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ABSTRACT
A nonparametric identification technique for the identification of close
coupled dynamic systems with arhitrary memoryless nonlinearities has been
presented. The method utilizes noisy recorded data (acceleration, velocity
and displacement) to identify the restoring forces in the system. The masses
in the system are assumed to be known (or fairly well estimated from the

design drawings).

The restoring forces are expanded in a series of orthogonal polynomials and
the coefficients of these polynomial expansions are obtained by using least
square fit methods. In most mechanical and structural systems, however, the
restoring forces can be expressed as a sum of two functions — one related to
only the displacement of the system, the other related only to its velocity.
The restoring force in this situation is herein referred to as separable, A
particularly simple and computationally efficient method has been proposed for

dealing with separable restoring forces.

The technique imposes no restrictions on the type of external forcing
functions used to test the system. The identified results are found to be
relatively insensitive to measurement noise. An analysis of the effects of

measurement noise on the quality of the estimates is given.

Several examples have been provided for the identification of close coupled
linear and nonlinear dynamic systems. The computations have been shown to be
relatively quick (when compared say to the Wiener Identification method) and
the core storage required relatively small, making the method perhaps suitable

for onboard identification of large space structures.



Nonparametric Identification of a Class of Nonlinear

Close-Coupled Dynamic Systems
7. INTRODUCTION

The increased importance given to the accurate prediction of the response of
~structures in various loading environments, has led, in recent years, to a
growing interest in the improvement of methodélogies for proper structural
modelling. Several investigators have worked in the area of identification of
structural systems so as to extract, from various types of response data,

improved characterizations of the systems involved [1-6].

The identification problem can be viewed in terms of a class of inputs I, a
class of models M and an error criterion, E, It usually takes the following
form: Given the system response (at various locations in a structure) to the
class of inputs I, identify a member of the class of models M, which minimizes
some error criterion E. When sufficient a priori information about the
mathematical structure of the class M to which a particular‘physical system
belongs is available, it is often possible to restrict the identification
procedure to the determination of the various parameter values, which then
characterize the system. Such a procedure is referred to as parametric
identification., On the other hand, as often happens for complex structural
systems, the a priori information on M may not be sufficient, thus requiring
the identification procedure to be "expanded" to a search in function space.
This constitutes nonparémetric identification and leads to the "best"
functional representation of the system. The error criterion E usually takes

the form of a norm of the difference between the system performance and the

model prediction.



Though a large amount of research has been done in the areas of both
parametric and nonparametric identification [7-16], present day techniques for
both are, however, deficient when dealing with large structural systems.
Parametric methods usually require either the solution of matrix Ricatti
equations or the employment of nonlinear programming techniques. Often, when
the number of unknowns in the dynamic system exceeds fifty or so these methods
in addition to being very computationally expensive may also yield inaccurate
estimates. Nonparametric methods which employ the Volterra series or the
Weiner Kernel approach are also expensive computationally and often do not
provide adequate characterizations of the types of nonlinearities met with in
mechanical and structural systems [7-19]. For instance, a "cubic spring" type
nonlinearity would require the determination of third order kernels whose
computation in practice becomes prohibitively expensive [20]. In additionm,
the Weiner approach uses white noise inputs. It is often extremely difficult,
if not impossible, to generate large enough inputs of this nature so as to
drive large (and often massive) dynamic systems in their nonlinear range of
response. Applications of such techniques to large, nonlinear, multi-degrees

of freedom systems are few, if any.

In this paper we present a relatively simple nonparametric approach for the
identification of a class of multi~degrees-of-freedom, close-coupled,
nonlinear dynamic systems (Figure 1). The method has the advantage of being
computationally efficient and simple to implement on analog or digital
machines. Unlike the Weiner Kernel approach, it is not restricted to "white
noise'" type of inputs, and can be used with almost any type of test input.
The choice of the class of models, M, has been governed by its wide usage in

problems involving the dynamic response of: (1) full scale building



structures, (2) layered soil masses [21], (3) mechanical equipment [22,23],

and (4) machine components and subsystems in, for instance, the nuclear

industry [ 24,25,26 1.

The technique has been illustrated through application to linear and nonlinear
systems, and it has been shown that even under noisy measurement conditions,
the method yields good results. An error analysis is also presented to

indicate the sensitivity of the method to measurement noise.

IT, SYSTEM MODEL

The model consists of a lumped mass system with masses M,, £ = 1,..,N which

2',

are connected to one another by the unknown memoryless nonlinear elements

K, =1, 2,,.,,N as shown. It is assumed that the acceleration of the base

n?
A
of the structure Z(t), and the relative accelerations (with respect to the
base) Rz(t), 2=1, 2,..,N of the various masses are obtained from noisy

measurements., The excitation forces fz(t), £ =1,2,...N are assumed to be

available and the masses M_, & = 1, 2..,N, to be either known or fairly well

2’

estimated from design drawings.

Further, for the close coupled system shown (Figure 1) it is reasonable to

assume that the restoring force K, depends upon the relative displacement and

2

the relative velocity between the masses MQ and Mo, Thus we have

1 .

Ko () = Ky (7o (6), 75(£))s £ = 1,2,..0,N (1



where,

1l

v (£) = x,(t) - xp 1 (B), &= 1,2,...,N

and

>

Xy ()

The dot indicates differentiation with respect to time.

A
Using noisy measurements of the response xz(t), 2=1,2,...N, an estimate K

2

of the restoring force KR is required so that the weighted error norm defined

by
e = |[k(&y,») - K@, (2)
is minimized with, G, a suitable weighting matrix and K = {KR}°

The equations of motion governing the system are then given by:

Mlxl + Kl[yl,yl]v= - Mlz(t) + fl(t)
,'MZXZ +‘K2[y2,y2] - Kl[yl,yll = - Myz(t) + £,(t)
o . _ . - .. (3
M)+ Ry [yg,y,] - Ky i lyg 5¥, 41 = MEE) + £,(¢) )

MeEy T Ryl vy! - Kyo1® YNe1?Yn-1 Tn-1) = — MyE(e) + £(0)-



Equation (3), represents a set of n equations with n unknown restoring forces

Ko, 2= 1,2,...,8, The acceleration of each mass and that of the base, as

Q’
well as the external exciting forces are assumed to be measurable. The
objective of the report is to identify the unknown restoring forces from a

measured record of time history of the system. We present below two

alternative methods for estimating these restoring forces.
Method I:

Adding the top % equations (& = 1,2,...,N) together at a time, and

rearranging, we have the N equations,

KQ[y2’§2] = Wz(t)’ 2 =1,2,...,N (4)
where
L
w(® = D TGO + 5O+ £, =128 (5)
i=1

Since wQFt) contains quantities which are either known or available from

measurements, the unknown restoring forces KQ(yz,§2) can be estimated.
Method II:
Equation (3) can be rearranged in the following form:

vyl = @ = (4a)
Ko lygsy,] = & (£) L =1,2,...,N



where

By (£) = M [Z(t) + X(e)] + £ (£) + Ky, (v 159y 4)

with

>

In (4a), the restoring force Kz(yz’§z) depends on the acceleration of MR and
that of the base, the external force, and the restoring force on the previous
mass K ( g

p-1 Y a-17 Ye-1 1

namely Kl(yl,§l), can be estimated first; the remaining restoring forces can

; A
). Noting that Ko = (0, the restoring force on Mass M

be obtained by sequentially using equation (4a) for & = 2,...,N,

III. IDENTIFICATION PROCEDURE

We particularize the identification approach depending on the characteristics
of the system under consideration. We consider first, systems with general
memoryless restoring forces where the restoring forces Kl can be expressed as
general analytic functions of Y and §Q’ and, then, systems with separable
restoring forces where the restoring forces KQ y £ =1,2,..,N can be expressed
as a sum of two functions, the first being only dependent on Vg and second

only on ;Q.



Whereas the first restoring force situation is more general, the
identification procedure in this case requires a larger computing effort. A
priori information about the system, especially the foreknowledge that the
restoring forces are separable, can be used effectively in reducing the

computing effort,

Due to the similarity of the basic concepts between Method I and II described
in the previous section, we will devote all our subsequent discussions to
Method I unless otherwise stated. The procedure for Method II is similar with

slight modifications.

A. General Memoryless Restoring Force:

Assuming that the measurements ihﬂt), 2 =1,2,....,N and z(t) are

corrupted by Gaussian white noise, we have the measurements

N

ﬁg(t) = §2(t) + ng(t), and
(6)

g(t) = z(t) + m(t) .

Noisy measurements of the various quanitities are denoted by hats above them.

The noise processes may be assumed to have the following characteristics:



E[ni(tl) nj(tZ)] = Oi(tl)éK(i—j)ﬁD(tl—tz), i,j =1,2,...,N

E[ni(t) m(tz)] =0 i=1,2,...,N, and (7)

E[m(tl)m(tz)] = cS.z.(tl)éD(t1 - t2)

The symbol E[. ] stands for the expected value, §_ stands for the Dirac-delta

D

function and GK for the kroneker delta.

The relative displacements xz(t3 and velocities ig(t) may be assumed to be

either obtained from measurements or from successive integrations of the

measured acceleration signals. Thus

I

ﬁg(t) xz(t) + pz(t), and

(8)

o (£) = x,(£) + q,(£),

where prt) and qgft), 9= 1,2,...,N, are noise processes. The measurement

equation (4) then transforms to

Koly, §Q] = fi, (1) é.wz(t) + v (£), &= 1,2,...,8 ‘ (9)
where
%
vy () = Z -, [m(e) + 0 (0] . (10)
i=1



The function KQ[yR’ §Q] can now be expanded in a double series in terms of two
sets of functions {d)n} and {‘Pn}. Assuming that each set is orthonormal with

respect to the weighting functions g1 and g,, over suitably defined intervals

Cl and 02, we have

J I
. Q/ * _
Kylygs Y41 = D Zaij%(yg)wj(yz), 2 =1,2,...,8 (11)
7=0 1=0

The coefficients a%, are to be determined so that the error norm
, 1]

e, = K Iy, (), v, (0] - v“vSL(t)||gl,g2

is minimized, say in the least square sense., This yields the estimate

SRR I IR CAECATAGTRCATAL A (12)

C2 Cl

A

where the measurements 3\'2 and );JL are used to replace the exact values y and
y .
2

The response quantities that need to be measured for estimating a specific

Kl[y'z,irz], 1<o<N are then ii(t), i=1,2,...,8+1, and 2(t).



B. Separable Memoryless Restoring Force:
If it is assumed that

Ky s 3}%] = Ryly, 1 + DR[};SL], 2 =1,2...,N (13-A)
with
Q[O] = 0, L =1,2,...,N (13-B)
then by (4) we have

R, [y,] + Dl[%] =w (8, 2=1,2,...,N (14)
Again expanding Rg[yz] and D2[§2] in orthonormal sets {¢n} and {wn} we get

N
R

Rylygl = ) bbg(ry), and
=0
(15)
ND
L] QI L]
Dy[Tpl » Y~ dghg ()
=0

Estimates of bi and dﬁ can be similarly obtained by minimizing €y in the least

square sense.

10



In the case where equation (13) is applicable, a simpler alternative approach
may be followed. As ﬁﬁ(t), % =1,2,...,N is measured for te(0,T), the
quantities §2(t) and §£(t) can be obtained through integration, if xg(t) and

ig(t) are not actually measured. Thus times tk Qg(O,T) can be found such that
b

~ ~

v, (t =03 k=1,2,...,k 2= 1,2,...,N . (16)
y/Q/( k,,/Qa) Q/ * ’
For each time t which satisfies equation (16) the value of y (t. ) can be
k,% L k,4
obtained. As the times t will, because of measurement noise, be slightly

k,%
different from those at which §2 equals zero, DQ[§£(tk)] though close to zero

may not exactly equal it. 1In fact if'tk g = ty g * Ty o where t; o is such
b 3 b b

that y9(tk,2) = 0 then using (13),

. o~ . dDz dy,
Dolyglty )l =8 (6 )= = Tk, 8 (n
L dyg dtk 2

Thus

Rolyy (ty )1 = Wty g) - eDz(tk,Q). (18)
The coefficients bg, s = 0,1,2,...NR, can now be estimated by minimizing
2

k2 NR

A 'un) ~ N 9
= & - » . 2= (19)

e = D B0y ) 905 ) Z bl 5y (e | 5 = L2,
k=1 s=0

11



. £ . . .
Estimates of b, then require the solution of the normal equations:

R

N
U . A
by Ss,j = Tj (20)
s=1
where
)
g _ Z . N ~ ~ ~ A A
Ty = g1 (gt ) Foley )¢50yt o)),
k=1
(21)
k2
/Ql _ Z ~ ~ ~ A
SS,j - 81(}’2(121(,2’)) d)s[yQ,(tk,,Q,)] (b:][y«Q,(tk,/Q,)] ’
k=1

A

and the quantities yQﬂtk 2), k=l,2...,k2’have been replaced by their estimates
b

y (£ ) 4 y.. . By a proper choice of {¢ } (e.g. Chebyshev polynomials) and by
£ k,% 1k » n
a proper selection of the points y¥* (actually achieved in practice by

T2k

interpolation), the matrix S i may often be made a diagonal matrix, so that
. s ,

bY % c.T | (22-A)
where Cj can be thought of as a normalization constant.

As kQ becomes large, and the measurement noise tends to zero, arbitrarily

precise approximations to Rg[yx] will be obtained by considering a variety of

excitation inputs.



~ A

Similarly, the set of points tp RE(O’T) can be found so that yQ(t 2 =0,
’ Ps

p=1,2,.000yp 3 &= 1,2,...,N, yielding a normal set of equations similar to

L
(20) and (21), with g, replaced by By Vg replaced by §2 and the functions

EaY ~

{¢n(y£)} replaced by {¢n(§£)}. Again, by a proper choice of‘{wn} and a proper

. . % . .
selection of points y’k, the estimate of d% can be expressed in the form
p J

:15? = E T’,L (22-B)

where B is a normalization constant.
J

The method outlined above, is schematically illustrated (for noise free data)
in Figure 2. We begin with the time histories wz(t), yx(t) and yg(t), g =

1,2,...4,N. The various times t 1,2,..k£, and t 1,2,..p£, at

k,,Q’k= p, % p=

which §2(t) and yz(t) are respectively zero and determined. The values of
y%(t ) and y%(t ) corresponding to these times are obtained (Figure 2a).
% Ck, 2 Ep, 0

ek
The corresponding restoring forces Rz[y*(tk 2)] and D [y (t )] are found as
3

L P,

] and wg[tp 2] respectively. The values of R, and D 6 are then plotted
E

Yolte,n % g

versus y, and §£ respectively (Figure 2b).

We mentioned in passing that often sufficient a priori information on the
nature of some of the restoring forces may be available, i.e. some of them may
be known to be of the separable type. Noting that for purposes of identifi-

cation, each K  is uncoupled from the others (equation 4), a combination of

L
the methods presented above can be used - the general case for all the Kz's

which have general restoring forces and the separable case for all the KQ'S

which have separable restoring forces.

13



C. Forced Vibration Testing of Systems

In the absence of a base motion %(t), the identification of Kzfyz,ygj

can be performed without the need of explicitly knowing (or

measuring) the forces fi(t) if we specify that

0 1<i< &, and
£,(0) = (23)
' arbitrary i> 2

For noise free data, various arbitrary functions f (t), i=f, can be used so
1

that arbitrarily accurate approximations of K) can be found.

IV. ERROR ANALYSIS

A A ~ . . .
The estimates a%_, b% and d% obtained by the simple regression analysis
ij i i

technique outlined in the previous sections differ from the exact values

primarily because of the presence of measurement noise. The influence of

noise may be thought of as affecting: (1) the measured value of wx(t) and (2)

the estimates of yz(t) and §£(t)'

To acquire an appreciation of the effect of measurement noise on the
estimates, we shall consider here the case where the restoring force is
separable., Error analysis of equation (12) for the general restoring force

case, besides being more complex, will not, it appears, yield any additional

physical insight into the effect of measurement noise on the estimates.

14



N A

Let the discrete time points t . be utilized where the times tp R'are chosen
p, »
A A

so that, say, yg(tp 2) =0, p= 1,2...,p£, 2= 1,2,..,N.

I1f we assume that the noise in measuring, % (t ) and Z (¢t ),
P, L py4

p= l,2,...,p£; 2 =1,2,....,N, has zero mean, is uncorrelated and has a

constant variance, then by equation (10),

E[Vgl(tp 2)] =0, ¥t e (0,T), 2L =1,2,,..,N,
and
(24)
AN N 2 ] A N N ‘
= - -~ = 2 o0 e
E[vz(tp’g)vz(tq,m)] OQSK(p qQ), ¥ tp,l’ tp,l’ tq’g £(0,T) 2=1,2, N,
where
'3 2 2
2 27 2 2 7 :z:‘ ,
oy = o (tp’g') E Mi + o, (tp’z) JMi (25)
i=1 i=1

Furthermore, if xg(t) and él(t)yQ =1,2,...,N+1 are measured, then we have the

following relations:

= w ¥ = + 26~ )
yg(tp’g) yz(tp,z) + Pz(tp,z) Doy (tp’z) yz(tppg) az(tp’g) (26-A)
and

A A

. . ~ ~ é . ~ ~
Veltp, o) = ety ) ¥ 9ty o)~ dgpq (B 00 =3ty o) + Bele, )

ith = t) = 0.
with (8 = ap¢

15



The random variables ¢, and BQ are assumed uncorrelated, such that for any two

2

times tp,l and tq,ﬁg (o,T),

E[a% (tp,ﬁ)] = E[Bl (tp 2)] =0, 4 =1,2,...,N,

s

~ A 2
E[az (tp’z)oc2 (tq 2)] 2 ox O (p-¢), £ =1,2,...,N-1,

b

~ A

E[uN (tp’N)aN (tq’N)]

(26-B)

2
oL Sk(p—q)

it
I

~ ~ 2
E[BR (tp’z)Bz (tq,l)] 20 GK (p-q), 2 1,2,...,N-1, and

A

BB, (t OB (t_ 01 =03 8 (p-q)

t
p,N q,N
The variances of the random errors in measuring x, (¢ ) and x, (t 2),
) ) P, 2 " p,
£ =1,2,...,N are assumed to be Ox and Oi respectively. The measurements of

N A

t dz (t

z ( p,ﬂ) and z ( P
2
z

. , . 2
2) are also corrupted with noise whose variances are o, and
b

O.. The various variances could be functions of time.

Let tp,l be such that y, (tp’z) =0, P = l,2,...pz. 27

A

Define tp 0 by the relation

9

o
It
ot
+
~

o (28)

where Tp,2 is the error in finding tp;Q’

A
We next expand y, (tp 2) in a Taylor series giving,
s

16



vo (6 ) =y, (£ )+ 7T +
L p, A T8 T TpLR p,2 dtp,% 2 dt2

+ higher order terms . (29)

Using equation (24) and noting relations (26-A) and (23) we get

~ ~ dy/Q, A (30)
M (tp,l) =0® Tp,2 dt o % (tp,ﬁ)
P,
where the higher order terms in Tp g have been neglected. Thus if
b4
Vg (tp’z) # 0 then
Tooma (t ) Iy (e ) Ra a, (£ ). (31)
P> 2 P, 2 pP,% ps2 7L P,

For the oscillating system considered, it will generally be unlikely that

§ (t ) and y,(t_ ,) be both zero, except when the oscillator is executing
2> "pk L2p,4

very small amplitude motions, preparatory to coming to rest. 1If, however,

§ (t ) = 0, then the next higher term in (29) can be used to‘estimate T .
2"p,e P4

A

Then w (tp Q) can be expanded as
.

2 2 7 2
A~ ~ dw a a, (t Y dw
”~ _ ) 2 p,2 L p,2 ')
W, (tp,z) =w, (tp,Q) + ap,z% (Lp,z) dtp ) + dt2 (32)

+ higher order terms + Vﬁ(tp Q)
>

and 3\(t ) as
P,
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A a ) (X,Q, (tp,ﬂ‘) .

Ty (Ep,p) =Yg (B g) Fay g0y (£ ) 5y (£, ) % 5 Yo ltp,)
+ higher order terms + B2 (tp’g) . (33)
Neglecting the higher order terms, equation (33) gives,
A ~ _ ~ (34)
Yo (tp,z) Yo (tp,g) +, (tp,z)
where,
2 2
v (E ) = a o (E ) 3; (t ) + ap,Q,OLQ, (tP,QI) .57. (t )
L "t p,L P22 “Tp,8 7L Tp,R 2 L YTp,4
- (35)
Using equation (22-B), we have
Py
d. ~ E, T, » E, t e Y, t
N i3 Z i "8 ( p.l) q}J (g ¢ paz)) (36)
p=1

Taking the expected value on both sides of equation (36) we get,

Py
AQ/. 5 4/\ ~ ~ S ]
E[dj] ~ ZEJ. Elw, (tp,Q) wj (v, (tp,z)” (37)
p=1
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The function @1 can be expanded about ;Q(tp ) to yield, after some
o~ s

manipulation,

Py

.

Py
+Z‘E ElaZ(t. )] A . + E[B2(t )] B
T Bt AN S NI A AU S
p:

2 2 .
+ E[QR(tp,l)] E[Bk(tp,l)] Gp,% + higher order moment terms (38)
where
2 ~ 2 ~
a dy, d™y ay .,
ACt o) _ Tpuk Y T o ar o 3 (39)
% 5 ] YV gt T Y T by 2wy ’
2 d dy
2 2
.2
[
B(t ,2) 5 vy d.z s (40)
4
t
P52
and,
2~
1 (2 . 3%,
G = :
p,L 4 ap’Q' v _';""Jz' E
dy
S -
P,
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Similarly it can be shown that

ky
/\Q/ ~
k=1
ky
+ E c. {Efa®(t, )1 A! , + E[B2(t, ,)IB!
i 2,00 A 2t 00 1B g
k=1
2
+ E[ui(tk,l)] E[Bz(tk,g)]Gé’g + higher order moment terms. (41)
with
2~
, 1 d q’j (42)
A =—lw
k,2 2 2 2 ’
dyg
Y,
2 ~ 2~ v
b do . d7 ¢, dé,
' - k,/Q/ ve 02 ~ o o
B ) 5 Yoo 3y, + vy Wy E;El + %y ¢J + 2y, 7?1 R (43)
% 0
and,
2~
G _ 1 b2 . 9 ¢J
k. 4 )k, V8 N ’
b,
where
b 4 -1 for v(t, ,) # 0, and 5 = g o)
Y%, 2 » 3 1 ’

ALY j
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Had the signals xQ/and x, been obtained by integrating EQ; the errors ay and
B% would have been correlated at various times leading to additional terms in

equation (40) involving the expected value of the products of o (tp 2) and
b

r .
By ( p,,Q)
Equations (38) to (43) indicate the effect of the measurement noise on the
. . L L
expected value of the coefficients bj and dj' We ohserve that the
estimates are biased, the bias being independent of the noise in the
measurement of iz(t) and ngt). The bias is however dependent on the noise in

the measurement of xg(t), iz(t), x£+l(t) and x, . (t). If the noise in these

41

measurements goes to zero, (i.e., a,'s and Bz's equal zero) all the terms

L
except the first on the right hand side of equations (38) and (41) go to zero
so that the estimates become unbiased, Furthermore, if say, we use the
orthonormal polynomials {wj} or {¢j} , greater biases would, in general, be
obtained for the coefficient estimates 5? and gﬁ’with increasing j. This is
because the higher order polynomials oscillate more rapidly thus leading to

larger values of the ddﬁ/diz, dzwj/d§§, etc., which in turn, by equations (39)

and (41), increase the bias.

Further, to illustrate the effect of noise in the measurement of the

acceleration terms, let us assume that ugft), Bgft), 2= 1,2,...,N, are zero.

We have then

Pe
var [d"] = Y v, (c, ) LT)J. (v, (t, 0)) (44)
p=1
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which for uncorrelated noise gives

Py
"% :E : 2 ~) e
Var [dj] = E[vz (tp,ﬂ)]wj (yl(tp,l)) . (45)
p=1

But we have by equation (25)

2
E[vz] = O.Z-Z M2 + o2 ZM (46)
2 X i Z i

i=1 i=1
which indicates that the variance of the estimate increases with % as well as
with increasing magnitudes of the masses Mi’ i=1,2,...,2. Since Mg >0, ¥,
it follows that

2 2

5
2
S ) Tt

i=1 i=1

Thus from equation (43), thé variance is more sensitive to noise in the
measurement of the base motion Z(t), than it is to noise in §2(t), L =

1,2,...,N.
V. APPLICATIONS

In this section, a few select applications of the identification technique
discussed earlier are presented. The responses of the systems considered are
simulated by integrating the dynamic equations. Noisy measurement records are
obtained by adding zero mean Gaussian white noise (ZMGWN) to the integrated

results.
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Both the separable and the general restoring force situations have been
illustrated. Method I and II (Section II) are applicable to both categories.
For the separable restoring force case, the linear system (described below) is
identified by Method I using calculations in single precision. On the other
hand, the nonlinear systems have been identified by both methods in both
single precision and double precision. A comparison of the results of these
methods is reported. The general restoring force case is investigated using

only computations in single precision.

Motivated by the simplicity of the method, it was attempted to investigate
its worthwhileness in a simulated real time environment using a small computer
with a maximum core storage of 64KB for computations in single precision. For
double precision work, a bigger core was used. A sector of forty seconds of
data in each case was analyzed. The digitization rate for the data was taken
to be 0.04 sec, a rate which would allow the multiplexing of several channels
using standardly available analog-to-digital convectors. The model used is a

four degree-of-freedom system as shown in Fig. 3.

A, Separable Restoring Force Case.

Three different systems are considered in this category, a linear system

and two nonlinear systems.

a) Linear System
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Consider the system shown in figure 3 with the restoring forces given by

Ko [y,y] = Rylyl + Dyly], £ = 1,2,3,4.

If the system is linear, then
R Iyl = by

and, 2 =1,2,3,4. (47)

i
o.
'.—J
<
*

The various parameters of the system are shown in Table 1. The system is

subjected to the swept~sine wave test excitation,

fz(t) = aRSin[w(t)]t i=1,2,3,4 (48)

where the time dependent frequency w(t) changes linearly on the time interval,

(0,T) according to the relation,

w(t) = o, *+o,t (49)
where,
n,o
0, = -1—,l:l' , ~(50)
%200

nl and ny are scaling constants, and Ty is a normalizing time constant.

Figure 4 shows a segment of the excitation signal (described in Table 1) at
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each of the four mass levels for 0 = 2 rad/sec, n = 5, n = 40,

wo 4 (ZW/TO) = b3/ = 10, and T = 40 secs. The time scale is shown

m
173
normalized with respect to T,, A short portion of the system response to
this excitation is indicated in Figure 5. Forty seconds of data (approxi-
mately 15 times the fundamental period of the system) are used for the

identification. By digitizing this data at equispaced time increments At =

0.04, the §2ft), digitized time histories éz(t) and Xl(t) are obtained.

To study the effect of measurement noise on the identification results, these
digitized.results are corrupted by the addition of zero mean uncorrelated
gaussian noise. The same noise-to-signal ratio (N/S) is used for each of the
measurements §£, iz, X 4, £=1,2,3,4. The identification results are obtained
for three different values of the N/S ratio, namely, 0.001, 0.01 and 0.02,
Whereas the first number represents data of exceptionally good quality, the
second typically represents the situation pertinent to data available from
accelerograpﬁs, and, the third to what may be referred to as "poor" quality

data.

. . . . . 2 ~
From these 'noisy' measurements, the corresponding time histories y (t), y (t)
£ L

and'Gth) are calculated for t = iAt, i=0,1,2,..., 1000.
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The functions Rg and D2 are expanded in a series of Chebychev polynomials {Tn}

so that,
NR NR
- L _ L s
RQ/[Y'Q,] ~ Z ESTS(Y,Q,) - Z bSyQ/ s
s=0 s=0
and . (51)
ND ND
* - Q/ . _ Q/.q
q=0 q=0

The values of NR and N, are chosen to be 4 and 3 respectively. The

N

coefficient estimates bi and dﬁ are obtained (by performing a least square

fit) by solving the normal equations (Equations (20) and (21)) [27]. To

improve the quality of the fit [27], the y(t; o) and y(tp o) arrays are
b H

normalized so that they lie in the interval (-1,1). Using the weighting
. 2,-1/2 . . >4 P
functions g]fn) = go(n) = (1-n) y the coefficients b and gq_are found.

For ease of comparison with the exact Rgfs and Dz's, these coefficients are

converted to bs and dq corresponding to the polynomial expansions (Equation

51).

Figure 6 shows the results of the identification giving the estimates of the
intermass stiffness (R)) and the intermass damping (D,) as functions of
relative displacement and velocity respectively. The least square polynomial
fits are calculated at the various points ;(t ) and §(t ) for various

k, 2 k,2

noise-to-~signal ratios. The exact stiffness and damping are also plotted at
~

the same values of y and § for comparison. As seen from the figure, the
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estimates gradually worsen with increasing values of N/S. The estimated

coefficients of the polynomials are shown in Table 2(a) and (b) for each R

2
andiDR, %= 1,2,3,4, We observe that, in each case, the estimated
coefficients for all except the linear term are small.

A measure of the accuracy of the identified stiffness and damping can be
obtained by defining the root mean square errors (rms) as
.f A 5 1/2
[R, = Ry17dy
€ = : % % L , and
Yo Rk
P 298
(52)
A g . 1/2
Sy -1,
rI,Q, - ’

f Djzzdg’z

where the integrations are carried out over the complete response range of 43
and &z respectively. The rms errors are indicated for each Rﬂ'and D2 and each

N/S ratio in Tables 2(a) and 2(b).

It is interesting to note that the rms error does not change substantially

/ when the N/S ratio changes from 0.001 to 0.01. This is because of the fact
that for such low values of the N/S ratio the digitization process as well as
the single precision accuracy of the computations (which leads to round off)
actually dominates the accuracy of the results. We note from the tables that,

in accordance with our discussion in Section IV, the rms error increases with

increasing 'i' values.

27



A A
A comparison of the predicted response using R, and D, and the exact response

i) L
for an.excitation different from the test excitation, and comprising a base
acceleration, z(t), is indicated in Figure 7(a). This base acceleration is
actually a sample of zero mean Gaussian White Noise (ZMGWN) with a standard
deviation (o) of unity. The stiffness and damping estimates corresponding to
the N/S = 0.02 case are used. We observe that the predicted responses, using

the identification results obtained even under very noisy test conditions

(N/S = 0.02), and the exact responses are reasonably close to each other.

The solid lines in Figure 7(b) show the response of the system when mass Ml is
subjected to an impulsive (delta-function) force of ten units. The predicted
response of the system, using the identification results obtained for N/S =

0.02 (Tables 2a and 2b), is indicated by the dashed lines. Again, the

predicted response matches well with the exact response.

b) Nonlinear Systems

Two nonlinear systems have been considered. They represent nonlinearities
which are often encountered in structural and mechanical systems. The first

system has nonlinear stiffness and linear damping of the form,

Ly 2y3
Rolygl = b7y #2379

and 08 =1,2,3,4

T
Dolygl = dyyy

The system description is given in Table 3. This system is identified by

method I using single precision computations. We note that whereas Rl, RZ’ R3
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represent 'hardening' nonlinearities, R, represents a 'softening'
nonlinearity. The test signal used is identical to that used for the linear
system described in Table 1. Using N = 4 and N = 3, gs and éq were
obtained. The estimated functions Ry and D, are shown, as before, in Figure
8. Tables 4a and 4b give the estimates for the coefficients of the polynomial
series representation of Ry and Dy. ‘The coefficients are obtained via the
Chebychev polynomial expansion as mentioned earlier. The rms values for
different N/S ratios are also indicated. It is seen that the identification

procedure leads to fairly good estimates even when using noisy (N/S = 1/50)

test data.

Figure 9(a) shows a comparison between the predicted response of the system
(using the identification results of Tables 4(a) and 4(b)) and the exact
response of the system when the system is subjected to twice the amplitude of
the ZMGWN base acceleration used before (Figure 7(a)). Identification results
corresponding to the N/S ratio of 0.02 were used. Figure 9(b) shows the
predicted and actual system response to an impulsive force of ten units

applied to mass M.

Secondly, a system with nonlinear stiffness and nonlinear damping is chosen
and identified by both method I and method II. The system used is the one

with

2 3
Rolygl = byyy +bgyy s
and 2= 1,2,3,4

Dolygl = djy, +dqyy,
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Table 5 shows the actual parameters of the system. Identification of the

coefficients bz and dz

is done using Np = Ny = 3 in both methods with the
~8 ~q

test signal defined in Table 1. Since the records of the system are obtained
through the integration of the dynamic equation of the system. The accuracy
of computation may be one of the factors which affect the estimated

functions. An additional double precision calculation, besides a usual single
precision calculation, is used in both methods. The estimated functions R

L

and DQ done by method I in single precision calculation for different N/S
ratios as well as the exact functions are plotted in Figure 10. The response
of the actual system and the identified model done by method I and single
precision calculation (using results of N/S = .02) subjected to the base
acceleration of Figure 7(a) and the same impulsive loading used before are
reported in Figure 11(a) and 11(b). Figures (12-14) shows the estimated
functions R2 and DQ done by method I and method II in single precision and
double precision calculations with various N/S ratios as well as the exact
functions. The figures indicate that the accuracy of the functions estimated
by both methods is essentially the same. The double precision calculations
while requiring more computational effort and core space yield marginal
improvements in the estimates. The results of the estimated functions with

the RMS errors are shown in Tables 6(a) and 6(b). The RMS errors for method

I1 are seen to be slightly higher than those for method I.

B. The Generalized Restoring Force Case.

Expressing the restoring forces in terms of the orthogonal Chebychev

polynominals, we have
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n m

i=1 j=1

The coefficients aij are obtained as shown in equation (12) by minimizing

the error norm in the least square approach.

Two systems, both nonlinear, have been considered. To compare the general
restoring force approach with the separable case, the nonlinear system of
Table 3 is identified assuming no a priori knowledge regarding the
separability of the restoring force.

A Chebychev polynomial expansion using 64 coefficients (n = m = 8) is
employed. The variables ;2 and 92 are normalized to lie between -1 and +1,
and 600 data points are used for the least square fit. The identified
coefficients are then converted to monomial bases for ease of comparison with
Table 3. Table 7 shows the identification results for different N/S ratios
and the RMS errors involved. It is observed that the identified stiffness and
damping estimates obtained by this method are in general superior to those
obtained using the separable restoring force method. This is attributed not
only to the increased number of data points that are used to perform the fit
here, but also to the inaccuracies in the separable case that accompany the

estimation of the times at which the velocities and displacements become zero.
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The second system considered is described by the relation

. 3 -2 . '03 Y . 2
Kolygsyyl = agyy + boyy + coyeyy + dgyy +egyg + £oy0yp

£ =1,2,...,N

The coefficients a, bz, Cos dz, e fg’ 2 =1,..,4, are shown together with
the identified results for various N/S ratios in Table 8. The identification
is done using 600 data points. The RMS errors are also presented. Perhaps a
better way of comparing the identification results with the exact system is to
compare ﬁg[yz, &2] and Kz[yz, §2]. This is done in Figures 15-17 for various
N/S ratios. It should be noted that even though some of the identified
coefficients differ substantially from those of the actual system, in the
regime of response considered, the RMS errors are small. It is these RMS
errors which should be, in reality, considered when assessing the quality of

the identified results.
VI. »CONCLUSIONS AND DISCUSSION

A relatively simple nonparametric method for the identification of a class of
close-coupled nonlinear multi-degree~of-freedom systems has been developed.
The class of systems is one which is often encountered in the fields of
mechanical and structural engineering. Identification of arbitrary memoryless
nonlinearities is possible through knowledge of the accelerations, velocities
and displacements of the various masses. These quantities are then used to
obtain by regression techniques the surfaces of the restoring forces as

functions of the intermass displacements and velocities.



A particularly simple and computationally efficient technique is
illustrated when the restoring force is linearly separable into two functions,

one of intermass velocity and the other of intermass displacement.

An assessment has been made of the effect of measurement noise on the
estimates of the coefficients that are obtained from the regression analysis.
It iz found that whereas the biases in the estimated coefficients are
primarily dependent on the noise in the displacement and velocity
measurements, their variances are controlled to a good extent by noise in the

acceleration measurements.

All the computations related to single precision calculations have been
performed on a small 16 bit minicomputer, with a 64KB memory. Even under very
noise measurement conditions, (N/S ratio of 1/50) with only a few terms in the
series expansion, the identification results yield low rms errors. The
capability of predicting the response of the system to excitations other than
the test excitation, by using the results from identification, has been
illustrated. As has been observed in other studies [7] accurate estimates of
the damping are in general more difficult to obtain than estimates of the
stiffness. Double precision computations while significantly increasing the
computational effort and the core required (beyond 64KB) did not yield

substantial improvements in the estimates.
A drawback of the method is that it can only be used for identifying

memoryless intermass nonlinear restoring forces. This is so because

expansions of the type given by equations (11) and (15), where the yz's and
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yy's are treated as independent variables, are only valid if the restoring

forces are single valued functions of the independent variables. Thus, for

example, in a bilinear hysteretic system in which the restoring force is a

mul tivalued function of yg and ;2, the technique would fail, Alternatively

speaking, for such systems, one could find a class of inputs which would yield

incorrect identification. A simple example of such a class of inputs, for the

bilinear hysteretic case, is the class of inpulsive excitations which cause

permanent displacements of the system.

The main advantages of the method are:

(1)

(2)

(3)

The method is applicable to general memoryless intermass nonlinear

restoring forces.

There is no limitation on the nature of the test excitation that can
be used for the identification. This is a major advantage over some
of the other non-parametric methods [20, 21] which often require
Gaussian White Noise (GWN) excitations. Such GWN excitations are
difficult to produce in high enough magnitudes in order to drive
multi-degree-of-freedom systems, which are often large, in their

nonlinear ranges of response.

The computational requirements, both in terms of CPU time as well as
storage, are very small in comparison with the Weiner Method making

the method attractive for real time identification [211.
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[

(4)

(5)

The duration of time over which the data is required to be taken is

comparatively small compared to other nonparametric techniques [21].

The identification results obtained are relatively insensitive to
measurement noise. The rms errors in the determination of the
restoring forces increase in general as we move towards the point of

fixity of the system,
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Table 1. Description of linear system
SYSTEM1 (Stiffness = linear)
(Damping = linear) TEST SIGNAL
i ie _ .
. Ki[}’d] = b]y + d]y fi(t) = a1. S1n[oc]+0L2t]t
m,/m . .
1 s i
b]/b d]/d* a. o n, n, Wy
1.0 0.50 | 1.00 10. 2.0 | 5 40 | 10.0
1.0 0.75 0.80 -20. 2.0 5 40 10.0
1.0 1.00 0.60 15. 2.0 5 40 10.0
2.0 0.50 2.00 -25. 2.0 5 40 10.0
m*=1, b*=100, d*=0.5 TO = ZTr/wO; Gy = (n]oc])/(nzTO)
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Table 2a. The coefficients of the identified stiffness of System 1
- b} by =By oy 7 sl b
- N/S T == I " — &
B SO I A S
.001 | -0.00197 |48.130 0.59691| 2.7956 |-1.0551 01552
50 .010 | -0.00513 [148.220 || 0.35053 | 2.5490 |-0.57827 .01527
.020 | -0.01711 [|48.208 | 0.15696 | 2.4581 |-0.19538 .01617
.001 | -0.01824 [74.250 | 0.23820| 0.39391|-0.13063 .00409
75 .010 | 0.06529 |74.325|-0.07721 | 0.36444| 0.06970 .00442
| .020 | 0.17733 ||74.335[-0.44445| 0.36817| 0.27012 .00607
.001 | -0.00021 }99.436 | 0.09831| 0.47977{-0.10275 .00232
100 .010 | 0.06744 |99.631| 0.01514 | 0.14904| 0.11477 .00291
.020 | 0.09254 [99.732| 0.03808 |-0.10082| 0.25814 .00452
.001 | -0.06270 |[48.997 || 0.26450 | 0.62990}-0.01724 .00906
50 .010 | -0.04072 [49.149 0.48949| 0.51912]-0.30196 .00896
.020 | -0.01943 [[49.240f 0.68484| 0.44278|-0.56636 .01198
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Table 2b.

The coefficients of

the identified damping

of System 1

IR I TET T FR
; 4 4 4] 4] i
d] 0 1 2 3
.001 0.00033 51512 -0.00034 0.00008 0.04534
0.5 .010 {-0.07826 53241 0.00085 | -0.00006 0.05553
.020 |[-0.07995 54058 0.00111 | -0.00012 0.061709
.001 0.03075 41320 0.00008 0.00000 0.03410
0.4 .010 | -0.06653 43327 0.00008 | -0.00002 0.06786
.020 | -0.09249 45110 0.00005 | ~0.00003 0.10025
.001 | -0.00911 30483 -0.00001 0.00001 0.02608
0.3 .010 | -0.00942 28528 0.00057 0.00009 0.03947
.020 0.02597 26441 :0.00102 0.00016 0.07600
.001 | -0.15991 95647 0.00594 0.00218 0.03891
1.0 .010 ]-0.35716 97538 0.00655 0.00146 0.07359
.020 | -0.50936 98855 0.00550 0.00083 0.11056

42




Table 3. Description of the system with nonlinear stiffness
and linear damping

SYSTEM 2 (Stiffness

nonlinear)

(Damping Tinear)
KLy,y] = bjy + b;y3 + d;&
o my /m* . . .
by /b ba/b* d]/d*
] 1.0 0.50 0.10 1.00
2 1.0 0.75 0.25 0.80
3 1.0 1.00 0.20 0.60
4 2.0 0.50 -0.10 2.00

m*=T, b*=100, d*=0.5
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Table 4a,

The coefficients of the identified

stiffness of System 2

R1=b%y+b;y3 Vs ﬁi = 68 + B;y + B;yz 6;y3 + 62y4 _
bl [ b S S S IS oo |
0.001 |{ 0.00902 || 48.915 0.22394 11.888 | -0.42176| 0.00865
50 | 10 0.010 | 0.02193 49.039 | -0.27482]) 11.527 0.31841| 0.00809
0.020 | 0.034761| 49.146 || -0.769211 11.145 1.0329 .00815
0.001 | -0.02578 | 74.441 0.02301 ) 25.556 || -0.01337 .00332
75 || 25 0.010 | 0.06611| 74.486 |[-0.18270) 25.566 0.03323 .00365
0.020 | 0.718139( 74.490 | -0.45454 | 25.596 0.10826 .00425
0.001 | -0.00499 { 99.677 | -0.02814| 20.525 0.04931) 0.00147
100 20 0.010 | 0.70660 |100.160 1.0550 | 19.993 | -1.4486 .00350
0.020 | 0.77982[100.56 2.2282 | 19.527 | -3.0004 .00701
0.001 | -0.02028| 49.627 0.02107|[-9.7352 0.08131 .00458
50 {-10 0.010 | -0.02244) 49.146 0.28733||-9.4405 | -0.30165 .01273
0.020 | -0.05730| 48.607 0.60696[-9.1306 -0.71023 .02433
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Table 4b. The coefficients of the identified damping of System 2
= bl Vs b, = dp+dl y+dy?+dl N

d] al B il il ‘
0.001 -0.01487 .52479 -0.00008 0.00005 0.061573

0.5 0.010 0.00218 52264 || 0.00041 0.00003 0.05254
0.020 -0.00323 .52365 0.00115 -0.00002 0.04916
0.001 -0.01897 .40985 -0.00056 0.000004 0.04179

0.4 0.010 -0.01952 42118 -0.00070 -0.00001 0.05485
0.020 0.01377 42822 -0.00091 -0.00002 0.06562
0.001 0.00748 .30273 0.00001 0.00003 0.03412

0.3 0.010 -0.02072 .30118 0.00049 0.00004 0.03714
0.020 0.08008 .29381 0.00043 0.00006 0.05204
0.001 0.08478 .18900 -0.01297 -0.00428 0.07780

1.0 0.010 -0.30175 .09520 -0.00124 -0.00217 0.07152
0.020 -0.64619 .00790 0.00849 -0.00028 0.10322
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Table 5. Description of the system with both nonlinear stiffness and damping

SYSTEM 3 (Stiffness = nonlinear)

(Damping nonlinear)
1o i i3, e 1.3
KiLysy] = byy + boy™ + dyy + dgy
i m, /m*
1 . e . ) gx
b]/b b3/b d]/d d3/d
1 1.0 0.50 0.10 0.60 0.04
2 1.0 0.75 0.20 0.40 0.04
3 1.0 1.00 0.25 0.40 0.04
4 2.0 0.50 -0.10 0.20 0.04

m*=1, b*=100, d*=0.5
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Table 6a. The coefficients of the identified stiffness of
the second nonlinear system done by Method I and Method II
in single precision and double precision calculation*.

R1=b%y+b::§y3 E 'g g R, = g% + g}y + f)}y + ‘giya
e | Vs s |8 5 A1 g 24 E,
by b3 = ol bo b1 bs b3 )
I S -.01686 |[48.375 || -.04161 || 12,375 .01429
001 | I D -.01670 |[48.379 || -.04171 || 12,370 01426
II| S -.01686 [[48.375 || -.04161 || 12.375 .01429
IT| D -.01670 |[48.379 || -.04171 || 12.370 .01426
I S -.04644 |[48.628 || -.02344 || 11.606 .01222
50 || 10 | .01 |1 D -.04626 ||48.631 || -.02362 || 11.601 .01219
II| S -.04644 ||48.628 || ~.02344 || 11.606 .01222
It D -.04626 || 48.631 || -.02362 || 11.601 .01219
I S -.07220 || 48.700 || ~.03593 || 11.109 .01391
02 |1 D -.07202 [/ 48.703 || -.03615 || 11,105 .01388
11| S -.07220 || 48.700 || -.03593 || 11.109 .01391
II| D -.07202 || 48.703 | -.03615 || 11,105 .01388
I s -.03992 | 73.254 .10587 || 22.916 .00962
L001| I D -.04018 || 73.259 .10634 | 22.911 .00960
II| S -.10122 | 71.991 .22105 || 25.168 .01713
11| D -.10089 || 71.997 .22135 || 25.159 .01710
I S .05966 {| 73.669 || -.06598 || 22.185 .00734
75 20 .01 |1 D .05936 || 73.674 || -.06540 || 22.180 .00732
11| S -.05078 || 72.433 || -.14566 | 24.395 .01454
II| D -.06778 || 72.442 || -.14070 || 24.390 .01455
I S .15867 || 74.045 || -.21514 || 21,440 .00538
02 |1 D .15835 || 74.049 || -.21454 || 21.435 .00536
II| S .02881 || 72.884 || -.50305 || 23.505 .01180
11| D .07893 || 72.884 || -.51482 || 23.486 .01165
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Table 6a.

(Continued)

R1=b%y+b%y3 LS ﬁ. = g% + g%y + ggy + g%yg
I V8| 5|e < 3 1 1 it
by * b3 S by by b> b3
I S -.01427 || 98.843 ~-.02418 29.512 .00446
001 I D -.01415 | 98.844 -.02463 29.513 . 00446
11 S -.07047 || 97.476 .38302 38.651 .01348
II D -.07339 | 97.477 .38424 38.656 .01349
I S L06645 || 98.444 .67074 31.224 .00772
3 100 ||| 25 .01 I D .06663 1| 98,444 .66983 31.226 .00772
IT S .03765 || 97.113 1.37590 41,166 .01813
11 D .00564 |[ 97,110 1.38350 41,184 .01787
I S . 14580 || 97.925 1.34600 33.115 .01254
.02 I D 14605 || 97.925 1.34460 33.120 .01254
II S .10024 | 96.607 2.38390 43.847 .02338
I1 D 19245 |1 96.610 2.36250 || 43.848 .02465
I S ~,03061 {1 49.290 .07580 -9.513 .00789
001 1 D -.03054 || 49.289 .07600 ~9.512 .00789
II S ~-.05281 || 48.922 . 23406 -9.002 01204
II D -.05532 { 48,922 .23419 -9.002 .01203
I S -.05748 || 49,405 .05694 | -9,579 .00656
4 50 fi{t-10 (.01 1 D -.05664 | 49.404 .05627 | -9.578 .00657
11 S -.03826 | 49.084 .36383 || -9.207 .01192
II| D | ~-.09496 |49.083 || .36194 || -9.205 || .01125
I S -.08937 || 49.501 .04032 -9.638 .00586
.02 I D -.08861 | 49.500 .03962 || -9.638 .00586
II S -.07520 || 49.197 49163 -9.367 .01292
11 D .10552 149,199 .49369 ~9.368 .01675
¥ I = Method 1 8 = Single precision computations
II = Method II D = Double precision computations
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Table 6b.

The coefficients of the identified damping of the
second nonlinear system done by Method I and Method II in

single precision and double precision calculation*.

Dy=dtytdly? N Bi - ab v aly 4 aly o+ alye
o
| g @ &)o@ | |

M
s

I S -.00474 || ,36882 .00129 .01888 04277

001 T D -.00401 | .37062 .00124 .01881 .04320

II S -.00474 || .36882 .00129 .01888 04277

II D -.,00401 || .37062 .00124 .01881 04320

I S -,05902 || .35145 .00412 .02035 .06029

.3 .02 |[.01 I D -.07636 || .34857 .00502 .02048 .06097

IT S ~,05902 || .35144 00412 .02035 .06029

IT D -.07636 || .34857 .00516 .02048 .06096

I S -.08631 { .33128 .00487 .02197 .08588

D21 T D -.03342 || .34376 .00209 .02147 .08450

II S -.08632 | ,33128 .00487 .02197 .08588

1T D -.03342 | .34376 .00209 02147 .08450

I S 04107 || .22486 -.00077 .02030 .03131

001 I D .03890 || .22599 -.00073 .02029 .03146

I1 S .07877 || .21373 -.00164 .02056 .03450

11 D .07516 || .21539 || -.00157 .02053 .03448

I S .10625 || ,23498 ~-.00293 .02029 .03932

75 20 .01 1 ‘D .10578 || .23600 -.00292 .02028 .03947

II S 15046 || ,23262 -.00465 .02052 .04806

I1 D .13476 || .23579 ~.00444 .02048 .04838

I S .14124 | ,26213 -.00435 .02001 .04924

.02 D .13950 | .26321 ~-.00431 .02000 .04940

I1 S .15053 } .27719 || —-.00612 .02004 .06303

11 D .19283 | .27513 -.00666 .02005 06244
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Table 6b. (continued)
D1=d:;Ly+djs“y3 - § Bi = :1% + gﬁy + 3%}' + 3%573
o 0
-
a3 E @) a o w)w | o™

~

I S L04592 || L22146 -.00128 .02003 .03488

001 I D .04708 || ,22193 || ~.00131 .02024 .03505

IT| S .08132 || ,26880 || -.00567 || .01952 06527

IT| D .08153 || .26875 || -.00566 || .01953 .06539

I S -.12147 || .16867 .00199 || .02174 .04661

2]y .02 |01 | I D -.11962 || ,16906 .00193 | ,02173 04644

II| S .05635 || .24278 || -.00510 || .02032 .06278

IT{ D .02908 || .24147 || ~-.00493 || .02034 .06287

I S -.02790 || .13032 .00516 .02279 07451

02 | 1 D -.27858 | .13092 .00515 || .02278 .07438

II| S .00825 || .22404 || -.00259 || .02094 .06332

IT| D .10102 | .22733 || -.00345 | .02091 06714

I S -.13261 || .22245 .00044 || .01800 .04685

001 1 D -.11423 | .22502 || -.00023 || .01790 .04670

II S ~.09444 || .20412 ,00459 ,01831 .04304

Ir D -.07378 | .20734 .00374 .01822 04266

I S -.24066 || .22469 .00251 | .01820 .05645

1| .02 (.01 | I D -.22695 | .22739 .00199 || .01813 .05628

II{ s -.00806 || .19753 .00824 || .01835 .05739

IT{ D -.04552 || .20146 .00749 || .01825 .05326

S -.28979 || .23868 .00268 || .01811 .06659

.02 | D -.28567 || .23928 .00225 || .01809 .06649

IT} S .03103 |f .20477 01147 || .01809 07794

IT] D .21830 {| .20312 .01119 || .01810 .09804

*I = Method I S = single precision computations
II = Method II D = double precision computations
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Table 7. Comparison of the identified coefficients of the second nonlinear
system in separable restoring force case by the separable restoring
force(s) and the general restoring force (G) in Method I and single
precision calculation.

K=bly+by + Kly,, 52] = ap + aly + aty? + aly® + a3§£ + a§§2 + aey,”
L ety vl
) b| vl a¥f ol al al al al al al al

s| .02160 | 48.375 | ~.04160 | 12.375| .36882 | .00129 | .01888 | .04510

001/ G| .00021 | 49.997 | -.00728 | 9.970| .29566 | -.00014 | .02067 | .00024

1]50] 10].3 [.02 S| .10546 | 48.628 | -.02344 | 11.606| .35145 | .00412 | .02035 | .06152
.01 |G| .01535 | 49.937 | -.99801 | 7.543| .37732 | -.00208 | -.0043 | .05756

$| .15850 | 48.700 | -.03590 | 11.109| .33128 | .00487 | .02197 | .08700

.02 |G| .07649 | 50.552 | ~5.9160 | -4.168| .44665 | -.02794 | -.02717 | .11509

s| .00115] 73.254 | .10587 | 22.916| .22486 | -.00077 | .02030 | .03275

.001/ G| .00098 | 74.999 | -.15306 | 20.054| .19541 | -.00064 | .02026 | .00011

2|75 20 (.2 |.02 S| .16591 | 73.669 | -.06598 | 22.185| .23498 | -.00292 | .02029 | .04000
.01 |G| .01562 | 74.562 | -.29300 | 21.541| .21931 |-.00395 | .01926 | .03259

S| .29991 | 74.045 | -.21514 | 21.440| .26213 | -.00435 | .02001 | .04953

.02 |c| .02943 | 73.992 | -.42824 | 22.887| .24299 | -.00703 | .01801 | .06518

s| .03165|98.843 | -.02418 | 29.512| .22146 |-.00128 | .02025 | .03517

001G | .00035 [100.01 | .04555 | 24.785| .19621 |-.00036 | .02087 | .00005

3 [oo | 25 |.2 |.02 S| .05502 | 98.444 | .67074 | 31.224| .16867 | .00199 | .02174 | .04725
.01 |G| -.10294 | 99.706 | .96673 | 24.804| .29445 | .01986 | .01823 | .03422

s| .13320 | 97.925 | 1.34600 | 33.115| .13030 | .00516 | .02279 | .07556

02 {G | -.19759 | 99.228 | 1.89125 | 24.704| .37880 | .03640 | .01822 | .06835

S| .16322 | 49.290 | .07579 | -9.512| .22245 | .00044 | .01797 | .04750

.001|G | -.00004 | 49.999 | .00324 | ~10.00 | .09502 |-.00044 | .02033 | .00047

4|50 -101.1 [.02 S| -.29814 | 49.405 | .05694 | -9.579| .22469 | .00251 | .01820 | .05683
.01 |e| .01860 | 50.085 | .16231 |-10.352|-.00928 | -.03925 | .01660 | .03874

s| .37916 | 49.501 | .04032 | -9.638| .23868 | .00240 | .01811 | .06685

.02 |G| .03456 | 50.156 | .33714 | -10.732|-.10973 |-.07193 | .11261 | .07734
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Table 8. The exact parameters and the identified corresponding terms

~used in the general restoring force case.

y = 4l .3 02 e °2 o2
W 2l eYal T agyy T hgvy tegyyy vy * ey Y R0y
|

ay, L) ° d, e £
EXACT 50. 10. 10. .3 .02 0.0
.001 49,961 9.743 10.010 229432 .01974 .105 00423
.01 50.083 1.067 10.014 .17897 .01090 15.467 04473
.02 48.998 | 5.400 9.9320 .00280 .01350 33.825 .09205
EXACT 75. 20. 0.0 o2 .02 2
.001 75.156 17.030 | -.0617 .1925 .0211 2.8926 .00116
.01 75.493 17.097 | -.0819 2172 .0168 1.6016 .01180
.02 74,262 | 49,431 -.1786 +2426 .01302 . 7544 .03081
EXACT 100 25 10.0 o2 .02 0.0
.001 99.946 21.343 |- 9.9850| .32668 .00575 | ~17.90 .00094
.01 97.829 | 44.649 10.671 .37731 .01309 3.53 .01066
.02 88.006 25.434 -2,2157| .47349 01451 11.718 .02708
EXACT| 50 -10 0.0 .1 .02 .2
.00l | 49,949 | -9.990 .03473 .08053 | .02963 .19440 .00136
.01 49.484 | -9.870 +35721 -.06194 | ,10968 .13410 .01341
.02 48,997 -9.879 .6953 -.21806 | .19722 .07924 .02677
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Figure 9. A comparison of the response of the actual system (—)
with that of the identified system (— — —), (a) under
base excitation, (b) under an impulse force of the ten
units applied at M, for System 2.
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A comparison of actual stiffness and damping
denoted by solid (—) lines and the identified
results by Method I and single precision (— —),
Method I and double precision (~---), Method II and
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double precision (— =~ - =) in nonlinear case (1-b)
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