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ABSTRACT

This document is the final report prepared under Contract NAS3-219S2 "Study
of Electrical and Chemical Propulsion Systems for Auxiliary Propulsion of
Large Space Systems" and covers five analytical tasks. Task 1 includes a
literature search followed by selection and definition of seven generic
spacecraft classes. Task 2 covers the determination and description of
important disturbance effects. Task 3 applies the disturbances to the
generic spacecraft and adds maneuver and stationkeeping functions to define
total auxiliary propulsion system requirements for control. The important
auxiliary propulsion system characteristics are identified and
sensitivities to control, functions and large space system characteristics
determined. In Task 4, these sensitivities are quantified and the optimum
auxiliary propulsion system characteristics determined. Task 5 compares
the desired characteristics with those available for both electrical and
chemical auxiliary propulsion systems to identify the directions technology
advances should take.

KEY WORDS
Attitude control
Auxiliary propulsion
Generic classes
Large space structures
Shape control
Stationkeeping
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SUMMARY

This document is the Final _Report and describes work performed under
Contract NAS3-21952 "Study of Electrical and Chemical Propulsion Systems
for Auxiliary Propulsion of Large Space Systems".

The complete study consists of five analytical tasks:

1. Characterization of Large Space Structures

2. Establishment of Disturbance Characteristics

3. Establishment of Auxiliary Propulsion System
Characteristics and Requirements

4. Interaction Between Auxiliary Propulsion System
Characteristics and Large Space System Characteristics

5. Determination of Electrical and Chemical Propulsion
Technology Advances Required

Task 1 was accomplished by first conducting a literature search to identify
future spacecraft characteristics. These were then grouped into seven
generic classes. Each class was idealized and described in terms of a
single scaling parameter. Simple empirical relations were derived to
define the mass properties. sizes. areas. etc. in terms of the scaling

- -
parameter. This set of classes were then used as a basis for all
subsequent work.

Task 2 consisted. of a literature search to identify the important
disturbance effects. The force and torque generating mechanisms were
determined and the significant parameters and dependencies defined.

In-Task 3 the disturbances were applied to the generic spacecraft classes.
This determined the forces and torques needed to counter the disturbances.
To these were added the forces and torques needed for maneuver and
stationkeeping to define the total auxiliary propulsion needed for control.
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Four flight conditions were used to cover the range of requirements. A
minimum number of thrusters, logically placed, were then assumed and the
thrust levels determined. Three classes appeared to be candidates for the
use of distributed thrusters to achieve shape control. Thrusts per unit
area or volume were found for these vehicles.

As part of Task 3, the important characteristics required by auxiliary
propulsion systems were determined to satisfy the varied demands of
attitude and shape control and stationkeeping. Finally a sensitivity
analysis was carried out to identify which auxiliary propulsion system
characteristics were significantly impacted by various control

requi rements.

Task 4 consists of four relatively independent studies: Thrust Level,
Thrust Modulation and Transient Effects, Number and Distribution of Thrusts
and Allowable Mass. These, in sum, cover the interlocking sensitivities
and interrelationships identified in Task 3. Task 4 concludes with a

.definition of optimum APS characteristics chosen from the results of the
four studies.

Task 5· consists of a review of both electric and chemical auxiliary
propulsion system present day technology. Comparisons are made between
existing capability and desired capability, as defined in Task 4, to
identify the directions technology should take to best meet the future
demands of large space systems.

The report is organi zed to foll ow very closely the contract task sequence.
Thus, Sections 1-5 document the work performed in Tasks 1-5. Sections 6
and 7 follow to discuss the results and summarize the conclusions.
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INTRODUCTION

Planned spacecraft and the projections of probable future vehicles in the
future by government and industry show an unmistakable trend towards larger
structures. Many of these vehicles will require construction in orbit.
Most probably the construction will take place in low earth orbit to be
followed, where necessary, by transfer to geosynchronous orbit. Once on
station, the general requirement is for a very long operational life.

This study is part of an ongoing process to determine the propulsion
requirements needed to support future space activities. Although there may
be some overlapping functions, propulsion divides into the two groupings of
prime and auxiliary propulsion. Prime propulsion is used to perform orbit
transfer while auxiliary propulsion takes on the attitude control, shape
control and stationkeeping tasks.

This study considers auxiliary propulsion only and will supplement other
work in progress that is examining prime propulsion needs. The objective
is to determine the direction auxiliary propulsion research and development
should take to best meet upcoming needs. The approach is to define the
important electrical and chemical auxiliary propulsion characteristics in
terms of the demands that will be imposed by future spacecraft. Comparison
of these desired characteristics and capabilities with those presently
available is used to identify·deficiencies.

4
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1.0 CHARACTERIZATION OF LARGE SPACE STRUCTURES

There are a large number of diverse structures either planned or proposed
for future space missions. The purpose of Task 1 was to reduce these
concepts to a manageable set by defining a relatively small number of
unique generic classes of structures which would be associated with as many
of the concepts identified as possible. This set of idealized structures
would then form the foundation for the analysis of disturbance torques and
subsequent determination of auxiliary propulsion. system requirements for
large space systems (LSS).

A literature search was first conducted to collect examples of proposed
large space systems. The time frame was not restricted but no systems were
found which addressed times beyond 2020. The various concepts were
screeBed, independent of mission, and grouped into generic classes of
structures. It was found that the great majority of the vehicles fell
naturally into three classes - plate structures, single antenna systems and
multiple antenna systems. Several subdivisions appeared appropriate to
represent particular control system characteristics. In all, seven generic
classes were defined•.

The seven generic classes were then idealized bY breaking each class down
to its basic elements, such as structure, avionics and solar arrays. The
intent was to characterize each element in terms of a small number of
scaling factors. It was found that a single parameter would suffice
although the parameter was not the same in each class. Length was used for
the plate structures, antenna diameter for the single antennas and number
of antennas for the multiple antenna class. Simple expressions· were then
developed which defined the size, weight and inertia characteristics of
each vehicle in terms of the single describing parameter.

To gain insight into shorter term (1990~2000) auxiliary propulsion
requirements, the generic classes were reviewed assuming the vehicles were
limited to a single shuttle payload. This process lead to some revision of
the describing relations.

5



1.1 Literature Search
Some ninety sources were collected and are listed alphabetically in the
bibliography of Appendix A. After redundant and irrelevant material was

weeded out, about half of the sources were found to be useful in
contributing to the determination of LSS characteristics. Prime sources of

the contributing group are listed in Table 1-1.

The literature study, in general, led to identification of separate
missions and their associated structures. In a few cases, such as the
Solar Power Satellite and the Soil Moisture Radiometer concepts, detailed
analysis of the proposed structures had been completed. The majority of
the identified missions, however, were characterized by user needs and a
few basic parameters such as total mass, antenna or structure size, orbit,
power requirements, and in some cases lifetime and pointing accuracy. A
list of the missions examined to determine generic classes is shown. in
Table 1-2.

1.2 Determination of Large Space Structures Characteristics
Previous studies identifying technology requirements for LSS proceeded with
a screening process to reduce the mission sets to a few focus missions.

This screening process, based on economic benefit, technical risk, or other
factors would result in identification of particular mission needs and

could not effectively show the trends desired as an output of this study.
It seemed preferable that the goal of this exercise be limited to defining
generic classes of structures without regard to ~ny particular missio~

goals. It should be noted that mission characteristics such as orbit,

pointing and slewing requirements, etc. can be associated with a given
structure and form an input to the range of characteristic parameters for

the associated generic class. The individual mission, however, would lose
its identity in the formulation of an idealized structure representative of

a generic class. Each generic class would be repr.esented by an associated
structure and range of characteristic parameters from which a general

non-mission oriented study of auxiliary propulsion could originate.

1.2.1 Generic Classes
As a result of the analysis of mission concepts, three main generic classes
were identified. Figure 1-1 shows the structures initially selected for

6

~\

~ ,
I

/--I,



I I

A REVIEW OF LARGE AREA SPACE SYSTEMS TOWARD IDENTIFICATION OF CRITICAL
OR LIMITING TECHNOLOGY, M.A.Dienman et.al., General Electric Co.,
May 1978, X78-10214 (NASA CR 145339)

ADVANCED SPACE SYSTEM CONCEPTS AND THEIR ORBITAL SUPPORT NEEDS(1980-2000).
VOL.1:EXECUTIVE SUMMARY, N76-30244 (NASA CR 148704)
ADVANCED SPACE SYSTEM CONCEPTS AND THEIR ORBITAL SUPPORT NEEDS(1980-2000)
VOL.2:FINAL REPORT, N76-30245 (NASA CR 148703)

ADVANCED SPACE SYSTEM CONCEPTS AND THEIR ORBITAL SUPPORT NEEDS(1980-2000)
VOL.3:DETAILED DATA, N76-30246 (NASA CR 148710)

DEPLOYABLE ORBITAL SERVICE PLATFORM CONCEPTUAL SYSTEMS STUDY, Mac. Doug.,
Mar 1979, Report no. MDC G7832 (NASA CR 159091)

DESIGN CONCEPTS OF GEOSTATIONARY PLATFORMS, E.C.Hamilton and W.T.Carey Jr,
NASA Marshall Space Flight Center,Ala., Sep 1978, AIAA paper 78-1642.

DESIGN CONSIDERATIONS FOR LARGE SPACE ANTENNAS, R.Johnson Jr., McDonnel­
Douglas Corp.,ST. Louis,Mo., 1978, N79-10085 , NTIS HC A23/MF A01,
CSCL 22B.

LARGE ANTENNA STRUCTURE TECHNOLOGIES REQUIRED FOR 1985-2000~ R.R. Wanlund~
TRW Defense and Space Systems Group,Redondo Beach,Calif., 1~78, NASA Vol.!
1978,p221-241

LARGE SPACE ERECTABLE ANTENNA STIFFNESS REQUIREMENTS, J.A. Fager,
General Dynamics Corp., San Diego Calif., April 1978.
78A322929, AIAA 78-590.

LARGE SPACE SYSTEMS TECHNOLOGY VOLUME 1, E.C. Naumann and
A. Butterfield, NASA, Langley Aesearch Center, Hampton, Va., Jan. 1978.
N79-10078 (NASA-CP-2035-Vol-1).

LARGE SPACE SYSTEMS TECHNOLOGY, VOLUME 2, E.C. Naumann and
A. Butterfield, NASA, Langley Research Center, Hampton, Va.,
Jan. 1978. N79-10097 (NASA-CP-2035-Vol-2).

NASA FORECAST OF SPACE TECHNOLOGY (1980-2000), Jan. 1976.
NASA-SP-387.

PLATFORM DESIGNED FOR NUMEROUS USES, C. Covault, June 1978. A78-42509.
POINTING AND CONTROL TECHNOLOGY NEEDS FOR FUTURE AUTOMATED SPACE
SYSTEMS, J.B. Dahlgren and S.M. Gunter, Jet Propulsion Laboratory,
Pasadena, Calif., Sept. 1978. A78-52748 (NASA CNT # NAS7-100).

SERVING THE PUBLIC VIA PLATFORMS IN SPACE, R. Fleisig and
J.L. Bernstein, Grumman Aerospace Corp. Bethpage, N.Y., March 1978.
A79-11557, AAS 78-015.

STRUCTURES FOR SOLAR POWER SATELLITES, R.H. Nansen and H. di Ramio,
Boeing Aerospace Co., Seattle, Wash., A79-10513. _

SURVEY OF FUTURE REOUIREMENTS FOR LARGE SPACE STRUCTURES~ FINAL REPORT,
JohnM. Hedgepeth, NASA, Washington, D.C., Jan. 1976. N7o-15500,
NASA-CR-2621, NASA CNT #NASl-13178.

THE OAF CONCEPT EXTENDED, W.L. Morgan and B.I. Edelson COMSAT
. Laboratories, Clarksburg, Md., Aprll 1978. A78-32891, AIAA 78-546.

TABLE 1-1 LISTING OF PRIME SOURCES
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Mission

1. Personal Communications Satellite
2. Large Space Telescope
3. Voting/Polling Satellite
4. Multinational Air Traffic Control

Radar
5. Border Surveillance
6. Night Illuminator
7. Pinhole Satellite
8. Electronic Mail

9. Space Power Relay Satellite
10. OAF America
11. NASA GCP
12. NASA/GSFC PSCS
13. Grumman PSP
14. MOBLOMSAT
15. Coastal Waters Surveillance Radar
16. Aircraft Laser Beam
17. Coastal Waters Passive Radar
18. High Resolution Earth Mapping Radar
19. Disaster Communications
20. Police Communications Satellite
21. Energy Monitor .
22. Parabolic Torous Radiometer (Soil

Moisture)
23. Solar Power Satellite
24. High Efficiency Solar Energy Generator
25. Burglar Alarm Relay Satellite
26. Advanced Resources/Pollution

Observatory
27. Personal Navigation Wrist Set
28. Near Term Navigation Concept
29. Train Anti-Collision
30. Vehicle Traffic Control
31. Multinational Energy Distribution
32. Space Based Radio Telescope
33. Astronomical Super Telescope
34. Multi Channel TV Broadcast
35. Holographic Teleconferencing
36. Nuclear Fuel locator
37. National Information Services

Canunents

200 ft antenna
Extreme pointing accuracy to .001 arc sec
150 ft antenna
Planer array 250 :ft x 250 ft

Planer array 9000 ft x 9 ft
12 mirrors 1000 ft diameter
Free flying mask 20 m in diameter
Two concepts - 1 antenna farm and 1

1arge antenna
Large 200 merectible structure
Modular antenna farm (8 antennas)
Geosync platform 32 antennas
Geosync platform 8 antennas
3 large antennas with connecting structure
75 mantenna
30 mCassegrain antenna 6-10 kw RTG
169 mirrors 15 ft in diameter
1000 ft x 10000 ft array
200 nmi polar orbit
200 ft antenna
200 ft antenna
150 ft antenna
9 km x 3 km Torous

21.3 km x 5.3 km solar array
5.3 km x 2.3 km solar array
200 ft antenna
Side looking radar 10 x 60 ft and multi-

spectral telescope
2 nmi cross
160 ft cross
42 ft deployable antenna
200 ft antenna (430 kw Nuclear Generator)
750 ft x 750 ft planer array
Very large erectible antennas (up to 3000 m
800 ft crossw/seperate reflectors
56 ft antenna)
56 ft antenna
42 ft deployable antenna
200 ft erectible antenna

TABLE 1-2 MISSION SPACECRAFT LISTINGS
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FIGURE 1-1 SELECTED GENERIC CLASSES

9

II SINGLE ANTENNA



the primary divisions. The planar array was indicative of missions
involving large Solar Array structures (the Solar Power Satellite shown is
clearly an upper limit to the mass and dimension of this class) and various
radar imaging concepts. The single antenna was by far the most common of

the mission concepts. The antennas ranged from relatively small (16m
diameter) deployable antennas to very large (9 km x 3 km) parabo1ics. This

large range necessitated further generic subdivision as will be discussed.
Multiple antenna platforms were also numerous and widely divergent in their
structural approach. The OAF America (Orbital Antenna Farm) shown was felt
not to be representative of a broad enough range of platforms, hence this
generic class benefited from further subdivision.

The subdivision of the three initially selected classes was conducted to
better identify particular aspects of attitude control system requirements.
The results are shown in Figure 1-2. Contained in the planar array concept
set were three structures which were very long, very thin cross-like
structures controlled by a separate stationkept unit orbiting below the
cross. Control of the small unit orbiting below the cross structure was
not addressed in this study. Due to the extreme aspect ratio (one
structure is a 3700m x O.5m cross), some reservations existed about
treating these crosses in the same group as the large planar arrays. Hence
the crosses were segregated and the planar arrays separated into flat plate
and cross structure subdivisions, Figures 1-3 and 1-4.

The single antenna class contained a large collection of deployable and
erectable concepts covering a wide range of configurations. Three natural
groupings emerged: (a) a type in which the antenna had extensive

structural support, Figure 1-5, (the three soil moisture radiometer
concepts were typical of this subdivision), (b) modular configurations

consisting basically of a relatively rigid central core with the antenna
and solar arrays as controlled appendages, Figure 1-6, and (c). the

Imaypo1e" antenna, which consists of a circumferential loop supporting the
antenna mesh and is in turn attached to a central column by tension cables.

While few specific missions presently utilizing this concept could be
identified,· it became clear that many of the single antenna missions
requiring relatively low surface accuracies could be served by such a
concept. Further, because of the design1s potential for compacting very

10
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FIGURE 1-3 PLANAR ARRAY

FIGURE 1-4 PLANAR CROSS STRUCTURE
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FIGURE 1-5 BOX STRUCTURE ANTENNA

FIGURE 1-6 MODULAR ANTENNA

13



large antennas into the shuttle bay, work had been
identified the parameters relevant to this study~

,
is shown in Figure 1-7.

previously done which
A representative design

Some of the deployable maypole antennas rotate to maintain structural
tension; however, the majority of concepts identified did not rotate after
deployment and the generic class will be represented by a non-rotating
structure. The range of antenna diameters for this type of antenna is from
30 to 1500 meters in diameter with a corresponding weight range of 100 kg
to 2640 kg. This mass range is for the structure only. No avionics or
other mission components are included.

The orbital antenna farms were separated into two subdivisions. One class
was maintained for the OAF America as a modular structure with solar array
power supply, Figure 1-8. This structure has most of its mass concentrated
toward the center of the antenna farm and can be joined with another
identical unit to form a composite structure. The Grumman Public Service
Platform is dominated by large antennas connected with a skeletal structure
to each other and the focal point avionics and power modules. This type of
structure with a small number of large antennas forms the final class,
Figure 1-9.

Sample concepts of the seven generic classes showing the range of major
parameters are listed in Table 1-3.

1.2.2 Ideal Structures
Having identified representative concepts for each of the seven generic
classes, ideal structures represented by simple generic shapes were
developed. The objective in this process was to construct a set of ideal
structures which could be characterized by a small number of parameters.
These few parameter would determine the dimensional proportions and mass
properties of a given structure. The structures would then be subjected to
a range of mision oriented requirements.

It is at this point that the "r~al" missions lose their identity in
becoming an ideal structure. Clearly, it is desirable to have as close a
correspondence as possible between the idealized structure and the variety

14
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FIGURE 1-7 MAYPOLE ANTENNA
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FIGURE 1-8 MODULAR ANTENNA FARM (OAF AMERICA)
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FIGURE 1-9 MULTIPLE ANTENNA FARM (PSP)
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TABLE 1-3

GENERIC CLASSES SAMPLE CONCEPTS

I A PLANAR AR~Y - SAMPLE CONCEPTS

I1I5SIOfl TITLE TOTAL MASS .SIZE Ixx Iyy Izz ORin OIUENTATlON PO.IER (kw) LIFETI!1E

(kg) (kg-mZ) (kg_1l2) (kg-m2) (YEARS)

flultinitionil Air Triffic 1600 17m x 17m 7.905 x 105 7.905 x 105 1.511 x 105 Geosync Pointing Accuracy 1 ~10

Control Ridir
<20 ARCSEC

Border Surveillance 36211.7 2743m.x 2.74111 2270 2.275 x 109 2.275 x 109 Geosync TBD 20 2.10

I

Coastil Anti-Collision 9.072 x 105 304llm x 304m 7.!l23 x 10' 7.023 x 1011 7.0935 x 1011 Geosync Pointing Accuracy 3M.' (Ileimed ~10

20 ARCSEC to Satellite)

I
Hi!:ih Slewing
Rates ",2°/Sec

Multinitionil Energy 15422 22llm x 22llm 6.716 x 107 5.715 x 107 1.341 x 108 556kJ11 Pointing Accuracy 20 ""'10

Distribution
.001 IJrad

Trucking Rate
lO/Sec

Solir Power Sitellite 1.111 x 107 21.3km x 5.3km 4.552 x 1015 1.554 x 1014 4.707 x 1015 Geos,"c Pointing Accuracy lOOOOHU 30 Years
1 Arc Minute (Generi.ted)

I II CROSS STRUCTURE - SAMPLE CONCEPTS

Ilear Term Navigation 1600 4llm x .5m 1.5116 x 105 1.516 x 105 3.172 x 105 Geosync Pointing Accuracy 1 ~5

Conceot
<:20 ARCSEC

Personil Navigation 1361 3706m x .5m 7.7' x lOll 7.79 ~ 11)11 1.56 x 109 Geosync Pointing Accuracy 2 ~10

Uri~t. 'iP.t
<20 ARCSEC

-_.---- - ----
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TABLE 1-3 (Cont1d)

I1A LARr.E E~ECTIILE PARAIOLIC ANTENtlA - SAMPLE CONCEPTS

MISSION TITLE TOTAL MASS SIZE !xx Iyy Izz O~IIT O~IEHTATION POWE~ LIFETIME
(kg) (kg-n2) (kg-m2) (kg:.ft2) (kw) (YEARS)

SOIL MOISTURE RADIOMETER

(TetrAhedrAl Truss) 2.9 x 105 1294m x 575m 1.3 x 1010 2.7 X 1010 3.1 x 1010 1000 km PolAr Pointfng to 2 ~10

x 67&11 Sun Sync. 10 ~rid

(DUAl Rim Uebmesh) 1.3 x 105 1294m x 575m .45 x 1010 2.0 x 1010 2.1 x 1010 1000 km Pohr 11 2 ~10

X 6711m Sun Sync.

t

II Il S!1I\LL «20lJ4) ANTE/lrIA - SAMPLE COIICEPTS
(AntennA)

Votintl/Polling 5900 45.7m 2.749 x 106 1.022 x 10' 2.197 x 10' Sync. 10 A~CSEC Pointing 90 ~5
1 ARCSEC StAbility

E1 ectronic "'~ i1 9070 61m 3.269 x 106 3.17 x 106 3.33 x 106 Sync. 10 A~CSEC Pointing 15 ~10
1 A~CS[C StAbility

DisAster CommunicAtors 8165 '1m 4.41 x 106 2.99 x 106 4.3 x 106 Sync. 10 A~CSEC Pointing H5 >5
1 ARCSEC StAbility

NucleAr Fuel LOCAtor 1360 12.llm Sync. 10 ARCSEC Pointing .3 )5
1 ARCSEC StAbility

--



TABLE 1-3 (CONCl.)

lIlA OR8ITING AtITENNA FORH - SA~PLE CONCEPT

HISSIO!I TITLE TOTAL MASS SIZE Ixx Iyy hz ORIIT OIUEtITATlON POWER LIFETIHE
(kg) (kg_tII2) (k~-m2) (kg-ift2) (kw) (YEARS)

OAF AMERICA 61)60 6&1 x 46m T80 TID T80 Geosync. 'ointin~ Accuricy 20 >20
x 25m ~20 ARCSEC -

)

I

III 8 GEOSTATIONARY PLATFORMS • SAH'LE CONCEPT

GRUMl1EN PSP 50700 14lD x 7!n 180 TID TID Geosync. 'ointing Accuricy TID ~20
x70!1 s.10 ARCSEC

N
a

J ) ) ) ) ) _J ) ) ) ) )
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of missions used to make up the generic class. To fully accommodate each
individual structure in the composite would require a complete
parameterization involving a multitude of parameters. Because of the large

number of classes, the large number of mission oriented parameters (orbit,
pointing accuracy, etc.), and the desire to identify broad general trends
in auxiliary propulsion needs, the identification of a single structural
characteristic which could scale the dimensions and mass distributions
would be of great value.

Some of the classes yielded readily to a single ideal component while
others require some modular construction of ideal components. Where more
than one component is necessary, relations linking the scaling parameter
with the size and mass of each component were derived. In each class,

however, it has been found possible to characterize the dimensions, areas
and mass properties in terms of a single parameter. In the following

paragraphs a description is given of the ideal structures and the scaling
laws which govern them.

Planar Arrays

Flat Plate (IA) - As the name would imply, the simple structure element is
a two dimensional flat plate. Three parameters which define the structure

can be identified, the length, width, and surface density and these are
obvious scaling parameter candidates. Length was chosen as the basic

parameter and the other values are either fixed or are mathematically
related to length. Figure 1-10 shows the ideal structure chosen for this

generic class. Coordinates are defined as shown with y along the major
axis and x along the minor axis. This structure is characterized by a

constant ,aspect ratio of lh~ = 4. A second constant is surface density,
set at 0.75 kg/m2• These factors are based on the individual mission

concepts studied.

Cross Structure (IB) - Once again a single ideal structure will be
sufficient and a simple two dimensional cross structure is proposed. The
scaling parameter chosen is length of the arms and each arm is equal in

length and 90 0 apart. The surface density will be fixed at 14 kg/m
2

and
the width will be set at 0.5 m. The aspect ratio will, therefore, vary as
the length varies. Figure 1-11 shows the ideal structure, coordinates and

structure parameter ranges.
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STRUCTURE VARIABLE: LENGTH (I) RANGE I- 30 TO 21000m

MASS RANGE: 170kg TO 8.27 x 107kg

FIGURE 1-10 .Flat Plate Ideal Structure (IA)
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STRUCTURE VARIABLE: LENGTH (I) RANGE I • 40 TO 4000m

..r--­
(

MASS RANGE: 560kg TO 56000kg .

~
(

I I

FIGURE 1-11 Cross Ideal Structure (IB)
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Single Antenna
Large Erectib1e Structure (IIA) - This structure would be best idealized by
a simple box structure. The solar paddles in the front of the actual
structures studied are very small in weight and area because the mean power
requirement is only 2 kw. Furthermore, the structure mass dominates the
front appendage and in the interest of simplicity the appendage was
discarded. The dimensions of the box were defined with box length, 1,'
being the primary variable and w = h = 1/2 1. A specific mass of 150 kg/m
(of length) was derived from the mission set. Figure 1-12 shows the ideal
structure, coordinants and structure parameter ranges.

Smaller Modular System (lIB) - In this class, it is apparent that no single
ideal structure will be adequate. An additional complication is the

occurrence of two missions with nuclear power sources instead of solar
array power sources. To comply with the one parameter classification goal,
it becomes necessary to relate two components, solar array size and
avionics size to the scaling parameter, antenna diameter. A relation can
be derived relating antenna diameter to power requirements for solar
arrays, however, there is no such satisfactory relation between the RTG

missions and antenna diameter. It was felt that the inclusion of a single
RTG mission would be unproductive. It was therefore eliminated and a

single modular structure retained which scales as the antenna diameter.
The diameter can be related to the power requirement by a factor of 1.5 kw/
m. The antenna mass has been curve fitted to information from the
literature sources for erectable and deployable antennas as shown in Figure

1-13. From the relationship shown, antenna mass is determined from the
antenna diameter. The power required is also determined from the antenna

diameter and can then be used to calculate the solar array (S/A) area and
weight.

The total system mass can be determined from antenna diameter scaling based
on a relation derived from the mission set. This approximation yields 135

kg/m of antenna diameter. Having now determined total system mass, antenna
mass, and S/A mass, the avionics and miscellaneous mass can be found. This
mass can be translated into a volume by estimating package densities. A
value of 19 kg/m3 has been assigned for avionics scaling. The resulting
volume is used to scale a cube which fits between the antenna and solar
arrays. This composite ideal structure is shown in Figure 1-14.
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STRUCTURE VARIABLE: LENGTH (2) RANGE t • 82 TO 1300m

MASS RANGE: 1.23 x 105kg TO 1.95 x 105kg

/---.

I I

FIGURE 1-12 Box Ideal Structure (IIA)
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STRUCTURE VARIABLE: ANTENNA DIAMETER D-l5m TO 200m

MASS RANGE: 2025kgTO 27oo0kg

I I

FIGURE 1-14 Modular Single Antenna (lIB)
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The parabolic surface will be modelled as a paraboloid with a focus to
diameter ratio of 0.5. The solar array will be modelled based on the
Lockheed S/A aspect ratio of 8.85 and power density of 13.5 kg/kw.

Maypole or Hoop and Boom Antennas (IIC) - This class of structure is almost

idealized without any simplification. The ideal structure consists of a
parabolic surface with focus to diameter ratio of 0.5 and a central shaft
which has a total length of 70 percent of the antenna diameter. The range
of diameters which will characterize this structure are from 30 m to 1500

m. Figure 1-15 shows the ideal structure used for this class. The total
mass of the structure is based only on relationships based on mass data
available. The relationship used states: mass (kg) = 1.73 (0) + 48.1.
The area to mass ratio of the maypole antenna is very high because of the

exclusion of avionics or other mission components from the total mass. The
exclusion of avionics mass was justified because most of the missions
examined had the antenna itself as the dominant factor in determining mass
propert i es.

Multiple Antenna Platform
Centrally Concentrated Mass With Appendages (IlIA) - The Orbital Antenna
Farm (OAF) America is the mission model from which an ideal structure will
be extracted. A true range of missions is not present in this category and
a reasonable range of size variations was determined from analogy to other
generic classes. This structure has a modular design which is reflected in
the ideal structure. The antenna "rack" is assumed to have two antennas of
equal diameter and the antenna diameter will be used to scale the ideal
structure. Two square solar arrays will be scaled based on the power needs
of the platform. For the baseline model, this power requirement is given
by two 30 m antennas needing 20 kw. Power requirements will be assumed to
scale linearly with antenna diameter.

.~

\

mass of the platform is modelled as a cylinder of 4 m in
14.3 m long for a 30 m antenna model. Once again a value of

used for avionics packaging. Total mass is assumed to scale

antenna diameter, hence avionics mass and volume are
substracting antenna and S/A mass from total mass. Figure

ideal structure used for this class.

The central
diameter and

3
19 kg/m is
1i nearly with
determi ned by
1-16 shows the

Series of Large Antennas (IIIB) - This multiple antenna platform

illustrated by the Grumman Public Service Platform (PSP) can be best
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STRUCTURE VARIABLE: DIAMETER (d) RANGE 30m TO l500m

MASS RANGE: l00kg TO 2640kg

!~

I I

FIGURE 1-15 Maypol e Antenna (lIe)
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STRUCTURE VARtABLE: OtAMETER (d) RANGE d - UHO 60m

MASS RANGE: 3000kg TO 12000kg

~
!

FIGURE 1-16 Multiple Antenna Fann - Centrally Concentrated Mass (IlIA)
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parameterized by the number of antennas on the platform. It will be
assumed that each antenna will be of equal 60 mdiameter. The mass ratios
between the antenna row and the avionics row will be fixed at 0.5. The
solar arrays will be scaled on the basis of a 10 kw/antenna. The ideal
structure chosen for this class is shown in Figure 1-17. Total mass
figures are based on ant~nna mass of 10,000 kg/antenna, and power scaling
will be the same as previously discussed. The avionics masses will be
assumed to be point masses.

For each of the seven ideal structures, the relations that have been
developed have been coded to calculate individual component mass properties
and dimensions. This program combines these components into the ideal
composite structure with corresponding total mass, dimensions, and
inertias •. The computer code takes each relevant scaling parameter and, for
a full range of this parameter, generates a range of masses, dimensions,

and inertias. Mass values for the seven idealized structures have been
generated using this code. Examples of the mass and moment of inertia

figures are shown in Figures 1-18 and 1-19. The complete mass and inertia
data package is shown in Appendix B, Figures B-1 through B-14. These
curves characterize the generic space structure classes in terms of a
single scaling parameter and lay the groundwork for the work that follows.

The rangles of the scaling parameter, mass and moments of inertia are
summarized in Table 1-4.

1.3 Single Shuttle Launch Impact on Generic Classes
To better understana the short term auxiliary propulsion ·requirements of
Larye Space Structures, a limitation of the generic classes to those which
can be launched using a single shuttle flight was examined. The limitation
of a single shuttle launch capability will force the study to concentrate
on a smaller parameter range and a different antenna type. Consideration
of a smaller parameter range allows a more in depth look at the misisons
currently planned for the short term (1990-2000).

Figure 1-20 illustrates the shuttle payload envelope. As a general rule
for deployable structures, the shuttle is volume limited rather than weight
limited. This indicates the need to utilize packaging studies as well as
mission concept and system studies in modifying generic classes. The
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STRUCTURE VARIABLE: NUMBER OF ANTENNAS RANGE n· 2 TO 10

MASS RANGE: 44000kg TO 216500kg

\.

•

FIGURE 1-17 Multiple Antenna Farm: Series of Large Antennas (IIIB)
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c. Maypole Ante;'nas

III. HULTIPLl ANTEXNA PLATFO~~

A. Centr~11y Concentr.te~

Mass W!Appendalea

I. Series of LarC. Antennas
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TABLE 1-4

IDEAL STRUCTURE SUMMARY

SCALING PAlUMETEll MASS
I xx In I

xx Z
PA!AHETEJ. ItANGl ~ (k&-.Z) (kl-'

Z
) (k&-. )

Leolth 30. to 2lka 170kl ta I.Z7xl07kl 7'7 ta Z.Zlxl0
1S lZ7S0 te 3.04xl01S 13S47 ta 3.Z3xl01S

Len&th 40. ta 40'lOa S'Okl ta S'OOOkl 7.47xI0~ ta 7.47xl010 7.47xl07 ta 7.47xl0
10 1.4'xl0S ta 1.4'xl0

11

Leolth I:z. to 13'101o I.Z3xl04kl ta 1.'Sxl0Sk& 3.44'xI07 ta 1.373xl011 1.371xl07 ta S.4'3xl0
10 3.44'xI07 to 1.373xl0

11

Antenna Di..etet' lS. ta ZOIJlo ZOZSkl to Z.7xl0
4
kl 1.3Sxl0S ta 1.013'xlO

I 1.171xl04 to 1.711xl07 1.3Sxl05 ta l.'Shl0
1

Antenna Diameter 30. to lS'Io. 100kl ta Z'451<3 4..0 to 4.IZ3xl07 41'0 ta 4.IZ3xl0
7 134Z5 ta 7.13xl0

1

Antenn~ Dla.eter lS. ta ,Ota 3000kl to 1.Zxl0
4
kl 71126 to 3.6ixl0

5 79349 to 3.12xl0
5 30143 to 1.03xl0

6

No. of Antennas Z to 10 4.40xl0
4
kl te 2.1'Sxl05kl 2.97xl07 to 5.31xl0' ','x106 to 4.17xl0

7 1.,axl07 to 5.26xl0'
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necessity of using deployable structures rather than erectible structures
with a single shuttle launch stems from the characteristics of the building
mechanism and its support needs. These characteristics and support needs
are outlined below.

It is very unlikely that erectable structures will be built using a single
shuttle launch. A need exists not only for the beam builder and raw

materials but also for a support platform to serve manufacturing and
support crew habitat needs. The need for these platforms breaks down

further into two areas - mechanisms and operating time. The primary
mechanism to build these structures is the beam builder. From
conversations with Boeing Aerospace structures technologists, as well as
Tom Dunn (NASA Marshall), and Eric Egler (NASA JSC), it was concluded that
there are two main reasons for elimination of the beam builder from single
shuttle missions. These are shown below.

1. Beam builder itself may weigh 10·s of tons and take up 30-50
percent of shuttle mass capacity. Mass left over for raw
materials would not be sufficient to build a significantly
large structure.

I I

2. Shuttle on-orbit time capability will not be sufficient to
enable the completion of a structure with a single shuttle
crew.

Each generic class was modified to be launched in a single shuttle flight.
~-- The primary generic classes - the plate, the single antenna, and the

multiple antenna were treated by forming four classes of deployable

structures. The rectangular plate structure which is an erectible type- of
LSS was replaced by a deployable tetrahedral truss concept. This truss

when deployed forms an eight-sided plate structure and may be used for
similar, although smaller scale, missions as the original plate structure.

A second deployable class was formed by extending a solar array blanket
across the face of the tetrahedral truss. This class is in reality a

subclass or modification of the first class (1).
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The single antenna class, (II), was restricted to the modular antenna
category because this class contained the majority of missions which could
be filled with a deployable antenna type. The multiple antenna class
requirements were best met with the series of antennas concept using
deployable antennas. A series of antennas structure was also chosen to
represent the multiple antennas because its configuration poses unique
control requirements due to the large differences in inertias. The
modifications to each class are discussed in more detail in the following
paragraphs.

Plate Structure
A recent study conducted for NASA Langley Research Center by Boeing
Aerospace Company (Reference 1) found a tetrahedral truss to be the leading
candidate for missions involving large deployable planar trusses. The
tetrahedral truss was found to be the least complex (minimum number of

different elements), have the highest natural frequency, and the lowest
mass for a given area. Figure 1-21 illustrates the tetrahedral truss

concept.

This structure can be used alone as a base of operations for multiple
antennas, solar power generation, or it may be curved to form a parabolic
antenna. Multiple antennas are covered in the third primary generic class
and hence will be omitted from the plate class study. We will concentrate
instead on two alternatives. First, the structure without any attachments,
and second, the structure with a solar array blanket covering one face of
the structure.

The shuttle is volume limited by most deployable antennas. For the
structure without an attached S/A blanket, the structure sizes that will
fit into a single shuttle include a maximum B dimension of 300 meters. If

the size and mass of the auxiliary propulsion system is included, the
maximum size of the antenna wi~l decrease. To ayoid an iterative. process

to converge on the maximum antenna size, the maximum size considered
without a solar array blanket was set at 250 meters. Inertias and mass

properties formulae of the tetrahedral truss structure are listed in Figure
1-22.
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The plate structure with a solar array blanket is weight limited in a
single shuttle because of the solar array mass. Using SOA solar array
technology, the solar blanket will ~eigh 13.5 k9/kw

2
including the storage

canisters. Elimination of the canister mass brings the specific mass
number to 12 k9/kw

2
• Because of the uncertainties in technology development

2
and shuttle requirements, a value of 13.5 kg/kw will be used.

A tetrahedral truss structure with a solar array blanket is limited to a
maximum dimension of 150 meters. The resultant mass is 24420 kg or 83

percent of shuttle capacity without the APS. It is intuitively obvious
that this type of structure would greatly benefit from electric propulsion
if part of the power generated could be used when necessary for the APS.
For this study, however, we will charge the mass of the S/A to the vehicle.
Table 1-5 illustrates the complete mass properties of the plate structures.

Modular Antenna
The restriction to deployable antennas changes the antenna scaling law to

allow only for mesh deployable antenna types. An estimate using the upper
limit of mass for mesh deployable antennas has been made from Reference 2.

There is a variation in the estimates of antenna mass for mesh deployables
of a factor of about three. The variation is due to the variety of

configurations for a given antenna diameter. The equation shown below
models the mesh deployable antenna mass. This equation includes an
allowance for the feed support and represents the upper limit of mass
estimates.

x D 2 + 15.112 D _ 49.11
ANT ANT

-3
MANT(k9) = -1.8345 'x 10
with D in meters

ANT

Modelling the system with a mesh deployable antenna rather than a preclsl0n
~. deployable antenna lowers the system mass considerably. The 200 meter

antenna system with avionics and solar. array have a total mass of 18000 kg.
The mass properties for the mesh deployable modular antenna are shown in
Tabl e 1-6.
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TABLE 1-5 PLATE STRUCTURE MASS PROPERTIES

WIO Solar Blanket

Parameter

B(m) 30 100 250

Area(m2) 584.6 6495 40594
~~,

Depth(m) 1.86 6.19 15.48

Package Length(m) 1.90 6.32 15.8 /~

\

r~ass(kg) 506 1618 3672

Ix' IY(kg_m2)
~,

23700 8.42xl05 1.1945x107

Iz(kg-m2) 47400 1.684xl06 2.389x107
'~

"

WI Solar Blanket '~

B(m) 30 100 150

Area(rn2) ''\,584.6 6495 14612

Depth(m) 1.86 6.19 9.29 \
Package Length(m) 1.9 6.32 9.48

Mass(kg) 1334 11350 24420
. 2

52390 5.995x106 3.78x101Ixly(kg-m )

Iz(kg-m2) 130020 1.1883x101 7.549x101

"

\,
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TABLE 1-6 MODULAR ANTENNA MASS PROPERTIES

I

,"---- Parameter Small Medium Large

"~ Antenna Diam.{m) 15 60 200
MaSS{k9~ 2300 8375 18017

5 6
,'--''', I (kg-rn ) 26810 7.367x10 6.663x10x 2 5 ' 6I (kg-m ) 18483 4.707x10 5.161x10

Y 2 6 6
/"

I (krn-m ) 21821 1.059xlO 7.376xlOz

TABlE 1-7 MULTIPLE ANTENNA MASS PROPERTIES.
,~'

Parameter Small Medium Large
~'

# Antennas 2 3 4
/-' Mass{kg) 7500 11250 15000

2 . 6 7 7I (kg-m ) 5.6575x10 3.271x10 8.96x10x 2
1.498x106

2.278x106
3.041x106

~' I (kg-m )
y 2 6 7 ' I

I (kg-m ) 7.0812x10 3.35x10 9.966x10z
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Multiple Antenna Systems
For this type of structure, dramatic reductions in mass result from using

deployable rather than erectable antennas. It is also necessary to treat
the support structure as deployable. The deployable multiple antenna

system is volume rather than mass limited. The maximum number of antennas
with structural support and avionics included is five. Because of
packaging uncertainties and additional APS volume, the maximum number of
antennas is taken to be four. The mass properties for the multiple antenna
system are shown below in Table 1-7.
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2.0 ESTABLISHMENT OF DISTURBANCE CHARACTERISTICS
The objective of Task 2 was to determine the forces and torques which
affect the orientation, orbital position and shape of the generic classes
defined in Task 1. These disturbances include those due to environmental
effects and any that may be generated on board. In short, all forces and
torques except those generated specifically for control were considered.

A literature search was first conducted to identify disturbance sources and
to separate them into important and insignificant groups. The disturbance
literature is extensive and a considerable degree of selectivity was found
necessary. Important sources were determined to be: radiation, gravity
gradient, aerodynamic and orbit perturbations. Magnetic and thermal
effects were examined but eliminated from further consideration. Magnetic

torques were found to be too dependent on specific vehicle payloads to be
easily characterized. In addition, they were relatively small in low earth

orbit and insignificant at geosynchronous altitudes. Thermal effects have
many important consequences but were not found to be significant as regards
auxiliary propulsion.

Each of the disturbance sources were examined in some detail to describe
how each disturbance is generated. Also to define the distribution in
magnitude and direction, the variation with time and the functional
dependence on configuration, mass properties and mission parameters such as
altitude, orbJt inclination and eccentricity. The results .of this task
provided the information necessary to estimate the disturbance effects on
each generic class or a function of the scaling factor in Task 3.

2.1 Literature Search
Existing bibliographies dealing with disturbances and passive attitude
control were brought up to date and reviewed. Some of these compilations

were extensive. The objective of the review was to extract entries which
described the environmental field, defined the force and torque generating

mechanism and identified the important parameters. Applictions and
insignificant effects were screened out. The reduced set of references

appears in Appendix B and covers the following:
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o General Surveys
o Radiation
o Gravity Gradient
o Aerodynamic
o Thermal
o Orbit Drift
o Mi scell aneous

2.2 Analysis of Disturbances
The important disturbance effects are described individually in the
subsections below:

2.2.1 Radiation Disturbances
In the analysis of radiation disturbances for earth orbital missions, three
sources of radiation require consideration. The primary disturbance is
from direct solar radiation which contributes both electromagnetic forces
from photons and a plasma force from the solar wind. A secondary
disturbance is earth illumination which can be reflected sunlight or
infrared emission. Finally, small effects can result from spacecraft
asymmetrical radiation emission in the form of thermal hot spots or radio
transmissions. Each of these disturbances is examined below.

There are also three factors to be considered in the determination of
forces from any radiation source. The quality of incident radiation
determined by the intensity, spectrum, and direction is the first
determinant. Second, is the geometry of the spacecraft including the shape

of the surface and the location of the sun with respect to the spacecraft
mass center. Finally, the optical properties of the surface upon which the

radiation is incident or from which it is emitted must be considered.
Table 2-1 summarizes the radiation sources and force determination factprs

to be used during this study.

Direct Solar Radiation
The two sources of direct solar radiation, photon pressure and the solar
wind plasma force, are separated by four orders of magnitude. The solar
wind is so much weaker than the photon radiation forces that its effect can
safely be ignored.
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TABLE 2-1
RADIATION DISTURBANCE FACTORS

SOURCES OF RADIATION FORCE DETERMINATION FACTORS

I Direct Solar Radiation I Incident Radiation Properties,,,,.-,
A. Photons A. Intensi ty
B. Solar Wind B. Spectrum

,~ C. Direction

II Earth III umi na ti on II Spacecraft Geometry
/
~

A. Reflected Sunlight A. Surface Shape
B. Infra-red Emission B. Location of Sun

III Spacecraft Emission III Surface Optical Properties

~
A. Thermal Hot Spots A. Reflection

I

B. Radio or Power B. Emission
Transmission C. Absorbtion

~



The sun provides essentially collimated radiation with a reasonably well
defined intensity and spectrum. The solar photon radiation may be
characterized by the solar constant I which is the rate of which energy at

o
all wavelengths is received per unit area. The best estimate of this value
is 1353 ~ 20 W/m

2
which when converted to force yields 4.513 x 10-6 N/m2•

Because this constant has units of force per unit area, it is often called
a pressure. This terminology can be misleading as the pressure here is in

reality a vector quantity not a scalar.'

The solar constant follows an inverse square law which is important for
interplanetary flight, however for earth orbit missions the only source of
distance variation is the eccentricity of the earth's orbit. The variation
due to eccentricity changes the value by 3.5 percent and can, for the
purposes of this investigation, be ignored. Solar radiation, therefore, is

·2,
taken to be a constant of 1353 W/m from a collimated source.

Earth Illumination (Albedo)
.In addition to the direct solar radiation falling on a spacecraft,
reflected radiation from the earth also exerts a pressure. The effect is a
maximum at noon and tends to partially cancel the direct radiation forces.
The earth and its atmosphere act as a diffuse reflector with the result
that the albedo radiation is not collimated. This considerably complicates
the determination of the resulting forces. Often these forces are ignored
on the grounds that their omission will lead to conservative estimates of
the total direct and reflected radiation effects. While this approach is
often justified, large vehicles in relatively low orbits can experience
significant relief from the albedo radiation and it may be important to
include the effect.

Assuming the earth to be a perfectly diffuse reflector obeying Lambert's
cosine law, the radiation emitted from an element of area dA is kUcos{}dA
N/m2 per unit solid angle in a direction inclined {} to the ~urface normal:

k can be identified as the albedo coefficient and U is the incident
radiation. The radiation pressure at a distance r is

'~.

~
\

K C/c.<r.f<9£A't
7~2
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~.

directed along ~(

The nonna1 and tangent i a1 components of radiation on an area dA
2

, as shown
r---.

I in Figure 2-1 can be expressed

J; ::. ~ kCdf&C<r.ro<' d'~
// /' ~

=:: _VRC"-& ,;:>.4- d/ll (2.2)
/~ 1T' ;NJ'

and tlj..!M&.r,-"",1'7 = d/ll
,~' IT ,AJ 2.

- (/j./-c""&4-x(rnO d'A/ (2.3)
/i ,AJf

where n is a unit vector from surface element dA •
2

As a relatively simple application of the above expressions, the normal
component of radiation pressure from the earth albedo will be found for a
flat plate oriented paralled to the Earth's surface. The geometry is shown
in Figure 2-2. Using equation (2.2)

J:;:. t/ /Jd~, IC<r.f~ca:rs· dh~' (2.4)71./ . j - 0'-

directed along p. Lacking better infonnation, k may be taken as constant
over the earth surface at the annual average value of approximately 0.34.
Taking

(2.5)

I I

and 1] ( (J) is detenni ned by the conditi on 8='T1'/2
A A A

Using axes i j k as indicated i.n the figure- ..,(

K' = LRcd":J& -.r/R.r;nc9cr.rf' .,t ,./-Rr;n&f;n r'
A A.jJ :: ~ C~I' ~./;.:J f/;;zr

C =- /c-.e
C(J;.1" d ~ ff:i~/~, Cd"( = C;J::k-r
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To Sun

FIGURE 2-2 GEOMETRY FOR EVALUATING NORMAL RADIATION FORCES
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(2.6)

( 2.7)

:e.cY =-0;) fl/Z ~Cl1j"t.t;7()r -~ -ctr.:ft9(o.fJ(

and substituting into (2.6) leads

When

Defi ni ng 7/: 1'-% }' Ca-f~ = ..r;;r;r/
to

The 1imit 11 (8) can thus be expressed r (:9) -= 7/f"L /(/ (2.8)

Curves of V/kU vs. aspect angle Yare shown in Figure 2-3 with altitude as
a parameter.

\.

(2.9)

I 0
e

. dS

d

l/;
Esss

where

Earth Radi ati on
The other source of disturbance from the earth and its atmosphere is a

odiffuse radiation with a spectrum approximated by the spectrum of a 288 K
black body. This temperature varies with the transparency of the
atmosphere from 218

0
K to 288

0
K with about 95 percent of the emitted

radiation originating from the earth or the lower atmosphere. The
radiation is not collimated and may be treated in the same was as the earth
reflectance problem with the following result

~ = 2;/ ;;d~dr/d2
7T %-;~

= global average emmission constant (243 w/m2)
= element of differential area on the surface of the Earth
= distance from satellite to dS
= angle between the normal to dS and d
= earth surface as seen by satellite

Figure 2-4 shows the relative values of solar radiation, earth reflectance
and earth radiation for a spherical satellite for a range or orbit radii. \.

Spacecraft Radiation
Two sources of disturbance stem from the spacecraft itself. Thermal
hotspots resulting from an uneven temperature distribution and radio or
power transmissions from onboard antennas. The following expression gives
the thermal- radiation emitted by the spacecraft at any point (y,O) and
emissivity e(T):

~\
I

~
\

- 7 ~.

E~&) = Ej/~&joT(y/c7
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(~ For diffuse emission, the effective flux is normal to the surface and of
magnitude 2/3 E (y,9). Radio and power source disturbances can be

~ calculated from the power densities and beam efficiencies of the
transmitter.

.~.

Spacecraft Radiation Torques
From the previous sections, the amount of incident radiation on a
spacecraft from solar, terrestial, and spacecraft sources may be
determined. The resultant force on the spacecraft is dependent on the
properties of incident radiation, geometry and surface optical properties.

When radiation falls on any surface, some of the incoming radiation is
absorbed and some is reflected. The character of the reflected radiation
depends on the surface properties and is rarely well defined. Generally,
it is resolved into specularly and diffusely reflected components. In
specular reflection, illustrated in Figure 2-5, the incoming and reflected
radiation make equal angles with the surface normal. Diffuse reflection is
independent of the angle of incidence and the outgoing radiation follows a
cosine law, Figure 2-6.

The radiation forces are easily derived for absorbing, specularly
reflecting and diffusely reflecting surfaces. With incoming radiation I in

w/m2, 'the velocity of light c in m/s and angle of incidence 9, the forces
A A

are in N and can be broken down into normal (n) and tanyential (s)

components. These forces are yiven below

Radiation from a completely absorbing surface

ct'7::: flJ(-;;tl<7J& ~ s"j.;n t9)caJ& d'/l

Radiation from a completely specular reflectiny surface

eLF = (1-)(-24cc;r&)Cdt} ct'/l

Radiation f~om a complete diffuse reflecting surface

,d/"= ({)( 71~ rrr & 7";) ~ s..f.r;;>/ t1)ccrJ 9 d/J
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a total incremental force given c =
a

reflection coefficient, and c =
rm

One can combine these expressions for
absorbtion coefficient, c = specular

rs
diffuse reflection coefficient.

d7= (fI-n1JC;d ~ (/-rt:;r)c~c9J.,t../(/-c;-J.J;/J~cr.r.9d/1' (2.14)

The general expression for the radiation torque acting on a spacecraft is

L;., == /;/Kd (2.15)h-e;
where L

...-.r
V

.-.
dF

ses

= radiation torque
= vector directed from the spacecraft mass center to

element of area dA
= radiation force on element of area dA
= spacecraft exposed surfaces

~,

i

(2.16)

The practical application of this expression involves a number of
approximations in the determination of df and in the integration over all

spacecraft surfaces. The usual procedure is to approximate these surfaces
by means of simple geometric shapes (planes, cylinders, cones, spheres,
etc.). Torque on these surfaces may be calculated separately and summed
over the individual components.

2.2.2 Gravity Gradient
Although the generation of gravitational forces is imperfectly understood,
the empirical relations are well established. Two homogeneous spherical

masses will attract one another by a force
C;1;1m.­
L 2

where G is the gravitational constant; Mand m are the two masses, and L is
the distance between them.

The earth is neither spherical nor homogeneous in mass, thus, its field is
not uniform. A more precise description of the field is given by

7" = ?77 JT{/
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where U is the gravitational potential. The potential function has been
accurately determined from a study of satellite orbit perturbations.
Although the field anomalies are important for orbit determination, their
effect on gravity gradient torques is minor. For all practical purposes,
the perfect inverse square field described by equation (2.16) will be found
adequate for disturbance analysis. Generally, the product GM is given as a
constant for a particular primary and is designated ~. In MKS units, for

earth

If m is defined in kilograms and L in meters, the force is in Newtons. The
force is directed along the line joining the two masses. In orbit the
force on the satellite is towards the center of the primary body. (The
satellite also attracts the primary, but the effect is negligible except
when considering large natural satellites such as moons and planets). In
vector form equation (2.16) can be written

-"-

/" = .---a.mL
L3

The force of gravity falls off with the square of the distance and
theoretically extends to infinity. However, when several bodies are
present, as in the solar system, a point is reached where opposing
gravitational attractions become equal. It turns out that the region in
which the attraction of one body predominates is a sphere. This has been
named the gravisphere, and its center is normally displaced from the center
of the body. It is only within a gravisphere that orbits can take place.
For earth the radius of the sphere is about 1.5 x 106 km.

The torques that stern from the gravity field are often called "gravity
gradient" torques because it is the gradient of the field that generates
the torque. The mecahnism can probably best be understood by considering a

dumbbell consisting of two equal masses separated by a rod. Because the
force of gravity varies inversely with the square of the distance, it

follows that the mass nearest the center of the earth is attracted a little
more strongly than the mass farther away. A torque is thus produced
tending to align the dumbbell with the local vertical. It seems reasonable
to expect a horizontal orientation of the dumbbell to be a position of
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unstable equilibrium. The forces are nominally equal, but any slight
rotation immediately increases the attraction of the lower mass at the
expense of the upper. At the other extreme, a vertical orientation would

be expected to represent a stable equilibrium in which the difference in
attraction reaches a maximum. Both these expectations turn out to be
correct.

Another way of looking at gravity gradient torques is to consider the
center of gravity (CG) and center of mass (CM) of a body. Rotations take

place about the CM, but the CG (the point where gravitational forces are
effectively concentrated) will be displaced from the CM in an inverse
square field. The CG is always closer (or as close) as the CM to the
center of the earth. The moment of the force about the CM is the gravity

gradient torque. It is very small because the CM-CG displacement is very
small.

The gravity gradient torque on an arbitrary body can be found by
calculating the force on a mass element and summing the torque elements

over the whole body.

The gravitational force on an element of mass is

d7= :5 Pam
~.?- in Figure 2-7, the element ofIf vectors e, r, and p are defined as shown

torque is

,/~ Si nce r = p + e, the torque can be expressed

aT = ,/C( ex,$ d'7n
/".7 /

(2.17)

(2.18)

By using a binomial expansion, a first order approximation of ~3 can be

written

Substitution of (2.18) in (1.7) leads to

(2.19)

I I
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If Pand e are defi ned

evaluation of (2.19) yields

7" == ;!JY~c,r-ez.6E -~(.6~c/~.dC(C-.8)J
r/la.dZJ -.tfc~_r~2-a~ ~ac(9-c)J

~ ~~cE-ac..J _/"~2_6) ~ad(6'-A)!I (2.20)
~\

The quantities A through F are elements of the moment of inertia matrix,
defined ~\

[Z]: [~ -; =~]
-,5 -2) C

This is the general expression for the gravity gradient torque in body axes
on an arbitrary vehicle, arbitrarily oriented. In any given application
the components of j} , i.e., a, b, and c, can be substituted for once the
transformation defining the body axis orientation is established. Suppose
body and orbit reference axes are related by the conventional ZYX sequence

[~l = [?;(,4/ J[/~ ~/ JC'J ~J ] [~]

where ~, 8 , and ~ are the roll, pitch and yaw Euler angles.

Now pin orbit axes is simply -kp ; thus pin body axes is

Evaluation leads to

a .: ~.r;1'?(9

6 .: /::J ;;' /l..-yIerrf,9

c = /,;/ ca-.ry1 'o-.F 6?
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(2.23)

I I

and these values, substituted into (2.20) lead to

;s; == ;9..:1:;/4co-:f¢,.1.<=,;n2& ~h;"r-' ';-;)7~~ ~ .?3t"';r./6?C0;7 2cd
'"/,;;) ~(c-g)c~t;;.r;n2yf/

?if = ~ ~,2).r;h¢.r;n 2& -Fcrr..r19.r;n 2pf -.?E~~?9CtJ:f}/J -J;n~) .(/ ?'i- .
r(C-A) .,r/-n2&cn-?,/

- ~ -:2 2 .~ z../7" 2..( or: 2LJ)J;::: ~I Eco:r 'G'fln Z¢' -hrr.r '61..t>'"7J2¢' - 2E( Ctr.f 0'.1"'/)7 ro - / /7 0/
-fi;3 -r fJ-8)//h.?&f,'7J ¢'J (2.21)

If the body axes are chosen as principle axes of inertia, then 0, E, and F
are zero, and the body axis torque expressions simplify to

~ ::: -::a ~8Jc~2&J"/'n 2;d/-;O.:?
1 ~ ~ (c-A) f/'"/?.;;"S) C;r:1f1'/5.:J.f

f"= ? f/J-4.r/h2t!J f/7'yf.k~.? (2.22)

If the orbit is circular,..a~-:? can be replacedJ2~ If, in addition, the
I

angles are small enough to justify small angle approximation

~ -- ..:P-f22(C--8)¢

f ,.... ~"J22~-/lJtJ
J r-J..£;;2 (A-6')I& ~ 0

It should be noted that the yaw angle, ~, nowhere appears in the torque
expressions and that the yaw torque is of second order compared to the roll
and pitch torques. For small angles, the roll and pitch torques are

proportional to the roll and pitch angles.
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2.2.3 Aerodynamic Disturbances
Aerodynamic effects on spacecraft are significant for orbital altitudes up
to approximately 1000 km. The forces due to radiation pressure and
aerodynamic drag and lift are of similar magnitude for altitudes between
600 and 1000 km, beyond 1000 km the radiation-related forces are typically
much greater than those arising aerodynamically. This analysis will,
therefore, treat only those altitudes ranging from 300 km. (corresponding to
low earth orbit, the LSS construction and assembly environment) to 1000 km.

Knowledge of the characteristics of the atmospheric medium is essential for
analysis of the aerodynamic forces acting upon the structure. The Knudsen
number, defined as the ratio of the molecular mean free path to a
characteristic dimension of the spacecraft, serves as a convenient means

for dividing the flow into various regimes. The flow is classified as
continuum flow if the Knudsen number (K) is less than 10-2, as slip flow

-2 -1 -1for 10 <K <10 ,as transition flow for 10 <K <10, and, for K >10, as
free-molecular flow.

Using the above criteria, LSS configurations of classes lIB, IlIA, and IIIB
are found to encounter only free-molecular flow. Several members of
classes lA, IB, IIA, and IIC have dimensions large enough to place them
within the transition flow regime. However, due to the approximate nature
of the estimated spacecraft dimensions and the absence of any
well-established theoretical or empirical understanding of transition flow
effects, it will be assumed for the purposes of this study that
free-molecular flow is encountered by all of the LSS configurations. By
definition,the term IIfree-molecular ll implies that each particle interacts
with the structure on an individual basis and that no inter-molecular
effects occur.
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Given the assumption of free-molecular flow, there are three analytic
methods for the characterization of aerodynamic effects whose complexities
are low enough to render them sufficiently tractable and adequately general

to suit the applications of this study.

2
An expressi on of the form F = l/2C P V A (where Cis the dray

D D
coefficient, p the atmospheric density, V the velocity of the vehicle
through the medium, and A the projected area normal to the flow direction)
may be utilized to estimate the gross value of the aerodynamic force.

(2.24)

I I

where p , V, and A are as defined previously
a a are the normal and tangential momentum exchange

n' t
coefficients, respectively (properties of the surface material)
A
e is the spacecraft velocity unit vector
~v is the unit vector outward from and normal to dA

n

The final approach to the problem of analyzing the aerodynamic forces
acting upon the vehicle involves the assumption of hyperthermal flow
conditions, i.e., that the spacecraft speed is large relative to the
thermal motion of the atmospheric particles. The F = 1/2 C PV2A equationo
is utilized to determine the forces acting upon each of the major
components of the vehicle. The drag coefficient is characterized in the

literature as a function of the ratio of the reflected and incident
particle speeds for various general structural shapes.

Certain assumptions must be involved with the utilization of any of these
techniques. However, the second analytic method outlined above appears to
be most appropriate for this study and will be described in more detail
below. The first approach was eliminated largely because of the degree of
approximation involved in the estimation of some characteristic value for
the drag coefficient (C = 2.6 is commonly used). The hyperthermal flow

. 0analysls was abandoned because of the unacceptably large errors which can
be incurred for surfaces parallel to the flow.
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When equation (2.24) is used to calculate the aerodynamic loads on the
various LSS configurations, it is seen that atmospheric density,' vehicle
velocity and the normal and tangential momentum exchange coefficients are

the critical parameters.

Density is primarily a function of altitude but significant variations are
introduced by geomagnetic activity and a number of cylic effects. These
include a diurnal cycle, a semi annual cycle and 27 day and 11 year solar
cycles. Models of the density field have been constructed but these are
all empirical and correlation with measured values is only fair. The
u.s. Standard Atmosphere can be used for mean values but actual densities
can vary considerably as shown by the comparison in Table 2-2. If orbit,
time, date and solar activity data are available, reasonably good estimates
can be obtained from the model described in Reference A15 of Appendix B.

The orbits travelled by the LSS vehicles under consideration will be either
circular (assembly and operation environments) or elliptical (encountered
primarily during transfer from initial point to final destination). As

such, the velocity of the spacecraft may be expressed as a function of the
vehicle's angular momentum. Maximum and minimum values will be found at

the periapsis and apoapsis, respectively. Table 2-3 summarizes the range
of velocity values which will characterize LSS spacecraft in the regions

where aerodynamic disturbances will be of significant concern.

Particles impacting on these space structures will adhere momentarily to
the surface and then be re-emitted at some velocity which describes the
degree of equilibrium attained between the particle and the structure. The
normal and tangential momentum exchange coefficients, in addition to the
thermal accommmodation coefficient, describe this process in detail and are
given in equation form below

\.

0< = (2.25)

where E =
i

E =
r

E =
s

the energy carried to the surface by an incident particle
the energy carried away from the surface by a re-emitted particle
the energy possessed by a particle emitted with a temperature
equal to that of the surface.

z;. - z;.. (2.26)
~=,:.- z;- - Z;
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.~ TABLE 2-2
ATMOSPHERIC DENSITY VARIATION

~
(SUNSPOT AND DIURNAL EFFECTS)

1976* Low Density Atm ** High Density Atm **
A1titude* US Std. Atm (Nighttime Near Sunspot Min.) (Daytime Near Sunspot Max)

300 1.92 x 10-11 4.02 x 10-12 9.70 x 10-11

~

400 2.80 x 10-12 3.19 x 10-13 2.38 x 10..11

500 5.22 x 10-13 3.26 x 10-14 7.22 x 10-12

,.-----. 600 1.14 x 10-13 5.07 x 10-15 2.51 x 10-12

700 3.07 x 10-14 1.67 x 10-15 9.65 x 10-13

/"---
800 1.14 x 10-14 9.37 x 10-16 3.97 x 10-13

900 5.75 x 10-15 6.36 x 10-16 1.72 x 10-13

1000 3.56 x 10-15 4.64 x 10-16 7.73 x 10-14
I~

*A1titude, km

**Density, kcg/m3
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TARLL2~3

ORBITALLY -DETERMINED VEHICLE VELOCITIES

Perigee Apogee. Perigee Apogee Perigee Apogee
Altitude Altitude Radius Radius Velocity Velocity

Comment (km) (km) (km) (km) (km/s) (km/s)

Circular LEO* LEO* 7.726 7.726

Circular GEO** GEO** 3.075 3.075

Circular 1000 1000 7.350 7.350

Elliptical*** LEO GEO 10.152 1.608

Ell i pti ca1**** 300 1000 7.916 7.165

*
**
***
****

Low Earth Orbit, Altitude = 300 km, Earth Radius z 6378 km
Geosynchronous Orbit, RGFO ~ 42164 km
Maximum Velocity Conditlon at Perigee
Minimum Velocity Condition at Apogee (Largest orbit with continual aerodyanmic
effect)

2 2h =].Ia (l-e )

2a = r +ra p

ra-rpe = _-..:.._
ra+rp

h2 = 2].1

km3
Where: ].I = gravitational parameter, 3.986012 x 105 ----­

52

a = semi-major axis of orbit

e = eccentricity of orbit

ra,rp = radius of orbit at apogee and perigee,
respectively. '

va,vp = velocity at apogee and perigee, respectively.
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I
where T. =

1

T =r

T =
S

the tangential momentum carried to the surface by an incident
particle
the tangential momentum carried away from the surface by a
re-emitted particle
the tangential momentum carried away from the surface by a
re-emitted particle in thermal equilibrium with the surface

(a =1).
(2.27)

where p., P and P refer to the parti c1e normal moment um val ues. and are
1 r S

defi ned simi Iarly to T., T, and_' T •
1 r . s

Particles may be re-emitted, or reflected, either specularly or diffusely.
For completely diffuse reflection, T = T = 0 and u = 1, independent
of thermal accommodation. For compl~telY sdiffuse reflection and 100

percent thermal accommodation (a = 1), P = P and (J = 1. The thermal
accommodation coefficients of materials com~onlySused inn space structures

have values which lie primarily between 0.87 and 0.97. Past analyses have
shown the reflection of particles to be predominantly diffuse. Recommended

average values for u and u range between 0.80 and 1.0.
n t

An exercise using this technique for several bounding cases has been
conducted, the results of which are presented in Table 2-4 on a force per
unit area basis. These values represent the aerodynamic forces which
correspond to the maximum and minimum loading conditions (maximum and

minimum velocity and density, respectively) for surfaces oriented 90
0

and
450 to the direction of flow. The values used for the atmospheric density

and vehicle velocity were drawn from Tables 2-2 and 2-3; the tangential and
normal momentum exchange coefficients were each assumed to have a value of

0.90.

It is important to note that the aerodynamic loading predicted through
application of the technique presented herein corresponds to forces acting

/~.

on solid surfaces. Much of the material involved in the various LSS
configurations will 'consist of truss assemblies, RF mesh, etc. Reasonable
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TABLE 2-4

APPLICATII,NS FOR EXTRP'lE CONDITIONS

Velocity-Surface Force Per Unit Area (N/ 2)
Comment Perigee Apogee Unit Vector Angle Pe~iQee ApWgee

-.,J '"
0

t'~ax. (Radius) (Radius) 0. 0 -(0.OOO4en+O.OO18ev) (Not Applicable)
Ve1oc,; ty LEO GEO (No Aerodynamic Effect)
&
Density

45°
A

~'ax . (Radius) (Radius) -(O.0002e +0. 0013~J (Not Applicable)
Velocity LEO GEO

' n
(No Aerodynamic Effect)

&
Density

0.°
A '" .-{3.66xlo-8 ; + 1.645xlO~7 ; )t·, in. (Altitude) (Altitude) -(0.OO02en+0.00lley)

Velocity 300 km 1000 km n .y
&
Density

45° '" '" -(1.83xlO-8 ;n + 1.16xlO-7;y)~1i n. (Altitude) (Altitude) -(0.00Olen+0.0008ey)
Ve-,1 oci ty 300 km 1000 km
&
Density

) ,) ) )
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I estimation of the loads which will actually be experienced may be achieved
by applying factors to account for the transmissivity of these elements to
the forces predicted for identically-sized solid structures.

2.2.4 Magnetic Disturbances
The interaction of a satellite with the earth magnetosphere is represented
by the simple equation:

(~
...;- - -T = MXB (2.28)

I I

where M= the equivalent magnetic dipole of the
spacecraft

B= the vector describing the ambient magnetic field
T = the resultant torque acting upon the vehicle.

Analysis of these disturbances requires characterization of the earth's
magnetic field, estimation of a given configuration's magnetic dipole and
determination of the orientation of the spacecraft dipole within the local
magnetic field.

Earth Magnetic Field Model
The geomagnetic field is both complex and dynamic in its distribution,
magnitude and direction. Near the surface there are local variations in
the field caused by ore deposits. Beyond about five earth radii, the field
becomes increasingly distorted due to interaction of the field with the
solar plasma. Empirical models have been developed and the spherical
harmonic e~pansion can provide accuracies of about 0.1 percent belqw five

earth radii. Simpler models, which are actually truncations of the
spherical harmonic expansion, offer simplicity at the expense of accuracy.

Common models are

o Offset tilted dipole (quadrupole model)
o Centered tilted dipole
o Centered, spin axis aligned dipole.

The centered tilted dipole (first three terms of the expansion) provides
accuracies of about three percent between two and five earth radii and will
be used below. At 300 km, errors can reach 60 percent in magnitude and 330
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field they are not
The associated

2-9. Figures 2~lO

field1s spatial

in direction. At synchronous altitude (about 6.6 earth radii) the errors
drop to four percent and two degrees, except during periods of geomagnetic
storm activity.

Because of the length of the equations describing the
included in the text but are presented in Table 2-5.
coordinate reference frames are given in Figures 2-8 and

and 2~11 provide a graphical representation of the
distribution and magnitude.

The dynamic behavior of the magnetosphere is composed of both secular
(small scale, continuous changes due to variations of field sources within
the earth) and temporal (short term but severe in magnitude, usually
arising from geomagnetic storms or fluctuations in solar activity)
elements. In general, only the temporal variations may be assumed to be of
significance. However, it is difficult to characterize the specific nature
of these variations; severe changes in magnitude and complete reversals of
field direction can occur particularly at high altitude. In order to

accommodate the distortions and uncertainties associated with these
effects, variations of ~ 50 percent and +20

0
in the magnitude and direction

of the magnetic field is included in the analysis.

Spacecraft Magnetic Dipole
The elements with the most potential of establishing a significant magnetic
dipole within a spacecraft are current loops and materials subject to
permanent or induced magnetism. Contributions from these components may be
altered through interaction with the magnetic environment; for example,
eddy currents may be produced within current loops and hysteresis effects
may be generated within permeable materials. Certain functional spacecraft
components also possess magnetic properties of some significance
(batteries, tape recorders, transistors, capacitors, etc.).

The magnitude of the resultant magnetic dipole may be limited to those
caused by permeable materja1s used within the spacecraft structure if

appropriate design techniques are utilized. The backwiring of solar arrays
(significant sources of current loops effects) and the mounting of
batteries in pairs with opposing dipoles are two such procedures. Eddy
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TABLE 2-5

GEOMAGNETIC FIELD CENTERED TILTED DIPOLE MODEL

I I

8., ::!

J

where RE = earth radius = 6371.2 km

R = geocentric radial position of satellite
g 0 = -30401;2 nT1
gl = -2163.8 nT
hi = 5778.2 nT
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EQUATOR

DILATE
SPHEROID

SYMBOLS

Positively directed alone intersection of Greenwich
Meridian and Equatorial planes

Positively directed north alone Earth's mean spin axis

l Geocentric lon&itude, measured positive eastward frolll
Greenwich meridian to local meridian

Geocentric latitude, decH,lation measured positiv ... north
(.eocentri" and geodetic latitude differs by 11.6 milluh:s

maximum at 45" latitude.)

Geocentric colatitude = 90" - 6

Mean Earth radius, 6371.2 km

A' Geodetic lonlitude = ,eocentric lonzitude

Geodetic latitude, measured positive north from
Equatorial plane to normal to Spheroid

OEFINITlOl"S

Dipole North !'ole.-Defined by axis of ...ah:ulah:d central dipole whose ma~llell, Ii.:!d i'
hest lit to m'lin g...oma!!ne1ic field m.:r Earth's surface and whos... axis pa's... , thn'li;:h
~eocenter. Defined to be at 78.S"N. 69.0"W in northwestern Greenland.

Dipoll Equator, - Defined as great circle of spherical Earth which is normal to '·...ntral dinoh:
axis.

Dip North Poll, -Shiftin!: point on Earth's surface where .eoma!:netic field lines arc vertical.
Location chanl:cs by a few kilometers during any day in response to transient magn... lic
fields. Located northwest of Hudson Bay at about 73"N, 9S"W.

GeMetW: to Dipoll Trendormation.- This is defined by the followin!: equations (ref. II):

sin A =
cos 1/1 sin (~ - 29'")

cos 4> .\

sin 4> = sin ~ cos 11.7~ + cos. sin 11.7" cos (~- 291")

FIGURE 2-8 GEOCENTRIC COORDINATE SYSTEM (FROM NASA SP 8017)
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current and hysteresis effects, are generally of second order and falloff
with the inverse of the sixth power of the geocentric radius. Thus, at
geosynchronous altitudes, these may be assumed negligible.

It will be assumed that the only contribution to the spacecraft magnetic
dipole arises from the permanently magnetized structural elements within
the assembly. A reasonable guideline for estimating the dipole moment of

space~raft flown in the late 1960's and early 1970's is 10-2 A_m2/kg (drawn
from NASA SP 8018, March 1969). Application of these scaling factor to LSS

vehicles should yield very conservative results since these configurations
will be composed almost exclusively of non-magnetic materials (aluminum and
graphite epoxy).

Torque Calculation - -- -As mentioned previously, the equation T = MX B may be utilized to provide
a reliable estimate of the magnetic disturbance experienced by a given
configuration. The maximum magnitude of this disturbance is established by
assuming the vehicle to be fabricated completely of magnetically permeable
material, the ambient magnetic field to be at its worst case value and
these two vectors to be mutually perpendicular. Sample calculations for
the Solar Power Satellite (SPS) are shown below:

(M x 1f)max :II Ift'/BI

/MV =8.:8xlO·5 A_m2

/B/ = 180 nT

(M x B)max = 0.15 Nm

Thus, the magnetic disturbance torque experienced by any of the
geosynchronous spacecraft will be 0.15 N-m or less. Corresponding values
for vehicles in non-synchronous orbits are typified by the Multinational
Energy Distribution satellite (556 km orbital altitude) and the tetrahedral
truss version of the Soil Moisture Radiometer configuration (1000 km
orbital altitude): 0.006 N-m and -.087 N-m, respectively.

The significance of the magnetic disturbance effects may be determined by
comparison with the other disturbances experienced by a given spacecraft.
For the SPS, the net force.due to solar pressure disturbances is 505 Nand
that required to counteract the gravity gradient influences is 1525 N.
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Allowing a nominal length of ten meters for the moment arm the
corresponding torques are 5050 N-m and 15250 N-m.

The level of the disturbance due to interaction of the spacecraft with the
magnetic field is seen to be several orders of magnitude less than those

arising from other sources.

2.2.5 Thermal Disturbances
The temperatures and thermal disturbances, characterizing the various LSS
configurations must be determined principally on an individual mission
basis. . Parameters of key importance are orbital and orientation
requirements, geometric configuration, structural component characteristics
and construction materials. The general nature of this study precludes the
performance of the detailed analyses necessary to accurately predict the
respective temperature history and thermal response traits of the various
spacecraft. However, several relevant qualitative conclusions and
guidelines may be drawn from other recent studies involving LSS vehicles.

Low orbital altitudes are characterized by direct and reflected solar
fluxes, earth-emitted radiation and frequent occultation. In
geosynchronous orbit only directed solar radiation is of significance and,
for non-ecliptic orbit planes, occultation is infrequent and brief.

Figures 2-12, 2-13 and 2-14 summarize the general magnitudes and variations
which characterize these el~ments of the natural thermal load environment.

Figure 2-12 shows the simple cosine relationship between ambient solar flux
intensity at 1.0 AU (q ) and the intensity incident upon a plane surface

• s
(q ), i.e.,

n J-n =- :is ctr.rA (2.29)

Seasonal variations in q effects of the divergence of the flux, and basic
s'

uncertainty yield a ~ 4.2 percent tolerance on the curve.

In Figure 2-13, the incident earth reflected flux is shown as a function of
geometry. The reflected thermal radiation is based on an earth albedo

(reflectivity) of 0.36 and assumes· diffuse reflection from the earth
surface. The local value of the albedo can vary significantly from the
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average caused by earth surface character and cloud cover. Reflection may
also deviate significantly from the diffuse condition.

The heat received at the

where

~
(

Earth emitted flux is shown in Figure 2-14.
satellite surface is

q = Fq
n,e e.

q = flux emitted at the effective earth surface
e

(2.30)

I I

F = radiation view factor - isothermal sphere to planar
element

F = function of h and A
e

qe varies diurnally, seasonally, and locally, but not by large amounts.

In general, for both high and low earth orbits, the periods of occultation

result in a progression toward a uniform structural temperature
distribution. Thus, there is only a very small probability that critical

thermal deformations will occur during times of shadowing. It is important
to note that this observation is valid for the symmetric, repeating truss

module type assemblies characterizing the majority of the LSS vehicles.
However, very different effects may be encountered in specific appendages

of a given configuration; for example, long, slender flexible arms
constructed of materials with widely varying thermal expansion

characteristics have been found to exhibit behavior very similar to that of·
a bimetallic strip when passing from solar illumination to occultation

condit ions.

Satellites in low earth orbit are characterized by relatively high overall
temperature levels with the potential for pronounced cyclical temperature
variations. Orientation is of prime importance for geosynchronous vehicles
as illustrated in Figure 2-15. Sun-facing configurations encounter an
essentially constant solar flux while the solar environment "of earth-facing
vehicles varies continually. Due to the absence of energy loads induced
via earth albedo and emission, the temperatures characterizing
geosynchronous structures are typically lower than those of low altitude
satellites.
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Recent studies have shown that no significant overall structural curvature
is exhibited in a natural radiation environment (direct solar or direct
solar together with earth-reflected and emitted radiation) by

configurations composed of repeating truss moduli. Truss assemblies
experience little member-to-member shadowing and are therefore chaacterized

by little thermal distortion in this environment.

The presence of non-uniformly distributed onboard heat sources (RTG's,
PPU's, radiators, etc.) and large scale shielding and/or reflecting
surfaces, such as solar cell banks and antenna arrays, can give rise to
significant structural disturbances.The distortions produced by non-uniform
onboard heating are approximately proportional to the source power levels.
The chief impact of shielding and reflecting surfaces lies in their
influence upon both the level and distribution of temperatures within the
structure. These effects are particularly noticeable for earth-facing
satellites in geosynchronous orbit where there is no potential for
modulation of the shadowed members' environment by earth-based radiation.

Joint conduction effects are rendered effectively negligible by the long
slender nature of the individual structural elements for all but the most
detailed thermal analyses. In general, these components are characterized
as being isothermal. However, if the member cross-section is not

sufficiently small or the length/diameter ratio not adequately large, then
significant temperature distributions may be established and produce
non-trivial bending moments within the element. At this juncture, the
member end conditions become of critical importance - rotating joints will

permit the distribution of these bending loads throughout the structural
assembly whereas rigid junctions will result in the deformation of the

stressed element.

Thermal disturbances in LSS vehicles may be minimized thtough the
utilization of construction materials possessing low thermal expansion
characteristics and high rigidity. In general, high values of thermal
conductivity will promote the establishment of uniform temperature
distributions within the individual members. High thermal capacitance
minimizes the time rate of element temperature variation:

dLjL ,-..J o<r LfT

,RA LJ/-;kJX ......, Q
•

C.dJ/A1- Q
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where k= material thermal conductivity

A = member cross-section normal to heat transfer direction
AX = distance within member across which temperature difference

AT exi sts
Q= quantity ~f energy being transferred across member

Graphite epoxy composites and structural aluminum (e.g., 6061-T6) typify
the property extremes of candidate LS$ materials, possessing respectively
low and high values of thermal conductivity and coefficient of thermal
expansi on.

The most .pronounced mission-related impacts of LSS thermal environments lie
in the possibility of shape change in contour-sensitive components such as
antennas. These influences may be most easily controlled via conventional
linear actuator type mechanisms. Thus, the damping of thermal disturbances

will probably not play a significant role in the determination of first
order characteristics and requirements of LSS auxiliary propulsion systems.

2.2.6 Orbit Perturbations
The orbit of an earth satellite deviates from that described by a pure
conic section by an amount proportional to the perturbing influences acting
upon it. Consequently, in-flight course adjustment may be necessary in

order to. facil i tate sati sfactory mi ssi on performance. Thi s can be
accomplished by on-board auxiliary propulsion systems operating in either a
continuous or periodic mode.

Of the various LSS vehicles considered within this study, the
stationkeeping requirements of those in geosynchronous orbits are most
significant. There are three primary long-term perturbations on the orbit
of a 24-hour stationary (equatorial and circular) satellite: the longitude

drift due to the triaxiality of the earth, the long term increase in
inclination of the satellite's orbital plane due to lunar and solar

perturbations, and the change in eccentricity caused by solar radiation
effects. These three perturbati ons are essenti ally independent of each

other.
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The analysis is restricted to geosynchronous orbits and involves the
determination of the velocity increments required for orbit maintenance in
the presence of these major disturbances. The corresponding acceleration

levels are calculated for both continuous and periodic correction.

Triaxiality (East-West Stationkeeping)
Triaxiality (earth's oblateness. and equatorial ellipticity) gives rise to
orbital perturbations due to the .longitudinal. variation of the earth1s
gravitational field. In effect, a satellite is found to oscillate, or
librate, about some localized well within the gravitational potential
field. There are four points at.which the satellite could theoretically
remain stationary, symmetrically located as extensions of the principal
axes of the equatorial ellipse. The two points of the minor axis
correspond to positions of stable' equilibrium while those of the major axis
are positions of unstable equilibrium. The libration induced by only the
first order effects of the gravitational field leads to the location of the
points of stable equilibrium at 75

0 E and 105
0

Wlongitude. It is about
one of these two sites that a satellite will oscillate.

Inclusion of higher order harmonics in the analysis results in the
displacement of the actual physical location of the points of stable and
unstable equilibrium by 20 or 30

• The net increase in longitudinal

acceleration experienced' by the satellite due to these higher order effects
is approximately 10 percent. Thus, the consideration of only first level

quantities will yield acceptably accurate results.

The average annual tiV requirements for longitudinal stationkeeping are
given by the equation:

IlV = 5.64 sin 2(A+15) (ft/s) (2.31)

where A= longitude in degrees east of Greenwich

The longitudinal variation of this quantity is described in Figure 2-16
along with the location of the points of stable and unstable equilibrium.

ThetiV requirement is found to be maximum for those longitudes midway
between these points.
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FIGURE 2-16 LONGITUDE (EA?T-WEST) STATIONKEEP1NG REQUIREMENTS
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Orbit Inclination (North-South Stationkeeping)
The orbital plane rotation due to the gravitational attraction of the
satellite by the sun and moon may be characterized with an equation of the

form:

i = A sin8cos8(0/yr) (2.32)
where i = average annual orbital inclination change

A = a quantity whose value depends on the body
creating the effect

8= the inclination of the equatorial plane with respect
to the ecliptic or lunar orbital planes

the quantity A is actually the slope of a curve describing the periodic
variation of the satellite's latitude. For approximately the first ten
years of this cycle (corresponding to low cumulative values of
inclination), the slope of the curve is approximately constant.
Stationkeeping acts to confine a satellite to this region of essentially
nonvariant slope. Thus, constant values may be reasonably ascribed to the
variable A in the equation given above.

For the sun, the value of A is O.74
0
/yr and the earth's declination (8) is

approximately 23.5° and constant. Thus, the solar-induced out-of-plane
orbital perturbation is found to have an average value of O.2700/yr. The
magnitude of the lunar effect varies, due to the periodic change of the
moon's inclination relative to the earth. Figure 2-17 summarizes the
charactristic variation of the angle between the lunar orbital and earth

equatorial planes. A worst case analysis may be made by assuming a
relative inclination of 28.7 0

• The lunar-related value of A is 1.610/yr.

Thus, the corresponding satellite orbital inclination change, due solely to
the action of the moon, can be as severe as O.67So/yr. The combined lunar

and solar effects are shown in Figure 2-18.

For the small angles involved in these latitude correction maneuvers, the
required annual velocity increments may be approximated as:

~V =~~~VGEO (ft/s-yr) (2.33)

where ~~= required satellite orbital plane inclination change,
rad/yr
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~v = tangential velocity of geosynchronous satellite,
GEO 4

approx. 1.0085 x 10 ft/s

Thus, the annual north-south stationkeeping requirements due to luni-solar
induced orbit perturbations are summarized by the equation

dj/= 1/;:;, 7~..f'/'nt9C'<XJ6l J ~ (/.6/f'/·)161t:~c9.) 7~4aJ'sx/o~ L~~t'c (2.34)
.(f'- h~.:A..e ~UKA-;/ """j6o/2;rr r/~

This equation is plotted in Figure 2-19 and reflects the variation of the
inclination of the lunar orbital plane.

Orbit Eccentricity (East-West Stationkeeping)
Solar radiation pressure acting over a period of time will change orbit
eccentricity. An originally circular geosynchronous orbit will gradually
become eccentric and cause satellite oscillations in an east-west
direction~ thus adding to the earth's triaxiality effect.

To minimize propellant consumption, two pulses could be delivered for
station correction, each 12 hours apart. These pulses would control the
line of apsides such that the projection of the earth-sun line into the
orbit plane is coincident with the earth-perigee line. In the case of

rigid satellites, the two pulses/orbit solution poses no problems; however,
for flexible bodies, it is desirable to have more than two pulses/orbit'and

continuous thrust may be required for very flexible structures or extremely
tight stationkeeping requirements.

The results of a study entitled "Stationkeeping of High Power
Communications Satellites" (NASA TMX-2136) are pertinent. The assumptions

used are compatible with'this analysis; namely, geostationary 9rbit, flat
plate or projected areas and area to mass ratios greater than 0.05 square
meters per kilogram.

The effect of solar pressure is to change eccentricity (e) and orientation
of the apsidal line. There are, therefore, daily longitudinal oscillations

with an amplitude' equal to 2e radians. This induced eccentricity also
causes a daily oscillation in orbit radius equal to er. With the

o
assumptions stated, the perturbing acceleration of the satellite due to
solar pressure is
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~a = - SkU (2.35)

where rr is a unit vector from the center of the earth to the sun,
S is the solar constant at 1AU
k defined below

A
k = (1 +a) m

ais reflectivity
Aim is area to mass ratio

In TMX-2136, four methods of correcting the rise in eccentricity are
identified. The first two methods yield a high specific impulse low
acceleration thruster system. These methods are most applicable to a large
flexible structure and will be used to define ~V requirements.

~\
I

Method 1 Continuous thrusting toward the sun •

..?/T.r~
The ~V per year is .dt"= ;r-

•
where~is the mean angular velocity of the ear-this orbit

about the sun (2 rad/year)

and acceleration level is

a = Sk

94
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Method 2 Circularize the orbit when e = e*

Here tangential thrusting is used to circularize the orbit when a certain

tolerance is reached. Let ~L denote the maximum allowable longitude
s .

excursion in radians, then e* = 1/2dL • The parameter Pis defined as the
s

ratio of maximum allowable eccentricity to the maximum eccentricity that

would result from an initially circular orbit (assuming no stationkeeping).

with L in degrees.s .

Using this method, ~V

dj/=

and acceleration

(2.37)

with P = duty cycle thruster on time/orbit divided by orbit period.
8.
E

= angular velocity of Earth's rotation about its axis
-5(7.29 x 10 rad/sec)

. (2.38)

For purposes of illustration, a graph showing required~V versus duty cycle
for values of f3 ranging from a (no tolerance) to 1 has been generated in

Figure 2-20 for an area to mass ratio of 0.1 m2/kg.
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The value of dV obtained by using continuous thrusting to directly
counteract solar pressure is a factor of 1.18 less than that obtained by
using the tangential thrusting with ~ =0 and p=l. For purposes of
generating the forces and torques required, continuous thrusting will be
assumed and it will directly counteract solar pressure.

To illustrate the actual dV requirements for east-west stationkeeping due
to solar pressure, Table 2-6 was generated. This table shows the area to
mass ratio of each of the structures considered as well as yearly dV
requirements using method 2 with approaching o. The sizes of each class
were reduced to three discrete categories representing a small, medium and
large size. The effective area/mass ratio differs from the total area to
mass ratio for the RF mesh antennas and truss structures without a solid

surface covering. The effective area for solar pressure calculations is
taken to be 5 percent of the actual area for RF and truss structures.
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AIM EFFECTIVE AIM ~V/YEAR
\

GENERIC SIZE
CLASS (M2/kg) 1 (M2/kg) 1 (MIS)

I A !tLATE SMALL (30 M) 1.33 1.33 151.9

MEDIUM· (700 M) 1.33 1.33 151.9

LARGE (21,000 M) 1.33 1.33 151.9

I • CROSS SMALL (40 M) .071 .004 .457

MEDIUM (500 M), .071 ~004 .457

LARGE (4000 M) .071 .004 .457

IIA BOX SMALL (82 M) .027 .002 .229

MEDIUM (600 M) .027 .002 .229

LARGE (1300 M) .027 .002 .229 \

Ii • r«lDULAR SMALL (15 M) .186 .104 11.88
ANTENNA MEDIUM (60 M) .449 .117 13.37

LARGE (200 M) 1.085 . .135 15.42

Ire MAYPOLE SMALL (30 M) 7.03 .350 39.98
ANTENNA MEDIUM (250 M) 101.08 5.05 576.91

~,

LARGE (1500 M) . 661.08 33.00 3770.0

III A OAF SMALL (-15 M), .147 .036 4.11

MEDIUM·(35 M) .305 .044 5.03

LARGE (60 M) .501 .053 6.05

III 8 SERIES OF (2) .012 1.37
.~

SMALL .145
ANTENNAS MEDIUM (6) .145 .012 1.37

LARGE (10) .145 .012 1.37 .---.
\

'SINGLE SHUTTLE LAUNCH

I !tLATE SMALL '(30 M). .865 .043 4.91 ~

STRUCTURE MEDIUM (100 M) 4.014 .•201 22.96
\

WIO BLANKET LARGE (250 M) 11.055 .553 63.17

(30 M)
-~,

II !tLATE SMALL .438 .438 50.04
STRUCTURE MEDIUM (iOO M) .572 .572 65.35
W/8LANKET LARGE (150 M) .598 .598 68.31

III

~.

MODULAR SMALL (15 M) .165 .091 . 10.39
ANTENNA MEDIUM (60 M) .433 .113 12.91

LARGE (200 M) 1.980 .236 26.96

IV SERIES OF SMALL (2) .826 .085 9.71
ANTENNAS MEDIUM (3) .802 .085 9.71

LARGE (4) .764 .084 9.71
/~

\

1 INCLUDING SOLAR ARRAYS WHERE APPLICABLE

TABLE 2-6 DELTA-V REQUIREMENTS FROM SOLAR PRESSURE
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3.0 ESTABLISHMENT OF AUXILIARY PROPULSION SYSTEM CHARACTERISTICS
AND REQUIREMENTS

Perfect spacecraft control will be achieved when the control forces and
torques are continuously equal and opposite to the disturbance forces and

torques plus the necessary stationkeeping and maneuver forces and torques.
This ideal, distributed, method of control can rarely, if ever, be met. In
most cases, the control actuators will be localized in a "small number of
discrete positions. Practical considerations dictate that thrusters be
located on relatively rigid portions of a structure avoidin9, for the most
part, such things as deployable antennas and solar arrays. The plate,
cross and box structures, however, are more homogeneous than the other
classes and are candidates fora distributed control system.

The purpose in Task 3 was to evaluate the disturbance forces and torques
acting on each generic class and from these to define the thrust levels
required to provide control. Additional objectives were to determine the
important APS characteristics that affect control performance, define areas
of interaction and examine the impact of restricting the vehicles to those

launchable by a single shuttle.

Before evaluating the disturbance forces and torques, it was necessary to
establish some groundrules in order to isolate the maximums and establish a
basis for comparison.
entire range to be
in LEO, (2) maximums
maximums in GEO.
ori entati ons in each

("
torques were found
generate them. This

/ locations in each of

Four conditions were selected which covered the
expected. Jhese were: (1) maximum forces and torques
in LEO-GEO transfer, (3) nominals at GEO and (4)
In addition, it was necessary to define the vehicle

of the four conditions. Once the control forces and
it became possible to determine the thrust levels that
process required assumptions to be made on thruster
the classes.

I I

Auxiliary propulsion system characteristics and characteristics
sensitivities were addressed in the next two subsections. First the
various control tasks that are needed to implement attitude control, shape
control and stationkeeping were examined to determine the important APS
characteristics. A matrix was then developed of control task vs. APS
characteristic to define the areas of interaction.
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The last task in this section is an assessment of the impact on disturbance
effects, thrusts required and APS/LSS interactions as a result of
restricting vehicles to those launchable by a single shuttle flight.

The results of Task 3 define quantitatively, the range of thrusts needed

for control in each generic class and also identify in a qualitative way
other important APS characteristics and sensitivities.

3.1 Analysis of Control Forces
Radiation and aerodynamic forces, gravity gradient torques and orbit
perturbations are significant effects that require control forces to

overcome. The force and torque generating mechanisms have been discussed
in Section 2.2 and expressions developed for estimating the direction and

magnitude of the effects. The two other disturbances examined - magnetic
and thermal - have a lesser impact.

Magnetic disturbance torques are caused by the interaction of a local
satellite field with the earth's magnetic field. The torque is given by
the vector cross product of the ambient magnetic field and the magnetic
dipole of the spacecraft. The inherent 'uncertainty in determining the
magnetic dipole makes the determination of quantitative values difficult.
Some estimates have been made based on previous studies and the results
indicate that magnetic disturbances are at least an order of magnitude
below the torques imposed by gravity gradient and radiation effects. For
these reasons magnetic disturbances will not be evaluated.

Thermal disturbances arise from an uneven temperature distribution across a
given structure and are caused by factors such as orbit, orientation,

geometric configurations and individual component material characteristics.
The sources of heat for the structure are both external and internal.
External sources are direct and reflected solar fluxes and earth-emitted
radiation. Internal sources may result from PPU's, radiators, RTG's, or

onboard experiments. Generally, it has been determined, based on previous
work, that thermal disturbances will not playa significant role in the

determination of LSS/APS characteristics and these effects too can be
ignored.
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3.1.1 Analysis Conditions
Before proceding with the evaluation of disturbance effects on the seven

generic classes it was necessary to set some groundrules. The operating
condition can range from low earth orbit (LEO) through transfer to

geosynchronous earth orbit (GEO) to operating on station at GEO. Factors
that needed consideration were the vehicle attitude at LEO, during transfer

and at GEO. In most cases, the disturbances in the nominal attitude would
be much lower than in a worst case attitude. Designs would have to

consider contingency situations and provide for recovery from an
undesirable attitude, particularly in cases where the nominal attitude is a

position of unstable equilibrium. The definition of both maximum and
nominal disturbance effects is therefore necessary. It was assumed that
all attitude control functions would be provided by APS with no reliance on
thrust vector control of the prime propulsion units. - Based on the need to

establish higher and lower bounds on the disturbance effects, the following
four conditions were selected:

1) LEO maximum disturbance, 2) LEO-GEO transfer, 3) Nominal GEO on orbit

requirements, 4) Maximum disturbances encountered at GEO. The first set of
disturbances are those encountered in a worst case orientation of each LSS
in LEO (300 km). Disturbance forces from aerodynamic, gravity gradient,
earth radiation, and solar pressure will form a composite requirement for

the worst case orientation. The second set of conditions arise from a
nominal low earth orbit to geostationary orbit transfer in which the

auxiliary propulsion system provides the thrust vector control as a well as
countering all disturbance forces and torques. The disturbance factors are

those encountered during the transfer given a nominal transfer orientation.
This orientation can be chosen to minimize disturbance torques, structural

stress, and/or to keep antennas pointed toward the earth. The selection of
the orientation will be described below.

The second set of conditions came from the LEO-GEO transfer. For this set
a selection of thrust axis and transfer orientation for each was made. The
second set of data is actually time dependent because it is a function of

the LEO to GEO transfer. Further, since each generic class of structure is
also characterized by a scaling parameter, a three dimensional graph
relating transfer time and scaling parameter to the level of disturbance
would be needed. While this approach may be feasible an alternative has
been followed which is simpler and loses none of the value.
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value. The nominal transfer torques (category 2) are represented by the
maximum nominal torques during an orbit at LEO assuming a time optimal
continuous thrust transfer.

The third set of requirements is generated by the geosynchronous

operational requirements. Here the vehicle is on station and is subject to
mission maneuver requirements, orbital stationkeeping and the

environmental disturbance forces and torques. This set constitutes the
nominal on-orbit operation requirements and may dictate a separate
auxiliary propulsion system from that dictated by the other more demanding
sets of requirements.

Finally, a set of data is generated identifying the forces and torques
required by a worst case orientation of the vehicle at geosynchronous

altitudes. This data set is similar to the first set of data which was
taken at LEO. Not all disturbances need to be considered in each of the
four conditions. Aerodynamic effects, for example are non-existent at GEO.
The following table summarizes the forces and torques to be analyzed in the
calculations for each requirement category.

\.

.~
\

I LEO Max Disturbance
b. Radiation Pressure Forces
c. Aerodynamic Forces

a. Gravity Gradient Torque

II
b.

c.
d.

LEO Transfer Requirement
Maneuvering Torque

Radiation Pressure Forces
Aerodynamic Forces

a. Gravity Gradient Torque

III GEO Max Disturbance
b. Radiation Pressure Forces

IV GEO Max on Orbit
b. Radiation Pressure Forces
c. Stationkeeping Forces
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For the transfer condition, maneuvering torque. must be combined with the
disturbance effects to define the total control requirements. To find the
maneuver torques, determination must first be made of the axis for prime

propulsion application. . The requirement that will come out of the
orientation chosen will be a maneuvering torque for out of plane thrusting

and disturbance torques at the worst orientation during an orbit. The
maneuvering torque requirement arises from the need to change inclination

from LEO (300 km at 28-1/2
0

inclination) to GEO (35869 km at 0
0

inclination). To change inclination and at the same time to change orbit
radius, one must have the thrust vector slew some angle greater than a and
less than 90 degrees out of the orbit plane in one orbit. The maximum out
of plane thrusting angle gets progressively larger as the orbit radius is
increased.

The maximum out of plane angle is not of prime concern for maneuver torque
estimation, but rather the second derivative or acceleration rate of this
angle. Figure 3-1 shows the out of plane angle as a function of time for a

typical LEO to GEO transfer. The curve has been fitted with a 7th order
-7 2

fit and a maximum acceleration of 7.838 x 10 rad/sec has been

calculated. While it is true that the maximum out of plane thrusting angle
increases with increasing radius, Figure 3-2, the acceleration levels

decrease. These statements hold true for a time optimal trajectory. Since
transfer time has been shown to be of prime importance for future space

missions, a time optimal trajectory is proposed as the baseline transfer
profile. The requirement of 7.838 x 10-7 rad/sec2 acceleration will be

taken as the maneuver requirement for LEO to GEO transfer.

The determination of a prime propulsion axis begins by chosing an axis
which·will minimize disturbance torques. It must also be kept in mind that
there will be a maneuver requirement about the axis pointing at the earth.
Finally, in the case of antennas, one would like to keep them pointed at
the earth and solar arrays free to seek the sun. Table 3-1 shows the axis
selected for each generic class.
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lA Plate X with Y pointing at Earth

IB Cross Xwith Y pointing at Earth

IIA Box Xwith Y pointing at Earth

lIB Modular Antenna X with Z pointing at Earth

IIC Maypole Antenna X with Z pointing at Earth

IliA Multiple Antenna Farm X with Z pointing at Earth

IIIB Series of Antennas X with Z pointing at Earth

o In gravity gradient stable
position

o Minimal radiation and aerodynamic drag
o Minimun inertia about Y axis

o Gravity gradient stable
o Minimal radiation and aerodynamic drag

o Gravity gradient stable
o Minimal radiation and aerodynamic drag
a Minimum inertia about Y axis

o Keeps antenna Earth oriented
o Allows solar array sun tracking

o Gravity gradient stable
o Keeps antenna Earth poi nted

o Antennas pointed at Earth
o Minimal prime exhaust plume

interaction with solar arrays

o Antennas pointed at Earth
o Allows solar array sun tracking

TABLE 3-1 PRIME THRUST AXIS SELECTION

) ) _J ) ) ) ) ) -) ) ) )
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3.1.2 Determination of Total Control Forces and Torques

In this section estimates are made of the total control torques and forces
necessary for each structure at the four operating conditions: LEO maximum
disturbance, LEO-GEO transfer, GEO maximum disturbance, and GEO maximum on

orbit disturbance.

The plate, cross and box structures are nominally symmetrical and have zero
aerodynamic and solar torques. Practically, however, a CG-CP offset will
exist. To assess the importance of an offset, aerodynamic torques were
calculated at three different angles of attack. The values for the plate
structure using a CG-CP offset of one percent of the scaling parameter are

shown in Figure 3-3.
o

Figures 3-4 through 3-9 use the 60 angle of attack and show the effect of
aerodynamic drag at lower earth orbit for the plate (IA), cross (IB) and
box (IIA) structures. These are calculated with a CP-CG offset of 0.1, 1.0
and 10 percent of the scaling parameter.

Comparison of the offset torques (at 10 percent of~et) with the maximum
torque expected from gravity gradient shows the following:

----.(

Plate:

Cross:

Box:

Aerodynamic Torque at 300 km = 1% of maximum torque
1000 km = -4, .10 ~ of maXlmum torque

Aerodynamic Torque at 300 km = 1% of maximum torque
1000 km = -410 %of maximum torque

Aerodynamic Torque at 300 km = 1% of maximum torque
1000 km = -2 '10 %of maximum torque

I I

~ It can be concl uded that the torques due to CG-CP offset are negl i gibl e
compared to the maximum torques from gravity gradi~nt for the multiple

shuttle launched LSS.

Plate Structure (IA) - In this case the maximum disturbance at LEO will be
due to aerodynamic, radiation, and gravity gradient. The maximum

107



OF ATTACK
(OEG)
45
60
20

• 1000E+09

.1000E+06

~ 1000E+07
.....
x
a:
>­
0<:
o

x 100000.........
::i:

I
:z

10000

1000

100

ANGLE

,-'IJ

~
~

~

~
W

~A

~
~

~

1I
[fll

300 KI ~OEALTIT
CP - ( G OFFS T = 1 OF SCRUNG ARAME

f

I
I

0 4000 6000 121 00 16~ 00 211Jl00

~\

ER

PLT300 ~
\

T21 C!>
T22. [!]
T23 ~

/ ---'\
LENGTH (M) 7-APR-60 16:14:15

FIGURE 3-3 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
PLATE STRUCTURE

108



1.E+09
CP-CG MOMENT
(% OF seAL. P)

1.

u.

• 1

PLT300
T12 . (!)

T22 l!l
T32 ~

20000160008000 12000
LENGTH (M)

4000o

\

A '" .4>r-'~

-4Y 'V

~
I'V' ~7 -=-

~ ~

M ..JJ=I'-" ;'-'

W ~
i-=

~6
_ ..Jl>T-

./ 1_-'<!7
Y I}'( ..Q>r'~

1/ I%" ~
f-'O

5

I r fX

~ 1/ 1.0'0

-J

I ?

r~
II

0

I

0 /~10

100

1000

r_-
(

08-APR-80 08:56:37

FIGURE 3-4 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
PLATE STRUCTURE AT 300 KM 60 deg ANGLE OF ATTACK

/

109

I I



l.E+05
CP-CG MOMENT
(% OF seAL P)

~
\

• 1

1.

ilL

PLT1000
T12 <!) ~.

T22 l!l
T32 ~

~

0. A~~

... ./'V

~ b-e.J

..A~ ~~~0

fV "."...-.

<J5 P't ;::::{l)

0- ~ ..J2
l~ ~

~

I F-J ~~

1m P'J

Ql 1 "
.~~

I l'-I ;:;7

I I /'V

1 1m

1 r ~ 0{

.1

1 IT~

10

10.0.

1000

W
:::l
o
a::
Cl
/-

0. 40.0.0 8000 12000.
LENGTH (M)

16000 20000

08-APR-80 0.9:00:46

FIGURE 3-5 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
PLATE STRUCTURE AT 1000 KM 60 deg ANGLE OF ATTACK

110



10131313
CP-CG MOMENT
(1. OF SCAl. P)

10.

• 1

1.

RX300
12 <!>
22 I!l
32 <!>

4131303131313213013
lENGTH (M)

1131313

13

~

-R"f' ~

~~

~IY

13 K ~

-7
}ff ~

..,/ ~-e- f-'

/ [J:t""~

/
~ ~

01 Z

"'-..k:J.
~

I .;.;;7
~....R'f

<p / ~
~~

I IZf
~

1 / K'

J,D C
I ~ T

rp / T

I 'l) T
1 /

11313

/~

113
,-.
:x:

I
:z

w
::::l
C
0:::
0
I-

/~

08-APR-80 09:03:59

FIGURE 3-6 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
CROSS STR~CTURE AT 300 KM60 deg ANGLE OF ATTACK

111

I i



• 1

1.

10.

RXHHl0
12 (!)

22 ~

32 ~

CP-CG MOMENT
(7. Of SeAL. P)

LENGTH (M)

.

~>
• 1 ~

~

...~
r

/ _ =_U

1 ~
~ .

/X
/ !Jt"--

1../ ~

/ 2:r"'"

f /~ ~~)
1 ~

f> f

I J ~~

I p-

~/ _/'

4
I -,{ V

I
C

..f T
I T

c:;
,{ I T

0 1000 2000 3000 40 ~0

• 0

.00

1. E-0

1. E-0

w
:::.
Cl
a:
Cl
t-

08-APR-80 09:07:45

~
\

FIGURE 3-7 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
CROSS STRUCTURE AT 1000 KM 60 deg ANGLE OF ATTACK

112



. 1

1.

OX300
12 <!)

22 l!l
32 <!>

CP-CG MOMENT
(% OF seAL P)

113.

LENGTH (M)

--R7"

1J,A7"

~
V"7

0

.;v Fi.-l:
-R; ~

~ o~

/' ~
,....eJ

0 ...

/" ~ ~

~ £I ,..-R:Y

I ~ ~
~

iii ".

r x
I I~

111

~ I' /
,..
/"

[!] /1

B
T
T

C> T
1
0 200 400 600 8130 113~0 1200

100

1000

1.E+05

::E:
I

:z
10

UJ
:=l
Cl

r- 0::
0
r-

138-APR-813 09: 113:27

FIGURE 3-8 CP - CG VARIATION EFFECr ON LEO AERODYNAMIC TORQUES
BOX STRUCTURE AT 300 KM 60 deg ANGLE OF ATTACK

113

I I



\.
10.

• 1

1.

OX1000
1Z (!)

22 l!J
32 ~

1200

CP-CG MOMENT
(1. OF SCAL P)

1000600 800
LENGTH (M)

400200

.

01 ~I>

J?f
~

~

1 II~ rD.-dl

()lS JJ,f"

ro---'"
,/ ~

~
V rt~1 ~)

,r ./
IJ'f J;Pr

IJI. .-r. ~

/ ./ ~

</ 1/ ~1 Jll tJ

IJ'f B
1 r7i ,. T
v / .7 T, / T

flj

100.

.0

.001
o

:::E:
I

Z

UJ
~

Cl
a::
o
t-

08-APR-80 09: 12:38

FIGURE 3-9 CP - CG VARIATION EFFECT ON LEO AERODYNAMIC TORQUES
BOX STRUCTURE AT 1000 KM 60,deg ANGLE OF ATTACK

114



disturbances will occur in different orientations, however, the maximum
forces and torques needed for each disturbance type will be used in the

~ maximum disturbance graphs to follow. The maximum nominal torque during

transfer will be determined using the equation:

T = I a
yy

... -7 2
where a =7.838 x 10 rad/ sec

The maximum nominal disturbance force occurs from aerodynamic effects as.
the plate turns to meet the thrust pointing requirement of 30 degrees. The

GEO maximum disturbances will be gravity gradient and solar pressure and
the nominal on-orbit disturbances are composed of radiation pressure and

stationkeeping loads. The orientation chosen for GEO orbit will be with
the y axis parallel to the orbit and z down for each class. Figure 3-10

gives an example of the graphs generated for the Plate Structure. The full
set of force and torque data for the Plate is given in Appendix B, Figures

B-15 through B-20.
(~

Cross Structure ~ - Here the same conditions and orientations apply as
in the plate structure. Figure 3-11 shows an example of the cross
structure. The complete set of data for the cross structue is in Appendix
B, Figues B-21 through B-25.

Box Structure (IIA) - At LEO the nominal disturbances also include solar
radiation on one end of the box. The y axis is once again assumed to lie

in the orbit plane with the z axis toward the earth. Figure 3-12 is an
example output for the box structure and complete information is found in

Figures B-26 through B-31.

Modular Antenna (lIB) - The LEO nominal
pressure and manuever requirements.

give the force and torque requirements.

torques include aerodynamic, solar
Figures 3-13 and 8-32 through B-37

Maypole Antenna (IIC) - The aerodynamic drag and radiation pressure on a
( mesh antenna has been estimated at 1 percent of that of an equivalent area

solid flat plate. The forces and torques given in Figures 3-14 and B-38
through B-43 are, theref~re, significantly lower than for the other
structures.
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Multiple Antenna Farms (IlIA and.tl- Disturbances in nominal LEO include
aerodynamic, radiation, and manuevering. The disturbance levels are shown
in Figures 3-15 and 3-16 and B-44 through B-55.

3.2 Establishment of Auxiliary Propulsion System Characteristics
In order to establish the important APS characteristics the requirements

imposed by APS control functions can be examined in turn. There are three
basic control tasks: attitude control, shape control and stationkeeping.

Attitude control can be accomplished with APS directly or in conjunction
with momentum exchange devices. In the direct mode a chemical APS
typically maintains the required orientation by limit cycling back and
forth across a small deadband by turning alternate jets on and off. This
bang-bang operation is made necessary because of the lack of thrust
amplitude modulation capability in small chemical APS. Electrical APS can
be amplitude modulated and proportional control is more feasible. Attitude
control requires the cancellation of disturbance" torques plus, when
necessary, the additional expenditure of energy to maintain"limit cycle
operation.

When momentum exchange devices such as wheels or control moment gyros CMG1s
are used as prime attitude control torquers cyclic disturbances can be
absorbed, provided the momentum capacity is sufficiently large. The

secular or accumulating torque impulse must however be removed. Although
this secular impulse can be taken out continuously it is typically stored

in the momentum exchange system and dumped periodically. This desaturation
process requires an external torque which is conveniently provided by APS

although gravity gradient and magnetic methods can be used in particular
circumstances.

Direct attitude control by APS requires, ideally, the delivery of precise
torques to counter disturbances. The ideal can be closely approximated by
delivering periodic torque impulse bits. In either case it is clear that
thrust level and modulation (amplitude in the continuous case and pulse
width in the discrete) are important characteristics. Transient effects
such as the rise and decay profiles are also significant particularly in
limit cycle operations where they may impact accuracy and propellant
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consumption. In summary the important APS characteristics for direct
attitude control are:

o Thrust level

o Modulation
o Transient effects

When used in an indirect mode to desaturate a momentum exchange system the
APS requirements are considerably relaxed. Torque impulse must be
delivered periodically but the desaturation events are often well spaced
(days or even weeks apart) and the timing is rarely critical. The thrust
levels must be large enough so that the wheel or CMG control torques can
contain the transients caused by turning the desaturation jets on and off.

The only important identifiable APS characteristics for indirect attitude
control is

o Thrust 1evel
Shape control implies a distributed system in which APS units are spread
over or through the vehicle structure. The number and distribution of
thrusters is therefore a key characteristic. The control of shape requires
the damping of structural oscillations to avoid surface distortions which
may affect the mission objective. This means that timing becomes
important. Continuous thrusts must be time varying or, when discrete
pulses are used, these must be applied at precise times. Modulation and

transient effects are thus significant. For shape control APS
characteristics are:

o Number and distribution of thrusters
o 'Thrust level

o Modulation
o Transient effects

Stationkeeping is in many respects similar to desaturation in that ~\

accumulated impulse is removed. In stationkeeping it is linear momentum
that is unloaded while in desaturation it is angular momentum. Again the
process can be either continuous or discrete and again the APS requirements

are not demanding. The only important APS characteristic is
o Thrust level

Consideration of the three basic control functions has uncovered four
important APS characteristics: (1) thrust level, (2) number and
distribution of thrusters, (3) modulation and (4) transient effects. These
are operating characteristics. From a systems viewpoint, the allowable APS ~.
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weight, while not directly affecting system operation, must be considered.

It is no good having an ideal operating APS if the weight is excessive. A

fifth important characteristic is then allowable mass. APS mass has a
number of components, for example the type of propellant, I , supporting

sp
equipment (such as tanks, plumbing, power processor units, heat exchangers,
etc.) and the redundancy necessary to meet lifetime requirements.

Another APS characteristic may be important in specific applications. This
is the exhaust plume. There may be contamination effects due to the

chemical properties of the exhaust products, space charging effects due to
the electrical characteristics or temperature problems if the plume is hot
and impinges on the structure. These effects are not of general
significance however and although they should be borne in mind for specific

applications, the inclusion of plume effects does not appear warranted as
an important APS characteristic in a general study of the control of large

space structures.

3.2.1 Thrust Levels

The goal of this study is to identify the required thrust level/thruster or
more generally the required total thrust level/thrust location. The seven

classes of large space structures identified in Task I contain three
classes of stuctures which yield themselves to a distributed thruster
system. The plate structure was used as an example of a distributed

thruster class. For the distributed thruster system used on,the plate,
various thrust locations were assigned and the number of thrust locations
was treated as a parameter. For each location, the required thrust level
per location was identified. The remaining classes are considered to have
a set number of thrust locations and the number of thrusters at that
location was treated as a parameter. The method of distribution for the
distributed thruster classes and thruster location selection for

non-distributed classes will be discussed later.

Four categories of disturbance requirements were identified in an earlier
task and will be reviewed in the thust level study. Stationkeeping
requirements will also be discussed as a disturbance requirement. Selected

thrust level and impulse sizing philosophy will be covered in this section.
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Finally, throttling level requirements will be examined as they relate to·
the four disturbance categories.

To facilitate coverage of the full range of scaling parameters, each class
was assigned a small, medium, and large value. Disturbance analysis was

conducted on these three sizes of LSS. One further simplification of the
large number of classes and sizes examined was made where appropriate.

This step reduced the number of classes to be considered from seven down to
three. These three primary classes are class lA, Plate Structure
(Distributed Thrusters); class lIB, Modular Antenna (Non-Distributed); and
class IIIB, Series of Antennas (Non-Distributed). These three classes
cover the range of LSS types and sizes and it is felt that conclusions
drawn from these classes will be valid for the broader range of Large Space
Structures.

Table 3-2 shows the size selections for each class.

For distributed thruster classes, a method of placing thrusters was
determined based on the Number and Distribution of Thrusters study (4.3).
Figures 4-28 and 34 show the liN + 111 distribution method produces a smaller

deflection than the liN - 111 method for small numbers of thrusters. For a
large number of thrust locations N>10, the method of distribution does not

significantly affect the surface deflection of the structure.

The plate structure was assumed to have two IIlines ll of thrusters along the
major axis as shown in Figure 3-17. These lines disected the structure
into three equal portions hence preserving the liN + 111 philosophy. Figure
3-17 shows the arrangement for four thrusters; however, thruster locations
can be added in multiples of two and still preserve the two lateral lines
of N+ 1 distributed thrusters. Thrusters were assumed to have full gimbal
freedom for each class at each of the thruster locations. This assumption
allows three axis torque to be applied for all thruster combinations.

For class lIB (modular antenna) thruster locations were set on the rigid
portions of the structure. Figure 3-18 shows the eight thruster locations,

one on each corner of the cube. Class IlIA (the series of antennas) was
given thruster locations on the outer avionics modules and just inboard of
the solar arrays along the antenna axis. Figure 3-19 illustrates this

arrangement. Thrusters were added in groups of four to maintain symmetry.
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Cl ass Scaling Parameter Small Medium Large

( IA Pl ate Length (m) 30 700 21000
IB Cross Length (m) 40 500 4000
IlA Box Length (m) 82 600 1300
lIB Modular Antenna Antenna Diameter (m) 15 60 200
IIC Maypole Antenna Diameter (m) 30 250 1500
IlIA Antenna Farm Antenna Diameter (m) 16 35 60
IIlB Series of Antennas Number of Antennas 2 6 10

~.
(

TABLE 3-2 SMALL, MEDIUM AND LARGE PARAMETERS
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FOUR THRUSTER LOCATIONS SHOWN
ONE THRUSTER PER· LOCATION
NUMBER OF LOCATIONS VARIED

x

UNESOOOF
THRUSTERS DISTRIBUTED IN
AN IIN+l" MANNER

GIMBALLED THRUSTER
(1 OF 4)

FIGURE 3-17 PLATE STRUCTURE THRUSTER LOCATIONS
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EIGHT THRUSTER LOCATIONS USED
NUMBER OF THRUSTERS PER
LOCATION VARIED

GIMBALLED THRUSTER
(2 OF 8)

FIGURE 3-18 MODULAR ANTENNA THRUSTER LOCATIONS
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FOUR THRUSTER LOCATIONS USED
NUMBER OF THRUSTERS PER
LOCATION VARIED

x

• z

~GIMBAlLED THRUSTERS
(1 OF 4)

FIGURE 3-19 SERIES OF ANTENNAS THRUSTER LOCATIONS
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There are three requirements placed on any auxiliary propulsion system that
demand significant amounts of propellant. These are; disturbance torque
cancellation, stationkeeping and maneuvering. Due to the non-mission
speci fi c nature of thi s study, the maneuveri ng requi rements on each LSS

could not be uniquely identified. Maneuvering requirements were, however,
treated in a parametric fashion in a later paragraph in this study.
Disturbance torques are classically the largest acceleration requirement on
the APS. Stationkeeping requirements are then met by judicious choice of

disturbance cancellation thrusting. If, however, the stationkeeping
accelerations pose a greater acceleration requirement than disturbance
torques, it is disturbance torques that will be made up by judicious choice
of stationkeeping accelerations. Unequal stationkeeping pulses from a pair
of thrusters result in stationkeeping and disturbance cancellation being
performed simultaneously. It is, therefore, appropriate to size thrusters
based on the maximum of either the disturbance torque cancellation or
stationkeeping requirements.

The following paragraphs review the four disturbance categories that were
used in the disturbance torque analysis.

LEO.TRANSFER - The vehicle is being transferred from LEO to GEO on a time
optimal continuous thrust trajectory with a selected axis as the prime
thrust axis. It is assumed that the APS will provide all maneuvering
torques to meet the required thrust profile as well as countering the
radiation, gravity gradient, and aerodynamic torques found in the first

orbit of the transfer. LEO altitude is assumed to be 500 km.

LEO MAXIMUM - Here the vehicle is assumed to be in the worst orientation
possible with regard to gravity gradient, radiation torques, and
aerodynamic dOi sturbances at 50D km altitude. Thi s requi rement may differ
only slightly from the LEO transfer requirement. Similarity results from

the choice of prime thrust axis in the transfer analysis forcing the
vehicle into a worst case or near worst case attitude during the transfer.

GEO MAXIMUM - The structure is in geosynchronous orbit and has a worst case
orientation with regard to gravity gradient and radiation torques.



GEO ON-ORBIT - The nominal on-orbit orientation was assumed and inherent
gravity gradient or radiation torques calculated. For those structures
having no CP-CG offset, an offset equal to five percent of the scaling
parameter was assumed.

For maximum disturbance categories it was assumed that
could occur from all relevant sources simultaneously.
means that thrust 1evel s requi red on each axi s coul d be
form a composite thrust level/thruster requirement.

disturbance torques
This assumption

root sum squared to

Because of the large number of graphs concerning the thrust requirements, a
separate appendix for these graphs has been created. Appendix 0 contains
all disturbance cancellation thrust levels and stationkeeping acceleration
requirements. Figures 0-1 through 0-18 show the disturbance torque
requirements on the APS system. For each LSS class the small, medium and
large scaling parameters are used to generate disturbance torque
requirements for each of the four disturbance categories. Number of
thrusters was treated as a parameter and the thrust/thruster necessary to

counter the disturbance torque was the dependent variable. For the
distributed classes, these parameters are replaced by number of thruster

locations and thrust/thruster locations.

Before comparing the disturbance torque requirements with the
stationkeeping requirements, it is necessary to briefly review
stationkeeping disturbances. The three independent variables relevant when
counteracting stationkeeping disturbances are the time between successive
corrections, the time of the correction and the duty cycle during the
corrective period. In addition, there are three sources of stationkeeping
disturbance: solar pressure, sun/moon gravity perturbations and earth
triaxiality. It is the greatest of these sources that will set a thrust
sizing criterion to be compared with disturbance torques since the effects
can be countered at different times during the orbit.

.~
\

One simplification has been made to eliminate
variables involved in stationkeeping. It has

period of correction be one day, or equivalently,
between the start of successive corrections
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one of the independent
been groundruled that the

one orbit. The time
(N) will be set at three ~\



values: one day, one week and one month. The duty cycle (p) will
other independent variable and will be allowed to vary from 0
These groundrules mean that stationkeeping requirements can be

from continuous (N = 1, P = 1) to intermittant (N = 30, p ~ 1).

be the
to 1.0.
analyzed

Figures 4-23 through 4-30 illustrate the comparison between disturbance
torque acceleration requirements and stationkeeping acceleration
requirements. Each graph contains information pertaining to a single class

and one or more sizes of that class. The disturbance torque a~celeration

lines are for geosynchronous acceleration only. They are for on-orbit
nominal operation and for maximum geosynchronous disturbances. All LEO
disturbances were excluded in these graphs.

A summary of the results of this comparison are shown in Table 3-3. This
chart shows the category of disturbance which will be used to size the
thusters and the propellant needed for 10 year operation.

Based on the thruster sizing criterion of Table 3-3, the following graphs,
Figures 3-20, 3-21 and 3-22, illustrate the total APS thrust level

required. If stationkeeping is the dominant disturbance, this thrust level
when applied in one direction will meet the acceleration levels required by

stationkeeping. If geo-maximum disturbances dominate, this value
represents the thrust level that 1/2 of the thrusters must produce in one
direction and the other thrusters in the opposite direction. In the case

·of the plate structure (distributed thruster system), the center of thrust
is approximated at 1/4 of the major axis from the center. For example, a
small plate structure of approximately 800m by 200m must be capable of
producing approximately 0.1 Newtons of total thrust. A 10000m by 2500m
plate with 12 thrust locations is sized by the counterac~ing torque it must
produce, hence six thruster locations on one side must produce 1000 N of
thrust which results in each location producing 170 N of thrust.

A simplifying figure which takes into account the difference between force
and torque generation is given in Figures 3-23, -24 and -25. Here one may
find the thrust/thruster necessary for a given number of thusters for a

wide range of scaling parameters. The graph for the plate structure is not
truly accurate for small numbers of thrusters N < 10. This is due to the
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THRUSTER SIZING, IMPULSE SIZING

STRUCTURE SMALL MEDIUM LARGE

Plate (IA) SS,S SS,S GM,S
Cross (IB) N/S,S GM,S GM,S

~,

\

Box (IIA) N/S,S GM,S S5,S
Modular Antenna (lIB) N/S,S GM,S GM,S
Series of Antennas (1IIB) N/S,S GM,S GM,S

SS = Solar Station
S = Solar Station + N/S Station + E/W Station
N/S = North/South Stationkeeping
GM = Geosynchronous Maximum Disturbance Torque

Table 3-3 Thruster and Impulse Sizing Criterion
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(~ change of the center of thrust as the number of thrusters is increased. It
was assumed that this center of thrust was 1/4 of the major axis from the

~ center which is true in an N+ 1 distributed system with a large number of

thrusters.

(r-'

I I

Until now the discussion of disturbance torques has been confined to
geosynchronous orbit. If an APS were to be designed to counter the worst
that low earth orbit could offer and yet still meet the geosynchronous
requirements, a very large throttling ratio would be required. Throttling
ratios can be achieved by having one throttlable thruster or a bank of
thrusters that could have some members off and some on depending upon the
need. Figure 3-26 shows the number of thrusters needed to get a given
throttling ratio with each thruster having an individual throttling ratio
of 4:1, 10:1 and 20:1. The actual throttling requirements for the three
primary classes are shown in Figures 3-27, -28 and -29.
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3.2.2 Number and Distribution of Thrusters

An ideal auxiliary propulsion system would apply thrust throughout a
spacecraft structure. These thrusts would cancel all disturbance effects

and apply any necessary stationkeeping forces and maneuver torques. Such
an ideal distributed system would be capable of perfect attitude, shape and

stationkeeping control with no excitation of structural flexible modes.
Such a system is obviously not feasible for many reasons - the difficulty

of mounting, supplying and controlling a large number of thrusters,
practical limits of. thrust, power supply constraints, di-fficulties

associated with deployable structures, etc. Very often a centralized
auxiliary control system is used or proposed, located on a relatively rigid

portion of the structure and avoiding locations on relatively flimsy and
easily deformed components such as solar panel arrays and antennas. These

facts have been tacitly assumed above in developing the maximum and minimum
thrust levels required with the least number of thrusters.

However, the first three generic classes, lA, lIB, and IIA yield themselves
to the concept of an ideal force distribution. On these structures, it is
possible to determine . separately the force distribution for each
disturbance. For example, gravity gradient torques are ideally countered
by equalling the force of gravity at each point on the structure. The

forces that result are not equal or even linearly distributed. A maneuver
torque, however, poses the least structural excitement if all forces are
equal in magnitude and the force is equally distributed. These ideal
distributions are to be integrated over small areas to characterize a given
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thruster at a given location. Hence, it is necessary to find a force
distribution over the entire surface, or in the case of the box structure
(IIA) throughout the entire volume •.

Generally, required forces are equally distributed throughout the
structures, whereas torques will require non-equal and possibly varying
direction forces. As an example, a solar pressure of 1 Newton can be

2 2
ideally countered in a 100 m plate by a force of 0.01 N/m in the z
direction throughout. However, a gravity gradient torque requires equal
and opposite forces at each point depending on its attraction to the earth.
Further, a maneuvering torque is ideally obtained by an equal force
perpendicular to the radius from the axis about which you are to maneuver.

Torques require some further illumination. Gravity gradient torques are
due to the unequal gravitational attraction of one part of the structure
relative to the other. It is best illustrated by a plate seen edge on at a

worst case angle of 45
0

shown in Figure 3-30. The magnitude of the force
at a distance x from the center is given by

This equation can be simplified by the following approximation:
2../: 2/ ~ ..

.-L I ~ - f'2/cj'x +X/2 -l'~

/02 (r; -x/lljZ - ~2(~ _ X/Jl';)2

_ /ix' assuming ~ ---.J I(; _ X
/;$ /.2

------­ \

Therefore d/"(5r) ---.J :L CAfe!», ~x
/i.f

The worst case orientation for gravity gradient torques about the x axis on
the plate is shown in Figure 3-30 and the force is a function of y. The

force is broken into F and F components to enter into the ideal
distribution. Likewise, t~e worst tase torques around the y and z axis are

broken into Fx' Fz and Fx' Fy components respectively.
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In the box structure, x can be assumed measured from the center plane. For
example, if the y and z axes are at 45

0
with respect to an earth center of

mass line, x would be measured from the xz plane at the center. While this
is an inexact formulation, it is sufficient for our ·purposes. The
direction of these forces is at an angle of 450 to the y and z axis and
therefore yields force contributions in both the y and z axis of equal
magnitude and a factor of ~2 times the absolute force magnitude.

Maneuvering torques about the y axis for the transfer trajectory are more
complicated. Ideally, what is wanted is a force equally distributed
throughout the structure which is perpendicular to a radial line drawn from
the y axis. Once this force F is measured, the magnitude of the force

vector in F and F can be calculated by measuring an angle 8 from the x
x z

axis as follows:

~ = /~L&f;/?t9/

7 == //{I4~C t:a-.r 67/
To obtain F 1 1 t d' the following equation must be solved~

ca cu ~: :/14<r/ c&c5

for the plate and cross with w = width and 1 = length, and
~ ~;V~'0

~ ~7.1o r/.x2+fI " cJ0'fFj

for the box.

The solution to this equation is shown below for the plate and cross
structure:
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where a = 1/2 and b = w/2

For the box, it is necessary to multiply by 4w with a = 1/2 and b = h/2.

The other forces; stationkeeping, aerodynamic, and radiation are added to
the F , F or F components obtained from the torque analysis.

x y z
To summarize, the equally distributed forces necessary from solar pressure,
aerodynamic pressure, and stationkeeping requirements are summed with the
unequally distributed forces necessary to perform maneuvers and balance
gravi ty gradi ent torques to identi fy the magnitude of force requi red over a
given structure.

Figures 3-31 through 3-36 show the force/unit area for the plate and cross
structures in the x, y and z directions. Figures 3-37 to 3-39 show the

corresponding forces per unit volume for the box structure. For purposes
of display, the force for gravity gradient was figured half way out on each

object and the transfer force requirement was added at a worst case angle
for each axis contribution.

3.3 Analysis of Auxiliary Propulsion System Characteristics. Sensitivities

For each of the seven generic classes, there are three distinct control
tasks to be performed; attitude control, shape control and stationkeeping.

Each of these tasks may influence or be influenced by the five identified
auxiliary propulsion characteristics. To determine the sensitivities each

control function is examined in turn against the five auxiliary propulsion
system characteristics.

First, it should be remembered that attitude control covers three basic
functions; the cancellation of disturbance effects, maintaining pointing to
the desired degree of accuracy and maneuvering. The relative importance of
each function will vary from mission to mission and may also change
significantly during the course of a mission. Consider, for example, a
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large spacecraft built in low earth orbit then transferred to
geosynchronous orbit to carry out its normal operations. During
construction only rough pointing may be necessary and maneuver requirements

wi 11 probably be mi nima1 but di sturbances must be countered and these may
change considerably as construction proceeds. During transfer all three

functions are needed; cancellation of disturbances, including perhaps
torques introduced by misaligned prime propulsion units, pointing to
achieve thrust vector control and maneuver if orbit plane changes are
required. On orbit pointing will normally be an important function and

disturbances must be opposed, including those introduced during periods of
stationkeeping. Maneuvering demands may be zero.

Sensitivities then will be identified by looking at the five control
functions (disturbance cancellation, pointing, maneuver, shape control and

stationkeeping) in terms of the five auxiliary porpulsion system
characteristics (number and distribution of thrusters, thrust levels, rise
and decay characteristics, modulation and allowable mass).

It will be assumed that the spacecraft, including the auxiliary propulsion
system, however configured, have been designed in a reasonably optimum

fashion. For example, a required pointing accuracy can be achieved
satisfactorily by systems with a wide range of numbers and distributions of

thrusters. If properly designed, the effect of number and distribution on
pointing accuracy is small. A poorly conceived system could however have

too few thrusters of too large thrust and lead to inadequate pointing
control of a flexible appendage.

A matrix of'sensitivities is shown in Figure 3-40.
table are discussed below.

The entries in the

I I

,/

Thrust Level
Thrust level is a basic APS characteristic which influences or is
influenced by all control functions and most LSS characteristics. Given a

spacecraft configuration and mission requirements, the disturbance
environment can be calculated and the pointing, maneuver, shape control,

stationkeeping and desaturation requirements can be specified.
Stationkeeping, shape control and disturbance force cancellation will
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establish bounds on the required thrust levels. Pointing, maneuver,
disturbance torques and desaturation will define torque limits which are
related directly to thrust level by the appropriate moment arms. Obviously

thrust levels must be no lower than needed to overcome disturbance forces
and torques. Upper bounds are more flexible because the necessary impulse
can be generated, at least in principle, by large thrusts applied for a
short time or lower thrusts applied for longer times. Practically, upper
bounds may be set by a number of considerations. These include: minimum
impulse bit requirements needed to meet pointing accuracies; limits imposed
by shape control requirements; momentum exchange device control authority
during desaturation and stationkeeping; excitation of flexible modes and
stiffness and strength limitations. In short, thrust level impacts all
control and LSS characteristics with the possible exception of thermal
expansion.

Modulation
Just as widespread as thrust level in its interaction with control
functions and LSS characteristics is modulation. Upper and lower thrust
bounds can be found for any application but most of the time the thrust
required will be between the bounds. For stationkeeping, desaturation and
maneuver (except for tracking tasks) it may be possible to use maximum
thrust for the necessary length of time to achieve the desired impulse.
For disturbance cancellation, pointing and shape control, however, much
more precise thrust levels are needed. Thus some form of modulation is
essential for these control functions.

Two basic forms of modulation are amplitude and on-off. Amplitude
modulation is the ideal but it will often be difficult to find an APS that

has the necessary range. If cl usters of thrusters can be used, the range
will be considerably ,extended but there usually are nevertheless practical

limitations on the range that can be achieved. As seen in the thrust level
required curves (Appendix D) the range can be several orders of magnitude

if the same APS is used for all phases of flight from LEO to GEO. On-off
or pulse modulation achieves a desired mean thrust level by varying the

time the thrust is applied and the time between pulses. In general, the
effective thrust is
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where DC is the duty cycle, or ratio of thrust on time to total time. The
same duty cycle can be achieved with frequent short pulses or less frequent

longer ones. The frequency may have to be quite closely constrained in
practice to avoid exciting flexible modes, and for shape control, to match
the structural frequency being damped.

On-off control has been used for many years to control relatively small
spacecraft with chemical APS. The method is necessary because small
chemical thrusters typically cannot be throttled. The method is quite

successful if care is taken in design. A characteristic of on-off systems
used for pointing is limit cycle operation in which the vehicle oscillates

across a small deadband centered on the desired pointing position.

Rise and Decay Transients
Because of warm-up times, valve opening and closing times, fuel line

capacitance and various other causes, APS thrusts typically do not start
and stop when commanded to do so. The dealys are typically small, in the

tenths or hundredths of a second range, for chemical APS but may be
appreciable, up to half an hour, for electrical APS. In some applications,

the delays can be compensated for by sending the start or stop signal
appropriately early. This may be true, for example, during limit cycle

operation if the accuracy requirements do not impose a very small deadband.
For stationkeeping, desaturation, most maneuvers and disturbance

cancellation tasks, the time delays are unimportant. None of the LSS
characteristics interact significantly with transient effects except LSS

size. During limit cycle operation, the larger vehicles are much more
tolerant of time delays than smaller ones.

The most significant interaction of transients with control function occurs
in shape control. In order to damp oscillations effectively, the APS
thrust should be sinusoidal and accurately phased. Pulsed operation can
also be used provided the pulses are precisely timed. Any lag in the
continuous system or time delays in the pulsed system will degrade

performance and may lead to instability.
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Number and Distribution of Thrusters
It may often be necessary or convenient to replace a single thruster at a
particular location by a cluster of units. This may be required, for
example, when the maximum thrust needed is not available from a single

thruster. Or where the range of thrust required is best achieved by
multiple units. In these cases, the thrust/thruster will obviously be less

than the ~otal thrust level and will depend on the number of thrusters.
Since this is the case, the number of thrusters, in a sense, interacts with
all the control functions and LSS characteristics that thrust level
interacts with. This, however, is a secondary effect. Primary
interactions occur with the disturbance cancellation and, particularly,
shape control functions. The LSS characteristic most affected is stiffness
because of the close relation between shape control and stiffness.

All owab1e Mass
APS mass will clearly affect total system mass. In fact the mass
associated with the APS, which includes power processors and power
generating weight penalty for electric systems and propellant and tankage

for chemical systems, generally accounts for a large fraction of the total
system mass.

A seGond effect is on shape control. The manner in which the APS mass is
distributed will determine control accuracy and this again will depend on

whether the thrusts are translational, for statio~keeping, or rotational,
for disturbance torque cancellation or desaturation.

3.4 Single Shuttle Launch Impact on Auxiliary Propulsion System
Characteristics

Utilizing the three generic deployable LSS, developed in Section 1.3 which

can be launched with a single shuttle flight, a detailed thrust
requirements study was performed. We conside~ed in this study a 300 km, a

400 km, and a 500 km low earth orbit altitude as well as the geosynchronous
orbit altitude. We also examined the effect of a range of LSS orientation

angles on disturbance torque levels and thrust requirements.

To determine the thrust levels required, a set of groundrules was developed
regarding disturbance torque calculation and thruster placement. These
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assumptions are listed in Table 3-4. The first three assumptions deal with
the calculation of disturbance torques and the last six concern thruster
p1 acement.

A center of pressure-center of gravity moment arm of 5 percent of the
maximum dimension was decided to be representative of the designs

considered. This moment arm is difficult to estimate accurately given the
ideal nature of the generic classes. Actual distribution of system
components on a given structure would determine the exact CG location. The
5 percent number was arrived at considering several large spacecraft

proposed or currently flying. An estimate of the transmissivity of the
truss work and antenna mesh was drawn from work done on solar array

blockage factors on the SPS program.

The third assumption is actually an assumed operational philosophy.
According to our structure orientation conventions, aerodynamic forces

result from a vehicle being in a non-operational or disturbed orientation.
It is assumed that one would reorientate the LSS as quickly as possible to

a nominal orientation. To do this, only the aerodynamic torques would be
countered and stationkeeping to maintain orbit position over long periods

of time would be unnecessary.

The requirement for dual redundancy is necessary for the long mission life
demanded of LSS. A ten year mission lifetime will stretch the limits of
both electric and chemical system lifetime. Dual redundant systems are
necessary to insure high mission reliability. Fixed orientation chemical
thrusters are genera11y used on spacecraft because the added cost and
weight of a gimballing mechanism is greater than simply adding more
chemical thrusters. For electric thrusters, gimballing is appropriate
because of the large cost and mass of a thruster unit. Gimba11ing helps to
minimize thruster number, although there is some loss of control due to
cosine losses for a limited freedom gimbal. A gimbal freedom of +45
degrees is assumed. This large freedom will minimize cosine losses and is
physically realizable using current mechanism technology.

It is important to minimize the number of thrusters from a cost and mass
standpoint. The goal of minimizing thruster number is tempered by the
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criterion of redundancy and zero ~V addition during maneuvering. A pair of
opposing thrusters must be used which fire in opposing directions on
opposite sides of the axis of rotation. Zero ~V addition is necessry to

achieve the tight stationkeeping requirements needed for many LSS.
Finally, to minimize thrust requirements and APS mass, maximum moment arms
for thrusters around large inertia axis are necessary.

The disturbance torques are presented as a function of LSS angle. This
angle is defined in Figure 3-41. A zero degree orientation is the nominal
orientation with antenna or platform surfaces facing the earth. A 45
degree orientation gives a maximum gravity gradient torque and a 90 degree
orientation gives the maximum effective area for aerodynamic pressure.

Appendix D contains the disturbance torque requirements for each generic
class. There are two sets of graphs included in the attachment. The first
set (Figures D-27 through D-37) shows the torque composite breakdown for
aerodynamic, solar, and gravity gradient disturbances at 300 and 500 km
altitudes. Again, each graph in this set has an assumed CP-CG offset of
five percent of the maximum dimension. Each graph in the first set has
disturbance levels for a given LSS size as a function of LSS angle. The

second set of graphs (Figures D-38 through 0-49) has the total disturbance
torque requirement as a function of LSS angle and altitude. The same CP-CG

offset assumption used in set 1 applies to set 2. To condense the data
presented in graphic form, a LEO disturbance torque summary has been

generated and is shown in Table 3-5. Table 3-5 shows the disturbance
torque level for each class and size under four conditions. There are two

altitudes, 300 and 500 km and two LSS angles considered. The LSS angles
are 100 and an angle at which the structure receives· the maximum

disturbance level. A 100 angle has been selected as a logical nominal LSS
angle. This angle is one which encompasses any pointing errors ~ith

sufficient margin to assure control and is not so excessive as to force the
APS size to un~ealistic proportions. The worst case LSS orientation angle

is also given for each structure and size. A worst case angle of 45
degrees indicates gravity gradient is the dominant disturbance. As the
worst case angle approaches 90 degrees, aerodynamic torques dominate.
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1. Disturbance torque requirements used 5 percent of the maximum dimension
CP-CG offset for all structures.

2. Truss work and intenna mesh was assumed to have a 95 percent
trinsmission factor.

3. Only torques due to aerodynamic forces were considered, not the force
itself.

4. Thrusters were located to issure dual redundancy.

5. Chemicil systems have i fixed orientation Vno gimbal freedom).

6. Electric thrusters hive i ±45 degree gimbal capability.

7. The number of electric thrusters was minimized.

8. Thruster distribution was capable of zero~V adition maneuvering.

9. Miximum moment arms utilized where possible around large inertia
ixis.

TABLE 3-4 THRUST LEVEL DETERMINATION ASSUMPTIONS

ALTITUDE

300 km 500 km

LSS ANGLE WORST LSS ANGLE WORST
10· WORST CASE 10° WORST CASE

CLASS SIZE CASE ANGLE CASE ANGLE
(N-m) . (N-m) (DEG) (N-m) (N-m) (DEG)

pLATE WIG 8LANKET 30 M .055 .350 75 .014 .060 50

100 M 1.80 11.2 75 .500 2.20 52

250 M 22.0 205. 75 6.30 31.0 53

ItLATE W/8LANKET 30 M .810 6.80 90 0.12 .500 72

100 M 32.0 230. 83 5.30 23.0 58

150 M 112. 850. 80 28.0 108~ 55
L

MODULAR ANTENNA 15 M .170 1.20 90 .014 .088 86

60 M 3.30 21.0 83 0.55 2.20 58

"200 M 46.0 305'- 90 4.80 22.0 1'3

SERIES OF ANTENNAS 2 1.50 11.5 45 1.50 9.90 45

3 9.50 61.0 45 9.50 53.0 45

4 30.0 195. 45 30.0 160. 45

TABLE 3-5 LEO DISTURBANCE TORQUE SUMMARY
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We can qualitatively see from Table 3-5 that a system sized for the worst
case angle will have approximately an order of magnitude greater thrust

level requirement than a system sized for nominal disturbances. We can

also see that a system sized for a 300 km altitude will have a a thrust

level of up to 10 times that of a system sized for 500 km. The factor
varies depending upon the degree of domination of aerodynamic torques.

The LEO-GEO transfer maneuvering requirement is determined by the in and
out-of-plane thrust vector control requirements imposed by a time-optimal
continuous thrust transfer. The selection of axis about which the vehicle

maneuvers is shown in Table 3-6. Table 3-7 shows the LEO-GEO transfer
maneuvering requirements for each class and size. Qualitative conclusions

can be drawn from Table 3-7 as follows:

o Starting altitude does not significantly influence transfer
maneuvering requirements

o Transfer requirements are roughly equivalent to the 500 km worst
case disturbance requirements except for the series of antennas

Appendix 0 also contains the Geosynchronous requirements in three sets of
graphs. The first set (Figures 050-054) show the total torque requirements

as a function of LSS angle. Figure 050 shows the composite breakdown for
one particular structure. The gravity gradient torque peaks at an LSS
angle of 45 degrees while the solar torques remain constant over the range
of LSS angles. The total torque profile for each graph in the first set
will, therefore, have an identical shape to the top curve in Figure Cl.
The end points of each curve in Figures 051-054 give the level of solar
pressure torques. Tabl e 3-8 summari zes these requi rements for a 10 degree
LSS angle and a worst case orientation. From this table, it is clear that
electric propulsion can provide geostationary disturbance cancellation for
the complete range of structures and sizes.

A second set of graphs details the mission energy requirements assuming a
10 year geosynchronous mission. Figures D55~066 give a composite breakdown
and 067-070 summarize the total requirements. Each graph in this set is a

function of duty cycle which is defined as the time of thrusting during a
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TABLE 3-6 SELECTION OF PRIME THRUST Axis

• MINIMUM INERTIAS USED

PRIME MANEUVER MANEUVER AXIS INERTIAS
THRUST

AXIS AXIS SMALL MEDIUM LARGE
PLATE

WIO BLANKET z YOR X 23,700 8.42 x 105 1.1945 x 107

WI BLANKET Z YOR"X 52,390 5.995 x 106 3.7800 x 107

MODULAR ANTENNA X Y 18,483 4.707 x 105 5.161 x 106

SERIES OF ANTENNAS X Y 1.498 x 106 2.278 x 10,6 3.041 x 106

TABLE 3-7 LEO • GEO TRANSFER MANEUVERING TORQUE REQUIREMENTS

START SMALL MEDIUM LARGE
ALTITUDE (N-m) (N-m) (N-m)

PLATE
WIO B~NKET 300 .069 2.46 34.88

400 .064 2.29 32·.49
500 .060 2.14 30.46

W/BLANKET 300 .153 16.306 96.39

400 .142 15.189 89.79

500 .• 134 14.240 84.18

MODULAR ANTENNA 300 .054 1.37 15.07
400 .050 1.28 14.04
500 .047 1.19 13.16

SERIES OF ANTENNAS 300 4.37 6.65 8.88
• 400 4.07 6.19 8.27

500 3.81 5.at 7.75
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LSS ANGLE

CLASS 100 WORST CASE
WORST CASE

SIZE ANGLE
(N-m) (N-m) (DEG)

PLATE WIO BLANKET 30 M .0003 .0004 45

100 M .013 .019 45

250 M .25 .280 45

PLATE W/BLANKET 30 M .006 .007 45

100 M .23 .280 45

150 M .. 85 1.05 45

MODULAR ANTENNA 15 M .0015 .002 45

60 M .022 .026 45

200 M .30 .320 . 45

SERIES OF ANTENNAS 2 .20 .800 45

3 .065 .• 260 45

4 .013 .042 45

TABLE 3-8 GEO DISTURBANCE TORQUE SUMMARY
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correction orbit divided by the time of the correction orbit. A duty cycle
of 0.1 is basically an impulsive correction whereas a duty cycle of 1.0 is
continuous thrusting. Table 3-9 summarizes the mission energy requirements
for three representative duty cycles.

The final set of graphs (077-074) in Appendix 0 illustrate the
stationkeeping thrust level requirements as a function of both duty cycle

and frequency of correction. The frequency of correction is the time
between correction orbits. If a number of orbits occur between each
successive correction, the thrust level required increases. To reduce
operating time and complexity, a low duty cycle and infrequent corrections
are desired. Obtaining these goals may require thrust levels of one newton
or greater for the large structures. Table 3-10 summarizes the
stationkeeping thrust level requirements.

The thruster locations on each class were determined based on the
assumptions listed in Table 3-4. Because of the assumed gimballing
capability of the electric thrusters, the number of electric thrusters
needed was held to eight. The chemical thrusters varied in number from 13
to 17 depending upon the class considered. Figures 3-42, 3-43, and 3-44
show the thruster location assumptions.

Based on these thruster locations and the disturbance analysis previously
presented, the thrust/thruster requirements were generated. These
requirements are presented in Tables 3-11 and 3-12. The electric and
chemical systems have different thrust/thruster requirements for two
reasons. First, the distributions are different, hence moment arms for
electric thrusters may be shorter for some axis. Second, the
stationkeeping duty cycle that electric thrusters need to lower thrust
level requirements down to currently achievable levels is around 40
percent. Chemical thrusters are not so limited by thrust and lower duty
cycles will decrease the frequency of operation and increase lifetime of
the system. Hence, a duty cycle of 10 percent was selected for chemical
thrusters. A duty cycle less than 10 percent will cause the chemical

thruster I to lower as if it were operating in a pulsed mode.
sp
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STATIONKEEPING 'BELTA-V (MIS)

CLASS SIZE DUTY CYCLE

0.1 0.4 LO

PLATE WIO BLANKET 30 M 539 576 835

100 M 703 742 1078

25flM 1062 1137 1672

PLATE ,W/BLANKET 30 M' 953 1015 1480

100 M 1093 1156 1701

150 M 1123 1190 1742

MODULAR ANTENNA 15 M 578 617 904

60 M 606 640 931

200 M 734 781 1140

SERIES OF ANTENNAS 2 583 625 916

3 583 625 916

4 583 625 916

TABLE 3-9 MISSION ENERGY REQUIREMENTS
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THRUST LEVEL REQUIRED {Nl

ONCE/ORBIT ONCE/WEEK
CLASS SIZE

DUTY CYCLE DUTY CYCLE

0.1 0.4 0.1 0.4

PLATE W/O BLANKET 30 M .008 .002 .050 .015

100 M .027 .007 .190 .050

250 M .087 .022 .610 .170

PLATE W/BLANKET 30 M .028 .008· .200 .050

100 M .290 .075 1.95 .530

150 M .620 .160 4.10 1.10

MODULAR ANTENNA. 15 M .030 .008 .250 .070

60 M .130 .032 .900 .·250

200 M .300 .•082 2.10 .600

SERIES OF ANTENNAS 2 .110 .020 .800 .210

3 .160 .040 1.20 .310

4 .230 .060 1.60 .420

TABLE 3-10 STATIONKEEPING THRUST REQUIREMENTS
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• CHEMICAL THRUSTERS

z

• ELECTRI C THRUSTERS

z

y

• 13 CHEMICAL THRUSTERS
• NO GIMBAL REQUIRED
• DUAL REDUNDANCY

x

y

• 8 ELECTRIC THRUSTERS
• ±45° GIMBALLING ASSUMED
• DUAL REDUNDANCY

x

Figure 3-42

TETRAHEDRAL TRUSS THRUSTER LOCATIONS
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• CHEMICAL THRUSTERS

• 8 ELECTRIC THRUSTERS
• :1:45 GIMBAlLING

• DUAL REDUNDANT

.15 CHEMICAL THRUSTERS

.NO GIMBAL REQUIRED

• DUAL REDUNDANCY

y

)- --
/ --------

,/

/,
,/,,

,/

FI GURE 3-43 MODULAR ANTENNA
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• CHEMICAL THRUSTERS.

-ELECTRIC THRUSTERS

Figure 3-44 SERIES OF ANTENNAS
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• 17 CHEMICAL THRUSTERS

• NO GIMBAL REQUIRED

• OVAL REDUNDANT

• 8 ElECrRIC THRUSTERS

'. ±45 DEGREE GIMBAL

• DUAL REDUNDANT
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The thrust requirements have been given for two altitudes with two LSS
orientations, a time optimal low thrust LEO-GEO transfer, a geosynchronous
worst case orientation, and for GEO stationkeeping. The requirements for
400 km are available but were not displayed to save space and the number of

parameters considered. If 400 km data is required, interpolation can
suffice. An additional rationale for eliminating the 400 km start altitude

is that the shuttle's capability does not vary significantly between 300
and 400 km. For 500 km, an additional OMS kit is necessary to achieve the
higher altitude and there is a corresponding reduction of payload
capabil ity.
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Table 3-11

CHEMICAL APS - T~RUST/THRUSTER REQUIREMENTS SUMMARY

DISTURBANCE TORQUE GEO GEO STATIONKEEPING
CLASS SIZE 300 km 500 km LEO • GEO DISTURBANCE @ 0.1 DUTY CYCLE

109 WORST
10°

WORST TRANSFER 'WORST CASE ONCE/ORBIT ONCE/WEEKCASE CASE

PLATE WIO BLANKET 30 m 0.003 0.018 0.0005 0.003 0.0035 0.00005. 0.008 0.050

100 m 0.027 0.170 0.0075 0.035 0.0400 0.00030 0.027 0.190

250 m 0.132 1.230 0.0380 0.185 0.2100 0.00170 0.081 0.610

PLATE W/BlANKET 30 m .0.040 0.340 0.0055 0.025 0.0015 0.00035 0.028 0.200

100 m 0.480 3.450 0.0795 0.345 0.2445 0.00420 0.290 1.950

150 m 1.120 8.500 0.2800 1.080 0.9640 0.01050 0.620 4.100

MODULAR ANTENNA 15 m 0.120 0.545 0.0100 0.060 . 0.0370 0.00150 0.030 0.250

60m 1.500 9.540 0.2500 1.000 0.6250 0.01150 0.130 0.900

200 m 16.83 55.790 1,]550 8.050 5.5150 0.11700 0.300 2.100

SERI~S OF ANTENNAS 2 0.025 0.192 0.0250 0.165 0.0730 0.00100 0.055 0.400

3 0.106 0.680 0.1060 0.591 0.0740 0.00300 0.080 0.600

.4 0.~50 1.625 0.2500 1.330 0.0740 0.00700 0.115 0.800
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Table 3-12
ELECTRIC APS - THRUST/THRUSTER REQUIREMENTS SUMMARY

DISTURBANCE TORQUE GEO . GEO STATIONKEEPING
SIZE

.".. 300 km 500 km LEO - GEO DISTURBANCE ~ 0.4 DUTY CYCLECLASS
WORSl . WORST

10° CASE 10° CASE
TRANSFER. WORST CASE oNCE/OR'BTt ONCE/WEEK

PLATE WIO BLANKET 30 m 0.004 . 0.025 0.001 0.004 0.005 0.0001 0.002 0.015

100 m 0.038 0.240 0.011 0.049 0.057 0.0004 0.007 0.050

250 .m 0.187 1.739 0.054 0.261 0.297 0.0020 0.022 0.170

PLATE W/BLANKET 30 m 0.056 0.480 0.008 0.035 0.011 0.0055 0.008 0.050

100 m 0.700 4.880 0.112 0.488 0.346 0.0059 0.075 0.530

150 m 1.584 12.020 0.396 1.527 0.346 0.0150 0.160 1.100

MODULAa ANTENNA 15 m 0.120 0.504 0.010 0.060 0.037 0.0115 0.004 0.035

60 m 1.500 9.540 0.250 1.000 0.625 0.0115 0.016 0.125

200 m 16.800 5'5.790 1.755 8.050 5.5.15 0.1170 0.041 0.300

SERIES OF ANTENNAS 2 0.035 0.272 0.035 0.233 0.103 0.0020 0.010 . 0.105

3 0.150 0.962 0.150 0.836 0.105 0.0040 0.020 0.155

4 0.353 2.298 0.353 1.880 0.105 0.0100 0.030 0.210

J!



THIS PAGE INTENTIONALLY LEFT BLANK

182

\,

~
\

\
\



4.0 INTERACTION BETWEEN AUXILIARY PROPULSION SYSTEM CHARACTERISTICS
AND LARGE SPACE SYSTEM CHARACTERISTICS

The objective in this section is to establish the system-level
characteristics required of auxiliary propulsion systems to enable them to

meet the requirements of large space system, and from these, in Section 5,
to determine the directions APS technology development should take. To

accomplish this end, it is desirable to establish bounds on the values of
the APS characteristics within which technologists will be required to
work. Because these bounds are configuration and/or mission dependent, a
useful output would be a set of parameter maps showing the functional
dependence of the various parameters upon each other, upon the scaling
parameter, and upon control accuracy, for each generic LSS class.

The original intent was to quantify each of the elements that indicate
sensitivity in the matrix of Figure 3-40. In effect, to determine a
collection of partial derivatives to define the functional relationship of
each interaction. Unfortunately ~ifficulties arise. The basic problem is
that the parameters listed horizontally are not independent. For example,
LSS mass is a function of size, stiffness, strength and perhaps, lifetime.
Also the disturbances are obviously functions of LSS mass and size, and all

three are functions of the scaling parameters derived in Task 3.1. It was
concluded that an attempt to develop a matrix of pa~tials would not be very
productive. Instead, four separate, relatively independent, study areas
were selected which would explore the complex interrelationship between APS
and LSS characteristics. These areas are: Thrust Level, Thrust Modulation
and Transient Effects, Number and Distribution of Thrusters, and Allowable
Mass. The thrust level study was presented in Section 3.2.1 and the
remaining three areas are investigated in the following sections. Although
each investigation only treats certain aspects of of the problem, in sum
they cover all the sensitivities identified in the Figure 3-40 matrix.

I I

A second objective was to collect
optimum APS characteristics.
single shuttle launch.

the results of the four studies to define
The last subtask examined the impact of a
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Proportional and pulse modulated systems were treated separately. In each
case methods of implementation, transient effects and performance were
examined to determine the interactions will LSS.

Large flat structures (generic class I) were studied to define interactions
with the number and distribution of thrusters. Two aspects were found

significant, attitude control and shape control. It became clear that
performance improvement could be gained by distributing the thrusters over

the structure. Doubling the minimum number of thrusters gave a marked
improvement, a further doubling a smaller improvement and so on.

In the Allowable Mass subtask, scaling laws were collected for various APS
components such as tanks, power processors, solar arrays, etc. These

expressions were then used together with thrust and total impulse required
data to determine APS mass as a function of specific impulse. This
determinaion was made for small, medium and large vehicles in each generic
class.

The results of the above studies were reviewed to single out the APS
characteristics that have significant interactions with control functions
and APS charactristics. This review identified the APS characteristics

that are desirable and those that should be avoided.

The final subtask examined the impact of vehicles constrained to a single
shuttle launch. This involved the redefinition of some of the scaling laws
and the determination of APS masses for the single launch vehicles.

The results obtained -in Task 4 established the system level APS
characteristics needed to meet the requirements of LSS. They provide the
information necessary to proceed with Task 5, the determination of the

directions APS technology development should take.

4.1 Thrust Modulation and Transient Effects
Thrust modulation will affect to some extent all control functions. The
ideal situation would be an APS capable of amplitude modulated thrusts all
the way from the maximum required down to zero. Since this is presently

not attainable some form of pulse modulation is necessary to obtain small
effective thrust levels.
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The rise and decay transients associated with APS will affect primarily the
pointing and shape control functions. This is because these functions
require thrust application at precise times. In some cases compensation
can be made for transient effects but when this is not possible the system

performance will suffer.

Variable thrust to enable disturbance torques to be exactly cancelled would
provide optimum system performance. Such a system ideally can provide high

accuracy and once the desired pointing has been achieved no effort over and
above the cancellation of disturbance torques is needed to maintain
pointing. A proportional system of this kind is only possible if the APS
thrusts can deliver torques which closely approximate the applied
disturbance torques. Not only must the control torques equal the magnitude
of the disturbance torques but they must do SQ at all times. This requires
the capability to change thrust at matching rates.

When the necessary thrust range and rates of change cannot be met pulse
modulation can be used. This method can take several forms but the most
likely is pulse-width modulation, also called on-off and bang-bang control.
Thrusts of constant magnitude are turned on and off for varying lengths of
time to achieve a desired mean thrust level.

4.1.1 Proportional Control
When proportional control is available the control thrust is determined as
a function of system error, which is usually defined as a linear

combination of rate and position error.

4.1.1.1 System Implementation
A typical implementation, in one axis, is shown in Figure 4-1. The rate
and position errors are sensed and combined with appropriate gains to form
the system error, £. The control torque is commanded as a function of the
error, summed with disturbance torques, D, and applied to the vehicle to
produce an acceleration. Integration of the acceleration leads to the rate
and position. The accuracy achievable in practice is determined primarily
by the sensor characteristics. The control system shown in Figure 4-1 can
drive the system error, as sensed, to very small values (actually to
6'=-¥,..e;:) when the disturbance is constant, and introduce only a small
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additional error when the disturbance is changing.

and damping are functions of the gains.

The system frequency

Even better accuracy, if required, can be obtained by including an integral
of position term in the system error formulation. Lower accuracy can be
achieved by introducing deadzones in the system either at the thrust
drivers, block F, or in the position sensor. There is no propellant

penalty associated with accuracy provided the control torque is available
over the range covering the maximum disturbance torque down to zero and

provided the I remains reasonably constant over this range.
sp

Basic System Characteristics
The system equation, based on the block diagram of Figure 4-1, and assuming
a control torque of T = K is:

(.zs2,t-/,e;s-r-K<)& =.ZJ (4.1)

where I is the moment of inertia
o the disturbance torque, and

K. are gains
1

The characteristic equation is that of a second order system.
that the system frequency (w) and damping (~) are given by

aJ2 =- £-<:;/7

2fCAJ =' ~£2/./

If 0 is constant the response is given by

&'~) == 2)~ / )
S' ( .Zs- 2,t-~~.) or.k<

It follows

(4.2)

(4.3)

(4.4)

I I

which has the solution
LJ/L) ...J) (. -at- / L >'? -aI- - / L J

C7 (Cj = -; / - e Co-.J",{)r.- - ..:.s e .f/;10c';/ (4.5)
.7w .6

where C?.;:- kR2h) (a.2~d/ = cu2
-::- k~// (4.6)

It is often convenJent to represent system response in the phase plane;
i.e., a plot of (J vs (J. In the phase pl ane, sol utions from various initial

conditions have trajectories as shown in Figure 4-2 (reproduced from
Reference 3).
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=

The steady state error
final value theorem to

under a constant torque can
(4)

J)/ so )/
? ( 2!:<,<-k"'5J'+k<:)jr<o

.:lL or fl
K.<:; £w 2

be found by applying the

(4.7)

4.1.1.2 Transient Effects
Electric engines, which are the prime contenders for proportional control
applications, typically offer a thrust range but only down to limiting
value. If a lower thrust bound does exist there are several ways of
configuring the control system to achieve desired results.

If there were no thrust bound the thrust vs error curve would take the form
shown in Figure 4-3(a), that is a simple gain, or F = K in Figure 4-1.
When limiting is present a relatively simple approach is to revert to pulse

operation. If the thrust is set to zero when less than the limiting value
is called for the F function takes the form shown in Figure 4-3(b). This

method sacrifices accuracy but requires the same amount of propellant
(assuming the same I ) as true proportional control. Continuous
proportional control ~~n be obtained, down to zero effective thrust, by
using opposing thrusters. A possible thrust vs error relation is as shown
in Figure 4-3(c). In this case accuracy is maintained but a propellant
penalty is incurred.

Hybrid Proportional/Pulse Operation
The system is hybrid because it uses proportional control when

.D :;;:. 7;

where T is the limiting control torque
c

and on-off control when O<T •
c

Assuming the system block diagram of Figure 4-1, the control law is

T ~ R'(,et9 ~ ~&)
In the phase plane, the lines indicating where the limiting value occurs

are given by
~­
-~ =

1~9

( 4.8)
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(4.9)

-
Z~ d&7

d&

= 2.2J&/.r
-2

~

..
f& =

These are shown in Figure 4-4. The system trajectory, starting from 0 is

also shown. Assuming D to be positive but less than T the system will
c

follow the unpowered trajectory from 0 to A. The equation is given by

::=- .2)

that is, a parabola. At A the thrust is turned on taking the system to B.
Arc AB is given by the solution to

Z&' -I-/::,,~d .....K/:/6' ~2J (4.10)

which is the same as equation (4.1) and is a distorted logarithmic spiral
in the phase plane.

.~
\

Successi ve on and off trajectory arcs will conti nue until the system
converges to point S. Although the shapes of the converging trajectories
will vary with the system parameters the resul,t is always the value of at
S; i.e., the solution of equation (4.8) with 8 =a

~
I

( 4.11)

(This value can be compared with J?~~z attainable with a fully
proportional system.)

Once the steady state point has been reached, the system will automatically
adapt a pulsing mode with a duty cycle (ratio of thruster on time to total
time) of J) •

k

Opposed Thrust
If an effective torque of T below T is required a torque of T + T can be

c . c
generated by one set of thrusters and a torque -T by the opposing set.

c
This will achieve a net torque T. The system will behave ~s a true
proportional system in terms of pointing and ~isturbance cancellation but
will incur a propellant penalty whenever the net torque is less than the
limiting value.

.~

\

/

Delayed Response
In a proportional system once an operating thrust has been achieved there

may be delays when thrust changes are commanded. These may be simulated by
introducing a first order lag. In effect, the block F in Figure 4-1 takes
the form
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where T is the time constant. The system equation becomes

!£S2 + )::~S' +- k,<:;)& =.5
(..t. /-I-ZS

or ,lIz-s"? ~ ZS 2 r R~s ~~,e;/d -;> ."ZJ-/>+.Z'.s)

The steady state error under a constant torque remains the same although
response will be a little sluggish. Under varying torques little change in
response will occur provided T is small compared to the times involved.

4.1.1.3 Performance
The basic accuracy and propellant consumption performance relations will be
found below for pointing, shape control, maneuver and desaturation and
stationkeeping control functions.

Pointing
Accuracy

systems,
position

varying)

values have already been determined: For true proportional

including those using opposed thrust, and using simple rate and
feedback the steady state error under a constant (or slowly

torque is

When a lower torque limit of T applies the error rises to
c

L7..... = /c
0";-, 2

ZuJ
The propellant consumption in a proportional system, with or without torque
limiting, is that needed to counter the disturbance torque. Once the

steady state position has been acquired no additional effort is necessary
and no savings are obtainable by relaxing the accuracy.

Opposed thrust mec~anizations in general impose a propellant consumption
penalty. Assuming the method illustrated by Figure 4-3(c) the propellant
required is that needed to overcome the disturbances plus that needed to

achieve 2T whenever T <D.
c c

To obtain an assessment of the penalty it is necessary to know what
proportion of the time the disturbance torque is less than the limiting
control torque. Since most disturbances will be sinusoidal in nature an

example can be worked assuming

.2)-=- /!.r;nvJc f 7; =- 'k,tf
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Using the opposed thrust technique the plus and minus torques needed to
counter the disturbance will be as shown in Figure 4-5. Starting from zero
the disturbance torque will build to T when

c
~A ==- A.I'/nAtf;

Lt ': AS;77~/(k)

In di~rurbance cycle period th~ torque will be below T
c

for a time 4t, or
~ sin k. since the period is 2;the proportion of time the system will be
in the opposed thrust mode is

---",

/-------\
..12 4' -/ £
- X - 1'/71 ,{"'" -=

.?JT .f2

The total torque impulse is represented by the shaded are in Figure 4-5,

that is:

(4.12)
~\

\.

:= (4.13)

The impulse with true proportional control would be
7/2

'. Z= 2Y;/J_;2t!P = 11
o

The ratio is (4.13) divided by (4.14), i.e.,

R= p ~ 4Kfc:n-'k
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Since propellant consumption is proportional to impulse, R represents the
ratio of consumption under a true proportional system. R is shown plotted

against k in Figure 4-6. It is seen that the penalty is quite small for
lower values of k (less than 10 percent for k less than 0.17, for example)
but rises rapidly as k increases.

Shape Control
The theory of small oscillations about an equilibrium condition of an
elastic body shows that the shape can be described by (Reference 4)

,ape) = LJnlnrx) (4.16)

where q are the normal coordinates and
n

~n(x) the normal modes.

~\

The normal coordinates are defined
ff4.(l./dy

~n == kl"~d'y

taken over the entire body with
p(x) representing the density, and

dv(x) an element of volume.

It can be shown that the modes are orthogonal, that is

Kinetic and elastic strain energies are given by
-..L5'" .2
/:=: .7 L .?7.7,?J )Zn

y = 1- Z77J71 tJ;.7~

where w is the modal frequency and
n
m the generalized m~ss.

n

77J"l ~~.~ d~
The generalized force is defined

(4.17)

(4.18)

(~·.19)

(4.20)

( 4.21)

(4.22)
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\vhere F is the force acting at x .

The above equations describe the system as a whole, but as a consequence of
the orthogonality condition, equation (4.18), they also hold for each mode;
that is, for particular values of n. This property will be used to gain
insight into the problems of shape control by focussing attention on a
single mode.

Lagrange's equations state

(4.23) ~
\

where the Lagrangian L is
L = T-V

Using (4.19), (4.20) and (4.21)

c1(m;) r 7?7?JJ

•• 2 L:'

JZ -r t::<J~ = ;;

=r

(4.24)

(4.25)

..~

/~

(4.26)

(4.27) .--..."
\,

Laplace
~\

is
.~

\

(4.28)

A candidate for proportional control is to apply thrust according to
/' := -,kff}:i

Substituting this into equation (4.25)
I' /.~ 2 r:-/:J -r -K9 ~ C<J.jb== r;?71

This is the equation of a damped second order system. Taking the
transform of (4.27)

(5-"2 r *,..r~ e-<J2)ft -,: (:F+k )fid

assuming an initial condition of q(o) =qo' q(o) = O. The solution
/2J -kC72 ,e. / t..-J

,9~ = 90 C' /ccrJ'/;r .,t-2~ f;,dC,?

6 = :f 14r.J~;f;
Proportional control is thus effective in providing damping of structural
oscillations (or increasing existing ~tructural dampin~). The natural
frequency is reduced slightly from ~ tO$~~2._kz'. The damping time

constant is directly related to the gain k in equation (4.26) and is equal
to 2/k.

A basic equation of beam theorysta~es

¢ 2
E£ dY r- /.J ;) Y = 0

J~ / ~cz
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of area, and
1ength = M

L

where y is the deflection

x the location along
E Young1s Modulus

I the second moment
pthe mass per unit

the beam

~..

Assuming the motion to be sinusoidal, y can be expressed

rY:. flo f;/Z 0Jt-y-~)

where ~ is a phase angle.

Substituting (4-30) into (4.29)

Ezd'~M~ -rvJ~ =0

¢ 2/­
If n ::: ,oc:J/EJ

d;f~~ - n}/o =0

which has the solution

y = A cos nx + B sin nx + C cosh nx + 0 sinh nx
o

(4.30)

(4.31)

Applying the boundary conditions for a free-free beam leads to the equation

cos nL cosh nL = -1

which has solutions· for various values of nL.
Substituting into (4.32)

I
",'

c:J. :. C EZhL~·
it /'1L..3

These represent modes.

(4.32)

I I

to define the modal frequencies. This equation applies to flat plates if
motion is restricted to the xy plane. Frequencies for the first few mo~es

are found to be
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1st mode

2nd mode
3rd mode

4th mode

C = 3.56

C =9.82
C = 19.2

C = 31.8

A plot of the first mode frequency vs. scaling parameter is shown in
Figure 4-7. Two values of I are shown with E chosen for both graphite and
aluminum.

(4.33){-kj , 1/~~/m~
t/ J /9/ ~ /£/m£

Minimum Thrust Bound
If the control law, equation (4.26), is attempted with a bounded system, it
becomes modified to

where F
2

is the limiting value
'~

\

(4.34)

If k is small, the system frequency closely approximates the natural
frequency and the motion can be expressed

~:::~o crrJc0C , j "C -vJj3o,J/>ccJC

From (4.33) it follows that the thrust is on whenever
cJc>- f;n-!h/m.i-CA),9Q/

and off when the angle is less than this, Figure 4-8.

Although the response can be calculated, it is clear that the only
difference from an unlimited system will be a decrease in damping.,

Moreover the decrease will be small because the thrust is zero at the least
effective parts of the cycle, when the velocity is minimum. It is

concluded that limited thrust is not a serious problem for shape control.

Opposed Thrust
The use of opposed thrust could recover the damping lost by thrust
limiting. Since, however, the loss is small the additional complication of
opposed thrust hardly seems warranted particularly as switching would be

required at relatively high frequencies and the method entails a propellant
penalty.

~\
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Delayed Response
If the delays can be represented
(4.26) becomes modified to

-kjS
/-f'cf

as a first order lag the control law

(4.35)

and the system equation is
iS 2 -r- RS -I- c;J z.)(7 = Ie
{ -' /+cJ / /"

The equation can be expessed in the form
r;:x-l-7$)!(.r-l-C(.)2r.{~1j = (/-I-Z's}/c

which has the solution

By partial fractions

(4.36)

( 4.37)

(4.38)

The first term will decay to zero leaving the last two terms to represent
the subsequent motion. It is seen that the damping ratio is given by

/== a~u
The parameter a can be found by equating the left hand sides of equations
(4.36) and (4.37)

,,----.. rs.i' -r-s 2 -I-S(R.,;!C/c) .,I-C',J
2 = C-'~ r,s(2Cl C'I-r::x') -f-s/n 2

Z".,I- _'2; o<}.,i.J2'0<

where ..f2 2= a 2-r62

Equating coefficients of sn
Pel. 7' ~ ex' .= /

..f22r..,t._c'-o( e ~CJ2..".~

-'?~ =~J2
2

substitutingo(=p-.2C1?"')2andR2= cU into the second equation yields
/-"?ct?'"

c?az-(/-2a?:,)2 = ~7(/-..?ac) -...?ac-r0z;J2 (4.39)

If R is defined ~, (4.39)
T

I I

Butu)=~/7 where T is the natural system period.
can be rearranged to give

;e2:= ~r(/-2c(,'C/-.2ac(/-2cd/2

?/72(;"(..c
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Referring back to

system is

equation (4.28) the damping ratio of the continuous

.24..-K=

The ratio of the damping ratios, delayed system over continuous non-delayed
system, is

(4.41)

~\

\

NowaZ"'will be a very small number in all practical applications. IfaZ"'«l

/' -.J ~(/~4/72R-:J (4.42)

This expression relates the ratio of the damping, delayed system to ideal
system, to R which is the ratio of first order lag time constant to the

natural oscillation period. It is shown plotted in Figure 4-9. For small
lag time constants, say ~<.05T, the delayed system can still achieve 90

percent or more of the ideal system. But the situation rapidly
deteriorates; whenZ'=.5T only about 10 percent effectiveness remains.

Maneuver
Proportional control will allow maneuvering torques to be tailored to suit
slew laws which can minimize structural oscillations. This may be
important if the maneuver involves tracking some target. It may be of no

consequence if the maneuver is simply a prelude to thrust application and
there are no time constraints.

.~
\

As an example of the reduction in oscillation amplitude attainable the
response to a step and a ramp torque can be compared. For a system with
very low damping the equation of motion can be approximated:

(S-2~ ?J~& ::= 7"
For a step torque

& ==
s-(s z..<cJ2)

c9f?):::: / // - Co.f6,JC).c:.u 2 { r
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For a ramp torque
T

The ramp response has only;;f the ampl itude of the step response.

\.

A thrust limited system means only that a
limiting thrust must be accommodated. The
delayed response will be unimportant

accurate tracking.

step torque corresponding to the
effects are minor. Similarly a

unless the maneuver is related to

...--.,
\

Oesaturation and Stationkeeping
These functions are usually not demanding. The impulse delivered is the
important consideration and the time and rate of delivery are generally
secondary. This being the case the advantage of an amplitude modulated APS
is the ability to minimize structural oscillations. The comments under
maneuver are applicable.

4.1.2 Pulse Modulated Control
Pulse width modulation will be the most likely pulse mod~ suitable for APS.

In this method thrusts are turned on and off for various times but the
thrust level, when on, is essentially constant. The impulse delivered to
the system is determined by the on time and is controlled by varying this
time. The effective thrust and impulse values are the constant thrust on
values multiplied by the duty cycle, defined as the ratio of on time to
total time.

When external torques are low the duty cycle becomes low. Better accuracy
is obtained by frequent small pulses than infrequent larger pulses. As the
torque gets smaller, the on times decrease and eventually a limit, called

the minimum impulse bit, is reached. This is determined by physical APS
characteristics such as valve actuation time, propellant metering, warm-up

times, etc.

A consequence of on-off control is the phenomenon of limit cycling. In a
zero disturbance situation position control is maintained by firing thrusts
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of alternate sign. This causes a continual oscillation back and forth
across the zero position error point. A plot of position against time is
shown in Figure 4-10(a). A more convenient representation, especially for

•
analysis, is the phase plane, Figure 4-10(b), which shows 0 vs O. The
system oscillates between limits + 0 which define a deadzone. The width

- d
of the limit cycle mayor may not be symmetrical about the 0 axis.

or

Considering one axis only, and assuming the limit cycle
angular momentum of the vehicle as it coasts across AB,

~8 = .Z"&d

Following the pulse, at C, the angular momentum is

~p.= -..r&d
The change is then 2IOd which must equal the impulse

d// := 2/Boe = r"eZ'

&d':; h~/2/

where F is the thrust
T the on time, and
e the moment arm

is symmetrical, the
Figure 4-10(b), is

(4.43)

The propellant consumed in going from B to C is

H= ;~

LS-,.,6
r-~ and since there are two such burns in each cycle, the consumption is!

0=

,r;----

2H = ~ per cycle. (4.44)
..1;;4

To find the limit cycle period the coast times are necessary. The time to
travel from C to 0 is

2~;£
'--r-

~d

thus the total limit cycle period is

I I

=-

=

2(r~ Zd)

2(?,&d J -f- r)
".c&C
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In general, the coast time TAB or Teo is very long compared to the burn
time, T. When this is the case

T,-..; 8/62d
re'Z"

and the duty cycle; i.e., the ratio of on time to off time is

.J)C:: ••7r/;-

= rez--/<tL&'ct

(4.45)

(4.46)

(4.47)

thenconsumption is
(Cr)~

~&d£.t;)

denoted P, the propellant consumed can be expressed

K == et-
,P .-I&J

Figure 4-11 shows W/P as"a function of the scaling parameter for three

pointing accuracies. A flat plate structure and 10 year lifetime were
assumed.

The mean rate of propellant

/y=zx r =
~~

or, using equation (4.43)
'2

k = .£c9cf
e&d.?f)

It is seen that propellant consumption is proportional to the impulse bit,
FT, squared and inversely proportional to the width of the deadzone. There

is thus considerable incentive to keep the impulse bit as small as
possible.

If (8Jl is
.iJ-)

4.1.2.1 System Implementation
In order to produce a limit cycle some means of turning the thrust on at
points Band 0 of Figure 4-10(b) must be devised. This is achieved by
using rate and position sensors and a relay or switching amplifier. A
block diagram of a general system is shown in Figure 4-12. For the time
being the sensors will be assumed ideal and the relay to have a simple

deadzone as shown in Figure 4-13.

The signal going to the relay is

~=~c9-r~9
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thus the minus thrust, defined as the thrust that produces a torque in a
direction to decrease 8, will be switched on when

/;& -/- /~ &~d (4.48)

Similarly, the plus thrust will be turned on when
/;& .... <:9 -:!E -cf (4;49)

and both thrusts will be zero in the range
-6""<: -<:6J :-'-£S. ,.9 <: cf (4.50)

Expressions (4.49) and (4.50) can be represented on the phase plane as two
lines, Figure 4-14, known as switchlines. These divide the phase plane
into three regions - a central band where no thrust is applied, the plus
thrust region to the left of the central band and a minus thrust region to

the ri ght.

In the phase plane, when no torques are acting, the coast trajectories are
straight lines. With torque, trajectory arcs are given by

J& = J):!:/"e

which integrates' to give
& = ~ yci, C f- (?~,cV;2- (4.51)

More conveniently for phase plane work
.. 'dG h./& = ZG - = J)r e

tt'8

leading to
/:,2. -2)
(t9 -c9a/ = (4.52)

I I

This is the equation of a parabola, concave to the left for negative net
torques and concave to the right for positive net torques.

Figures 4-15(a) and (b) show convergence of the system, in different ways,
to a limit cycle about the origin. The convergence is a consequence of the
negative slope of the switchlines introduced by the K term in the error

2
signal.

4.1.2.2 Transient Effects
There are a variety of imperfections in real life systems which can alter
the form of the switchlines and modify limit cycle characteristics.· Some
of these nonlinearities and their effects will be examined in this section.
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The jet on pulse has to this point been assumed rectangular. In fact there
will be rise and decay transients and the pulse is more likely to take the
form shown in Figure 4-16. Perhaps surprisingly the rectangular
approximation very closely matches the effect of a true pulse. The rise

and decay simply round out the corners that are sharp in an idealized
trajectory but have little effect on performance. There is a second effect

that requires consideration ho~ever. If the thrust starts at B and the
rectangular approximation (having the same area) starts at C there is a

delay t c - t B• In fact thrust initiation at B was most likely delayed a
short time after the on signal was generated at A. This type of delay can
be caused by valve opening time, fuel line capacitance, warm up or ignition

delays. The time t - t can be used to combine the various contributions
C A

into one effective on delay, t • Similarly, if point 0 represents the time
o

an off signal is generated and E the end of the rectangular approximation,

t E - to can be taken as an effective off delay, t
f

•

An on delay modifies the ph~se plane switchline by changing its slope., The
jet on line occurs atdB= 9t beyond the signal on line as shown in Figure

o
4-17(a). The off delay is somewhat similar with the thrust off line being
constructed by continuing trajectories past the signal off lines the

distance travelled in time t
f

, Figure 4-17(b).

,In some cases it is possible to compensate for on and off delays by
repositioning the switchlines so that the thrust comes on and goes off when
required. This process requires moving the switchlines closer to the
origin, that is, reducing the value of 8 in equation (4.50) and modifying

the gains K1 and K
2

• It is only possible if8 can be reduced. If 8 is
already at a minimum set by system parameters the on delay will tend to
cause a degradation in accuracy and the off delay will increase propellant

consumption. This is seen from equation (4.47)

N =Z&;/e&d.1f~
The on delay increases 0a, the width of the deadzone. This actually
reduces propellant consumption but usually the savings will be more than.
cancelled by the effective increase in 0d caused by the off delay.

The off delay problem can be avoided if the system is arranged to fire a
minimum impulse bit when the on line is crossed and the rates are low.
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FIGURE 4-17 EFFECT OF TIME DELAYS ON SWITCHLINES
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r-' This avoids the need for an off line in the terminal limit cycle but

requires additional system logic to implement.

~
i 4.1.2.3 Performance

The terminal limit cycles reached by the system with ideal sensors and a
,~ relay with deadzone are typically asymmetric. If the deadzone is traversed

on one side, for example FG in Figure 4-15(a), at a rate R times the.
(~' symmetric rate, Os' the time to cross is closely approximated by

~~ :: ~
~' R.9s
( and

=
~.,

i

The duty cycle is then

~
(

•
,h/==

·2~
/ =

z--a R(2-R)
2c9d

(;c)~ Rp-R)
4&d£...&?

(4.53)

(4.54)

These are the symmetric duty cycle values factored by R(2 - R). The factor
is shown plotted in Figure 4-18. The asymmetric cycle thus uses less
propellant but since the asymmetric cycle rate is random the savings cannot
be 'predicted except on a' probabil ity basis.

The limit cycle deadzone, 0d' achieved by the relay deadzone of~, is

'6'd = d" _ ~~ec (4.55)
~ .2J"t;

Pointing

'When disturbance torques are present limit cycle trajectories are modified
primarily because the thrust off trajectory arcs become parabolas rather

than straight horizontal lines.

If the disturbance torque is positive and the minus thrust is used to
counter the disturbance the limit cycle trajectory takes the form shown in
Figure 4-19(a). The dotted lines represent the response to a larger torque
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than the solid lines. If 0 increases in magnitude the point P, where the
trajectory crosses the axis inside the deadzone, will move to the right.
Conversely as 0 yets smaller P will move to the left. At some level P will

meet the left hand boundary of the deadzone. When this occurs the limit
cycle will change from a one pulse cycle to a two pulse cycle which will

adjust itself to take up the symmetrical shape shown in Figure 4-19(b).

To evaluate the performance in one and two pulse cycles consider the
deadzone to be 2ndby 2ed in size. Using equation (4.52) the trajectory
inside the deadzone is

J(6?-&J) -== 2~(&-&d) . (4.56)

For the one pulse cycle the point P is given by setting 0= 0; i.e.,
-/&j '= ,2.2J('{)p -&d)

'2
&p -:: &d' - £c9;/2,Zl

In order to remain a one pulse cycle 0 > -Od' that is provided
.:z. p

&d -Lc9dj2~ ;> -&d

..ZJ > ./g:/~&e{ (4.57)

This is the condition for a one pulse cycle.

\.

~
\

The time on, from A to B is

while the time off, from B through P to A is

?e :: 2r9c!/..D

leading to a limit cycle period

/ =: 4-6' -r? = 2c9d r­
r'C'-.ZJ

•
T:::: 2c9d -r-;"e

"cC?-~

The mean propellant consumption is
(4 58)

(4.59)" ;r ..2)

.vy' = T.2f~ - e.z;."d

Notice that the mean torque applied is~~;-, exactly equal to the
disturbance torque. The one pulse cycle is thus very efficient and all the

propellant used goes into countering the disturbance.
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(~
In the two pulse cycle, point C in Figure 4-19(b) is found by setting 8 =
8
d

in(4.56) ./,'2 .~,z(~ -&d) == - --/3~!
·2 .. r'")

t9c = &;7 - ~~"":9d/z

The thrust on and off times are

,'-- ~8 =- .2dd~X:<''' -.:;)

/c~ = 20>17'/r"c,? .;-,2))

,-- /ec :::: /.2'.-9 = (c9d-&c)/~

The total on time is then

and the total off time

where ,,(?:: .J:)

Fe

Suppose now the critical value of D from (4.57) is written 0

...Dc = Z&c//-/GeL c

It follows that the zero torque limit cycle propellant consumption from

~..

The limit cycle period is then ,
T= ZOe -t- ?(Jcf .,to 2 (&d-c9c)

~ -(-.2J r=:e -.lJ .2)

- 2(' 2> I' /; , ) '/ ~ )7
/:::: .2)(F~l_.ZJ.z)L&d/~er-.ZJ/ -&e( ,c-p-.lJ-:;

and the propellant consumption rate
• "F,70"""

N=

=
:::

(4.60)

(4.61)

(4.47) is
(4.62)

and the two pulse cycle has

I [

I~

When D = Dc, the one pulse cycle under constant torque has

h--e .z;.,J ="...::-i
/
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when R is small (4.40) can be approximated by

(4.65)N-e Z:;i ~ fl //~ ;//-.A:':~~> )
- { /- y'>-.~V.P; J

weI is plotted against % in Figure 4-20. It is seen that the no
tor~~e consumption can be si~nificantlY higher than the consumption under a
small torque (by a factor of 4 when 0 = 0 ).

c

A pure time delay will increase the width of the deadzone.
disturbance torques

If there are no

(4.66)

where T is the delay and
.0
0L the limit cycle rate

radians/sec (4.67)

Substituting (4.67) into (4.66)

LtG == Z; /o/J..$
22"

(4.68)

where MIB is the minimum impulse bit; i.e., FT .
mln

for ~\

~

in
/-"\

Shape Control
Shape control using discrete pulses can be achieved by applying a pulse

a direction to oppose the motion once every half cycle. The most effective
time to deliver the pulse is when the velocity is a maximum. From (4.25)

with F=O

~/MIBis shown in Figure 4-21 as a function of the scaling parameter
several time delays.

Oi fferent i at i ng

which is maximum at wt = ~ 'TT , n = 1, 2, 3••••
\.

At the maximum velocity points the amplitude is zero and the system energy
is entirely kinetic. The momentum at such a point is

~\
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Suppose at succeeding points an impulse of FT is applied. The momentum

after pulse application is
p./ =: n-uJ,9-'o -~'rZ"' (4.69)

In particular, after one cycle and two pulse applications the momentum is

);2 = /:n?·~o -2/"2:'

The corresponding energy is

T= /n;iz == ~m(t:) Z

= '::In(?,0~ -2"1 2

7?J / 2,cr) 2-
- 2" ( CAJj-o - n?

This must equal the system strain energy; ie.e,

j~2 == ~(?Jfd _ ~~)2

(4.70)

(4.71)

Initially (4.72)

Dividing (4.71) by (4.72)

. -rUJtNow q/q would equal e if the process were continuous instead of
discret~. However an approximate effective damping ratio can be found by

equating

and taking t to be one cycle; i.e.,t= 2'1T
W

~as a func"4ion

1 - / &~ / -J
-2lf ( /-2"ct/mwjd/

of J?~~ is shown in Figure 4-22.
mcJJ;,
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Since m= Mfor the plate structure
r .

/ == 2~ &z(;-_-.2-~-Z-:-L-)
.-11cJ;<.1

This is shown in Figures 4-23,4-24, and 4-25 for a small, medium and large
plate structure assuming FE to be the minimum impulse bit.

It is seen that pulse control can
to damp structural oscillations.
when

be used as well as proportional control
The pulse application must cease however

or the pulses will induce an oscillation instead of damping it.
limiting value is found by equating,the strain and kinetic energies

.Jky2==/m?t1J;2= L~(r-r)2

~2 = /~12

But K =w
2 and the minimum amplitude can be expressed

m rZ'f =: .??7&<.\

The

(4.74)

Delayed Thrust
The pulse is ideally applied when wt=~'1T but if there are on delays the

,r- pulse will be late. ,Suppose it is applied at t = .z'1T +a. The velocity
at first pulse application is

and the momentum is
,i == .0,90 ..r;,'n (-ff,J-0<)

;6 = ??JuJ9a.r;/1 ({~c>f)

I I

After two

and

pulse applications; i.e., after one cycle

? = ?71uJjo .t',,'n({~o<)-.2~7
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The kinetic energy at this time is
..,

:7..c-;..;'j-4
-' '"

'7/7 -.//
(4.75)

~.
(

(---

and the strain energy is

y = ;p.crJ(:-",1I2

As before the damping ratio is yiven by

-27l'./_ 7/e - 'i"g_
/0

substituting (4.77) and using ~=??laJZ

(4.76)

(4.77)

r"""--'
r

- /j -=: -i. &, // J
4/7 .! cr.r (i-hX/ ~fi;~/ff~DlJ -2.-cZ-,hnpo w .

I

Curves of t vs ex and ~ for several representative values of

shown in Figure 4-26. As might be expected the effect of a time
to reduce the effectiveness.

(4.78)

.2~~ are.muJ90
del ay is

It may be of interest to compare the relative effectiveness of the
proportional and pulse methods of shape control. The impulse delivered per
cycle by the proportional method is

/== Z/;dlf%/' iT

- pmjJoriTJc()'!-ed-

- 4~77/?o

.and thi s provides a dampi ng rati 0 of j =2:~

If J i s defi ned Z
I'TJdpj

/::: k =
J ..??0

(4.79)

I I
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The pulse method, from equation (4.73) has

-7JT.f -e. - :: /-J

.,.... _ / -";/T.f
v - /-e (4.80)

I I

J is shown as a function of t in Figure 4-27. It is seen that the pulse
method is the more efficient and becomes increasingly so as the damping is
increased.

Maneuver
As shown in Section 4.2.1.3 proportional control has an advantage over an
on-off control for maneuver in bei ng more sui ted for impl ernent i ng jerk
limited slew laws. In general an on-off system will excite larger
amplitude structural oscillations than a carefully tailored proportional
system. When a train of pulses is used frequencies which will cause
resonance must particularly be avolded.

Desaturation and Stationkeeping
~ Again the major drawback of an on-off system is greater excitation of

structural oscillations.

4.2 Number and Distribution of Thrusters
In section 3.2.1 the thrust levels required to generate the total control
forces and torques were determined. These assumed the minimum number of
thrusters in the most favorable practical locations. In general this meant
placing the thrusters as far apart as possible without mounting the units
on parts of the solar panels or antennas. This approach is reasonable for
generic classes lIB, IIC, IlIA and IIIB. The first three generic classes,
lA, IB and IIA, however, lend themselves to distributed thruster
configurations. This situation was addressed in Section 3.2.2 and force/
unit area (for classes IA and IB) and force/unit volume (for class IIA)
data were derived. In this section the distributed thruster concept will
be examined in more detail.

It is clear that in practice the thrust distribution cannot be an ideal
continuum but must be approximated by a finite, and probably relatively
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small, number of thrusters. Of interest are the effects of the number and

location on ability to control shape, the merits of trading stiffness and
strength against number of thrusters and the possible existence of minimum

mass configurations. Although distributed systems are applicable to both
plate and box type vehicles attention here will be restricted to plate type

structures.

4.2.1 Attitude Control
To assess the effects of multiple thrusters the plate-like structure was
represented as a uniform beam. Thrusters were placed uniformly along the
length of the beam with each thrust assumed equal. The beam shape was then
determined under two conditions: (1) when all thrusters were fired in the
same direction (to represent translation) and (2) when the thrusters on one
half were fired in one direction and those on the other side in the

opposite direction (to repesent torque application).

,~
r

Number of Thrusters - Two thruster spacings were used as shown in Figure
4-28. These are termed (N-l) where there is one less beam segment than the

number of thrusters and there are thrusters at each end of the beam, and
(N+l) in which ~here is one more beam element than thrusters. The (N+l)

configuration is effectively the (N-l) configuration with the beam end
thrusters left off.

I I

The spacing of the thrusters will determine the effective moment arm during
~' torque application. It can be shown that the effective distance is

c= #4 or A/L (4.81)
'"¢(//1-1 4('N-/)

for the (N+l) and (N-l) configurations respectively. Both expressions are
asymptotic to 1 = .25L as N increases. The variation with N is shown in

Figure 4-29.

The total impulse required to counter disturbance torques for small, medium
and large plate structures (as defined in Table 4-1) are shown in Figure

4-30. The curves are fairly flat when presented in a semi-log format.
Figure 4-31 repeats the small plate data with linear scales and shows that

1, the variation with number of thrusters is quite considerable. These curves
assume an (N+l) distribution and a CG-CP offset of 10 percent of the
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characteristic length. Figures 4-32 and 4-33 whow comparable curves for
the cross and box structures.

4.2.2 Shape Control
Using normal modes, the dynamics of a flexible structure can be obtained by
calculating the physical response of a point for each mode and then finding

the total response using superposition. The differential equation for each

mode is: j' +- 2..{uJn j. ~?J:.7 :: :: (4.82)

where: q = modal response
W = modal frequency
t = modal dampi ng ratio
m = generalized mass
F = generalized force

= ~T kcf>Tk
"Tk = F~rce at the kth point on the structure

cf>T k = mode shape at the poi nt where \ is app1i ed

The response of the single degree of freedom modal equation (4.82) to a
step generalized force, F, is:

a f!-) = ...£. :..// _&a(';rrJ~tf- ..av'??vJc-Jj; (4.83)
/ 7J? ':')n c:<J //

where: u = - tW n

wn=wFfl

(4.84)

equation at time t, the physical response at a
is given by the summation of the responses in each

#'

f (c-) = ? fIf·,9/ (2-;
tt~ /

After solving each modal
point on the structure
of the modes:

where: ~i = i th mode shape at the point where responses are being calculated~\
qi(t) = i th modal response from equation (4.83)

By solving equations (4.83) and (4.84) at successive time intervals, the

maximum structural deflections can be found.
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The steady state deflection due to a step force is found by letting t in
equation (4.83). The steady state response of each mode is:

and the steady state physical response is:
-4 ~."t;.

j). -=..,::;::;. 2-
/ SS ')J;z/ nJe'Nne'

(4.85)

(4.86)

r--­
(

(~

A computer program was written to determine the maximum and steady state

elastic responses to step inputs from the thrusters. Ten free-free modes
were used and the problem formulated in normalized form so that the results
apply to beam-like structures of any size. The normalized deflection is
defined:

(4.87)

where: y = the elastic deflection
F = the total thrust
E = Young's modulus
1 = the section 2nd moment of area
L = the beam length

The actual deflection is

(4.88)

(' and shows that y is inversely proport i ona1 to El. Length is an important
parameter with y proportional to L3•

Figure 4-34 shows the maximum dynamic deflection as a function of the
number of thrusters, all firing in the same direction, for both the (N-1)
and (N+1) configurations. As expected, the deflection decreases as the
number of thrusters is increased. The decrease is rapid at first but then

declines. Going from two to five thrusters ((N-1) curve) reduces the
deflection by a factor of about 4:1. A further 4:1 reduction requires 14

thrusters.

Figures 4-35 and 4-36 show similar (N-1) and (N+1) curves for the torque
case. The center thruster contributes nothing to torque when there are an
odd number of thrusters and turning this one off leads to some improvement
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~ when there are only a few thrusters. In comparing the translational and
rotational cases it is seen that the deflections are much larger when the

.~ thrusts are asymmetric.

Figures 4-34, 4-35 and 4-36 were constructed using the first ten bending
modes. Values shown are the maximum deflections from the equilibrium
(flat) state occurring at any point in the beam. Steady state values were
about one half the maximums.

I I

.~
r

To determine if the number of modes used had any influence the calculations
were repeated using fewer modes. Figures 4-37 and 4-38 show the change in
maximum symmetric case deflections for the (N+l) and (N-l) configurations.
Very little change is seen in the (N+l) case. In the (N-1) case some
variation occurs but the curves are essentially flat for three or more
modes.

Figures 4-39 and 4-40 show the asymmetric case and again there is no
significant change above three modes. The curves indicate that little
excitation of higher modes is taking place and analysis with as few as the
first three modes will give reasonable answers for both symmetric and
asymmetric thrusting.

Thruster Spacing - The effect of thruster location was examined by taking
two thrus~ers, equally spaced from the center of the beam, and determining
the maximum deflections with both symmetric and asymmetric. thrust. The

results are shown in Figure 4-41. Maximum deflections occurred when the
thrusters were at the ends of the beam. Sharp minimums appeared in both

cases and these were significantly lower than the maximums - by a factor of
some 50 in the translational case and about 20 in the rotational. The
shapes of the beams when the thrusters were located in the best position is
shown in Figure 4-42.

Much additional work could be done on various combinations of location and
thrust level to determine optimum configurations. These would be useful in
a design environment but need not be pursued here. where the primary
interest is on APS characteristics and requirements. It is clear from the
shape control point of view that distributed thrusters are desirable and
location is important when a small number of thrusters are used.
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Thrust levels - The effects of thrust level on the surface flatness can be
determined using equation (4.87)

(4.89)

This relates the thrust/thruster to the surface deflection as expressed by

(y/l). Values have been claculated for small, medium and large flat plate
. 2

structures wlth two values of I (400 and 2000 m ) and for the values of E
corresponding to aluminum and graphite. The curves are shown in Figures
4-43 and 4-44.

Stiffness/Number of Thruster Trades - From Equation (4.88) it is clear that
increasing E or I will decrease the deflection. EI is a measure of the
structure stiffness. Either aluminum or graphite composites currently seem
the most likely materials. In any event, little control is available over
E; the best material will be chosen to meet a number of criteria, which may
include low thermal expansion, suitability for transportation and in-space
construction in addition to low weight. Once the material is selected, E

is fi xed,. The other component of stiffness, however, represented by I,
depends on how the structural elements are configured. The value of I can

also be increased by adding more structural material without a
configuration change. The deflection in this case will decrease with lower

I but the system weight too will increase.

4.3 Allowable Mass
The allowable mass study represents an examination of total system mass
sensitivity to various APS parameters. Topics covered in this study

includes the effect of APS mass distribution on the accuracy of shape
control, auxiliary propulsion system mass determination, the identification

of an optimum I for electric systems, the effects of APS mass on total
impulse requiremenE~, and total system mass determination.

4.3.1 Shape Control

Surface accuracy of a plate type structure using distributed thrusters has
been examined in Section 4.2. It was assumed that the structure was
homogeneous. This implies that although the thrusts were applied at
discrete points, the APS mass was distributed over the structure. The

256

.~
\



'I 'I ") ") ) ') -\
I

) .~ ) ''') ') -)

.01{~H I g l~ < ' , ! 2~ I ,~,.01,
NUMBER OF THRUSTERS

________l'!l 1. 0

1.E+07.

PLOSSH
flC0l (!)

G01 I!I
ACI <!>
Gl (!)

PLOSMO
AC0t ~

G0l [9

ACI 17
GI l!l

PLOSLG
AC0l ~

G0l C3
ACl . ..;;q

GI [)

oj

30

1.0

.01

MEDIUM (700 M)

MAXIMUM THRUST/THRUSTER
PLATE STRUCTURE
N+l DISTRIBUTION

I = 400 1'1**2 SURFACE ACC.

~ ~ ~ \ ~ 1.0 (DEC)

/SMALL (38 H)

~ S1 gJ " ~ .01

u~·~ ~ ~~ Jli
. ~

~ LARGE (21000 H). 1

1. E+0

1.E+08

1. E+09.

".....
U>c:
;;0
rr1

.".
I
.".
W

$
><......
~
3:
--i z:r:
;;0
c: LX
V) w--i l-N ...... (f)(j1
--i =:J-.....J :r: a:
;;0 ::x:c::: l-
V) "---i I-m en
:lO =:J.. LX

::x:
-0 I-r-
~
rr1

~
:;;a
c:::
n
--ic:::
:;;a

~
V)

3:»r-
r-
.....

08-0Ee-80 15:50:36



HAXIMUM THRU5T/THRUSTER
PLATE STRUCTURE
N+! DISTRIBUTION

] E+IO I = 2000 M*_2
SURFACE ACC. (DEG)

m 1.E+09. I

!

,, SMALL (30 M)

I.E+O_

_ 1.E+O_

I.E+O&
A

_ _ _1.0
1.E+OS "

_ m MEDIUM (700 M)
_ 1000B PTITSM

m _ rp._ AC01 0
- '- 100_ _ _ .01 GOI m

ACt--o _ q>
> _ GI 0

_ 10_ PTITND
At01

tO _ G01 m
_ GI

\m 1 PTITLG
" LARGE (21000 M) RC01
1_ GOI.
m _ .01 ACl
m

GI

.01 .... . .... _ ....... : ........... :
0 10 20 30

NUMBER OF THRUSTERS

08-DEC-80 15:35:34



study was extended to detennine if there are allowable APS mass limitations

associated with concentrated masses at the thruster locations.

To limit the number of parameters, an (N-1) distribution of thrusters was
assumed. The number was taken as eight which corresponds to the minimum

~ deflection case shown in Figure 4-35. The total LSS mass can be expressed
as the sum of structure and APS masses

structure mass can be expressed as a

/(' = 4r/7.r/ #
AI:: AIr (/f-k')

and the ratio of the APS to
coefficient, K

(4.90)

(4.91)

The APS mass was assumed concentrated at the eight thruster locations with
the structure mass equally distributed over the structure. Deflections

were then recomputed for both translation (all thrusters firing in the same
direction) and rotation (~alf the thrusters firing in opposite directions).

Three values of K were used: K = 1, 3 and 6. The resulting maximum
deflections for translation and rotation are shown in Figure 4-45. Under
rotation the maximum deflections increase as mass is added. This is caused

by the fact that, for eight massless thrusters~ the mode shapes and
thruster locations result in a balance of forces which produce near minimum
deflections. The addition of concentrated masses at the thruster locations
results in a change in the mode shapes which upsets this balance and causes

higher deflections. Note, however, that the maximum deflections due to
rotation are less than or equal to those due to translation for all values

of K used.

4.3.2 APS Mass Characteristics
The independent variables in this portion of the study were system
efficiency and specific impulse. Thrust level and total impulse
requirements were determined in Section 3.2.1. Propellant tank and
thruster sizing were also predetermined by fixed parameter scaling laws
which will be listed in a following paragraph.
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Determination of the auxiliary propulsion system mass was a six step
process. The six steps are listed below in order of execution:

1. Total impulse determination
2. Thrust level determination
3. Fuel mass sizing

4. Fuel tank sizing
5. Thruster system sizing (thruster and any power system mass)
6. Summation of Fuel mass, Tank Mass, and thruster mass

Total impulse determination is outlined in Section 3.2.1. This analysis
concluded that stationkeeping sources would comprjse the total impulse
needs for each class of LSS.

Stationkeeping sources include solar pressure perturbations, north/south
solar and lunar gravity effects, and east/west stationkeeping due to earth
triaxiality. Total impulse requirements result from the sum of these
sources over a ten year lifetime. Table 4-1 contains the total impulse
requirements for each class and size. The thrust level determination was
shown in Section 3.2.1. These requirements are summarized in Table 4-2.

Fuel mass determination was a straight forward process using the following
equation:

MFuel = Total impulse/(I sp X 9.8)

where MF ] in kilograms
To~~l impulse in Newton-seconds

I in secondssp

Speci fi c
seconds.
defining

.r

impulse was treated as a parameter with a range of 0 to 60,000

This is an ambitious range of I however in the context ofsp' ,
technology advances a broad I range seems appropriate.

sp

, Estimates of fuel tank mass depend on propellant type, tank material', tank
back pressure, and an assortment of other variables. The following was
assumed in estimating propellant tank mass:
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Total Impulse Requirements (N - S)

Class/Size Small Medium Large

Plate 1.199 x 105 6.50 x 107 5.86 x 1010

Modular Antenna 1.104 x 106 4.561 x 106 1.657 x 107

Series of Antennas 2.063 x 107 6.19 x 107 1.031 x 108
. f

Table 4-1 Total Impulse Requirements
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TABLE 4-2 THRUST REQUIREMENTS

THRUST/THRUSTER REQUIRED

STRUCTURE SIZE 1/ THRUSTERS LEO MAXIMUM LEO-GEO TRANSFER GEO MAXIMUM GEO NOMINAL
..

PLATE SMALL (30 m) 4 .04 .0022 .0018 .0018

MEDIUM (700 m) 4 21 20 .92 .92
24 2.2 3.5 .16 .16

100 .7 .9 .04 .04

LARGE (21000 m) 4 610000 46000 6200 3310
24 62000 8000 1080 570

100 15100 1950 260 137

MODULAR ANTENNA SMALL (15 m) 8 .14 .07 .009 .009

MEDIUM (60 m) 8 1.2 .75 .034 .032

LARGE (200 m) 8 62 60 .23 .105
32 16 ~ 14 .06 .03
80 6.4 5.6 .024 .012

SERIES OF ANTENNAS SMALL (2) 4 .113 8.75 .04 .04

MEDIUM (6) 4 6.75 32.5 .79 .48
24 1.13 5.42 .13 .08
96 .28 1.35 .03 .02

LARGE (10) 4 26.3 54.0 2.80 .78
24 4.4 9.0 .47 .13
96 1.1 2.3 .le .03



1. Propellant type is storable liquid:
bipropellants, mercury, cesium, etc.

e.g., hydrazine, \.

2. tank is of titanium with a pressure under 300 psi.

3. Tank wall thickness is 1.3 mm.

4. N # of tanks are used for N # thrusters in distributed
systems.

5. One tank is used for non-distributed systems.

Sections 5.1 and 5.3 cover the current electric and chemical system
characteristics. From these characteristics, scaling laws were derived for
chemical and electrical engine mass. Utilizing References 3, 4 and 5,
power processor and solar array scaling equations were also derived. These
equations reflect state of the art technology and all specific masses and
areas were fixed at these values. The independent variables were Thrust,

I and efficiency. Table 4-3 shows the auxiliary propulsion scaling laws
u~~d for the unlimited shuttle launch study. These scaling laws differ
from the scaling laws used for the, single shuttle launch study presented in

6ection 4.6. The PPU scaling equation used here fits high power PPU
technology better than that used for the single shuttle launch. Likewise,

thruster mass for the unlimited size study did not include factors for
mounting structure and gimballing mechanism. These were included later for

the single shuttle launch study.

Utilizing the scaling laws shown in previous paragraphs, total APS mass
could be determined. For chemical systems, the process is free of
independent variables. Electrical systems, however, have total system
efficiency as a significant independent variable. Electric thruster
efficiency was treated by three methods. First, efficiency'was set at 80
percent which is representative of currently available ion propulsion
systems. Second, efficiency (independent of I ) was treated as a
parameter and set at five constant values: 20, 40,sgO, 80 and 100 percent.
The final treatment of efficiency considered the dependence in current
systems of efficiency to specific impulse. The 30 cm thruster system was
used as a model for this last method.
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,r-.

Electric Engine Scaling

- C).675 kg~. Me - 6169.4 I
sp

Power Scaling

9.807 T I kwp = sp
211

( Power Processor Mass

MpPU = 14.2 {p).52
(

Solar Array Mass

MSIA = 13.5 (P)

Solar Array Area
~

ASIA =8.96 (P)

.---' Cherni cal Engine Scaling

Me = .028 (T) + .27 kg

TABLE 4-3 APS SCALING LAWS
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Figures E-l through E-9 define the total APS mass as a function of I
for each primary structure. This mass is the "first pass" APS mass uSi~~

GEO thruster si zi ng. The term II fi rst passu i ndi cates that the effect of

the APS mass itself on the total impulse requirements has not yet been
included. This effect will be included in the total mass figures to be
shown later. These later total mass figures yield the same optimum I as

. sp
the "first pass" APS mass data and can be safely used to examlne APS mass
to determine the optimum I

sp
For the plate structure, an assumption was made that the solar array mass
was free; i.e., the power generation mass was not charged to the APS mass
but was assumed to be "l eft over" from the plate structures function. The

relative masses of the electric and chemical APS for each class is shown in
Appendix E. The thruster sizing used was for a geosynchronous worst case

recovery. System efficiency for Figures E-1 through E-9 was set at 80
percent and did not vary with I .

sp

Optimum I determination can be made for the primary structures from these
graphs. sPThe plate structure is an example where power is "free", hence,

I optimums tend to be far above currently available systems. As asp
general rule, an I optimum of 10 000 to 50 000 sec is indicated for

sp "
"free" power structures. The optimum is completely dependent on power
processor mass. ,

The modular antenna and series of antennas structures show a considerably
different set of optimum I values than the plate structure. The trend is
illustrated in Figure E-9. sPOptimum I ·s are close to 15 000 sec for smallsp ,
structures, 7000-10,000 sec for intermediate structures and 3000-7500 sec
for very large structures.

A second treatment of efficiency used five values of ~ independent of I •
This parametric approach showed the sensitivity of optimum I s~o

efficiency. Figures E-10 through E-15 contain examples of the para~gtric
study data. Generally, efficiency variations over a range of 60 to 100

percent do not appreciably change the optimum I • A summary of the results
of this study is shown in'Table 4-4. sp
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I I

Total System Efficiency

Structure Size 20% 60% 100%
Plate Small (30m) 5100 sec 9500 sec 10000 sec

Medium (700m) 30000 II 50000 II >50000 II

Large (21000m) >50000 II >50000 II >5000 II
,~

Modular Small (15m) 6000 sec 10500 sec 13000 sec
Antenna Medium (60m) 5800 II 10000 II 12500 II

Large (200m) 1500 II 3200 II 4000 II

Series of Small (2) 7500 sec 11000 sec 15500 sec
Antfi1nnas Medium (6) 5000 II 9000 II 11500 II

Large (10) 3600 II TUOO II 9000 II

( Table 4-4 Optimum I sp Sensitivity to System Efficiency

Optimum I sp (sec)

Structure Size Constant 11 = 80% 11 = f(I' )sp

(
Plate Small (30m6 9800 10000

Medi urn (70 m) >50000 >12000
La'rge (21000m) >50000 >12000

( Modular Small (15m) 12000 >12000
Antenna Medium (60m~ 10500 11500

Large (200m 3600 3950

Series of Small (2) 15000 >12000
Antennas Medium (6) 10500 10800

Large (l0) 7500 7800
/--

Table 4-5 Optimum I sp Comparison
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As a final approach to system efficiency variation, the 30 cm J series
thruster operating envelope was examined. The following Figure (4-46)
shows the currently available system efficiency as a function of I .

Figure 4-47 shows the same data extrapolated to a range of 0 to 12,6Bo
seconds I and curve fit with a fourth order least squares routine. This
curve fitS~as then incorporated into the optimum I study.

sp
Fi gures E-16 through E-18 ill ustrate the effect of the dependence of 11 on

I • The optimum I 's found using this model are generally somewhat higher
tfi~n the constant ~~ficiency model. A comparison of the optimum I 's
found using a constant 80 percent efficiency and the I depen~~nt
efficiency is shown in Table 4-5. sp

The set of ufirst passu APS mass data was used to generate an added impulse
factor over a 10 year lifetime of the LSS. The APS mass was added to the
LSS mass along with any additional solar array area necessary for electric
systems and the disturbance analysis was repeated. From this process, a
new total impulse requirement was generated. Figures E-19 through E-22
show the impulse fractions relating the new total impulse to the ufirst
passu total impulse. From the figures, it can be seen that this new
impulse is between 5 and 30 percent greater than the old or first pass data

for I between 300 and 10,000. For very low I «200 sec) and certain
strucfBres using electrical systems, ,the i~~u1se fraction became quite
large. These fractions were utilized in the total system mass
determination in the next paragraph.

From the previous studies identifying the impact of the APS mass on total
impulse needs and the optimum I for the electric system it is nowsp ,
possible to get a picture of the total system mass for each size of the

three primary LSS. As another simplification, three APS systems were
compared. These systems are 1) a chemical APSat 300 sec I 2) an

electric APS at 3000 sec I and 3) an electric APS at the oPtf~~m I
identified for'a specifi~P~lass and size. The efficiency assumed for tfi~
electric systems was 80 percent.

The impulse fraction (new impulse/old impulse) wa~ used as a correction
factor to the first pass fuel mass number. Ideally, the entire loop of
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PLATE MODULAR ANTENNA SERIES OF ANTENNAS

Parameter Small Medium large Small Medium Lirge Smill Medium Large

SCiling Parameter 30 700 21000 15 60 200 2 6 10

~SS (kg) 170 91880 8.27X107 2025 8100 27000 40270 1.21X105 2.013X105

Optimum Isp (sec) 9800 >60000 >60000 12000 10500 3600 15000 10500 7500

MChem Eng + Tlnk (kg) 19.4 730 70000 24.0 51.0 110 130 300 400
@ Isp :: 300 sec

MElee Eng + Tank (kg) 5.3 260 50000 11.0 32.0 140 80 155 290
N @ Isp :: 3000 sec
"'-.I......

MElee Eng + Tank (kg) 5.3 300 30000 15 47.0 120 160 69 155
@ Isp = Optimum

2.55X107
MAPS (including Fuel) (kg) 86.2 28920 537 2170 8720 10060 30100 50000

, Chem Eng @ 300 Isp
2.08X106

MAPS (including Fuel) (kg) 9.7 2520 50 193 1350 810 3400 7100
Elec Eng @ 3000 Isp
MAPS (including Fuel) (kg) 6.9 410 130000 26. 95 1250 330 2300 3950

. Elec Eng @ I =Optimum; sp

TABLE 4-6 SUMMARY OF MASS COMPONENTS



PLATE- MODULAR ANTENNA SERIES OF ANTENNAS
.

Parameter Small Medium Large Small Medi um· large Small Medium large
Scaling Parameter 30 700 21000 15 60 200 2 6 10

MTotal (kg) 256.2 1.208X105 1.082X108 2562 10270 34820 50330 1. 511X105 2.513X105

% MLSS 66.3 76.06 76.4 79.04 78.9 77.5 80.0 80.1 80.1

Chemical APS 1% MAPS 33.7 23.9 23.6 21.0 21.1 22.5 20.0 19.9 19.9
@ 300 sec

% MAPS-Fuel 7.5 1.0 .1 1.2 .6 .4 .3 .2 .5

% MFuel 26.2 22.9 23.5 19.8 20.5 22.1 19.7 19.7 19.4

MTotal (kg) 179.7 94400 8.478X107 2075 8293 28350 41080 1.244X105 2.084X105

% MLSS 94.4 97.3 97.5 97.6 97.7 95.2 . 98.0 97.3 96.6
Electric APS
@ 3000 sec 1% MAPS

5.6 2.7 2.5 2.4 2.3 4.8 2.0 2.7 3.4

N 2.9 .2 .1 .4 .4 1.6 .2 .1 1.1.....,
% MAPS-FuelN

2.7 2.5 2.4 2.0 1.9 3.2 1.8 2.6 2.3
% MFuel

Hrotal (kg) 176.9 92290 8.283Xl07 2051 8195 28250 40600 1.233X105 2.053X105

%MLSS 96.0 99.6 99.8 98.7 98.8 95.6 99.2 98.1 98.0

Electric APS i % MAPS
4.0 .4 .2 1.3 1.2 4.4 .8 1.9 2.0

@ Opt. Isp 3.0 .3 .04 .7 .5 3.0 .4 1.3 1.21. MAPS_Fue1

% MFuel
1.0 .1 .16 .6 .7 1.4 .4 .7 .8

TABLE 4-7 COMPOSITE MAKEUP OF PRIMARY LSS CLASSES
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determining total impulse needs would be run interactively until the fuel
mass quantity converged. In the interest of time, the square of this
factor multiplied by the first pass fuel mass was assumed to equal the

final fuel mass. This method, while crude, yields a conservative total
fuel mass number without sacrificing significant accuracy.

Table 4-6 is a collection of the raw mass component data for the three
primary structures and the three APS types. Table 4-7 may add some insight

into this raw data by showing the relative percent of the total mass of
each component. It can be seen, for example, that the chemical system fuel
mass makes up about 20 percent of the total system mass regardless of
structure type or structure size. It is also true that for the electrical
APS, the structure mass makes up 95 percent or more of the total system
mass. For the chemical system, this number is closer to 78 percent. A

more detailed examination of electrical system component mass is found in
Figures E-23 through E-29.

4.4 Optimum Auxiliary Propulsion Characteristics
The quantitative data generated above were reviewed to single out the APS
characteristics that have significant interactions with control functions

and LSS characteristics. These are summarized below and identify the APS
characteristics that are desirable and these that should be avoided.

4.4.1 ' Thrust Level s
In Section 3.2.1 thrust level requirements were investigated for each
primary LSS class. There are three areas which contribute to an optimum
APS determination. These are; 1) thrust level requirements, 2) throttling
requirements, and 3) maneuvering thrust level requirements. Conclusions
from each of these areas are, somewhat mission specific and determination of

an optimum APS is best dealt with in a parametric fashion.

The thrust level study pointed out that for certain sizes and classes of
structures, the nominal mission (no maneuvering) thrust sizing criterion
can be stationkeeping. Table 3-3 showed that for all small and some medium
sized structures, stationkeeping accelerations were more significant than

disturbance torques. This indicates that auxiliary propulsion rather than
control moment gyros (CMG's) would be used on these structures for attitude
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control. For very large sructures, the disturbance torques dominate
stationkeeping except for the box structure. For these structures, CMG's
of considerably greater mass and power requirements than currently

available would have to be compared to an APS to decide which is optimal.
For the purpose of this study, it is assumed auxiliary propulsion alone is

required.

The thrust levels required for an optimum APS were given as a function of
scaling parameter in Figures 3-23 through 3-25. To characterize the small,
medium, and large primary class requirements, Table 4-2 in Section 4.3.2
was constructed. These thrust requirements were developed without regard
to the effects on surface accuracy by relatively large thrust levels. In
Section 4.2, the maximum allowed thrust/thrust location was identified for
the plate structure. Figures 4-43 and 4-44 showed the allowed thrust for
three plate sizes.

For each size and each second moment of area (I), the surface accuracy and
material used varies. It is evident from Figures 4-43 and 4-44 that

surface accuracy requirements are a bigger driver than material used, at
1east in the broad context of thi s study. An average tolerance number has

been chosen for each size and surface accuracy and examined the thrust/
thruster tolerance against the thrust/thruster required.

Figures 4-48 and 4-49 illustrate the relation between allowed and required
thrust. The dependent variable in these graphs is the ratio of required to
allowed thrust. When this ratio is greater than one, the surface accuracy
requirement is violated. These graphs can be used to define a "maximum"
size for 100 thrusters. The validity of the analysis for very large
numbers of thrusters is not established because the allowed thrust study
was run only to a relatively small (25) number of thrusters. Extrapolation
to 100 thrusters, however, seems reasonable as a first estimate to
"maximum" size. Table 4-8 displays the maximum size under the various
condit ions.

~\

\.

.~.

.~
'.

Clearly,· the range of
Solar Power Satellite was
of even 100 thrusters.

studies.

the second ~oment of inertia, I, studied for the
not sufficient to meet the strength requirements

Additional analysis is indicated for future
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/

,_-- I = 400 m4 I = 2000m4

Surface.Accuracy (deg)
NumberoI:

_- Thrusters .01 1.0 0.I 1.0

4 2600 5800 3500 7600

24 3200 7500 4800 10000

I00 4750 9700 6400 13000
{ - .

Table 4-8 "Maximum"AllowedSize.
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The throttling requirements for the primary structures were examined in
Figures 3-26 through 3-28. It can be concluded from these figures that
geosynchronous operation with no maneuvering requires no more than a 5:1
throttling ratio and 4:1 or less is a sufficient ratio for all but the

large series of antennas structure. Again, this ratio includes no
maneuvering.

For a mission which requires stabilization at LEO, maneuvering control
during LEO-GEO transfer, and nominal GEO operation, the throttling ratio
was considerably higher. For the plate structure, this ratio is in a range
of 90:1 for very small structures, to over 300:1 for large structures with
a small number of engines. For the modular antenna, this ratio is between
100:1 and 200:1. A somewhat smaller range of throttling ratios is found
for the series of antennas structures. These results were obtained using a

judicious choice of axis for plane change maneuvers in LEO-GEO transfer.
Nonetheless, the required throttling ratio is from 35:1 to 110:1.

Throttling ratios are entirely mission dependent and indicate only a rough
guess at the ratios necessary. It can be said, however, that most probably
two ranges of auxiliary propulsion and perhaps two entirely different types
of auxiliary propulsion are dictated for a mission requiring both LEO and
GEO operati on.

It can be concluded that for moderately high speed slews, the thrusting
requirements for maneuvering rather than disturbance cancellation may size

the auxiliary propulsion system. For this study, the thrust levels shown
in Table 4-2 will set the standard to compare existing technology.

4.4.2 Modulation
Disturbance cancellation, pointing and shape control are the control
functions most affected by modulation. Accurate pointing requires the
exact cancellation of disturbance torques. Since these vary in magnitude,
typically. from some maximum value all the way down to zero, the control
torques should have the same capability. Shape control requires accurate

timing or phasing and there are limitations on impulse delivered if active
damping is to be effective. Maneuver, stationkeeping and desaturation are,
in general, insensitive to modulation effects.
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The two most practical forms of modulation for APS are amplitude and pulse.
The requirements and characteristics are different for each form and are
best treated separately.

Amplitude Modulation
Proportional control becomes possible with full amplitude modulation. Once

the steady state condition has been reached, this type of system generates
control torques which match the disturbances. The method is thus efficient
in expending no more energy than necessary.

Pointing accuracies are compromised if modulation is not possible down to
zero. If T is a lower torque bound a hangoff error occurs, given by
equation (4.11}; i.e.,

~ == Xh-u)2

This error can be eliminated if necessary, either by using opposed thrusts
to generate very low and zero torques or by reverting to on-off operation.
Both will incur propellant penalties as shown in Figures 4-6 and 4-11. A
wider thrust range than is possible with one thruster can be achieved by
clustering several units of low thrust. Generally this will incur a weight
penalty.

Shape control requires a thrust in phase with the structure velocity at the
thruster location. A minimum thrust bound is relatively unimportant and
results only in a small decrease in damping.

Pulse Modulation
By varying the time on to total time ratio (the duty cycle) any effective
thrust can theoretically be attained. Pulsed operation may be less
desirable than proportional, however, because the discrete pulses may
excite structural oscillations and the time between pulses, for very low
effective values, may be excessively long. Proportional operation can be
approximated at high duty cycles by a pulsed system but below a certain
level of disturbance torque, given by equation (4.57),
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it is necessary to use limit cycle operation. This is not fuel efficient,

in fact at zero disturbance torque, the propellant used will be four times
the minimum (corresponding to ~;le~~ as shown in Figure 4-20.

Propellant consumption can be lowered in limit cycle operation by
decreasing the minimum impulse bit, MiB. This is particularly effective in
the smaller vehicles as shown in Figure 4-11.

Table 4-9 shows the minimum impulse bit required to achieve specified
pointing accuracies for small, medium and large plate structures. These
data were developed from Figures 4-11 and 4-48 assuming 5 percent of the
propellant mass is used for limit cycling. The minimum impulse bits
required should prevent no problem in most cases. Burn times can be found
by dividing the minimum impulse bits by the thrust levels given in Table
4-2. Typically the minimum burn times are on the order of a second.

Shape control by a pulsed system
amplitude modulated system as
minimum impulse bit limitations.

is actually more efficient than using an
shown in Figure 4-27. There are, however,
Pulsing must cease when

as found by rewriting equation (4-74), to avoid exciting an oscillation
instead of damping it. This implies that there is a limiting oscillation

amplitude below which active damping is not possible with a pulse modulated
APS.

Disturbance cancellation, maneuver, stationkeeping and desaturation are not
significantly affected by pulse modulation system parameters.

4.4.3 Rise and Decay Transients
Pointing and shape control are the control functions most affected by rise
and decay transients because they are sensitive to the time of application.

Accurate and efficient pointing in limit cycle operation is degraded by jet
time on and time off delays. As shown in Figure 4-17 the delays distort
the switchlines. Time on delays tend to increase the width of the deadzone
and thus decrease accuracy. This is shown in Figure 4-21. Time off delays
increase the limit cycle rate and this ipcreases propellant consumption.
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I I

Poi nt i ng Accuracy (Deg)

.0001 .01 1.0

Size Isp Min Bit Req (N - S)

Small 300 1.095 x 10-3 .1095 10.95

3000 7.75 x 10-4 .0775 7.75

Medium 300 2.05 205 20500

3000 1.84 184

Large 300 112.7 1.127 x 104 1.127 x 106

3000 100.7 1.007 x 104 1.007 x 106

Table 4-9 Minimum Impulse Bit Requirements
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Time lags in proportional systems are generally unimportant for disturbance
cancellation because the disturbances generally change slowly. A possible
exception might occur during entry and exit from occultation. Even here
the time taken to pass from full sunlight to full darkness in a

geosynchronous orbit is over two minutes.

Shape control is particularly sensitive to the time of thrust application.
In proportional systems a time lag causes a phase shift and tends to

decrease damping, Figure 4-9. Table 4-10 shows the time constants
permitted to achieve various levels of damping. The damping is expressed

as the ratio of the damping for the delayed system divided by the damping
of a perfect system. In pulsed system on delays have a similar effect as
shown in Figure 4-18. Table 4-11 shows the delays permitted to achieve a
given damping ratio. The data assumes a ~ = 2F 1m q of 0.4. Since large

o
structures have lower frequencies and longer periods of oscillation, it is
the smaller vehicles that will be most sensitive to time lags and on
delays.

4.4.4 Number and Distribution of Thrusters
Shape control is the primary control function to interact with the number
and distribution of thrusters. It is clear from Figure 4-26 that the
greater the number of thrusters the lower the deflection during
translation. In rotation, there appears to be a minimum in the 8 to 10

range, Figure 4-27. However, data in Figures 4-48 and 4-49 indicate that
the number of thrusters may have to be very large to perform stationkeeping

and keep deflections within limits for very flexible vehicles. The need
for distributed thruster arrays brings up questions of implementation.
Should commands be generated in a centrol computer or spread among
distributed microprocessors? Should the thrusters be self contained units
with their own tanks, propellant, PPU's etc., or should support equipment
be centralized?

Secondary effects of distributed thrusters relate to 'efficiency. The
effective moment arm for an (N-1) spacing decreases from 0.50L to 0.25L as
the number of thrusters increases, Figure 4-21. An (N+l) shows improvement

as the number increases, but from a low of 0.166L at N=2 to the asymptotic
value of O.25L for a large number. This means increased propellant
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SIZE SMALL MEDIUM LARGE SMALL MEDIUM LARGE

RATIO I =400 m4 I =2000 m4

OF
DELAY TIME CONSTANTDAMPING

RATIOS
hrmsec sec msec sec hr

1.0 a a a 0 0 0

0.9 0.90 11.5 86.5 0.41 5.2 38.7

0.8 1.36 17.4 131 0.62 7.8 58.4-

0.7 1.77 22.7 170 0.80 10.1 75.9

0.6 2.21 28.3 212 1.00 12.7 94.9

0.5 2.70 34.7 260 1.22 15.5 116

0.4 3.32 42.5 318 1.50 19.0 142

0.3 4.13 53.0 397 1.87 23.7 177

0.2 5.41 69.3 519 2.45 31.0 232

0.1 8.11 104 779 3.67 46.5 348

Table 4-10 Effect of Time Delays on Shape Control of Aluminum

Plate Structures, Continuous System
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SIZE SMALL MEDIUM LARGE SMALL MEDIUM LARGE

I = 400 m4 I = 2000 "m4

DAMPING
TIME DELAY

CONSTANT
msec sec hr msec sec hr

1.0 0 0 0 0 0 0

0.9 0.83 10.4 78.5 0.37 4.7 35.1

0.8 1.24 15.7 118 0.56 7.1 52.7

0.7 1.56 19.6 14.8 0.70 8.9 66.1

0.6 1.85 23.4 176 0.83 10.6 78.9

0.5 2.15 27.1 204 0.96 12.3 91.3

0.4 2.45 30.8 232 1.09 14.0 104

0.3 2.76 34.8 262 1.23 15.8 117

0.2 3.11 39.1 295 1.39 17.7 132

Table 4-11 Effect of Time Delays on Shape Control of Aluminum

Plate Structures, Discrete System
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consumption to obtain the same torques for a distributed system over that

for a rigid vehicle with a minimum number of thrusters. There appears to
be a need for optimum placement to obtain the best combination of low

deflection with efficient operation. Figure 4-41, for just two thrusters,
shows that performance can be very sensitive to thruster location.

4.4.5 Mass and I Considerations
There were three ~~eas investigated in Section 4.3 which contribute to
optimum auxiliary propulsion system characteristics. These areas are mass

distribution, optimum I and a chemical/electrical system mass
comparison. As in previoussP~iscussions of optimum charactristics, the
areas covered in this section are ultimately mission specific. The scaling
laws leading to the optimum I determinations and the chemical/electrical
mass comparison are not designS~pecific. They can only offer gross trends

in design considerations rather than specific design characteristics.

(,

Two methods of APS mass distribution were examined in Sections 4.2 and
4.3.1 for the distributed thruster classes. An equal distribution of mass

along a beam was compared with 8 concentrated masses in an N-1
distribution. The parameter used for comparison was surface deflection.

Results obtained from this study show that for a vehicle undergoing a
rotation under torque, distributed mass provides significantly less surface

deflection than concentrated mass. Under translation, concentrated masses
at thruster locations provide less deflection than an equally distributed

system.

~' An optimum distribution scheme depends on what function the APS must
provide. . If this function is pri~arily stationkeeping, mass concentrated
at thruster locations is the best answer. If ~his function is maneuvering

or disturbance cancellation,distributed mass provides the optimum answer.

~ Specific impulse sensitivity was the subject of Section 4.3.2. Three
separate studies determined the optimum I for electrical auxiliary

sp
propulsion systems. The optimum I for a chemical system is very simply
as high as possible. sp

285



Each method indicated similar trends for the optimum I • For the plate
structure, very high I , greater than 10000 sec, wa~Pindicated for each
size of structure regardl~~s of the efficiency scaling laws used. This is
true of all systems where the power is nfreen• For the modular antenna and

series of antennas, the optimum I is dependent on size. For small
sp

structures, the optimum I is 10000 to 13000 seconds as shown in Table
sp

4-6. As structures reach their respective maximum scaling parameter

values, the optimum I falls to 3500-4000 for the modular antenna and 800
sp

to 1600 for the seri es of antennas. Thi s i ndi cates that optimum I I S may
sp

be very sensitive to size and specific desi9n.

4.5 Single Shuttle Launch Impact on APS Mass
The thrust level requirements for the single shuttle launch deployable
vehicles were developed in Section 3.4. These requirements were then used
to generate APS mass values for each scaling asumption. For the single
shuttle limited structure study, a slightly different set of scaling
assumptions was used than for the erectible structures. The system
modelling equations also contain some differences for the deployable
structures. These variations are described below.

Four system mass sizing assumptions were used for the single shuttle launch
category. These classes have three altitudes - 300 km, 500 km and

geosynchronous orbit as well as two LSS angles considered. The 300 km
altitude was considered with a 10 degree LSS angle only. A worst case

angle at 300 km altitude requires a thrust level that cannot be met by
current state of the art (SOA) electric thrusters and was eliminated in

favor of considering a 10 0 offset. At 500 km, both a 10 degree offset and
a worst case angle were considered. The geosynchronous thrust requirement

for a worst case angle can be met by current electric thrusters and was
included as a prudent requirement for on-orbit applications.

The system modelling equations used for deployable structure APS slzlng are
shown in Table 4-12. The thruster and PPU mass include factors for the
mounting structure and gimbal mechanism. These equations were utilized
with the thrust/thruster requirements in Table 3-11 and 3-12 to develop a
set of APS system mass comparisons for chemical and electric systems.
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TABLE 4-12 SYSTEM MODELING EQUATIONS
o

COMPONENT UNITS EQUATION

FUEL MASS kg M :I TOTAL IMPULSE I {Isp x 9.81}
.p

TANK MASS kg Tv =Mp I SPECIFIC VOLUME OF PROPELLANT!

Tr - V3 Tv . .. .. ' .' .. ,

4TT
T -4TT T 2
a r

Mr = 5.62 x Ta

THRUSTER MASS kg MElee. eng. :I ~2400. {T I Isp):675

M • .056 (T) + .54Chern. eng.

POWER kw P • 9.807 {T} (Isp) I 2" sys

.SOLAR ARRAY MASS kg MS/A = 13:5 {P}

SOLAR ARRAY AREA m2 ASIA :II 8.96 {P}

MpPU • 2.1 x 6.5 x {P}
.

POWER PROCESSOR MASS kg

1 VSP - 1 gm/ee CHEMICAL I', .

VSP :I 13.5 gm/ee ELECTRICAL
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Appendix E contains the single shuttle launched LSS total system mass
breakdown data in Figures E-30 through E-41. Chemical and electric systems
are compared usi ng two chemical I I S and three el ectric I I s. The

sp sp
chemical I 's of 250 and 500 represent the SOA and approximately the
theoreticals~imit of chemical engines. Electric I 's of 1000, 3000, and
10000 sec were considered. All three electric I ~~ were graphed when they
would fit on the same scale. In those cases ~gere the 1000 sec or 10000
sec I scaling yielded answers that were not comparable to 3000 seconds,
only S€wo electric I 's were graphed. The APS mass was obtained in an
iterative fashion by a~~uming a total LSS mass, calculating a required
mission V, and then sizing an APS and 'fuel mass. The calculated hardware
and fuel mass were added together with the constant (assumed) structure
mass to get a new total LSS mass. The estimated LSS mass was compared with
the calculated mass and a new total mass estimate derived. This process
continued until the calculated mass was within one percent of the estimated
mass. The number of iterations to converge on a system mass was never more
than four and often only one or two.

The information contained in Figures E-30 through E-41 is summarized in
tabular form in Table 4-13. In this table, the system having the lowest

mass is given for each class, size and scaling assumption. Chemical SOA

capability is assumed to be 250 sec Is • The electric SOA scaling data is
presented later. The table ignores the ehrut level limitations discussed
above and shows only the comparison of systems mass. The I indicated by

sp
the electric systems is the I 'giving the least electric system mass.

sp
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TABLE 4-13
APS MASS COMPARISON FOR SOA CAPABILITY

ORB IT ALTITUDE 300 km 500 km 500 km GEO
LSS ANGlE 10 10 WORST CASE WORST CASE

SMALL STRUCTURES
PLATE WIO BLANKET ELECTRIC*, 3000 sec ELECTRIC*, 10,000 sec ELECTRIC*, 3000 seG ELECTRIC, 10,000 sec
PLATE W/BLANKET ELECTRIC*, 10,000 sec ELECTRIC, 3000 sec ELECTRIC, 3000 sec ELECTRIC, 3000 sec
MODULAR ANTENNA ELECTRIC*, 1000 sec ELECTRIC, 3000 sec ELECTRIC*, 3000 sec ELECTRIC, 10,000 sec
SERIES OF ANTENNAS ELECTRIC,_ 3000 sec ELECTRIC, 3000 sec ELECTRIC*, 3000 sec ELECTRIC, 3000 sec

MEDIUM STRUCTURES
PLATE W/O.BLANKET ELECTRIC*, 3000 sec ELECTRIC, 3000 sec ELECTRIC*, 3000 sec ELECTRIC, 10,000 sec

. PLATE WIBLANKET ELECTRIC, 1000 sec ELECTRIC, 3000 sec ELECTRIC, 3000 sec ELECTRIC,. 3000 sec
MODULAR ANTENNA CHEMICAL ELECTRIC*, 3000 sec CHEMICAL ELECTRIC, 10,000 sec
SERIES OF ANTENNAS ELECTRIC*, 1000 sec ELECTRIC*, 1000 sec CHEMICAL ELECTRIC, 3000 sec

LARGE STRUCTURE
PLATE WIO BLANKET ELECTRIC*, 1000 sec ELECTRIC, 3000 sec ELECTRIC*, 1000 sec ELECTRIC, 3000 sec
PLATE W/BLANKET ELECTRIC, 1000 sec ELECTRIC, 3000 sec ELECTRIC, 1000 sec ELECTRIC, 3000 sec
MODULAR ANTENNA CHEMICAL ELECTRIC*, 1000 sec CHEMICAL ELECTRIC, 3000 sec
SERIES OF ANTENNAS ELECTRIC, 1000 sec ELECTRIC, 1000 sec CHEMICAL ELECTRIC, 3000 sec

*ELECTRIC SYSTEMS·HAVE LOWER MASS THAN CHEMICAL SYSTEMS AT 250 sec ISp , BUT NOT AT 500 sec ISp
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5.0 TASK 5 - DETERMINATION OF ELECTRIC AND CHEMICAL TECHNOLOGY
ADVANCES REQUIRED

The objective in Task 5 is to bring together the information developed in
previous tasks to detennine the advances auxiliary propulsion technology

should take.

Electrical propulsion system characteristics are reviewed in the first
subsection. Each significant characteristic has been addressed and the
system components, such as power source and power processor, were examined.
The process was then repeated for chemical propulsion systems. A
comparison of the required APS characteristics needed to support LSS
against the charactristics presently available is made in the last
subsection. Analysis is presented which shows areas of adequacy and
deficiency for both electric and chemical propulsion systems. The
deficient regions show where technology efforts should be directed to make
present day APS more suitable for future LSS.

5.1 Review of Current Electric Propulsion System Characteristics
The present technology level of electric propulsions system (EPS) concepts
has been determined and evaluated in the context of their applicability to
satisfy the requirements for LSS auxiliary propulsion. This section will
be a detailed review of existing EPS charactristics and will include

examination of the following topics:
o Thrust Level
o Overall Efficiency
o Start-Up Requirements
o Specific Impulse
o Power Levels
o Propellant Type

o Life Characteristics
Baseline Technology Review - In a chemfcal propulsion system (CPS), the
inherent performance is directly related to the energy released during
combustion (or decomposition) of the propellants, and the expansion of
bases through a supersonic nozzle. In the case of EPS concepts, energy is
applied from an external source and there are no inherent constraints on
the exhaust velocity that can be achieved. Therefore, the system
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performance can be optimized, within limits, to maximize performance,
minimize weight, or minimize costs.

The basic propulsion system components are the electric power source, a
power processor tQ convert raw power into the various forms required by the
thruster, and the thruster itself. Devices typifying the present state of

the art are illustrated in Figure 5-1. A typical systems diagram is shown
in Figure 5-2. The application of auxiliary propulsion systems to LSS will
generally require broadly distributed units. Thus, the technology
associated with propellant storage and distribution concepts, power
cabling, and thermal control are important and will be reviewed.

Thruster Characterization - The key issue in characterizing any EPS concept
is selection of the type and size of the basic thruster. From this
selection follows the basic requirements for power processing and overall
system efficiency, and it also determines the feasible specific impulse

range for any given propellant type. Since LSS can generally be assumed to
require long, multi-year mission dirations, it follows that a high specific
impulse propulsion system will be desired. Only the electrostatic ion
thruster concept is capable of satisfying high performance requirements in
the near future; therefore, the study and application of these devices will
be emphasized.

An indication of electric thruster technology status is illustrated in
Figures 5-3, 4 and 5. Figures 5-4 and 5-5 show two currently available ion
thrusters which can be characterized by accepted theory. Only the ion

, -
thruster is, in essence, a device that has a wide latitude for beam
currents ranging from 0.5 amps to about 6.0 amps, and screen voltages of
1000 to 4000 volts. These operating parameters correspond to a specific
impulse range on the order of 2900 to 5000 seconds; performance trends with
constant beam current are shown in Figure 5-6. A reduced specific impulse

on the order of 2000 seconds or less can be achieved (if desired) by the
incorporation of a third (deceleration) grid. Performance values as high
as 20,000 seconds have been demonstrated by other ion thrusters.

Power System Definition - Technology options for solar arrays have been
characterized as suggested by the specific weight trends shown in Figure
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5-7. Variations from the SOA arrays are based on the NASA/MSFC 25 kw array

updated to include the benefits of on-orbit fabrication; this latter
assembly technique is particularly applicable if power requirements are

determined to be on the order of 200 kw or higher. Sizing of the arrays
was based on end-of-life characteristics thus allowing for life-cycle

degradation.

Present ion thruster technology requires fairly complex power processing
for proper operation; however, design and technology improvements are
known, particularly for earth orbit missions. The functional module power

is approximately 13 kg/kw. By simplifying power regulation requirements
(for earth orbit operations), integrated heaters, and utilizing
capacitor-diode voltage multipliers, the specific weight may be reducible
to the.order of 9 kg/kw. Power processor characterization trends are shown
in Figure 5-8. A more ambitious approach to the auxiliary propulsion power
system definition would be to utilize the array output directly, without
the complexity of intermediate power processing - this approach can be
considered only in the case of dedicated arrays. Minimization of power

processing weight and cost is easily the most significant option for
improving the utility of electric propulsion.

Starting Charactristics - The startup characteristics of an ion thruster
are generally dictated by the thermal response parameters asociated with
heaters. and propellant vaporizers. Unless auxiliary power supplies are
incorporated into the propulsion system design for continuous operation, a
shutdown/startup sequence must be considered for each solar occultation

occurrence. For low earth orbits, the thruster startup charactristics can
require a considerable portion of the available sunlit period. For high

orbits such as geosynchronous, however, the occultation period is minimal
and a lengthy start sequence can be accommodated by simply anticipating
thrust requirements. Figure 5-9 illustrates a typical start sequence for a
30 cm thruster; note that preheat operations account for the majority of
the time, but that individual thermal response trends are on the order of
15 minutes. A 15 minute start sequence has been demonstrated with 8 cm

mercury ion thrusters, and such an interval would appear to be acceptable
to most, if not all, anticipated LSS control requirements.

299



--

(~

a
a

SPECifiC

WEIGHT,

- kg/kW

20

15

10

6

SOLAR ARRAY WEIGHT

o SEPS flU1...

\\

"'""" ""'ySEPS STRUCTURE ... 2·MIL CELLS

~'& -­G.A~ ----------- --- ------- -- -- -
TYPICAL

/ EXTRAPOLATION

---:-

10 26 100

SOLAR ARRAY POWER '. kW

FIGURE: 5-7 CONTEMPORARY SOLAR ARRAY TECHNOLOGY OPTIONS
.

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
/

/'



'\ ') ) ') j -j '\
I

.'1 ') ') )

w
o
t-'

SPECifiC
WEIGliT

• KglkW

20

16

10

6

CHARACTERIZATION OF PPU OPTIONS

_ __ CONVENTIONAL
12.1/0.11

_ .- CDVM .. INT ttTR
8.6/0.88

- __ DIRECT· EX. DISCH.
4.U/O.1J4

__ DIRECT • OPEN lOOP
1.0/0.IUI

. 1.0 10.0

OUTPUT rOWER RATING kW

all')

FIGURE 5-8 POWER PROCESSOR TECHNOLOGY OPTIONS AND BENEFITS.



w
o
N

...',.;-.......----r---..---r--,.---.r--''""9

•
f
i Ir-

J

-~-:;!I~--!I;--__:=I--1~-;_-_.:.---u-. • .. .. It •

II.......

palER REQUIREMENTS

11..1.......

THERMAL RESPONSE

FIGURE 5-9 LABORATORY START SEQLJENCE FOR A 3D-em MERCURY ION T1fRUSTER

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )



,~'

I~

~'

(

Propellant Options - The current technology for ion propulsion systems, and
near ~erm anticipated program applications, envision the use of mercury or
cesium as the system propellant. These are favored because of their high
density which permits rather simple packaging and storage concepts, and

their high atomic mass numbers that result in improved thruster performance
characteristics. However, LSS vehicles may require large quantities of

propellant for auxiliary propulsion and, as such, the preferred heavy metal
propell ant types may be envi ronmentally unacceptabl e.

Electric Propulsion System Life Factors - A major life factor in ion
thrusters is the double' ion production rate, its relationship to beam
current, and the erosion rate of elements within the device. Thruster
lifetime characteristics are predicted by a bulk-averaged-plasma analysis.
These analyses estimate plasma losses as a function of propellant type and
thruster diameter. From this, efficiency and erosion life, including
double ion effects, are determined. To illustrate this approach, consider
the conceptual design of a 50 cm mercury ion thruster as shown in Figure
5-10. This design was analyzed to determine the effects of beam current on

delivered specific impulse, thruster efficiency, and predicted life - these
characteristics are shown in Figure 5-11. At this time, thruster life
predictability as detrmined by analysis provides only trend data - this
follows from the fact that double ion production is known to be sensitive
to minor varitfons in some thruster set-points such as cathode flowrate.

The following Table (5-1) provides summary of the thruster characteristics
used in this study. Thes numbers are representative of ion thruster
technology.

5.2 Review of Current Chemical Propulsion System Characteristics
A review of contemporary chemical propulsion system technology includes
examination of the following characteristics:

o Propellant Type
o Thrust Level
o Propellant Storage and Distribution
o Specific Impulse
o Transient Response
o Life Limitations
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II

III

Technoloqy Area

Thrust Levels

Throttling Ranges

Distribution Capability

r.urrently Available

.001 - .13 N

4:1 w/o clustering

Centralized systems with dedicated
tank and power processor

~\

IV Time Constants

V Time Del ays

VI Minimum Impulse Bit

VII I. Available
sp

VIII Efficiency Range

IX Lifetime

Instantaneous after warmup

15 minutes to 1 hour

-4< 1 x 10 N-S for small thrusters

1500 to 6500 sec

Function of I 60 to 85%
sp

-15000 hours (@ 2 Amps Beam Current)
.~

\

Table 5-1 Technology Areas Considered

304



'1 \, 'j ~) ') ~) ') ) .~ ) ') -')

BAFFLE

"1-. IONIZATION CHAM.E•

..v-

l3SC.EEN/ACCELIOECEL
GRID-SET

I•

MAGNETIC POLE

STRUCTURE

l

\GROUND SHIELD

CATHODE ASSEMBLY

PROPELlANT DISTRIBUTION

MANIFOLD

~

,
-_.

NOTE: WEIGIH IS 34. kU AND SOME
COMPONENTS OMITTED fOR CLARITY
----

w
a
(J1

FIGURE 5-10 CONCEPTUAL 50-cm MERCURY. ION THRUSTER



- - -- I.p

4000

cJ
w
C/)

.,

0.11 ~

~ -'".. ,

fh w
~

I &/IJ a:..
G

o'j
~ %w

0
0'1 ffi u 3000-1 -'

n U-

U-
n w

u- ~
u-

w ::i

o.a~ 10000

2000

Llfli CHARACTERISTIC PREDICTION Of A 5O-CM MERCURY

ION THRUSTER WITH SMAll HOLE ACCELERATING GRIQS

_------------------f)

V. - 10UO.0 V

Jd - Ii .'Jb A

Vd - 32.0 V

10. 12 14 18 18

BEAM CU,RRENT • AMPERES,

FIGURE 5-11 EFFECT OF BEAM CURRENT ON THRUSTER LIFT FOR A CONCEPTUAL 50-em MERCURY ION THRUSTER

) ) ) ) ) ) ) ) ) ) -) ) ) ) ) ) )



~.

(

Baseline Technology Review - Chemical propulsion system concepts that have
been developed encompass the gamut of cold gas, monopropellant,
bipropellant, and solid propellant types, with sub-types consisting of
variations in working fluid, and performance enhancement options. The

general characteristics of these chemical concepts are summarized in a
qualitative manner by generalized thrust/total impulse operating regimes as

shown in Figure 5-12. These regimes are dictated by considerations of
system weight, complexity and reliability, and cost.

Contemporary Thrust & Performance Characteristics - The performance
attainable from a chemical thruster is basically dependent on the working
fluid selection. Smaller variations within these groups are related to the
specifics of any given thruster design such as injector details, nozzle
expansion ratio, and compustion chamber characteristic length.

Early spacecraft development utilized monopropellant cold gas or hydrogen
perozide (H

2
0
2
). With the development of Shell 405 catalyst in the early

1960's offering spontaneous thermal decomposition of hydrazine (N H ), the
.24

use of this monopropellant has largely supplanted the lower performance

monopropellants. N
2
H
4

thrusters for attitude control systems have been
developed over a thrust range from 0.1 to 2000 lb; however, most systems
are less than 150 lb thrust. Examples of typical systems and their
performance are listed in Table 5-2. Propellant flow rate increases with
increased thrust level and catal~st bed volume also inceases to provide the
required catalyst surface to decompose the propellant. Propellant shut-off
va~ves can act in 10 - 20 milliseconds almost independent of size, so that
minimum impulse bit will increase with thrust size as dictated by the
amount of propellant in the catalyst bed.

Pulsing I of an NH thruster varies with pulse width due to the
percentagesgf total imp6l~e occurring during thrust buildup and tailoff.

The pulsing I is also a function of the duty cycle (ratio of on-time to
off-time) due t6 Pthe effect on catalyst bed temperature. I may degrade

sp
to less than 30 per~ent of steady state I at minimum pulse widths and

SR
duty cycles < 10 percent. To improve low auty cycle performance and

prevent propel 1ant freezeup (freezi ng poi nt of N
2
H
4

--., 360F) some thruster
designs have catalyst bed heaters. A 200 msec pulse every 15 minutes is
programmed for IUS RCS thrusters to maintain catalyst bed temperatures.
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TABLE '5-2 CURRENTLY AVAILABLE CHEMICAL SYSTEMS
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Development work to improve catalyst bed life directed toward long thruster
life has demonstrated up to 8000 seconds of cumulative operational time.
Another long life development program s~bstituted electrothermal

decomposition employing a 20 watt resistance heater for the catalyst bed

demonstrated 40 hours of steady state on-time and more than 10
6

cycles at

the 5 lb thrust level. The performance of this thruster is shown in Table
5- 2.

Bipropellant attitude control systems have been developed for applications
where total impulse requirements have shown the advantage of higher

performance over the simplicity of monopropellant systems. Current
bipropellant systems utilize monomethyl hydrazine (MMH) and nitrogen
tetroxide hypergolic propellants. Thruster size ranges from 0.5 lb to 1600
lb have been developed•. Examples of typical system performance are listed

in Table 5-2·. Minimum thruster size in bipropellant thrusters is limited
by current manufacturing techniques in drilling injector holes (0.004 11 dia)

and is somewhat larger than N H thrusters. As was characteristic of
. 2 4

monopropellant thrusters, bipropellant thruster minimum impulse bit

increases with thrust level due to injector head and propellant passage

volumes. Minimum pulse width and pulsing I not limited by catalyst bed
sp'

characteristics, become limited by material l,mitations to thermal cycling

and for nozzle erosion.

Small size (F < 5 lb) b;"propellant thruster performance may' be degraded by
boundary later cooling losses due to small chamber volume. At the higher

thrust levels these losses are minimized and performance variations shown

in Table 5-2 are a function of the thruster nozzle area ratio (E). The
space shuttle Res thruster nozzles are severely limited by installation

requirements and the performance shown is a result of the low nozzle area
ratios.

H
2

and 02 propellants are candidates for attitude control systems in
advanced space system studies where these propellants may be available and

the potential of higher performance is desirable. Performance of H
2
/0

2
thrusters that have been demonstrated in prototype hardware have been

included in Table 5-2. It should be noted that the H
2
/0

2
propellant feed

to t~e thrusters may either be gaseous or liquid and that the conditioning

310



I I

of the propellant to maintain the feed in a single phase will be the most

critical problem in the design of an H
2
/0

2
attitude control system.

Thrust levels as low as 30 micro-pounds have been demonstrated with
flight-proven ammonia resistojet systems. Thrust levels progress upwards
from that point, with cold gas systems developing thrusts from a few
millipounds up to about 10 pounds. The low I of these systems - 140 to
170 for resistojets, 40 to 70 for cold gas - ma~g them noncompetitive for
1ongl ife LSS appl i cati ons. Mono- and bi-propell ant systems are summari zed
in Table 5-2.

Propellant Storage and Distribution - A key feature of propellant storage.
characteristics is the manner in which liquid propellant orientation and
expulsion is managed in the zero-G environment. Care must be taken to
ensure that the propellant flow to the system thrusters is free of

'entrained gases in order to proviQe smooth and efficient combustion. Both
"active" and "passive" propellant orientation options are available for
consideration and have proved flight experience. Table 5-3 summarizes some

of the pertinent characteristics of active propellant orientation and
expulsion techniques. Three of the listed types have an extensive

qualification history:

o Bladders Extensive Teflon bladder experience
manned and unmanned spacecraft

auxiliary propulsion since Mid-1960's
o Metallic Bellows Minuteman-III post-boost propulsion

subsystem
o Elastomeric Extensive application in unmanned

Diaphragms spacecraft of monopropellant
hydrazine propulsion system

The reliability of an active propellant orientation and expulsion technique
is always of concern and must· be considered in any design selection
evaluation study. Reliability factors include long term propellant
compatibility, susceptability to leakage and/or rupture, and cycle life.
The storage life of metallic bellows systems is approaching ten years in
the Minuteman-III system, and operational lifetimes of elastomeric

diaphragms is approaching seven years in the Pioneer-10 spacecraft.
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TABLE 5-3

POSITIVE EXPULSION SYSTEM CHARACTERISTICS

EXPULSIO~ SYS'rE~t STnO~G POINTS PROBLEM AREAS

Pll'Itoq! positive c1illpluecmcnt: v:lriable Initial 'lIC:l\'Y; lcak:l~c; J.:l.mnUnI; <lue to cockinc
ullage !{as volumes or corrosion; limited to c)"lindricl1l tank.s

Much development and flight c:cperlence: Loq term compatibility: gas permeation:
BJaddtra adaptllble to most tank reometries and poor expulsion c!iiciency: folding J;eometry

initial 1:15 ullaec volume conducive to pinhole leaks

Good compatibility: predictllble perform-
Metal1lc Bellows ance adapt:lble to v:lrying tank ,eometries Hiel1. weilht: cocklnl duriQI e.'cpulsioQ

and initil1l ullaee volumes

Good e.'CpulsioQ efficiency: trouble free Poor wear characteristics durinl prolonred
propeU:utt 510511: poor lone life conlpatibiJ-Elastomeric Di:lphra~m and repe:ltable.di4phrapn ,eometry ity: limited to spherical t:lnK :comctry with

duriDC expulsion sicnificam Initial ulla"oe volume

Good compatibUity: not sensitlYe to
Limited to spherical t:utk reometry with

MetallIc Dlaphracm significant initial ullace volume; hien ~P
propellant slosh required for e:cpulsioD

Rolline Dll1phrqm
Good compatibility: not dependent on Hi(h AP required for e.'Cpulsion; limited
Initial ullaCe volume to cylindrical tank eeometry
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Passive techniques of propellant orientation are based on the surface
tension properties of the propellant, thereby eliminating many of the
reliability concerns associated with positive expulsion. The design of
such a device requires complete knowledge of acceleration environments,
propellant properties, temperatures and flowrates, and also pressurant
charactristics. An abbreviated summary of the various phenomena associated

with surface tension propellant acquisition, performance requirements, and
design considerations are listed in the functional matrix of Table5-4.

System Life Considerations - The primary concern is the quantity of
expendables required, which requires definition of operational duty cycles
and their relation to delivered specific impulse. The more subtle aspects

of mission life requirements include long term propellant compatibility,
age limits on materials of constrution (primary seals), valve cycle life,
and exhaust plume contamination effects on other elements of the space
vehicle.

A major life consideration for monopropellant hydrazine systems is that of
the catalyst bed. Contemporary bed designs involve the mechanical packing

of Shell 405 catalyst, generally with layered strata of fine and coarse
granules. Prolonged operation results in the mechanical working 'of
particles against each other, spalling, and eventual ejection from the
reactor. The effective reduction in decomposition activity thus impairs
transient response and steady state performance characteristics.

The cycle life of thruster valving may be an inherent limitation, at the
present technology level, for application to the control of LSS. This
would be particularly true in the case of limit cycle reaction control
stabilization with small pointing tolerances as opposed, for instance, to

momentum wheel control. Repetitive valve cycling ultimately leads to
fatigue failures, high seat leakage rates, and poor response. Present
technology places valve cycle life characteristics in the lOS-cycle
category, and is approaching 106 cycles on some units.

Thruster exhaust plume charactristics are not a life consideration for
propulsion systems, but their effects must be considered in the placement
on the vehicle. Plume impingement heating rates must be evaluated, and the
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SURFACE TENSION PROPELLANT ACQUISITION SYSTEM PHENOMENA EVENT
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x X X
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malntalnln, capillary control

Filtration: filtration. "toppa~e

Structural inte~ily: due to body Ilccelerlltlon. lormlnl:. w.ldInC. uiembly,
handlin~. installallon. Ilrcliliuriziltion

Gall ent.-apmcnt In oullet: dne to wetU", 01 dip auppresaor/lUter a.llembly befo~
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.
~ ..
:a: ~ !
!.J 8
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~Lu~
~~!l!}!~
II 8. .. .. .. 8.
~~~~~~
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.......
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• !lEQ~!ItEMENTS Af'FECTING PERFORMANCE OF EVENT

Propcllant quallltly: quantily Initially loaded and In tank at start of final burn

Propcllant nowl'ale: max at any time and max at dcpleUon - propellant
h-ansfl:r iliaI'

I I
xixlx

Xlxlx

X IX IX IX I X

X

X

XIX

x Ix IX I XI X IX IX I XX

X

Propellant telll11erature: relative to retention. bollout. Kummlnc. Iclne. and low I
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Oo<ly acceleration: Important to retention. orientation. depletion. atruetural
strenl:th. etc,

Sequence of events: order lind duration - transient profiles

DESIGN EI.EMENTS INVOI.VED IN EVENT

Fill Dnd drain AlYlitem: relative to caUery hoI• .eal-oU and ,a. entrapment In ouU.tIX

frellaurlzatlon system: relative to eondensatlon and to ca. entrapment In ouUet X

Capillllry lilI vent screen: relallve to heat transport, prevention of condenaa..
aealinl: lUld hofe (Ummi."

Gallcry window,,: hole diameter. location. open area. ratio of hole dlamet.r·
. to material tlilcluaeu. and wlekinl:

" Gallery wall Iiurlace linish: relative to condensate aeallnti/.eal-breaklllI ani'

Gallery crOliS "ccllon area: relative to Kallery capillary fUl
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deposition of exhaust products on sensitive vehicle surfaces and equipment
may be a life-limiting characteristic. Equipment that has shown
sensitivity to plume contamination include solar arraYSt thermal control

paints t louvers t and second surface reflectors t and also any optical
sensors that are a part of the control subsystem or payload.

5.3 Required Technology Advances
The intent of this section and those that immediately follow is to define
the areas of technology which need improvement to meet the requirements of
large space systems. To accomplish this objective we will examine five
areas which have emerged as central issues in the auxiliary propulsion of
large space systems. These are listed below:

o Thrust Level
o Start-Up Characteristics
o Number and Distribution of Thrusters
o System Mass
o APS Lifetime

Each area above is discussed in the next five sections to define the
chemical or electrical technology needs. The adequacy or inadequacy of
currently available technology will depend greatly on the assumptions used
in the requirements analysis. Technology needs will depend on the LSS
class t the LSS size t and the system slzlng assumptions (i.e. t LEO

operation t GEO operation t LSS orientation t etc.).

5.3.1 Thrust Level Technology Needs
In Tasks 3 and 4 we have examined the thrust level requirements of both the
large erectable structures and the single shuttle launchable deployable

structures. In addition to thrust level requirements we looked at
throttling requirements and the effect of thrust levels on surface
accuracy. The large erectable structures technology needs are presented
first with deployable structures results following.

Table 4-2 listed the thrust requirements for four scaling assumptions and
for each LSS class and size. In comparing the thrust/thruster requirements
with the thrust levels currently available from chemical and electric

315 '



systems one finds that chemical systems are necessary to meet the low earth
orbit needs under the assumptions used in generating Table 4-2. LEO
altitude was assumed to be 300 km.

With the exception of the very large plate structure using a small number
of thrusters, the SOA chemical thrust levels are adequate. Electric
thrusters, however, are inadequate to meet the majority of missions. Table
4-2 has been restated in Table5-5 to show this result.

In Table5-5 we have put the available SOA ion thrusters plus the 50 cm
conceptual design in the slots where their thrust levels are sufficient.
For thrust levels above 0.4 N, the thrust needed is printed. There exists
a clear need for increased electric thruster thrust levels for LEO
operation and for medium and large erectable structures in GEO.

Throttling requirements were developed for the three main classes in Task
3. Figures 3-26 through 3-29 examined the difference in thrust level
requirements from LEO to GEO and the difference in the maximum GEO and
nominal GEO requirements. It is clear from these charts that no system
available is capable of providing the up to 300:1 throttling ratios
required for LEO and GEO operation. The GEO throttling ratios are far more
manageable and the current electric propulsion throttling capability of 4:1
is adequate. For chemical systems the lack of throttlabnity is offset by
the excess thrust level ~hat can be provided. Effective thrust is varied
by simply pulsing the thrusters at different duty cycles. Pulsing
thrusters has the disadvantage of limit cycling (see Section 4.1.2) and
some fuel waste. Another disadvantage is that if the thrust levels are
very high, the structural deformation caused by each pulse can cause a
degradation of mission performance or, in some cases, actual structural
damage.

Figures 4-43, 4-44, 4-48 and 4-49 addressed the question of structural
deformation for the plate structure. These figures showed that a plate
structure of 2000 to 10000 meters in length had some structural deformation
with the required thrust levels. For structures above 10000 meters in
length this interaction was very significant. Deflections of greater than
one degree were calculated even' with graphite epoxy structures. For
structures smaller than 1000 meters deflections were not significant.
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TABLE 5-5 CURRENT ELECTRIC rHRUSTER CAPABILITY FOR LARGE ERECTABLE STRUCTURES

THRUST/THRUSTER REQUIRED

STRUCTURE SIZE Ii THRUSTERS LEO MAXIMUM LEO-GEO TRANSFER GEO MAXIMUM GEO NOMINAL

PLATE SMALL (30 m) 4 30cm 8cm 8cm Bcm

MEDIUM (700 m) 4 210 200 .920 .92 n
24 2.20 3.5 n 50cm 50cm

100 .7n .90 30cm 30cm

LARGE (21000 m) 4 610000n 460000 6200 n 3310 n
24 62000 n 8000n 10800 570n

100 151000 19500 2600 1370

MODULAR ANTENNA SMALL (15 m) 8 50cm 30cm Bcm 8cm

MEDIUM (60 m) 8 1.20 .750 30cm 15cm

LARGE (200 m) 8 62n 60n 50cm 30cm

32 160 14 n 30cm 15cm
BO 6.40 5.6n 15cm 15cm

SERIES OF ANTENNAS SMALL (2) 4 30cm 8.750 30cm 30cm

MEDIUM (6) 4 6.750 32.5n .790 .48n

24 1.13n 5.42n 30cm 30cm

96 50cm 1.35n 15cm 15cm

LARGE (10) 4 26.3 n 54.0n 2.800 .78n
24 4.4n 9.0n .47n 30cm
96 1.1n 2.3 n 30cm 15cm



Single shuttle launched deployable structures have thrust requirements
significantly below those of the larger erectible structues. Tables 3-11

and 3-12 illustrated these requirements. Current electric thrusters are
adequate for a majority of the assumptions and LSS sizes studied. Table

3-12 is restated in Table 5-6 in the same manner as Table 5-5 to show this
result •

5.3.2 Startup Characteristics
The effect of APS startup delays on the pointing accuracy of the plate
structure was investigated in Section 4.1.2.3. In this section the

relationship of pointing accuracy, minimum impulse bit, LSS size, and
startup dime delay was derived. Figure 4-21 showed that as the structure
size increased, time delays of up to one hour did not significantly effect
pointing accuracy. For structures of a few hundred meters or less, this
effect is noticable. The minimum impulse bit of electric thrusters is
somewhat ill-defined because even during startup periods a small amount of

thrust is produced. Nominal electric thruster shutdowns are not "clean"
but have a period of throttling down to the shut-off point. If one assumes

a minimum impulse bit of 0.1 N-S, a 30 minute startup delay indicates a
0.45 degree accuracy loss which is unacceptable for some missions.
Additional research to define the electric propulsion minimum impulse bit
is needed before the full impact of startup delays can be evaluated.

5.3.3 Number and Distribution of Thrusters
After analysis of thrust level requirements had been performed, it became

clear that for the medium and large size structures the use of SOA electric
propulsion units required large numbers of thrusters which for shape

control reasons should ideally be equally distributed throughout the
structure. Even with the larger thrust levels available with chemical

thrusters, distribution of thrusters for classes IA (plate), IB (cross),
IIA (box) is required for medium and large structures.

The number of thrust locations needed to minimize "deflection reaches a
point of diminishing returns. This facts was pointed out in Figure 4-34.
In this figure it was shown that .after approximately 10 thrusters were

distributed equally across a beam, the reduction in deflection by adding an
additional thruster is minimal. Specific designs must be analyzed to study
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"TABLE 5-6
CURRENT ELECTRIC THRUSTER CAPABILITY FOR

SINGLE SHUTTLE LAUNCHED DEPLOYABLE SPACECRAFT

DISTURBANCE TORQUE GEO GEO STATIONKEEPING
CLASS SIZE 300 k,m 500 km LEO -GEO DISTURBANCE ~ 0.4 DUTY CYCLE

toO WORST'
10° WORsr TRANSFER WORST CASE ONCE/ORBIT ONCE/WEEKCASE CASE

PLATE WIO BLANKET 30 m 8cm 15cm Bern Bcm Bern Bern Bcm 15cm

100 m 30cm SOcm 15cm 30cm 30cm i3cm Bern 30cm

250 m 50cm 1.7n ,30cm 50cm 50cm Bern 15cm 5pcm

PLATE W/BLANKET 30 m 30cm ,4Bn Bcm 30cm 15cm Bcm Scm 30cm

100 m ,.7n 4.9n 30cm .49n 50cm Bcm 30cm .53n

150 m 1.6n 12.n .4n 1.50 50cm 15cm' 50cm loIn

MODULAR ANTENNA 1~ m 30cm .5n !5cm 30cm 30cm 15cm Bcm 30cm

60 m 1.5n 9.50 50cm 1.0n .630 15cm 15cm 30cm
.

200 m 17.n 55.n 1.7n B.1n 5.50 30cm 15cm 50cm

SERIES OF ANTENNAS' 2 30cm 50cm 30cm 50cm 30cm .Bern Bcm 30cm

3 50em .96n ~Ocm .B4n 30cm Bcm Bcm 50cm

4 50cm 2.3n 50cm 1.9n 30cm Bcm 15cm 50cm



the interaction between beams on total surface deflections, however, this
result may be applied generally in that there will always be a point of
dimenishing returns for the distribution of thrusters.

Distributing thruster systems requires a distribution of system components
over what may be very long distances. In the case of chemical systems,
this poses no particular problem. For chemical systems, tanks, valves, and
thrusters can easily be located as a unit with no interconnection between
the units except for control electronics. Electric thrusters are a
different matter. The high power required and inherently higher inert

system mass for each APS unit dictates significantly greater system
integration problems. Additional study to analyze these problems is

indicated.

5.3.4 System Mass
Throughout this study, specific impulse was treated as a variable for both
chemical and electrical APS. We found in Sections 4.3.2 and 4.5 that
electric systems' optimized over a wide range of specific impl,llse. Chemical
systems have no power level dependence, hence always optimized at the
highest achievable I • In comparing the chemical and electric system mass
for the large erectagfe structures using a geosynchronous requirement
thruster sizing, it was found that in all cases electric systems had.10wer
mass than chemical systems providing the optimum I for the electric

sp
systems could be achieved.

Tables 4-4 and 4-5 presented the electric I optimums under various
assumptions. Under the assumptions used here, spe~~fic impulse range of

current electric systems must be extended to much higher ranges than
available. The plate structure needed higher than 50000 sec I to
optimize assuming the power source was not charged to the APS. Ifsgower
mass was charged to the APS, a range of 3600 to 15000 sec I is required
to optimize system mass. For deployable structures, Tab1es~-13 provided a
comparison for each class for four different mission assumptions. This
study only looked at 1000, 3000 and 10000 second specific impulse levels
for electric systems. The conclusions for geosynchronous· orbit are' the

same for the deployable as well as the larger erectable· structures.
Electric systems have lower mass when sized for geosynchronous operation
than do chemical systems.
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LEO operation for deployable structures indicates that electric systems
still have a mass advantage over chemical systems at an I of 250 seconds.
Chemical systems at 500 seconds, however, offset this aaeantage in many
cases. LEO operation also requires lower specific impulse for electric

systems. I ·s as low as 1000 seconds are indicated for LEO missions.
sp

For both erectable and deployable structures, a general trend in specific
impulse requirements is apparent. As the structure size increases, the

optimum I decreases. It is also true that as operational altitude
decreases:

P
optimum I decreases. These facts are an indication that the

thrust level demands aEPlower altitudes and for larger LSS sizes .cause the
power level demands, hence, power system mass to dominate fuel mass. At
geosynchronous altitude and for smaller structures, the power system mass
required does not dominate the fuel mass required until very high specific
impulses.

5.3.5 Lifetime
The lifetime and reliability demands on all systems comprising LSS are
drivers in LSS designs. System lifetimes of ten years or more with very
high (> 95 percent) reliability will be required. These requirements
indicate a need for redundancy management and operational schemes, both of
which deserve future study. This study did not directly addess these
issues but a set of requirements for electric and chemical thrusters has
been developed.

For chemical systems, long term cryogenic propel land storage is a major
issue. The specific impulse studies revealed that a chemical system of

greater than 250 seconds I is needed to compete with electric systems for
single shuttle launched ve~fcles. This indicates a need for additional

study to minimize the cost and system mass needed for 10 year or greater
cryogenic storage. The second issue for chemical systems is hardware

lifetime. Thruster value cycling and catalyst bed wear over the lifetime
of the mision can be significant factors. Up to 100000 valve cycles will
be needed for limit cycle operation over a 10 year mission. This does not
appear to pose a problem for medium (1 - 10 N) thrusters; however, higher

thrust cycling for 105 - 106 cycles has yet to be demonstrated. If
hydrazine systems are used, catalyst bed life will have to be extended from
5 - 7 years up to 10 years.
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Electric thruster lifetime and reliability are significant problems. For
the 40 percent duty cycle proposed for geosynchronous orbit a thrust system
lifetime of 35000 hours is indicated. Current systems have a lifetime of
less than half this amount. Lifetime extension and verification testing as

well as redundancy management analysis is indicated.
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The comparison, in Section 5, of required APS characteristics for each
generic class of LSS over a wide range of sizes has identified areas of
deficiency in current systems. . The removal or alleviation of these
deficiencies are goals that technology development should address to
develop APS suitable for future LSS applications.

6.0 DISCUSSION OF RESULTS

(

I I

In addition to results specifically concerning APS, general conclusions
emerged in the course of the study that apply to the control of LSS. These
may not guide APS technology development but will perhaps indicate some
operational approaches that will be required to place LSS in orbit in a
cost effective manner.

The study results are summarized below. First the general conclusions,
then those that relate specifically to electric and chemical auxiliary
propulsion systems. The APS results are condensations of those given in
Section 5.

6.1 General Conclusions
Four general conclusions became apparent in the course of the study and

were to some extent unexpected:

1. It had been assumed that many LSS would use momentum
exchange devices such as inertia wheels and control moment
gyros (CMG's) for attitude control. The trend towards this
type of system seemed established in many of the preliminary
design analyses conducted in recent years for vehicles which
are l.arge by present day standards; for example, the Solar
Electric Propulsion System (SEPS) and the Space Operations
Center (SOC). The momentum exchange systems are generally
best when cyclic disturbances predominate or maneuvers are
required. The LSS generic classes studied, however, showed
that in most cases the stationkeeping requirements are
equally as demanding as disturbances. Stationkeeping
requires external forces which in GEO (and most LSS
operational orbits were GEO) consist of both north-south and
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east-west components. Attitude control including
disturbance cancellation, can be combined with
stationkeeping (in two axes) and both functions can be

performed simultaneously to a large extent, by careful
system design. This means that little additional impulse is

needed for attitude control if the stationkeeping
requirements are satisfied. This being the case, momentum
exchange devices lose their advantage. The implication is
that, far from being relegated to the relatively simple
stationkeeping and desaturation role, APS for LSS will be
required to do the more demanding tasks of attitude control,
and in some instances shape control.

2. The literature survey conducted in Task 1 to identify
generic classes of LSS showed that a majority would operate
in geosynchronous orbits (GEO). Generally, they would be
built in low earth orbit (LEO) and transferred to GEO to
perform their mission. In examining thrust requirements, it
became clear that the thrusts required varied by orders of
magnitude with the higher values associated with LEO and
transfer. This being the case, the study groundrule, that

thrust vector control (TVC) during transfer be supplied by
APS, may, with benefit of hindsight, be unrealistic. It
will probably be more cost effective to assume that TVC will
be supplied by the prime propulsion system or that transfer
will be achieved by a tug so that TVC on the LSS itself
becomes unnecessary.

Another consideration is the big difference between nominal
and maximum thrust requirements particularly in LEO. For
example, many of the LSS considered had relatively small
disturbance torques in their normal operating attitude but
could experience very large torques in a worst case
orientation. A case in point is gravity gradient torques.
A solar power satellite (SPS) type vehicle flying parallel
to the earth experiences zero gravity gradient torques
although it is in a position of unstable equilibrium. If,
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however, the SPS somehow gets into a 450 pitch orientation,
the gravity gradient torques are huge. This problem is
particularly severe with large structures since gravity
gradient torques are functions of the inertias which go up
with the square of linear size. In the past, the

conventional wisdom held that APS would be sized to handle
worst case situations. It may be time to abandon that
guideline for large erectible LSS. If APS were sized to
handle on-orbit nominal disturbances, plus some prudent
reserve for contingencies, but not worst case conditions the
APS requirements would be considerably eased. Worst case

orientations could be treated as follows:

o Design the system so that the probability of loss
of control is sufficiently small that the danger
of reaching a worst case condition is acceptable.

o Carry a secondary APS for emergency use only.
This· could, for example, be a high thrust chemical
system. Presumably, emergenci es woul d be

infrequent so that the propellant needed, and thus
the weight penalty, would be small.

o Assume that a rescue vehicle would be available to
effect emergency recoveries.

approaches would
designing the APS

torques and

Any of these
effective than
term nomi nal

situations.

most likely be more cost
to handle both the long
the short term emergency

I I

3. The study indicates that distributed thrusters and clusters
of thrusters will be facts of life for LSS APS. This means

that methods of controlling arrays of thrusters need to be
developed. Questions of implementation, centralized

vs. decentralized control, shared PPU's, location of tanks,
redundancy management, etc., need to be addressed and
solutions found.

326



4. The question of LEO vs. GEO assembly for such large
structures as the SPS can be answered by looking at the
control requirements at LEO versus those at GEO. Thrust

level requirements for worst case orientations of very large
structures in LEO proved to be nothing less than

overwhelming. Thrusters of 104 to 105 Newtons simply for
disturbance cnacellation were required. These thrust levels
would~ cause significant structural deformation on the truss
work. It is unlikely that structures greater than
approximately 5000 meters in maximum dimension can be
constructed and controlled in a 300 km orbit unless it can
be guaranteed that a worst case disturbance orientation will
never be encountered.

6.2 Electrical Auxiliary Propulsion Systems
There are four technology advances which, if achieved, would widen
considerably the efficient application of electrical APS. These are:

o Increased thrust
o Reduced startup time
o Higher I for low thrust applications

sp
o Lower I at higher efficiency for high

h
sp 1. .trust app lcatlons

o Longer 1i fe

1. Many LSS applications show the need for thrusts well above
those presently available. If higher thrusts do not become
available, the only recourse is to cluster the units which
introduces a weight penalty. In addition, the need, in
general, for thrust components, plus and minus, in each of
three axes means gimballed thrusters or two thrusters per
axis. Either is difficult to implement if there are
clusters of thrusters at each location.

2. Two basic modes of operation for pointing and disturbance
cancellation are proportional and pulsed. Proportional
control requires thrust modulation, ideally down to zero
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thrust. Present day engi nes have a thrott1 i ng capabil ity of

about 4:1 but the effective ratio can be greatly increased
if there are multiple units. When the lower limit is

reached either a hang-off error has to be accepted, opposed
thrust techniques can be implemented or control has to
revert to on-off, limit cycle, operation. Opposed thrust
tends to introduce propellant penalties. Limit cycle
operation is more efficient and can achieve good pointing
accuracy if time-on delays are kept within bounds. Although
limit cycle periods are long for LSS, 15 - 60 minute delays
produce significant errors for large LSS.

Shape control requires the application of correcting forces
at precise times. Again, shorter start up times would make
EPS more effective.

3. Low thrust APS, typically those for support of on-orbit
operations only, require higher I 's for the smaller LSS
than currently available to realize ~Pminimum . mass of the
total system.

4. Results for some of the LSS classes, specifically those that
require high thrusts and in which the power for EPS
operations must be charged against the EPS, show that a

different Is /efficiency relationship is desirable. Optimum
systems, inPthe sense of minimum weight, occur at lower I
and higher efficiency than currently obtainable. T~~
ability to trade I and efficiency would be very beneficial
for tailoring EPS fg a particular LSS.

5. Future LSS almost invariably demand long life. Ten years is
a typical minimum. Present day electric propulsion units
are limited to about 15000 hours - less than two years.
Increased life capabirity would be very beneficial in
reducing the number of redundant thrusters needed to meet

lifetime requirements.
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6.3 Chemical Auxiliary Propulsion Systems
Two general areas need improvement to make chemical systems better suited
for control of LSS. These are:

o Increased I
. sp

o Longer llfe

1. Chemical APS have many desirable characteristics for control
of LSS but in nearly every case they cannot compete with
electrical systems because the total system weight becomes
excessive. The chemical system thrusters and auxilliary
equipment, such as tanks and valves, are generally light
compared to electrical systems. They also have high thrust
capability and short delay times. They lose out in long
life applications because of the weight of propellant
necessary. This would be reduced if the I could be
increased. Experimental oxygen/hydrogen combinatfgns, both
liquid and gaseous, show promise of reaching specific
impulses up to 500 sec. This is about twice the value
presently available.

Chemical APS operate almost exclusively in a pulsed mode and
pulsing is accompanied by a drop in achieved Is • The drop
may be as high as 70 percent. In addition Eo seeking

improvement in system I it may be as important or evensp' ,
more important, to develop improved pulsing mode I

sp
values.

2. Life is a limiting factor in chemical systems as well as
electrical. Limitations stem from two sources, valve cycles
and catalyst bed life. Valves are limited presently to
about 500,000 cycles, thus. the lifetime depends on the
pulsing rate. If the limit cycle period exceeds 21 minutes,
500,000 cycles are enough for 10 years of operation. From
this point of view, CPS have better life expectancy that
EPS.

Monopropellants currently use catalyst beds to cause
ignition. These deteriorate with time and use and may be
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life limiting. Hypergolic bipropellants do not need
catalysts and so are free from this restriction. LSS
mission lifetime may, therefore, dictate the use of

bipropellants rather than the normally used hydrazine or
other monopropellants.
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7.0 SUMMARY OF RESULTS
The objective of the study was to
propulsion characteristics and

auxiliary propulsion system (APS)
structures (LSS).

determine the electrical and chemical
technology advances necessary to meet

requirements established for large space

r

n

The study was subdivided into five tasks. Task 1 was devoted to
determining LSS characteristics. A literature survey was conducted· and
uncovered about a hundred reports dealing with planned and projected Lss.
It was found that the systems could be grouped into three main generic
classes - flat, plate-like structures, modular antenna systems and series
of antennas systems. Each group was then further divided into two or three
sub groups. Each generic class was characterized by a scaling parameter
and generalized expression for weight, area, moments of inertia, etc. were
generated as functions of the parameter.

In Task 2, disturbance characteristics were determined with the aid a
literature search. The disturbances depended, in general, on the vehicle
mass properties and area distribution. Thus, the general expressions
derived above allowed the disturbance torques to be calculated in terms of
the scaling parameter. These disturbances defined the attitude control
requirements and were used in Task 3 together with stationkeeping and
maneuver requirements to define the total system control requirements.
These were then used to determine the important APS characteristics and to
identify areas of APS/LSSinteraction.

In Task 4, the various APS/LSS interactions were quantified by four
interrelated studies. These covered thrust levels, transients and
modulation effects, number and distribution of thrusters and allowable
mass. From these data, optimum APS characteristics were determined for
each generic LSS class as a function of the scaling parameter.

Task 5 consisted of reviews of the current state of the art in both
electrical and chemical APS. Available characteristics were then compared
with the desired characteristics, found in Task 4, to define areas of

acceptability and deficiency. The deficiencies indicated directions APS
j
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technology advances should take to make future APS better suited for
control of upcoming LSS.

Although the deficiencies varied with generic class and scaling parameter,
general conclusions concerning needed technology advances can be summarized
relatively concisely:

Electrical APS Technology Advances Desirable
o Increase thrust
o Reduce start up times
o Increase specific impulse (low thrust applications)
o Improve efficiency at lower specific impulses

(high thrust applications)
o Increase lifetime

Chemical APS Technology Advances Desirable
o Increase specific impulse
o Increase lifetime

Some general conclusions also emerged from the study. Although these do
not directly impact APS, they may be important in pointing out changes in
philosophy which seem to be necessary for future LSS operations. The

general conclusions and their implications are as follows:

1. Stationkeeping requirements tend to dominate

o APS will be essential

o Control moment gyros and inertia wheels may not be
used on LSS

~\

/

o Much attitude control effort
by combining attitude control
functions.

can be obtained free
and stationkeeping

2. Thrust requirements vary very widely from construction in
low earth orbit through transfer and operations in
geosynchronous orbit
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o Hybrid systems (chemical plus electrical) may be
indicated with electrical systems for nominal
operation and chemical for recovery from worst

case orientations.

Distributed thrusters or clusters of thrusters will
required.

(

I I

3.

o APS requirements imposed by thrust
for transfer are very demanding.
to use prime propulsion for thrust

o Redundancy management and
techniques need development.
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APPENDIX B

MASS PROPERTIES AND DISTURBANCE

FORCE AND TORQUE DATA
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FIGURE D-27
TORQUECOMPO51TEBREAKDOWN
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FIGURE D-28
TORQUECOMPOSITEBREAKDOWN
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FIGURE D-29
TORQUECOMPO51TEBREAKDONN
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FIGURE D-30
TORQUECOMPOSITEBRERKDONN

PLATESTRUCTUREW/BLRNKET- MEDIUM(100M)
CP-CG= 5X OF MAX.DIM.
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FIGURE D-31
TORQUECOMPOSITEBREAKDOWN

PLBTESTRUCTUREN/BLANKET- LARGE (150M)
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FIGURE D-32
TORQUECOMPOSITEBRERKDONN

MODULRRRNTENNR- SMI:ILL (15 M)
CP-CG = 57. OF MAX. DIM.
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FIGURE D-33
IOROUE COHPOSIIE BREAKDOWN
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FIGURE D-34
TORQUECOMPOSITEBREAKDOWN

HODULRR RNTENNR - LRRGE (200 H)
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FIGURE D-37
TORQUECOMPO51TEBREAKDOWN

SERIESOF ANTENNAS- LARGE(4)
CP-CG= 5% OF MAX. DIM.
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FIGURE D-38
TOTBLTORQUEREQUIREMENT

PLBTESTRUCTUREN/O BLBNKET= SMBLL(30 M)
CP-CG= 5% MAX.DIM.
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FIGURE D-39
TOTBLTORQUEREQUIREMENT

PLBTESTRUCTUREN/O BLBNKET- MEDIUM(100M)
CP-CG = 5% MAX. DIM.
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FIGURE D-40
TOTBLTORQUEREQUIREMENT

PLRTESTRUCTUREW/O BLBNKET- LRRGE(250M)
CP-CG= 5X MBX.DIM.
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FIGURE D-41

TOTIILTORQUEREQUIREMENT
PLATESTRUCTURENIBLFINKET- SMALL (30 M)
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FIGURE 0-42
TOTAL TORQUE REQUIREMENT

PLATE STRUCTURE W/BLANKET - MEDIUM (100 H)
CP-CG = 5% MAX. DIM.
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FIGURE 0-43
TOTAL TORQUE REQUIREMENT

PLATE STRUCTURE HJBLANKET - LARGE (150 M)
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FIGURE D-44
TOTRLTORQUEREQUIREMENT

MODULRRBNTENNB- SMALL (t5M)
CP-CG= 5% MBX. DIM.
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FIGURE D-45
TOTALTORQUEREQUIREMENT

MODULBcRP.BNTENN_-MEDIUM (60 M)- = MAIX.DIM.
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FIGURE D-46

TOTRLTORQUEREQUIREMENT
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FIGURE D-47
TOTBLTORQUEREQUIREMENT

SERIESOF ANTENNAS- SMALL (2)
CP-CG= 5?.MAX. DIM.
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FIGURE D-48

TOTALTORQUEREQUIREMENT
SERIESOF ANTENNAS- MEDIUM(3)
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FIGURE D-49

TOTBLTDRQUEREQUIREMENT
SERIESOF BNTENNBS- LBRGE (4).

CP-CG = 57.MAX.DIM.
tOOO,00t.

100"

_ 10. BLTITUDE(KM)
z

0 v

w _ 400

° t: +

500

.01

431t -
4321 -
43S!

•+++ ' ++ ' ++ ' ++..... ++ ' t++ ' t+o
LSS tiNGLE(+EG)

07-HBY-81 _9;26:26



IFIGURE D-50

TORQUECOMPOSITEBR[RKDOWN- GEOSYNCHRONOU5RLTITUDE
PLATESTRUCTUREH/O BLRNKET- SMALL (30 M)
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FIGURE D-51

TOTALTORQUEREQUIREMENT- GEOSYNCNRONOU5ALTITUDE
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FIGURE D-52

TOIRLTORQUEREQUIREMENT-'GEOSYNCHRONOU5RLTITUDE
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FIGURE D-53

TOTflL TORQUEREOUIREHENT- GEOSYNCHRONOUSRLTIT,UDE
HODU[RRANTENNRSTRUCTURE
CP-CG= 5X OF MAX. DIM.
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FIGURE 0-54

TOTAL TORQUE REQUIREMENT - GEOSYNCHRONOUS ALTITUDE
SERIES OF ANTENNAS
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FIGURE D-55

5TRTIONKEEPINGDELTR-V CRLCULRTIONS
PLRTE STRUCTURE H/O BLRNKET SMRLL (30 M)
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FIGURED-56

5IAIiONKEZPING DELIA-V CALCULAIIONS
P_AIE 5IRUCTURE H/O BLANKEI HEDIUH (188 H)
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FIGURE D-57

5TRTIONKEEPINGDELTR-V CBLCULRIION5
PLRTE STRUCTURE N/O BLRNKET LRRGE (250 M)
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FIGURE 0-58
STATIONKEEPING DELTR-V CALCULATIONS

PLATE STRUCTURE W/BLANKET SMALL (39 H)
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FIGURE D--59

5TRTIONKEEPING DELTR-V CRLCULRTION5
PLRTE STRUCTURE W/BLRNKET MEDIUM C100 M}
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