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ABSTRACT

Rose, Ferrante, and Smith (ref. 7) have discovered scaling relations which map

the adhesive binding energy of Ferrante and Smith (ref. 6) onto a single universal

binding energy curve. The energies in ref. 6 are calculated for all combinations of

A1(111), Ln(OW1), Mg(0001), and Na(11U) in contact. The scaling involves

normalizing the energy to the maximum binding energy and normalizing distances by a

suitable combination of Thomas-Fermi screening lengths. A simple mathematical

expression is found to accurately represent the universal curve, E* (a*) - -(1 + $a*)

exp (-sa*) where E* is the normalized binding energy, a* is the normalized

separation, and 9 is the fitting parameter. Rose et al. (ref. 7) have also found

that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar

simple relations suggesting the universal relation may be more general than for the

simple free electron metals for which it was derived. In this paper we outline these

results and discuss them in relation to topics of interest in adhesion, friction, and

wear.

1NTR000CTIUN

An important aspect of friction and wear of metals is the nature of the adhesive

force between the surfaces. Bowden and Tabor (ref. 1) have used adhesion between

metals to explain parts of the friction and wear procass. Of particular interest in

these processes is the physical nature of the forces in dissimilar metal contacts.
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There have been numerous attempts to postulate the nature of these forces but few

model calculations. For example, adhesion between di:similar metals was explained in

terms of solubility (ref. 2) but without accompanying motel calculations. Buckley

(ref. 3) has shown that metals with low mutual solubility can have higher adhesion

than those with high solubility.

This lack of model calculations has occurred because of the theoretical diffi-

culties involved in treating solid surfaces. In the past decade the electron density

functional formalism of Hohenberg, Kohn and Sham (ref. 4) have been used to success-

fully calculate the surface energies (ref. 5) of simple metals. Ferrante and Smith

(ref. 6) recently applied this formalism to the problem of metallic adhesion for both

similar and dissimilar metals in contact. Rose, Ferrante and Smith (ref. 7) found

that scaling laws exist which map these results onto a universal adhesive energy

curve. In this paper, we discuss the results of these calculations and their impli-

cations to a more general category of materials, the transition metals, and then sum-

marize :ire current state of adhesion theory.

USE OF KOHN-SHAM FORMALISM FOR AUHESION CALCULATIONS

The calculational formalism and methods used for obtaining self-consistent interface

electronic structure will now be presented. A much more extensive description is

given in refs. 6 and 8, particularly of numerical techniques.

The adhesive interaction energy, E ad , between two metal surfaces is a function

of the distance between the two surfaces, a (see Fig. 1). Lad is defined as the

negative of the amnunt of work necessary to increase the separation from a to -

divided by twice the cross-sectional area A. Thus

E ad . [E(a) - E(W)]12A,
	 (1)

where: E is the total energy. For identical metals, Ead is the negative of the

surface energy when a is at the energy minimum.

According to the density functional formalism of Hohenberg, Kohn, Ind Sham,

(ref. 4) the total energy is given by (atomic units are used throughout unless other-

wise specified)

1 2: zz
E{n(r))•	 v(r)n('r)dr +	 + f{n(r))+

i4J	
iJ

f

(2)



F(n(r)) - I (n(r)) + I ff " " r - drdr' + E xc (n(r))	 (3)

Ir - rl

v(r) is the ionic potential, and n(r) is the electron number density. The first two

terms in Eq. (2) are the electron-ion and ion-ion interaction energies, respec-

tively. z is the ionic charge and R ij is the distance between ion core nuclei

(there is no ion core overlap in the systems considered here). T s(n(I) is the

kinetic energy of a system of noninteracting electrons with the same density n(r7

the next term is the classical electron-electron interaction energy, and E xc is

the exchange-correlation energy-

For metals like Zn, Mg, Al, and Na, the jellium model (Fig. 1) is a good

zeroth-order approximation, and the difference between the total pseudopotential and

the potential due to the jellium is small for the closest packed plane. Thus for a

given separation a, one obtains E to a first-order perturbation approximation as

z•z
Ein(r)) = A f vj (Y•a) n ( y , a ) dY +	 1	 + F(n(y,a))

iij	
ij

+ A f av (y,a)n(y,a)dy	 (4)

where v
i
 is the potential producea by the jellium, y is the direction normal to

the surfaces, and av is the average, over planes pr-41lel to the surface, of the

difterence in potential between an array of pseudopotentials and the jellium.

Following Lang and Kohn (ref. b) the Ashcroft pseudopotential is used:

-z/r, r > rc

where r 	 is determined empirically and is close to the ion core radius. The

electron number density is obtained from a set of self-consistent equations.

The Schroedinger equation:

1 dl +
0 )	 l	 l	 (')ln:Y)	 lY) = 1 k	 k(Y)7 d-y	 off	 ^k	 C	 f ^Ic	 (6)

where

vettln:Y1	 m(Ysa) +	 an y,a

n(y ,a) - n L (y .a) + nK(Y.a)
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nL (Y. a ) -	 dkk(♦ Y) 
2
k- k2fL

4. f

'FL

and

kf R
nRlY.a) -	 dk ^Yk(Y) 2 kFR - k2

4w fo

and with Poisson's equation

dC	 a - -4.[n(Y.a) - n+(Y)J
dye

	 (7)

o(y,a) is Ue electrostatic pot of al n,(y) is the jellium density (Fig. 1)

kf is the Fermi wave vector magnitude and n(i) (y) is the wave function

(i - L, R; i.e., left and right). The calculation is broken up into two regions,

below the conduction band of the less dense metal, and above it where the solutions

are doubly degenerate.

It is useful to combine the first two terms of Eq. (4) along with the classical

electron-electron interaction term of F(n(y,a)) as follows:

- y A f p(Y.a)0(Y. a ) dY * Wint
	

(8)

where p(y,a) is the net charge density of the zeroth-order jellium solution.

Wint is the exact difference between the ion-ion and the jellium-jellium inter-

action. It is shown in ref. 9 that Wint/A 
is neoligible unless the facing planes

are in registry, i.e., commensurate. In this calculation, we assume incommensurate

adhesion (W int - U), since registry is not obtained with dissimilar metals in con-

tact without corresponding loss of energy due to strains in the lattict which would

be difficult to evaluate.

The exchange-correlation energy Exc is written in the local-density approx-

imation (LOA),

Exc (n(r)) - f n(*r)c xc (n(*r))dr	 (W)

where cxc (n(r)) is the exchange-correlation energy of a uniform electron gas of

number density n(r). We use Wigner's interpolation formula for the correlation

energy and the Kohn-Sham exchange energy.

It remains to specify the kinetic-energy tuactional of Eq. (3):

Ts in(y,a)) - Af ts (n(y .a))dy	O U
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where

ts(n (y,a)) - j 	 Ck2 + kz +k 2) ^ i w 2
k,kx kz
(occ.)

+ (Veff(n;'") - veff(n :y )] n (y , a )	 (11)

The sum is over all occupied states. The summation index i again refers to

degenerate wave functions as in Eq. (6). In ref. 6, an expression for

T (n(y,a)) - T s (n(y,0)) is presented which is based on kinetic-energy

densities in the interface region. We find this approach more natural for our prob-

lem, as it is the intertace region in which the large changes in kinetic energy den-

sity occur upon adhesio•,.

The results of this calculation for all dissimilar combinations of Al(111),

,;(0001), Mg(WO1) and Na(11U) are shown in Fig. 2. AS can be seen there is a wide

variation of shapes and binding energies and the curves look very similar to binding

energy curves for diatomic molecules.

Scaling rules for adhesive energies

The calculations needed to obtain the results of Fig. 2 are quite difficult and

time-consuming. It is of interest, therefore, to look for some general similarities

between these curves which may generalize the results. hose, et al. (ref. 1) have

found such scaling laws. It will now be shown that the curves of Fig. 2, as well as

those of the identical metal contacts (ref. 6) (Al(111) - Al(111), etc.), can be

simply scaled into a universal curve. This scaling is motivated by the expectation

that metals having shorter screening lengths would have adhesive energy curves which

rise faster with separation. That is, the metals would screen the disturbances

caused by creating the surface over a shorter distance. This suggests that for iden-

tical metal contacts the separation is scaled by the Thomas Fermi screening length
X - (9it/4)1/3 r s 1/2/3 au, where the bulk electron density n + - 3/4wrs.

When we encounter bimetallic contacts as represented in Fig. 1, a length scaling

appropriate to both metals must be considered. In that case, we chose to scale by an

arithmetic average, (X I + y1Z. The energy amplitude was scaled by its

equilibrium value, aE = E ad (am ) where am is the equilibrium separation.

Explicitly

t ail (a) a at t ad (a*)	 GO

Here Ead (a*) is the univeral adhesive energy function and a* - 2(a -

am )!(a I + al).

Figure 3 shows the results of scaling the calculated adhesive energies. An

analytical fit is given by Ead - - (1 + Aa*) exp (-aa*) with p - 0.90. The
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universality of the scaled adhesive energy curve is truly remarkable. One can see

that the results for all ten bimetallic contacts lie very close to the universal

curve. This is true even though the bulk metallic densities in the various metals

vary by a factor of eight.

It is important to understand how the fortunate , result of a universal energy

curve comes about. In the following, we attempt to provide a plausibility argument

within the jellium model. First, we have found that solid-vacuum density dis-

tributions, n(y) (ref. 10), scale rather accurately with a. That is, there is, to a

good approximation, a universal number density distribution n*(y - a/2) where

n(y - a/2) . n +n*[a-1 (y - a/2)]	 (13)

i

Mere a12 is the coordinate of the jellium surface. There is a similar scaling for

the Kohn-Sham effective one electron potential:

Veff(y - a/2) - ve veff[a-1(y - a/2)J 	 (14)

We were motivated to look for this scaling by the fact that the Thomas Fermi equation

scales (refs. 11,12) exactly with y in units of a. Secondly, we have found (ref.

6) that the total number density in the bimetallic interface is given to a fair -

accuracy by a simple overlap of the corresponding solid-vacuum distributions. This,

and the stationary property of E[n) indicates that it would be a good approximation

to use overlapping solid-vacuum number density and potential distributions.

Thus, in a first order perturbation approximation, we have for identical metal

contacts:

Ead (a) a (1/A)	 my - al2)4ff (y + a/2)dy	(15)M

Combining Eqs. (3) to (5), we have:
M

Ead (a) a (1/A)(n+ve) . 	 n*(y - a*/2)veff (y + a*/2)dy
	 (16)

The integrand in Eq. (16) is independent of rs . The constants in front of the

'

	

	 integral are independent of a, and thus Eq. (16) scales exactly as we scaled the
r'

adhesive energy curve to give Fig. 3. Although our plausibility argument is

restricted to jellium interfaces, we note that the calculated adhesive energies

1

	

	 include the ion-ion term exactly for a rigid lattice model and the electron-ion term

in first order perturbation theory.

UISCUSSIUN

There are several topics of importance in metallic adhesion: the nature of the

attractive forces, the range of such forces, and finally, are there any

6
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generalizations that can be found? The work of Ferrante and Smith (ref. 6) indicates

that electron sharing similar to covalent bonding in molecules i:; sufficient to give

strong bonding. They also determine the magnitudes of such forces for several simple

metals (table 1). These results also establish that an approximate range for the

forces is an interplanar spacing. Finally, Rose, Ferrante and Smith (ref. 7) have

found scaling laws which generalize these results.

In metallic adhesion of real surfaces further considerations come to mind.

First, real surfaces are not flat and consequently, how important are the strong

'	 forces compared to the weaker, long-range van der Waals forces? Next, the results of

these theoretical calculations represent ideal strengths. Real contacts fail at

r	 conditions lower than at ideal strengths. Finally, metals used in most engineering

e
	 applications are either transition metals or alloys.

inglesfield (ref. 13) examined the problem of van der Waals vs. strong inter-

action forces using the calculations of Ferrante and Smith (ref. 9). he concluded

that in spite of the fact that the strong forces only dominate at the positions of

asperity contact, these strong interaction forces dominate the strength of the

contact.

The fact that the strength of real contacts is dominated by defect structures

and the mechanical properties of the solids is an issue that ultimately must be

addressea. Also, these results apply for brittle fracture; however, metals will

undergo ductile extention before fracture. Since adhesion and other contact pro-

cesses are complicated combinations of physical and mechanical properties, each part

of the process must be understood independently. This study has been car,ied out in

this spirit. The results of table 1, however, contain some aspects of these con-

siderations. A question of interest is whether a dissimilar contact is weaker,

stronger or in-between contacts between the same metal. The first column in table 1

(labeled Wint - 0) gives the binding energy of a contact when perfect registry is not

obtained. Perfect registry can only be obtained when the same crystallographic

planes of the same metal are in contact. A more complete discussion of this issue is

given in ref. 9. The second column gives the binding energy in the ideal case of

perfect matching of planes which doesn't occur in a real contact. Examining table 1,

it can be seen that the interfacial energy is slightly lower than or comparable to

the bulk energy except for the case of sodium, where the interface between sodium and

any of the other metals is clearly stronger than the bulk. In a real contact, the

two surfaces would probably distort to attempt to come into registry with the for-

mation of defect chains to accomodate the distortions, thus modifying the interfacial

energy. In ge°eral, the interfacial binding energy is comparable to the energy of

the weaker partner in the different metal contacts examined.

A final concern with these results is the limitations of the calculations. The

quasi-three-dimensionality of the adhesion calculations limits the reliability of the

calculations to the densest packed planes of the simple metals.
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Most engineeriq materi0 s are transition metals. To properly handle transition

metals theoretically would require extensive three-dimensional calculations which

would be quite difficult at this stage. Vaniv (ref. 14) and Allan, Lannoo and

bobrzhinski (ref. 15) have applied the tight-binding approximation to the transition

metal problem. Although these calculations probably give accurate trends, the

approximations used make quantitative results questionable.

The question arises concerning whether the results are more general than for the

simple metals examined. Recently, theoretical binding energy curves have become

available for several bulk metals [Carlsson et a]. (ref. 16) (Mo, K, and Cu) and

Herbst (ref. 17) (Sm*2 , Sm+3, and Ba)]. These total cohesive energy curves were

calculated as a function of the separation between atoms for a uniformly dilated

lattice. We characterize the density of the lattice in terms of the Wigner-Seitz

radius, rws 	( 3/4wnA ) 1/3
 where nA is the atom density. As shown in Fig.

}	 4, these quite disparate cohesive energy cures can be approximately scaled into a

universal function, EC, which is also defined in Eq. (12) if we replace Ead

by Ec everywhere. eE is the cohesive energy at the equilibrium spacing rwsm

and a• • (rws - rwsm)/x where a is again the Thomas-Fermi screening length.

The value of r  used to determine a was determined by the equilibrium inter-

stitial electron density (refs. 17,18). The binding energy of Mo, K, 8a,

Sm CO (5d,6s)2 1 and SaP[4f2 (5d,6s)3 ] fall closely on a s i ngle curve

with a . 1.16 where we have used the same analytic form as for the adhesive ener-

lies. The value of 9 differs from that appropriate for adhesive energies presum-

ably in part because all atoms change their positions in the bulk cohesive energy

calculations while the adhesive energy curves assume that atomic planes are moved

rigidly. The results for Cu has the same shape, but a somewhat different a than

the other metals. We do not understand this variation.

The cohesive energy calculations of Carlsson et al. (ref. lb) (ASW density func-

tional theory) and herbst (ref. 18) (relativistic hartree-Fork) are quite different

from each other and from the perturbative-density functional results of ref. b for

Ead . The nature of cohesive bonding in these metals is quite varied. ba  is a

divalent band overlap metal; Sm is an f-electron metal; Mo and Cu have important

d-band interactions; while K is a simple metal. That such different metals cal-

culated in quite different ways fall on a single curve indicates the generality of

the scaling relations. We note that the "tail" region of the screening charge dis-

tribution around metal ion cores can be represented by electron gas parameters. It

is known that the screening charge density and potential in this region scale as

rs/2 to a fair approximation (ref. 19). Then the argument of Eqs. (13 to 15)

applies to the long-range interaction of screened bulk ions with s a/2 referring

to the relative lattice positions and y replaced by r.
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The use of the electron density at rws is reminiscent of the approach of

Miedema et al. (ref. 20) whose work complements our own. They calculate equilibrium

energies (e.g., heats of formation). We, on the other hand, use similar equilibrium

quantities to determine the form of the binding energy-distarce relation.

The plotted energies of Fig. 4 were computeo for the same electronic con-

figuration at all atomic separations as were the interface calculationF. The

adhesive energy scaling was illustrated for simple metals. However, the appearance

of an analogous scaling relation for the bulk energy of transition metals indicates

that the adhesive energy scaling may well extend beyona simple metals.

In conclusion we have discovered scaling relations which map adhesive energies

onto a universal binding energy curve. Similar scalings for cohesive energies for a

wide range of metals suggest that this relation may apply to more than just the

simple metals. Finally, a simple analytic energy-separation scaling relation is pro-

vided which may be of use in practical analysis of contacts.
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TABLE I.
Binding energy comparison. All energj values taken from the
minimum in the adhesive energy plots ((see figs. 3 and 4)

Metal combination Binding energy

Perfect
ergslcm registry

Al 111)-A1(111) 490 715
Zn 0001)-Zn(0001) 505 545
Mg(001)-Mg(0001) 460 550
Na 110)-Na(110) 195 230
A1(!11)-Zn(0001) 520
A1;111)-Mg(0001 505
A1(L11)-Na(110) 345
Zn(0001)-Mg(0001) 490
Zn(0001)-Na(110) 325
Mg(0001)-Na(110) 310
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