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1. 0 ~Problem Description: 

The Maypole Deployable Reflector is a large space structure 

consisting of a column and hoop structure which supports a circular 

antenna of 30-100 meters dia. It is a flexible structure and, hence, 

is described by partial, rather than ordinary, differential equations; 

such systems have a distributed parameter nature. 

Flexible structures like the above can be described by 

partial differential equations of the form: 

(1.1) 

where u(x,t) is the displacement of the structure subject to external 

forces F(x,t). The structural stiffness is determined by the dif-

ferential operator AO and associated boundary conditions. An example 

of such an operator for a membrane antenna is the following: 

where E(x) is the distributed "stiffness" of the membrane and 

Vu = gradient of u = [au au ~]T 
~, ax 'ax

3 
• 

1 2 

(1. 2) 

The damping in the structure occurs due to material properties and 



construction techniques. It is represented by the differential 

operator DOut' but the actual form of DO in a given application is 

much more difficult to determine than that of the stiffness AO' .. 

Some forms that DO might take are the following: 

DOut o.Out 
(viscous damping) 

DOut 
= A 1/2u (visco-elastic damping) o t: 

DOut = AOut 
(?) 

Of course, there are other possible forms for DO and, in general, the 

damping operator might turn out not to be a differential operator at 

all; this is the case for some types of damping which are related to 

frequEmcy in a very nonlinear way. 

The distributed parameter system (DPS) represented by (1.1) 

may be put into stat-e variable form: 

{ 

ov(t) = Av(t) + Bf(t) 
Clt 

yet) = Cv(t) 

where A - [ _~ -~o] and B, C represent the control 

(1. 3) 

actuator and 

sensor influence operators, respectively, with f(t) being the·vector 

of M actuator commands and yet) the vector of P sensor outputs. It is 

assumed that the operator A in (1. 3) generates a Co-semigroup U(t) 

h o h 0 0 01 h 0 0 1 At f 1 d w 1C 1S S1m1 ar to t e matr1X exponent1a e or umpe parameter 

systems. 



2.0 ~Reduced-Order Modeling and Controller Design 

Many reduced-order modeling techniques exist,for large-

scale systems; of particular interest are the ones based on asympto-

tic methods, such as multiple time scales and singular perturba-

tions. Let ~ and HR be the subspaces of the total state space H 

with dim ~ = N < 00 and H = HN ~~. Define the projection operators 

PN and PR (not necessarily orthogonal) and let v
N 

= P
N 

v and 

vR PR v. This decomposes v into v = v
N 

+ v
R 

and the system (1.3) 

into 

(2.1) 

(2.2) 

(2.3) 

The reduced-order model (ROM) for the system is (2.1) and (2.2) with 

CR and ~R assumed to be zero: 

. - f VN(O) vN = ~ vN + BN = PN va 

(2.4) 
- CN VN + Df Y 

Thus, the ROM depends on what choice of subspace ~ is made and what 

type of projection PN is used (or, alternatively, what HR is). The 

subspace ~ is called the ROM subspace and the subspace H
R

, the 

residuals subspace. The terms ~R vR and ARN v
N 

are called modeling 



error and BR f and C
R 

v
R 

are called control and observation spillover, 

respeetively. This gives a general format for reduced-order modeling. 

The Controller Design is obtained by assuming the ROM (2.4) 

is the total system and using a linear controller of the form: 

1 
(2.5) 

z = F z + Hy + Ef z (0) o 

where dim z = S < N. 

All controller synthesis assumptions are made in terms of the 

ROM parameters (~, BN, CN' D) alone. This aL_ows the synthesis to be 

carried out when these parameters are known. When the ROM parameters 

are not known or are poorly known, they must be estimated on-line or 

the controller must adapt itself in the presence of unknown parameters. 

3.0 Digital Parameter Estimation and Control 

The il.1plemantation of any control or parameter eslimaticn 

scheme will be achieved with one or more on-line digital computers; 

consequently, all such schemes must be discrete-time. A discrete-time 

version of (1) may be obtained by assuming a constant input f (k) over 

the uniform time interval (k-l) t.t < t < k t.t: 

! 
v (k+l) ~ v(k) + Hf(k) 

(3.1) 
y (k) _. C v(k) 

where ~ = U(~t) and H f;t U(T) BdT. Other discrete-time versions 



can be obtained using non-uniform time steps. 

where <I>N 

Now the model reduction described in (2.0) becomes: 

P
N 

~ P
N

, etc. The reduced-order model is 

! vN(k+l) __ = 

y(k) 

(3.2) 

(3.3) 

It is this approximation of the flexible structure whose parameters 

(<I>N' ~, eN) we will want to estimate on-line and use in any control 

schemes. The dimension N of this reduced-·order model is related to 

the on-line computational capacity. 

Most parameter estimation schemes for lumped parameter sys-

tems depend on an Autoregressive Moving Average (AB}~) model of the 

systE!m. For distributed parameter sys tems, such as flexible struc·-

tures, we have developed the quasi-ARMA: 

N 
y(k+N) I 

r=l 
a y(k+r-l) + 

r 

N 
I Sr f(k+r-l) + R(k) 

r==l 

where the coefficients a and S are obtained from (3 .. ;J)a:ndthe 
r r 

(3.4) 



residual interaction term R(k) is given by 

with 6, 
r 

N 
R(k) = CRvR(k+N) + I ~r vR(k+r-l) 

r=l 

rr ~NR - a r Cr and Sr = rr HN• 

(3.5) 

By ignoring the term R(k), we have an approximate AIU1A model 

of the flexible structure whose parameters a
r 

and Sr we can estimate 

via least-squares or model reference techniques. However, the 

residual interaction terms will cause errors in these parameter esti-

mates; hence, the effects of these terms must be analyzed to determine 

acceptable levels of residual interaction and tc. aid in the selection 

of the model dimension N. Compensation in the form of (digital) pre-

filtering may be added to reduce the residual interactions with the 

parameter estimation scheme. 

Once the parameters are adequately estimated, they may be 

used :in a discrete-time feedback controller of the form: 

! 
f(k) 

z(k+l) 

= HI1 y(k) + H12 z(k) 

(3.6) 

H2l y(k) + H22 z(k) 

Such a controller can substantially improve the performance of the 

flexible mechanical structure, as long as control or observation 

spillover is not excessive. Spillover is related to the model dimen-

sion N and the actuator-sensor locations which are part of the control 

design. 



The use of adaptive structure controllers, i.e., con

trollers which tune themselves to the structure, raises even more 

complicated residual interaction issues. In particular, it has 

been shown via numerical simulation that adaptive control based o.n a 

reduced-order model can cause unstable operation of the flexible 

structure if the spillover issue is not carefully considered. 

4.0 ~Recent Progress 

In the preliminary phase of this study, we have decided to 

consider two phases of operation of the Reflector: deployment and 

on-orbit operation. Deployment would be characterized by (possibly) 

high transient disturbances and rapidly-changin~' configuration. 

Control applied during this phase would need to be done on a fast 

time-scale; hence, a low-order model of the reflector dynamics would 

be incorporated in the identification algorithm to enable the calcu

lations to proceed rapidly. On the other hand, once deployed the 

reflector would operate on-orbit in a relative steady-state. Hence,' 

the identification (and control) could be done in a quasi-static mode. 

We feel this time-scale separation is a useful way to break 

down the identification problem. In the dynamic (deploYment) mode, 

we have developed rapid, reduced-order identification schemes based 

on reduced-order lumped parameter models of the distributed parameter 

description of the reflector. I discussed some of the theoretical 

developments on this at the Yale Adaptive Control Workshop. 

For the time being, we consider the reflector to be a 

circular membrane; later, as the modeling aspect of the study develops, 



we expect to use more detailed models. Nevertheless, the generic 

behavior of a structure like the reflector can be revealed by even 

simple distributed models. In the future, I think we will try to 

fit distributed parameter models to the finite-element data on the 

reflector. 

4.1 Quasi-Static DPS 

In the quasi-static (on-orbit) mode, we do not have to rush 

to identify and control. Consequently, a least squares approach 

where a distributed parameter (partial differential equation) model 

is fj,tted to the sensor data seems reasonable. In discussions with 

H. T. Banks in May, we decided that a singular t;erturbations approach 

might: yield ,some useful model reduction since the stiffness of the 

membrane is ql,lite high along the radii where stringers are attached 

but much lower elsewhere on the reflector. We are using this idea to 

reduee the computational load of the identification problem. 

The ~asi-~ta.!=j.c (or steady state) identification problem 

can be described by setting u(x, t) = u(x), i. e., no time-variation, 

in (1.1): 

AO u = F = Bf (4.1) 

WherE! AO is described, for example, as the membrane operator (1. 2) 

with E(x) unknown. Assume 

NE 
E(x) -- I Ilk 4Jk (x) 

k=l 
(4.2) 



where ak are unknown scalars but ~k(x) are known functions (e.g., 

cubic splines or trigonometric functions). This reduces the problem 

to the estimation of the parameters a k' 

From the Galerkin or finite-element method, we approximate 

u(x) in (4.1) by 

N 

u(x) = I ~ ek(x) 
k=l 

(4.3) 

where ek(x) are known functions (although e
k 

is not necessarily equal 

to ~k in (4.2». The Ga1erkin method yields: for ~ = 1, 2, ..• , N 

(~. 4) 

where <u,v> :: 'J u(x) vex) dx is the inner product on L2 em w"ith Q 

being the struc~ure described in R3 (or R2). Substitution of (1.2) 

and (4.2) into (4.4) yields: 

where the known functions yield 

and 

l1u = 3 33 I -2' 
j=l ax. 

J 

(4.5) 



From (4.3), it is possible to obtain the ~ by knowledge 

of u(l{) at various points on the structure (at least N of them) if 

we assume u(x) = u(x); this is true for N sufficiently large. There-

fore solve: 
N 
L ~ 8k (x.) = u(x4 ) ~ u(x4 ) 

k=l K ~ .... .... 
(4.6) 

for uk when 1 ~ i < N. Furthermore, we need knowledge of the loads 

f (x) applied by the actuators; this cart be approximated and, hence, 

we assume <F,8£> is also known. Then (4.5) takes the form: 

L a = F (4. 7) 

where L is an NE x N matrix and ~, K are NE x 1 and N x 1 vectors 

respectively. Since in general NE f N there may be no unique solution 

for (4.7); however, a "least-squares" solution can be obtained via the 

pseudo-inverse matrix L# of L, i.e., 

a (4.8) 

is the best mean-square solution of (4.7). 

The above describes our basic approach to the quasi-stati.c 

problem. Once the values of a. are determined from (LI. 8), they are 
Ni 

used to approximate E(x) by L a
i 

~i(x). Once E(x) is identified, 
i=l 

it is possible to develop a quasi-static DPS control approach for (4.1). 

Thus, the control problem becomes the determination of actuator 



control commands f l , ••• , fM in (4.1) such that 

is ac:hieved where u(x) is the actual antenna shape and uD(x) is the 

desired shape, e.g., parabolic or spherical. We are in the process 

of evaluating this identification and control approach for the 

circluar membrane model of the antenna. 1be singular perturbations 

idea for the reduction of (1.1) into two separate uniform problems 

is also under consideration. 

Results on the convergence and "well::"posed"-ness of the 

above scheme and other similar ones are presented in "A Survey for 

Parameter Es·timation and Optimal Control in Delay and Distributed 

Parameter Systems" by H. T. Banks, .ICASE-NASA Langley Research Center, 

Report No. 81-26, August 17, 1981. 

4.2 .Dynamic DPS 

For the dynamic case (in which u(x, t) is a function of ti.me, 

.as well as x), it is necessary to identify the terms in the linear 

differential equations that define the structural time variations in 

(1.1). In discussing potential identification procedures, one must 

keep in mind that identification of the dynamics of a large space 

structure is usually performed for one or more of the following reasons: 

(1) To build a simulation model of the system which can 

be used for predicting the response to various 

types of inputs. 



(2) To build a controller for the structure. 

(3) To design adaptive control to account for structural ~arameter 

changes. (This purpose clearly requires an on-line 

identification procedure.) 

Relative to these purposes, various identification and 

adaptive control procedures have been considered. These include: 

(1) Adaptive observer - this procedure can be used either 

off-line or on-line. 

(2) Autoregressive moving-average (ARMA) identification-

such an approach can be done off-line or recursively 

on-line. It has been applied by several investigators 

to adaptive control. 

(3) Frequency domain identification - although this is 

strictly an off-l:ine procedure, it has the potential 

for producing a high order model wHhout the inherent 

computational problems of many on-line procedures. 

(4) Indirect or implicit adaptive control - this procedure 

is useful for on-line direct computation of the con--

trol gains without the need for explicit system para-

meter identification. 

These procedures will now be discussed in more detail. 

(1) Autoregressive Moving Average CARMA) Identification (Balas-Kaufman) 

A typical ARMA model between some output quantity y and a 

forcing function f can be written as: 

N 
y(k+N) I 

i=l 

+ R(k) 

a. y(k+i-l) + 
J. 

N 

I 
i=l 

b. f(k+i-l) 
1. 

(4.9) 



where R(k) incorporates the residual effects. If R(k) can be modeled 

as the correlated noise sequence 

N 
R(k) I C i e(k+i-l) 

i=l 

where. e. is a sequence of independent Gaussian variables, then maximum 
1 

likelihood estimation can be used. Thus, a i , bi , ci would be determined 

so as to minimize 

L 
A 2 

1/2 I (y(k) - y(k/k-l» 
k 

where y(k/k-l) is the predicted Kalman estimate of y. The optimum model 

order N can then be determined by evaluating Akaike's criteria 

(- Log L + 2 * number of parameters) which weights both the error 

index and a measure of model complexity. 

Alternately, if sinusoidal test signals can be used, it is 

suggested that frequency domain identification procedures also be 

considered. Previous results l ,2 have shown that for flexible air-

craft this approach is advantageous in that 

the input design problem is eliminated; 

• fewer parameters need be identified per computational 

cycle; 

• Relatively simple algebraic least squares approaches 

can be used very effectively; 



· results from several controllers excited separately 

can be combined to improve accuracy. 

One disadvantage, however, is that the number of independent 

sensors must be equal to the assumed process order. Furthermore, this 

procE:dure is strictly an off-line type procedure and therefore is not 

suitable for use in an adaptive control scheme. 

(3) Direct or Implicit Adaptive Control (Kaufman-Balas) 

An adaptive control procedure which appears appropriate for 

large space structures is the direot or implicit adaptive controller 

proposed by Sobel, Kaufman, and Mabius. 3 Thie, is a model reference 

procE~dure that adaptively tunes control gains so that the structural 

outputs follow the corresponding outputs of a reference model (which 

can be of lower order than the process). Stabili ty is guaranteed 

provj.ded that the structure has an input-output transfer function 

matrix that is positive real for some feedback gain matrix. Pre

liminary analysis indicates that this positive r~al property should hold 

for large space structural components provided that actuators and sen

sors are collocated and provided that velocity sensors are available. 

(4) Adaptive Observer (Balas) 

On-line adaptive parameter estimation of the DPS (1. 3) cannot 

be done since this system is infinite dimensional. However, an adap

tive observer based on a reduced-order finite-dimensional model (2.4) 

can be accomplished. Such an adaptive observer has the form: 



" '" 
VN(t) = ~ VN(t) + (kN-aN(t))y(t) 

(4.10 ) 

I '" '" 
wherE~ ~ = [-~ I QN] is a known stable matrix and ~(t), bN(t) are the 

parameter estimates obtained from the following nonlinear adaptation 

laws: 

{ 

~(t) 

bN(t) 

'" 1 
= fl (y(t)-y(t)) v (t) 

'" (4.11) 
2 '," 

f2 (y(t)-y(t)) v (t) 

where wet) in (4.10) and vl(t), v2(t) in (4.11) are auxiliary signals 

obtained by filtering the inputs f(t) and the outputs y(t). 

The parameter errors introduced by the reduced-order obsE~rver 

have been analyzed in Refs. 4 and 5. 

(5) Parameter Estimation Using a Linear Reinforcement Learning 
Factor (Desrochers) 

Recursive estimates which minimize 

N 

I 
i=l 

T (x, 
l. 

{ 

J = 

0<0.<1 

(4.12) 

are considered where x and y~ are known and a, are the parameters 
i l. l. 



to be determined. This leads to the following recursive algorithm 

~arameter estimates: 

(4.13) 

1 a aT·-l 
Pk = - P - -- P xk (1 + 1-'" x. Pk- l xk) 

I-a k-l (l-.a) 2 k-l u. k 

The effect of a (Forgetting Factor) is to weight newer data more 

heavily than past measurements in order to bettt..T adapt to changing 

parmaeters. 

Of course, this approach has the disadvantage that the 

effect of noise will also be detected and used to modify the estimate 

a. Therefore, the scheme functions best when the parameter variations 

are larger than the residual fluctuations due to noise. The factor a 

is a variable and it is updated through a linear reinforcement algo-

rithm. Such an algorithm makes decisions about the reliability of the 

present data and adjusts the factor a accordingly. 

(6) Feedback Control (Balas) 

Analysis of the stability of feedback control based on 

finite element (Galerkin) reduced-order models of DPS such as flexible 

structures is considered in Ref. 6. This analysis assumes that the 

identification problem has been successfully completed by one of the 

abovE!-mentioned procedures. Control procedures for DPS are evaluated 

in Ref. 7. 



(7) Reduced-Order Modeling for Nonlinear Systems (Desrochers) 

The first case is concerned with nonlinear systems that 

can be modeled by 

n 
x (k+l) I 

j=l 
A. F.(x.(k» + Bu(k) 

J J J 
(4.14) 

n where A. is an n x m matrix of constants, x(k)eR , F. (.) are real 
J J 

valued nonlinear vector functions of dimension m, B is n x 1, and u(k) 

is the scalar input. Consider the equation error for a single non-· 

linearity in (4,14) 

e. (k) 
J 

Minimizing 

= x(k+l) - [Aj B] [Fj (k)] 

u(l) j 

N-l 
I' 
/., 

k=O 

T 
e.(k)e.(k) 

J J 

1, 2, ... , n (4.15) 

(4.16) 

leads to an algorithm for assigning costs to the F.C·) in order to 
J 

retain the most dominant non-linearities. Since each F.(·) is a 
J 

function of only one x. this leads to the retention of the most domi
J 

nant states. 

The more general case of 

x (k+l) 
n 
L A

J
. F

J
.(xl ,x2 , •.. , xn ) + Bu(k) 

j=l 
(4.17) 



can also be handled this way. Note that now, model reduction may 

not necessarily lead to an elimination of state variables, but the 

number of terms, n, will be reduced. 

These techniques are described in Refs. 8, 9 and 10. We 

feel that in the case of nonlinear deformation of the antenna it 

is wise to make a nonlinear model reduction before linearizing the 

system for control. Also, the nonlinear reduction can be used to 

obtain a nonlinear version of the ARMA described above, this could 

be useful in the identification of nonlinear models of the DPS. 
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