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SUMMARY

In this report we consider a iiquid in & cylindrical container having
either circular or rectangular cross-section., The bottom of the container
is a rigid, perfect heat conductor while the upper surface is a free interface
between the liquid and the bounding gas. The bottom of the container is
uniformly heated and heat is lost to the gas at the top. The basic state
ccnsists of zero velocity (motionless 1iquid) having a linear, purely con-
ductive temperature profile. 1If the vertical temperature gradient is large
enough, this pure conduction state becomes unstable due to the joint effects
of two mechanisms, The surface tension on the interface depends on tempera-
ture and Marangoni convection sets in, The non-dimensional m=zasure of the
suriace-tension gradient is the Marangoni number M. The vertical gravity
field sets up an adverse density gradient so that buoyancy effects lead to
convection, The non-dimensional measure of the buoyancy is the Rayleigh
number R.

We formulate the general problem of nonlinear convective instability driven
by the joint effects of thermocapillarity and buovancy. The upper free sur-
face has a general heat transfer condition applied and the interface is
allowed to deform, Sidewalls ccnfine the layer. The problem solved
involves a special case of the general problem, The surface tension on the
interface is so large that surface deflections are neglected, The sidewalls
are adiabatic and impenetrable but for mathematical simplicity are allowed
to be "slipperv'".

In order to determine the etfect of sidewalls on the critical
Marangeni number in finite containers, it is first necessary to develop

the basic equations and boundary conditions. The basic equations are the
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Navier-Stckes, continuity and energy equatioas, and the boundarv conditions
express the conditions of no slip and cowvstancy of temperature at the bottom
surface of the layer, conservation of momentum and energy at the free inter-
face, and the sidewall conditions alluded to ahove,

If we denote by a the ratio of the mean fluid depth to the radius of
the cylinder, then we find the critical conditiors M >'Mc = Mc(a) for the
instability of tue pure conduction state., At most v:iues of the aspect
ratio a, linear stability theory selects a single cell shape of steady
Marangoni convection that replaces the pure condition when the conducticn
is unstable, The cell shape is characterized by an integer m since all
solutions are proportional to exp(imp) where ¢ is the cylindrical azimuthal
angle. Thus m = Q corresponds to axisymmetric ring cells, Alternatively,

m = 1 corresponds to convection patterns in which there is upflow in one
half the container and downflow in the other half, Clearly, the modes for
larger m correspond to more complicated cellular patterns. The linear
theory shows that as the aspect ratio a i:. increased from zero that the
preferred modes follow the sequence m = 1, m = 2, m = 0, m = 3, etc. We
study convection near intersections between modes and away from such
intersections,

The linear instability theory for the case of the rectangular container
is even more complicated, as two aspect ratios are necessary to describe
the container, We denote the dimensionless length and width of the rectangle
as (al,az). Again, modes of convection are denoted by integers (ml,mz)
corresponding to the number of cells in the horizontal directions (x,y).
Thus (1,0) is a single roll cell with axis in the y direction. Parameter

studies result in a map in the (al,aq) plane which gives the modes which
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are preferred according to linear theory. We shall be especially concermed
with boxes which are of shallow depth relative to their length 8,3 this
means we shall focus for fixed a2 on the progression of roll cells (m,0) as
the length a, of the box increases, Again, we study convection near inter-
sections Letween modes and away from these.

In all the above calculations, both for the circular and the rectangular
geometries, results are obtained for various Rayleigh numbers (measuring
buoyancy) and various Biot numbers (measuring heat transfer to the gas).
However, for all the nonlinear results obtained both the Rayleigh and Biot

numbers are set to zero. Subsequent work will cover cases involving non-

zero values of these numbers.

In order to determine the mode of convection that is observable in
an experiment, it is necessary to develop a nonlinear theory. Such a theory
predicts the amplitude and direction of fluid motion, and for container
sizes for where two different modes of convection compete, is capable of
making predictions of the convection pattern as a result of such a nonlinear
competition,

Consider a single mode, whose amplitude 1is denoted by A(t). Then

according to linear theory, A satisfies an equation of the form,

dA
vl (M-MC)A (3.1)

where v 1is a constant which depends upon the mode in question, the aspect
ratio, and the Prandtl number. According to (3.1), A will grow in time
vhen M > Mc’ and decay when M < Mc: this is the result of linear theory.
When M > MC, (3.1) is no longer valid tor all times, and a nonlinear theory
is necessarv to describe the convection, The nonlinear analog to eq. (3.1)

may be derived using eigenfunction expansions, 1In the simplest case,
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such a procedure results in the amplitude equation,

3

(3.2)

dA
AT M -MC)A - kA

where k is a computable constant which depends upon the mode, the aspect
ratio, and the Prandtl number. Conclusions regarding the form and ampli-
tude of the convection may be made by examining the solutions to eq. (3.2)

and their stability. For example, there are three solutions to eq. (3.2),

AnQ, A==z [k-l(M'-Mc)]g. It is easy to show that for k> U, M > Mc, the
null solution is unstable and the other solutions arc stable. Conversely,
if k < 0, real solutions exist for M < Mc only, and these are all unstable,
Thus for k > 0, the system evolves to a stare of steady convection whose
magnitude is given by lAl. The purpose of our nonlinear theory is to derive
the amplicudg equations analorous to eq. (3.2) for Marangoni convect{ ' in
finite containers and to determine the steady solutions and their stability.
For example, (subcritical) convection can in some cases exist for M < Mc,
even though a linear theory would predict no convection.

When the container has aspect ratio close to those values for which
two modes become unstable simultaneously, one must write a pair of equa-

tions for the amplitudes, Al(c) and A,(t), say. These will be ot the form

dA

\ 1 - - f 1

S rai (M Mcl)Al tl(Al,:\z) (2.3a)
daA

Vs f = (M-Mcz):\: - fz(:\l,:\:) (3.3b)

where fl’ f, are nonlinear tunctions of their arpguments, and EI(O,O) =
f,(0,0) = 0. Cleavly, near these aspect ratios, more stedady solutions

exist to eq. (3.3) then in the case of a simple mode, and the hehavior is

more complex.

- gl
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We have derived the forms of eqs. (3.3) for finite amplitude Marangoni
convection in cylinders and boxes, and have determined completely the steady
solutions and their stability., We discuss in detail here the results for
the cylindrical containers. Results for the rectangular box are similar
in many ways.

A nonlinear theory of convection is developed so that at each aspect
ratio a of the cylinder, we can compute the whole fluid and temperature
field. As long as m # 0 so the convection is non-axisymmetric, we find
that the instability is supercritical i.e. even when disturbances of con=-
duction become larger, there is no sustained convection for M < Mc(a).
However, when m = 0 and the convection is axisymmetric, we find a range of
subcritical convection at M < Mc(a) as long as the disturbance level is
large enough. The theory for m = 0 also distinguishes the flow direction at
cylinder cen?er. It rises in the ceuter when the Prandtl number Pr of
the fluid satisfies Pr 2 1 and descends in the center of Pr is small.

There is a special value a, of the aspect ratio a where two distinct

A
instability modes, m = 1 and m = 2, of linear theory are equally likely.

In this case our nonlinear theory can be applied for, say, a near A and
predictions can be made for fixed a and for M increasing above MC. We

find very interesting phencmena, For a >-aA, the linearized prediction (at
M= MC) of convection is mode m = 2, Then, as M is raised, there can be

a sudden transition to m = 1 convection and possibly time-periodic motion.
Alternatively, the mode m = 2 can persist, On the other hand for a < aA,
the linearized prediction (at M = Mc) of convection is mode m = 1 and the

nonlinear theory shows that mode m = 1 must be veplaced by mode m = 2. Ve

thus see a lack of symmetry in the behavior on the two sides ol a = aA.

the
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There is a special value of ay of the aspect ratio a where two discinct
instability modes, m = 2 and m = 0, of linear theory are equally likely,

For a > a_, linearized theory gives axisymmetric convection as preferred.

B)
Our nonlinear theory shows that this convection is subcritical (i.e. occurs
at N < Mc). As M is increased, there is a tendesncy to remain on the
axisymmetric mode with no further transition though m = 2 convection can
exist under certain conditions, On the other hand, when a < ag, there is
a very complicated sequence of transitions predicted. At the neutral curve
M = MC) linearized theory states that mode m = 2 appears. However, nonlinear
theory gives the following result. As M is increased above Mc’
mode m = 2 convection begins, As M is increased further, this mode m = 2
becomes unstable and there is a sudden transition to the axisyumetric mode
m = 0 which then persists for increasing M. Howuever, if M now
decreases below Mc there would be a sudden transition not tn the uwode
m = 2 but to pure conduction. Hence, there can be dvnamic hysteresis
loops in tinls case. Notice again the lack of symmetry for a ;)aB and a < ag.
The behaviors are quite different.

These behaviors are predicted to occur for Marangoni convection, but
not for buoyancy-driven convection. In all our nonlinear work we have neglected
buoyancy by setting the Rayleigh number R = 0 and have examined pure
Marangoni convection M # 0. Rosenblat, in an independent study, has
examined the complementary problem of pure buoyancy driven convection,
R#0,M=0, in a cylinder, He finds linear stability curves similar to those
obtained here., He analyzes the nonlinear theory and finds the following
behaviors., All modes of convection,including the mode m = 0,bifurcate
supercritically, Near intersections, the transitions fer R increasing
are alwavs symmetric in the sense that on either side, the mode predicted

by linear theory (at R = RC\ suddenly becowe unstabic (4t R} R Y to mixed
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modes composed of the modes at the intersection point. Hence, there is no
subcritical instability, no lack of symmetry near intersections and no
dynamical hysteresis,

Comparison of the above two sets of predictions is crucial for
evaluation of possible space experiments since under micro-gravity condi-
tions the first behaviors should occur,while for thick layers on Earth,
buoyancy dominates and the second behaviors should occur.

The structure of this report is as follows. Chapter I gives the full
analysis for convection in circular cylinders, This includes discussion of
previous work, formulation of the governing equations and boundary conditionms,
linear and nonlinear stability theory, and finally discussion of the physical
implications of the theory. Chapter I1I gives the parallel development for
convection in rectangular cylinders. Certain mathematical details are
postponed to Appendices. Thus, all Tasks required by the contract are
fulfilled though in a different order than specified. The structure was
chosen in order to emphasize the physical understanding of the phenomena,

All aspects of the circular geometry are compl:ted first, Then all aspects

of the rectangular geometry are examined,




CHAPTER I. CONVECTION IN CIRCULAX CYLINDERS

1, INTRODUCTION

Consider a uniform layer of liquid having infinite horizontal extent,
bounded on the bottom by a solid plate and haviug a free surface on the top.
When the plate is heated with respect to the gas at the free surface, a
purely conductive static state may exist, in which P is the (constant) magri-
tude of the temperature gradient. If the free surface possesses surface
tension 0, the variations o(T) of surface tension with temperature T can induce
Marangoni instability. This thermocapillary instability was identified and
explained by Pearson (1958) who showed, using a linear stability theory, that
a critical value of Marangoni number M must be exceeded before the conducti-re

state becomes unstable. Here,

8
(1.1)

do . . . ;
where aT is the (negative) rate of change of surface tension with temperature,
the subscript zero denoting a constant value at a given reference temperature

T d is the thickness of the undisturbed layer; <_ and Ko are the thermal

0’ 0
diffusivity and dynamic viscosity of the liquid, respectively.

The critical value MC of M depends on otner parameters: the surface Biot
number h, which is the non~-dimensional version of the leat transfer coefficient

at the free surface, and a capillary number C, which is a non-dimensional

version of the mean surface tensicn cO = U(TO)- Here

C = upty/%d - (1.2)

Pearson (1958) limited his analysis to C + 0, which means that the free surface
does not deform as a result of disturbances. He finds, for h = Q0 and a perfectly

conducting lower bouundary, Mc = 79.6 in the absence of gravity.

vRECEUING PAGE BLANK NOT FILMED
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Whea a vertical gravity field is present, so tunat the layer is heated

from below, Nield (1964) shows, using Pearson's model, that buoyancy-induced
instabilities and thermocapillary instabilities reinforce on another.
Since the work of Pearson and Nield, linear stability theory on the

Marangoni convection problem has been extended in several directions to include

two dvnamical phases, C # 0, and further effects of an imposed vertical gravity
field; Scriven and Sternling (1964), Smith (1966), Zeren and Reynolds (1972).

A recent survev, Sfrensen (1978), discusses these as well as many other

extensiong. Palmer and Berg (1971) find that the theory of Nield (1964) pre-
dicts well the experimental conditions for the onset of convection in shallow
layers.

As in the case of Rayleigh-Benard convection due to buoyancy effects, the :
horizontal planform of the convective state and the amplitude of the motion

(and heat transfer) are undetermined by linear stability theory. In addition

as in Rayleigh-Bénard convection, the critical point MC, corresponding to the |
critical horizontal wave number, is infinitely degenerate; there are an

infinite number of planforms allowable by linear theory. Nonlinear effects
presumably select from this set those that appear in experiments. The first
nonlinear analysis of Marangoni inastability is due to 3canlion and fegel (1967).
They consider an infinite-Prandtl-number fluid, an infinity-deep layer and

only twe planform functions from the infinite set. Their prediction is that
hexagonal-cells is the only planform that exists aud is stable when the
conductive state becomes unstable, Hexagons exist and are stable for an interval
of M < MC so that subcritical convection is predicted. They do not attempt to
enlarge the set of planform func:iions beyond the chosen two. However, their

prediction is in qualitative gccord with cxperimental observations. Keschmieder (1967)
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always finds very regular hexagons in shallow layers, the regularity stemming
from the precise thermal controls used. These pictures should be compared
with those of Benard (1900) who finds irregular, polygonal cells in convection
dominated by thermocapillarity.

The only other nonlinear analysis of Marangoni instability is due to
Kraska and Sani (1979). They consider six planform functions (including those
of Scanlon and Segel) and also complete a nonlinear analysis. However, they
encounter difficulties in analyzing the stability of their nonlinear states
and find a lack of closure in adding any seventh state to the original six.
These difficulties may be related to the adjoint operator they define, which
seems not to be appropriate to the problem,

All of the above work is stimulated by the recognition that Marangoni
instability is the prototype instability associated with the transport of
heat and/or mass across interfaces. The presence of such instabilities can
augment the transport rates by orders of magnitude compared to that of pure
conduction, Particular aspects of these trarsport processes have motivated
many of the generalizations mentioned above,.

In recent years there has been a new interest in tlows driven by thermo-

capillary forces. With the advent of Spacelab research, there is the possibility

of performing fluid mechanics experiments in space, The micro-gravity erviron-
ment allows interfacial forces to dominate gravity so that one may be able to
design experiments that focus on effects submerged on Larth by gravitational
effects. The present work is motivated by such corsiderations,

There are special difficulties in microgravity environments. These

are illustrated in Figure 1.
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Figure 1

Here, a mass of liquid is placed in a wide dish. On Earth, as shown in
Fig., la, the liquid fills the dish nearly uniformly except for small menisci
near the edges. A meniscus has a width W that scales as B-%d where B is

o is the liquid density and g is the gravitational potential. Thus on Earth
W is usually a fraction of d, whereas for gravity at 10-6g, the meniscus "fills
the whole dish", as shown in Fig, 1b. Alternatively, depending upon the

liquid volume, the contact angle and the wetting properties of the solid, the
liquid mass might form in to a sessile drop or sphere or bte detached entirely
from the container as shown in Figures lc and ld. Thus, aay Marangoni insta-
bility study to be applied to microgravity conditions must aliow for the
experimental necessity of near-by, confining sidewalls., Figure 2a shows a
possible configuration of the free surface when the aspect ratio is near

unity. The sidewalls help to both confine the liquid and limit the degree of

curvature of the fre- surface.

Figure 2

|




In the present studies we address the problem of Marangoni instabilities

in a cylinder. Our particular interest is to explore the nonlinear i .ter-
actions near M = MC and in particular transitions from one convect:ive state
to another that may occur at supercritical conditions. Given the difficulty
of such a study, we make several simplifying assumptions., (i) We let the
capillary number C + 0. Hxnce, the top free surface is non-deformable, 1In
addition, we take the contact angle at the sidewalls to be compatible with

a flat free surface. Thus, in the basic, conductive state there are no
menisci and in the convective state the free surface remains flat (Figure 2b).
(ii) 1In order to allow the linear stability theory to be solved using normal
moaes (separation of variables), we idealize the sidewall boundary conditions
in the following way. The sidewalls consist of a circular cylinder through
which there is zero heat flux and zero mass flow. However, we allow the
walls to be "slippery" so that rather than the nu-slip -ondition, we appiy
the conditions of zero tangentiai vorticity. Clearly, such an idealization
modifies the predictions of a theory. We shall discuss ipr detail some
implications of this idealization and suggest how results of suck a theory

should be applied,

In the language of bifurcation theory, we study the p.rfect problem.
Imperfections due to horizontal temperature gradients or free-surface deflecticns
will not be treated here. Notc that the change from ''slippery" to no-slip
sidewalls is not an imperfection .

Given the model described, we shall find the nonlinear Marangoni
convective-states and determine their stability. <(learly, the presence of
the sidewall makes the sp-ctrum at M = HC discrete so that the complete behavior
can be examined., Of course, hexagonal cells for swmall containers will never
dppear, since the allowable cell shapes are Juminated by the svidewall constraints,

Ui FulX QUALITY




We obrain its behavior, its amplitude and hence can find all transport quantities

of the convection. At certain aspect ratios two lincarized modes are equally
likely at critical conditions. We analyze such double eigenvalues and find
certain strong behaviors. The transitions as M is increased for aspect ratios
on one side of the double eigenvalues, differ substantially from those on

the other side of the double eigenvalue. Such a demarcation of behaviors
should be characteristic of the nonlinearities and hence should be observable
in an experiment,

The technique of nonlinear stability theory we use is due to Rosenblat
(1979), who makes an eigenfunction expansion of the nonlinear problem. This
"i{nfinite-matrix" form is systematically simplified by defining & new small
parameter related to the separation of the cigenvalues of the matrix. The
results coincide with the usual waekly nonlinear bifurcation thceory very near

MC, but gives a wider range of validity. It is the wider range that allows

us to predict the successive transitions,
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2, FORMULATION

Consider a viscous liquid ,which partially fills a cylindrical
container of circular cross-section. The mean depth of the liquid i-
d, and the radius of the cylinder is taken to be ad, so that the mean aspect
ratio (ratio of radius to mean depth) is &. The axis of the cylinder is anti-
parallel to the direction of gravity, and the upper surface of the liquic 1s

open to an ambient gas.

The liquid {s assumed to be Newtonian, to have constant

viscosity u_. and to be heat conducting with constant thermal

0
diffusivity o The density p* of the liquid {s taken to vary with the

temperature T* according to the equation of state

p* = Do[l - a(T* - TO)] 2.1)

where p,, Ty are constant reference density and temperature regpectively, and

Ol
wvhere a {3 the coefficient of volumetric expansion. The liquid-gas interface

has a surface tension o* which varies with temperature according to the

formula

X =g =g (T* - 2.
3 % ol(Ts ro) 2)

where GO’ o1 are constants and T; is the temperature at the {nterface.

The Boussinesq approximation is assumed; the governing equations in
+ bulk of the liquid are the Navier-Stokes, continuity and energy-balance

equations:




o
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I
Jy* -
aoi.é_z.; + (!ﬁ-v*)!i‘} a Uk '-T* - 0.8: (2.3)
v*.!* = (2 4)
JT* L X3 ] *® - V*z ® 2.5
F + (! )T = no T (2.95)

where v* {s the velocity vector, g is the acceleration due to gravity, ;* is
the stress tensor, z i{s a unit vector in the upward vertical direction, and
t*, V* refer to dimensicial time and space derivatives respectively. For a

Newtonian liquid the stress tensor has the form
Thoa -pt] 4 “O[V*!“ + (Vt!t)r] (2.6)

where p* {s the pressure and I is the identity tensor.

We shall work in a cylindrical polar coordinate system, with the
origin at the center of the lower clircular boundarv. The mean height of the
liquid is located at z* = ¢, and the lateral boundary at c* = au.

The lower boundary is at z* = 0 and is assumed to be a rigid,

perfectly conducting plane, Thus, we have

I = TO + 8d on =* = (2.7a)




and
!* =0 on z* =0 (2.7b)

where we shall take 3 > 0.

The upper boundary 1s a free surface, denoted S, which i3 cooled ty
heat transfer to the gas. We take the heat transfer relationship to have the

form
-neVAT* = h*(T* - To) + 3 on S (2.8a)

where n 18 unit normal to S dirccted into the zas, and h* is the heat

transfer coefficient. We write
S: z*x = g% + n*(r¥, t*), (2.9)

where Ef denotes position vector in the horizontal plane, so that the

kinematic boundary condition takes the form
*
= geF Y yReVH(z* - d¥ - %) =0 on S. (2.8b)
Finally,we have the dynamic (stress) boundary couditions, wvhich are
l*-g = ZH*G*Q - nx (g x Y*g*) on S (2.8¢)

where H* 1s the mean curvature of the surface. Equation (2.8c) expresses the

fact that the stregs tensur experiences a jump {a the normal direction Jdue to
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surface tension and a jump in the tangential direction due to (thermally-

induced) variations in surface tension.
The lateral boundary S; 1s assumed to be adiabatic. This give the
condition

*TXe -
VaT*en L 0 on SL (2.10a)

where o is unit normal vector in the outward direction. If the boundary were
rigid we would have v* = O there. However, as explained in the Introduction,
we take instead the idealized, mathematically simpler condition that the
sidewall i3 a nondeformable surface on which the tangential vorticity is

zero. Nondeformability implies that SL colncides with r* = ad,

0 ¢ 2 <d+ n*, and we have the conditions

*. = L]
vhen, 0 on SL (2.10b)

and
EL x (BL x % x !*) =0 on S, . {2.10¢)

L

To close the system we require a condition at the contact line where
the free surface meets the sidewall. 1In this paper we shall assume the

contact angle to be fixed at the value #/2, so that we have the condition

knNe - . .
VAnken = 0 (2.11)

An equilibrium solution of the system (2.1)-(2.11) is the follow'ng:
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vk =0, T*= T = Ty + B - z¥)

o*=p=p, {l-aB@-2z0) , o= at = 0, (2.12)

0.
- , . )
I* = I = oped {(2%/d - 1) + 3 aBd(2*/d - 1)7}L.

This {s the conduction solution, whose stabiity we propose to examine. The
gas pressure has here been set equal to zero. Note that the liquid-gas

interface i{s flat, and that the temperature at the upper boundary is Ty, which

implies that B is the vertical temperature gradient.

We now perturb the basic state (2.12), and at the same time introduce

appror '{mensionless forms of the equations and boundary conditions. We
scale lengths on the depth d, and write

r=r%d , z=zzx/d , " =7%/d (2.13)

with r = {r, ¢, z) in cylindrical polar coordinates. Unilt vectors in the
corresponding directions will be denoted (r, ¢, z). The liquid occupies the
region 0 < r < a, 0 <z <1+ n in this dimengionless coordinate system; the

equation of the free surface S is
z =1+ n(gl, t) (2.14)

where r. 13 dimensionless position vector in the horizontal plane and t is

1

dimensionless time, defined below; the lateral boundary SL ig r = a,

0 C=z2<1 +n,
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Since our interest is focussed on motions driven by surface-tension
gradients, it is appropriate to base velocities on the Marangoni velocity

scale VM' defined by

VM - oxﬁd/uo. (2.15)

The time-scale will theu be d/VM, so that we wrlite
t - c*vM/d. (2.16)
We now introduce the following representations:
vk = V\‘!\_r - VM(U' v, W)

b

TH =T +8d8 =T, +3d(l -z + )
ok m o - ay - - 3 -z 2.
e o u,JCPde o \x.)o,.d(l z + 9) (2.17)
o% = 00 + alﬁd(n - 8)

e T H (uVL/d)1 = pogd {(z - 1) + & add(z - D2+ (uv,/d)T,
=5 T o'/ ¢ = Po 2 - oM 41

where the perturbatfon field quantitites 89, v and I are functions of r and ¢,
and where the forms of p* and u* derive directly €from (2.1) and (2.2)

respectively. 7Tl stress tensor T can be written in the form

D e o-pl 4 [Vy + (T0)T) (2.18)




where p is the [ressure.

We substitute (2.13)-(2.18) into the governing equations and boundary

conditions (2.1)-(2.11). T'e equations in the bulk of the liquid for the

perturbation field quantities are found to be

v

..1 -
Pr M {SE'+ (veV)v} = -Vp + 7

2

Tev = ()

a0 2

M i?? -w+ (ve7)8f = 778

where the parameters appearing here are

Marag;oni number

Rayleigh nunmber

Prandtl number

The boundary conditions are as follows.

2
VMd clﬂd

K

M =

0 )
aBgdapo

P-_.__.-:__

Y0 0

boundary, equations (2.7) reduce to

9 =9

v=_0

on z =0, 0¢r s« a,

on z = 0, 0« vz

v + M TRoz

(2.19)

(2.20)

(2.21)

(2.22a)

(2.22b)

(2.22¢)

On the lower torizontal

(2.23a)

(2.23b)
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On the upper surface S, given now by (2.14), the heat loss condition (2.8a)

becomes

neve = 9‘; -1-h(8=-n) on S (2.24a)
where

h = h¥*d (2.22d)

is the surface Biot number. The kinematic condition (2.8b) becomes

an an v
! —_— - — - = 0 . 2.2%b
T +u 3T + 3 w on S (2.24%b)

It is convenient to decompose the stress condition (2.8c) into an ejuaticn
normal to the surface and an equation tangential to the surface. If we write

normal and tangential components as
(Irm)_ = (mem, (I'm),, = (G0 - [(z+m)-nln,

we obtain the dynamic surface conditions

G(n + % gsrnz) + MC(3*n) - M {1 + MC(n - 8)} = 0 on S (2.24c)

and

(r*n) _+nx{nxV(n-239)}=0 on S (2.2644)

where H = H*d {s dimensionleys mean curvature, and where the two new

parameters appearing here are 5
pogd
(2.22¢)

Bond number G = 5

0

e - U TR B

|

.



capillary number C = . (2.22¢)

ag.d ,

On the lateral boundary S; we have that n, = Hence the boundary

conditions (2.10) become

3? = 0 on SL (2.258)
u=0 on SL (2.25b)

3 dw "
I (rv) = T 0 on SL. (2.25¢)

— =0 on r = 4. (2.26)

Finally, we recall the stipulation that the mean depth of the liquid
{8 d. This {s effectively a condition of volume conservation and can be

expressed as
I ) rn(r, ¢, t)dydr = 0. (2.27)

The problem to be studied comprises the system 3f equations (2.19)-

(2.21), together with the conditions (2.23)-{2.27). There are six parameters

M, R, Pr, G, h and ¢, defined by cquations (2.22); the aspect ratio a is

a parameter of the problon.

For our purposes the principal paruaseter {s the Marangoni number M,
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“

vhich measures the effect of surface-tension gradients. We shall determine

: Hc, the critical value of M at which the conduction solution becomes unstable,

o

as a functioan of the other parameters, that is,

M_ = M_(R, Pr, G, C, h, a). (2.28)

T S Ry

We shall then investigate the properties of thc convection as M increases

above Mc for various values of the other parameters,
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3. ZERO CAPILLARY NUMBER LIMIT

In this paper we shall confine our analysis to the case where the
capillary number C is zero. The capillary number is associated with
deflection of the free surface; the limit C + O corresponds to a flat
surface, Davis and Homsy (198Q), a restriction which enables onset of con-
vection to be analyzed relatively simply. In this limit equation (2.24c)

reduces to

G(n + % Bdn?) - 21 = 0 (3.1)

where the standard definition of the mean curvature H i{s given by

V. n

1 ,
I
(147, m %12

2H = 9.+ | (3.2)
(V1 being the gradient in the horizontal plane). Equation (3.1) is thus a
differential equation for the surface deflection n = n{(r, ¢, t)

, which 1is

required to satisfy the conditions (2.26) and (2.27). A solution is clearly

nzo, (3.3)

representing an undeformed free surface. The fuact that there can be ro other
solution in the class of functions n with |n| sufficf{ently small {s easily
established with the aid of the implicit runction theorem. We confine our

attention to these weakly-nonlinecar interactions thut apply wher M is clcse

to MC and when convective motions are of small wmplitude.




i Sy
» e st

e e

On the basis of this reasoning we infer that the upper free surface
remains flat and undeformed. The equation of S is now z = 1, 0 < r < a, and
the outward unit normal to it {s n = ;. The lateral boundary SL is r = 3,

0 <z <1l. The problem to be solved in the limit C » O therefore comprises
the equations (2.19)-(2.21) in the bulk of the liquid, together with boundary

conditions as follows. On the lower boundary the counditions are (2.23) or,

equivalently,
§=ay=syvy=w=0 onz=20, 0<r <a. (3.4)

On the upper free surface (2.24a) reduces to

%—g—*-hG*O on z+1, 0<r<a (3.5a)
while (2.24b) becomes simply
w=0 on z =1, D ¢r < a. (3.°b)

In view of (3.3) the condition (2.24c) is rudundant. We simplify (2.24d) by

noting that

Ju ow v 1 35 h
Te = + —— <+ —— - —— rw 1
(G g)[d {“z 3r]r [Sz ' C o (rv)ig
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and that

98
9

o -
9*(9*"‘3)'-%;5-%

b
e

[

Hence {2.24d) can be decompoased into the twe conditions

—+—=0 on z =1, 0¢r<a (3.5¢)
3z R} 4
and
av 1 36 .
— e e aneme - C & e 3.
3z al T 3o 0 on 2 1, s r<<a (3.5d)

The lateral boundary conditions (2.25) are

(%]
~
[}
=4
[
—~
"t
<
-
[}
1
[}
o
(3]
S5
~
[}

a, 0<z<1. (3.6)

In summary, therefore, we are required to solve the equations {(2.19)-
(2.21} subject to the boundary conditions (2.3)-(3.6). With C = 0 and the

Bond number G no longer appears, Davis and Homsy (A980), s0 we have in

place of (2.28) the dependence

M_ = M_(K,Pr,h,a) 3.7

for the criticel Marangoni number,




i NP X dp s - i

4. LINEAR STABILITY PROBLEM

The critical Marangoni number at which the conduction solutioa loses
stability {s determined from linearization of the aystem (2.19)-(2.21)
together with the (linear) boundary couditions {3.4)-(3.6). Although this
linear problem 1s not self-adjoint, we assumc the validity of the principle of
exchange of stabiiities, namely that the growth rate of the most dangerous
disturbance changes frem real and negative to real and positive as M {ncreases
through its critical value. Vidal and Acrivos (1966) show for the linear

prodlem on the infinite layer that this is truc and so we apply the same

result to our case,

When the principle of exchange of stabilitices holds, the governing

equations for the linear stabilfity problem at criticality are

) -
V\_I‘Vp+?11R'J£'() (4.1)
70! = (4.2)

2
VEU + Mw = 0 (4.3)

subject to the boundary conditicns {3.4)-(3.6). We apply the operator curl
curl to equation (4.1) and then take the z-component of the resultaat

cquation, we obtain

A -1 2
v W+ M vao 0 (4.4)
3
[ . 5 ' ’
where "1 {3 the pluntorm Lapli tan. Thus (4.3) and (4.4) constitute a palr of
equationg for the unknewa funcitons w and o The appropriate bounlary




conditions are determined by simplifying (3.4)-13.6); they are found to be

e-w.-?—w.-o on 3-0, 0\!’(3, (6'5)
Jz
20 32w 2
g tMWewe—=-70=0 on z=1, 0<r<a, (4.6)
Jz
E_Q-Q—U-O on T = a, 0 <z <1, 4.7)
o k] 4

The asystem (4.3)-(4.4) i1educes to a pair of ordinary differential

equatiors through geparation of variables. It was {n order to effect this
reduction that we {ntroduced the artificial condition on the vorticity at the

lateral boundary. We put

w(r, ¢, z) = cos my Jm (Ar)Y(2)

(4.8)

8(r, ¢, =) = cos m Jm (Ar)X(2)

1, 2, ... {3 the azimuthal wave ununmber, Jm {s the Bessel function

where m = O,

of order m, aad \ > 0 L3 determined by the equation
[' ,\u - 0. ‘_"_9
m( ) )

The condition (4.9Y) easures that the lateral boundary conditions (4.7) arce

both sati{asfled. Substitutiag (4.8) {nto (4.3)-(4.6) we obzain the equations

2

2 by 2 2 -1_.2 .
(D = \TIX MY = 0, (D7 = AY°Y = M R\"% = O (4.10)




where D denotes differentiation with respect to z, with boundary conditions

X=Y=DY=0 on z=20 (4.11)

and

”
DX + hX = Y = DZY +A°X =0 on z = 1. (4.12)

Apart from notation, the boundary-value problem (4.10)-(4.12) {is
identical with that solved by Nield (1964) in his determination of the
critical Marangoni number for a layer of unbounded horizontal extent. The
difference between Nield's problem and the one presently under consideration
l1ies {n the significance of the parameter \: for the unbounded layer )\ is
wave number in the horizontal plane and can assume all real values, whereas

for the finite cylinder A {s restricted to the set of values defined by (4.9).

Nield (1964) solved (4.10)-(4.12) by expanding in Fourier sire scries
on the fnterval (0, 1); coaplete details of the calculations can be fouund Iin
the cited paper and are accordingly omitted herc. 1Tt suffices to observe that
the system (4.10)-(4.12) containg the four parameters M, R, A and h, so that
nontrivial solutions exist Lf and only {f a functional relationship of the

form

(M, R, \, h) =0 (4.11)

holds amonyg thesa2 parameters. Nield (194) obtatned an explictt

represceitation ot (4.13), camely
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M = M(R, A\, h) = W/U (4.143

where W, U are given by

o ddg ® (am)ld - 2
Weenend )2 A“+2m2(gﬁl‘l?T°9-§E‘l)2, (4.15)
n=l n n=l n n=1 n

2 2
@ 2 = (am)"d . ® 2 o (nr)“d cosnan
U = 2)‘2 ) (nu)” ¥ n_ o2 ) (an)“cosan n . (4.16)
A A A A
n=1 n n=l n n=1 n n=1 n
with
2 2
dn = (am)” + A (4.17)
and
"' o]
A zd - RS, (4.18)
n n
It is convenient to write (4.9) in the form
' . - A = / . \
Jm(smt) Q, ol " Bmi/? (4.19)

where s,y denotes the {-th positive zero of J;. Thus the integer

{ =1, 2, 3, ... can be recgarded as effectively a2 radial wave number, and the

functional form of (4.14) is

M = M(R, h, a, a, 1)- (4.20)
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The critical Marangoni number for fixed R, h and a is then defined to be

1
M. = MR, h, &) = U M(R, h, a, @, 1). (4.21)

Computations of the Marangoni number as a function of the other
parsmeters have been performed using the formulae (4.14)-(4.16), the Fourier
series, of course, being suitably truncated. In general it was found that 4-
digit accuracy could be achieved with 10 terms. Figure 3 shows the variation
of M with aspect ratio a for fixed values R = O, h = 0, and for the six wave-
number pairs ma = 0, 1, 2, 3, 4, { =1l and w =1, { = 2. These six were chosen
because for moderate aspect ratios, 0 < a < 2.5 approximately, the critical
Marangoni number occurs for one or other of them. We see from Figure 3 that
m =1, { =1 {s the critical wave-number palr for small aspect ratios,

a < 1.15. On the {aterval 1.15 < a < 1.65 (approximately) the critical mode
has m = 2, £ = 1, and with further {ncrease in aspect ratio this is replaced
by the axisvmmetric mode = = 0, { = 1 on 1.65 « a < 1.9. Next, the mode
me=3, t=1{s critical {n 1.9 < a < 1.3, while for 2.3 Ca < 2.5 the modes
a=4, t =1 anda =1, { =2 give ncarly the same numerical value ot the

Marangoni number.

Figure J

The ordering ot critical modes Jjust described {s retained for other
values of R and h. In fact, this ordering {3 a dircect consequence ot the
ordering of the aumbeis =4 Jeftaed by (4.19), which s {n tura a consequence

of the sfdewall boundarv coaditions; tt is not surpeising, therefore, that tt

should Ye {nvartant with respect to other phvsical parameters.
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Figure 4 {llustrates the variatlon of critical Marangoni number M.

with aspect ratio a for different value of Rayleigh number R, and at a fixed

value h = 0. These curves show that Mc decreases as R increases for each

value of a. Although not {llustrated, computations show that the same

behavior (Mc decreasing with increasing R) occurs when h p 0.
Figure &

Figure 5 depicts the vartation of M. with a for various values of

surface Biot number h, and at the fixed value R = 0. We gee that M.

{ncreases with h at each value of a. Computatfons show the same tendency at

non-zero value of Raylei{gh number

Figure 5

The general pattern of behavior described here {s coansistent wity that

obtained by Nield (19634) for an unbounded luver.
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‘: S. EIGENFUNCTION EXPANSIONS

We propose to study the nonlinear stability probl~m by means of a
modified Galerkin procedure. We represent the tield quantities by series of
functions of the spatial variables, with time-dependent coefficfents.
Following a suggestion of Eckhaus (1965), we shall take as the basis functions
. the eigenfunctions of the linear stability problem. The tiane-dependent

coefficients will then effertively be the amplitudes of the appropriate
convective modes, determined from nonlinear ordinary differential equations to
which the governing partial differential equations reduce. The series are
truncated {n a rational way, according to criteria discussed by Rosenblat

(1979).

Galerkin methods require that the function bacis of the expansion
‘ should consititute a complete set {n an appropriate sense. Iun this
regard it can be shown, Appendix A, that the Marangoni
nuiber caanot be used as the eigenvalue parameter on which to ccastruct a
complete set of eligenfunctions of the linear stability prohlem. This is
because the expression (4.14) gives M as a single-valued funtion of R, other
parameters being held fixed, and corresponding to this there will be only a =ingle
eigenfunction. On the other hand, 1f (4.14) i3 solved for R, the resulting

expression has the form

R = R(M, h, a, m, 1) (5.1

‘ and {s not single-valued; {n fact there {3 a couatably infinite number of

suolutiona of the form (5.1) to the equation (4.14)., In other words, there are

fnfinf{telv many values of R fo eacnh value ot M, and correspondingly
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infinitely many eigenfunctions.

Although the critical Marangoni number is given correctly by the
results of the previous Section, tha implication of the foregoing paragraph 1is
that the Rayleigh number is the “true” eigenvalue parameter of the linear
stability problem. We need to take this into account in setting up the
Galerkin procedure, even though mich of the subsequent analysis will become

redundant through truncation and approximation.

-

Let M be a fixed value of the Marangoni number and consider the linear

elgenvalue problem

iy < vp + M 'RUz = 0 (5.2)

Vev = 0 (5.3)

VZB + Mw = 0 (5.

&
~s

with boundary conditions (3.4)-(3.6), and with the Rayleigh number R regarded
as the eigenvalue parameter. Nontrivial solutions of this boundary-value
problem exist for certain values of R, denoted Rmij' where m {3 the azimuthal
wave number, i is the radial wave number, and j = 1, 2, 3, ... i3 the

particular value ifmplied by (5.1). Thus

Rmij = RJ(M, h, a, m, 1) (5.5)

and we assume the ordering R ,; < Ryya < ... for other parumecters {ixed.

Graphs of the fuactions (5.9%) -an be found {n the paper by Rosenblat, lHomsy and
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Davis (1981). The irteger j is in effect a vertical wave number.

Corresponding to each eigenvalue Rmij there is au elgenvector

(zmij, emij) of the linear boundary-value problem. The forms of "mij aud

emij are given by (4.8), while the other two velocity components can be

calculated from (5.2) and (5.3). The components, which are required in the

subsequent computations, are found to be

u = (I/Xml)cos o¢ J;(Xmir)DYm (z)

oi j 1}

vmij = (—m/Aiir)sin mo Jm(kmir)DYmij(z)

(5.6)

wmij = cos my Jm (A r)Ym(1(z)

mi

= A 3 z
Sary T 08 @ J A X (3
where xmij, YmiJ are the eigensolutions of the boundary-value problem (4.10)-

(4.12) with R = lej sy M= Mand A = Kmi'

The explicit forms of the functions X and Y, and theilr various
derivatives, are obtained from the Fourler series representations of Nield
(1964). We omit all details of the calculations but, for the sake of

completeness, we list {n Appendix B the forms of the functions.

In the modified Galerkin-Eckhaus method to be used below we require
also the adjoint efgenfunctions. The system adjoint to (5.2)-(5-4) is easily

shown to be

Vive = Up* 4+ Mu%z = 0 (5.7
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Vevt = 0 (5.8)
view + o lRut = 0 {5.9)
with the adjoint boundary conditions
g% m yt = y* = w* =0 on z =0, O0c<r<a, (5.10)
3§%+h0.+%.w-.3§;-%=o on z=1, O0<r<a,  (5.11)
ut = =2 (rvt) -%’—:- - 32: =0 ou r=a, 0<z<l. {5.12)

These forms are consistent with those of Davis (1969) and Davis and

Homsy (1980).

The adjolnt problem (5.7)-(5.12) can be sulved by the same Fourier
series method as the direct problem, and, naturally, the eligenvalues Rmij are
the same and have the representation (5.%). The adjoint eigenvectors are

denoted (v* , 9*

1 § mij); a telatively simple calculation gives the following

explicit representations:

* a )\ ' y Y*
umij al cos my Jm (Amir)D mij(z)

* » - ; DY * )
vmij (a/c)sin m¢ Jm (Amir)DYmij(z’
(5.13%)
* 2 Y &
wdij ‘ny CO8 m) Jm ( mir)\mij(“)
A acos @ I (L OXE (z
iy 7SS @ S ORE ()
o " e 3 RBRRRRRERERE e =
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where x;ij' Yaij are elgensolutions of the boundary-value problem

(02 - xz)x* + ﬁ-1RA2V' = 0, (D2 - Az)zY* - MX* = 0 (5.14)
with boundary conditions

X*(0) = Y*(0) = DY*(0) = 0 (5.12)

and

DX*(1) + hX*(1l) + XZDY*(I) - Y*(l) = DzY*(l) =0 (5.16)

for R = Rmij' The forms of the funtions X*, Y* are given Ln the Appendix B,

OQur purpose {s to study the nonlinear evolution of disturbances as the

Marangoni number increases through its critical value, and at a fixed Rayleigh

number. To simplify the discussion we take henceforth
R=20 (5.17)

so that pure Marangoni convection will be examined. As a further
simplification, and again without essential loss of generality, we take
the surface Biot number h = 0. The nonlinedar sysctem (2.19)-(2,21) can n w
conveniently be written in the form

V"! - Vp = MPr + (veVdvy (5.18)

tat

Jev = 0 (5.19)
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720+ e = N {32+ (D0 (5.20)

and the boundary conditions are (3.4)-(3.6) with h = 0.

We shall solve this prublem for values of M cloge to critical by

expanding the field quantities {n series of the eigenvectors (!mij' emlj) with
time-dependent coefficients. First, however, we let (g;ij, 0;1 ) denote an

-

eigensolution of the adjoint problem (with h = 0) in the case that M = Mc’ the
critical value at a fixed aspect ratio and with R = O; the corresponding
eigenvalue is Rmij' Because of the ordering of Rayleigh numbers stipulated
immediately following equation (5.5), this means that Rmil = 0 for scme m and
scme {. Let (v, 8) be a vector with div v = O satisfying the boundary

conditions (3.4)-(3.6), and counsider the expression

2

2
Q 2 <y* (V7w = Vp) + 0% (VT + M), (5.21)

13
M arbitrary, where <> denotes integration over the valume 0 < r < a, 0 < ¢ < 2m,
0 ¢z <1 occupied by the fluid. Integrating bv parts and noting again that
] * %) - - -
(v ot 3’ emij) solves the adjoiat linear problem with M Hc and R K
easily find that

i §» ve

W - IR cur, 8>, '5.22)
¢ mi] 1

= - g%
Q= (M- MY, at

3

Observe that Q = O when M = M. dand Rmij = 0, which {8 consistent with the

definition of the linear s:tability problem and {ts idjoint at criticality.

Next, let (v, 1) Jdeaote i solution of the nonlinear system (5.18)-
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(5.20) with boundary conditions (3.4)-(3.6), for some given value of M. Take

the scalar product of (5.18) with !; the product of (5.20) with 6;11, add,

i3
and integate over the fluid volume. Using (5.22) we then obtain the equation

v

>

36 -1 -
it

(M = M )<Ox w> - MR . cwr 8> = MO + Pr

] c "miiVat) mi] at Yai 3

(5.23)

-1
+ MCO* . + X a(yeV .
W(B.lj(v V)8 + Pr v { (veV)w

3

Now choose a finite seq‘grﬁ eigensolutions (v ) ) of the linear

mij’' mi)
stability problem. Let N > 1 be the number of elements 1nA!, and for

convenience write

pf = {mi]} (5.24)

which means that an element of the set has azimuthal wave number m, radial
wave number { and vertical wave number j. We can thus refer to molj = p, say,

as the vectcer wave number of an element of)J{

We assume that the solution vector (v, v) can be represented, to a
good approximation, by a linear combination of elements of the set;!, with

time~dependent coeffi{cients. Thus we set

(:’.5)'_/_A

AS ol

(t)(gmij. 6mij); (5.25)

substitution of (5.25 {nto (5.23) reduces the latter to a system oL N

ordinary nonlinear differential equations for the aamplitude functions Amij'

The detalls of tnts reduction are cunsiderubly slmplified on 430 Hunt

kd
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cf the tollowing orthogonality relations. First cf all we have the

bi~orthogonality condition
<w;8q> = 0 when p # g (5.26)

for any two fields with vector wave numbers p, q. Next, since the azimuthal
dependence has the form of trigonometrical functions, we deduce from the
latter's orthowwiality properties that

< > =K yk ey > = (O

* % -
amijwnkz ~mij -oki mijankl> 0 when afn (5.27)

for any values of i, 3§, k, 2. Similarly, since the radlal dependence has the

form of Bessel functions, we have that

oL P % s Cyk o - (O -
AP IALTY O > e Kok > KO 8> T 0 vhen § Ak (5.28)

2t
S
{
N e
i i

for any values of m, §, n, &. T

There remains the question cf the choice of the se;dg. For ease of
computation it is desirable thagxfshould comprise as few elements as
reasonably possitle. Next, since we are concerned with the weakly nonlinear
interactions that cause the onset of convection,we must certaioly laclule in %{
the critical mode (or woles); as polnted out In the pr-visus Section the
nature of he eriticsl mode depends on the aspect ratio. Finally.)<f must

Al

include a minimal number of other modes neel ' i, seierate noalinear evolution
into convecticn of the critical modn. 3y "niaitwual" we mean the non-critical

modes with the «1.1%2gt damping rates. As can be scen from {5.23), when M {«

Tose o M the damping rate of a non-critical node 18 deterafn.!
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g

Approximately by the magnitade of ‘mij' su that we retain only those malos

with the smallest values of %l.’ and neglect all others. A 11 icasslon of the

provedure and {ts validity can be found in Rowenblat (1979).

CRIGTAL PAGE IS
OF POOR QUALITY
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. rVOLUTTON AT _SIMPLE POLNTS

We study tn 1!+ Sectfon weakly nonlinear evolution into convecticn at
three specific values of '@ aspect ratlo, namcly a = 0.90, & =1.5 and .. -
1.80. As can be seen from Figure 1, the loss of stability of the basi-
couduction state at each of these values s siaele in the sense that ouly one
mode loses stability as the Marangonl uuader {0 o cies through its critical
value. In each case w- v the problem to a single ordinary nonlinear
differential equatioo of Landau type, and examine {ts solutionu ! their

stahitley.

A. The case a = 0,90,

Figure 3 shows that the critfcal wode at this aspect ratio s the mode
111, that {s, azimuthal, radial and verttie ! 'vvie wmbers all equal to

wnity. We find that
M, = 79.5 (6.1)

and, by hypothests, Ry = 0. Now the quadratic self-interaction of the mode
111 generates the modes O, 21) wiih i, J =1, 2, ... . Computations show,

however, that

" i " "n(n 2 (6.2)

RIS U TR I TS Y 1 U T B TR &

and, moreover, ot hese Rayleigh numbers are widely separvato ! 7o ihls

readon we taie 0 . o counrdise three modes:
e
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~£) - {111, o1y, 2}, (6.3)

and substitute into (5.23) the “ora

]

(v 8 = A (v 80000 A0 Yo P t A S (6.4)

where the Aijk are functions of time.
Using the orthogonality relations (5.20)-(5.28) to eliminate several
of the terws,we obtaln the following set of equations:
* <
VlllAlll - (“[ - MC)Alll - 2111 (6-_;)

. -1
Vorthorr = ¢ - M. Mo Rofa1 %001 T 2oy (6.6)

\ -1 z (6.7)

Varpdary = O ML T MRy Ea ) T A

where the prime denotes differeatiation with raeypert to €, where

-1
“{ZB* . P * .
v, = I\SWII?@%AF © Youytmp (6.3)
*
mi J emijwmij>
e <
= 0T
{w* 0 >
£ - ‘Ai! mil (6-9)
alj <O0* w >
mi j oml ]

vl Wwheeo the Zijk arc homogeneous quadratic fuanctions of Alll’ AOll and AZII'

The general form of t'i- Ziik is g ven by
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. -1 .
- L o) y + LK) \ - .
(6;vp>2p u<ep(1 Ava V) 5 A+ Proyae() Ay ") A v> (6.10)

Ag s Af
where p, q, r refer to vector wave numbers.

Each of the two terms on the right o (7.10) contains n2 integrals
vhen)g has N aelements. MWowev o, gaveral of these {ntegrals are identically
tero by virtue of the orthogonality relations (5122)-(5,2&)- In the present
case ve find that, for i%w wode 111, only & of the 9 (ntegrals
are uoﬁ-zero,and we obtalin for tha as.o faed puadratic nonlinearity
expressfon of e form

d

- MA | (agh ) (6.11)

2 +
111%141 otorr ¥ M

where

d - H* w0 .
af ml) mlj (6-12)
and Whiere
a = (v (v <\ + v Ty ) + 1r-1v"' (v Vv + v Vv )>
= 111*~111 wli -all il - 111 =il Teal -n' =10
(b.12)
form = 0 and 2 * 7. oo of {lar constderattons ve obtaln
< - MY AT o NS t.lv
dOl‘."\i ‘(‘\’i \111 ULV \'\"."\_111 (e.i)

and

CR'GINAL PAGE IS
OF POCR QUALITY
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Ao Zoo . = M(an A2+ ay AL AL ) (6.15)
2114211 T M A T Sntoritan
where
-1
- Q% . R S .
Yk T mtdan a Zart e " My (6.16)

form =0, x =0, 1, 2 qiulm=2, k=1, and

-1
%02 = <O W01 "1t Yo W01 TP M5 (g Ty Y N TGy
(6.17)
Equations {(6.5)~(H.7) are the evolution equation for the mode 111 at
the aspect ratio a = 0.9. The null solutfon, V1] = Agy1 = Ag1y = O,
corr-sponds to the conduction state, and at fixed Raylofgh number,R = Ryyy =0,

{s stable for M < Hc and unstable for M > M. -

To study bifurcation from the critical »y»' v .oul the evolution of
vonveci Ton {n the neighborhood of M = M,, we can simplify the wy.icn (5.95)-
(6.7) in the following wir. Th: mades Agqy and Ay are relatively strongly
damped at M = M, and are proscat oaly due to the quadratic self-{nteraction
of the critical mode Apyy. Hence,we can neglect the tlme—derivii ive Teras in
(6.6) and (6.7) and replace ™ Ly M fa these equations. Moreover, when M is
close to 1. ' "wagnftudes of Agyy and Apyp are small conpared with Ayyq;
hence in the right-hand ~{.le< f {{(.14) and (6.13) we can neglect the
quadratic terms lauvolving Any; -l Aagp by comparison with the terms lavalviag
A%ll' Taking (hese approximations together, and substituclng (H.15)

(6.15) Latn [6H.0), (6.7 respectively, we obtatin

Y by b} ]
~MTa, AT AL
ol L oty .
AL e—C 0L L e VL (6.13;
LR SRy %

- e e T X o P it IO AT
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We now substitute (6.18) int> (H.11), 1! then substitute the latte

with M veplaced hy ™, tito (6.5). This gives the single equation

. 3

T,

Vrifrng T M T MIA L T A (6.19)
wvhere
M3 X, Q N3
c 01 2 %21
Y T R e TRTE, 6 (6.20)
111 01170117011 21211210
Equation {H.17) 1. the Landau equation for the evolailon of the
critical mode 111. The coeffivients vll" @, ,, + lotermined by numerfcal
{ntegratlo 7 the appropriate produci~ i -ig-nfunctions. The computatlons:

have been performed at varfous valacs of Prandtl number and some vesalt . oo

<thunem {n Table 1. We {nfer from the calculations th.i:

CVL IS

OF PUCK CUALITY

. >0 > Loy
\111 ’ J[[l \ i
frc all Tredltl numbers.
“ -3
vr 111 x 10 \.Llll 19
0.l 0.37 U2
1‘() U.lj (‘_'Lo (\" : ‘-.“';‘_
10.0 J.10 011
® 0.10 D10
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From (6.19) and (6.21) we infer that .. «olution bifuractes from Ui

critical value M, having the represantilon

- M-/ . 29
Ay =2l = 0 e ) (6.22)

e

The solutlon exists only for Mz, (supercritically) and ls known from
elementury bifurcation theory to be stable. Because of the repre.. . itlon
(6.4),we conclude that at aspect ratl. 4 = 0.2 1% onset of convection 1is
supercritical and, for <1al1 M - M., has to leading order the fura o7 1 non-

axfsymnmetric mode with azimuthal wave number 1.

Y. The case a = 1.50.

From Figure 3 we see that at t. .upact ratio the critical mol. I«

211 the azimuthal wave nuaber (< 2, ! the ridial and vertical wave nughers

arz2 both unity. The critical Mirangonf aaadar 1is

Mo 79.5 (6.23)

Jith R4,y = 0. The quadratic interaction >f 'v- .t 21 with trself

generite~ the nodes 01U, 413, with L, J = 1, 2, ¥ ..., it “ecause of the
wrdering of tlie s i)l Rayleigh numbers we approxtaat. 'y o loting all
except - modes OlD and 4ll.  Thus
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L = 211, o1, an (6.24)

and

= ( A , 8 + ’ ) . (5,
(v 8 = 0 o % Y% Yo Yorn? A e Bay)e 4023

We substitute (6.2%) i-uvo (5.23) to obtain a system of three >l nary

differential equations [or i1z amplitudes, namely

\ R = (\ - \ -7 2
St T T M T P (6.26)
y \ -1 f 6 2',‘
Vor1forr T M T ML T MO R for %011 T o1t (6.27)
. -1
Vantarn T M MO T MR a2 T % (6.28)

where the coefficlents v the torms {(6.8)-(6.10). Proaocling as in the

previous ca~c¢ we fliad that

- { + .
bZan * M Gotonn * A (6-29)
where
- L oy - - ® . . o‘:»; >
B = O (o Mo T Yart 020 Y PT YA W W Yarn iy
(6.30)
For = O qad mo= 4, also,

_——
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d. z2. = M(3.AL . + B8 A%+ AS ) (6.31)
O 0t 027211 00011 047611
and
d .2 = M(B Az +8 A . . A, ) (5.32)
w1411 422211 ¥ Bhoatonntann
where
-1 .
= < V6 ® . . [
Bk = Mot Vohar Y PTova (g% ¢

form =0, x =0, 2, % anlw=24, k =2, and

-1
- * . . . - . . . . b
Booa = ®h11%or11 %1 "o za1 o) TP MRttt YT )
(6.34)

Using the same reasonf., « hefore,ve can solve (6.27) and (6.28)

"
approximately to finl Ny, d A4 ) In terms of A5;;. We obrin

1,2 2, , 2
C by P 1 ¥ (6.15)
O R don R Endan

Substitating (6.35) and (6.29) into (6.29), we £l 1! ‘it the latrer reduces to

the simple Landau et ion
S 3 .
Vanrtary T M T MOIAL L T A (0-36)
where
:‘.3 ﬁndoq 3B, .,
< < 374
, LN — < (6.37
) 1}\ . \R t d + R f d, ). 6 3/)
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A

Computel valites of the coefficleat . v211’ W, for varfous Prandtl

211
naahers are given in Table 2, from whi:h fi . " ~seen thit both coefficients

are always positive. Wa Infer the

= - . ! ‘b
Agpy = H A= MO ey $h.38)

vepresents a stable supercritical coadocrina solution for M - M, small, and

coeresyonds to a non—axisymacteic wde with azimuthal wave number 2.

A -2
Pr Var x 10 Br11 x 10
0.1 0.37 6.2
1.0 0.13 0.98
10.0 0.10 0.50
® 0.10 0.45
Table 2 © . TLUNGE S

ST el CUALITY

C. The case a = 1.80.

Figure 3 shows "« “he critical mode at this aspect vtila

ax{cvmmetric 1aode 0l11. We find thi

M. =797 (h.39)
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with Rgyy = 0. The quadra:ic ..li-lnteraction of this mode generates all the
mdes 0L with £ § =1, 2, ..., but by virtue of t'. riering of the Raylelgh

numbers ROij we retain only the mode 97°1. Th-
_Kf - {011' 01} (5.40)
and we subsgtitute

v (v

Vo Ao Worre Bor? YA

(f.0
021 o 8500) : )

into (5.23) to obtaia a puic f .umplitude equations:

= (M - -— .
Vorifary TGP T A0 T Zon (5.42)

. -1 .
K = . - - ¢+ - . 5 .10
Yoardo2r T OT T T M Roor B 08021 T 202t (6.43)
tising 'he Tarpula (6.10) we find tiud
2 ) o
dotiZoty " MO A 0 T Y2ttt ) e
2 : ,
40012021 T MO8 * Yar2%11%021 o Y22%02:! (o)
cherp

Y = vk (v )9 + Pr—lv* (v N)v > noh)

ik BTSN 8] ! “af = ST

for {, k = 1, 2, an!
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-1
- (9611(!01X'V3 +v ,"VG ) + Pr

oo ¥ Vo %011 o11""¥021 * Yo21" Y0117

(6.47)

Y112 nt

We approximate as befor: fur * close to M, and on the assumption that
the amagrftude of AOZI is much smaller than t'«t 7 “yy1. We then solve (6.43)

and (6.45) to abtain

2. 2
M2

A : )
Ro21f021 4021

= b
021 (6.48)
W4e substitute this and (6.44) into (6.40), with M replaced by Mo in the
aonliaear terms and with the term cond «ialng A%Zl omitted on the grounls that
ft fs smaller than those retained. Thla 1.u'v to o single equaltons Sor '

crit{cal-mode amplitude, nimely

y 2 3
- h - - y P I'G,.‘g
Yorrforr T M T MIA L T AL 0 A +49)
where
My
Ty " L (6.50)
011
and
3
-.H,Yq Y‘\\
- - ' ~ ~L'_ﬁ;. . (6.31)
ML Ry, d
fomputad valaes 7 ' W7D Lents are given {1 TaLll 3.




i ] ST R 4‘.751
=47- E
Pr v x 107 vy x 1070w, x107°
011 0 011
c.1 0.36 0,32 1.8 !
' i
. 1.0 0.12 -0.19 0.23 i
10.0 0.10 -0.24 0.15
™ 0.98 -0.25 0.14
i
“ablo 3 "
Observe that Vi Wypy 0 hotle positive, but that Y,) is positive for
DR} N ' H
low Trondt] numbers and negative for moderax: ..’ 1 oye Prandtl nuabers.
One solution cf (6.49) (s Ay = 9, #hich corresponds to the
conliction state. This solutfon {s stable for 't < * ! wnstable for
M > M.. Other soiutions «r '.iecained from roots of the equation
. ? s -/ - - . .52
“orttor T Totorr TR M) 7O (4.52)
Ali the soluations are {llustrated in Figure 63 Tor the o .o 70 » 9, and {n
Fit_ o 6b for the case Yy 7 9. A conduction solutisra e«wi.~ for both M < M,
i 0> M - cteical bifurcation), but the suberltic.l bravete Dl
? around at & value My of M and contiaii - {1 the half-nlane M > M.-
!
CRiGiN
L i 20
F POoR g GE I ‘
VALITy
tereerabae the stability of the solatiosy. oS Towing wav. Let
T denote any tia-=i:t o 7 0 aolution ¢f (6.495.0 We set
K‘ e T U A s —
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l\oll = A+ ﬂ’ (6.53)
in equation (6.49) and linearize, to obtain ilu srability equation
e = 2 - 3 =2 (6.5
ao = (ll o l‘[c - Y:)A a wallA )ao. (e "‘)

A simpl- .loalitloa shows B thee suberitical branch OP in Figure 6 is
uastable, and thar (he hir.nches OR, PQ are stable. This is the st.utarl

resuli Tor transcritical bifurcatioa.

These calculations settle In priaci i.- ih2 question of the direction

of the flow at the cani -r ..l i'w. container becaus: iiv: asymmetry of the

bifurcation diagram [mpli.s 1 preferred branch. As M i{ncreases towasis M., a

disturbance, however small, to the conduction 3ol ion will result in loss of
stability of the latiwr w-foce M reaches the «(ritical value M., and a
consequent snap-through to th= hranch PQ. (See, for example, Rosenhlat 1979,
for 4 fuller Jiscussion of this process.) As M increas., ~tLll futher the
system stay~ o1 L' hranch PQ which is thus "preferrad”™ (o the branch OR.

Of course, when M >-Mc one could find a disturbance of large enough size
that would cause the system to jump from this branch to the other. The

fact that both supercritical branches are stable is similar to the result

of Liang, Vidal and Acrivos (1969) for axisymmetric buoyancy driven convection

in a cylinder.

{ L FAGE IS
OF POUR QUALITY
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From (5.6) we -+ that the vertical velocity component for Ll wuln

011 {a

A .Y () (6.55)

Your " “foritont

Al e center of the contalnar. “Newrfeal salculations show that 'lou(z) >0
oa 9 < z < 1; here the sign of Agy; determiic« i'w direction of the flow,
glving upflow whea Ay ; > M «ul downflow when Ag; < 0. The prefec ! hieaneh
PQ has Agyy < O for very small Prandtl numbers and Agy; > 0 for walerate and
large Prandtl numbers. We infer that ther: +i!'! W lownflow at the center
wivta Pr < 1, which is the case¢ for 16ynui! wrils, and upflow when Pr > 1,

which applies for common liquids,
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7. EVOLUTION AT DOUBLE POINTS.

It {s evident from Figures 3 = 5 that there are certain values of the
aspect ratio at which two modes lose stability simultaneously. In this
Section we shall investigate the onset of convectiorn in the neighborhoods of

such double points and the sccondary bifurcations that can result.

A. Intersection of modes 111, 211.

At the point marked A in Figure 3 the curves of M as a function of
aspect ratio for the modes 11l and 211 {ntersect. The value of a at which
this intersection takes place {s denoted a, (% 1.20). The common

value of Mi11 M21) at this point will be denoted Hc; computations 3ive

MC - Hlll - M:ll = 85.2 . (7.1)

By hypothesis we have that Ry;; = Rypy = 0.
We are interested in studying the onset of convection at values of a

slightly less and slightly greater than a As noted in the previous

A
Section, the self-interaction of the mode 111 generates modes with azimuthal
wave mumbers 0 and 2, while the self-interaction of the mode 211 generates
modes withm = 0 and m = 4., In addition, the interaction of modes lil and
211 generates a mode with m = 3, For reasons indicated earlier, we approxi-
mate by retaining or'y the leading (in the sense of Rayleigh-number ordering)

member of each of these generated sets. This leads us to select a 5-clement

set of expansion functions, namely




-

ﬂ)<{ = {111,211,011,311,411} (7.2)

Substituting the appropriate eigenfunction expansion into (5.23),ve
ob .ain a system of five ordinary differential equations for the amplitudes.

These equations are conveniently written as follows:

Variharn © MDA, s %y, o M=l and mo=2 7.3)
and
. -1
Vor1%m11 = MM B A C ey 0 B 03 and b, (7.4)

Note that in (7.3) we have retained Hh in place of Hc; the reason for

11
this will soon become apparent,

We reduce the system (7.3)-(7.4) as in the previous Section. We use
(6.10) to calculate the quadratic nonlinearities in (7.4) and find

2 2 > 2 2
donZorr ™ M@y * %2t * %oforn t %03t t Goefen? 0 5@

d3112311 = M4 1% (7.5b)
and
2
LanrZan = MC@%0 * Bostonitr * %zt o (7.5¢)
where the Qi are given by (6.16), Bao4 is given by (6.34), and where

= . - -5 * . . ks
%k ™ OB @511 * %1 ) P g O

* Y%a1'y)? e (7.8)

We now solve (7.4) approximately by neglecting the time-derivative terms,
replacing M by MC, and neglecting as relatively small the quadractic terms

involving Ay,ys Ay), and A, ., on the right-hand sides of equations (7.5).

This proccss gives the approximations

:




Sl o 4 . e N T —

\

«$2-

2
-Mc 2 2
- (@ + )
5 o o1*111 ¥ 2%

%u *

(7.7
2 2 2
. M2t R P N R 3 ¥

- ’
411 Ryyqif4119001 11 Ranfandan

These formulae can be compared with (6.18) and (6.35), it being noted in

particular that a,, = Boz and @, = Buae

The quadratic nonlinearities in (7.3) are found to be given by

4 11%01 = MA ) (Bghgyg * Badopp) M aaR A (7.8)

and
do11Zay = M@0 * Bt T A T Rstint? 749

where Qys Oy are defined by (6.13), A,y by (6.16), BO' B“ by (6.30), %30
;99 by (7.6). We now substitute (7.7)-(7.9) into (7.3) to obtain the

following pair of equatioms:

) \ .
iA T ™M 0040t sthifen 9 SMintn (7.10)

2 2 3
Varrhory T Q1M R0y = epdyyy - A Ay - wphyy (7.11)

where the coefficients are defined by the following formulas.

(2]
y

1 T MS3/dyy s ey =My /dy

3 (
c |

-M

)
a,a Gy aalaqn ’
0702 + 123312 }

1 4 \ orfor%orr  Ranfangdan
( (7.12)
e 2 ]
o a8 ,: ) A 1 & ) P I
2 %n | Ponfonton Panfindin
oM™~
. c*OJOI o %
; ’ 9 5
L Ronfor%onidin ¢ M
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vhere @11 iy defined by (6.37). Computed values of the coefficients are

given in Table 4.

Pr v... x10"% ¢ x10°2 o, x10°% g, x10™3 1073 10°
111 1 1 1 Va1 % Gg X
0.1 0.49 1.2 14.0 2.0 3.7 1.3
1.0 0.19 -0.74 1.5 0.27 1.2 0.36
10.0 0.16 .0.69 0.93 0018 0.91 0026
® 0.16 -0.69 0.88 0.7 0.89 0.25
Table 4

3

g, X 1073 wy X 107
1.6 4.2
0.28 0.62
0.20 0.31
0.19 0.28

We propose to study the nature and stability of solutions of (7.10)-

(7.11) in the neighborhood of the double point A, and for values of M

reasonably close to M..

We consider first the case of aspect ratios slightly less than a,,

av a We then have that

g
M < M2

and we define

e Tt L 1T S 1§ &

Equations (7.10)=(7.11) can nuw be written (n the form

3 2
VA, * NA, =~ A Az '“lAl - JlAIAZ

. 2 2 3
. .-\‘\ - "‘-;‘A = C‘\Aw = ‘.1“\ ’\-\ = “-2A‘|

.~ - - .- l - -

(7.13)

(7.14)

(7.15)

2




where for the sake of brevity the notation has been simplified in an obvious

way.

Because of the approximations used in their derivation, equations
(7.15) can be regarded as valid only for small values of A and small values
of n. A reasonable measure of smallness is the catio of these quantities to
the critical valve of M, which is about 85. In the computations to be
described presently we have taken values of 4 in the range 0 € 4 < 5.0 and
of n in the range 0 < n € 2A. Results for significantly larger values are

not easily substantiated on the basis of our approximation scheme.

Before proceeding further we formulate the stability problem
associated with the system (7.15). Let (Kl. A,) denote a solution of (7.15)

and set
Al = Al + a, A2 = A2 + ay- (7.16)

Linearization of the equations with respect to the disturbances leads to the

linear system
v ; = (n-c A, - 3w KZ -0 -z)a - (¢, + 20 A )- a
1% 142 1A < 94y 1 142042,

(7.17)

v 32 = -2(cz +0

- , -2 -2
2 2 2)Ala1 + (n-4 02A1 3u2A2)a2.

The exponents of this system determine the stability of the

solution (AI' Az).

We examine now the solutions of (7.15) and their stability. Observe




; {

first that (7.15) has the trivial solution A} = A, = 0, which corresponds to i
the conduction state, and which is stable for n < 0 and unstable for n > 0.

Moreover, for this soluticn one stability exponent changes sign at n = 0 and
the other at n = A, so that each of these values locates a bifurcation point

for the appearance of a new (convection) solution.

The trivial solutfon is unique for n < 0. As n increases through zero, a

pair of nontrivial solutions emerges, determined by the pair of equations

2 .
Al = (n = clAZ - olAz)m1

(7.18)

L e i —— e . o
L

3 2 2
uzAz 5 - azAlAz * CZAI - {9 = A)A2 = 0.

If 4 were large, these equations would reduce to A, = 0 and A (equivalent to
Aj11) siven by (6.22), and would correspond to a "pure” convection state with
azimuthal wave number m = 1 at leading order. When 4 is small, however, the
mode m = 2 has an effect, as expressed by the coupled equations (7.18), in two
ways: the solution has Ay # 0 and the parabolas (6.22) are distorted

as n approaches A.

) Numerical calculations show that solutions of (7.13) exist only on an
) interval 0 < n < Nps where n, > A. The value of p depends on Prandtl number,
but computations reveal that 1 7 nT/A € 1.2 for the entire Prandtl number

range. On 0 < n < n_ there is prec!sely one root A, of the cubic in (7.18),

T

and a corresponding pair of roots +A

2

- -A.. These solutions are illustrated
1 1

in Figure 7: one pair of solutions is represented by the curves 0,UTy, 9,;T;

and the other by the curves O\LT,, 0,T,.
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Figure 7

Calculations utilizing equations (7.17) show that these solutions are

stable.

The remaining solutions of (7.15) are given by
A, 20, n-a&=uhl (7.19)
e 272 '

These exist for n > A and are the “"pure” m = 2 mode solutions considered in B.

of Section 6. Their stability is determined by substitucring (7.19) into

(7.17), which gives

. - -2 "
) - - - - - . 7.
via; = (0= cA, - 0A)a), v,a) 2(n - d)a, (7.20)
Evidently it is the first of these equations that decides stability.
Calculations show that the branch corresponding to positive Kz, the upper

branch AR in Figure 7, is unstable, while the lower branch, AS, is unstable

initially but regains stability at precisely the value n = e defined above.

The situation depicted in Figure 7 has been established numerically.
In summary, the behavior of the system is as follows. For n < 0 (M < ¥;;,)
the conduction solution is stable, and is replaced on 0 < n < N ("111 (MK
Mr, say) by a pair of mixed-mode solutions given by (7.18). For T > nT’

however, these give way to a single solution which at leading

order is a pure convective state with m = 2. This behavior is qualitatively

independent of Prandtl number.

For aspect ratios slightly greater than a,, a > a we have




H211 < Hlll. (7.21)
We then set

n=M A=M - M (7.22)

Mo 1~ M

to obtain the system

* 3 2
lel = (n - A)A_I - clAlAz - “'IAI - °1A1A2

(7.23)

Vahy = ™Ay = °2‘§ - °2“§‘z g “‘2“;'

The stability equations for a solution (K Kz) of this system are similar to

1'
(7.17), except that the terms n and n - A are interchanged.

Figure 8

The results of numerical calculations for (7.23), illustrated in
Figure 8, are as follows. The conduction solution A; = A, = 0 exists for

all n, and is stable for n < 0 and unstable for n > 0. The solutions defined

by

2 =2
- L ] - ° b
Al 0, A, = A, h/wz (7.24)

exist for n > 0. The lower branch 025 is always stable, while the upper

branch is stable for 0 < n < n_,, where nT ¢ (0, 4) and has a value dependent

-rl




on Prandtl number. The solutions determined by

2 2
Al = (n=4a- c,A, - olAz)/ul

3 2 2
Wohy + GpA1A) + CpA = A, = 0

exist on the interval Ny < n < 4. There are two such solutions, comprising a

single root A, and corresponding *A;. These solutions are found to be stable.

We see from Figure 8 that the conduction sclution is replaced by the

pair of solutions (7.24) on 0 < n < Npe Next, there is a region, W <n<A\,
in which there are three stable solutions: the lower branch of 77.24) and the
mixed-mode solutions of (7.25). However, for n > A there is only one (stable)
solution, which is a pure nonaxisymmetric mode with m = 2. These results

apply at all Prandtl numbers.

We see from Figures 7 and 8, and from the preceding discussions, that

on either side of the aspect ratic a, the system eventually attains the same
state: a single convection solution with m = 2. In one way or another the ‘
mode with m=1 is suppressed by the interacticn when A is small. This

{nteraction can therefore be regarded as being a mechianism for wave-number

gselection in the sense just described. ‘

B. Intersection of modes 211, Oll.

The point B in Figure 3 is the intersection of the curves for the
modes 211 and 011, We denote the corresponding value of a by e (= 1.70).

The common value of M211’ M011 at this point will be denoted by Mc;

computations give
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M. = My = Mg, = 80.6 , (7.26)

By hypothesis we have that Ri'l = R011 = 0, Using the same reasoning as

in the previous case, we take

& = {2, o, e, o1 (7.27)

as the set of eigenfunctions for the evolution of the modes 211 and Oll near

the double point.

Subs®ituting the assoclated eigenfunction expansion into (5.23) we

obtain, by analogy with (7.3) and (7.4), the following ordinary differential

equations.

vnllAull = m=2and m= 0, (7.28)

(M JA

“Maua © fane

and

= -]

Vatihaty = M =M =M R fat1 e T Zan1 (7.29)

form =4, { =1 and m = 0, { = 2. For the quadratic nonlinearities in (7.29)

we use (6.10) to find that

2

Zaan * MCA000 * Brostonnten * Puostorztary? (7430

41

where 562 is given by (6.33), 5606 by (6.34) and 6“05 by (6.34) with the mode

011 replaced by the mode 021, and

2 2 2 2 2
d921Z021 = MC822851 * Tardonr Y Yartorn t Y2i2% 010t Y22toar o Satenn
(7.31)
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vhere the are glven by (6.46)-(6.47), and where we define

Y5

-1
Sk = %01 %11 "% * PF Gk (Y1 ¥y (7.32)

for X = 1, 2 and m = 2, 4. We now solve (7,29), making the same

approximations as before, to obtain

2 2 2
-M -M'8

c 2 2 cu2t211
A - (6 +Y ), A - . (7.33)

o " Tl 228211 * 214011 sr © e By

The quadratic nonlinearities in (7.27) are found to be given by

danZann ™ M1 (Bohorr * Bofoar * Byhann ) (7.34)
where 80. 86 are given by (6.30), and 86 is also defined by (6.30) with O1l1

replaced by 021, and

2 2 2 2
do11Zo11 = MOV18011 * Yi12%011%021 * Y12%021 t S12%211 * S14fn) (7439

where the Y's are given by (6.46)-(6.47) and the 6's by (7.31)

We now substitute (7,33)-(7.35) into (7.28) to obtain the following

pair of equations:

. 2 3
VarrAann T M T My 0% 00 T SA0%011 T %Rt T Yt
(1.36)
Ao m (M =M YA = YA = e Al - oA AL oA
Yo11%011 To11’o11 T Yoor1 T 0”211 T %"o11”211 T “ofo1r

where

Y O TOR T POT . e
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Cy = MBo/dyin  Co = MSi/dgqs
3- o
M 80721 8927112
RELTTUEERE 9" " WA S | (7.37)
021%21%021%211 021%21%021%11
3 -

PR T e, | T
2 " "4 - - '

211 Ro21%021f021  Ranndenifan

where “ = “11 defined by (6.51) and where YO is given by (6.50). Computed

values of the coefficients are given in Table’S.

-4 -3 2

1, x10°2 -2 3 o x10"
Pr Va1l x 10 c2x10 027\10 m2x10 JOIIX 10 Yox 10 o 0¥
0.1 0.40 0.22 6.2 11.0 3.6 0.36 =-19.0 1.6
1.0 0-15 4.3 0.55 1.5 1.2 -0521 - 1.4 0.22
10.0 0.12 4,7 0.30 0.98 0.96 -0.26 0.40 0.15
© 0.12 4.8 0.28 0.9 0.94 -0.27 0.57 0.1l4

Table 5

We proceed with the analysis as in the previous case. For aspect

ratios slightly less than ag, a < ag, we define

B ER W =M, =M, >0, (7.38)

whereup equations (7.26) become
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V,A, = nA

) - C.A.A o,AA. - w2A2

2 2°2% T “2"2%

(7.39)
V) ; = - L0)A, - Az - A? - A -
odo = (0 = 8)Ag = Yohg = oA, = Fghghy = oAy

with an obvious abbreviated notation. The stability problem for a solution

(A 9 A ) of (7.39) is determined from the cquations

v,a, = (n - CZAO - 2 0 - 3w A )a (czA + 20.A.A )a

2"2%
(7.40)

’ = > = "2
Yo% ™ -\Zc A + ZovoAz)a +(n-4A ZVOAO 3qu°)ao.

Because of the proximity and flatness of the curves of Figure 3 in the
nzighborhood of the point B, we estimate that the range 0 < A < 1.0 is

reasonable for A, withk n not larger than 2A.

Figure 9

The solutions of (7.39) and their stability behavior are illustrated
in Figure 9 for Pr = 1.0, 10.0 and =»; for the case Pr = 0.1 the graphs of Ag
against n have to be reflected with respected to the n-axis. The conduction
solution A, "AO = 0 loses stability at n = 0, and the solution which
bifurcates from this point is primarily an m = 2 mode, modified by the
presence of a small m = 0 component. The latter is due to the fact that
(7.39) have no nontrivial solutions with Ap = 0, owing to the presence of the
term coA%. However, the modification is small because c; is a small
quantity. Thie solution i{s represented by the curves OM, ON, in Figure 9, and

derives from the equations
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2 2
Az = (n = c2A° - OZAO)/NZ
(7.41)
3

2 3 2
0 = (n = 8)A; = Yohg = oAy = Tghgh; = wphg:
A stability calculation shows that this solution is initially stable, but

becomes unstable at a value n = nr > A.

The solution bifurcating at the point n = A i{s given by

A - W Az - 00 (7042)

Ay =0, n =B =Yg = YA,

2

This i{s identical with the transcritical solution described in C. of Section

6, and is represented by the asymmetric parabola QPR. However, the stability

system shows that the branch PQ is stable (as in Figure €), but that the whole

branch PR is now unstable.

In particular we find that thera is a value n of n, wit, 0 < n, < 4,
at which one of the stability exponents for the branch PR changes sign. From
the corresponding point S on PR there is secondary bifurcation of a solution
joining S to the point T. This i{s a mixed-mode solution, and is actually a
distinct solution of equations (7.40). We find that this solution {s

unstable.

Reviewing the situation as shown {n Figure 9, we see that
before n reaches 0, the system may stay on the null solution or snap-through
to the axisymmetric branch PG; on 0 < n ¢ nT the system may clioose PQ or the
predominantly m = 2 solutien OM, ON, OL; but that for n > nT the only stable

solution i{s the axisymmetric mode represented by the branch PQ. Thus, even

R —
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though the m = 2 mode appears first according to linear theory, it soon loses

out to the axisymmetric mode as a result of the interactions.

We consider next the case where a is slightly greater than ag»
a >'aB, with
g AR N (7.43)
The governing equations are (7,39) #ith n and n - 4 interchanged, and the
stability equations are (7,40) with n and n = 4 Interchanged. The results are
shown in Figure 10 for large and moderate Prandtl numbers; for very small
Prandtl numbers the picture is generally the same apart from reflection in

the n-axis.
Figure 10

The solution bifurcating from n = 0 {s the tramscritical axisymmetric
solution given by

2
Ay =0, n=YA - wAl =0, (7.44)

2 00

represented by the curves PQ, PR in Figure 10. Calculations based on (7.40)
show that the branch PQ is stable and PO is unstable, as in the non-
{nteractive case depicted in Flguce 6, but that OR, Initially stable, loses

stability at n = n_, where 0 < Ny < A. This re-emphasizes the preference [or

SI

the upper branch discussed in Section 8.

The solution bifurcating from n = 4 {3 a solution of the equation
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*g =(n=28-=cihp~ °z‘§’/“z
(7.45)

0 =nly - *o‘g - °o‘§ . °o‘o‘§ - ”b‘30'

It is found to exist for n > A and to be a slight modification of the pure m =
2 solution described in B. of Section 6. This soluion {s represented hy the

curves AL, AM and AN in Figure 10, Calculations show it to be unstable.

Finally, there is another solution of (7.45) which is a mixed mode and
which bifurcates from the axisymmetric solution (7.44) at the point S. This
solution is represented by the curves SU, SV, ST in Figure 10,and is found to

be stable.

We see, therefore, that there are two stable solutions: The pure
axisymmetric mode PQ, and the mixed mode emanating from S. The latter
represents a distortion of the lower branch due to the modal interaction.
Nevertheless the upper branch PQ i{s preferred as in the non-interactive

situation.

R T Ep—
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8. DISCUSSION AND CONCLUSIONS

We have considered Marangoni instability in a circular cylinder under
the simplifying assumptions that the upper free surface is non-deformable,
i.e. C =0, and the sidewalls are adiabatic and impenetrable but "slippery".

The linear stability curves vary with surface Biot number h and Rayleigh
number R as expected from the analyses of the unbounded layer. (The boundary-
value problems are identical.) Mc decreases with R and increases with h and
these features are shown in Figures 3-5. Here, the envelope of each set of
curves gives Mc fog each aspect ratio. Had we used the more realistic
rigid-side-wall boundary conditions, this envelope would have been modified.
We would still expect to have interlacing of the modes though the modes might
interlace in a different sequence. Only the direct calculation of these
neutral stability curves could determine this. We shall aiscuss below the
implications of the use of slippery sidewall conditiomns.

Given the qualitative similarities of cases for various values of h
and R, we investigate the nonlinear behavior only for the single set h = 0,

R = 0. We have selected five aspect ratios and performed the bifurcation
analyses for these.

Cases A, B and C of Section 6 relate to aspect ratios corresponding to
siwmple eigenvalues Mc for which m = 1,2,0 respectively. We see that for m # 0
that we have supercritical bifurcation only. However, when m = Q, the axi-~
symnetric convection is subcritical and snap-through convection can be expected.
It is only in this axi-symmetiic case that flor direction is distinguished.
For low Prandtl number Pr, there is downflow in the center while for all
Pr = 1, there is upflow in the center. As is well-known, subcritical irsta=-

bilities have associated transport values with hysteresis behavior. (This




i
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will be discussed further for Case B of Section 7.) It is easy to calculate
the degree of subcriticality possible in the axi-symmetric mode i.e. the
AH/Hc at the nose of the curve. This varies from 0.18% at Pr = 0.1 to 1,4%
at Pr = ®», The only comparison available is to the results of Scanlon and Segel
(1967) who examine an "infintely deep" layer having no sidewalls. In their
analysis they have Pr = « and find AH/Hc = 2,3%. The two analyses are in
reasonable agreement. This gives further substance to our feeling that our
results reflect the inherent nonlinear behavior of the system.

Case A of Section 7 examines a neighborhood of a = a, of Figure 3 where
Hc is a double eigenvalue of modes m = 1 and m = 2, The nonlinear theory
gives a coupled pair of nonlinear amplitude equations,(7.15). The analysis
shows (Figure 8) that for a slightly larger than a, the first mode to appear
(at M = Hc) 1s the pure mode m = 2 as predicted by linear theory. As M is
increased above Mc, the system remains in this mode and possibly no further
transition is predicted. Alternatively, the system may progress through there
the sequence: pure m = 2, mixed (1,2) mixed time-periodic and perhaps pure
m = 2 as discussed in Section 7. On the other hand if a is slightly smaller
than a, the transition sequence (Figure 7) is completely different. Here, at
M= Mc, a mixed (1,2) mode occurs and this mode becomes unstable for an M > MC.
Hence, there must be a transition to the pure mode m = 2, We find then that the
mode m = 2 may persist and be stable for M large enough on either side of a = a

A
independent of the prediction of linear theory. This result depends on the

stability of the time-periodic mode which has not been examined here but will
be investigated further in later work.

Case B of Section 7 examines a neighborhood of a = ay cf Figure 3 where
Mc is a double eigenvalue of modes m = 2 and m = 0. The nonlinear theory
gives a coupled pair of nonlinear amplitude equations (7.36), The analysis

shows (Figure 8) that for a slightly larger than a, the lirst mode to appear

B
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(at M = Ht) is the pure axi-symmetric one. There is a snap~through at some
M< Hc (the snap-through is accompanied by a dynamical hysteresis behavior).
With sufficiently small disturbances the system resides in this m = 0 mode
for all M covered by the theory. Yet, for M large enough there can be a
transition to the mixed (2,0) mode if the disturbances are large enough. On
the other hand if a is slightly smaller than ag (Figure 9) very small distur-
bances evolve as a mixed (2,0) mode until this mode becomes unstable at
supercritical conditions. At this point there is a snap-through transition
to the pure m = 0 mode. If M is then decrcased, a dynamical hysteresis locp
would be revealed since the jump back to the mixed mode would usually occur
at much lower values of M; conceivably in fact the jump could be to the state
of pure conduction. This interesting hysteresis loop could consist of three
distinct states: mixed (2,0), pure m = 0, pure conduction! Alternatively,
if the system is very noisy in that large disturbances are present, as M is

increased from subcritical condition, the system could snap-through directly

from conduction (at M < Mc) to the axi-symmetric state and completely by-pass
the mixed-mode state for increasing M, yet return to it when M is decreased.

The above analysis should give a faithful representation of the nonlinear
processes in fairly small containers in which Marangoni instability takes
place. If the replacing of the ideal sidewalls with more realistic rigid
walls does not change the sequence of the modal interlacings, then the theory
could be applied to experiment in a straight~forward way. If the sequence
of modal interlacings does change, then the theory should be applied by
first locating the double eigenvalue by experimental observation, Thus location
a = a,, say, would be different from that of the "slippery" wall linearized

analysis. However, once it is located, the raising of M for aspect ratios a
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on either side of a, should be well represented by the above theory. It is
thus a relatively "simple" observation of flow pattern that would initially
need verification.

There has been no previous nonlinear analysis of Marangoni convection
in a bounded container., The present work represents a first exploration of the
phenomena albeit with an idealized model. The idealization on the upper free
surface C =0, will be relieved in our future work so that effects of free-
surface deflection can be assessed. The dropping of idezlization of slippery
sidewalls entails a major computing program that will not be undertaken.
Clearly, certain small imperfections on either the sidewalls or the free
surface can lead to an imperfect bifurcation in which the predicted sharp

instabilities become gradual changes. Our work here provides the framework

for studying these effects as well,
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FIGURE 1:

FIGURE 2:

FIGURE 3:

FIGURE &4:

FIGURE 5:

FIGURE 6:

FIGURE 7:

CAPTIONS FOR FIGURES

A sketch of a possible static liquid-gas configuration in a wide
container (a) on Earth at 1g, (b) in space at 10-63, (¢) in space

8¢, (4) in space at 10~%.

at 10~
A sketch of a possible static liquid-gas configuration in a
narrow container (a) when the interface is curved and (b) when
the interface is flat.

Calculated stability curves, M versus a, for h = 0, R = 0 where
m and i are the azimuthal and radial wave numbers, respectively.
Hc is the envelope (minima) of the curves.

Calculated neutral stability curves. M, versus a for h = 0 and
various values of R. The m values take the same sequence as in
Figure 3.

Calculated netural stability curves, Mc versus a for R = 0 and
various values of h. The m values take the same sequence as in
Figure 3.

The bifurcation diagrams for a = 1.80 corresponding to a pure
axi-symmetric mode m = O, Solid lines represent stable branches
while dotted lines represent unstable branches. (a) The case

of Pr = 0.1: the branch PQ represents downflow in the center.

(b) The case of Pr 2 1; the branch PQ represents upflow in the
center.

The bifurcation diagrams for a slightly less than a, > 1.20 where

A

= M,. Solid lines represent stable branches while dotted

A= M2 1

lines represent unstable branches.




FIGURE 8:

FIGURE 9:

FIGURE 10:

=73

The bifurcation diagrars for a slightly greater than a 2> 1.20

where A = "1 - H,. Solid lines represent stable branches while

dotted lines represent unstable branches. The curly lines represent
time-periodic bifurcations.

The bifurcation diagrams for a slightly less than ay = 1.70 where

= M,. Solid lines represent stable branches while dotted

2 0
lines represent unstable branches,

A=N

The bifurcation diagrams for a slightly greater than a 1.70

where A = Mg = M,. Solid lines represent stable branches while

dotted lines represent unstable branches.
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CHAPTER II. CONVECTION IN RECTANGULAR CYLINDERS
1. INTRODUCTION
In Chapter I, which we shall call I, we discussed Marangoni instabilities
in a circular cylinder and distinguished between simple eigenvalues and
double eigenvalues, where secondary bifurcations are possible.

In the present chapter, we examine Marangoni instability in rectangular
containers. Again, we assume that the upper free surface is non-deformable,
C==0, and the sidewalls are adiabatic and impermeable but "slippery", which
in the rectangular geometry, corresponds to zero shear stress applied on the
boundary. We use the asymptotic theory of Rosenblat (1979) to examine the
steady convective states near Mc and how transitions from one state to another
occur, We limit ourselves tc interactions of modes in the form of two-
dimensional roll-cells, which are predicted for rectangular containers having
the shorter side comparable to the depth and the longer side larger than the
depth. Since much of the full development is similar to that in I, we give
only those details which distinguish convection in a rectangular container

from convection in a circular cylinder.




2, FORMULATION
Consider a viscous liquid, which partially fills a container
of rectangular cross-seaction. The mean depth of the liquid is d and a

horizontal cross-section has lengths ald and azd in the x and y directions

respectively. Hence, a and a, are the aspect ratios. The axis of the

i
|

cylinder is anti-parallel to the direction of fravity, and the upper surface

of the liquid is open to an ambient gas.
The development of the non-dimensional nonlinear disturbance equations
and boundary conditions parallels that in I. Again, in the limit of
small capillary number and when the lateral boundaries are adiabatic
and impenetrable but "slippery", we obtain the fcllowing nonlinear problem.

From equations (2.19-2.21) of I,

oy
Pr'lu{ﬁ + Q-v;)!} = -yp + vzx + M'lnﬁ_i_ (2.1)
gy =0 (2.2)
M (2. v+ o) =% (2.3)

where M, R and Pr are the Marangoni, Rayleigh and Prandtl numbers defined
in equations (2.22) of I,

The bottom of the box is a rigid perfect conductor so that
8=0 on z=0 , 0=x= 2 0sys a5 (2.4a)
v=0 on z=0 , 0sxs a 0Osys a (2.4b)

Since the capillary number is zerolthe upper surface is flat, so that

from equations (3.5) of I, the heat transfer condition is
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%% +h8 =0 on z=1 , 0sx¢< a 0Osys a, (2.5a)
and the kinematic condition is
w=0 on z=1 , 0sx=s a, 0<sys a, . (2.5b)
The conditions of thermocapillarity become :
u, + v + Ox - + "y + Gy «0) , a=m}) , 0s=xs a, , 0sys< a, +
(2.5¢)

Finally, the "slippery" sidewalls reduce in Cartesian coordinates to

adiabatic, impermeable stress-free planes. These conditions take the form 4

AR A Gx =0 on x = 0,41; B2y % a, A (2.6a)
v = wy = uy = ey =0 on y = 0,32; 0 2. < a 0<zsl (2.6b)
4
i
—_— o . s g
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3. LINEAR STABILITY PROBLEM

The critical Marangoni number at which the conduction solution loses
stability is determined from linearization of the syztex (2.1)-(2.3)
together with the (linear) boundary conditions (2,4)-(2.6). As in I, we
assume that Hc occurs at a state of neutral stability so that the governing

linearized equations become

o + u‘lnvfe =0 (3.1a)

and

92 +Me =0 . (3.1b)

System (3.1) plus boundary c~nditions (2.4)-(2.6) may be solved by
secking separable solutions in the form

w(x,y,z) = cos[ mlnx/al]cos[mzny/szY(z) (3.2a)

8(x,y,2) = cos[m nx/al] cos[mzny/u,:X(z) (3.2b)

1
with similar definitions for v and v. Here X and Y are the same functions
as those in I since they are eigenfunctions of a set associated with the
stability of the infinite conductive layer considered by Pearson (1958).
and m, run over all non-negative integers.

1 2

when forms (3.2) arc substituted into cqns. (3.1), an effective wave

Here m

number A appears where

AT = [(ml/al)2 + (mzlaz)z]rr2 . (3.3)

The effects of buoyancy through the Rayleigh number R and the effects
of the free surface being a poor insulator through the surface Biot number
can be explored as in I. The effects are the same in that increasing R

decreases Mc and increasing h increases M . Thesc results will not be
[




presented here. We shall confine ourselves to R = 0 and h = 0. In this

case, we find that

-
;
,'
F
g.

e
M) = 8\"()\ - sinh A cosh A Jcosh A 2 (3.4)

kzcosh - sinhsh

We note that for an infinite layer, A is the overall wave number which takes

on all values on [0,#). M(\) would then have the minimum M, ~ 79.6 for

A, ® 2. This result is due to Pearson (1958). For the present enclosed

layer, M(\) must be minimized over only those admissible )\ given by eqn. (3.3).
The relationship between the box aspect ratios and the mode of

convection, indicated by the integers (ml,mz), is given implicitly

by equation (3.4). We have evaluated this relationship for a range of box

sizes for all possible modes of convection. The results are given in

Figures 1-6, in which M is given as a function of a for fixed values of a,.

For clarity. modes having large critical Marangoni numbers are not

shown. Consider firet the case of a, = 0.5 shown in Figure 1. As the box

size, 3y, increases, the preferred mode, i.e. the mode having the lowest critical

Marangoni aumber, changes in a specific way. This sequence is among modes

for which m, = 0. Thus, we have two-dimensional roll cells whose axes are

aligned with the shorter dimension of the box. We shall call these x-rolls.

m, T

1 = —._,—vith my

the critical Marangoni number is minimum at the value Mg, ~ 79.6 appropriate

It is seen that for box sizes a =1,2,3++« that A = 2 and

to infinite layers. Away from these values, the sidewalls exert a
stabilizing influence, even though they are "slippery". While the fact that
several box sizes can have the same M = M_ is presumably an artifact of

the use of the slip-wall boundary conditions, the existence and progression

of preferred modes due to the finite size of the container is not,
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In the case of buoyancy-driven convection, the dependence of M on box size
i{s monotonic but has kinks at the points of modz switching, Davis (1967),
and the effect of sidewalls is to align the roll axes with the shorter side
of the box. This is the same progression and alignment as predicted heve
for a, = 0.5, but we shall see below that the present treatment leads to
some predictions of preferred mode orientation which are presumably arti-

facts of the slip-wall boundary conditions.

To summarize, the curves in Figure 1 predict preferred modes consisting
of x-rolls, and the progression is to add more x-rolls as the box size
increases, Of particular interest are the aspect ratios at which two modes

have the same critical M, this is a double eigenvaiue of the linear theory.

Figure 2 shows the results for a, = 1.0. Since the modes with m, = 0 are

s unaffected by the length a, the lower curves are identical to those of

Figure 1, We anticipate however, that as ‘2 approaches mzwlz, there are

two-dimensional rolls with axes aligned with the longer side of the box,

(y-rolls), which might have lower critical Marangoni numbers than the x-rolls.
This is not yet the case for the (0,1) mcde for the conditions of Figure 2,
but becomes so for the conditions of Figure 3. Finally, we note the occurrence
of more complex thiee-dimensional modes of convection, e.g. the (1,1) and (2,1) ”
modes, having Marangoni numbers close to, but above those for x-rolls.
Figure 3 gives results for a, = 1.5, and shows several complex features. 1
First we note that the (0,1) y-roll has Ma = Ma_  for this value of a,, 11
indevendent of 3, and hence is often the preferred mode. However, since

a, # »/2, there are small ranges of box sizes located near a, = nm1/2, for

which x-rolls are preterred, We also note that three-dimensional mode.,

e.g. the (1,1) and (2,1), become closer to Leing preferred., At a8, = 2.0,
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the results shown in Figure 4 indicate that the y-rolls (0,1), (0,2), cre
no longer preferred, and the three-dimensional (1,l1) and (2,1) modes are
preferred over x-rolls for some range of values of a, away from a = mln/Z.
For a, = 3.0 (i.e. close to m) Figure 5 shows that a situation analogous
to that in Figure 3 occurs; the y-roll (0,2) has Ma ~ Ma_  and is preferred
for all box sizes a, away from mlnlz. Finally, as shown in Figure 6, as a,
increases, the number of modes competing and having Ma = Ma_ increases,
and the envelope of these neutral curves becomes nearly the horizontal
line Ma = Ma_. This reflects the diminished effect of the sidewalls in
determining the preferred mode.

The results may be summarized by a map in the a,-a, plane of the
preferred modes, We note that the pattern of proferred modes must be

anti-symmecric about a, = a, corresponding to a rotation of the coordinate

1
system, Thus, M(al,az) = M(az.al) and the preferred modes, (ml(al,az),
mz(al,az)) - (mz(az,al), ml(az,al)). It is clear from the previous discussion
that this map will be complex, and that as a, and a, become large, many

modes will have values of the critical Marangoni number ciose to that for

the preferred modes. This map is shown in Figure 7, With one exception,

it is difficult to speculate on the degree to which this complexity depends
upon the use of slip-wall boundary conditions. Complexity of this degree

does not occur for buoyancy-driven convection in a beox, Davis (1967), but

does occur for buoyancy-driven convection in a bounded porous media; Beck

(1972). The persistence of y-rolls and x-rolls at a =~ mln/2, a, ~m n/2,

2

m ,m, = 0,1,2,sss respectively, will not occur if more realistic no-slip
1772

boundary conditions are applied. Careful study of resulis similar to
those in Figures l1=-5 indicates that much of the conplex mode=-switching

is due to neutral curve for y-rolls (x-rolls), peing a horizontal line,




S . W . T s g TSN RS i

-90~

intersecting many times the neutral curve for other modes. No=-slip sidewall
conditions do not admit pure x-rolls or y-rolls, with the result that the
neutral curves for modes whiih are closz to y-rolls, (x-rolls), may not
exhibit as many intersections. However, this does not imply that the
bifurcation theory developed below will be simpler necessarily, as these

modes may continue to be near-multiple eigenvalues of the linear theory.
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4. EIGENFUNCTION EXPANSIONS
In the nonlinear theory we focus on certain special interactions
appropriate to one horizontal box-dimension being comparable to the depth

and the other much larger. In particular we shall take a, = 1.0 so that

2
only x-rolls are predicted by linear theory. It is the interaction of rolls
that we shall address. Although we must develop the theory for Rayleigh
number R # 0 for completeness properties of the differential system, we

shall, with no loss of generality, set R = 0 at the end. Hence, puie

Marangoni instability will be analyzed.

Let us restate the linear stability problem for the case at hand:

vzx -9 + u‘laeg =0 (4.1a)
vev =0 (4.1b)
2
76 +Mw =0 (4.1c)
with

8 =u=w=0 on z=20 (4.1d4)

82 ol Bl 8 + Ex =0 onz =1 (4.1le)

i = s w = 0 . on x = O,a1 (4.1f£)

The problem is now a two-dimensional problem since we are interacting only
3
x-:0lls; hence, v, S; 0.
For fixed M the eigenvalues are denoted by ij with m,j = 1,2,°+* and

m is the horizontal wave number while j is the vertical wave number. Derine




Xm = m/a1 i

The eigenfunctions are

“mj = - X;lai.n kmx Dij(z)

Vi = cos kmx ij(z)

Omj = cos me ij {z)
i where the xmj and ij are the eigensolutions of the system
i (6.10)-(4.12) of I when M = M, R = Ryy» A=A, and b = 0.

| The adjoint problem is

2 * * T
Vv -vp +MZ =0

v.! -0
* Aw *
b v + MR =0
with
* * *
8 =u =w =0 onz =0
¥ * ke
8 +w =w =u =90 onz =1
2 2 z
* W *
u =w = 9 = ( onX'O,& .
X X 1

The adjoint eigenfunctions are
5
umj

(z)

*
= - A sin A x DY
m m m

i

* = alcos A x Y. (2)
wmj u.lcos mx mj(z

5 *
9 = cos A x X ,(2)
n m

mj J

* %
where X , Y satisfy system (5.14)-(5.16) of I with h = 0,
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We now decompose all dependent variables into horizontal mean (i.e.

x-mean) plus departures from the mean as follows

vev+yv' , 8=8+8" , p=p+p' (4.6a)

where for each quantity g,

a
o |
g = | 8dx, (4. 6b)
| '[o
1 For the case R = 0, the equations (2.1)-(2.3) are
|
vzx -Vp = MP;I{_gt + @Dy} (4.7a)
vev =0 (4.7b)
v’ + e = N8+ (v9)8). 7€)

If forms (4.6) are introduced into system (4.7), then we get

. vy - - W;l&t + oy + @ '2)!'} (4.8a)
7'y =0 (4.8b)
- - - - —
70 + Mw = M{et + (w8 + (v'eme') (4.8c)
r and
2, ' ‘1{ ' ' =3 = ' P lo! ' 1 L Qr
Vv -Vp = MPr . * @'y + (' + [ (' 9y l¢j (4.9a)
}
| gev' =0 (4.9b)
' v?'e' + Mw' = M{eé + (@' 78 + (w8’ + [(!'-v)e']f} (4.9¢)

where [ ]f denotes the fluctuating part of [ 1, The same boundary conditions
hold for both systems (4.8) and (4.9).
As is well-known, there is no mean velocity field induced by the

convection and thus
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1<l

=0. (4.10a)

Equation (4.8c) then simplifies considerably, and for steady or quasi- )

static convection,

c?z = MWe) . (4.10b)

If these relations are used to simplify (4.7) we obtain,

-1/ 1
vy' -t =Wy v L@ty (4.11a)
Yy =9 (4.11b)
vt +me = m{a 4 T@En + [ @'D) 'Jt.} (4.11¢)

We now take the scaler prcduct of (4.1la,c) with the adjoint vectors

x %
(!mj,emj) at M = Mc’ R = R ., and integrate over the fluid volume. This gives

m]j l
(M-Mc)(a;jw'> - }1;1Rm:(w:\ja') = M(E‘::j'dé + p;l%:j.xp
+ ?1('3;&2 (v'ov)8'], + Mw'(w'C )}
* P:-l‘—';;j'z(l"”i”ff) (4.12)

for each m and j. Equation (4.12) is the basis for the derivation of the

amplitude equations.
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5, SIMPLE AND DOUBLE INTERACTIONS

A. Simple eigenvalue for (1,0). Let us consider an aspect ratio

a, = 1.5 which corresponds in Figure 2 to a simple eigenvalue Mc for

T T

|
b

convection with (ml,mz) = (1,0).

We find that

Mc = 79.4 (5.1)

and by hypothesis, R11 = 0. The quadratic interaction of mode 11 ge: 2rates
4 the 21 mode (R, # 0) so the sstadis
X = {11,21}, (5.2a)
We write
|
9SS »
©'u') = AJ®,¥ ) + Ay (0,,v))) (5.2b)
} and substitute into equation (4.12). We obtain
lel = (M-—M‘:)A1 - Z1 (5.3a)
. -1
Vohy = = M, Ry£,4, - Z, (5.3b)
when M = Mc, where
- * -1 *
Ym dmlMc<8mlem1+Pr Tl !m1> (3.30)
-1, *
fm = dm (wmleml) (5.3d)
d = (8 .w.) (5.3e)
m ( m1¥ml’ E o€

We shall not give all the details of the evaluations since they are parailel
to those of I. After a good deal of algebraic manipulation, we find that
if al, a, and ﬁl are constants that

3

2, = O.IAIA2 W BIAI (5.31)




2
2, = 0,Ay, (5.3g)
and the governing amplitude equation takes the form
3
VIAI = (M--MC)A1 - wlAl. (5.4)

The computations of the coefficients have been performed for various values

of Prandtl numbers and some results are shown in Table 1.

-4 -4
Pr vy X10 4 X 10
0.1 0.37 5.2
1.0 0.13 0.64
10.0 0.10 0.43
= 0.10 0.41

Table 1

Since w, > 0, the convective state results from supercritical bifurcation

1

and is stable,

B. Simple eigenvalue for (2,0). Let us consider an aspect ratio

a = 3.1 vhich corresponds in Figure 2 to a simple eigenvalue Mc for

convection with (ml’m2) = (2,0), We find that

ML= 79.2. (5.5)

There is again a quadratic interaction and the 5utxf is
\f = (21,41) (5.6)

We omit all details and sctatc the final amplitudce cquation,
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where the coefficients have the numerical values given in Table 2.

Pr vy X 1074 w, X 1073
0.1 0.44 1.4
1.0 0.13 0.26
10.0 0.10 0.25
- 0.098 0.25
Table 2

Again, 6y > 0, the convective state results from supercritical bifurcation

and is stable.

C. Double eigenvalues for (1,0) and (2.0). Let us consider an aspect

ratio a = 2.21 which corresponds in Figure 2 to a double eigenvalue for

convection with (ml,mz) = (1,0) and (ml,mz) = (2,0). We find that

M = 90.2 .
c

The quadratic interaction of modes 11 and 21 generate modes 31 and 41.

set,g is

,A = {11,21,31,41}.
We write
4
@',y') = iZ:lAi(ail’lil)

and substitute into equation (4.12). We obtain

VlAl = (M'Clc\.‘\l - Zl

™

‘2A2 = (M-M)A, - 2,

o1 i
Mo RyEq8y = = 2y

(5.8)

The

(5.9a)

(5.9b)

(5.10a)

(5.10b)

(5.10¢)

|
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NIREA =-2 (5.10d)
e Rafahy 4 .

wher. M = Mc. Here the f3, fa, R3. R& and functionals Z1 - ZA are defined
in analogous way as in 7. Again, we omit details and state the final

amplitude equations;

2

R N TR (5.110)
vohy = (M-M)A, - “z*f . °z*fﬁz - ngZ ' (5.11b)

Numerical values of the coefficients are given in Table 3.

=4 -3 -3 -2 -3 -4 < il -3
Pr lelo vleo a1x10 aleo alxm clxlo 02;(10 wleo
001 0;58 3.9 - 0.88 1.5 0.18 2.3 1.3 5.0
1.0 0.23 1.2 - 0.34 0.43 0.18 0.33 0.17 0.95

10.0 0.20 0.90 - 0.29 0.32 0.18 0.24 0.12 0.77

® 0.20 0.87

0.29 0.31 0.18 0.23 0.12 0.76

Table 3
We analyze the equations (5.11) in detail below.

D. Double eigenvalue for (2,0) and (3,0). Let us consider an aspect

ratio a, = 3.81 which corresponds in Figure 2 to a double eigenvalue for

convection with (ml'm2) = (2,0) and (ml,mz) =(3,0), We find that

M, = 82.9 ‘ (5.12)

The quadratic interaction of modes 21 and 31 generates modes 11, 41, 51, 61

so the set,& is

A‘ = (11,21,31,41,51,61}, (5.13a)

I e e



We write
- 5.13b)
' 'Y & \J.
@',y 15;1“1“11'!11’
and substitute into equation (4.2). We obtain
V2A2 = (M-Mc) - 22 (5.14a)
v3A3 - (M-Mc) - 23 (5.14b)
-1
Mc Rnanh = - Zn , n=1,45,6 (5.14¢)
when M = Mc' Here the fn' Rn’ Zn are defined in analogous way as in I,
Rather than give the details, we state the final amplitude equations.
A o= (M- . na & 2 (5.15a
Voly = (=M )Ay = Wk, = ThM Bl
VA = (M-M A, - 1A%, - w A (5.15b)
3%3 gty = Tylghy = Uyl

and the coefficients are given in Table 4,

-4 -3 -4 -3 -3 -3
Pr vleo v3x10 w2x10 rleo w3x10 faxlo
0.1 0.46 3.6 1.4 - 7.8 L1 6.7
1.0 0.18 1:2 0.17 - 1.1 0.85 1.2
10.0 0.15 0.92 0.12 - 0,76 0.66 0.89
® 0.14 0.89 8,11 - 0.72 0.64 0.86
Table 4




6. ANALYSIS AND DISCUSSION

In cases A and B of Section 5, the self-interaction of roll cells (1,0)
and (2,0) is considered. In both cases, the interaction is governmed by
single amplitude equations containing cubic but no quadratic nonlinearities.

These are equations (5.4) and (5.7) respectively. The values vy and vy,

depending on Prandtl number Pr, are values from the linear stability problem
and for given A of equation (3.3) are identical here to those of I. Careful
comparison shows this, The values w, and ©y of cquations (5 .4) and (5.7)
are always positive so that these simple self-interactions always correspond
to stable supercritical bifurcation. It is easy to show that for any values
(ml,mz) # (0,0) indicated in Figure 7 that self-interactions alwzys have

amplitude equations of the same form, i.c.

VA= (M-M)a - wA® 6.1)

where v > 0. Presumably, w > 0 for any of these so that stable, supercritical
bifurcation is always predicted for self-interactions. This is likewise

true in the case of the circular container of I for m # 0. It is only for
the (m=0) axisymmetric mode that equation (6.1) is augmented by a quadratic
term. Thus, the axisymmetric mode bifurcates subcritically and so has

snap-through and hystcresis properties as discussed in I.

In case C of Section 5, the interacticn of modes (1,0) and (2,0) is
examined near the double eigenvalue at a, = 3.1 of Figure 2, The governing
amplitude equations (5.11) are a pair of coupled equations identical in
form to equations (7.10) and (7.11) of I which govern the interaction ¢f
modes m = 1 and m = 2 rear their double eigenvalve., Again, the v, are

linear theory values thut depend on Pr and % but not on the cylinder geom:try.
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Although the coefficients are not identical in tle two cases, all of the
qualitative predictions are, Figure 8 shows the resuits of our analysis
of (7.10)-(7.11) for a < 3.1. The mixed mode containing both modes (1,0)
and (2,0) bifurcates supercritically at Hc and as M is further increased,

Al fecllows either OIUT1 or 02LT1 while Az follows OZTZ. At a value of

s M'-M1 greater than 4 = Mz'-Hl, there is secondary bifurcation to a pure

mode m = 2. This branch is labelled TZS.

Figure 9 shows the situation for a, > 3.1. Here, as M crosses Mc’ the

1

pure mode m = 2 bifurcates supercritically and follows either curve

02'1'2 or OZS' However, for 1= M=-M

persists but only on the branch O

2 less than 4 = Ml-Mz, the pure mode

2S. Again, there is the possibility of

branch 02‘1‘2 bifurcating first to the mixed mode and then to time periodic
convection, The amplitude equations (5.11) arc in form identical to those
governing hexagonal cells as predicted by Scanlon and Segel (1967) for
horizontally unbounded layers. However, since the contexts are quire dif-
ferent, the coefficients are quite different. Scanlon and Segel find

subcritical hexagons. We find only supercritical convection of mixed mode

or pure mode m = 2,

In case D of Section 5, the interaction of modes (2,0) and (3,0) is
examined near the double eigenvalue at a = 3.81 of Figure 2., The governing
amplitude equations (5.14) are a pair of coupled equations. Again, v; are
linear theory values that depend on Pr and A but not om the cylinder geometry.

Figure 10 shows the situation for a, < 3,8l. The pure mode (2,0) bifurcates

1

supercritically at Mc, n= ?;-Mz = 0, and steady convection follows either
branch 0S as M increases, At a value of " > L = MZ"MI there is secondary
bifurcation to the mixed mode containing both modes (2,0) and (3,0) and as

M increases further, AZ follows either branch SU and A3 follows a branch ST,
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Figure 11 shows the situation for a > 3.81. Here, at Hc’ the pure mode
(3,0) bifurcates supercritically and follows either branch 0S until

2 -M3. Here, there is sccondary bifurcation to a

mixed mode in which Ay follows either SU and A, follows an ST. The sequence

1]-"-“3-1].<A-M

of events here, near a = 3,81, has no counterpart in I since there was no

double eigenvalue there for modes m = 2 and m = 3, However, the amplitude

equations (5.14) have the form typical of Rayleigh-Bénard convection ia

containers as discussed by Rosenblat (1981). The Figures 10 and 1l are

typical of Rosenblat's results which apply to the buoyancy-driven conveétion.
In summary, we again find that interactions near double eigenvalues

give qualitative features that strongly distinguish behavior for aspect ratios

on one side from behavior on the other side, Parallels as well as differenc:

in behavior exist between the circular and rectangular cases,
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CAPTIONS FOR FIGURES

Stability curves M versus a8 for L = 0 at a, = 0.5. The

pairs (nl.mz) denote integral number of cycles in (‘1’.2)'

Stability curves M versus & for L =0 act a, = 1,0. The

2
pairs (nl,nz) denote integral number of cycles in (al,az).
Stability curves M versus a for L = 0 at a, = 1.5. The

pairs (ml,n,) denote integral number of cycles in (01,12).

Stability curves M versus 8 for L = 0 at a, = 2.0. The

pairs (ml,mz) denote integral number of cycles in (al.az).

Stability curves M versus a, for L = 0 at a, = 3.0, The

1 2

pairs (ml,mz) denote integral number of cycles in (01.12).

Stability curves M versus a for L = 0 at a = 3.5. The

palrs (ml.nz) denote integral number of cycles in (al,az).

Stability map for preferred mode as a function of a and a,. L = 0.

The figure is symmetric about a, = a

denote integral number of cycles in (al,az).

2 The pairs (ml.mz)

The bifurcation diagram for a, = 1.5, and 8 slightly less than
3.1 vhere A = M2 - Ml' Solid lines represent stable branches
while dotted lines represent unstable branches.

The bifurcation diagrams for a, = 1.5, and 3 slightly greater
than 3.1 where &4 = Hl - M. Solid lines represent stable
branches while dotted lines represent unstable branches.

The curly lines represent time-periodic bifurcations.

The rifurcation diagrams for a, = 1.5, and a, slightly less chan

2 1
3.81 vhere & = M3 - Hz. Solid lines represent stable branches
while dotted lines represent unstable branches,

The bifurcation diagrams for a, = 1.5, and 8 slightly greater

than 3.81 where & = Mz - MS' Solid lines represent stable

branches while dcotted iines represent unstcole branches.
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FIGURE 11
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APPENDi._A

The classical Rayleigh-Renard problem for the stability of a
horizontal layer of Boussinesq fluid heated from below can be reduced to the

solution of the pair of ordinary differential equations1

2 2
&415 -a“)e+w =0, (-97 - az)zw - Ra%9 = 0, (1)
dz dz

where 6, w are respectively the temperature perturbation and the vertical
velocity-component perturbation; a is the wave number of disturbances in the
horizontal plane; z is the vertical coordinate; and R is the Rayleigh number,
proportional to the vertical temperature gradient in the equilibrium state.
Equations (1) hold on the interval 0 < z < !, and their solutions are required

to satisfy prescribed boundary conditions of the form

0 0 1 1
PkB + ka -0 on z =0, Pke + ka =0 on z=1, k=1, 2, 3. (2)
o .0 1 .1 e
Here Pk' Q , Fk, Qk are linear differentlal operators whose particular forms

depend on the characteristics of the boundary surfaces.

For a layer of unbounded horizontal extent the boundary-value problem
(1)-(2) has & nontrivial solution for infinitely many values of R. More
precisely, there is a countably infinite number of simple eigenvalues for each

wave-number a given by a characteristic equation of the form

R = Rn(a), a=] 2. 3 see (3)
with

Rl(a\ 4 Rz(a) < R3(a) £ san (4)




for each a. The critical Rayleigh number for the onset of instability is

given by

R =R (a ) = min R (a). (5)
c 1 ¢ . 1

Corresponding to each R, there is an eigensolution
en(z; iy wn(z; a), n=1, 2, 3, oo} (6)

for various boundary conditions of the form (2) it can be shown that the
eigenvectors (6) constitute a complete set, a fact which may be useful for

computations of the corresponding nonlinear stability problem.

As an example, the simplest case is that when both boundaries are

isothermal and stress—free. Conditions (2) then become

dzw
g R 0 on z=0 and z =1, (7)
dz

whereupon the characteristic equation (3) has the well-known form

R

2. 2.3
3 - [(n'ﬂ)z"'a ] (8)

a
with eigenvectors

6 = sin anz, w = [(nn)2 + azlsin nnz. (9)

Pearson2 studied the Marangoni problem, in which the instability was

driven by surface-teonsion gradients rather than by the buoyancy force.

3

Subsequently, Nield

investigated the problem allowing the presence of both
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buoyancy and surface tension. In these cases the governing equations again
reduce to the system (1) (with R = O {n Pearson's work). The boundary
conditions have the general form (2) but of necessity contain a new
parameter, the Marangonli number M. In the specific problem considered by

both Pearson and Nield the boundary conditions were

teveap on z =20 (10)
9z
and
de a2 2
Cihomw="24+M% =0 on s~ 1, (1
dz dz2

where h is a surface Nusselt number. These correspond to a rigid, isothermal

lower boundary and a stress-free, conducting upper boundary.

Both Pearson and Nield were concerned to determine a critical
Marangoni number for the onset of instability for fixed values of the other
parameters of the problem. Detailed calculations by Ni.eld3 led to a single-

valued characteristic equation of the form

M = M(a, R, h); (12)

in other words, the boundary-value problem (1), (10)=(1l) has a unique
eigenvalue M for each value of a, R and L (and, correspondingly, a unique

eigenvector). The critical Marangoni{ number was then found to be

M =M (R, h) = M(a , R, h) = min M(a, R, h) (13)
[ ] ™ <
a
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with a, = a (R, h). For example, Nleld® found M_(0, 0) = 79.607 with
a.(0, 0) = 1.993. The graph of the function (12) for the range

=500 ¢ R € 1000 with a = 2 andh = O {s shown {n Figure 1.

Figure 1

There appears to be & discrepancy between the Rnyleigh-B:nard problem
and the Marangonl problem: the former has countably many eigenvalues Rn while
the latter has only one eigenvalue M. This (s somewhat surprising, since the
boundary-value problem (1), (i0)=(11) {ncorporates both buoyancy and surface-
tension effects. A possibly disturbing consequence 1s that the Marangoni
problem does not seem to have a complete set of etgenfunctlons‘which could be

used for computations of nonlinear stability.

This discrepancy is reconciled by noting that the inverse of the
function (12) has countably many values of R for each fixed value of M, a and

he In fact, the inverse of (12) is of the form
R = Rn(a, N:K), am1l, 2; 3, sss (14)

Thus, for each M there are infinitely many eigenvalues Rn, but only cne

eigenvalue M for each K.

We have computed the functions (14) by inverting the explicit formula

(12) given by Nleld. In our notation



M =A/B (15)

where 2 ( 2
@ d°-R w (mm)°d » 2
As(lene2at ] B ] By gpyl[ ) {mmdeosm2 (g4
=l "m m=l “n m=] m
2 2
® 2 (mm )"d o 2 @ (mm)d _cosmn
B = 242 ) S“:Z . m _ 5,2 y Smn)Acosmw . 3 Am (17)
m=l nm m=1 m m=1 m m=1 m

with
2 2 3 2
dm (mn )™ + a", Am dm Ra". (18)
Calculations were performed for the caseh = 0 and a = 2, and are shown in
Figure 2 as a graph of R against M, different scales being used because of the

large range of parmeter values. The dotted segment of the lowest curve

corresponds to the curve depicted in Figure 1.

Figure 2

We find from the calculations that the curves intersect the R-axis at
values R} = 676, Ry = 2.11 x 10* and Ry = 2,05 x 10°. These compare well with
the values obtained from formula (8) at a = 2, namely, R = 668,

Ry = 2.06 x 10% and Ry = 2,00 x 10°. Also, the lines R = 6.7 x 107 and

R = 9.9 x 10* are asymptotes for the curves.
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This analysis shows that although a critical value of M can be

determined, the Marangoni number is not strictly speaking an eigenvalue of the

boundary-value problem, whereas the Rayleigh number is.

This work was supported by a contract with the National Aeronautics

and Space Administration, Lewis Research Center.
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CAPTIONS FOR FIGURES

The first critical curve R versus M for h = 0,

The first three critical curve R versus M for h = 0,
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APPENDIX B
The eigenfunctions X i 3 (z), Ymi j(z) used in the expansion procedure are

the solutions of the boundary-value problem (4.10)-(4.12) for fixed M = Mc.

for R = Rm and with h = 0, Using the Fourier series method of Nield (1964)

ij
we find that
xmij(z) =2z + rzlo.nsin oz, Ymij(z) = nz-lsnsin nz (1)

where the coefficients & ﬂn are defined in the following way. Let

2 2
dn @) +xmi (2)
3 2
An dn - Rmij)‘mi %
and
2 2
Jn = dn - Rmij - () Mc . (%)
Then
AZ 2
. .Zmifcostn-(m)Q -
n A
n
and
ma a - 212.cos nm
n mr M
c
where
2 -
1+ 22 kz-l(Jk/Ak)
Q = . (7)
= 2
2_{mPcos w/n, }
k=1"
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The formulas (Al) can also be used to calculate the first derivative of Xm“

and the first and second derivatives of Ymij’ which are required in the nonlinear

interactions of Sections 5-7.
* *
The adjoint eigenfunctions xmi.j and Ymij are the solutions of the adjoint

boundary-value problem (5.14)-(5.16) with M = MC, R =R and h = 0, as before.

mi j
We find that
* @ o @
- - (8)
xmij(z) z + nz.lYnsinnrrz » Ymij(z) nz-lsn sinnnz
where
2 2 2
. ZXmi{(dn-Rmij)cos nr + (o) Rm)ijﬂ}
n = n'x'rAn (9)
and
2omfM (d H - cos mr
B sbnncnn (10)
n A
n
with
=2
Z < (k) “cos kn/Ak}
H = k=1"
= {amem]
<(km)"d, /A ¢
.o’ k A'kJ
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