is located a distance h chords 

below the plane of flight, where it induces the upwash 

pattern in a plane normal to its own axis indicated in fig. 

3.9b, and given by the Biot-Savart law: 

w{t;)= - rib 
2tr 

(3.18), 

where r is the vortex strength, in ft 2 /sec. By Fourier's 

theorem, we may express this upwash as a sum of sinusoidal 

gusts 

= f 
-<10 

Since .;=x a cos A+ysin A, we have tha t 

~/(k) = 

_<10 

from which 
<10 

· f f 
-(I) 

e i kxxa +i kyY 

v/(Xa COS.A+ysinA) =6 (ky-kxtanA) ~~~ 

<10 

cosA 
(3.20), 

dk dk x a:r -ikxX -1 kx tanAy e-,'k: x -ik._Y J . 
y x \~ (k) = dkx e W fkx/coSt\) 

-<10 COSA ( 3 .21 ) • 

If we now recall that bxa=bx-Ut, where x ~g fixed on the 

wing, we see that (3.21) becomes 
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w{xacosA+ysinA} = L 
where we have called 
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~~ t - ik x - i k;( tanA y 
dkx ·• b- \\'0 (kx/COSA) 

(3.22), 

and 

identified it as the magnitude of the convected gust {as seen 

by an observer on the airfoil) in all our work up to this 

point. Notice that .kxUlb=w, the acoustic frequency if 

k x= cJJ/U, the reduced frequency. 

In chapter 2 and the first part of the prese~t chapter 

we have determined the tone emitted. by the passage of a blade 

through a gust, the integrand in (3.22). In order to 

calculate the acoustic field for the passage over the vortex,. 

we simply superpose the soluti~n of the gust problems 

properly weighted by the function wo(kx/cosA). We have then, 

for the transient signal ~~,t), that 

CD 

p (r,t)· J dkx P(r,t;kxl 
.....m 

(3.23). 

We now want to evaluate p( r, t) for the model developed 

in this chapter, that is, for P(r,t;kx) given by (3.16), 

(J.17a,b). We have shown that for the high part of the 

spectrum P may be adequately approximated by the leading-edge 

part of the solution, which we rewrite here for convenience 

with a few changes in notation: 

P(r,t;kxl= - iDa U 
2'lt' 
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~
1/2 

+ ; I tanA I/' _.;..;.M2.,-..,...,.. 
sin 2A" 

(tan A- Msin<Pcosr ) y' 
\ 1 it-ts in<PcosY 

where "!=t-b~/co' the source, or retarted time. 

{ 1 +Msj n<peo s rL n. __ _ 

(3.24) , 

If we now let 1'*" =1'1 ( 1 +Msin epeos '1), substi tute for Pinto 

(3.23) and apply the convolution theorem, we find that 

CD 

'P"(r,or*l = J dor'g{or') f(-or*-t"") 
2~ 

where 

g(~*l = 2~* for o<or*<L tanA- Msinpsiny 
-r-- l+Msin<pcosy 

fL1'* 1 = 

For a potential vortex, we find that 

so that 

w f.!SL..l 
o \:eosA = -ir/b k" e.:1L I k I ~ cosA x 

41TcosA I kx I 

fCor*} = JE:.'rI~b~_ 
21TcosA 

(3.25), 

(3.26a), 

(3.26b). 

(3.27); 

(3.28). 

With f and g so given, the integral in (3.25) may be 

evaluated in closed form. The final result for the acoustic 
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signature which a listener on the ground hears bra/co time 

units after the' blade has passed over the vortex is 

p (:r,'t')=-i Po U 
21T 

1 
ra 

cosp 

, 
1!>1(s;nocosytM) C +Ms i ncpcosy 

rIb 
+ i I tanA I jl_wz ~' 1 I 2 LcoSA 

-/ s;nzA) 

JL..arctan [T/(l+MsincbCOSY)] h arctan [T L 
cosA [h/COSA J - cosA 1 +Msi.n¢cosy -

----------~h~/~cO-S~A~----~~~~~ 

-T;C.2 (l+Hsin¢casY)). 

, % 'I" 
M. (I-M ') 

(1+f.1Si~¢COSY - L (tanA:-f1sinmsiny) \ ~ + (h/cOSA)2 
1 +r4s i n¢cosy -I 

---------------------------------------- --------------
log [Tf (l+Msin¢cos"()]2 + (h/cosA )2 

For the present noncompact situation, there is no 

guarantee that the maximum values of the acoustic signal 

<3.29) will coincide with the field point where its tones 

individually reach their maximum amplitudes. From figs. 

3.3-3.5, we see that the far-field point where each tone had 

its maximum is not a very strong function of frequency; so 

that essentially they all had large amplitudes at 

¢=65°,y='8~', for the cases in figs. 3.3-3.5. Still, the 

phases of the spectral components could conspire to cause a 

great deal of cancellation, and the far-field point of 
, .. .. . 

maximum peak level might be where we least expect it: at some 

point where the tone amplitudes are not particularly high, 
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but where their phases reinforce strongly. 

Such fears and suspicions prompted the calculation of 

part the directivity pattern, shown in fig. 3.10, of the peak 
o signal for the case of M=.8, A=62 , the case corresponding to 

the tones of figs. 3.3-3.5. We used a value of 238 ft~sec 

for the maximum sectional circulation (assumed occurring at 

the 75% span). For M=.8 this choice implies a maximum 

sectional lift Lmax=p~cor=498 Ib/ft, which, if assumed as 

acting at the blade tip and decreasing linearly to zero at 

the hub, gives a value of 3735 Ib of lift for each 15-ft 

blade. 

We find that although the point~6~ ,y=1800 is in fact 

where the signature reaches its maximum level, substantial 

variations exist: for example, the peak level at ~=70° ,y=15~ 

was only 114 dB for h/b=.1, compared to that at ~=65°,y=18~, 

where the signal had the maximum level of 131 dB for the same 

value of blade-vortex separation h. From just looking at the 

patterns in parts (a) and ( e ) , for 

respectively, of figs. 3.3-3.5, one should never have 

expected such a large difference. 

Fig. 3.11a,b shows predicted signatures at the point 

~=65o,y=1800, where the signal was loudest for h/b=.1 (fig. 

3.11b). The value of ra is 1000 ft. The case for h/b=.5 

(fig. 3.11a) had a lower peak value of 126· dB. This is to be 

expected, since dFldt on the blade should then be less • 
. .. 

i . 

The purpose of fig. 3.11c is to show, upon comparison to 

fig. 3.11b, that our closed-form solution (3.29) contains 
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the Doppler-shift information of the blade-slap signature. 

As indicated, the signal in fig. 3.11c was evaluated at a 

point also on the plane parallel to the flight direction (for 

Y=180~, 0< <P<1T/2), 'but a,t a higher elevation angle ¢. so that 

it should be less shifted. And it is. 

Fig. 3.12 shows the spectra of signals corresponding to 

the M, A cases of figs. 3.3-3.8. They were calculated at the 

field position where each tone reached its maximum amplitude. 

As previously noted, for M=0.8, A=62° this point coincided 

with the maximum peak level; the same may not be true of the 

others. The main objective of the figure is to show the 

large differences which exist in the rates of decay of the 

spectra between the h/b=.5 and h/b=.1 cases, and to indicate, 

for one of the cases, the value of frequency above which the 

present noncompact model is valid. We recall from the 

discussion at the end of chapter 2 that effects of 

noncompactness become significant for ~ >.7, for supersonic 

trace spe~ds, and for u- greater than some value less than 

.7 for subsonic trace speeds. For A=62~ M=.8, 

f>819 Hz. This is the section of the spectrum which should 

be predicted using a noncompact theory; as we clearly see, 

for h/b=.1 it contains a substantial amount o~ the 

signature's acoustic energy. 

. .. , . 
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Chapter 4: Quarter-infinite plate with side edge passing 
through a gust 

The acoustic model developed in chapter 3· overestimated 

the strength and phase of acoustic dipoles near the tip of a 

rotating blade. This must be so, since there we simply cut 

off the loading abruptly at the tip, where in reality we know 

it must vanish as :A.-y. Yet, when the ,load fronts due to the 

interaction travel subsonically through the flUid, that is, 

for M/sinA<1, only outboard sections actually radiate sound. 

Because this type of interaction is generally believed to 

occur often in single-rotor helicopters, it is important, 

therefore, that we be able to model the strength of tip 

dipoles more accurately than we did in chapter 3. 

the purpose of the present chapter. 

That is 

The model we develop here is more rudimentary in some 

ways than that worked out earlier: for simplicity we remove 

the trailing edge and allow the wing to have a semi-infinite 

span; also we cannot model blade rotation here. Still, the 

theory we develop below for a quater-infinite plate passing 

through a gust proves itself useful in chapter 5, where 'we 

make a rational simplification which allows us to reintroduce 

the trailing edge and so, to predict acoustic radiation from 

a blade of semi-infinite span with correct side-edge loading 

passing through a gust. 

We start here by stating the boundary-value problem for 

the three-dimensional velocity potential fiel~'¢, due to the 

interaction of a qua~ter-infinite plate with side edge with 

an oblique gust. Again, the oblique gust is that wavenumber 
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component of amplitude Wo of the upwash on the plane of 

flight induced by a vortex convected at angle of obliqueness 

A by a subsoni c f reestream (fig. 4.1). The governing 

equation the linearized convected-wave equation, and 

the boundary conditions are 

(4.1), 

(4.2a), 

~(x,y<o,O,t). = ~(x<O,y,O,t) = 0 (4.2b); 

where we use the symbol ~ for the reduced frequency as we 

did in chapters 2 and 3. Here however, kx=ws/U, s being a 

characteristic length in the problem which at this point we 

leave unspecified. The reason for this ambiguity is that 

although the only characteristic length for now is the 

acoustic wavelength itself, in chapter 5 we'reintroduce the 

trailing edge, and with it, the blade semichord 

useful characteristic length for the model. 

a more 

The three-dimensional pressure field P(x,y,z,t) is also 

required to satisfy (4.1) and (4.2b). In addition, we expect 

it to have the following behavior near the edges 

P~~O+,y>o,O,t) IV l/Ix (4.3a), 
i' 

P(x '>O,y~O+,O, t)"vV'Y (4.3b). 
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As before in chapter 3, we let ~ = ~xp(i(lJ.I t+kx M 2xl (1_M2.·)] j 

notice, however, that the exp( - ik tanA y] x term is not 
--.. 

z=ZI11_M1 included. 'tl e make the changes y= Y 1 IJ-"HT, . 
Similar changes are made for P. The boundary-value 

for <1>* becomes 

with 

; kxtanj\Y 

vW 

We define the transform pair 

tP*(x,Y,Z) = r ~ 
J IlTr 
Ce 

e -; A';Y J dAl e -iAIX 

/2iT. . 

- co 

dx dY 
21T 

C1 

problem 

(4.4), 

(4.5a), 

(4.5b) • 

(4.6a), 

(4.6b)j 

where CI, and C2. denote complex integration contours in the 

AI' A2 planes, respectively. We apply (4.6b) to (4.4). The 

solution for positive Z is 

~ ( Y Z) f. d' ;Al x J d' e-iA~ - zlAt+A~-K% i ':1' '2 ·,0+) (4.7) • '+' * x" = _1\1 e _"2 '+' \A y\ 

~ /2rr 
Cl ~ 
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Since ~(x,Y<O,O)=O, it follows from (4.7) with z=o that 

$ <Al,Ai must be an analytic function of A2 in the upper half A2 

plane. Using standard nomenclature, we therefore say that 

<P=<PEJ From ( 4.7) we may calc~l ate ~ (x, Y, 0), the verti cal 

velocity field from the solution on the plane of the plate: 

The boundary-value problem posed by (4.4), (4.5a,b) 

cannot be solved exactly for subsonic flow by any simple 

analytical procedure known. The assumptions which follow, 

however, allow us to obtain an approximate solution which 

later we show is valid and useful for short acoustic 

wavelengths; effectively, by making them we relax the 

requirement of <P* (x<O, Y, Z) =0. VIe let 

where 

r(x,Y) = 

v(x,Y) = 

(0 for Y<O 

( 2-D UPWASH for Y>O 

[

? for Y<O 

o for Y>O 

(4.9), 

" 

('4.10a), 

(4.1 Ob). 

i ' 

From chapter 2, equation (2.12), the upwash on the plane 

Z=O of the two-dimensional solution turns out to be 
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r(x, Y ,0) = -lWoL :;-;::a 1 e . 1Al+ll (4.11) , . e-ikxtanAY 1 I dA -iAx 

2'!T/1-M2 {l-M jkx (Al-~:Wl ) 

l-W~ + l.I Ci 
where C1 is as C in fig. 2.2. We therefore find that 

(4.12), 

where 

In the solution we are constructing, v(x,Y>O):O as 

stated in (4.10b). It follows, therefore, that v<AuAi must 

be an analytic function of A2 in the lower half A2 plane, and 

so we wri te V(Al'A~ :V&I1.\-2). Substi tuting for r and v in 

(4.9), and factoring the term IAt+A~-Kz , we have that 

- -where we have written q,(£}Ai instead of q,~AuA2) to avoid 

confusion as to the meaning of the symbol@, which refers 

here to the analyticity of q, in -the upper half of the ".:\z 

plane, not the Alplane. 

We recall now that since an exp(iw~j behavior for the 

harmonic time dependence was made, the condition of outward 

wave propagation requires us, to allow w, and so ky and 1.I, to 

'" have a small negative imaginary part. Also, we notice from 

(4.13) that the two radicals IXz-{Rt-Xt?1 and IXz+(K<Atf,2contain 
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the quanti ty IK 2
_ At, a function of A1 which has branch points 

at A1=:l:K. We choose that branch of .,;1f _K2 with vanishing 

argument as IA1I-+co·· along the C1 contour. This choice now 

·implies two new branch cuts in the Al plane, which now is as 

shown in fig. 4.2a. Fig. 4.2b indicates the position of the 

singulari ties in the A2 plane and the corresponding regions of 

e and (±) analyti ci ty. 

If we split in the usual way the first term on the right 

side of (4.13) into a sum of two functions, one (9 and the 

other ~, we obtain a Wiener-Hopf equation of the form E9=~ 

from which w~ may find ~~in a straightforward manner; the 

details parallel those for the leading-edge problem in 

chapter 2 and so will not be repeated here. We find that 

~ 9 lA 2) = -A (A 1 ) -;==1:;:;:;;==:;;:;~ 
+ . I1sxtcnA +' (K2_

A
t) lj1'y'A2- (K2 -All )1/'- I 

.../ II_Wi 

1 
-----.;.---( 4 • 1 4) • 
(A2 - 'kx tanh ) 

v1:'W 
Substituting for A and by means of (4.7) we obtain .. 

~( x, Y, Z) • From the linearized relation between pressure and 

veloci ty potenti al p* =-(poUI s) « ik xl ( 1_M2. )<P*+d<P/d :c) , we may 

also calculate p (x;Y,Z+). The final results are: 
* 

L 
(4.15), ... ,. 
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- i p 2"" 0 U -;:::'=== 
41T 1'_~12 jk W+ll L 
L dA2e-iA2Y - Z IAt+A~-K2 

(A2- kxtanA/II-Mz) 

Asymptotic behavior of solution near the edges 

(4.16) • 

By construction, the integrand of the A2 integral is an 

analytic function of A2 in the upper half A2 plane, and 

consequently p*(x,Y<O,O)=O. However, the integrand of the Al 

integral is not an analytic function of Al in the upper half 

Al plane. As a result, the solution in (4.16) does not 

satisfy the condition of p*(x<O,Y,O)=O. The next step in our 

analysis is to determine how severely the result in (4.16) 

violates this upstream condition and also to find whether it 

has the required behavio~ near the edges. W, therefore set 

Z=O+ and obtain from (4.16), after evaluating the A2 integral 

In order to investigate the solution for small values of 

x, that is, near the leading edge, we look at the large-Al 

asymptotic form for the integrand (at the same time with Y 

not small). Expanding the Fresnellntegral for large 

arg~ment, we have 

= -
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-31Ti 
- (II) 

+ e . 4 I (-i)~(2"+1)! 
Ii n=O 2 n".! IdA e -i Ax -y/)..1-K2 

=yr-I+::"'!'l";"}'- c:~ (~A _ ,I\("-1.i ri/2 (4.18). 

so that the leading term in the behavior near the ·leading 

edge is the two-dimensional leading-edge solution in chapter 

2's equation (2.15), which vanishes for x<O and behaves .as 

11 vi" for x=O+. The part of the solution which does not 

vanish upstream of the plate appears as an asymptotic series 

in inverse powers of Y, the distance from the side edge 

normalized by the characteristic length Sj it also represents 

the three di~ensional effect of the side edge on the loading 

p*(x,Y>O,O). 

To calculate the coefficients of the asymptotic series 

in (4.18), we must evaluate the integral 

-U1x-Y/Ar-K'-

= I fu e ~1~~ 
~ {kxtanA !f'~jn+1 /2 

~ )1\1- ... (/j"':MT -" -'\1 

(4.19) 

for 1>0, X" 0+. By the convolution theorem, we may rewri te 

it as 

where 

. f (x) 
n 

co· 

f d~H, (2) (K I{.-_)'+ y") 

-co 

KY .f" (~)( 4 .20) , 
l(x-t~F+ yz 

!K2-A 21"+1/2 
1 )' 

/ 

(4.21). 

The integrand in f (x) has branch-point singularities at 
" 
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Al=+K. Besides these, we also find that as Al+±~ 

-.-....-!-l-:-___ ~n+l /2. tV r ,x tanA 

tll -M2 -

2kxtanA n+l/2. 1 Ii 

( ;r:w) 0. f -il ,. ; n+ lP. ( 4 .22) , 

so that in addi tion we have a pole of order n+1 at Al = ~ and 

another branch point atAl=-U. We write therefore that 

fnCx) = +~ +K 
fn ex) + fn (x) 

(4.23a), 

In (x) = I~l(x) + I~K(x) 
(4.23b); 

where 

(4.24a), 

(4.24b); 

and 

I~~{X,y) = -i ~ JCO. d~H~2) lKf (x_~p+y2) ;;:::' =KY;:;::~ 
./2 _ co I(x-~) .:+ y2-

f+ll(~ }(4 25 ) ., • a 1 n, 

I~K(x, Y) =-i H JO) dE;H1 2) (KI (x-.;)2+ y2) KY 

l( x-~)2+ y2 
-co 

~ 
For n=O, 1 fn (x) can be calcula ted by deforming the 

contour Cl in fig. 

respectively. 

We then obtain 

4.3 
.* 

to C1 ' or C** 
1 for x)O, x<o, ... 

i . 
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1 2kxtanA _ (-21!iL e- n1X 1 or x 1 . { f >0 (4.26a), 

f~(x) =/2i (/RF )2 i2li. 1, - (1+;) E*[211(-x)] for x<O 

-tx - 3 for x>O 
4li 

-I j d~[l-(l+I) E*(2p!;)] - k [1-(l+i)E*{211(-x)}]+ 

( -xl 
-(1+i r 

I2ii 
for x<O (4.26b). 

We have been able to calcula.te f~l1 (x) analytically for 

n=O ,1 • Unfortunately, the same cannot be done for the more 
+K complicated integrals in fn (x), the contributions to rex) 

n 
from the branch cuts at Al =.:I:K. However, we notice that these 

branch points are weak, and so, their contribution to f(~) 

for large ; should be small in comparison to that from 

With this in mind we make the following 

approximation in (4.25b): 

+l/K 

I~K(X, n= -Iz J d!;HF) (K:({x-~)' + Y") 'KY f~K (~)(4.27), 
I(x-;)z+ y2 

-11K 
where we may now replace f~K(~) by its small-; behavior. 

n 

latter may be calculated by deforming C, to and ** C. 

The 

in 

fig. 4.4 for X>O, x<o, respectively. The integrals which 
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result turn out to be related to the well-known Exponential 

integral, which for small argument (here, Kx=O) has the 

behavior indicated by Bender and orszag,(2S) pp. 251-252. The 

final expressions for f~K(~) are 

n 

in sin [ 

n+l 
i:ll 

n ! 

(4.28), 

where ~ 1s Euler's constant, approximately .577. 

Since we are interested in the small-x and large-Y 
+1l 

behavior of I;<x,Y), we may approximate the Hankel function 

in (4.20) by its form for large argument. Equation (4.25a) 

then becomes 

ikx.; 
e T f2Jl (E;) 

n (4.29) , 

and similarly for I~K(x,y), but with limits of integration 
n +K 

-11K and +1/K. In I; (x, Y) we may also make the 

a pproxima tion exp( iKx ejY) = 1 +iKx tly. 
+K 

Performing the integrations in and I~ , and .. 
substituting the resulting expressions into (4.18), we obtain 

the first two terms in the asymptotic expansion for the 
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loading as we approach the leading edge 

where Asoundstands for the acoustic wavelength and 
co 

o 'T!' e 1 = - (2"~) + 1 - (-~i)1 
. I' '+1) . 1 J.J J 

J = 

e: = - 1 (1!. +v) + 1 - L 
2 2 b 4 

j = 1 

(ji)j 1 
J.j .. (j+2) 

11 7T 1· I-e 1 = 2 (r 2 - 2) - ; - j = 2 
i:ilj +1 1 
j! (j-l) (j+1) 

(_i)j+1 1 
JT(j-l) (j+2) 

co 

e 1 = 1 (1,+ !. - .£) - i_I. 
a 3' 2 32 j=2 

[ K 
(- ) 
1.l 

(4.30); 

(4.31a), 

(4.31b), 

(4.31c), 

(4.31d). 

Figure 4.5a is a plot vs. x/y of the magnitude of the 

first term in square brackets for n=O in the asymptotic 

series (4.30) for the correction to the two-dimensional 

loading near the leading edge j the values of M and A are 0.8 
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and 62. Since we interested here in the case of subsonic 

trace speed of the disturbance, in the plot the quantity ~ 

has been replaced by _i/_~2, as previously discussed. Note 

that the first corrective term is larger on the plate side 

than upstream, as we should expect. Figure 4.5b is a similar 

graph for the second term in square brackets appearing in 

(4.30), corresponding to the n=1 term in the asymptotic. As 

indicated, this term is to be multiplied by the ratio of the 

acoustic wavelength to the distance from the side edge. 

Next we investigate the behavior of (4.17) near the side 

edge Y=O+. Expanding the Fresnel integral 

arguments we have that as Y approaches 0+ 

p*(x, Y>O ,0) = (i -1) powo ..;:;.U __ _ 

CD 

n=O 

We now call 

2'IT;r::MT j~ + ~ 
l-M 

n x = ~le (kx tanA i () I· d -i~lX 
IA1 - \l ;r:w-

Cl 

for small 

(4.33), 

and recall (4.22) in order to study the contributions from 

the points ~l=+~' It follows that 

+\1 

I~ (x ) = -:-i-' --:---:-. 
(

2 kxtanA.\ n +1/2 

If=W ) J 
-iAix . ". 

. dAle ,P\l-~l) n( Al';~) 11+1/2 

C1 

(4.34) ; 
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"'+u which indicates that In (x)O):O. For x<O we deform C, to C'(t* 

in fig. 4.3 and find that 

fc+* 
1 

(4.35) • 

... +K 
In order to calculate ~ (x) for x)O and X<O, we deform 

C, to C, '* and C, ** in figure 4.4, res pecti vely. The results 

I are 

- LX - -1 Y''It' - c. -, - - ~rr 
"'I+K, ) _ (1 ') L (!:xt(lnA)n-~fo' 61+ 1) e-

iKx 
for x>O 

n . 11-r-t.! k-ll 2 x 1-
(4.36a), 

In(X) = - (1+1)/'IT kxtanA IX (n+l/2) (.-x)3/z (4.36b). 
... +K , _ ()n-d2 e ;KX for x <0 

If:MT K+U 
_ + ... +K 

Substi tuting for I.Jl( x) and r (x) back into (4.32), we n n 
obtain the behavior of ~ near the side edge (the n:O term): 

[(1 -1') eiux_ (l+'WK- lKx] _1---("~ 
1 ,_ e C-XP/2 

K+u 
(1- i) jK ei Kx 1 

K-u x 3Jz forx>O 

for x<O 

j. 

(4.37), 
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which has the required behavior for Y=O+ for x)O. For both 
3/2 

x<O and x)O we see that the solution behaves as 1 II x I , where 

x, recall, is normalized by the acoustic wavelength. 

In summary, in this chapter we have obtained an 

approximate solution for the pressure field surrounding a 

quarter-infinite plate . passing at high speed through an 

oblique gust. The problem was motivated by the need for a 

better model for the strength of acoustic dipoles near the. 

tip of a blade passing over a vortex when the interaction 

angle is such that the resulting disturbance travels 

subsonically through the still fluid; that developed in' 

chapter 3 overestimated the strength of these tip acoustic 

dipoles. 

We arrived at an expression for the loading on the plate 

(eqn. (4.17» which we later went on to show satisfied the 

required edge conditions. Also, we showed that away from the 

side edge this result approached asymptotically that obtained 

earlier in chapter 2 for the two-dimensional loading, which 

vanishes upstream and has the 1/)X behavior on the plate; it 

turned out that this was by far the dominant term in the 

calculated asymptotic series. We conclude then that the 

result in (A.1S), from which the loading was calculated by 

setting Z=O, is a good approximation for the pressure field 

for high-reduced frequencies. 

Normally, the next step at this point would have been to .. 
translate the solution from the present reference frame fixed 

on the plate to one fixed on the ground or still fluid. 



• 

• 

- 69·-

Unfortunately, the small amount by which we violate the 

upstream boundary condition of P(x<O,y>O,O):O then becomes 

unfairly magnified by the forward enhancement effect of 

traveling sou~ces, essentially the same 
-2 

( 1 +Mxa / r a) . factor 

present in eqn (3.14) for that other ground-frame solution. 

The only course left for us now seems to be to extract 

rationally from (4.17) an approximate representation for the 

loading which keeps the physical features we have worked so 

hard to get - the edge behaviors, but that at the same time 

vanishes upstream. This task we undertake in the first part 

of chapter? and obtain a relatively simple expression which 

allows us to reintroduce the trailing edge into the model. 

Since so much of the analysis in chapter 5 depends on the 

loading expression in (4.17), we rederive the latter next by 

an independent method, a method based on the idea of source 

cancellations and first used by Landahl,lO)to solve unsteady 

transonic flow problems. 

Appendix: Calculation of loading by source cancellations 

We seek a load function JS1(x,y,0) which when added to 
(1) 

p* (x, y, 0), the two-dimensi onal loadi ng .f rom the 1 eading-edge 

problem given in eqn. (2.15), we will have Pi1\pls):o for Y<O. 

The superscript s stands for "side-edge". The boundary-value 
(s ) 

problem for 'p* is 

... . . 
(4.38), 
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with 

(5)( . (1) 
p* x,Y<O,O) = - p* (x,Y,O) 

We define the transform pair 

and apply (4.40a) to (4.38) and (4.39a,b). 

boundary-value problem for. is) is 

with 

(10) .. (5) 

(4.39a) , 

(4.3 9b) , 

(4.40a), 

(4. 40b) , 

The resul ting 

(4.41), 

(4.42a), 

( 4 • 42b ) • 

Landahl ·has shown that p* ~1~Y>0) may be obtained by the 

integral 
i . 

;is)(Al,Y>O,O) = -1 
. 'It" [ 

"(1) dn p* (Al,-n,O) 

o 
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(d 
Substituting for P* , which from eqn. (2.14) we see is (with 

the exp [-ik xtan\. y/~] term included) 
-(1) ·k Y P* (Al, Y ,0+) = -£.d:!c. ~ 1 1 e -1 A tam\ 

I 2" 1\ ~Mj ~~M% + II IA,-ll Ir=H2 

into (4.43) we obtain that for Y>O, 

1 1 1 -ikxtanA Y e _ 
Ii -t42 

(4.44) , 

so that for Y>O 

_(1) + ~(s) = ( ·_1) . U e-ikxtanA Y 1 
p* t'* _ 1 _ Po!!o.. . -:._ 

J1L;:;--;;or ~ ~ 
E[Y (kxtanA _/Ki_>..Z)] 

Y,"1T Y 1-{v1..:'J~ •. U l'Al-U y"J:M2 1 

/ l-~. 

from which we finally find that 

_ CD 

e- iA1X E [Y (kxtanA _ lKi-Af )] 
r"J-MT 

... 
i . 

(4.45) , 

( 4 • 46 ) • 
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Chapter 5: Aeroacoustic model for a blade of semi-infinite 
span with improved side-edge loading 

In chapter 2 we saw that the effect of the passage of a 

two-dimensional airfoil through a gust is essentially one of 

diffraction. That is, the pressure fi~ld and loading for the 

interaction wi th a' single gust of wavenumber w b/U is given by 

a continuum of wavenumber solutions - recall eqn. (2.14) for 

the leading-edge effect, for example. 

For the three-dimensional wing with side edge, a similar 

diffraction of the gust spanwise wavenumber kxtanA must occur 

in the y di recti on. Wi th Z=O+, the :\2 integr al in eqn. 

(4.16) gives the side-edge diffraction loading predicted in 

our model. We observe that besides the pole at 

A2 =kx tan W! 1_M2., the integrand also has a branch point at 

A2=/K2_:\f· For l.arge I, the pole term gives the predicted 

spanwise loading the same simple sinusoidal 

exp (-ikx tanAI/ v'I-"'f1'2) behavior as that of the infinite-span 

wing - the spanwise variation of the input gust upwash; it is 

the only term present in the I transform of the cut-off 

loading model later developed in this chapter (see eqn. 

( 5 .21 ) below) • The branch point singulari ty at A2 =/Kz - At, 

therefore, is responsible for the departure of the loading in 

(4.16) (for Z=O) from its two-dimensional form for arbitrary 

Y. We may say that this is the part of the :\2 integrand 

which provides the spanwise diffraction effect for the 

loading: it allows the loading to behave in -'magni tude as IY 
at the side edge and, as we find from the analysis below, 

causes it to have a phase variation near the side very 
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different from that assumed in chapter 3 and in the cut-off 

model of this chapter. Notice that (4.16) also indicates 

that the predicted leading- and ·side-edge diffractions are 

not independent (even for Z=O). If they were, the integrand 

would be a product of two functions: one depending on Al 

alone; and the other on A2. Rather, we observe a coupling. 

The analysis her.e begins with (4.17). Rationally, we 

make a high-frequency and large interaction angle A 

approximation which essentially eliminates the coupling 

between the leading- and side-edge effects. This allows us 

to obtain an. approximate, but closed-form, lifting-surface 

theory for the passage of a quarter-infinite plate through an 

oblique gust. The resulting aerodynamic model predicts the 

strength and phase of tip dipoles more accurately than that 

of chapter 3. Yet, it is still simple enough to allow us to 

calculate the acoustic field in closed form. 

As mentioned above, in this chapter we also develop a 

cut-off aeroacoustic model analogous to that of chapter 3: we 

look at the acoustic field due to a loading pattern given by 

the two-dimensional loading from chapter 2 for y)O, and by 0 

for y<O. 

Approximate lifting-surface theory 

In chapter 4 we developed an. approximate expression for 

the loading on a quarter-infinite plate passing through a ... 
; . 

gust. This result was derived first by the Wiener-Hopf 

technique and given in. eqn. (4.17), and then again by the 



• 

1 

- 74 -

method of source cancellations and presented in (4.46). For 

convenience we write it once more. 

co 

- (. 1) U -i kxtanAYJ -iAx p* - 1- POWO ~ 11 OOM2 ~ e E (Y 

21l'1f=MT jh- + IA-U 
l-M" U 

-co 

The integral in this solution may be re-expressed by 

means of the convolution theorem as 

Ci-1) r~ -i1J~ 
(5.2), e g(x-~) 

y'~ 
0 

where 

r g(x} e- nx E [Y (kxtanA _ /K2-A2)] = dA 
I21T /j":MT 

(5.3). 
-co 

We now split the integral in (5.3) into three segments, 

as indicated by (5.4); and then for each segment interchange 

orders of integration with the Fresnel integrals. The 

resulting set of integrals is given in (5.5). 
-K K 00 

ffi g(xl' J + J + 
f 

- co -K K 

fY(~_tManA -K] K 
I2-rr g(x) = YI-t'l- I 

it d' e-.iAX 
dt e 1\ 

o 121l't -K 

J 
Y kxtanA 

/j":MT 

y [kxtan -K] 
/1-M2 

dt eit 

127rt 

+ 

(5.4). 
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!
~ d)..-i).x + r ~~:~A + 1~ 

. Y kxtanA 

II-M2 

. Y kxtanA 

J
II-f.fT . 

+ dte1t 

o 12iTt 

dt eit 

121ft 

-Q) 

Y kxtanA + ;Q) it 

J 
Ij:MT dt e 

Y kxtanA 

Il_M2 

12iTt 

These m~y be further manipulated into a new set of 

terms, (5.6), where we number each term (1) through (5) for 

ease of reference in the discussion which follows: 

(1) 21T.s(X) E [v (kxtanA _ K)] + 
r'1-MZ 

(21 -2 sin l(X 
[E [V kxtanA 1 - E r Y (kxtanA - 9 J x 

. If=MT L ..'i'"=W . 
(.3 ). 2m5(x) Y k x tanA + i Q) I Il-M 2. dt eit 

Y k~tanA !2iTt 
+ 

If:MZ" 

(4) y kxtanA 

f;r:w dt .it 

Y( kxtanA }1Z1ft 
. ~ -K) 

K2._ Ci _ kxtanA ) 2 

Y If=MT dAe- iAX 

_y K2._ (i _ kxtanA) 2 . 

Y l"'i"=W 

+ 

i . 

+ 
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(5) 
y kytanA + i CD 

J
~ 

- dt eit 

Y k t · A 12~t 
y an . 

If=MT (5.6). 

Since E(CD)=(1+i)/2, we observe that for large Y terms 

(2)-(5) vanish; we are left with (1) only. 

For Y=O+, integrals (3) and (5) may be deformed in the 

complex t plane from the positive real axis to the positive 

imaginary axis (and the contribution from the arc at infinity 

is zero). We then obtain, for terms (3) and (5) respectively 

(5.7a), 

• 2iTO (x) (5.7b), 

ForY .... O+, the inside integral in (5.7a) becomes 2r6 (x); 

so that the first-order contribution of (3) + (5) to (5.6) 

near the side edge is zero. Higher-order contributions 

vanish as well. 

In order to obtain the behavior of integral (4) for 

Y -+- 0+, we integrate by parts as follows: 

I
F'- (; -~ )' 

1 im(4) '" fi /j- it 
Y~+ = :;; c e . , ~ 
~V" dAe-1 IV. 

t = Y kxtam 

~ 

(5.8a), 
t = Y (kxtanA -K) 

.;r:Mz 
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= {2i kx tanAYJ kx ta nA Y 
~7r e ~ {1-11zP; z 

2 sin Kx 
x (5.8b), 

which may be interpreted as the small-Y behavior of 

.tim(4}= 
Y-to{)+ 

2sin Kx 
x E [Y kx tanA] 

;r-MT 
(5.9). 

We conclude that near the side edge integral (4) cancels 

the first term of (2); so that the behavior of the sum of all 

terms in (5.9) for Y+O+ is 

I2rr g( x}=' {21TO( x) + 2 Si~ t<x} E [ Y( kx tanA -K)~ 
If:MT 

(5.10a), 

from which 

I2iT g( x-~) ~t2 1T lS(X-~) + 2si n [K( X-g}]} E [ Y( kxtanA }~ ( ) 
x- ~ -K 5.10b. 

y'f:M'%" 

We note now.that near the leading edge (x+ 0), the 

second term in curly brackets in (5.10b) behaves essentially 

as 2K f or ~ =0. In the convolution (5 .• 2), it contri butes a 

term proportional to the constant K/tf1lr, which besides being 

small for large interaction angles A (h.d > >K), does not 

contain the 1 I IX singulari ty for .the loading near x=O+, and 

so may be neglected in favor of the 21TO(X-~) term in (5.1 Ob). 
i . 

In summary, we find that for both near the side edge, 

and away from it, we may make the approximation 
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rz:rr g(x-;} = 27T15(x-~) E r y (kx tanA -K) ]. . l ~rr:;:p 
Evaluating the convolution (5.2), we finally obtain ·the 

approximate lifting-surface result for a quarter-infinite 

plate passing through a gust a large interaction angle A 

(subsonic trace speed of disturbanoes): 

U -i~-i kxytanA 1 
p~~ e '1MT -

Ir-M'" J h- ,Ii -M IX 
l-M2 + 11 

E [y (kx tanA K)] 
Ii"=W (5.11a), 

whi ch, since E(a i:' 0) 1!rr ra e ia indi ca tes tha t 

-i KY 11 2 

e IV (kX tanA -K) 
11
_-

2 
(5.11b). 

-t4 

We find that the Y variation of the loading phase near 

the side is given by exp(-iKY) , rather than by 

exp(-ikX tanAY/;r:;w ), as in chapter 3 and in the cut-off 

model developed later in the present chapter. Since the rate 

of decay of the dipole strength near the side is given by the 
. IJ2 

constant (kxtanA-K), which is »K for. large A, we notice that 

the spanwise variation of dipole phase is small throughout 

the region we call the "tip region" (fig. 5.1). For large A, 

therefore, the phase of the spanwise loading may be regarded 

as constant for Y:O+. 
i . 

The uncoupling of the load into the product of a 

function of x and one of Y allows us now to cancel the 
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solution in the wake by the procedure used in chapter 2 for 

the trailing-edge problem. As we would expect at this pOint, 

the expression for the pressure distribution on the 

semi-infinite span blade witn side edge turns out to be 

E [ Y(kx tanA _ K)] f 1 _ 1 
If=MZ" t IX 12 

e-ikytanA Y-i~x 
y'f:'MT 

[ 1 - (1 + i) E* [2P(2-X)~!r 
(5.12). 

which becomes the two-dimensional loading far from the side 

edge as it should. 

Acoustic field for a semi-infinite span blade with side edge 
passing through an oblique gust 

As we noted above, the simplified loading expression 

allows us to solve a new trailing edge problem; the details 

of this analysis are no different from those in chapter 2 and 

so will be omitted here. We now define a pressure 
-

p (x, Y, Z, t) =p*( x, Y, Z, t) exp (iwt+i~ M 2X/ ( 1-M2 ) ) , which is a 

solution of 

(5.13), 

subject to 

(5.14), 
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the load we have calculated above for a semi-infinite blade 

passing through a gust. The solution procedure of this 

boundary-value problem is similar to that in chapter' 3 for 

the rectangular rotating blade. Only one new integral comes 

up which we did not have before: the Fourier transform of a 

Fresnel integral; 
<= 

f dY ei(Al-kx tanA) 
o I'f:M'Z" 

y r J E lY (kx tan A -K) 

~ 
(5.15), 

which exists.for ImU2 »Im(kx tanA/11-X2
) and may be readily 

calculated either by integration by parts, or by 

interchanging orders of integration. Thus, we obtain that it 

is equal to 

(5.16), 

At this point we allow r a= /xi +y z+? -+a) ,and obtain the 

far-field pressure by the method of stationary phase. The 

procedure is completely analogous to that presented in detail 

in chapter 3. The final result for the acoustic signal 

p( ra,y , q" t) perceived by an observer on the ground is 

j M iw (t-bra/ca) 
tanA - /j"":MT e 1+t1sincpcosy .. Dq (y,cp) 

n.-r ra ( 1 +Ms i ncpcosy 'f 
"'''x 

(5.17), 
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where the "IY" subscript on D i:;( y, cp) stands for fi-load 
y 

behavior at the side edge. D 1.7 (y, </» was found to be 
y 

o (y,</» = 
·/y 

aosq, 1 
_M_ (S' n¢cosy+M ) 

If'=MT 1 +Ms i ncpcosy 

1 

]

2 j 1/2' 

(_~.in¢~OZY + ~1 J 
l+Msln¢cosy ~ 

1 
/Msinpsiny 
\ 1 +Ms i ncj>cosy -.. tanA 1 1- ( 1 -11'- }1J2 s; n(~ s ; ny) 

l+Hsinq,cosy 

.[ 
) 

(
s;n<pcOSY+M )1]] ~ 
.1+Msin~COSY) J 

(5.18), 

the three-dimensional function which describes the acoustic 

directivity pattern in terms of the spherical angles y,</> in 

fig. 5.2. 

Notice that the blade's tip is located.at the origin, 

so that its semi-infinite span extend~ out from 1=0. This is 

in contrast to the system we had in chapter 3, where the 

blade tip was rightfully "outboard." Still, here as in 

chapter 3 the interaction angle A is such that the trace 

velocity of the unsteady blade loading is in the positive 1 

direction. 
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Acoustic field for a semi-infinite blade with square cut-off 
loading 

Here we write down the solution of the boundary-value 

problem for p (x,Y,Z): 
* 

... 
P* + P* + P* + K2 p* = 0 

xx YY ZZ 

with 

... 

(5.19), 

p*(x,Y,O) ~ P*2-D (x,Y,O) for Y> 0 (5.20a), 

P* (x, Y,O) = 0 for Y<O 

where ~ (x,Y,O) is given in eqn. (3.4). 
2-D 

(5.20b); 

In the solution process for the present problem, we find 

that the spanwise Y transform of the loading reduces to the 

evaluation of the simple integral 

CD 

; 
(5.21), 

which converges for ImC\ 2 »Im(kxtant\~ ). Multiplied by 

(1+i)/2, this result for the cut-off solution replaces that 

in (5.16) for the spanwise spectrum of the blade loading with 

improved side-edge behavior. 

The acoustic far field for a semi-infin,it'e span wing 

with square cut-off.of the loading at the side edge is 
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. (t~' 
lW <4-'-

P "'9
0

""0 U r1(1-~12)1/'+ _1_ e 1+Msin</lcosy Dc.o(r,q,) 
2 -""""':"T'r~~-)2 -'5.22 )-r-'IT,Ip.fZ"j k IE" r (l+N+in~cos 

- H 1 ~~ 2 + 11 "x a 

where the "c. 0." subscript in DC.OC.y, cp) denotes "cut off. If 

It.o~y, CP) was found to be 

o (y.$l = cos / 1 
c.o. ~ J1....... (sincpco~y+M ) + i tan2A-

(/l-Mi 1+M Sln$Cosy 'J 
i /2 (tan2f1. - M2}1/'+. 

~ l-Mi 
( 2. r~ + M (sindlcosy+ r~ 
(tan 11.- l-M2. 11~ l+Msincpcosy 

E*r_~k_M\ (-ijtan t 
- M% M (siMCOSY + r~ 

\ 1 L l-Mi -Il-W' 1 +Msi n¢cosy 

1 

(Msin~siny _ tan A) 
l+Msincpcosy 

Predicted directivity patterns for D(:Y and D 
C.o. 

(5.23). -

The examples we show next of D!y, and Dc.o. focus on the 

acoustic effect of satisfying the side-edge loading 

condition. We do not, therefore, investigate here again the 

effect of the trailing edge on radiation (see fig. 3.8), 

because this is a chordwise effect. Nor do we look for . ' 
changes due to variations of Mach number - although most 

compressibility effects cannot be extricated from those of 
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frequency, we saw in chapter 3 that changes only in the Mach 

number affect the forward enhancement of the signal; so that 

we may choose to regard M as really a chordwise, or 

flight-direction parameter. 

Here we investigate the acoustic effect of reduced 

frequency kx' which affects the phase and magnitude of the 

loading near the side; and of A , which besides also affecting 

the side-edge loading, controls the trace speed U/tanA of 

disturbances along the span and the absolute speed U/sinA of 

load fronts through the still fluid for a given M. If we 

change A and keep M constant, we may compare the degree of 

cancellation of signals radiated by the semi-infinite blade 

span for the blade with improved side-edge loading, to that 

for the blade with cut-off loading. 

So that we may also compare D.;f y, q,) to those for the 

rotating wing of chapter 3, we have plotted the quantity 

0* (Y,4» = 
IY 

,yM v'l-iF j tanA - -11-
21iT y'k~ Il-I·F· 

in figs. 5.3-5.5; and for a sim il ar· reason, the quanti ty 

* D (y, cp) C.o. 

0* C • o. (Y, 4» . = t·l( 1 - 11 2 
) 0 c. o. (Y' 4> ) 

2;'; YKx . 

in figs. 5.6-5.8. As in chapter 3, every figure shows the. 
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above functions in five planes, each corresponding to a fixed 

value of the azimuth 1 • 

From figs. 5.3 and 5.6 for the correct side-edge loaded 

blade arid the blade with cut-off loading, respectiyely, we 

note that ~ is generally greater than 
c;o .. 

shown in parts (a)-(c) of the figures • 

fig. 5.3e, however, takes 

0* (Y=150o,O<4><1T12) in fig. 
c.o. 

on values 

5.6e. This 

0* on the planes /j 

0* (y =1 50~ O<4><1T12) in 
.;y. 
larger than those for 

perhaps unexpected 

peak in o*ry<r=15C1'A>=7g'·) can be attributed to a local 

reinforcement of acoustic signals - recall that the spanwise 

variation of the phase of tip dipoles is different for the 

models from which 0*· and ~c.o~ere calculated. 
IY 

I As we noted earlier, we would expect the differences in 

the directivity patterns between the two models to increase 

as A increases, because even though the region near the tip 

where dipole strengths differ substantially is reduced in 

extent, the differences in spanwise variation of the phase of 

tip dipoles are then larger. This is in fact the 'case, as we 

may see from figs. 5.4 and 5.7: the differences in radiation 

patterns betw~en cut-off and improved side-edge loadings are 

greater for A=80o than for A=62~ ~otice also that for both 

types of loading the overall radiation· for is 

substantially reduced. As in chapter 3, we attribute this 

reduct10n to the fact that the effective Mach number of load 

fronts M/sinA far from the side edg.e is lower for A=800 than 
o • . 

for A=62; so that in both loading cases there is then more 

cancellation in the acoustic field radiated by the 
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semi-infinite span of the blade. We conclude that the 

differences due to changes in M/sinA in spanwise loading 

phase between the correct and cut-off models may cause 

significant differences in the predicted acoustic fields. 

By varying A while keeping wb/U and M constant, we 

* * observed differences between Dry and D c.o. essentially due to 

the different way each of the two acoustic models reacted to 

a change in the absolute Mach number M/sinA of load fronts 

far from the side edge. But the tip-loading expressions 

derived earlier indicate that a change in K (by changing 

wb/U, with M/sinA constant), also affects the differences in 

spanwise variation of tip-loading phase between the two 

models, and should, therefore, also affect their acoustic 

* fields. Figs." 5.5 and 5~8 show D;y and D* , respectively, 
"ly c.o. 

for wb/U=10 while keeping the same M and A values of figs." 

5.4 and 5.6. They indicate that the differences between ~I:Y 

* and Dc.oJor wb/U=10 are not much greater than those for 

wb/U=4; so that pure frequency effects on spanwise phase 

differences between the two models have a lesser acoustic 

effect than does a change in M/sinA. 

Finally, we observe from (5.17~ and (5.22) that the 

acoustic models developed in this chapter share with that of 

chapter 3 the 1/kx behavior for large kx• This means that 

they all predict acoustic signals which are qualitatively 

similar for small times. We note, however, that for ~=o 

(large time~) the models developed in this chapter for a wing 

of semi-infinite span are not well behaved. The physical 
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reason. for the large-time breakdown of the theories is that 

an infinitely long time 1s required for pulses radiated near 

y=~ to reach the observer, and so, to contribute to the 

signature which he hears. This issue of convergence. in time 

did not arise in chapter 3 because the blade there was of 

finite span. 
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Chapter 6: Summary and Conclusions 

We have developed here three basic aeroacousti~ models 

for noncompact blade-gust interaction in subsonic flow. We 

now briefly summarize our results and draw some conclusions. 

Infinite-span airfoil passing through a gust 

In chapter 2 we found that frequency and compressibility 

effects combine into a single parameter which sets the 

criterion for chordwise noncompactness. We observed that an 

airfoil responds to an input single-wavelength gust 

essentially as an aerodynamically diffracting surface - the 

solution has a continuous wavenumber spectrum. The 

closed-form expression we have derived for the acoustic field 

in a laboratory frame indicates that tone radiation patterns 

from compact, and noncompact airfoil loadings may differ 

dramatically. The complicated lobing present in the 

noncompact case is caused by the reinforcement and 

cancellation of signals from a chordwise distribution of 

dipoles with large differences in phase. The unsteady 

loading for an airfoil which is acoustically compact may be 

represented by a simple dipole, which in turn radiates a 

simple dipole acoustic field. 

We verified the expected lack of acoustic field for 

interaction angle-Mach number combinations which give load 

fronts a propagation speed less than that of sound. 
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Rotating blade of finite span passing through a gust 

In chapter 3 we used chapter 2's two-dimensional 

solution in a superposition scheme to model radiation from a 

rotating blade of finite span. We found that the acoustic 

field could be calculated only for cases with subsonic 

disturbances; the impossibility of extending t~e analysis to 

include supersonic trace speeds 1s 

"solution procedure, which is based 

an artifact of the 
(10) 

on Landahl's edge 

independence concept. We studied Mach number, frequency, and 

interaction-~ngle effects on the radiation pattern of a 

single tone. The results were presented on the ground, or in 

the acoustic frame of reference. We refer the reader to the 

discussion at the end of that chapter for detailed 

conclusions. We found that for a given set of physical 

parameters describing the wing-gust interaction, i e. M, A , 

and gust amplitude wo ' the noncompact theory predicts that 

the tone amplitude" at every field point decays algebraically 

as 1/kx ' where kx is the reduced frequency. This is in 

contrast to the high-frequency behavior of the tone amplitude 

predicted by compact theori es (se.e, e. g. ref. 3); these 

predict that for given values of M, A, w at high frequencies 
o 

the tone amplitude "levels off" asymptotically to a constant 

value. 

We applied the leading-edge part of the theory to 

predict the transient signal emmitted by a finite-span blade 

passing over a potential vortex. We found tha~ the level of 
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the signature was a sensitive function of spatial position. 

We attributed this sensitivity of the total signal to 

cancellation and reinforcement effects of the tones making it 

up - anothe~ consequence of having a noncom pact loadi~g. 

Semi-infinite rectangular blade with improved side-edge 
loading 

Although we realized in chapter 3 that the model 

developed there overestimated the strength of dipoles near 

the blade tip, we had no way of knowing how badly we were 

modelling the spanwise variation of the loading phase. In 

chapter 4 we calculate an approximate solution for the 

three-dimensional pressure field surrounding a corner plate 

passing through a gust. We find that for large interaction 

angles the spanwise component o~ tip-loading phase is nearly 

constant. The actual variation of the tip-loading phase 

implies a different pattern of reinforcement and cancellation 

for signals in the far field. 

In chapter 5 we simplify further the aerodynamic result 

of chapter 4 . , we then use the new result to calculate the 

acoustic field for a semi-infinite span rectangular blade, 

with improved side-edge loading, passing through a gust. We 

also calculate the acoustic field for a similar blade, but 

with loading given by the two-dimensional response of chapter 

2 abruptly cut off at the tip. This cut off loading is 

analogous to that used in chapter 3 for a finite blade in 
. . 

that the spanwise loading contains only the spanwise 

wavenumber of the i~put gust. We find that the directivity 
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patterns differ mostly when A, the interaction angle, is 

large. The difference can be explained by noting that the 

two models then differ greatly in the-way they predict the 

phase of tip dipoles. 

We observed that the three-dimensional models developed 

in chapter 5 share with that of chapter 3 the 11k decay of 
x 

the tone amplitude as a function of high-reduced frequency. 

As discussed above in chapter 3's summary, this algebraic 

falloff indicates a fundamental difference in the way 

radiation patterns are predicted by noncompact and compact 

models; for ~iven values of M, A, and Wo the latter predict 

that at high-reduced frequencies the amplitude of a tone 

reaches a constant value. 

Conclusions 

The signal from a blade which radiates as a noncompact 

acoustic source probably has a maximum peak value which is 

smaller than that for a similar signal from 'a blade which 

radiates as a compact source. This·conclusion is based on 

comparison of the high-frequency behavior of the amplitude of 

tones which make up the acoustic ~ignal as predicted by 
(~) 

compact theories developed elsewhere with that predicted by 

the noncompact theories developed here. Unfortunately, 

because the predicted signals in ref. 4 were calculated for 

supersonic trace speeds only, direct comparison of those 

results to those computed here is not possible. 

As noted above in the summaries of chapter 3 and 5, for 
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given 

level 

values of M, A, wo' we expect a rapid decrease of the 

of high-frequency components for a noncompact 

situation. For given values of M, A, wo' compact theories 

constant value at predict a spectrum which 

high-reduced frequencies, 

reaches 

thus 

a 

suggesting 

reinforcement could result in a louder signal. 

that tone 
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(c) 
Fig. 1.1 (a) Relative positions of blades and vortices for a 
single-rotor helicopter; (b) Stages of a blade-vortex 
interaction; (c) unsteady blade force and its time 
derivative. 
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Fig. 2.1 The passage of an infinite-span w1nj through an 
oblique gust. 
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Fig. 2.3 Deformed contour C*, for x)O • 
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Fig. 2.4 Deformed contour C**, for x<2. 
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Fig. 2.5 Magnitude of two-dimensional acoustic directivity, 
D(e), in the airfoil frame of reference. 
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Fig. 3.1a,b Typical acoustic Mach cone for a source 
travelling supersonically through the stB:i" fl uid; (b) shows 
top view and propagation directions given by eqns. (3.15), 
<3.16). 
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Fig. 3.2 Spherical coordinate system defining the position 
of a listener in the g~ound reference frame. 
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r=45° 

.24 

./6 

(d) 

.25 

.20 

.15 

Fig. 3.3a-e Plot of the magnitude of three-dimensional 
acoustic directivity D3_6-y,CP) for kx:2, M=.8, A=62~ L/b:1S. 
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o .06 

7=90 . 

(d) 

Fig. 3.4a-e Plot of the magnitude of t~e three-dimensional 
acoustic directivity D3_6Y,<P) for kx=4, M:.8, A=6~, L/b:1S. 
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Fig. 3.5a-e Plot of the magnituae of the three-dimensional 
acoustic directivity D3_6 y ,<P) for kx=10, M=.8,A .. =6~, L/b=15. 
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.12 7'=4~ .08 

.12 

~.12 . 
r=13~ I 

. (d) 

Fig. 3.6a-e Plot of the magnitude of the thr~~-dimensional 
acoustic directi vi ty D3- 0"(, <P) for kx=4, M=. 7, '11.=62~ L/b=15 • 
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(e) 
Fig. 3.7a-e Plot of the magnitude of the t~~ee-dimens1onal 
acoustic directivity D3_6Y,~) for kx=4, M=.8, A=8~, L/b=15. 
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7'= 150' 
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Fig. 3.8a-e Plot of the magnitude of the three-dimensional 
a co us tic d ire c t i v i t Y D 3-~ y , 4» for k x = 6, )1=,. 8, 1\ = 5 3 Q J LI b = 1 5 • 
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Fig. 3.9a,b Coordinate systems used to model the 
blade-vortex interaction of figJ.1a,b. 
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Fig. 3.10 Part of the directivity pattern of the peak signal 
as predicted by eqn. (3.29). ; .. 
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Fig. 3.11a-c Predicted acoustic signatures (from closed-form 
result (3.29)) for ra=1000 ft, M=.8, /{=62~ L/b=15, at (a) 
y=1800,<p=65° with h/b=.5; (b) y=1800,<p=6:;O' with h/b=.1; (c) 
y =180~<P =10° wi th h/b=.1. Reference pressure is .0002 
microbar. 
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Fig. 3.12 Predicted spectra of signatures at positions 
indicated for h/b=.5 and h/b=.1. 
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Fig. 4.1 The passage of a quarter-infinite flat-plate wing 
through an oblique gust. 
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for I.A.I>K on ~I 

Fig. 4 .2a, b Regions of 8 and 8 analytici ty· in the complex 
A1 ,A 2 planes. Integration contours C l , C2 are indicated. 
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* Fig. 4.3 Deformed contours C" 
respectively. 

Fig. 4.4 Deformed contours· C~, 
respectively. 
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for X)O, x<o, 

for X)O, x<o, 
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Fig. 4.5a,b Plots of first, and second term~ in brackets in 
.eqn. (4.30). 
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Fig. S.la,b Spanwise loading predicted by (S.11a,b): 
magni tude and phase for 11.2 )11. l' in the ground reference 
frame. 
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Fig. 5.2 Spherical coordinate system defining the position 
of a listener in the ground reference frame. 
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Fig. S.3a-e Plot of the magnitude of the three-dimensional 
acoustic directivity D;Y< y,~) for kx=4, M='.lf, A=62°. 
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Fig. 5.4a-e Plot of the magnitude of thei·"three-dimensional 
acoustic directivity Diiy,41) for kx=4, H=.8, 1\=80°. 



• 

... 
-

• 

r=90° 

. I 

- 120 -

.05 
'()4 

.03 

~ 

(b) 
0 

'}'=135 

CP=45° 

Cd) 
'l = 150

0 

Ce) 

.12 

.08 

.04 

/ 

Fig. S.Sa-e Plot of the magnitude of the three-dimensional 
acoustic d~recti vi ty Diy ( Y, <P) for kx = 1 0, 14=.8, A =62°. 
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Fig. 5.6a-e Plot of the magnitude of the three-dimensional 
a co us tic d i r-e c t i v i t Y 0 * (Y, CP) for k x = 4, H = • 8, II. = 6 2°. 
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Fig. 5.7a-e Plot of the magnitude of th~ three-dimensional 
a co U s tic d ire c t i vi t y D* (y, q,) for k x = 4, M = • 8, 11= 8 0°. c.o . . 
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Fig. 5.8a-e Plot of the magni tude of the'· three-dimensional 
acoustic directivity Dc.J.Y, <P) for kx=10, M=.8, A=62~ 
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