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SILICON CARBIDE AS AN OXIDATION-RESISTANT HIGH-TEMPERATURE
MATERIAL; I: OXIDATION AND HEAT CORROSION BEHAVIOR

J. Schlichting

Institute of Chemical Technology, Karlsruhe University

1. Introduction
	 /1960

SIC is being used as a high-temperature material in heat-conductor

technology for temperatures up to 1500 0C. In addition, it is regarded,

along with S1 3N 4 , as a future material for such things as high-temper-

ature turbine blades ( see, for example, Alliegro and Torti [ 1], Torti

[2], Oorum [3], and McLean_ [41).

Silicon carbide today comes in various forms for use; it is seen

as a final material for SIC rock with a silicate, nitride, or oxyni-

tride binder or for pure SIC material as hot-pressed, reaction-bound,

or recrystallized material. Hot-pressed SIC (HPSiC) contains a few

percent of aluminum 15, 6] or perhaps boron as a sintering agent [7].
These substances display theoretical densities and are identifiej by

a high RT stability, which nevertheless decreases sharply at about

1200 to 1400 oC [8]. Indeed, high RT stabilities are obtained with the

addition of Al rRther than boron, but the decrease in stability at

higher temperatures is greater than for boron addition, for which the

stability still increases somewhat [9]. The stability of reaction-

bound SIC (R531C), on the other hand, amounts to only a third of that

with a hot-pressed material; however, it can survive temperatures up

to 160000, if the content of residual silicon (.from the manufact,tring

process) is as small as possible [10]. In general, the Si content is

8 to 10%. Developments in recent years have further shown that it is

also posalble to manufacture dense SIC by means of pressure-less sin-

tering [11-15]. The final product here is a very fin ,:? SIC powder

(grain size <1 am), to which boron and carbon are added ( about 1.5%

by weight). These substances exhibit sufficient RT stability to sur-

vive temperaL^ures up to 1700 0C (Draft and Dooher [161).

#Numbers in the margin indicate pagination in the foreign text.
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2. Oxidation Mechanism

The oxidation resistance of SiC is based on the development of

S102 glass layers at temperatures >8000C.

It has been known for some years that protective layers of S102

are built up opposite oxide layers, such as in the oxidation of super-

alloys (such as Al 203 and Cr203 ), which present the best protection

against oxygen at high temperatures. In contrast to other oxides, no

transport takes place through these layers via metal or oxygen ions.

The upper use-temperature is limited to 1700 0C, due to the low viscos-

ity of the SiO2 glass.

It is generally known that molecular oxygen can pass through the

open pore structure of SiO 2 glass. These findings were established by

Norton [18] by means of permeability measurements. PQ further deter-

mined the oxygen diffusion coefficient in S102 glass through exchange

reactions with an 0 2-gas atmosphere by the tracer method. In this con- /197

nection, the data obtained can be correlated with the above-mentioned

permeability data, because in both cases, similar activation energies

were determined (83 to 125 kJ/mole) (see the summary considerations of

Schiffer [191). As early as 1964, Motzfeld [20] showed similar values

could also be derived for activation energy from kinetic measurements

for the oxidation of silicon and silicon carbide. Thus it is possible

to correlate transport processes in Sib 2 (oxygen diffusion, oxygen per-

meability) with the increase in a protective SiO2 layer in SiC [19].

For the oxidation of SiC applied, this means the rate-defining step is

represented by the permeability of molecular oxygen through the already-

formed protective SiO2 layer. Hence, an exchange takes place with the

oxygen incorporated into the SiO 2 lattice. This exchange reaction,

however, has no effect on the kinetics of the oxidation reaction.

With these statements, the oxidation behavior of silicon carbide

has already been described and characterized in its essentials, and it

can be confirmed with very pure SIC materials. However, some varia-

tion occurs in relation to the apparent discrepancies which must be

considered in more detail. In the following, the most important data
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from the literature are critically discussed and brought face to

face with the mechanism set up.

3. Active and Passive Oxidation

The formation of a protective SIO2 layer in the oxidation of SIC

occurs on the basis of the reaction equation:

2 SIC (s) + 3 02(g) 4 2 SiO 2(s)+ 
2 CO W.

The stability of the protective SiO2 layer is determined through vapor-

ization or decomposition of SiO 2(s)during the formation of various

gaseous species.

According to the calculations of Sing.hal [21], it results that

vaporization of a protective SiO2 layer from a silicon -bearing sub-

stance cannot be determined in an oxidizing environment. This can,

however, b.^come critical in a reducing atmosphere, i.e. at low oxygen

partial pressure during SiO formation. According to Fitzer and Ebi

13 8, 391, SiO formation is already beginning at 10500C at a stated
partial pressure of 10 -5 bars.

In addition, the protective SiO 2 layer reacts with the base mater-

ial in SiO and CO. The equilibrium partial pressure of SiO can be cal-

culated in advance. Fig. 1 shows this as a function of temperature.

High SiO vapor pressure leads to
Tagwature, K

.+50 two	 20M	 explosion of th- protective SiO

o	 layer at high temperatures and in-

t3`' formation
	 ^ 	 creases oxidation. It is more im-

passive reqion
.'e according	 portant, however, that free surfaces

	

'fto CMMrM► 	 are thus created, for which an ac-
tive oxidation analogous to the

SO- formation
'	 active region	

equ 't ion
SIC (s) + 02(g) ; Si0 (g) 

+ C0 (g)

,.	 by•0	 „an occi :r. The straight line indi-

^N Fig. 1. SiO equilibrium partial	 Gated in Fig. 1 shows the oxida
pressure for the SiC/SiO2 bound-
ary as a function of temperature. tion relationships in two regions.
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Above this line, we have a passivo relationship with the formation

of a protective 5102 layer: below is an active relationship with SIO

formation, i.e. destruction of the material. The region of passivity

was put forth in 1958 by Wagner [22]. The straight line calculated

according to his formula for the boundary of the areas of active and

passive oxidation is included in Fig. 1.

The validity of Wagner's theory has been proven oy various authors.

Several corrections have been made to it. According to Gulbransen and

Jansson [23] and Hinze and Graham [24], these boundary lines between

active and passive oxidation should be lowered, because the CO partial

pressure must be taken into account. In addition, a possible Si0 trans-

port along pore channels is to be considered. Bennett and Chaffey [25]

confirm these data for reaction-bound SIC, as well as Antill and War-

burton [26, 271 for SIC powder. The latter authors of course found

corrosion rates in the active area which were on the order of 5 times

smaller than those theoretically predicted. Rosner and Allendorf [28]

found a lowering of the boundary line on the order of 7 times for very

high flow rates (10 4 cm/sec).

In spite of these modifications, the Wagner prediction appears to

be a sufficient criterion for the active-passive transition in the oxi-

dation of SIC.

For the SIC + S102 reaction at higher temperatures during Si0

formation, see Pultz and Hertl [29] and Borisov and Yudin [30].

See Dillon [31] concerning the primary stage of oxidation for

oxygen adsorption and the formation of a protective 5102 layer re-

sulting from this.

4. Oxidation of Pure SIC (Powder, Single Crystals)

Oxidation in the passive area (oxidation in air of air-oxygen at

temperatures above 8000C) is characterized by a parabolic time lt,w.
M	

In spite of a few points of view to the contrary, this fact is proven.
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S10` formation occurs at	 the Si02/silicide interinyer 132,	 331.	 Table

1 gives the oxidation rates	 indicated in the	 literature	 [26,	 27,	 34 -531.

Fig.	 2 shows the temperature dependence of comparabl? oxidation rates.
1100	 i doe	 , "0	 t 000	 'C It is kniwn that these data lie very,`	 I--	 ^-

to-R _ \^ close together in range of values,

CT) ; which is recognized from the uniform
\^r	

M activation energy of 83 to 125 kJ/mol

NN (solid line).	 It	 is	 furthor known

W.	 P that below 1200 00, the oxidation ratesp ,^
^W.

fall	 shat-ply	 (heavy dashed	 line),
\^\ [481,	 as it	 also is for RBSiC (Bennet

:ind Chaffey	 [54],	 Schlic• thting	 [551).
" Fitzer and Ebt	 138,	 391 explain the

i	 0	 r °Cchnntre in activation energy at 1200
^^r ~4

Fig.	 2.	 Teuperature depend-  by crystallization of the protective

once of oxidation rates for Si0 lnyer • upon the formation of cristo-
pure silicon carbide powier

halite In the range of 1200 to 14000C.and	 single	 cryst.:rls.	 A	 =
Adamsky,	 AN	 - A:ittll,	 h	 - The number of the crystalline phases
Bart :! et t ,	 C	 Oappe lee,	 E was honer determined t r y X-ray for upErvin,	 F =	 Fit.-or,   	 I	 -	 Gugel,
H - Harris, J = Jorgcnsen, N =	 to 801 by volume.	 Above 1400°C, Fit-
Nakatogawa,	 W =	 Wic-bke. zer and lbi	 [ 38w	 39]	 as	 well	 as	 Aei:rm: ky

[34]	 found ;e	 further	 ino rea:- e in activat ton energy,	 I.e.	 a	 strong	 In-
crease in the oxidation rates. This phenomenon is explained by the

change in the viscosity of the S102 glns,	 l:iyor	 (facility of oxygen

transport).

Various statements regarding the oxidation bt ahavior of the differ-

ent SIC modifications are under consideration. Their basis would be

better sought III 	 various addition of foreign elements. According 	 /1^Q

to Suzuki 1311, 6-SIC, acts more slowly than a-SiC, while according to

Konopicky, Fatzak and Dohr C571, black Al-dosed a-SiC and green SIC

are oxidized lrast and d-SiC (N,-stabilized) most strongly. s-SIC

should exhibit an active surface [601. Black and grey SIC art , oxidized

more rapidly than green SIC (Nakatogawa [48]), but more slowly for a

longer oxidation time (Wiebke 152]).

See Kapitel: Hot-Pressed SiC, on the effect of contamination.
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The oxidation behavior of SIC single crystals varies according

to crystallographic orientatton (Harris [431). There is a diffusion-
controlled increase through surface reaction at the silicon face of

the crystal being studied.

The oxidation of SIC proceeds with the formation of a protective

SIC ) layer which may be of a glassy or partially-crystallized nature.

Whereas Adamsky [ 3 11] found no cristobalite at 1200 to 14000C, Gugel

et al. [40, 41] indicate cristoballte formation above 1000 0 C (develop-

ment of rosette-like surface structures), Michel [58] above 11500C,

Fitzer and Ebi 138, 391 above 1200 0C and Dillon [31] above 13000C.

The differences are probably attributable to the different crystallo-

o	 grail hle construction and different portions of various materials (see

Sharma [60] on this).

5. Oxidation Behavior of Pure SIC Substances (Porous SIC, CVD Layers)

The oxidation behavior of porous SIC substances is very different.

Fig.	 3 shows typical curves for a reaction-bound material with 10%

pores by volume [55]• 	 These oxidation isotherms are recognized at

low temperatures such as 1000 00 by very high oxidatioi, rates, while

at high temperatures, the increase

in weight in the first hour is veryIncrease 000.0
in sudden and then it proceeds very
weight,
mQ1as2 slowly.	 Hence oxidation (preferably

*c high temperatures) in the primary

-- 1 ;00 6C stage for the protective SIC 	 layer

rA---

increases at open pores with the

formation of a closed uniform pro-

0 b	 - v v tective layer, whereby the reaction

oxidation time, hrs surface of this porous material de-

creases in the course of 	 the reac-	 1200
Fig.	 3.	 Oxidation isotherms for

tion	 138,	 391.	 Oxidation behaviorporous SIC substances with number
of pores equal to 10% by volume. is thus not a substance-specific

property of the material, but of

the pore structure,	 i.e,	 the effective surface at any given time is

controlled by the availability. S1O2 .layers forming In the oxidation
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'	 TABLE 1.

Test	 Atmos-
Author	 MethodMaterialphere

Temp.
O

Exper.
Dur.,	 hr

Oxidation

1	

Rate

1 R t^rn1 4 11^ 	 lfm^^al
r

E

lkJjm^ll

2amak7 co, Adwrption C rV S t ,115	 0, 1200 3,3 9.1 - 10- 19 276

195934 11	 1 200 ,,,n 1100
1400

0 10 14
7.0.10-14

125
317

1500 3.2-10's
z

.lntill Thrrmo• sic	 layered0, 12W ? 7.7.10'14

Warburton Rra%imeti y 110,
a	 1969 126. 27 1

Bartlett intrrlrrrnc,e fl.sic Cry-, '0, 985 46.5 1.9.10"14

1971 1351 t a l s

Cappelen 'rhermo Pow'uer	 0, 1500 20 1.6.10 -'t r
lohan.rn rralimetr y 1000 um

Slouleld
1963 1361

Ervin Grarimrtry Powder	 Ai 1- 1300 40 9.7.1014 219

1958 1371 150 um

Fitzer Thermo- Powder	 Or 1000 10 3.8-10 °	 3.1-W 14 335

Rbi gra%imetry 40-63 um 1200 2.2.5.10 t	 1 .1" ' 4 167

19'313R.391 1400 1.3.10'•	 1.2•]0ie
""

4111
1600 1.6.10-"	 1.0.10

Ail, 1000 10 8.0-10 11	 7.R	 10"" 314
1200 4 4 . 10 "	 4.2	 10 ' 4 251
1 W 5.610 "	 5.4.10-14 460
1600 4.7.10 •	 4.1.10 I,

Thermo. Powder	 Ad r 1000 120 5.0.10 11L 82
Gnt;rl
IlrnnAr tru%im(1ty 13	 67 run 1200

1400
120
90

4.5 - i0"
8.0.10-14

Schuster 1500 11) 1.4.10 "1969 140,411
ti.fru+ter

Gulhran.rn Thermo CrySt:llS	 l), 1300 4 min 1.2-101 
lndrew Fra1 itnrtry 3-611	 O.5 torr 8,'cmt h
Rra,•art

l0t)b 1421
llarri n .nterferri.Ge Crystals	 O, 970 166 1.0•!0"° I'lo

1 1 .73 75 1431 a 61i 1015
10601

5.2.10"18'
7.0.10-18'

1170 3.8.10 14
1245 (1.0 .10-14

J"Igei .en Tirrrno Powder	 0, 903 120 2.7.10 18' R:,

Rad+• ith rrallmrT%, 37 --44 um 1215
150'2

1210
60

3.2.10'14
1,2-10-1*

r19 59 1600 JO 1_.9.10-18'
195'1141]
Ahr)diru Grallnlrtry Powder	 Air 1300 50

1
3.2 . 10"0

'	 S
RO

Rrr•l.rr 60 t 120 um 1400 4.4 l0
1069 1451 1500 1.6- 10 r

160 3.R•10 r

Larnix-rt.on l hrnno ^	 1'I Ow'd'` r
POO

101"1
? 1.8.19-18'

22 10-
377
629

19:,b 1461 Kra%imrtry
121N1 3.2 10 18'fr.: 1 IarA
1100 4.4.10-t
I60U 3.5-1011

Lra Gr/vimrtry Powder	 Air om 140 1.11014 20.1

I'710	 14-,l 20 — 41 um 1000
11

90
 70

8.g.10 14
1.7.10

1200 40 4.9	 10 18'

(':able continued on following page.)
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Oxidation.	 F
Rat

 (kJ/mol)

2,2 , 10 u	 122
1.3 . 10 u

632

%0-1016
U)'109

8.0.10 93	 I(,:
4.2 10-'t
1.6.10
1.9.10-93
2.0 10 "
6,4 . 10 "
1,210''a

3.9.10' (^
9.A • 10 "

vnn

ni

I

I

TABLE 1.	 (Cont'd)

Author Method 
Material 

Atmos- Temp. Exper.
Material phew	 oC	 Dur., hr

Nalalogawa Thermo 1'ltWtlrl'
1951 1481 ttra.nnrtr v

Pulti Gta%mirtry I,OWLie I'
1%7 n 14 111 10 um

I'ulu I:r.^nortr' ,; phases
IW"b1501 2,;bi',

sure ► t I:ia%rnwtry Crvstaic
1 05; 1511 v 6il

13,4 1 21.6 11 

'A irKe Co, Ad.oryuun 1'k)N'LIL1r
1')(A) 1 J21 M um

).1%ts"Ln 1'hv11110- C1'vstalS
I u" 1511 A.8%imrtry • NBgic

	

o,+ Air 1111111
	

4
1.100

11,	 1355
	

3

2ui ton	 14W
1475

;\ 1 1'	 Alkl
	

20

9011
1 000

O,	 810
	

50

1100

12M
1400

O,	 11 00
	

T1

	

1300
	

21.

	

15.0
	

1n

Air	 1:d10
	

S
1600

are extremely crack-sensitive; ho%ever, they vlose up again with new

heat treatment (Lange [611).

The oxidation rates indicated ill the literature for :IBSIC with

various porosities, as well as for the filial Si(' from the gas }phase,

are shown in Table 2 [26 9 27, 5 4 , 55, 62-701. The values for RBSiC

are very non-11111form and cannot be compared. For solid, poreless

RBSiC materials, the similar or insignificantly increased oxidation

rates are presented in camparison with pure SIC powder (Gnesin [71],

Schlichting [551). For the effect of porosity on the oxidation be-

havior of RBSiC, see Kaynarsky [72], Gropyanov [65], Rubiseh and

Schmitt 1731, and Kuznetsova [68], primarily Interesting for the manu-

facture of heat conductors.

The grain structure of these materials also has an effect (Taylor

[74]). Refining the grain sl::e produces Improvement in oxidation be-

havior, but it increases temperature sensitivity [72].

For recrystallized SIC, the data show that in the process of re-

crystallization at high temperatures in manufacturing, the oxidation

behavior can be subst'3litially improved (Alliegro 1751).

I
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TABLE 2.	 OXIDATION RATES FOR Sic; SUBSTANCES

Test	 At.mos- Temp. Exper. Oxidation rate
Author Method Material phere

T C
Dur., hr

1e(em' h 	 hm',$)

Antill rhermo• RBtiic	 O, r lop t 9.1.10
♦ 	 Iarburhro oravimetrp

VW) j 2e. 271
6.

Bennett O,	 l'UI1Slli1111 - RBsiC	 Llr 950 t(10 1.310 "	 6.310
Chai7r 1 t 1 oil
1971 1541

I'Ifiin G1evimetry	 • RBSic	 A i I' 20", 9.6 nun 2.61 R rm h
1971 1621 2447 3 min 5.64 S cm h

Gar.hin Gnviroetry HBSiC	 Air 1:00 JO 7•10^
aNikitina 12 - 33 !'a N

1971 (631

Giddinit• lhrrmo Silltvred Air 1600 100 4.9 10
19;5 jell Rravimetrii,, CVD•Sic	 Ai T 16(1(1 9 2.7•1tl s

Gropvanov Cravimety RBSic 1310 10 4.8	 Ill'
L.6	 10 t1970 (651 10 0-'* Porci 1420
1.2.10 -41510

31.8 '4 Porn:-: 1310 2.0-10
1420 8.0.10
IS20 2.0	 l0'

Krrn ? CVD•SiC	 Air 80(1 300 2.3 10"
11am.11 900 350 1.0.10
jarol m 1000 600 7.0	 IU '•
1 068 Ie6l

Korlowsk7 Graviro-tr. CN'D Sic	 (lr 1370 24 4.0.10 "

1975 (671

6metsova Floctron RnSic	 Air 13(x1 5 I.1 • 10 u
1972 (681 ittlCrOSCOItt• 1500 5.8-10 "

McHenry Grarimew RBSiC	 X111• 1000 IS 4.0.10'
Tressler J • 10 ' altar
1977 1691

Restall Thermo M:ic	 Air 1300 I00 `1.0.111 "
Guatelow travimetiy
1973 1701

%d+hnhtin Therm o RBSic	 Ail' 1000 100 3.5-56 10'"
1978 1551 grevimeuv 10 N Si 1200 2.5 - 6.0 10 'v

1.6 -1.8	 10 's1'/, Parrs 1400
1.6.10'ism

The most wide-ranging oxidation values for pure SIC powder could

be realized bj Fitzer and Ebi	 138,	 391 for SIC substances which suffer-

ed broken SIC surface layers through gas -phase discharge and thus could

be regarded as pure, compact, pore-free SIC substances	 (Ebi	 1391,

Schlichting [761). The excellent oxidation behavior of CVD-SiC can be

applied in the construction of protective coatings for graphite and

refractory metals [77,	 781.

(To be continued)

O'?IGIA'AL PAGE I$ 9
OF POOR 0;1AUTY


	1982003247.pdf
	0018A02.TIF
	0018A03.JPG
	0018A03.TIF
	0018A04.TIF
	0018A05.TIF
	0018A06.TIF
	0018A07.TIF
	0018A08.JPG
	0018A08.TIF
	0018A09.JPG
	0018A09.TIF
	0018A10.JPG
	0018A10.TIF
	0018A11.JPG
	0018A11.TIF
	0018A12.JPG
	0018A12.TIF




