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}	 SUMMARY

In this report we consider a 'Liquid in a cylindrical container having

either circular or rectangular cross-section. The bottom of the container

is a rigid, perfect heat conductor while the upper surface is a free interface

between the liquid and the bounding gas. The bottom of the container is

uniformly heated and heat is lost to the gas at the top. The basic state

consists of zero velocity (motionless Liquid) having a linear, purely con-

ductive temperature profile. If the vertical temperature gradient is large

enough, this pure conduction state becomes unstable due to the ,joint effects

of two mechanisms. The surface tension on the interface depends on tempera-

ture and Marangoni convection sets in. The non-dimensional measure of the

surface-tension gradient is the Marangoni number M. The vertical gravity

field sets up an adverse density gradient so that buoyancy effects lead to

convection. The non-dimensional measure of tie buoyancy is the Rayleigh

number R.

We formulate the general problem of nonlinear convective instability driven

by the joint effects of thermocapillarity and buoyancy. The upper free sur-

face has a general heat transfer condition applied and the interface is

allowed to deform. Sidewalls confine the laver. The problem solved

involves a special case of the general problem. The surface tension on the

interface is so large that surface deflections are neglected. The sidewalls

are adiabatic and impenetrable but for mathematical simplicity are allowed

to be "slippery".

In order to determine the effect of sidewalls on the critical

Marangoni number in finite containers, it is first necessary to develop

the basic equations and boundary conditions. The basic equations are the
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Navier-Stokes, continuity and energy equations, and the boundary conditions

express the conditions of no slip and constancy of temperature at the bottom

surface of the layer, conservation of momentum and energy at the free inter-

face, and the sidewall conditions alluded to above.

If we denote by a the ratio of the mean fluid depth to the radius of

the cylinder, then we find the critical conditions M > M c - Mc (a) for the

instability of toe pure conduction state. At most v4lues of the aspect

ratio a, linear stability theory selects a single cell shape of steady

Marangoni convection that replaces the pure condition when the conduction

is unstable. The cell shape is characterized by an integer m since all

solutions are proportional to exp(inO) where 0 is the cylindrical azimuthal

angle. Thus m - 0 corresponds to axisymmetric ring cells. Alternatively,

m - 1 corresponds to convection patterns iL ► which there is upflow in one

half the container and downflow , in the other half. Clearly, the modes for

larger m correspond to more complicated cellular patterns. The linear

theory shows that as the aspect ratio a it. increased from zero that the

preferred modes follow the sequence m - 1, m - 2, m = 0, m a 3, etc. We

study convection near intersections between modes and away from such

intersections.

The linear instability theory for the case of the rectangular container

is even more complicated, as two aspect rotios are necessary to describe

the container. We denote the dimensionless length and width of the rectangle

as (a l ,a,,). Again, modes of convection are denoted by integers (ml,m,)

corresponding to the number of cells in the horizontal directions (x,y).

Thus (1,0) is a single roll cell with axis in the y direction. Parameter

studies result in a map in the (a l ,a,,) plane which gives the modes which
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are preferred according to linear theory. We shall be especiall y concerned

with boxes which are of shallow depth relative to their length a2 ; this

means we shall focus for fixed a2 on the progression of roll cells (m,0) as

the length al of the box increases. Again, we study convection near inter-

sections between modes and away from these.

in all the above calculations, both for the circular and the rectangular

geometries, results are obtained for various Rayleigh numbers (measuring

buoyancy) and various Biot numbers (measuring heat transfer to the gas).

However, for all the nonlinear results obtained both the Rayleigh and Biot

numbers are set to zero. Subsequent work will cover cases involving non-

zero values of these numbers,

in order to determine the mode of convection that is observable in

an experiment, it is necessary to develop a nonlinear theory. Such a theory

predicts the amplitude and direction of fluid motion, and for container

sizes for where two different modes of convection compete, is capable of

making predictions of the convection pattern as a result of such a nonlinear

competition.

Consider a single mode, whose amplitude is denoted by A(t). Then

according to linear theory, A satisfies an equation of the form,

v d (M-M
c

  )A
	

(3.1)

where v is a constant which depends upon the mode in question, the aspect

ratio, and the Prandtl number. According to (3.1), A will grow in time

.hen M > Mand decay when M < M : this is the result of linear theory.C9

When M '- M(3.1) is no longer valid for all times, and a nonlinear theory
c

is necessary to describe the convection. The nonlinear analog to eq. (3.1)

may be derived using eigenfunction expansions. In the simplest case,
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such a procedure results in the amplitude equation,

V d ' (M -M c )A - kA 	 ( 3.2)

where k is a computable constant which depends upon the mode, the aspect

ratio, and the Prandtl number. Conclusions regarding the form and ampli-

tude of the convection may be made by examining the solutions to eq. (3.2)

and their stability. For example, there are three solutions to eq. (3.2),

A n 0, A - _ [k -1 (M -Mc )1^. It is easv to show that for k > 0, M a M C , the

null solution is unstable and the other solutions arc stable. Conversely,

if k < 0, real solutions exist for M < M, only, and these are all unstable.

Thus for k > 0, the system evolves to a stsfe of steady convection whose

magnitude is given by JAI. The purpose of our nonlinear theory is to derive

the amplitude equations analogous to eq. (3.2) for Marangoni convect4 n in

finite containers and to determine the steady solutions and their stability.

For example, (subcritical) convection can in some cases exist for M < M C

even though a linear theory would predict no convection.

When the container has aspect ratio close to those values for which

two modes become unstable simultaneously, one must write a pair of equa-

tions for the amplitudes, A 1 (t) and A.,(t), say. These will be of the form

1 . 1 a1 . (M -Mcl )A1 - fl (A l I A ` )	 ('_.3a)

dA,,
v, dt ` _ ^M-Mc31A3 - f ` (:^ 1 , A ` )	 (3.3b)

where f l , f„ are nonlinear functions of their ar E,uments, _, nd f l (0,0) =

f,,(0,0) s 0. ClLII^I •, r.car these aspect ratios, mort2 g teadv Solutions

exist to eq. (3.3) than in the case of a simple mod-, and the ` ,eha^for is

.pore complex.
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We have derived the forms of eqs. (3.3) for finite amplitude Marangoni

convection in cylinders and boxes, and have determined completely the steady

solutions and their stability. We discuss in detail here the results for

the cylindrical containers. Results for the rectangular box are similar

in many ways.

A nonlinear theory of convection is developed so that at each aspect

ratio a of the cylinder, we can compute the whole fluid and temperature

field. As long as m A 0 so the convection is non-axisymmetric, we find

that the instability is supercritical i.e. even when disturbances of con-

duction become larger, there is no sustained convection for M < Mc(a).

However, when m - 0 and the convection is axisymmetric, we find a range of

subcritical convection at M < Mc (a) as long as the disturbance level is

large enough. The theory for m = 0 also distinguishes the flow direction at the

cylinder center. It rises in the center when the Prandtl number Pr of

the fluid satisfies Pr z 1 and descends in the center of Pc is small.

There is a special value a  of the aspect ratio a where two distinct

instability modes, m = 1 and m - 2, of linear theory are equally likely.

In this case our nonlinear theory can be applied for, say, a near a A , and

predictions can be made for fixed a and for M increasing above M c . We

find very interesting phenomena. For a > a,, the linearized prediction (at

M - Mc ) of convection is mode m - 2. Then, as M is raised, there can be

a sudden transition to m - 1 convection and possibly time-periodic motion.

Alternatively, the mode :n - 2 can persist. on the other hand for a < aA,

the linearized prediction (at M - Mc ) of convection is mode m - 1 and the

nonlinear theory shows that mofle m = 1 must be replaced by mod: m r 2. We

thus see a lack of symmetry in the behavior on the two ;iJcs of a - aA.
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There is a special value of aB of the aspect ratio a where two dis--inct

instability modes, m - 2 and m - 0, of linear theory are equally likely.

For a > aB , linearized theory gives axisN=. etric convection as preferred.

Our nonlinear theory shows that this convection is subcritical (i.e. occurs

at M < Mc ). As M is increased, there is a tend?ncy to remain on the

axisymmetric mode with no further transition though m - 2 convection can

exist under certain conditions. On the other hand, when a < aB , there is

a very complicated sequence of transitions predicted. At the neutral curve

(M - Mc ) linearized theory states that mode m - 2 appears. However, nonlinear

theory gives the following result. As M is increased above M ,
c

mode m = 2 convection begins. As M is increased further, this mode m - 2

becomes unstable and there is a sudden transition to the axisymmetric mode

m = 0 which then persists for increasing M. However, if M now

decreases below Mc there would be a sudden transition not to the t,tode

m = 2 but to pure conduction. Hence, there can be dvnamic hysteresis

loops in t',,,is case. Notice again the lack of symmetry for a >a B  and a < a$.

The behaviors are quite different.

These behaviors are predicted to occur for Marangoni convection, but

not for buoyancy-driven convection. in all our nonlinear work we have neglected

buoyancy by setting the Rayleigh number R = 0 and have examined pure

Marangoni convection M # 0. Rosenblat, in an independent study, has

examined the complementary problem of pure buoyancy driven convection,

R f 0, M - 0, in a cylinder. He finds linear stability curves similar to those

obtained here. He anaiyzes the nonlinear theory and finds the following

behaviors. All modes of convection, including the mode m = 0 bifurcate-

supercritically. ;year intersections, the transitions fer R increasing

are alwa y s symmetric it. the sense that on either side, the mode predicted

by linear Theor y (at R = Rc ) ;udden1v heco me unstabit (.it ;t ` R ._ ) to mixed
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modes composed of the modes at the intersection point. Hence, there is no

subcritical instability, no lack of symmetry near intersections and no

dynamical hysteresis.

Comparison of the above two sets of predictions is crucial for

evaluation of possible space experiments since under micro-gravity condi-

tions the first behaviors should occur,while for thick layers on Earth,

buoyancy dominates and the second behaviors should occur.

The structure of this report is as follows. Chapter I gives the full

analysis for convection in circular cylinders. This includes discussion of

previous work, formulation of the governing equations and boundary conditions,

linear and nonlinear stability theory, and finally discussion of the physical

implications of the theory. Chapter II gives the parallel development for

convection in rectangular cylinders. Certain mathematical details are

postponed to Appendices. Thus, all Tasks required by t;he contract are

fulfilled though in a different order than specified. The structure was

chosen in order to emphasize the physical understanding of the phenomena.

All aspects of the circular geometry are compl-a ted first. Then all aspects

of the rectangular geometry are examined.
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CHAPTER I. CONVECTION IN CIRCULAR CYLINDERS

1. INTROIXJCT ION

Consider a uniform layer of liquid having infinite horizontal extent,

bounded on the bottom by a solid plate and having a free surface on the top.

When the plate is heated with respect to the gas at the free surface, a

purely conductive static state may exist, in which 0 is the (constant) magni-

tude of the temperature gradient. If the free surface possesses surface

tension a, the variations a(T) of surface tension with temperature T can induce

Marangoni instability. This thermocapillary instability was identified and

explained by Pearson (1958) who showed, using a linear stability theory, that

a critical value of Marangoni number M must be exceeded before the conducti-.^e

state becomes unstable. Here,

1

where dT is the (nsgative) rate of change of surface tension with temperature,
the subscript zero denoting a constant value at a given reference temperature

T0 , d is the thickness of the undisturbed layer; K
0
 and µ0 are the thermal

diffusivity and dynamic viscosity of the liquid, respectively.

The critical value Mc of M depends on other parameters: the surface Biot

number h, which is the non-dimensional version of the teat transfer coefficient

at the free surface, and a capillary number C, which is a non-dimensional

version of the mean surface tension -0
	

7cr ). Here

Pearson (1958) limited his analysis to C 4 0, which means that the free surface

does not deform as a result of disturbances. lie finds, for h = 0 and a perfectly

conducting lower boundary, M 
c
, 4̂ 79.6 in the absence of gravity.

r —̀ CEUiN G PAGE BLANK NOT FILMED
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When a vertical gravity field is present, so twat the layer is heated

from below, Nield (1964) shows, using Pearson's model, that buoyancy-induced

instabilities and thermocapillary instabilities reinforce on another.

Since the work of Pearson and Nield, linear stability theory on the

Marangoni convection problem has been extended in several directions to include

two dynamical phases, C f 0, and further effects of an imposed vertical gravity

field; Scriven and Sternling (1964), Smith (1966), Zeren and Reynolds (1972).

A recent survey, S6rensen (1978), discusses these as well as many other

extensions. Palmer and Berg (1971) find that the theory of Nield (1964) pre-

dicts well the experimental conditions for the onset of convection in shallow

layers.

As in the^_ase. of Rayleigh-Benard convection due to buoyancy effects, the

horizontal planform of the convective state and the amplitude of the motion

(and heat transfer) are undetermined by linear stability theory. In addition

as in Rayleigh-Benard convection, the critical point M., corresponding to the

critical horizontal taave number, is infinitely degenerate; there are an

infinite number of planforms allowable by linear theory. Nunlinear effects

presumably select from this set those that appear in experiments. The first

nonlinear analysis of Marangoni instability is due to Scanlon and Segel (1967).

They consider an infinite-Prandtl-number fluid, an infinity-deep layer and

only twc • planform f-.inctions from the infinite set. Their prediction is that

hexagonal-cells is the only planform that exists and is stable when the

conductive state becomes unstable. Hexagons exist and are stable for an interval

of M	 Mc so that subcr 4- tical convection is predicted. They do not attempt to

enlarge the set of planform tuneions beyond the chosen two. However, their

prediction is in qualitative accord with experimental observations. Koschmieder (1967)
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always finds very regular hexagons in shallow layers, the regularity stemming

frorm the precise thermal controls used. These pictures should be compared

with those of Benard (1900) who finds irregular, polygonal cells in convection

dominated by thermocapillarity.

The only other nonlinear analysis of Marangoni instability is due to

Kraska and Sani (1979). They consider six planform functions (including those

of Scanlon and Segel) and also complete a nonlinear analysis. However, they

encounter difficulties in analyzing the stability of their nonlinear states

and find a lack of closure in adding a Z seventh state to the original six.

These difficulties may be related to the adjoint operator they define, which

seems not to be appropriate to the problem.

All of the above work is stimulated by the recognition that Marangoni

instability is the prototype instability associated with the transport of

heat and/or mass across interfaces,. The presence of such instabilities can

augment the transport rates by orders of magnitude compared to that of pure

conduction. Particular ajpects of these transport processes have motivated

many of the generalizations mentioned above.

In recant years there has been a new interest in flows driven by thermo-

capillar;! forces. With the advent of Spacelab research, there is the possibility

of performing fluid mechanics experiments in space. The micro-gravity environ-

ment allows interfacial forces to dominate gravity so that one may be able to

design experiments that focus on effects submerged on L'arth by gravitational

effects. The present work is motivated by suL;h considerations.

There are special difficulties in microgravity environments. These

are illustrated in Figu.e 1.
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Figure 1

Here, a mass of liquid is placed in a wide dish. On Earth, as shown in

Fig. la, the liquid fills the dish nearly uniformly except for small menisci

near the edges. A meniscus has a width W that scales as B -kd where B is

the Bond number,

B = p 0gd 2/a0	,	 (1.3)

P O is the liquid density and g is the gravitational potential. Thus on Earth

W is usually a fraction of d, whereas for gravity at 10 -6g, the meniscus "fills

the whole dish", as shown in Fig. lb. Alternatively, depending upon the

liquid volume, the contact angle and the wetting; properties of the solid, the

liquid mass might form in to a sessile drop or sphere or be detached entirely

from the container as shown in Figures lc and Id. Thus, aay Marangoni insta-

bility study to be applied to microgravity conditions must aliow for the

experimental necessity of near-by, confining si.dewalls. Figure 2a  shows a

possible configuration of the free surface wb o n the aspect ratio is near

unity. The sidewalls help to both confine Lhe liquid and limit the degree of

curvature of the fre- surface.

Figure



-b-

In the present studies we address the problem of Marangoni instabilities

in a cylinder. Our particular interest is to explore the nonlinear i.ter-

actions near M = Mc and in particular transitions from one convective state

to another that may occur at supercritical conditions. Given the difficulty

of such a study, we make several simplifying assumptions. ( i) We let the

capillary number C-4 0. H!nce, the top free surface is non -deformable. In

addition, we take the contact angle at the sidewalls to be compatible with

a flat free surface. Thus, in the basic, conductive state there are no

menisci and in the convective state the free surface remains flat ( Figure 2b).

(;i) In order to allow the linear stability theory to be solved using normal

moaes ( separation of variables), we idealize the sidewall boundary conditions

in the following way. The sidewalls consist of a circular cylinder through

which there is zero heat flux and zero mass flow. However, we allow the

walls to be " slippery" so that rather than the no -slip :ondition, we apply

the conditions of zero tangential vorticity. Clearly, such an idealization

modifies the predictions of a theory. We shall discuss in detail some

implications of this idealization and suggest how results of sucL a theory

:should be applied.

In the language of bifurcation theory, we .,cudy the l,^rfect problem.

Imperfections due to horizontal temperature gradients or free -surface deflections

will not be treated here. Notc that the change fran "slippery" to no-slip

sidewalls is not an imper fection .

Given the model describe!, we shall find the nonlinear Marangoni

convective-states and determine their stability. Clearly, the presence of

the sidewall makes the sp , c trum at M = `tc discrete. so that the complete behavior

can be examinee. .tt course, hexagonal cells for small containers will n ver

appear, since the al"on.at le cell shapes area Arr.natet' by the ^idewall constrai^..ts.

PAGE IS
r F	 Q! IALITY



We obtain its behavior, its :amplitude and hence can find all transport quantities

of the convection. At certain aspect ratios two linearized modes are equally

likely at critical conditions. We analyze such double eigenvalues and find

certain strong behaviors. The transitions as M is increased for aspect ratios

on one side of the doable eigenvalues, differ substantially from those on

the other side of the double eigenvalue. Such a demarcation of behaviors

should be characteristic of the nonlinearities and hence should be observable

in an experiment.

The technique of nonlinear stability theory we use is due to Rosenblat

(1919), who makes an eigenfunction expansion of the nonlinear problem. This

"infinite-viatrix" form is systematically simplified by defining a new small

parameter related to the separation of the eigenvalues of the matrix. The

results coincide with the usual waekly nonlinear bifurcation theory very near

M ) but gives a wider range of validity. It is the wider range that allowsC

us eo predict the suCcessive transitions.
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2. FORMULATION

Consider a viscous ltquid,which partially fills a cylindrical

container of circular cross-section. The mean depth of the liquid i,

d, and the radius of the cylinder is taken to be ad, so that the mea:: aspect

ratio (ratio of radius to mean depth) isL. The axis of the cylinder is anti-

it	 parallel to the direction of gravity, and the upper surface of the liquir- is

open to an ambient gas.

The liquid is assumed to be Newtonian, to have constant

viscosity PO and to be heat conducting with constant thermal

diffusivity 
K0.	

The density a* of the liquid is taken to vary with the

temperature T* according to the equation of state

u* = P0 [1 - a(T* - T0 )]	 (2.1)

where a0 , TD are constant reference density and temperature respectively, and

where a is the coefficient of volumetric expansion. The liquid-gas interface

has a surface tension a* which varies with temperature according to the

formula

^*	 a0 - a 1 (T*s - TD )	 (2'.2)

where co , 0 1 are constants and Tsi s the temperature at the interface.

The doussinesq approximation is assumed; the governing equations in

bulk of the liquid .ire tho Navier-Stokes, :ontl.i-,iit y and energy-'valance

equations:
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3v*
0013L* + (v*.V*)v*^ - ^'*.^* - ^,*gz	 (2.3)

V*.V* a 0
	

(2 V)

3T*'
	3t* + (v*•0*)T* w KC) V*` T*	 (2.5)

where v* is the velocity vector, g is the acceleration due to gravity, j* is

the stress tensor, z is a unit vector in the upward vertical direction, and

t*, 0* refer to dimensic::al time and space derivatives respectively. For a

Newtonian liquid the stress tensor has the form

'* 0 -p*I + u 0 [V*V k + (V*v*) r ]	 (2.6)

where p* is the pressure and I is the identity tensor.

We shall work in a cylindrical polar coordinate system, with the

origin at the center of the lower circular boundary. The mean height of the

liquid is located at z* = d, and the lateral boundary at r* z sa.

The lower boundary is at z* = 0 and is assumed to be a rigid,

perfectly conducting plane. Thus, we have

r* = r0 + Od	 on	 z* - 0	 ('-7^.)

r

Ii

I
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l{	 and

v* - 0 on z* - 0	 (2.7b)

where we shall take 3 > 0.

The upper boundary is a free surface, denoted S, which is cooled t-y

heat transfer to the gas. We take the heat transfer relationship to have the

form

-n-o*T* = h*(T* - T 0 ) + 5	 on S	 (2.8a)

where n is unit normal to S directed into the oris, and h* is the heat

transfer coefficient. We write

S: z* - d* + n*(rl, t*),	 (2.9)

where ri denotes position, vector in the horizontal plane, so that the

kinematic boundary condition takes the form

an* + v*-o*(z* - d* - n*) 	 0 on S.	 (2.8b)
at*	 —

Finally,we have the dynamic (stress) boundary conditions, which are

T*- n -2H*a*n - n x (n x v*v*) on S	 (2.8c)
- -	 -	 -	 -

where H* is the mean curvature of the surface. Equation (2.8c) expresses the

fact that the stress tensor experiences a dump is the normal direction due to



V*n*•nL - 0.
-

(2.11)
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surface tension and a jump in the tangential direction due to (thermally-

induced) variations in surface tension.

The lateral boundary SL is assumed to be adiabatic. This give the

condition

V*T*-n L - 0 on SL	(2.10a)

where nL is unit normal vector in the outward direction. If the boundary were

rigid we would have v* - 0 there. However, as explained in the Introduction,

we take instead the idealized, mathematically simpler condition that the

sidewall is a nondeformable surface on which the tangential vorticity is

zero. Nondeformability implies that SL coincides with r* - ad,

0 : z* < d + n*, and we have the conditions

v*-nL - 0 on SL	(2.10b)

and

aL 
x (nL x V* x v*) = 0 on S L .	 (2.10c)

To close the system we require a condition at the contact line where

the free surface meets the sidewal l . In this paper we shall assume the

contact angle to be fixed at the value a /2, so that we have the condition

An equilibria= solution of the system (2.1)-(2.11) is the follow{ng:
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„* = O , T* . T . TO + 6(d - z*)

P* = P - PO {1 - a 0 (d - z*)	 J* = JO ,	 0,	 (2.12)

T = POgd ^(z*/d - 1) + 2 ^d(z*/d - 1)2}I.

This is the conduction solution, whose stabiity we propose to examine. The

gas pressure has here been set equal to zero. Note that the liquid-gas

interface is flat, and that the temperature at the upper boundary is To, which

implies that 9 is the vertical temperature gradient.

We now perturb the basic state (2.12), and at the same time introduce

appror	 'imensionless forms of the equations and boundary conditions. We

scale lengths on the depth d, and write

r = r*/d	 z = z*/d	 -1 = ^*/d	 (2.13)

with r - (r, 0, z) in cylindrical polar coordinates. Unit vectors in the

corresponding directions wi1L be denoted ( r, ^, z). The liquid occupies the

region 0 < r < a, 0 < z < 1 + n in this dimensionless coordinate system; the

equation of the free surface S is

z - 1 + n(r l , t)	 (2.14)

where r 1 is dimensionless position vector in the horizontal plane and t is

dimensionless time, defined below; the lateral boundary S L is r - a,

0 < Z < 1 + n.
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Since our interest is focussed on motions driven by surface-tension

gradients, it is appropriate to base velocities on the Marangoni velocity

scale VMS defined by

VK ISv1
	 0
$ d /u	 (2.15)

r	 The time-scale will then be d/V M , so that we write

t - t*VM/d.
	 (2.16)

We now introduce the following representations:

v* - Vv - V (u, v, w)
M-	 M

T* - 'T + 9de	 TD + 5d(1 - z + d)

P * - p - .4de - po - aajrd(1 - z + 6)	 (2.11)

	

0* - 00 + a 1	 F1- ^)

T* -	 + (P0 V4 	 - P O gd {(z - 1) + I a6d(z -- 1) 2 }1 + (u^V,,iid)a,

where the perturbation field quantitites d, v and t are functions of r and t,
-	 -

and where the forms of p* and c* derive directly from (2.1) and (2.2)

respectively. 11 ;e e.tress tenaor r can be written in the form

- T)-pI + (VV + (7v) 	 (:.18)
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where p is the rressure.

We substitute (2.13)-(2.18) into the governing equations and boundary

conditions (2.1)-(2.11). V a equations in the bulk of the liquid L'or the

perturbation field quantities are found to be

3v_
Pr-1M {at + (Y-D)v} • -op + '7 2v + M-1R6z (2.19)

?.v . r	 (2.20)

M tat 
- w + (v-7)8f • 729
	

(2.21)

where the parameters appearing here are

Marangoni number

Rayleigh number

Prandtl number

	

V 
M 
d	 a19d2

	

KO	 u0 K0

J gd4P 0
F •

POK0

Pr
uo

p0 KO

(2.22a)

(2.22b)

('1.22c)

The boundary conditions are as follows. On the lower }ori7ontal

boundary, equations (2.7) reduce to

d= 0 on z - 0,	 0 c r 5 a,	 (2.23x)

v- 0 an z= 0,	 0	 1 3.	 (2.23b)
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On the upper surface S, given now by (2.14), the heat loss condition (2.8a)

becomes

n-V8 - n-z - 1 - MO - n) on S
	

(2.2aa)

where

h = h*d	 (2.22d)
a

is the surface Biot number. The kinematic condition (2.8b) becomes

a[
+u 3c=

+ =3^-w' 0 on S.
	 (2.2'4b)

It is convenient to decompose the stress condition ( 2.8c) into an equation

normal to the surface and an equation tangential to the surface. If we write

normal and tangential components as

( y • n) n = (T • n) • n.	 (.T-n)ta	 (a • n) - t(^•n)•n1n.

we obtain the dynamic surface conditions

G(n + 2 a6Tn2 ) + MC(I-D)n - 2H i1 + MC(r) - 8)} - 0 on S (2.24c)

and

(r - n)	 + n x j 2 	 V(n - y )}	 0 on S	 (2.244)
- to	 -	 -

where H - H*d is dimensionless mean curvature, and where the two new

parameters appearing here are	 2
p0gd

Bond number	 G	 o
	

-.22,)

0



t	 -16-

capillary number	 C - ua'0.	 (2.22:f)

0

On the lateral boundary S L we have that n L	r. Hence the boundary

conditions (2.10) become

3r . 0 on SL	(2.25a)

u - 0 on SL	(2.25b)

3	 3w

3r (rv)r	
0 on SL .	 (2.25c)

The contact-angle condition (2.11) becomes

al	
0 on r - a.

3r	
(2.26)

Finally, we recall the stipulation that the mean depth of the liquid

is d. This is effectively a condition of volume curnservation and can be

expressed as

3	 2 Tr

f	 rn(r, w, t)d,dr - 0.	 (2.27)
0 0

The problem to be Studied comprises the system :,f equations (2.14)-

(2.21), together with the conditions (2.23)-(2.27). There are six. parameters

M, R, Pr, G, h and C, defined by equations (2.22); the aspect ratio a is

a p.ir„metcr of the probl.,c..

For our purposes the principal par...3eter is the Ma rangoni number ,
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which measures the effect of surface-tension gradients. We shall determine

Mc , the critical value of M at which the conduction solution becomes unstable,

as a function of the other parameters, that is,

Mc M Mc (R, Pr, C, C, h, a).	 (2.28)

We shall then investigate the properties of thu convection as M increases

above Mc for various values of the other parameters.
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3. ZERO CAPILLARY NLFi*,IBLR LIMIT

In this paper we shall confine our analysis to the case where the

capillary number C is zero. The capillary number is associated with

deflection of the free surface; the limir C -• 0 corresponds to a flat

surface, Davis and Homsy (19130), a restriction which enables onset of con-

vection to be analyzed relatively simply. In this limit equation (2.24c)

reduces to

G(n + z aa d n2 ) - 211 - 0	 (3.1)

where the standard definition of the mean curvatu r e H is given by

V n

2H - V • (	 1	 1	 (3.2)

(V 1 being the gradient in the horizontal plane). Equation (3.1) is thus a

differential equation for the surface deflection n - n(r, y, t), which is

required to satisfy the conditions (2.26) and (2.27). A solution is clearly

n = 0,	 (3.3)

representing an undeformed free surface. The fact that there car, be r.o other

solution in the class of functions n with Inl sufficiently small is easily

established with the aid Of Lite implicit function thcorer. We confute our

attention to these weakly-nonlinear interactions that apply wher `L is cicse

to :1c and when cotivt_Ctive oLiuns are of small amplitude.



-19-

On the basis of this reasoning we infer that the upper free surface

remains flat and undeformed. The equation of S is now z - 1, 0 < r < a, and

the outward unit normal to it is n - z. The lateral boundary SL is r - a,

0 < z < 1. The problem to be solved in the limt.t C + 0 therefore comprises

the equations (2.19)-(2.21) in the bulk of the liquid, together with boundary

conditions as follows. On the lower boundary the conditions zre (2.23) or,

equivalently,

	

n- u- v- w- 0 on z- 0,	 0 c r < a.
	

(3.4)

On the upper free surface (2.24x) reduces to

=j + h3 -0 on z	 1,	 0 < r < a
	

(3.Sa)

while (2.24b) becomes simply

w - 0 on z - 1,	 0 % r < a.
	 (3. )b)

In view of (3.3) the condition (2.24c) is redundant. We simplify (2.24d) by

noting that

U- S 	 3v	 1 a
rw

ta	 ^ z + 3r^ r + ^3z	 r 3P	 ^©

3



M1	
c

c = P1 (R,Pr,h,a) (3.7)

N.	 and that

.,
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tl x (n x Va) - - ae r - r

Hence 0'2.24d) can be decomposed into the two conditions

Md.

3z + 
3r - 0 on z	 1,
	 0 c r < a
	

(3.5c)

and

av

3z i r ao	
0 on z	 1, C < r ( a.
	 (3.5d)

(3.6)

The lateral boundary conditions (2,25) are

3 00	
u a 3r ( r y , - w - 0 on r = a,	 0 < z < 1.

In summary, therefore, we are required to solve the equations (2.19)-

(2.21) subject to the boundary conditions (3.4)-(3.6). With C - 0 and the

Bond number C no longer appears, Davis and Homsy (1988), so we have in

place of (2.23) the dependence

for the criticni Marangoni number.
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4. LINEAR STABILITY PROBLEM

The critical Marangoni number at which the conduction solution loses

stability is determined from lines+rization of the system (2.19)-(2.21)

together with the (llneit) boundary conditions (3.4)-(3.6). Although this

linear problem is not self-adjoint, we assumo the validity of the principle of

exchange of stabilities, namely that the growth rate of the most dangerous

disturbance changes frcm real and negative to real and positive as M increases

through its critical value. Vidal an4: Acrivus (1966) show for the linear

problem on the infinite layer that this is true and so we apply the same

result to our case.

When the principle of exchange of stabilities holds, the governing

equations for the linear stability problem at crtticality are

2 v - Vp + M-lV	 R114Z - :)	 ( 4.1)

V-v - 0
	

(4.2)

7
V` d + MW - 0	 (14.3)

subject to the boundary conditions (3.4)-(3.b). We ctphiv Cie operator curl

curl to equation (4.1) at-,d then take	 the z-component of the resultant

equation, we ,)btain

".4 w + M-1 RV l d - it	 (4.41

where	 13 the pl,11110t-n Lapl :. `.:1n,	 Thus	 1) .tnd (4.4) Constitute a pair of

equa:ions for the t111k1L: 3 il I:L1.' tond w .lad	 „1` appropri,ite bOL111!ar'V
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conditions are determined by simplifying (3.4)-13.6); they are found to be

d - w	
dw	

0 on x - 0,	 0 . r : a,	 (4.5)
3z

ao
2

3s+hd-w- 
3
a-v 2 0-0 on z - 1,	 O< r<a,	 (4.6)

3z`

© - 
3w

-0 on r -a,	 0 <z <1.	 (4.7)
3r

The system (4.3)-(4.4) Leduces to a pair of ordinary differential

equatiors through separation of variables. It was in order to efFect this

reduction that we introduced the artificial condition on the vorticity at the

lateral boundary. We put

	

w(r, gyp, z) - cus m^ J 	 (kr)Y(z)

(4•a)

d (r, ^, z) - cos m, J m (ir)X(z)

where m - 0, 1, 2, ... to the azimuthal wive number, J  is the Bessel function

of order m, :mad 1 ^, 0 is determined by the equation

	

Jm(aa) - 0.	 (4.9)

The condition (4.9) ensures that the lateral boundary conditions (4.1) a:e

both satisfied. Substiruting (4.8) into (4.3)-(4.6) we obtain the equations

lU ` - \2 )X f- MY	 ^),	 (n2 - a 2 ) 2 Y -• M_ 1 R1 ` :( - 0	 (4. i0)
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U	 where D denotes differentiation with respect to z, with boundary conditions

X-Y-DY-0 ou z -0	 (4.11)

and

DX+hX -Y - DY+a 
2
X - 0 on z - 1.	 (4. 12)

Apart from notation, the boundary-value problem (4.10)-(4.12) is

identical with that salved by Nield (1964) in his determination of the

critical Marangoni number for a layer of unbounded horizontal extent. The

difference between Nield's problem and the one presently under consideration

lies in the significance of the parameter k: for the unbounded layer X is

wave number in the horizontal plane and can assume all real values, whereas

for the finite cylinder a is restricted to the set of values defined by (4.9).

Nield (1964) solved (4.10)-(4.12) by expanding in Fourier sine series

on the interval (0, 1); complete details of the calculations can be found in

the cited paper and are accordingly omitted here. It suffices to observe that

the system (4.10)-(4.12) contains the four parameters M, R, a and h, so that

,lontrivial solutions exist if and only if a functional relationship of the

form

^(M, R, k, h) - 1	 (";.11)

holds .t.ong	 these par. ► :neters.	 Meld (l l)t)4) .)btalr,ed an explicit

repres_- station of t'4.13), :!.Imctly
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M - M(R, a, h) - W/U	 (4.14)

where W. U are given by

 dW - (1 + h + 
2X2 L o

----R)	
(nn)2d	 2

	

n + 2R^ 2 (	
(ns)cosnn)2,	

(4.15)
n- 1 6n n-1	 ^n	 n-1	 An

U - 
2 ^2	 nit)

2 . L (nn)`d
n
 - 2A`	

(nn)2cosnu.	
(ar)2dncosnn	

(4.16)

n-1	 an n-1	 "n	 n-1	 An	 n-1	 an

with

do = (nn) + a	 (4.17)

and

A = d . - Ra` .	 (4.1$)
n	 n

It is convenient to write (4.9) in the form

V (Smi) - 
0,	 ami - a mi ,/a	 (4.19)

where smi denotes the i-th positive zero of Jam. Thus the integer

i - 1, 2, 3, ... can be regarded as effectively a radial wave number, and the

functional form of (4.14) is

4 - `!(R, h, a, m, 1) . 	 (4.20)
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The critical Marangoni number for fixed R, h and a is then defined to be

Mc a M
c ( R , h, a) - min M(R, h, a, m, 1).	 (4.21)

Computations of the Marangoni number as a function of the other

parameters have been performed using the formulae (4.14)-(4.16), the Fourier

series, of course, being suitably truncated. In general it was found that 4-

digit accuracy could be achieved with 10 terms. Figure 3 shows the variation

of M with aspect ratio a for fixed values R - (), h - 0, and for the six wave-

number pairs m - 0, 1, 2, 3, 4, 1 - 1 and m - 1, 1 - 2. These six were chosen

because for moderate aspect ratios, 0 < s < 2.5 approximately, the critical

Marangoni number occurs for one or other of their. We see from Figure 3 that

m - 1, 1 - 1 is the critical wave-number pair for small aspect ratios,

a < 1.15. On the interval 1.15 < a < 1.b5 (approximately) the critical mode

h.ts m - 2, 1 - 1, and with further increase in aspect ratio this is replaced

by the axis ymmetrtc mode in - 0, 1 - 1 on 1.65 k, a < 1.9. 'Next, the mode

m - 3, 1 - 1 is critical in 1.9 < a < 2.3, while for 2.3 < a < 2.5 the modes

m - 4, 1 - 1 and m - 1, 1 - 2 give nearly the :;.:nae numerical value (A the

Marangoni ntunber.

Figure 3

The ordering of critical modes dust descrthed is retained for other

values of R and h.	 in fact, dais ordering is . ► direct consequence kit the

ordering of tho ;iumbe,•s -imi do ined by (4.1 1)), which is in t%il,i a consequence

of ehe si.iewall hJUn.i:ar y c_ nii: ion.a; it is lot ;k r j )ri9in t, , therefore, that it

should tit invariant with respect to ether 	 p.+rameter,.
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Figure 4 illustrates the variation of critical Marangoni number Mc

with aspect ratio a for different value of Rayleigh number R, and at a fixed

value h - 0. These curves show that M c decreases as R increases for each

value of a. Although not illustrated, computations show that the same

behavior (Mc decreasing with increasing R) oect ► rs when h f 0.

Figure i

Figure 5 depicts the variation of M c with a for various values of

surface Biot	 number h, and at the fixed value R - 0. We see that Mc

increases with h at each value of a. Computations show the same tendency at

non-zero value of Rayleigh number

Figure 5

The general patt.-ra of behavior descrth^-d here is consistent wir) that

obtained by Nield (1964) for in unbounded laver.
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S. EIGENFUNCTION EXPANSIONS

We propose to study the nonlinear stability problem by means of a

modified Calerkin procedure. We represent the field quantities by series of

functions of the spatial variables, with time-del)endent coefficients.

Following a suggestion of Eckhaus (1965), we shall take as the basis functions

the eigenfunctions of the linear stability problem. The time-dependent

coefficients will then effectively be the amplitudes of the appropriate

convective modes, determined from nonlinear ordinary differential equations to

which the governing partial differential equations reduce. The series are

truncated in a rational way, according to criteria discussed by Rosenblat

(1979).

Calerkin methods require that the function ba^•is of the expansion

should consititute a complete set in an appropriate sense. In this

regard it can be shown, Appendix A, that the Marangoni

nLr4ber cannot be used as the eigenvalue parameter on 6hich to construct a

complete set of eigenfunctions of the linear stability problem. This is

because the expression (4.14) gives M as a single-valued funtion of R, other

, parameters being held fired, and corresponding, to this there will be only a czinglo

eigenfunction. On the )Cher hand, if (4.14) is solved for R, the resulting

exp+eision has the form

C . R(M, h, a, m, i) 	 (5.1)

and is not single-valued; in fact there is It countahly infinite number of

solutions of the fora:	 to the equ.+tion '4.14).	 ;n other uorJs, there are

tnfinitely many valtios of R fo each value of `!, and .orrespond!ngl_:
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infinitely many eigenfunctions.

Although the critical Marangoni number is given correctly by the

results of the previous Section, the implication of the foregoing paragraph is

that the Rayleigh number is the "true" eigenvalue parameter of the linear

stability problem. We need to take this into account in setting up the

Galerkin procedure, even though much of the subsequent analysis will become

redundant through truncation and approximation.

Let M be a fixed value of the Marangoni number and consider the linear

eigenvalue problem

V2v - Vp + M 1 RUz - 0	 (5.2)

V-v a 0
	

(5.3)

V 2 6 + Mw - 0	 (5.4)

with boundary conditions (3.4)-(3.6), and with the Rayleigh number R regarded

as the eigenvalue parameter. Nontrivial Solutions of this boundary-value

problem exist for certain values of R, denoted R mij , where m is the azimuthal

wave number, i is the radial wave number, and j - 1, 2, 3, ... is the

particular value implied by (5.1). Thus

Rmij - R j (M v h, a, m, 1)	 (5.5)

and we assume the ordering Rnii < Rmi2 < ••• for other par.^ ,ieters .ixed.

Graphs of the functions (5.5) -an be found in the paper by Rosenblat, Horosy and



r -29-

Davis (1981). The integer j is in effect a vertical wave number.

Corresponding to each eigenvalue Rmij there is at, eigenvector

( =emij 
emij) of the linear boundary-value problem. The forms of wmij and

emij are given by (4.8), while the other two velocity components can be

calculated from ( 5.2) and (5.3). The components, which, are required in the

subsequent computations, are found to be

emij	 ( 1 /Xmi )Cos 0 Jn(Xmir)OYmij(z)

vmij = (-m/a 2 r)sin mp Jm(^ r)DYmij(Z)

(5.6)

wmi j ^ cos MO 
J  ( 'mi r)Ymi i(Z)

emij ^ cos m^P 
Jm(Xmir)Xmij(4)

where Y-Mij , Ymij are the eigensolutions of the boundary-value problem (4.10)-

(4.12) with R - Rmij , M = M and X = `mi'

The explicit forms of the functions X and Y, and their various

derivatives, are obtained from the Fourier series representations of Nield

(1964). We omit all details of the calculations but, for the sake of

completeness, we list in Appendix B the forms of the functions.

In the modified Calerkin-Eckha y s method to be used below we require

also the 3d joint eigenfunctions. The system adjoint to (5.2)-(5.4) is easily

shown to be

J`v' - '1p* + Mt.'*z - 0	 (5.1)
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Q.v+ . 0	 (5.8)

2 d* + H 1	V 	 Rw* - 0	 X5.9)

with the adjoint boundary conditions

	

6*-u* = v*-w* = 0 on z -0,	 0<r<a,	 (5.10)

	a3z + h©* + a az - w* - a az -	
- 0 oil z	 1,	 0 t r < a,	 (5.11)

u*	 a (r y*) _ 3r
	

ar

	

- 39* = 0 on r - a,	 0 < z < I.	 ;5.12)
ar	 3r 

These fornis are consistent with those of Davis (1969) and Davis and

Homsy (1980).

The adjoint problem (5.7)-(5.12) can be solved by the same Fourier

series method as the direct problem, and, naturally, the eigenvalues R mij are

the same and have the representation (5.`). the adjoint eigenvectors are

denoted (v* dmij ); a relatively simple calculation gives the following

explicit representations:

U*- 
kmi cos MO Jm (^ r)DYmij (z)

mij

	

vm ij	 (mlr)sin mo Jm (^ r)DY*mij(z)

(5.i;)

	W* 	 ;Ticos m^ Jm (am^r)Ymij(")

tii	
cos ms 

Jm( ntr)Xal j( -)
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where Xmij , Y*mi' are eigensolutions of the boundary-value problem

(D2 - a 2 )X* + M 1 Ra 2 y* - 0.	
(D2 - 1

2 ) 2Y* - MX* - 0	 (5.14)

with boundary conditions

X*(0) - Y*(0) - DY*(0) - 0	 (5.);)

and

DX*(1) + hX*(1) + a2DY*(1) - Y*(1) - D2 Y*(1) - 0	 (5.16)

for R - Rmi r The forms of the funtions X*, Y* are given in the Appendix B.

Our purpose is to study the nonlinear evolution of disturbances as the

Marsngoni number increases through its critical value, and at a fixed Rayleigh

number. To simplify the discussion we take henceforth

R - 0
	

(5.17)

so that pure Marangoni convection will be ex:unlned. as a further

simplification, and again without essential los_, of generality, we take

the surface Biot number h - 0. the nonlinear system (2.19)-(1.21 can n,w

conveniently be written in the form

3v-
V ` v - Vp	 MPr-1	+ (v • ;)v;	 (5.18)

1 • %- - 0
	

(5.19)
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7 
2 
0 + MW - M {31 + (v • V)9}	 (5.20)

and the boundary conditions are (3.4)-(3.6) with h - 0.

We shall solve this problem for values of M close to critical by

expanding the field quantities in series of the eigenvectors (v
mij , emij) with

time-dependent coefficients. First, however, we let (v
mij , 

emij) denote an

eigensolution of the adjoint problem (with h - 0) in the case that M - M c , the

critical value at a fixed aspect ratio and with R - 0; the corresponding

eigenvalue is Rmij . Because of the ordering of Rayleigh numbers stipulated

immediately following equation (5.5), this means that Rmil - 0 for some m and

acme i. Let (v, d) be a vector with div v - 0 satisfying the boundary

conditions (3.4)-(3.6), and consider the expression

Q = <v*mij
• (V^v - Vp) + 

d*i j	 `^(.^2 
+ MW) >'	 (5.21)

M arbitrary, where <•> denotes integration over the vnlufte 0 < r < a, 0 5 	 < Zr,,

0 < z < 1 occupied by the fluid. Integrating by parts and noting again Coat

(v*
mij

, 9*mij ) solves the adjoint linear problem with M - M c and R - kmij , we

easily find that

Q - (M -	 )<O* W> - Mclxmij <wm ij e>.	 ;5.22)
mij

Observe that Q - 0 when M - `iC and Rmij - 0, which is consistent with the

definition of the linear s-,abiltty problem and its idjoint at criticality.

Next, let (v, -3) Jen , )te i solution of the nonlinear system (5.18)-

,N
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(5.20) with boundary conditions (3.4)-(3.6), for some given value of M. Take

the scalar product of (5.18) with v*mij , the product of (5.20) with 8m ij , add,

and integate over the fluid volume. Using (5.22) we then obtain the equation

av
(M - Mc )<8mijw> - MclRmij<w* 0 - M<B* 

ac+ Pr-lvmij-3t>

(5.23)

+ M<9** (v-7)9 + Pr_ l v*mij -(v-V)0 .

Now choose a finite set ^ of eigensolutions (v—
mij , 

amij) of the linear

stability problem. Let N > 1 be the number of elements i.n'll, and for

convenience write

nS - imij}	 (5.24)

which means that an element of the set has azimuthal wave number m, radial

wave number i and vertical wave number J. We can thus refer to mij - p, say,

as the vector wave number of an element of.J

We assume that the solution vector (^, u) can be represented, to a

good approximation, by a linear combination of elements of the set,,t3, w!th

time—dependent coefficients. Thus we set

(y, 5) - /	

'

Amij
(t)(`_

mij , 6 'Di 
j );	 (5.25)

Op

substitution of (5.25 into k).23) reduces the latter to .i system )i N

ord_nary nonlinear differential equations for the amplitude :unctions Amij'

The details of tnt ; reduction are cunsider,bly Ampl fiv,] ,:-L
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of the tollowing orthogonality relations. First cf all we havN Ot.-

bi-orthogonality condition

<w*B > - 0 when p A q	 (5.26)
P q

for any two fields with vector wave numbers p, q. Next, since the azimuthal

dependence has the form of trigonometrical functions, we deduce from the

latter'& ortho,! i:ility properties that

<3*wnk£> - <^mij •vnkit> - <emij e nklt> - 0 when m # n	 (5.27)mij

for any values of i, j, k, R. Similarly, since the radial dependence has the

form of Bessei functions, we have that

^ir. •Z T^ R5E S`!	 <©* w	 >	 <v*	 r	 >	 <6* 6	 >	 0 when i # k	 (5.28)
,i	 mij nki	 -mij -nklt	 mij nki

for any values of m, j, n, t.	 ^+

There remains the question of the choice of the sett. For ease of

computation it is desirable thar 'i should comprise as few elements as

reasonably possible. Next, since we are concerned with the weakly nonlinear

interactions that cause the onset of convection,we must certainty i u • 1u,14' In

the critical mode ( ,)r m.I :); as pointed aut in the 	 1,13 Section the

nature .)F 1 11w vritir— t mode depends on the aspect ratio. Finally, must

include a minimal number of other modes 	 i ' i, ; ,rierate nonlinear evolution

into convection of the critical mol,i. 11y  " ft,il ,.ial" we mean the non-critical

modes wir'i r i t es - 1' Est damping rates. As can be seen from (5.23), when

?,,,4e t^) ti c the damping rate of a non-critical .node is deterfini•;'
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,i 1'P roximately by the magnita,to ,r	 so thcit we retain only those

wit', tie smallest values of Rmi j and negle z t al 1 ..t t,,. , _	 1 ; -fission of the

odtire .0 d its validity can be found in Zo z e nbltit ( 1979).

CRtir'^:1^ PAGE IS
OF POOR QUALITY



1"A
_36-

(;. v.WiJ I TION AT SSIMYLE POINTS

We study t , ► i'ii • '3- •,• t ion weakly nonlinear evolution into convectiLu at

three specific vale, • •: .,f t'„• .iipect ratio, namely a - O. q 0, A

1.R0. As c:tn be Seen from Figure 1, they loess of stability of the bas:,-

;,i, ► ction state At each of these values is •ci i ,l,• in the sense that only one

mode loses stability as the Marangont uuu:)— i, 	 through its critical

value. In e:e,^h %j , r ` the problem to a single ordinary nonline it

di rforential equation of Landau type, and examine its solution ,. , o! t',o; r

•., ,'s: ilty.

A.	 The case a - 0.90.

Figure 3 shows that the c ri t tr,il 	 it this aspect ratio is the mode

111, tli. ► t iti, azimuthal, radial and vertt, • ,1	 ,v, • ► mnhors all equal to

„i ► i ry. We find that

Mc - 19.5	 (6.1)

end, by hy;± ^^ 1 ► e • ai;:, K, 11	 0.	 Now the quadrat is self-interac tion o f the mode

111 generates the mode's 01j, 2t j with , _J - 1, 2, ... .	 Computations show,

however, that

;i ► ,.	 ^fn .Z	
^b	 '1

X 11	 i.j 'Oij'	 211	 i,j	 21 j'

and, mora' o vvr,	 Rayleigh numbers are widely s vp.lr,1t,	 1S

r•

re.1f1oi, w 	 t i : :	 't^ (	 , , iiir t se three modes:
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- {111, 011, l." k	 (6.3)

and substitute into (5.23) t'io :#) -i,i

(`-'' 
6) - A ill (vill , 0 111 ) + A Oil (Voil , 6011 ) + A211 ( -̀'211' 8 211 ) '	 (6.4)

where the A ijk are functions of time.

Using the orthogonality relation, •; (5. 2 (,)-(5.28) to eliminate several

of t'i,- t eri,w,we ,)btain the following set of equations:

	

v ill A1i1 - (M - Mc )A111 - Z 111	 (6';)

	

V
O11A01l M 

(M - Mc - Mc1ROil O11 )A01l	 ZOil	
(6.6)

v, 11 X211 a (fit - 
ti c - Nt c1R 211f2 11 )A 211	 Z [ 11	 (6.7)

where the prime denotes differentiation with r^a,^ 	 r,) t, where

-IV*v	 'l;8aU mi .fprmi 

•vmi >	 (6.9)j 9*mijw	 >mij

f-
<w*̂  mi j	 (6.9)

ai	
<0 Ili l jw 

tI J>

w'i•-r, • the Z i3k ar( homogeneous quadratic functions of 	 ll, 101 , and A,, li •

Tire general Torn of r'i - Z iik is g'.ven )y

i
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<8p P>Z P - M<e*(Z Ag vq • V)	 A r 0 r + Pr- l vp • (^ 	 Ag v9 • V)^ A z v r>	 (6.10)

where r, (1, r	 to vector wave numbers.

Each of the two terms on the right ,\i_ ('•• 1'1) contains N2 integrals

when.9 has N elements.	 ;,-veral of these integrals are identically

zero by virtue of the orthogonality reltri-i-, (5.^2)-(5.24)• In the present

case we find th L, r.ir	 ^u,)de 111, only 4 of the 9 Integrals

are non-zero, and we obtain for th.: a-4 	 t ,t ..A - t , .idratic nonlineartty t i

exrressio i .•r Co, `•)r;n

d ill ` iii	 MA ill (`t0Aoil ^ aIA211)	 (6.11)

where

d	 *	 (6.12)pi'	 <	
wmi ji, 1

•uk(l WIl\•re

sm _ <
^111^ Y 111 • ^ t ali + 

v
tnll •V0 lil ) + " r lV*lll•

 (Vi 11•Vv\ 	 t V

for a - 0 and 0	 ,i ,il,ir . , onsidoi .i! I.otu. %e obtain

and	 CRIC-WJAL PAGE IS
OF POOR QUALITY
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d 211 Z 211	 M(n21 A111 + '?^l:'.`^Ul 'I`211)	
(6.15)

where

s	 - <J*	 J	 •VO	
H 1,,-1	

.(11 	 >	 (6.16)
mk	 m11-k11	 kll	 =m11 -kll	 -kll

for m - 0, k -a 11, I ,	 vul t-a - 2, k - 1, and

'202	 <^211(y011•V3211 + v211 •V9011 ) + Pr-1 -211 •(YU11 •Vv '21 ^ + V ..' I ^wOil)>.

(6.17)

Equation3 ({,.`))-(6.7) are the evolution equation for the mode 111 at

the aspect ratio a - 0.9. The null	 ion, \111 - A011	 A211 - 0-

,:,)k*r  _',.)iiJs to the conduction state, and at fixed Raflot -1, iiiimbec,ll - Rill - 0,

is stable for H < M and unstable for M > Mc	 C.

To study bifurcation from the critical	 oid Cie evolution of

, • ,>>tv,	 lo,1 in the neighborho,)d of M - M c , we can simplify rl iv , :y. ,• , (').5)-

(6.7) in the following w.i: • .	 i,: -nodt-^: .1011 and :1211 are relatively strongly

damped at M - Mc , and arc pr,  o nl^r due to the quadratic self-interaction

of	 th•^ nnotie AM, Hence,we can neglect	 the time-dert y ii ,-	 rn,; ki

(6.6) and	 (6.7) and repl;+c,- '•1	 try	 '1 I ,i these equations.	 Moreover, when M is

close to ' 1,• i'^. • -n t,vni t Aes of A011 and A211 are small	 ,11 ll

h ence in the right-hand .t.: 	 f (,,. '+) and (6.15) we can neglect t!i,.

quadratic terms involving A"l1	 t,; AN N },y comparison with the terms l, t ^. l vt l^

A 	 approximations together, and substitu.ln"

(6.15) t it , ((,.! 1, !! .7` respectively, we obtain

C 	 •

A a lt 
	

A:'.11 w 
K 'll f 211d211•
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We now substitute (6.18) into ( •11), opt Caen substitute the latter,

with M replart•4 by '•i , !.ito (6.5). This givt-i t!,- single equation

v111A 111	 (M - M c )A 111	 "'111A3I1	
(6.19)

where

3
ct c	

Vol	 _ `"2 `'t2 1 _ _

111	
dill ( o- 11 10, d011 + R211t211d211)•	

(6.
o
_0)

Equation (5.1 1 ) I- t'i,• %.indau equation for the evo1-ii-lon -: the

critical mode 111.	 The coef f i f rnt . V
IP ,, w, , , ., . .lr.termined by numerical

integratto t	 ;!u '."Propriate pro&iol , 	 ,.i--ifunctions. The computattoit-

have been performed at v.trt„r,. vtl. : ,)f Prandtl number and some

in Table 1. We infer from the calculations Ci.r!

	

V111 > 0,
	

^'lil *>

fir t I ' "rt i.ltl numbers.

!'r	 111 x 1J ~	
X111 
	 1,J'3

0.1

1.0	 0.13	 0.16

10.0	 J.1J	 0.11

v	 0.10	 J.1u

is
r )F	 JALITY

1'ahle 1
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From (6.19) and (6.21) we infer th.a( t : ,l,ltion bifuractes fr,)ul t'lo

critical value Mc having the represeat.itt,),l

A
ill - i d((%I -'.( r }"/Will}.	

(6.22)

The soluttoti t-it.ty only for M>'i c (supercritically) and Lj known froirt

element,lry t,i f)lr, :anon theory to be stablo. Because of tho r,-pr,-•.. ,; loon

(6.4),we conclude that at aspect ri, L.. .l - 1).9 i'w ,)n,et of conviction is

supercritical a,l, r„(- -4.1.111 M - Mco has to leading order ill,- r ,r n ,,` a non-

.ui,ym,netric mode with azimuthal wave number 1.

1. The case a - 1.50.

From Figure 3 we sec' tll.lt -it 1'. 0	 -ip!ct ratio the critical

^; 1 :	 t,^• .azimuthal wave number t. 2, oi,' the r i,lial and vertical wave nun').-r,

are both unity.	 The critical Kir,arn ZL . )nt . ) , i . ahzr is

:, tc ° 7a • 5	 (6.23)

with R,, 1 - 0.	 The quadratic interartio , i ,f	 , ,'.- 2'1 with itself

geaer3r, , - ,lio ;;od es ,l iar ` i j, with i, j - 1, 2, 1 	 ^	 ) • t',llliN j)f the

)rdering of the t,	 i ii ,-1 Rayleigh numb4rs we approxt n.lt.• 	 ^	 Ming all

except	 01: Ind )11. ;hus
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A	 - {211, 011, 41 1 1

	
(6.24)

411 If

(v, 8) y 211^^211' 8211 ) } ^,011 (Y011' 8011 ) + A4ll (v4ll' 8411)'	 ''•25)

We substitute (6..!')' l it 1 ( 5.23) to ohtain a system of three )-,I, aary

differential equxtlon, r-r i' 1 .! amplitudes, namely

v 1 	 )A	 -	 (6.26)
11 211	 c 211	 211

vO11A011 " (m - 
Mc - 

m-1R011 f O11 )A011 - ZO11	
(6.27)

1
v
611 

A
411 (M - Mc - M c R411 f 411 )A411	 Z4i1	

(6.28)

where the coefficients ;1 o.- iho forms (6.8)-(6.10). Pr000,• II -I- as in the

prevlowi , . ► •, w,- f L id that

	

d 211 Z 211 0 14A 211 
0 

0 
A 

Oil  + 34A411
	 (6.29)

where

d	 <6* (v	 •Y3	 + v	 • 76	 ) + Pr 'v" • (v 2 	 • Vv	 t~ v
m	 -11 -211	 mll	 -mll	 211	 -ill - 1.11 -ml.	 -mil -211)

(6.30)

r 	 .. j	 -	 11 )	 .111.1	 : it 	 •i;	 .,is:),



V
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di)IIZ^II I - M(60 -) 211 + a00A011 + 804A411)	
(6.31)

inti

d411Z411	 M(642A211 + d404A011A411)	
(5.32)

where

B^ _ <8 *11 ` I;-''1 1 'c11 + Pr-lvMil *(vkll*V ) vkll>	 (' 13)

for m - 0, k - t),	 ', Dina iu - 4, k - 2, and

6404 - 
<5

411 (Y011
*09

411 ^ =411
*03

011 ) 	?r-1-41:.(vt)I •Ovi;^_ + ^411'w011)^

(6.34)

Using the same	 ht,fore)we can solve ( 6.27) and (6.28)

approximately to f t,i I .'^.. oi3 
A411 in terms of A; 11 .	 W## ,)bf- it,t

1)

-M` d A 1
1

.1
011 ^ 

R ^^l l f 	 d ^) i

-M` 6 A 24 2 2 
"411	

R,iif+l1d411

(6.35)

Subic'. f ,iti , ig ( 6.35) and ( 6.29) into ( 6.25), we E'. t'	 'i.tt thy latter reduces to

the simp le I,and.iu .•. 1 „ -i ioi

v '1: .1	 - (M - Mc )A,	 '211A	
(6.36)

where

d0''
+ —	 "	 ).	 (6.37)

R i1 f411d411
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Comp ' tr.e l v.%l J." . ' r the coefficLQ11 1 , v211 	 W211 r.
' r varir,ns Prandtl

nulabor. .ire • given in Table 2, from whi.:t Ii 	 --eii th,it both coefficients

are always positive. W(, Irtror	 '

A211 - t
V { (M - M c ) /.''211 i
	

;5.38)

ropr.-.sents a stable supercritical e ,)nul -i i-! .'lntion for M - Mc small, and

br''. • wponds to a non-axi^ ) 1:' I -;, tide with azimuthal wave number 2.

Pr	
•''ll x 10-4
	 "211 x 10-2

0.1	 0.37	 6.

1.0	 0.13	 0.98

10.0	 0.10	 0.50

ao	 0.10	 0.45

Table 2
Al 11

C. The case a - 1.80.

Figure 3 5!' . w.	 - tie critical mode at this aspe, t r ^i I

axi--*=etric mode 011. We find t'i',

`t. - 79.7
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with Roll ' 0. The quadrat ,.,- .,•1	 laterAction of this mode generates all the

mdea Otj with i j - 1, 2, ..., but by virtu• ..r r'„ O fAering of the Rayleleh

numbers R0ij we retain only the mode Oil. T'i,_

{011, tri }	 (',.:^)

.t I I,l we sklh,ytitute

V	 A Oil (voil , a011) + Ao I (`-',)", ' 8i1!')	
(',..1 )

	

into (5.23) to obtain i	 ii r if .cliplttude equation•i,

v t711 t1.1 ""(M - t, )A011	 z011	 (6.42)

•-1	 h
vU'21021 - (^l - . lc - 4c R021 t 021 )A021 - z	 4021	 (6	 3)

t ; sifl u 	i,,rnula (6.10) we find t i,,c

	

d i^ll z illl	 y(Y 11 A2Oil + Y 112'a01i `,021 t 't2'a021)^	
r.,.

	

3 ,21 Z 02 1 	 `1(Y 21 AOil + 1 212 A O11 A021 + Y22A021

I1,•rr?

for 1, k - 1, 2, an'



MCY11

r 0 - d011
(6.50)
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Y 112	 <8011(v011'V9t).„ + v; ► .'. ► ^VB.)11) + Pr-1 Oil '( "011 •'7 '021 * v021'Vv_O1,)>.

(6.47)

We approximate as befi',r,, r„r M , 1,,•;e to M. and on the assumption th•it

tiro ,wA6 • if t,r,ie of A0^1 is much smaller than t'	 '^^ 1 . We then solve (6.43)

and (6.45) to obta0i

-M 
2

A021	 R	
f

	

c21AOil	
(6.48)

021 021 021

-JP substitute this and (6.44) into (6.4^.), wltt '1 reilaced by M. in the

;r,,,rl I r.• rr terms and with the	 r	 co , dr•d .lntng A021 omitted on the gronnl: Ct,t

it is smaller than those retained. T51-, 1,•,.'•: t,, . t single equaitons `or 1',-

"1*1.rical-mode amplitude,

VO11 AUI1 - (M _ MC)AUll	
l Alt	 -.01111A3	

r,,.49)

where

-M31 .., i •	
(6.51)

'311	 1: 	 d t^I

and

r7 , •n, ut •d val t,. ,	 , -	 ,	 1, , ,it5 .ire given	 ..,:	 3.
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Pr "011 x 10 -4 YO x 10 ` w011 x 10-3

0.1 0.36 0.32 1.8

1.0 0.12 -0.19 0.23

10.0 0.10 -0.24 0.15

W 0.98 -0.25 0.14

'^lnl,^	 1

Observe that 
v, 1; 

1 , "',)I ! ic,! +,•, 1 i t ; ^^ f l f .'r, but that Y1 is positive for

1 ^+ ^r,,,,lt 7 numbers and negative for modera^ , !	 1 ,, v.• Prandtl number-j.

One solution of (6.49) is 'x()11 -- 	 ihich corresponds to the

coii lit, i iwi state.	 This solution is stable for 't 	 '• 1	 , , t,! otsL.thle fur

M > Mc . Other	 ,it ► t lim-4 ,r.• ' • i . !tmined from roots of the equation

^tlt 1'^l?11 + fO'Oil -	
Nc) - 0.
	

(`,•52)

Al i t t t , . 4 , 11 , itions are illustrated in Figure 63 f,,r' ^',,. 	 i0 > 1, and in

% f„ tt' 6b f--.r the case y ,) ' 3.	 A conduction solutt )11 •+ .1	 - ror hot 	 M < Mc

31•i	 'I,	 -+ i- • tti -al bifurcation), but t'.:e subcritic ,l hr.t, t .',	 ;r t;

.1r,ntnd at a value MO of `4 and cone! 1 ;	 t t!	 CA,- !calf -plane M > Mc.

OR'GjNAr
OF Poo' Q A E I$	 - ;

	 `'
LITy

	

C it is , t'ie s:ahi Lity if the so -it t t t 	 l"w:lig way.	 Let

leno-e any tt a •-f	 !	 ; tlu:lon	 f (F;. , ;.	 .'e set
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'%nl 1 ' A + .^^	 (6.53)

to equation (6.49) and linearize, to obt a i . a i l,t• -.1-abi lity equation

a0 = (`t - A .. - 2y.,A - 3w
'l 1 l A )a0'

A sim;A .-	 ,1,:,t1 tt to , l i%-u43 i:'r-ti l i t.- suher(tical branch OP in Figure 6 is

unstable, and thir t ► ,.• ',r, tohes OR, PQ are stable.	 This is tht^ St.u1•`.,r.l

res,tl.;	 transcritical bifurcatiol.

	

These calculations settle fn ,+r( r, ,1 	 . ! ie questian of the direction

of the floe at the c ' ^ ' Ii t' ^',•• container becaui,! rt,.• asymitt,try of the

bifurcation diagram (l,q,l i — k ireferred branch. As M incr,^:tKr, t „wa•-Js M c , a

disturbance, ttowovor • .,n,tll, to the conduction ;,) l tt I mi will result in loss of

stability of the l..te i .•r	 )re M reachr3 the , r i i ,.cal value M c , and a

consequent snap-thr ough to -It- ',r.{n,-t; ?n.	 (Sr. e, for example, R,, %i•-What 1979.

for ,{ f ill.	 M-;,:j.ssion of this process.) As M increase, .t ill futher the

system etas-	 r !'., hr• .irnch PQ which is rhus "preferr"t - t " the branch OR.

Of course, when M > M
c 

one could find a disturbance of large enough size

that would cause the system to jump from this branch to the other. The

fart that both supercritical branches are Stable is similar to the result

of Liang, Vidal and Acrivos (1969) for axisynaetric buoyancy driven convection

in a cylinder.

".E IS
(or V"tt YUAL,'TY,,
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From (5.6) w,:	 Out the vertical valocity component f . ,r t'„- a •,1.+

w011 0 ` OII Y41 1(Z)	
(6.55)

r,ttr.r of the contain-. ,*.	 ':,, I . -ri4 • H1 • .iILtilation :+ show that Y011(z) > 0

0.1 u % s < 1; here the sign of A011 detor , nt , .••. ;'u+ dtrectien of the fl^w,

giving upflow whe.i 4111 ', h w-I 'lown flow when AU11 < 0. The prefer.-,-I

PQ lids A()i l < (1 f "' ' very small Prandtl numbers and -\,Ol ; > 0 (or it.,.I.srate and

l.ir^r Prandtl numbers. We infer that there: 	 ' 1 1- 1„wi ► fluw at the center

vl„:n Pr << 1. which is the case for If.p i l.I r•r %Is, and upflow when Pr > 1,

which	 for common liquids,

.1^

A^
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EVOLUTION AT DOUBLE POINTS.

It is evident from Figures 3 - 5 that there are certain values of the

aspect ratio at which two modes lose stability simultaneously. In this

Section we shall investigate the onset of convection in the neighborhoods of

such double points and the secondary bifurcations that can result.

A.	 Intersection of modes Ill, 211.

At the point marked A in Figure 3 the curves of M as a function of

aspect ratio for the modes 111 acid 211 intersect. The value of zi at which

this intersection takes place t y denoted aA k. 1.20). The c.rmnon

value of M ITI , M211 -it this po hit will be denoted M c ; computations live

Mc	 '4111 - M ni ' 85.1	 (7.1)

By hypothesis we have that k ill - K '1 11 - 0.

We are interested in studying the onset of convection at values of u

slightly less and : , lightly greater th.un a ,,. As noted in the previous

Section, the self-interaction of the mode 111 generates modes with azimuthal

wave numbers 0 and 2, while the self - interaction of the mode 211 generates

modes with .n - 0 and w	 4. In addition, the interaction of mode:: lil and

211 generates a mode with m - 3. For reasons indicated earlier, we .ipproxi-

mate by retaining or* y the leading kin the sense of Rayleigh-number ordering)

number of each of these generated sets. This leads ua to select a 5-element

set of expansi^',n functions, narivIN
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(111,211,011,311,411}	 (7.2)

Substituting the appropriate eigenfunction expansion into (5.23))we

ob.ain a system of five ordinary differential equations for the amplitudes.

These equations are conveniently written as follows:

Vmll Anill = (M - M Mil ) ml'	 zmll , m - 1 and m - 2
	

(7.3)

and

vmll`mll - (M - Mc 1a Mil fm11 ) mil	 Lmll	
m - 0,3 and 4
	

(7.4)

Note that in (7.3) wo have retained Mmll in place of Mc ; the reason for

this will soon become apparent.

We reduce the system (7.3)-(7.4) as ill 	 previous Section. We use

(6.10) to calculate the quadratic nonlinearities in (7.4) and find

dO11Z011	 M(a01 `̂ ll +
 CE

	 + '"00 011 + '03"311 + '04`,411)
	

(7.5a)

311 311	 1''3121 11 `
\
n 11
	 (7.5b)

ind

d411Z411 - M(a4-, "' it + 0 404 ` 011 `1411 + C413`1111A311)
	

(7.50

where the .1mk are given by (6.16), 
$404 

is given by (6.34), and where

mJ ►: - ^e mll (^ j l l .76 l + ^11' ce J ll ) + Pr 1^n11' —J 11  ^i:l l +

+.7v	 );
—J11

(7.6)

We now solve (7.4) approximatel y by negl,-cting the time-derivative term:,.

replacing M by Mc , and neglecting as relatively small the quadratic terms

involving X1011 ► `,311 
and 

A,	
on the right-hand sides of equations (7.5).

This proc_ss gives the approximations
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- r12 2
`
011 a ROilfOildOil 

(s01 Aill + a02A211)

(7.7)
2

-Mc`42 `̂ ' I l	 _ Mc `̂ 312 `^.11^ l l
A411	

R 41.1 f 4114411	
11	

R311f 311 `1 311	 .

These formulae can be compared with (6.18) and (6.35), it bei ng noted in

particular that a02 0 9 02 and a42 
3 042*

I1ie quadratic nonlinearities in (7.3) are found to be given by

illlzlll 
a 

111111(`0A011 
+ 
a2A211 ) + "'-123'211A311 	 (7.8)

and

dM -11	 ^ia21 `^Ill + a 0A211aOil + X4',211 `1411 + "213A111 A311 ) 	(7'9)

where a0 , a,2 are defined by (6.13), a.., 1 by (6.16), ^ 02 0 4 by (6.30), '1213'

CL 123 by (7.6). We now substitute (7.7)-(7.9) into (7.3) to obtain the

following pair of equations:

y 111 A111 s (M 
_ rllll ) 111 - c 1 Ai11 `^'_'ll - y l 111 - alAl11A?11

_	 _ 	 3
^211A211	 (M rl2_11 )A-11	 c 2111	 Q2A111 A`11 - u2A211

where the coefficients are defined by the following formulas.

`i - Mca2ld111	 c_ = Mca?1/d_11

a -Mc 	 _ y0a02	

+	

'1'_'3,31_:	 l
^1	

d lll	 '1 Oil f Oil dOil 	 R311t311d311 1
3	 r	 1

-Mc i	 0- 01	 ^213a312— +2	 4 `11 l R '?11 1Oil ill	 R311t311`j311

3j	
_rlc' 1001	

L

1	
R Oil f Oil d Oil dIll	

W211

(7.10)

(7.11)

(7.12)
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where w`11 i y defined by (6.37). Computed valuer of the coefficients are

given in Table 4.

x 10
-4

c 1 x 10 2  x I0 10
-3

X10 10-2Pr	
"111 W

a 1 X10
` 1 x	 c 2 X10	 a2 w2 x

0.1 0.49 -1.2 14.0 2.0 3.7 1.3 1.6 4.2

1.0 0.19 -0.74 1.5 0.27 1.2 0.36 0.28 0.62

10.0 0.16 -0.69 0.93 0.18 0.91 0.26 0.20 0.31

M 0.16 -0.69 0.88 0.7 0.89 0.25 0.19 0.28

Table 4

We propose to study the nature and stabilit y of solutions of (7.10)-

(7.11) in the neighborhood of the double point A, :ind for values of `i

reasonably close to Mc.

We consider first the ca ge of asec[ r.itios slightly less ch	 "A,

.+ ti a
.X

. We then have that

Mill < M2li	 (7.13)

and we define

Mlll'	 A	 M 211	 Mlll	
(7.14)

Fquatlons (7.111)-(1.11) can now be written In ;he form

•	 3	 ^

^lal 
a YiA 1 - . l A l A 2 -	lA l - alAlA2

(1.15)'3
v y .^,	 ('' - 1A - c.,A- -	 ) A1 A._ - u;2A_
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where for the sake of brevity the notation has been simplified in an obvious

way.

U	 Because of the approximations used in their derivation, equations

(7.15) can be regarded as valid only for small values of A and small values

of n. A reasonable measure of smallness is the :atio of these quantities to

ne critical value of M, which is about 85. In the computations to be

described presently we have taken values of s in the r-:nge 0 < A < 5.0 and

of n in the range 0 % n ^ 26. Results for significantly larger vales are

not easily substantiated on the basis of our approximation scheme.

Before proceeding further we formulate the stability problem

associated with the system (7.15). Let (A l , A,) denote a solution of (1.15)

and set

Al	 A l + a l ,	 A2 - A2 + a ' .	 (7.16)

Linearization of the equations with respect to the disturbances leads to the

linear system

vi al - (n - c 1 A2 - 3,j1A1 - al A2)a l - ( c l + 2a1A2)A1a2

'7.17 )

v2 a 2 - -2(c 2 + a 2A 2 )A l a l + (I - .1 - U TAl - 3W2A2)a^•

The exponents of this system determine the stability of the

solution (A 1 , A2).

We exaiine now the solutions of (7.15) and their stability. Observe
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first that (7.15) has the trivial solution A l - A ,) - 0, which correspunos Lo

the conduction state, and which is stable for ri < 0 and unstable for n > 0.

Moreover, for this solution one stability exponent changes sign at ii - 0 and

the other at n - A, se that each of these values locates a bifurcation point

for the appearance of a new (convection) solution.

The trivial. solution is unique: for n < 0. As n increases through zero, a

pair of nontrivial solutions emerges, determined by the pair of equations

A l - (n - c
1 A2

- o1A2)iw1

(7.18)

w2A; + o `A2A 2 + c 2A2 - ( n - A)A 2 - 0.

If A were large, these equations would

A111) given by (6.22), and would corre

azimuthal wave number m - 1 at leading

mode m - 2 has an effect, as expressed

ways:	 the solution has A-, ¢ 0 and the

as n approaches A.

reduce to An - 0 and A l (equivalent to

3pond to a "pure" convection state with

urder. When . is sm, 11, however, the

by the coupled equations (7.18), in two

parabolas (6.22) are distorted

Numerical calculations show that solutions of (7.13) exist only on an

interval 0 < n < rIT, where n,,, > A. The value of rLr depends on Prandtl number,

but computations reveal that 1	 nT /A < 1.2 for the entire Prandtl number

range. On 0 < n < ziT there is pre,-!aely one root A2 of 0e cubic in (7.18),

and a corresponding pair of roots +A l , -A 1 . These solutions are illustrated

in Figure 7: one pair of solutions is represented by the curves O l UT I , J2TIL

and the other by the curves 0 1 LT 1 , 042.
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Figure 7

Calculations utilizing equations (7.17) show that these solutions are

stable.

The remaining solutions of (7.15) are given by

-2
ql = 0,	 n - e - W2A 2 . (7.19)

These exist for n > A and are the "pure" m -_' mode solutions considered in B.

of Section 6. Their stabili'y is determined by substituting (7.19) into

(7.17), which gives

v i a l - (^ - c 1 A2 - E307 )al, 	 v28i - -2(n - o)a2 .	 (7.20)

Evidently it is the first of these equations that decides stability.

Calculations show that, the branch corresponding to positive A 2 , the upper

branch AR in Figure 7, is unstable, while the lower branch, AS, is unstable

initially but regains stability at precisely the value n - ri T defined above.

The situation depicted in Figure 7 has been established numerically.

In summary, the behavior of the system is as follows. For n < 0 (M < M111)

the conduction solution is stable, and is replaced on 0 < n < n  (Mill < M <

M.l., say) by a pair of mixed-mode solutions given by (7.18). For .1 > IT,

however, these give way to a single solution which at leading

order is a pure convective state with m - 2. This behavior is qualitatively

independent of Prandtl number.

F,)r aspect ratios slightly greater than a A , a > a, , we have
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M211 < M111'
	 (7.21)

We then set

n - M - M21l l 	 A - M ill - M211	
(7.22)

to obtain the system

•	 3	 2
v 1 A 1	(n - A)A 1 - c 1A 1A 2 - W1 A 1 - a1AIA2

(7.23)

22	 3

v2 A
`	nA2 - c2 Al - o2 Al A2 - i.►,A2.

The stability equations for a solution (A 1 , A,,) of this system are similar to

(1.11), except that the terms n and n - A are interchanged.

Figure 8

The results of numerical calculations for (7.23), illustrated in

Figure 8, are as follows. The conduction solution A l - A-, - 0 exists for

all no and is stable for n < 0 and unstable for n > 0. The solutions defined

by

A, - 0,	 A2 - A2 -	
2	

(1.24)

eAist for n ) 0. The lover branch O ,) S is always stable, while the upper

branch is stable for 0 < n < nT , where RT = (0, A) and has a -.clue dependent
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on Prandtl number. The solutions determined by

A2 - (n - A - c
1 A 2

- a A2)/W1

(1.25)

W 2 A2 + u 2AlA2 + C
2 

A
1

- 1A2 - 0

exist on the interval n  < n < a. There are two such solutions, comprising a

single root A2 and corresponding tAl . These solutions are found to be stable.

We see from Figure 8 that the conduction 5cl,tion is replaced by the

pair of solutions (7.24) on 0 < n < nT . Next,there is a region, n r < n < 6,

in which there are three stable solutions: the lower branch of !7.24) and the

mixed-mode solutions of (1.25). However, for n > a there is only -^ ,ie (stable)

solution, which is a pure nonaxisymm..tric mode with m - 2. These results

apply at all Prandtl numbers.

We see from Figures 7 and 8, and from the preceding discussions, that

on either side of the aspect ratio a A the system eventually attains the same

state: a single convection solution with m - 2. In one way or another the

mode with m = 1 is suppressed by the interaction when 6 is small. This

interaction can therefore be regarded as being a mecLanism for wave-number

selection in the sensc just described.

B. Intersection of modes 211, 011.

The point B in Figure 3 is the intersection of the curves for the

modes 211 and 011. We denote the corresponding value of a by aB (p 1.70).

The common value of 
M
211' MU11 at this point will be denoted by Mc;

computations give
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Mc - M211	 MO11 - 80.6
	

(7.26)

'	 By hypothesis we have that R` ., - R
Oil ' 0. Using the same reasoning as

in the previous case, we take

l	
- J211, 011, 411, 0211	 (7.27)

as the set of eigenfunctions for the evolution of the modes 211 and 011 near

the double point.

Subs'ituting the associated eigenfunction expansion into ( S ,23) we

obtain, by analogy with (1.3) and (7.4), the following ordinary differential

equations.

v	
mllmll A mll 
	 `1	

)A mll - Z mll	
m - 2 and m - 0,	 (7.28)

and

vmilAmil - (M - Mc - H cxmil f mil )Amil	 Z"Di1	
(7.'-9)

for m - 4, 1 - 1 and m - 0, 1 - 2. For the quadratic nonlinearities in (7.29)

we use (6.10) to find that

d 411 Z411 - M(342 A211 + a404AOil -4li + d404AO?:A411)	 (7.30)

where 642 is given by (6.33), 6404 by (6.34) and 
6404 

by (6.34) with the mode

Oil replaced by the mode 021, and

1

d021 Z 021	 (522A211 + Y 21 AOil + Y 21 A011 + Y 212aOil 211 + Y
22
A
021 + 624A411)'

i7. il )
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where the y
iJ 

are given by (6.46)-(6.47), and where we define

	

6km ' <90k1 (Vm ll *V)emll + 
PC- 

IVOkl•(Vmll*V)v:nll>	 (7.32)

for 'k - 1, 2 and m - 2, 4. We now solve (7.29), making the same

approximations as before, to obtain

-M 2
	 2	 2

C	 2	 2	 _ -Mc d42 A211_
A021	 R	 f	 d	 622A211 + Y21 A011 ) '	 A411	 R	 f	 d	 (7.33)

021 021 021	 411 411 411

The quadratic nonlinearities in (7.27) are found to be given by

d 211 Z 211 ' MA211 (a0AOil + b0A021 + 64A411).	
(7.34)

where B0 g d4 are given by	 (6 30),	 and d0 is also defined	 by	 (6.30) with 011

replaced by 021, and

d	 -Oil Oil	 M (Y 11 AOil + Y 112 AOil 021 + Y 12A021 + d12 A211 + d14A411) (7.35)

where the y'o are given by (6.46)-(6.47) and the 6's by (7.31;1

We now substitute (7.33)-(7.35) into (7.28)to obtain the following

pair of equations:

v211 A 211	 (M - M211 )a211	 c 2A 211 AOil	 °2 A 211 4 Oil	 W2A211

(7.36)

v Oil AOil ' (M
	

4 Oil )AOil - Y OAOil	 ` 0A211	 °0A Oil A 211	 W0AOil

where
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C,
	 Mc6 /d211'	

co	
Mc612/d011'

3-3

_	 -Mc`10121	
-1.1
 c622Y112

02	

R021 d021 f 021 d211 	 00	 R021 d 	4021 0210

3

_ "c	 a0 5 2 2	 4 a4 2
W2	

d211 R021 d021 f 021	 R41Ld411f411

where 
w0	

WO11 defined b y (6.51) and where ,0 is gtven by (6

values of the coefficients are given in Table'5.

Pr `211 
x 10-4 c 2 x 10 -1 C 2 x 10 -2 W7 x 10 '011 x 10 -3 Y O x 10-2 c0 	 C 0 x 10 w0 x 10

0.1 0.40 0.22 6.? 11.0 3.6 0.36 -19.0 1.6 1.7

1.0 0.15 4.3 0.55 1.5 1.2 -0.21 -	 1.4 0.22 0.21

10.0 0.12 4.7 0.30 0.98 0.96 -0.26 0.40 0.15 0.14

m 0.12 4.8 0.28 0.94 0.94 -0.27 0.57 0.14 0.13

Table 5

We proceed with the analysis as in the previous case. For aspect

ratios s11Rh_L1X less thin as, a	 .1 B , we define

r	
1) a 

'i - 4211'	 J - MOil - M211 > 0'	
(7.38)

whereup equations (7.36) become



r

v2A2 nA 2 - c 2A 2A0 - a 2A 2A2 - w2A2

(7.39)

V
0 

A0 - (r, - J)A0 - YOA2 - c 0 
A2- 70AOA2 - wOA3

with an obvioua abbreviated notation. The stability problem for a solution

( Al , A0 ) of (7.39) is determined from the equations

•	 -	 -2	 -2	 -	 - -
v2a 2	(n - c 

2 
A 0 - o 2A0 - 3w2A 2 )a 2 - (c 2A2 

+ 2a2A2A0)a0

(7.40)

v0 a0 - -%2c0A2 + 2a0A0A2 )a 2 + (n - A - 2Y0A0 - 3w0A0)a0.

Because of the proximity and flatness of the curves of Fig-ire 3 in the

n-!ighborhood of the point B, we estimate that the range 0 < A < 1.0 is

reasonable for 6, with n not larger than 2a.

Figure 9

The solutions of (7.39) and their stability behavior are illustrated

	

in Figure 9 for Pr - 1.0, 10.0 and 	 for the case Pr - 0.1 the graphs of AO

against n have to be reflected with respected to the n-axis. The conluction

solution A 2 - A0 - 0 loses stability at n - 0, and the solution which

bifurcates from Chis point is primarily an m - 1. mode, modified by the

presence of a small m - 0 component. The latter is due to the fact that

(7.39) have nu nontrivial solutions with A O - 0, owing to the presence of the

term coA 2 . However, the modification is small because co is a small

quantity. This solution is represented by the curves OM, ON, in Figure 9, and

derives fram the equations

I_
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A2c 2 A0 - o2A2)/W2

(7.41)

0	 (n - A)A0 - Y OA0 - c0 Al - o0A0A2 - WOAO.

A stability calculation shows that this solution is initially stable, but

becomes unstable at a value n - n  > n.

The solution bifurcating at the point n - A is given by

A_ . 0,	 n - A - 1 0A3
 - WOAD . 0.
	

(7.42)

This is identical with the transcritical solution described in C. of Section

6. and is represented by the asymmetric parabola QPR. However, the stability

system shows that the branch PQ is stable (as in Figure G), but that the whole

branch PR is now unstable.

In particular we find that there is A value n 9 of

at which one of the stability exponents for the branch PR

the corresponding point S on PR there is secondary bifurc

joining S to the point T.	 rhais is u mixed-mode solution,

distinct solution of equations (7.40). We find that this

unsrable.

n, %..iL. J < n	 < 11,
S

changes sign. From

ation of a solution

and is actually a

solution is

Reviewing the situation as shua.n in F!gure 9, we see that

before n reaches 0, the s y stem may sL.,y on the null solution or snap-through

to Cie axisymmetric branch Pty; ;3c1 0 < n < n  the system may choose PQ or the

predominantly m - 2 .olur.lon OM, 0`4, OL; but that fir n > n  the onl y stable

solution is O e axisymmetric mo.ie represented by the branch PQ. Thus, even
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though the m - 2 mode appears first according to linear theory, it soon loses

out to the axisymmetric mode as a result of the interactions.

We consider next the case where a is slightly greater than a8,

V
	 a > aB , wi th

n - M - M011 ,	A = M211 - MOil > 0.	
(7.43)

The governing equations are (7,'^9) dith n and ii - A interchanged, and the

stability equations are (7.40) with i and n - A interchanged. The results are

shown in Figure lOfor large and moderate Prandtl numbers; for very small

Prandtl numbers the picture is generally the same apart from reflection in

the n-axis.

Figure 10

The solution bifurcating from n - 0 is the transcritical axisvmmetric

solution given by

I
A2 . 0,n - 7 0A0 - WOAD - 0,	 (7.44)

represented by the curves PQ, PR in Figure 10. Calcalations based on (7,40)

show that the branch PQ is stable and PO is unstablo, as in the non-

interactive case depicted in Figure 6, but that OR, initially stable, loses

stability at n - n s , where 0 < n  < A. This re-emphasizes the preference fur

the upper branch discussed in Se(_tion 8.

The solution bifurcating from n - A 13 a sulution of the equatior.
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A2 	 c 2 A0 - o2A0)/W2

(7.45)

0 - nA0 - YOA0 - c0A2-	 o0A0A2 - W0A30.

It is found to exist for n > A and to be a slight modification of the pure m -

2 solution described in B. of Section 6. This soluion is represented by the

curves AL, AM and AN in Figure 10. Calculations show it to be u+istabl -T.

Finally, there is another solution of (7.45) which is a mixed mode and

which bifurcates from the axisymmetric solution (7.44) at the point S. This

solution is represented by the curves SU, SV, ST in Figure 10,and is found to

t-e stable.

We see, therefore, that there are two stable solutions: The pure

axisyu=etric mode PQ, and the mixed mode emanating from S. The latter

represents a distortion of the lower branch due to the modal interaction.

Nevertheless the upper branch PQ is preferred as in the non-interactive

situation.
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8. DISCUSSION AND CONCLUSIONS

1	 We have considered Marangoni instability in a circular cylinder under

the simplifying assumptions that the upper free surface is nun -deformable,

i.e. C -e-0, and the sidewalls are adiabatic and impenetrable but "slippery".

The linear stability curves vary with surface Biot number h and Rayleigh

number R as expected from the analyses of the unbounded layer. (The boundary-

value problems are identical.) M c decreases with R and increases with h and

these features are shown in Figures 3-5. Here, the envelope of each set of

curves gives Mc for each aspect ratio. Had we used the more realistic

rigid - side -wall boundary conditions, this envelope would have been modified.

We would st ill expect to have interlacing of the modes though the modes might

interlace in a different sequence. Only the direct calculation of these

neutral stability curves could determine this. We sha ll aiscuss below the

implications of the use of slippery sidewall conditions.

Given the qualitative similarities of cases for various values of h

and R, we investigate the nonlinear behavior only for the single set h = 0,

R = 0. We have selected five aspect ratios and performed the bifurcation

analyses for these.

Cases A, B and C of Section 6 relate to aspect ratios corres ponding to

simple eigenvalues M c for which m = 1,2,0 respectively. We see that for m A 0

that we have supercritical bifurcation only. However, when m - 0, the axi-

s}-Tmnetric convection is subcritical and snap - through convection can be expected.

It is only in this axi -symmetvic case that floc direction is distinguished.

For low Prandtl number Pr, there is downflow in the center while for all

0	 Pr	 1, there is upflow in the center. As is well-known, subcritical irsta-

bilities have associated transport values with hysteresis behavior. (This
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will be discussed further for Case B of Section 7.) It is easy to calculate

the degree of subcriticality possible in the axi-symmetric mode i.e. the

LM/Mc at the nose of the curve. This varies from 0 . 18% at Pr - 0.1 to 1.42

at Pr - m . The only comparison available is to the results of Scanlon and Segel

(1967) who examine an "infintely deep" layer having no sidewalls. In their

analysis they have Pr a - and find 6M/M
c - 

2.3%. The two analyses are in

reasonable agreement. This gives further substance to our feeling that our

results reflect the inherent nonlinear behavior of the system.

Case A of Section 7 examines a neighborhood of a = aA of Figure 3 where

Mc is a double eigenvalue of modes m - 1 and m = 2. The nonlinear theory

gives a coupled pair of nonlinear amplitude equations, ( 7.15). The analysis

shows ( Figure 8) that for a slightly larger than a  the first mode to appear

(at M = Mc ) is the pure mode m - 2 as predicted by linear theory. As M is

increased above MCI the system remains in this mode and possibly no further

transition is predicted. Alternatively, the system may progress through there

the sequence: pure m = 2, mixed (1,2) mixed time - periodic and perhaps pure

m = 2 as discussed in Section 7. On the other hand if a is slightly smaller

than a  the transition sequence (Figure 7) is completely different. Here, at

M = M , a mixed ( 1,2) mode occurs and this mode becomes unstable for an M > M
c	 c

Hence, there must be a transition to the pure mode m = 2. We find then that the

mode m - 2 may persist and be stable for H large enough on either side of a - a 

independent of the prediction of linear theory. This result depends on the

stability of the time -periodic mode which has not been examined here but will

be investigated further in later work.

Case B of Section 7 examines a neighborhood of a = a .B :f Figure 3 where

M is a double eigenvalue of modes m - 2 and m = 0. the nonlinear theory
C

gives a coupled pair of nonlinear amplitude equations (7.36). The analysis

shows (Figure 8) that for a sli ghtly larg--r than a  the f irst mode to appear
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(at M - Mc	m) is the pure axi-symetric one. There is a snap-through at some

M < Mc (the snap-through is accompanied by a dynamical hysteresis behavior).

With sufficiently small disturbances the system resides in this m = 0 mode

for all M covered by the theory. Yet, for M large enough there can be a

transition to the mixed (2,0) mode if the disturbances are large enough. On

the other hand if a is slightly smaller than a g (Figure 9) very small distur-

bances evolve as a mixed (2,0) mode until this mode becomes unstable at

supercritical conditions. At this point there is a snap-through transition

to the pure m - 0 mode. If M is then decreased, a dynamical h y steresis loop

would be revealed since the jump back to the mixed mode would usually occur

at much lower values of M; conceivably in fact the jump could be to the state

of pure conduction. This interesting hysteresis loop could consist of three

distinct states; mixed (2,0), pure m = 0, pure conduction! Alternatively,

if the system is very noisy in that large disturbances are present, as M is

increased from subcritical condition, the system could snap-through directly

from conduction (at M < M c ) to the axi-symmetric state and completely by-pass

the mixed-mode state for increasing M, yet return to it when M is decreased.

The above analysis should give a faithful representation of the nonlinear

processes in fairly small containers in which Marangoni instability takes

place. If the replacing of the ideal sidewalls with more realistic rigid

walls does not change the sequence of the modal interlacings, then the theory

could be applied to experiment in a straight-iorward way. If the, sequence

of -nodal interlacings does change, then the theory should be applied by

first locating the double eigenvalue by experimental observation. Thus location

a i a., say, would be different from that of the "slippery" wall linearized

analysis. However, once it is located, the raising of M for aspect ratios a

I
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on either side of aB should be well represented by the above theory. It is

thus a relatively "simple" observation of flow pattern that would initially

need verification.

There has been no previous nonlinear analysis of Marangoni convection

in a bounded container. The present work represents a first exploration of the

phenomena albeit with an idealized model. The idealization on the upper free

surface C	 0, will be relieved in our future work so that effects of free-

surface deflection can be assessed. The dropping of idealization of slippery

sidewalls entails a major computing program that will not be undertaken.

Clearly, certain small imperfections on either the sidewalls or the free

surface can lead to an imperfect bifurcation in which the predicted sharp

instabilities become gradual changes. Our work here proviles the framework

for studying these effects as well.

I7
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CAPTIONS FOR FIGURES

FIGURE 1:	 A sketch of a possible static liquid-gas configuration in a wide

container (a) on Earth at lg, (b) in space at 10 -6g, (c) in space

at 10 -6g, (d) in space at 10-6g.

FIGURE 2:	 A sketch of a possible static liquid-gas configuration in a

narrow container (a) when the interface is curved and (b) when

the interface is flat.

FIGURE 3:	 Calculated stability curves, M versus a, for h = 0, R = 0 where

m and i are the azimuthal and radial wave numbers, respectively.

Mc is the envelope (minima) of the curves.

FIGURE 4:	 Calculated neutral stability curves. M
c 
versus a for h = 0 and

various values of R. The m values take the same sequence as in

Figure 3.

FIGURE 5:	 Calculated netural stability curves, M c versus a for R = 0 and

various values of h. The m values take the same sequence as in

Figure 3.

FIGURE 6:	 The bifurcation diagrams fcr a - 1.80 corresponding to a pure

axi-symmetric mode m = 0. Solid lines represent stable branches

while dotted lines represent unstable branches. (a) The case

of Pr = 0.1 • the branch PQ represents downflow in the center.

(b) The case of Pr z 1; the branch PQ represents upflow in the

center.

FIGURE 7:	 The bifurcation diagrams for a slightly less than a  :^-. 1.20 where

.^ = M2 - K1 0 Solid lines represent stable branches while dotted

lines represent unstable branches.

I
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FIGURE 8:	 The bifurcation Jiagrai.s for a slightly greater than a A ^ :.20

where C	 M1 - M.) . Solid lines represent stablt branches while

dotted lines represent unstable branches. The curly lines represent

time-periodic bifurcations.

FIGURE 9:	 The bifurcation diagrams for a slightly less than a B Z 1.70 where

A . M2 - M0 . Solid lines represent stable branches while dotted

lines represent unstable branches.

FIGURE 10: The bifurcation diagrams for a slir,htly greater than a R	 1.70

where I - M0 - M2 . Solid lines represent stable branches while

dotted lines represent unstable branches.
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CHAPTER II. CONVECTION IN RECTANGULAR CYLINDERS

t
1. INTRODUCTION

In Chapter I, which we shall call I, we discussed Marangoni instabilities

in a circular cylinder and distinguished between simple eigenvalues and

double eigenvalues, where secondary bifurcations are possible.

In the present chapter, we examine Marangoni instability in rectangular

containers. Again, we assume that the upper free surface is non-deformable,

C — 0, and the sidewalls are adiabatic and impermeable but "slippery", which

in the rectangular geometry, corresponds to zero shear stress applied on the

boundary. We use the asymptotic theory of Rosenblat (1979) to examine the

steady convective states near Mc and how transitions from one state to another

occur. We limit ourselves to interactions of modes in the form of two-

dimensional roll-cells, which are predicted for rectangular containers having

the shorter side comparable to the depth and the longer side larger than the

depth. Since much of the full development is similar to that in I, we give

only those derails which distinguish convection in a rectangular container

from convection in a circular cylinder.
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2 FORMITLATION

Consider a viscous liquid, which partially fills a container

of rectanguiar cross-s,-ction. The mean depth of the liquid is d and a

horizontal cross-section has lengths a 
1 
d and a 

2 
d in the x and y directions

respectively. Hence, a l and a2 are the aspect ratios. The axis of the

cylinder is anti-parallel to the direction of gravity, and the upper surface

of the liquid is open to an ambient gas.

The development of the non-dimensional nonlinear disturbance equations

and boundary conditions parallels that in I. Again, in the limit of

small capillary number and when the late-.al boundaries are adiabatic

and impenetrable but "slippery", we obtain the following nonlinear problem.

From equations (2.19-2.21) of I,

1	 aV	 ll

Pr- f 
at + 

(v- •v)v_j = -D + 0 2v + M-1Rez	 (2.1)

v•v = 0	 (2.2)

M r	- w + (v•0)e = 7 2a	 (2.3)

where M, R and Pr are the Marangoni, Rayleigh and Prandtl numbers defined

in equations (2.22) of I.

The bottom of the box is a rigid perfect conductor so that

8 =0 on z=0 , Os xs a l	 Osys a2	(2.4a)

v= 0 on z= 0 , 0 s x s al , 0 s y s a2 .
	

(2.4b)

Since the capillary number is zero 
j
the upper surface is flat, so that

from equations (3.5) of I, the heat transfer condition is
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ae+h0 = 0 on z	 1	 0 s x s a l	0 s y s a2	(^..5a)

and the kinematic condition is

w=0 on z	 1	 Os xs al	 OSvs a2	 (2.5b)

Me conditions of thermocapillarity become

u  + w  + ex - v  + w
Y	 Y

+ a - 0 , z = 1 , 0 s x s al , 0 s y s a2

(2.5c)

Finally, the "slippery" sidewalls reduce in Cartesian coordinates to

adiabatic, impermeable stress-free planes. These conditions take the form

u = wx = vx = d x = 0 on x= 0,a	 0- y s a	 0 S z S 1	 (2.6a)

v = wy =u =8 -0 on y=0,a.,; 0 - x	 a l , 0 ^ z s 1	 (2.6b)
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3. LINEAR STABILITY PROBLEM

The critical Marangoni number at which the conduction solution loses

stability is determined from linearization of the sy:te-r (2.1)-(2.3)

together with the (linear) boundary conditions (2.4)-(2.6). As in I, we

assume that Mc occurs at a state of neutral stability so that the governing

linearized equations become

V 4w + M -1 RV 18 = 0	 (3.1a)

and

1)

v `8 + Mw = U	 (3. lb)

System (3.1) plus boundary c-nditions (2.4)-(2.6) may be solved by

seeking separable solutions in the fora

w(x,Y,z) = co::[ mlrrr/aI] Cos [m 27y/a,) JY(z)	 (3.2a)

8 (x,y,z) = cos [ W Irrx/a 1 1 cos [m ` TTY/ a.^:X(z)	 (3.2b)

with similar defin'tiuns for u and v. Here X and Y are the same functions

as those in I since they are eigenfunctions of a set associated with the

stability of the infinite conductive layer considered by Pearson (1958).

Here ml aua m,) run over all non-negative integers.

When forms (3.2) are substituted into egns. (3.1), an effective wave

number X appears where

^ 2	 [ (ml /a I ) 3 + (m,^/a,))2j2rr	 (3.3)

fie effects of buoyancy through the Ray?eij;h numbor R and the effects

of the free surface being a poor insulator through the surface Biot number

can be explored as in I. The effects aru the s,une in that increasing R

decreases M and increasing h increases M . 17hesc results will not bec	 C



presented here. We shall confine ourselves to R = 0 and h = 0. In this

case, we find that

M(^) = 
8% 2 (\ - sinh X cosh X )cosh X	

(3.4)

f	 X2cosh X- sinh3X

We note that for an infinite layer, X is the overall wave number which takes

on all values on [0,m ). M(X) would then have the minimum M. ;IJ 79.6 for

%M
	2. This result is due to Pearson (1958). For the present enclosed

layer, M(X) must be minimized over only those admissible % given by eqn. (3.3).

The relationship between the box aspect ratios and the mode of

convection, indicated by the integers (m l ,n2 ), is given implicitly

by equation (3.4). We have evaluated. this relationship for a range of box

sizes for all possible modes of convection. The results are given in

Figures 1-6, in which M is given as a function of a l for fixed values of a2.

For clarity. modes having large critical Marangoni numbers are not

shown. Consider first the case of a 2 = 0.5 shown in Figure 1. As the box

size, a 	 increases, the preferred mode, i.e. the mode having the lowest critical

Marangoni :lumber, changes in a specific way. This sequence is among modes

for which m 2 = 0. Thus, we have two-dimensional roll cells whose axes are

aligned with the shorter dimension of the box. We shall call these x-rolls.
mlr

It is seen that for box sizes a l	with ml = 1,2,3••• that ).	 2 and

the critical Marangoni number is minimum at the value Ma^. a 79.6 appropriate

to infinite layers. Away from these values, the sidewalls exert a

stabilizing influence, even though they are "slippery". While the fact that

several box sizes can have the same M = MCD is presumably an artifact of

the use of the slip-wall boundary conditions, the existence and progression

of preferred modes due to the finite size of the container is not.



-88-
3	

In the case of buoyancy-driven convection, the dependence of M on box size	 ('

is monotonic but has kinks at the points of mod-- switching, Davis (1967),

and the effect of sidewalls is to align the roll axes with the shorter side

of the box. This is the same progression and alignment as predicted he,:e

for a2 = 0.5, but we shall see below that the present treatment leads to

some predictions of preferred mode orientation which are presumably arti-
n f.

facts of the slip-wall boundary conditions.

To summarize, the curves in Figure 1 predict preferred modes consisting

of x-rolls, and the progression is to add more x-rolls as the box size

increases. Of particular interest are the aspect ratios at which two modes

have the same critic?1 M, this is a double eigenvaiue of the linear theory.

Figure 2 shows the results for a 2 = 1.0. Since the modes with m 2 - 0 are

unaffected by the length a 2 the lower curves are identical to those of

Figure 1. We anticipate however, that aF 
a2 

approaches m2-/2, there are

two-dimensional rolls with axes aligned with the longer side of the box,

(y-rolls), which might have lower critical Marangoni numbers than the x-rolls.

This is not yet the case for the (0,1) mode far the conditions of Fif;ure 2,

but becomes so for the conditions of Figure 3. Finally, we note the occurrence

of more complex t^:_ce-dimensional modes of convection, e.g. the (1,1) and (2.1)

modes, having Marangoni numbers close to, but above those for x-rolls.

Figure 3 gives results for a,, - 1.5, "nd shows several complex features.

First we note that the (0,1) y-roll has Ma -. Ma . for this value of a2,

indep endent of a l , and 'hence is often the preferred mode. However, since

a2 0 7/2, there are small ranges of Lox sizes locatiid near al = 11Tm 1 /2, for

:.Mich x-rolls are preferred. We also note that three-dimensional mode.,

e.g. the (1,1) and l2),1), become closer to Leine, ,referred. At a 2 = 2.0,
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the results shown in Figure 4 indicato that the y-rolls (0,1), (0,2), rre

no longer preferred, and the three-dimensional (1,1) and (2,1) modes are

preferred over x-rolls for some range of values of a l away from al = m1-./2.

For a2 - 3.0 (i.e. close to tt) Figure 5 shows that a situation analogous

to that in Figure 3 occurs; the y-roll (0,2) has Ma _— m and is Preferred

for all bc:, sizes al away from m lrr/2. Finally, as shown in Figure 6, as a2

a
increases, the number of modes competing and having Ma 	 Mam increases,

and the envelope of these n-utral curves becomes nearly the hocicontal

line Ma = Mi.. This reflects the diminished effect of the sidewalls in

determining the preferred mode.

The results may be summarized by a map in the a l -a2 plane of the

preferred modes. We note that the pattern of preferred modes muQt be

anti-symaecric about a l = a2 , corresponding to a rotation of the coordinate

system. Thus, M(a l ,a,^) = M(a 2 ,a 1 ) and the preferred modes, (mI(al,a2),

m 2 (a l ,a. l )) - (m 2 (a 2 ,a I ), m
1
(a 29 a 1 )). It is clear fr,)m the previous discussion

that this map will be complex, and that as a l and a2 become large, mangy

modes will have values of the critical Marangoni number close to that for

the preferred modes. This .nap is shown in Figure 7. With one exception,

it is difficult to speculate on the degree to which this complexity depends

upon the use of slip-wall boundary conditions. Complexity of this degree

does not occur for buo yancy-driven convection in a bc%, Davis (1967), but

does occur for buuvancy-driven convection in a bounded porous media; Beck

(1972). The persistence of y-rolls and x-rolls at a l ;= m1 n7 2, a2	m2", 2,

:^ l ,m` i 0,1,2,••• respectively, 6.i11 not occur if more realistic, no-slip

boundary condition-, are applied. Careful Study of results similar to

those in Figures 1-b indicates that much of the ec.nplex mode-switching

is due to neutral curve for y-rolls (x-culls), oeing a horiZontal line,
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U	 intersecting many times the neutral curve for other modes. No-slip sidewall

conditions do not admit pure x-rolls or y-rolls, with the result that the

neutral curves for modes whi,h are close to y-rolls, (r_-rolls), may not

exhibit as many intersections. However, this does not imply that the

bifurcation theory developed below will be simpler necessarily, as G:ese

modes may continue to be near-multiple eigenvalues of the linear theory.

C - "L
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I
'	 4. EIGENFUNCTION EXPt''1NSIONS

In the nonlinear theory we focus on certain special interactions

appropriate to one horizontal box-dirien;ion being comparable to the depth

and the other much larger. In particular we shall take a 2 = 1.0 so that

only x-rolls are predicted by linear theory. It is the interaction of rolls

that we shall address. Although we must develop the theory for Rayleigh

number R # 0 for completeness grope-ties of the differential system, we

shall, with no loss of generality, set R = 0 at the end. Hence, pu.e

Marangoni instabilit y will be analyzed.

Let us restate the linear stability problem for the case at hand:

	

7 2v - vp + M-1 R2z = 0	 (4.1a)

	

V . v_ = 0	 (4. lb)

2

	

`6 + M,; = 0	 (4.1c)

wi th

8 = u = w = 0 	 on z =0	 (4.ld)

6 z = w = u z +2 ` = 0	 on 	 = 1
	

(4. le)

o \ =u = w =0	 unx=0,a1	 (4. 1f)

The problem is now a two-dimensional problem since we are interacting only

x--olls; hence, v, ^
	

0.
Y

For fixed ^ the eitenvalues are denoted by K mj with m,j = 1,2, • -- and

m is the horizontal wave number while j is the vertical wave number. Define
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(4.2)

(4.3a)

(4.3b)

(4.3c)

\itl - mtT / a I .

eigenfunctions are

u	 = - \- I sin \ x DY (z)
mj	 m	 m	 mj

w = cos \ x Y (z)
M]	 m mj

a
mj 

- cos \mx XpI j (z)

where the X m j and Ymj are the eigensolutions 01 Che system

A

(4.10)-(4.12) of Iwhen.M - M, R 	
mj 	 III

\ -\ and h-0.

The adjoint problem is

7V* - Pp* + MU_ - 0

*
V . v - 0

C `0 + M Rw - 0

wi th

*	 *A.
0 -u -w	 0	 on 	 0

*	 :t	 ^	 z1

0 + w - w	 u - 0	 on z= 1z	 z	 z

«	 w - 6 - 0	 on x - 0,1
x	 x	 1

(4.4a)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

the adjoint eigenfunction^: are

*
11- - \rosin \mx l)Ymi (z)
Inj

w 	- `cos X x Y izl
mj	 m	 m mj

?	 -
mj	

cos \ 
;n	 m j (z)X (z)

^Aiere X , Y s:Itisfy system (5.10-15.16) of I with ti - 0.

(4.5a)

(4.5b)

(4.5c)
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We now decompose all dependent variables into horizontal mean (i.e.

x-mean) Plus departures from the mean as follows

_v - v_+v' , a -8 +a' , p = p +p'	 (4.6a)

where for each quantity g,

_	 al
g = 1	 g dx	 (4.6b)

al 0	 '

For the case R - 0, the equations (2.1)-(2.3) are

2	 -1
0 v_ - op = MP r I' v t + (v_-C)v}	 (4.7a)

0 • v = 0	 (4.7b)

72e + Mw = M(0 L + (v • p)A) ,	 (4.7c)

If forms (4.6) are introduced into system (4.7), then we get

2_
v`v - Gp = Mp r l ; 2t + (v •c)v + (v' • v)v'^	 (4.8a)

V • v = 0	 (4.8b)

p `@ + rtw= rl { 8 t + (v.0 )A + (v' •7)8 ' j	 (4.8c)

and

02v' - Cp'	 Mp-Ll v_t + (v_' .C)v + (_v•v)v' + r (v' • V)v_' ] f^	 (4.9„)

	

'7•v' = 0	 (4.9b)

Q29' + w' = M; 8 C + kit •7)a + lv •7)6' + C (v • v)e') f ^	 (4.9c)

where [ ] f denotes the fluctuatin; part of [ 1, 17he same boundary conditions

hold for both systems (4.8) and (4.9).

As is well-known, there is no mean velocity field induced by the

onvection and thus
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v - 0 .	 (4.10a)

Equation (4.8c) then simplifies considerably, and for steady or quasi-

static convecCion,

T
z - 

M)

If these relations are used to simplify (4.7) we obtain,

v Zv' - cp' = r4' r 1 ^ v^ t [ (V' •clv' 
]f:

v-v' = 0

(4. 10b)

(4.11a)

(4.11b)

c^e ' + ptw' 	 "1 { 9, + Mw' (w' 2') + [ (v' •v)e ,j	 (4. 11c)

We now take the scaler product of

`Vn,j ,ec. j ) at M = M c
 , R = It mj and inter;

(D! -%1 ) ( 9 x w'\ - M -1 R ,(w t a')
C	 mj	 c m, mj

(4.11a,c) with the adjoins vectors

rate over the fluid volume. This gives

We ()' + P-1v^ .v'\
mj [	 r -mj —t

t
-
 (v' •C')a']	 + Mw' kw'u')^

mj, —	 f

P -1 `. ' .^ ^v .v)v_" )	 (4.1 )
r -M j	 f

for cacti m and j. Equation (4.12) is the basis for the derivation of the

amplitude equations.
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5. SIMPLE AND DOUBLE INTERACTIONS

A. Simple eigenvalue for (1,0). Let us consider an aspect ratio

a l = 1.5 which corresponds in Figure 2 to a simple eigenvalue M c for

convection with (m l ,m,) _ (1,0).

We find that

M c = 79 .4	 (5.1)

and by hypothesis, R11 = 0. The quadratic interaction of mode 11 ge:-!rates

the 21 mode (R21 # 0) so the set-
u
 is

_ {11,21}	 (5.2a)

We write

(6',v')	 A1 (e ll , v ll ) + Al(e')1,-X21)	 (5.2b)

and substitute into equation (4.12). We obtain

vlal = kM - 'ic ) A1 - Z 1	 (5.3a)

V
2 i2 = - ` -IR2 f^A2 - z^	 (5.3b)

when M = Mc ., where

*	 -1

vm - dm c (e ml
9

ml +Pr --in --mI	
(5.3c)

fm = d-I(wml0ml)	
(5.3d)

*
dm = (. ml wml)	 (5.3e)

We shall not give all the details of the evaluations since they are parallel

to those of I. After a good deal of algebraic manipulation, we find that

if Ct l , x ? and ^1 are constants that

z l = Ct 1A 1A1) + a 1 A1(5.3f)
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Z 2 - a2 A1
2 ,
	 (5.3g)

and the governing amplitude equation takes the form

V 	 (M - `!c ) A1 - w
1 

A1 .	 (5.4)

The computations of the coefficients have btvn performed for varioua values

of Prandtl numbers and some results are shown in Table 1.

Pr -4 4
vl x 10 ^1 x 10

0.1 0.37 5.2

1.0 0.13 0•.64

10.0 0.10 0.43

0.10 0.41

Table 1

Since wl > 0, the c,)nvective state results from supercritical bifurcation

and is stable.

b. Simple eigenvalue for (2,0). Let us consider an aspect ratio

a l = 3.1 uiiich corresponds in Figure 2 to a simple eigenvalue M c for

convection With (m l ,m2 )	 (2,0). We find that

:t = 19.2.	 (5.5)
c

There is again a quadratic interaction anu the s,:txf is

I7 - r 21,411	 (5.6)

We omit all details and St.1tu 010 final amE 1 1itud.• -,quatiun,

I
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where the coefficients have the numerical values given in Table 2.

Pr v2 x 10-4 w2 x 10-3

0.1 0.44 1.4

1.0 0.13 0.26

10.0 0.10 0.25

M 0.098 0.25

Table 2

Again, u;,, > 0, the convoCL ive state results from supercritical bifurcation

and is stable.

C. Double eigenvalues for (1,0) and '1 2.01. Let us consider an aspect

ratio a l = 2.21 which correspovis in figure 2 to a double eigenvalue for

convection with (m l ,m ` ) = (1,0) and (m 1 ,m 2 ) = k2,0). We find that

rt = 90.2	 (5.8)
c

The quadratic interaction of modes 11 and 21 -,enerate modes 31 and 41. The

set	 is

^ - (11,21,31,41),	 k5.9a)

We write

(a' ,v_') _	 A 0	 V. )	 (5.9b)
1 i it —il

and substitute into equation (4.12). We obtain

3 1 Al = (`i - ;ic ):1 i - Z 1	 (5.10a)

`2A2	
(M - ` lc A2 - `'2	

(5.10b)

I - 1 R 3 f 3 A 3	 - 2
3
	 (5.10c)



M1Rfc 4 4A4	
- Z4 (5.10d)

-98-

r'

whet. M - Mc . Here the f 3 , f4 , R3 , R4 and functionals Z 1 - Z4 are defined

in analogous way as in '. Again, we omit details and state the final

amplitude equations;

v 1 :11 - (M - M c ) A I - a1 A1 A2 - 9 1 A1 - a1I1A2

2 1
(11 - Mc ) A2 - a2-	 - c2 A1 A2 - W,,A2

(5. 1'.

(5.1lb)

Numerical values of the coefficients are given in 'fable 3.

Pr 
%J1 x 10

-4 V
2 
x 10 -3 a1 x 10-3 a,, x 10-2 

01 x 
10 -3 a 1 x 10-4 a 2 x 10-4 W2 x 10-3

0.1	 0.58 3.9 - 0.88 1.5 0.18 2.3 1.3 5.0

1.0	 0.23 1.2 - 0.34 0.43 0.18 0.33 0.17 0.95

10.0	 0.20 0.90 - 0.29 0.32 0.18 0.24 0.12 0.77

M	 0.20 0.87 - 0.29 0.31 0.18 0.23 0.12 0.76

Table 3

We analyze the equations (5.11) in detail below.

D. Double eigenvalue for ( 2 ,0) and (3,0). Let us consider an aspect

ratio a 1 = 3.81 which corresponds in Figure 2 to a double eigenvalue for

convection with (m 1 ,m 2 ) - (2,0) and (m 1 ,m2 ) =(3 3 0) . We find that

M = 82.9
	

(5.12)
c

The quadratic interaction of modes 21 and 31 generates modes 11, 41, 51, 61

so the set	 is

,V	 (11,_1,31,x+1,51,61}, 	 (5.13a)
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We %-rite

6
(6',v')	

)_ `1i(eil'vil)
i=1

and substitute into equation (4.2). We obtaii

v 2
 1
2 = (:1 - rt ) - Z

2

v 3 A3 = (i•1 - Mc ) - Z3

M- 1 R f A = - Z	 1,4,5,6c n n n	 n

(5.14b)

(5.'-4c)

AN

when M - M .	 Here	 the f	 ,	 R Z	 are defincd	 in analogous way as	 in I.c n	 11' n

Ra~her than give the details, we state the final :unplitude equations.

V 2 A2 	(M - Mc )A2 - cu^A2 -	 T 2 A,^: (S.15a)

` I

v 3A3	 (M - Mc )A3 - T 
3

A 
2 

A 3 - y3 A3 (5.15b)

and the coefficients are given in Table 4.

Pr
-4

X10 -3 x 10 -4	 T 2 10-3x x 10 -3 T 3	 10-3v 2 X10	 v 3
y2 x3

x

0.1 0.46 3.6 1.4	 - 7.8 5.1 6.7

1.0 0.18 1.2 0.17	 - 1.1 0.85 1.2

10.0 0.15 0.92 0.12	 - 0.76 0.66 0.89

CD 0.14 0.89 0.11	 - 0.72 0.64 0.86

rable i
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6. ANALYSIS AND DI SCUS^ION

In cases A and B of Section 5, the self-interaction of roll cells (1,0)

and (2,0) is considered. In both cases, the interaction is governed by

single amplitude equations containing cubic but no quadratic noalinearities.

`"	 These are equations (5.4) and (5.1) respectively. '111e values v I and v'),

depending on Prandtl number Fr, are values from the linear stability problem

and for 13iven X of equation (3.3) are identical here to those of I. Careful

comparison shows this. The values w  and w 2 of equations (5 4) and (5.7)

are always positive so that these simple self-interactions always, corrL3pond

to stable supercritical bifurcation. It is easy to show taat for any values

(m l ,m2 ) t (0,0) indicated in Figure 7 that self-interactions always have

amplitude equations of the sar..e form, i.e.

vA = (M _ Mc ) A - wA3 	(6.1)

where v > 0. Presumably, w > 0 for any of these so that stable, supercritical

bifurcation is always predicted for self-interactions. This is likewise

true in the case of the circular container of I for m # 0. It is only for

the (m -0) axisymmetric mode that equation (6.1) is augmented by a quadratic

term. Thus, the axisymmetric mode bifurcates subcritically and so has

snap-through and hysteresis propertivs ac discussed in I.

In case C of Section 5, the interaction _f modus (1,0) and (2,0) is

examined near the Jouble ei;envalue at a l = 3.1 of Figure 2. The %verning

amplitude equations (5.11) .ire a pair of coupicd equations identical in

form to equations (7.10) and (7.11) of I which gov%2rn the interaction t 

modes m - 1 and m - 2 r ear their double eigenvall'e. Again, the v i are

linear theory values th.r depend on Or and 1. buL noL on the cylinder beom , try .
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Although the coefficients are not identical in th! two cases, all of the

qualitative predictions are. Figure 8 shows the resuits of oLr analysis

of (7.10)-(7.11) for a l < 3.1. The mixed mode containing both modes (1,0)

and (2,0) bifurcates supercritically at Mc and as M is further increased,

Al fellows either 0 1 UT 1 or OILT I while A2 follows 0 2 T2 . At a value of

T a M -MT greater than L 3 M2 - M l , there is secondary bifurcation to a pure	 ^+

mode m = 2. This branch is labelled T2S.

Figure 9 shows the situation for a  > 3.1. Here, as M crosses M c , Gie

pure mode m = 2 bifurcates supercritically and folluwi either curve

0 2 T2 or 02S. However, for 1 3 M -MI) less than L = 11l -MI , the pure mode

persists but only on the branch 0 2 S. Again, there is the possibility of

branch 0 2T2 bifurcating first to the mixed mude an.i then to time periodic

convection. The amplitude equations (5.11) are in form identical to these

governing hexagonal cells as predicted by Scanlon and Segel (1967) for

horizontally unbounded layers. However, since the contexts are quire dif-

ferent, the coefficients are .luite different. Scanlon and Segel find

subcriti.cal hexagons. We find only supercritical convection of mixed mode

or pure mode m = 2.

In case D of Section 5, the interaction o r modes (2,0) and (3,0) is

examined near the double eigonvalue at aI = 3.81 of Figure 2. The governin:;

amplitude equations (5.14) are a pair of coupled equations. Again, v i are

linear theory values that depend on Pr and X but not ou the cylinder geometry.

Figure 10 shows the situation for a 1 < 3.81. The pure mode (2,0) bifurcates

supercritically at Mc , I a ,•s - M2 - 0, and -toady convection follows either

branch OS as M increases. At a value of " > L a M2 - :11 there is seconder•

bifurcation to the mixed mode containing both modes (2,0) and (3,0) and as

M increases further, A2 follows either br:.nch S'U and A. 3 follows a branch ST.
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Figure 11 shows the situation for a  > 3.81. Here, at Mc , the purc mode

(3,0) bifurcates supercritically and follows either br:.nc; ► OS until

T = M - M 3 - Tj e < G a M` - M 3 . Here, there is secondary bifurcation to a

mixed mode in which A2 fellows either SU and A., follows an ST. Me sequence

of eve-its here, near a = 3.81, has no counterpart in I since there was no

double eigenvalue there for modes m = 2 and m = 3. However, the amplitude

equations (5.14) have the form typical of Rayleigh-Benard convection i.l

containers as discussed by Rosenblat (1981). fhe Figures 10 and 11 are

typical of Rosenblat's results which apply to the buoyancy-driven convection.

In summary, we again find that interactions near double eigenvaiues

give qualitative features that strongly distinguish behavior for aspect ratios

on one side from behavior on the uther side. Parallels as well as different•-,

in behavior exist between the circular and rectangular cases.
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CAPTIONS FOR FIGURES

FIGURE 1: Stability curves M versus a l for L - 0 at a2 - 0.5.	 The

pairs (ml ,m2 ) denote integral number of cycles in	 (al,a2).

FIGURE 2: Stability curves M versus a l for L - 0 at a2 - 1.0.	 The

pairs	 (m l ,m2 ) denote integral number of cycles in	 (al,a2).

FIGURE 3: Stability curves M versus a 	 for L - 0 at a2 - 1.5.	 The

pairs	 (m l ,m ` ) denote integral number of cycles in	 (al,a2).

TL;URZ 4: Stability curves M versus a 	 for	 - 0 at a2 - 2.0.	 The

pairs (m l ,m2 ) denote integral number of cycles in	 (al,a2).

FIGURE 5: Stability curves M versus a l	for L - 0 at a 2 - 3.0.	 The

pairs	 (m l ,m2 ) denote integral number of cycles in	 (al,a2).

FIGURE 6: Stability curves M versus a l	for L - 0 at a 2 = 3.5.	 The

pairs	 (m l ,m2) denote integral number of cycles in	 (al,a,)).

FIGURE 7: Stability map for preferred mode as a function of al and a l .	 L = 0.

The figure is symmetric about a 1 n a2 .	 The pairs (ml,Ln

denote	 integral	 number of cycles	 in	 (al,a2).

FIGURE 8: The bifurcation diagram for a,, - 1.5, 	 and a l slightly less	 than

3.1 where	 - M2 - M1 .	 Solid lines	 represent stable branches

while dottad lines represent unstable branches.

FIGURE 9: The bifurcation diagrams	 for	 a,,	 - 1.5,	 and a l slightly greater

than 3.1 where G	 - 'il	- M2 .	 Solid	 lines	 represent stable

branches while dotted	 lines represent un::cable branches.

The curly lines	 represent	 time-periodic bifurcation;;.

FICL'RE	 10: The rifurcati:-)n diagrams	 for	 a. )	- 1.5,	 and a l	slightly less	 than

J.81 where G - M3 - M2 . Solid lines represent stable branches

while dotted lines represent unstable branches.

FIGURE 11:	 The bifurcation diagrams for a ` - 1.`_, and a l slightly greater

than 3.81 where	 - M2 - M3 . Solid lines represent atabic

i
branches while dctced lines represent unstnb.e branches.
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APPEND,.: A

The classical Rayleigh-Renard problem for the stability of a

horizontal layer of Boussinesq fluid heated from below can be reduced to the

solution of the pair of ordinary differential equations)

	

2	 ^

	

( °,- a2)6 +w-0, 	( a2 - a 2 ) 2w--Ra 23 -0,	 (1)

	

dz `'	 dz

where 6, w are rec-pectively the temperature perturbation and the vertical

velocity-component Nerturbation; a is the wave number of disturbances in the

horizontal plane; z is the vertical coordinate; and R is the Rayleigh number,

proportional to the vertical temperature gradient in the equilibrium stare.

Equations (1) hold on the interval 0 < z < 1, and their solutions are required

to satisfy prescribed boundary conditions of the form

P0 6 + Qkw - 0 on z - 0, P 1 0 + Qkw - 0 on	 - 1, k - 1, 2 9 3.	 (2)

Here Pk, Qk , Fk , Qk are linear differential operators whose particular Forms

depend on the characteristics of the boundary surfaces.

For a layer of unbounded horizontal extent the buundary-value problem

(1)-(2) has	 nontrivial solution for infinitely many values of R. More

precisely, there is a countably infinite number of simple eigenvalues for each

wave-number a given by a characteristic equation of the form

	

R - R (a),	 n - 1, 2, 3,	 ..	 (3)
n

with

R1(a) : R 2 (a) < R 3 (a) < ...	 (4)
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for each a. The critical Rayleigh number for the onset of instability ib

given by

R M R (a )	 min R (a).	 (5)
c	 1 c	 1

a

,-	 Corresponding to each R n there is an eigensolution

A
n	 n
(z; a), w (z; a),	 n = 1,	 3, ...;	 (6)

for various boundary conditions of the form (2) it can be shown that the

eigenvectors (6) constitute a complete set, a fact which may be useful for

com;utations of the corresponding nonlinear stability problem.

As an example, the simplest case is that when both boundaries are

isothermal and stress-free. Conditions (2) then become

2

d

	

	 w= d w , 0 on z- 0 and z- 1,	 (7)

dz`

whereupon the characteristic equation (3) has the well-known form

R	 [(nr)2+a211
n

	

	 2
a

with eigenvectors

5
n	 n
- sin nnz, w - [(nn) 2 + a 2 ]sill nnz.	 (9)

Pearson st,idied the Mara ngoni problem, in which the instability was

(8)

driven by surface-t-nsion gradients rather than by the buoyancy force.

Subsequently, Nield 3 investigated the problem allowing the presence of both
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buoyancy and surface tension. In these cases the governing equations again

reduce to the system (1) (with R - 0 in Pearson's work). The boundary

conditions have the general form (2) but of necessity contain a new

parameter, the Maranbont number M. In the specific problem considered by

both Pearson and Nteld the boundary condttions were

A - w	
3z	

0 on z	 0	 (10)

i	 and

di
+ by - w - dd-2 + Ma 20 - 0 on z - 1,	 (11)

dz

where h is a surface Nusselt number. These correspond to a rigid, isothermal

lower boundary and a stress-free, conducting upper boundary.

Both Pearson and Niel.: were concerned to determine a critical

Marangont number for the onset of instability for fixed values of the other

parameters of the problem. Detailed calculations by y ield 3 led to a single-

valued characteristic equation of the form

M - M(a, R, h);	 (l2)

in other words, the boundary-value problem (1), (10)-(11) has a unique

eigenvalue M for each value of a, R and L (and, correspondingly, a unique

eigenvector). The critical Marangoni number was then found to be

	

M - M (R, h) - M(a	 R. h) - min M(a, R, h)	 (13)
L	 c	 c

a

ham
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with a` - a c (R, h). For example. Nield 3 found 4, c (0. 0) a 79.b117 wtth

	 I^

a c (0. 0) - 1.993. The graph of the function (12) for the rwnge

-500 < R < 1000 with a a 2 and h - 0 is shown in Figure 1.

Figure 1

There appears to he a discrepancy between the Rayleigh-Benard problem

and the Marangoni problem: the former has countabl y many etgeuvalues R n while

the latter has only one eigenvalue M. This is somewhat surprising, since the

houndary-value problem (1), (10)-(11) tucorporates both buoyancy and surface-

tenston effects. A possibly disturbing consequence t y that the M.tr.ingoni

problem does not seem to have a complete set of etdeafunctiona j which could he

used for computations of nonlinear stability.

This discrepancy is reconciled b y noting that the inverse of the

function (12) has couat.thly twny values of R for each fixed value of M, .t and

h. In fact. the inverse of (12) is of the form

R - R (a, M, h ), n 	 (14)
n

Thus, for each M there are infinitely mtny et,tenvalues R n , but only cne

eigenvalue M for e.i. • h R.

We have computed the functions (14) by inv e rting the explicit formul.t

(12) given by Nit-old.	 In otir notation
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M - A/B
	

(15)

where
2

A - [1 + L + 2a2 1 
`i^

-RJ. C (m")`dm 
+ 2Ra`[	

(mn)

	

1	 Qcosmn 12, 	 (16)

m-1	 m	 m-1	 m	 m-1	 m

.	 ^	 2

B - 232 y 
(mn)2	

(ma )`dm
	 ,82 

m 
(mrr) - cos mn	

( mn) dmcosmrr (17)

A	 A	 L	 A
m-1	 rn	 m-1	 m	 m- 1	 m	 m-1	 in

with

	

d 
m - 

(mn) 2 + a 2 , D
m 

- d 
m
3 - Ra

2
.	 (18)

Calculations were performed for the case h - 0 and a - 2, and are shown in

Figure 2 as a graph of R against M, different scales heing used because of the

large range of parmet,!r values. The dotted segment of the lowest curve

corresponds to the curve depicted in Figure 1.

Figure 2

We find from the calculations that the curves intersect the R-axis er

values R l - 676, R-, - 2.11 x 104 and R 3 - 2.05 x 10 5 . These compare well with

the values obtained from forrmrla (8) at a - 2, namel y , R i - 668,

R-, - 2.06 x 104 and R 3 - 2.00 x 10 5 . Also, the lines R - 6.7 x 10 3 and

R - 9.9 x 104 are asymptotes for the curves.
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This analysis shows that although a critical value of M can be

determined, the Marangoni number is not strictly speaking an eigenvalue of the

boundary-value problem, whereas the Rayleigh number is.

This work was supported by a contract with the National Aeronautics

and Space Administration, Lewis Research Center.
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CAPTIONS FOR FIGURES

FIGURE 1:	 The first critical curve R versus M for h . 0.

FIGURE 2:	 The first three critical curve R versus M for h = 0.



Figure 1
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.

APPENDIX B

The eigenfunctions 
Xmij (z) ' 

Ymij(z) used in the expansion procedure are

the solutions of the boundary-value problem (4.10) -(4.12)	 for fixed M = Mc,

for R = Rmij and with h = 0.	 Using the Fourier series method of Nield (1.964)
Y

we find that

m ^

X	 (z) = z +	 a sin rmz	 ,	 y
n	 mi 

j (z) _	 a	 sin n-rz (1)
mi 

j
n=1

n
n=1

where the coefficients Ctn , O
n 

are defined in the following way.	 Let

do =	 (nrr) 2 +X 2 (2)

A	 - d3 - R% 2 (3)
n	 n mij mi

and

J do - Rmi	 -	 (nr) 2Mc (4)n
j

then

2%2. cos nr- J	 -	 (w) Q

CL =	
ml ^n

(5)

n

and

n:, x	 a	 -	 211 2 . cos nT
d = n 	 n	 mi (6)

n nr, M
c

,,.,here

m

1 + 2% 2 	(Jk/Gk)
k=1 (7)

^l (k T) 2cos k., 	 kj
k=1^

u
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f	 The formulas (Al) can also be used to calculate the first derivative of Xmij

and the first and second derivatives of Ymij , wh =.ch are required in the nonlinear

interactions of Sections 5-7.

The adjoint eiaenfunctions Xmij and Ymij are the solutions of the adjoint

boundary-value problem (5.14)-(5.16) with M = M c , R = Rmij and h = 0, as before.

We find that

	

M	 m

X* (z) = z + E Y sin nrrz , Yx (z) =	 b sin mrz	 (8)
mij	

n=1 n	
mij	

n=1 n

where

	

2X2 1(d 2 - R	 )cos nrr + (nrr) `R	 H
Mil	 n	 mii	 mi jY n =	 ^,	 (g)

n

and

2nrrMc (d nH - cos rrr)	
(10)

5 n	 A
n

with

m

L{ (k-.T )2c  o s krr /,Q

H = k=1
m

(krr)2dk/"^
k=1
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