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Abstract

In order to calculate the velocity and passive scalar fields in
homogeneous turbulent flows, the three-dimensional, time-dependent
equations of motion and the diffusion equation have been solved numer-
ically. The following cases have been treated:

1. isotropic, homogeneous turbulence with decay of a passive scalar,

2. homogeneous turbulent shear flow with a passive scalar whose mean
varies linearly in the spanwise direction.

The solutions have been obtained at relatively low Reynolds numbers so

that all of the turbulent scales could be resolved without modeling.

The numerical simulations were carried out on the ILLIAC-IV. The
computer program used 16 x 16 x 16, 32 x 32 x 32, or 64 x 64 x 64
uniformly spaced mesh points. The pseudo—~spectral method was used for
space differencing and the second-order Adams—-Bashforth method for time

differencing.

Turbulent statistics such as integral length scales, Taylor micro-
scales, Kolmogorov length scale, one- and two—point correlations of
velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number,
r.m.s. values of velocities, the scalar quantity and pressure, skewness,
decay rates, and decay exponents have been calculated. Also, one-~ and
three-dimensional spectra of velocity components and scalar quantity,
three~-dimensional spectra of production, dissipation and transfer terms,
pressure, Reynolds stress, and heat flux terms have been calculated.
Some of the results are compared with the available experimental re-

sults, and good agreement is obtained.

The behavior of the Reynolds stress #and the turbulent heat flux
have been carefully studied. The conventional models for the turbulent
Reynolds stress and heat flux, turbulent Prandtl number, and pressure-

strain and pressure-scalar covariances have been tested, and constants

for the models have been obtained.
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Chapter I

INTRODUCTION

1.1 General Background

For a century, turbulence has been the subject of intensive re-
search, both theoretically and experimentally. Due to its complexity
and despite strong efforts, turbulence remains one of the most chal-
lenging unsolved problems of the physical sciences. History suggests
that the road to the general solution of the problem is very long, if

not endless.

Turbulence originates in instabilities of laminar flow. Generally,
the instabilities produce wave-like structures which can absorb energy
from the mean flow. As they grow, nonlinear effects cause energy trans-—
fer to other modes, and eventually the noisy patterns that are generally
regarded as "turbulence” results. Energy obtained from the mean flow is
eventually transferred to smaller-scale structures, where it will be

dissipated.

Turbulence contains structures with a wide range of scales. The
large-scale turbulent structures differ markedly from one flow type to
another, while the small scales tend to be more universal. Since nei-
her experimentalists nor computors have been able to resolve all of the
turbulent structures for high Reynolds number flows, approximations have

had to be made.

Almost all approaches to the prediction of turbulent flows are
based on Osborne Reynolds' idea of averaging the Navier-Stokes equations
over an ensemble of identical flows, or some equivalent (time or span
averaging) to obtain equations for the mean velocities. Due to the
nonlinearity of the Navier-Stokes equations, the averaged equations are
not closed. Therefore,'turbulence models are needed to bridge the gap

between the difficulty of the equations and our limited computational
capability to handle the equations.
Turbulence modeling has made considerable strides in the past two

decades. The testing of the models has, until recently, been a highly

empirical affair. It is currently impossible to measure all of the



factors needed to test the models experimentally. However, it is pos—
sible to use exact numerical solutions of the equations of motion for
turbulent flows as the basis for testing models. The difficulty here is
that, with the available computers, one can compute only relatively low
Reynolds number flows. In addition, only a few simple turbulent flows
can be computed with sufficient accuracy. Due to the large range of
scales of turbulent structures, we cannot expect to compute high Rey-
nolds number turbulent flows directly with the next few generations of
computers. Despite these limitations, one might compute relatively
simple flows at moderate Reynolds numbers and extrapolate the results to

higher Reynolds numbers.

The simplest type of turbulence is homogeneous isotropic turbu-
lence. This is defined as a flow whose statistical features have no
preference for any specific direction or location. Thus a minimum
number of quantities and relations are required to describe its struc-
ture and behavior. Although it is an idealized flow, its characteris-
tics form a basis for the study of more complex non-isotropic turbulent
flows. Moreover, in actual turbulent flows at high Reynolds numbers,
the fine structures seem to be nearly isotropic, so the results of
isotropic turbulence may be useful for characterizing the small scales
of  turbulence. Because of its simplicity and importance, extensive
theoretical work has been done on this subject and a number of exper-

iments have been carried out.

A somewhat more complex type of turbulent flow is homogeneous shear
flow. The role of shear in most turbulent flows is to couple the mean
velocity field with the turbulent velocity field. Homogeneous shear
flow is a problem of complexity intermediate between unsheared homogene-
ous and inhomogeneous turbulent shear flows. It has been generated both
experimentally and computationally. 1Its study can provide better under-
standing of turbulence and can be used in testing the validity of turbu-

lence theories and statistical turbulence models.

It is useful to consider the case in which a scalar quantity is
present in a turbulent flow. The scalar may be temperature or en-
thalpy, 6r, in a mixture of fluids, species concentration. The study of

the scalar field has attracted less -attention than the study of the



hydrodynamics itself. However, the investigation of turbulent mixing is
an area of great importance. It is required in any situation that in-
cludes mass or heat transfer, for example, in the atmosphere. Turbulent
nixing is also important in reacting flows and combustion. Prediction
of most turbulent reacting and combusting flows 1is essentially impos-—
sible without accurate treatment of mixing. Study of a passive scalar
in turbulent flows will help us understand the turbulent mixing proc-—

esses that occur in these flows.

One of the objectives of the present report is to compute three-
dimensional, time-dependent solutions for isotropic turbulence and
homogeneous shear turbulent flows by numerical methods, and to study the
scalar field as well as the velocity field. The results will be used in

a number of ways.

1.2 Survey of Literature

The mathematical development of hydrodynamics was started in the
@ighteenth century.  The dynamic equations for inviscid flows were
formulated mainly by Euler (1752). The equations of motion for a vis-
cous flow were derived by Navier (1827), Poisson (1831), Saint-Venant
(1843), and Stokes (1845). 0. Reynolds (1883) introduced the non-
dimensional Reynolds number and used it as a criterion to distinguish
laminar flows from turbulent flows. Boussinesq (1877) introduced the
concept of eddy viscosity. Mixing-length theory was introduced by
Prandtl (1925) and von Karman (1930).

A. Homogeneous Isotropic Turbulence

The concept of isotropic turbulence was introduced by Taylor
(1935). Von Karman (1937) iIntroduced the use of tensors in isotropic
turbulence, while von Karman and Howarth (1938) studied the statistical
theory of turbulence. In 1941, Kolmogoroff suggested that the small-

scale components of turbulence are approximately isotropic, while Batch-

elor and Stewart (1949) showed that large scales of the turbulence gen—

erated behind a grid are anisotropic.

Almost all experiments on isotropic turbulence use rigid, uniform
grids 0 generate the turbulence. The first successful attempt to



generate nearly isotropic turbulence was that of Simmon and Salter
(1934). They found that at high Reynolds numbers the turbulence far
behind a grid is a good laboratory realization of isotropic turbu-
lence. Several other experiments have been carried out for this case,
among which that of Comte-Bellot and Corrsin (1971) provides rather
complete statistical information. Frenkiel, Klebanoff, and Huang (1979)

carried out the experiment in both water and air.

The final stage of isotropic turbulence was studied experimentally
by Batchelor and Townsend (1950), Tan and Ling (1963), lLee (1965), and
Bennett and Corrsin (1978). Also Tavoularis, Bennett, and Corrsin
(1979) studied the velocity skewness of isotropic turbulence at small

Reynolds numbers.

Isotropic homogeneous turbulence has been studied by computors.
Numerical simulation of the decay of two~-dimensional, isotropic,
homogeneous turbulent flows was carried out by Herring, Orszag, Kraich-
nan, and Fox (1974), and turbulence theories were tested. The first
simulation of three-dimensional, homogeneous, isotropjc turbulence was
made by Orszag and Patterson (1971). Schumannv??%75yﬂzl§gnsimulated
isotropic turbulence numerically and studied the velocity and pressure
fluctuations. Three-dimensional, homogeneous, isotropic, incompressible
turbulence has been studied at Stanford University using the large eddy
simulation technique. Kwak, Reynolds, and Ferziger (1975), and Shaanan,
Ferziger, and Reynolds (1975) simulated isotropic turbulence and ob-
tained very good agreement with the experimental results of Comte-Bellot
and Corrsin. Clark, Ferziger, and Reynolds (1977) carried out a direct
calculation for the isotropic, homogeneous turbulent flows at low Rey~

nolds number and used it to study subgrid scale modeling.

There is also a series of experiments in heated isotropic turbu-
lence. 1In all cases the heating was small enough that the temperature
could be assumed a passive scalar and demsity variations neglected. The
diffusion of heat from a fixed 1line source in grid-generated, nearly
isotropic turbulence was studied experimentally by Schubauer (1935),
Collis (1948), Frenkiel (1950), Townsend (1951), Uberoi and Corrsin
(1952), Shlien and Corrsin (1974), and Libby (1975). These experiments
studied the downstream development of temperature fluctuations and



measured statistical properties such as length scales, decay rates,

velocity~velocity and velocity—-temperature corxrelations, and spectra.

The fluctuating temperature field in isotropic turbulence generated
by uniformly heated grids was studied by Kistler, O'Brien, and Corrsin
(1956), Mills and Corrsin (1959), Yeh and van Atta (1973), Sepri (1976),
and Warhaft and Lumley (1979). They have presented various correla-
tions, length scales, and spectra of the scalar and velocity fields.
Table 1-1 summarizes the basic parameters of the above experiments. Yeh
et al. (1974) carried out their experiment at relatively low Reynolds
number and studied the spectral transfer of the scalar and velocity
fields. Table 1-1 shows that, unlike the decay exponent of the turbu-
lent kinetic energy, the decay exponent of the fluctuating scalar inten-
sity varies considerably from one experiment to another. Domis (1979)
simulated the flow by large eddy simulation and studied the effects of
the initial length scales on the decay expoment of the scalar. He con-
cluded that the decay exponent of the scalar is a linear function of the
initial length scale ratio. We shall study the effects of Reynolds

number and Prandtl number on the decay exponents.
Ven Kata
Non-uniformly heated grids were used by Wiskind (1962) and Venkata-
[

;2#3#; and Chevray (1978) to generate a uniform temperature gradient in
isotropic turbulence. Measurements of probability and joint probability
densities of velocity and temperature as well as spectra and the other
turbulence statistics were obtained in the latter experiment. Cornelius
and Foss (1978) measured the diffusion of particles in isotropic turbu-

lence by a unique method.

B. Homogeneous Shear Flows

Reis (1952) studied homogeneous shear flows mathematically. Rose
(1966) experimentally generated this flow and studied the behavior of
the turbulence intensities. Champagne, Harris, and Corrsin (CHC)
(1970), Harris, Graham, and Corrsin (HGC) (1976), Rose (1970), Hwang
(1971), and Mulhearn and Luxton (1975) studied this flow at higher
Reynolds numbers. These experiments measured the shear stress correla-
tions, various length scales, one— and two-point velocity correlations,

spectra, and the kinetic energy of turbulence. Table 1-2 summarizes



some of the basic parameters of these flows. Rose's experiment was

carried out at lower Reynolds number and the Harris et al. experiment at
higher shear rate.

Numerical simulations of homogeneous shear flows were made by
Shannan, Ferziger, and Reynolds (1975) using large eddy simulation.
Later, R. S. Rogallo (1977) made direct simulations of Reynolds number
homogeneous turbulent shear flows. Similar calculations were done for

the compressible case by Feiereisen, Reynolds, and Ferziger (1981).

Temperature as a passive scalar in homogeneous shear flows was
studied by Tavoularis (1978). He generated a turbulent homogeneous
shear flow with a uniform mean temperature gradient and studied the
statistics of the scalar field, as well as the velocity field. The
basic parameters of this experiment are similar to those of the Harris
et al. experiment and are shown in Table 1-2. He used air (Prandtl
number 0.7) and the mean—temperature gradient was 9.5 GC/m. We shall
compare our computed scalar field results with this experiment. Fox
(1964) simulated the heat transfer in a two-dimensional, homogeneous
shear flow numerically, and studied the effect of molecular Prandtl

number on the turbulent heat flux and the turbulent Prandtl number.

1.3 Motivations and Objectives

Homogeneous shear flow is a flow of complexity between that of
unsheared isotropic homogeneous turbulence and inhomogeneous shear
flows. Although simple (it does not contain rigid boundaries, laminar-
turbulent interfaces, or other inhomogeneities), it retains many basic
features of sheared turbulence, such as production of turbulent kinetic
energy from mean shear and non-zero Reynolds shear stress. This flow
has been generated experimentally by several investigators mentioned in
the previous section. From this flow, many turbulent statistics can be

calculated and turbulence theories and models tested.

The investigation of mixing of a scalar in turbulent flows is of
great importance. Turbulent mixing occurs in any flow which includes
mass or heat transfer. There are many applications in meteorology and
oceanography, as well as engineering. The last includes reacting flows

as well as flows in which heat transfer is important.



We shall study mixing of a passive scalar in homogeneous turbulent

shear flows and compare the scalar field with the velocity field. This

helps us to understand some basic phenomena of turbulence. By means of

analogy between the velocity field and the scalar field, we shall study

various aspects of turbulent mixing. We shall also test some turbulence

models.

3.

Our specific objectives are these:

To compute the mixing of a passive scalar in isotropic turbulent
flow at relatively low Reynolds number by solving the Navier-Stokes

and concentration equations numerically. We shall calculate r.m.s.

‘values of velocity components and the scalar quantity, various

length scales, spectra, and the decay exponent ratio between the
scalar field and the velocity field. We shall study the effects of
the Reynolds and Prandtl numbers on the decay rate of turbulent
kinetic energy and the r.m.s. value of the scalar quantity. All of

these results will be compared with experiment.

To compute the behavior of a passive scalar in a turbulent homo-
geneous shear flow, with uniform scalar gradient. In this flow we
shall calculate one- and two-point correlations, turbulent Prandtl/
Schmidt number, r.m.s. values of velocity, scalar, and pressure,
skewness, various length scales, and spectra. We shall study the
effects of Reynolds number, Prandtl number, and shear number (a
non~-dimensional shear rate) on the turbulence statistics. We shall
present correlations for many of the turbulence statistics. Spe-
cial attention will be given to the turbulent Reynolds stresses and
the turbulent heat flux. Finally, energy and heat transfer between
the various sizes of eddies will be discussed by calculating the
spectra of the transfer terms.

To test various models for heat/mass flux, Reynolds stress,
pressure-strain and pressure-scalar covariences. The validity of
the models as well as the constants for each models will be

studied.



Table 1-1

Descriptions and Results of Various Experiments and Numerical
Simulations on Decay of Temperature Fluctuations

in Grid-Generated Homogeneous Isotropic Flows

ReA* ReM** Pr n m Aulke
Yeh & Van
Atta (1973) 60.97 | 10550 0.725 1.37 1.33 0.718
Sepri (1976) 60.62 | 10484 0.72 1.39 1.4 ?
Warhaft and 130 10000 0.72 1.34 .858-1.407 | .216-0.316
Lumley (1978)
Domis (1979) 80.97 | 10550 0.72 0.885 | 0.91-2.03 | 0.71-0.93

*Rek is the Reynolds number based on the Taylor microscale and turbu-
lent velocity.

**ReM is the Reynolds number based on the mesh size and streamwise
velocity.



Table 1-2

Description of Various Experiments

on Homogeneous Shear Flows

Shear Rate | Reynolds No. | Shear No. Total Shear
Experiment , x "k
S (sec_l) Re, ey St
Rose (1966) 13.68 133.0 9.53 3.2
Champagne et al. 12.90 204.8 7.79 3.2
(1970)
Harris et al. 44.0 396.4 8.28 10.81
(1977)
Tavoularis (1979) 46.8 397.9 14.76 12.65

*The values of Re and £/ are given at x1/h = 7.5 for Rose and
Harris et al., at xl/h = 8.5 for Champagne et al., and at xl/h = 11

for Tavoularis.

T
The shear number is define /Es 4 = SL/q, where L is integral
length scale and q = < uug > .



Chapter II

COMPUTATIONAL METHODS

One of the major difficulties in numerical calculations of turbu-
lent flows is the wide range of length scales in the flow. To capture
the large scales of turbulenée, the computational box has to be bigger
than the largest scale. On the other hand, to resolve the smallest
scale of turbulence in a grid-based calculation, the mesh size has to be
smaller than the smallest length scale, which is the Kolmogoroff micro-

scale defined as:

n = (v3/e)l/4 (2-1)

where Vv 1s the kinematic viscosity and € 1is the dissipation rate,
i.e., the rate of destruction of turbulent kinetic energy by viscosity.

The digsipation is also related to the large scale by the relation:
e = C,q°/L (2-2)
2 o d )

where q 1s the r.m.s. velocity (q2 = < u% >+ < u% >+ < u% > ), Ly
is a large eddy length scale, and Co is a proportionality constant.

One can find the number of mesh points required to resolve both the
large and small scales in a three-dimensional computation by combining
the above relations. The number of mesh points required for accurate

resolution is approximately

3 9/4
L qL

d d 9/4 .
(n > i} (—r> - &’ (2-3)

and depends strongly on Reynolds number. Since, from a practical point
of view, the number of mesh points is limited by the computational speed
and size of the computer memory, computations are currently limited to
low turbulent Reynolds numbers. In our case, with 643 cubed mesh

points, the Reynolds number has to be less than about 100.
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2.1 Governing Equations

The equations of motion for an incompressible fluid are:
2

_aEi = _anUj__?E.._+\)__a__I.J.j.‘_ (2-—4)
oT oX oX aX 09X,
3 i J 1
an
_:x.__i_ = O (2—5)
aCU, 2
aC _ i 9 -
3T 55t D oX X . (2-6)
i j3

where U, P, v, C, and D are velocity, ratio of pressure to density,
kinematic viscosity, scalar concentration, and diffusion coefficient,

respectively. The summation convention is implied. Note that the sca-

lar quantity can be temperature or concentration of a species.

Instead of satisfying the incompressible continuity equation, we
use the Poisson equation. This equation is derived by taking the diver-
gence of Eq. (2-4) and using Eq. (2-5) to eliminate some of the terms.

The result is
2-7)

2.2 Numerical Approximations

The governing equations given above do not have analytical solu-
tions for turbulent flows, and numerical approximations must be made.
Since the data will be discretized onto mesh points, we must approximate
partial derivatives in terms of the data at these points. We use the
pseudo-spectral method for this purpose. This method, which is good for
problems with periodic boundary conditions, has been analyzed by Lanczos
(1956) and has been proposed by Orszag and Patterson (1971) and Kreiss
and Oliger (1973) as an approximation method and used by many computors
since then. Mansour et al. (1977) used the pseudo-spectral method and
compared it with some second-order and fourth-order finite—difference
schemes. They showed that use of the pseudo-spectral method improved

accuracy considerably. The method is briefly explained below.

11



Suppose a function of one variable F(X) is periodic with period
L. For equally spaced mesh points such a function can be approximated

at the mesh points as follows:

N/2-1 . ian,
PR, = z F(k ) e J (2-8)
n=-N/2
where
N = number of mesh points,
Xj = hj N j = 0’ ]., 2’ 3, soe o N'—l,
h = mesh size,
2% N N
kn:_N—};n’ n=—_-,_.,0,...,-2-—1, and
F(k ) = ﬁz F(Xj) e (2-9)
R

To compute F(k), we use the Fast Fourier Transform (FFT), origin-
ally developed by Cooley and Tukey (1963). This algorithm is good for N
= 2%, where n is an integer (see, for example, Bracewell (1965).

Newer methods are efficient for other numbers of points but are not

needed for our purposes.

If we regard the expansion (2~-8) as an interpolation formula and

replace Xj by a continuous variable X, the derivative of F(X) with

respect to X can be approximated by

ik X

9—1—9‘—)— - va(kn) ke © (2-10)

n
Therefore, to compute dF(X)/dX, we calculate the Fourier transform

of F(X), multiply it by ik, and take its inverse Fourier transform.

To advance in time, a second-order Adams-Bashforth (AB) method was
used. It has been shown by Billy (1965) that this method is weakly

unstable, but its spurious computational production of kinetic energy is

small. A fourth-order Runge-Kutta method would be more stable; however,

it is more expensive and requires larger computer memory.

The AB method of advancing the solution of dU/3t = H from the
time step n to time step ntl is

12



u”1=tﬁ+%uof~ ) (2-11)

where At is the time step.

As we see, it is a two-step explicit method and needs a starting
method; we use the Euler method to start the calculation. The Euler

formula is

™ o ? o oAeR® (2-12)

2.3 1Initial Conditions

We start with an initial velocity field that is randomly chosen,
but which satisfies continuity and has a given three-dimensional spec-
trum. To obtain such an initial field, we first use computer—generated
random numbers for each component of velocity at each mesh point, UgR).

To this we add the gradient of a potential which will be chosen to make

the field divergence-free:

sy _ ,R) 3¢ -
Uy n = 4+ %X, (2-13)

To make Ugs) divergence~free, we take the divergence of the above

equation and set 8U§S)/8Xi =0 to find

2 ay (R
L O 2-14
9%, 9%, 3X; (274

This is a Poisson equation for the potential and is solved by a Fourier

transform method. The Fourier transform of Eq. (2-14) is:

k2§ = -1kiB§R>_ (2-15)

From this equation, we calculate ¢, invert the Fourier transform to
get ¢, and substitute into Eq. (2-13) to get the desired divergence-
free field.

Now we take the Fourier transform of the resulting field and mul~-

tiply each mode by a factor such that the desired three-dimensional

13



spectrum is obtained. The resulting field is nearly isotropic,

divergence-free, and has the desired spectrum.

We use a similar procedure to calculate the initial scalar field.
We start with a field of random numbers and take its Fourier transform.
Then we multiply each mode by a factor which yields the desired spectrum

for the passive scalar.

The initial three-dimensional spectra of the velocity and scalar
fields are step functions. The width, location, and height of the spec-
tra determine the initial Taylor microscales, integral length scale, and
the r.m.s. values of turbulent velocity components and scalar concentra-
tion. All the initial values are non-dimensionalized (the computational
box length is 2m) and must be scaled to obtain the dimensional values.
The problem contains three dimensional units: length, time, and tempera-
ture (or mass in the case where the scalar is concentration). To dimen-
sionalize the results, we need a length, a time, and a temperature or

mass, or three independent combinations of these parameters.

2.4 Computation of Homogeneous Isotropic Turbulent Flows with Decay of

a Passive Scalar

In this section we consider a method of computation for simulating
a grid—-generated isotropic homogeneous flow. The computational box is

shown in Fig. 2-1.

The governing equations for this case are Eqs. (2-4), (2-6), and
(2-7). The mean values of velocity, pressure, and scalar quantity are
set to zero. The initial spectra of velocity and the scalar are given
in Fig. 2-2. For all cases we use 32 x 32 x 32 equally spaced mesh
points. The accuracy and stability of the numerical method are dis-
cussed in Appendix A and will be explained later in Section 3D of this
chapter.

The computing time per time step is approximately 3.2 seconds of
CPU time on the ILLIAC IV.
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2.5 Computation of Homogeneous Turbulent Shear Flow with Decay of a

Passive Scalar

In this section we derive governing equations numerically to simu-
late turbulent homogeneous shear flow with a passive scalar. We also

describe the computational details.

A. Mean Values of Velocities and Scalar Quantity

In homogeneous flows, the mean values of the velocity components
and scalar concentration may vary with time and/or space. We are inter-
ested in mixing a passive scalar in a homogeneous shear flow with the

following mean values of velocity, pressure, and concentration:

Ul = SX2

U2 = 0

Uz = 0 (2-16)
P = 0

cC = SZXZ

where an overbar denotes an ensemble average and S and 8§, are shear
rate and mean concentration gradient, respectively. The mean values, as

shown above, remain unchanged throughout the simulation.

The fluctuating quantities are defined as follows:

u = U-~-T
v = V-V (2-17)
w = W -.ﬁ
or
uy = Ui - E;
p = P -~ P
and (2-18)
6 = C~-C

15



B. Coordinate Transformations

If we substitute Eqs. (2-15) and (2-16) into Eqs. (2-4), (2-5), and

(2-6), we get the set of equations

aui -
X
1 2
8ui Bu.uj du : 3p 3 u,
I ) SRRl > A LTS Bl > ould > v S G
Jae 1 i ) N
u,
38 . i J_x 2 g +p 2
at oxX . 2 X 252 oX .0X .
h| 1 i3

Periodic boundary conditions cannot be applied to these equations.
They are prohibited by the presence of SX, as a coefficient in omne
term of each of the last two equations. These terms are different at
the top and bottom of the computational box, and application of periodic
boundary conditions to them would result in numerical errors similar to
the Gibbs phenomenon at these two boundaries. We therefore introduce a
coordinate transformation which eliminates the non-periodic terms. The

new coordinates are

xl = Xl SX2t
XZ = XZ (2"20 )
X3 = X

The new coordinate system moves with the mean flow, as shown in Fig.

2-3.

Transforming the equations to the new coordinate is a little com-
plicated and is done by using the chain rule. Details are given in
Appendix B. The resulting equations will be given below.

C., The Governing Equations

The governing equations are obtained by applying the transformation

(2-20) to equations (2-19). The transformed continuity equation is

Uy,g T Stuy, = 0 (2-21)
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The momentum equations become

du
i_ _ _ _ 2 2
p e (uiuj),j + St uju, Su26il p,i + v<ui,jj ZStui,12+S t ui,ll)
(2-22)
The Poisson equation for the pressure is
2 - - -
P,ii 25t p’12+ St p,11 = Hi,i St Hz,l (2-23)
Finally, the scalar equation becomes
30 o (Bu.) . +St(bu) . - Su +D|6 256  +s2¢le (2-24)
at i3 27,1 272 »33 ,12 ,11
In Eq. (2-22)
H, = = (u,u,) .+ St(u,u,) - Su,8,, + v(u -2St u +Szt2u )
i 137,73 i“27,1 2712 i,j] i,12 1,11
(2-25)

The governing equations for turbulent homogeneous shear flow with
mixing of a passive scalar are (2-22) through (2-24). The transformed
equations admit periodic boundary conditions, which in turn permit the

use of spectral methods of computing derivatives.

The Poisson equation for the pressure must be derived such that the
continuity equation is satisfied at the following time. The discretized
equation for pressure which has this property when we use the Adams-—

Bashforth method for the time differencing has the following form:

B 2 2
9 9 9 2 29 n _ .0
T, ox,  SGMD At gpme t SalmA g e = B
J 1°72 axl :
(2-26)
n l n
- S(n-l-l)AtHz,1 - §'G
n _ n-1 _ n-1 _ n-1
G Hi,i p,ii + S(n-1) At p’12
(2-27)

n—-1 n-1 n-1
- S(n+l) H2,1 - P2 + S(n-1) Atp,ll At
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D. Remeshing

There are terms in Eqs. (2-21) through (2-24) which contain St as
a coefficient. As time increases, these terms become large and cause
numerical problems. In other words, the X and X, axes become morxe
nearly parallel as time increases and the equations become stiff. To
avoid this problem we use a procedure whichvwas first used by Rogallo
(1978). We start the calculation with coordinates orthogonal (Fig. 2-
3a). Then, after a number of time steps (see Fig. 2-3b) we stop the
calculation and rotate the x; = 0 1line to the other side of the

normal, as shown in Fig. 2-3c, and continue the calculations. This

procedure is called remeshing and is exact only if it is done at St =

0.5, 1.0, or 1.5, etc. for these times, there is no need to interpolate

the data to get the information at the new mesh points after

remeshing. However, there is an aliasing problem associated with

this. To show this, let us assume that the velocity, u, at St
0.5, has the form:
ik;x;, -ik,x
_ 171 272 ;
u(xl,xz) = u(kl’kZ) e e (2-28)

If remeshing 1s done at St = 0.5, then, after remeshing, St =

~0.5 and the new coordinate is

(2-29)

Substituting (2-29) into (2-28), we find the velocity after remeshing

has the following form:

" iklx —i(k1+k2)x2
' ' = -
u(xl,xz) u(kl’kZ) e e (2-30)
If ky + ky falls outside the available wavenumber range, the

information will appear in lower wave numbers. This problem is called
aliasing and can be eliminated by setting the amplitudes of wavenumbers

at and above two—thirds of the maximum wavenumber to zero both before

and after remeshing.
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E. Computational Details

In homogeneous shear flows, the length scales grow indefinitely.
Therefore, the assumption of periodic boundary conditions with finite
period becomes invalid after some time. However, if we use a relatively
large computational box, we are able to study the flow for a limited
time, i.e., until the large scales become comparable to the box length.
The number of mesh points is limited by the size of the computer memory.
The maximum number of mesh points one can use on available computers
is 64 x 64 x 64. 1In most of our computer runs, we were able to carry
the computation up to St = 7.0, at which time the length scales become
too large. The number of time steps for each run depends on the time
step and the shear rate, and varies between 182 and 900. The computing
time per computational time step is about 68.49 seconds of CPU time on
ILLIAC IV.

The acccuracy and stability of the numerical method are discussed
in Appendix A and briefly explained below. A two-step method has two
roots when applied to the equation:

df

3¢ = (N, +iN) £ (2-31)

For the method of Eq. (2-11), these roots are

R =

3 i 9 2
1.2 - 3 (N, + iN ) :t\j Fooyp N, F AN - (N + AN ) (2-32)

Do

R2 is a parasitic root. For the case whem f 1n Eq. (2-31) is uy,
using linear stability analysis (see Appendix A), the Courant number,
N

and the viscous stability parameter, N are defined as

c? v?
N o= X iy 1+ @ +st)le, | |ae (2-33)
c 2 lmax 2max
2 u
L oima1y? _22) 4 Lo | S2max _
N\,-(2 ) (3+zs:; St)+28u 8, | vat (2-34)
1max
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The values of Ry and R, as a function of Cc and N, are given in
Table 2-1. We chose At such that Nc and N, and therefore 'Ry and
Ry lie in the range where the solution is stable and more accurate.
For the isotropic case, S = 0, we chose the time step, At = 0.21, so
that both N, and N, are less than 0.3. For the homogeneous shear
flow, the time step is also chosen to give a Courant number of less than

0.3.

The initial three-dimensional spectra of energy and scalar quantity
are similar to those used for the isotropic homogeneous case, and are

given in Fig. 2-4.
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Table 2~1

Accuracy and Stability Limits

N, N, Ry Ry
0.0 0.0 1.00 0.00
0.0 0.1 1.00" 0.050
0.0 0.2 t.00% 0.010
0.0 0.3 1.00% 0.150
0.0 0.4 1.01 0.198
0.1 0.0 0.905 0.552
0.1 0.1 0.904 0.0782
0.1 0.2 0.900 0.124
0.1 0.3 0.895 0.177
0.1 0.4 0.888 0.232
0.2 0.0 0.822 0.122
0.2 0.1 0.819 0.136
0.2 0.2 0.812 0.174
0.2 0.3 0.800 0.225
0.2 0.4 0.780 0.287
0.3 0.0 0.750 0.200
0.3 0.1 0.747 0.211
0.3 0.2 0.738 0.244
0.3 0.3 0.721 0.29
0.3 0.4 0.694 0.360
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Fig. 2-2. Three-dimensional initial energy (or scalar) spectrum (32° mesh
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Fige 2-3. Coordinate transformation and remeshing.

éa; - Coordinate at St = 0.

b) Coordinate at St = 0.5 (before remeshing).
(c) Coordinate at St = -0.5 (after remeshing).
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Fig. 2-4. Three-dimensional initial energy (or scalar) spectru (543 mesh
points).
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Chapter IIIX

COMPUTER PROGRAMMING AND CODE TESTING

In this chapter we describe the construction and testing of the
computer code and list the parameters of the flow fields simulated by

the code.

3.1. ILLIAC~-IV Computer

The computations are done on the ILLIAC-IV computer. The ILLIAGC
contains 64 processors which operate in parallel and are controlled by a
central managing computer. FEach processor has a rather small memory.
The array of processors has access to a large rotating disk on which
most of the flow field data reside. Portions of the data are trans-
ferred to the computer memory for the actual processing. The computer
program and data manégement must be constructed carefully so that (a)
the time spent transferring the data from the disk to the computer
memory and vice-versa is minimized, (b) modification of the code and
analyzing the results are easily done. We chose the data-management
system cdeveloped by Lomax (1967). 1In that system, called the "pencil
system,” we move a column of data containing 8 x 16 x N words, where
N is the number of mesh points in a given direction, at a time (see
Fig. 3-1). All derivatives in one direction are computed while the
appropriate column of data is in the computer memory. To compute all
the derivatives, it i1s necessary to go through the entire flow field
three times. This involves a lot of data transfer. However, the time
consumed in transferring the data from the disk to the computer memory
or vice-versa 1s a rather small portion of the total time (8.8% for

643 mesh points).

3.2. The Code
The computer program contains three different codes:

A. A code which computes the initial conditions. This code gener-
ates and stores the initial fields for both hydrodynamic and the scalar
fields (see Chapter II, Section 2.3, for details of this program).
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B. The main code, which advances the velocity and scalar fields in
time wusing the Poisson, Navier-Stokes, and diffusion equations, as
discussed in Chapter II. This code also stores the velocity and scalar
fields on tape at the time when the coordinates are orthogonal (St =

0); in the case of an isotropic homogeneous flow, the flow field is

stored every 50 time steps.

C. A code which uses the flow fields to compute various turbu-
lence statistics and one- and three-dimensional spectra of various
terms.

We also used IBM 360 and CDC 7600 computers for final data reduc-

tions and for plotting the data.

The ILLIAC codes can operate with 163, 323, and 643 mesh

points. The run time for each case is given in Chapter II.

3.3. Testing the Code

It is important to make sure that the code is properly constructed.

To check the validity of the results, the following items were examined.

A. Conservation Laws

The simulated flow fields satisfy continuity and the energy balance
throughout the computations. The relative error for continuity is

(u; ) ’
i,i7max _ 4 o013
q/L

and, for the energy balance,

dq/2
dt -

Production - Dissipation

few percent
where the production and dissipation terms are calculated directly, and

a second-order approximation is used to calculate dq2/dt. The errors

in the energy balance are mainly due to the time differencing.
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B. Comparison with Similar Computed Flow Fields.

The simulated hydrodynamic field is checked against the results
obtained by Rogallo (1978) and Feiereisen et al. (198l1), who indepen-
dently developed similar codes to simulate homogeneous turbulent shear
flows for incompressible and compressible flows, respectively. The
overall behavior of turbulent statistics for the hydrodynamic field, as
will be explained in Chapter VI, are similar in all three simulated flow

fields.

C. Comparison with the Exact Solutions of the Navier-Stokes and

Diffusion Equations

An exact analytical solution to the Navier-Stokes and diffusion

equations for two-dimensional incompressible flow exists. This solu-
tion, which is known as the vortex-cell or two-dimensional Taylor-Green
solution, represents a flow field consisting of two-dimensional vorti-

ces, arranged rectangularly, which decay in strength with time. The

solution has the following form:

—(kf+k§)vt
u = - A cos klx1 sin kzx2 e

k ~ (k23 ve

= A — sin k. x k e 12
v k2 s 1 X1 cos kox,
-2+ 2)pe (3-1)
C = B k k 12
cos k x, cos kyx, e
2 kz —2(k2+k2)vt
p = -2 2K %, + i 2%k 12
= 7— cos 2k x, Ez-cos )Xy ©
2

We set the initial conditions by putting t = 0 in Eqs (3-1). We ob-
tain the results for several values of ky and k, and for both
inviscid and viscous flows. Note that kl and k2 must be small to
avoid aliasing. The exact results were compared with results obtained
from the computer code after 80 time steps. To check the coordinate
transformation, we obtained the results for skewed coordinates when St
= 0.5. For all cases the results were obtained using 163 mesh points,
and the difference between the exact results and the computer results

was less than 1.7 x 10~%%.
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D. Comparison with Experimental Data

As mentioned in the first chapter, homogeneous shear flow was gen-—
erated experimentally by several people, we mainly check our results
with the experiment by Tavoularis (1978), because they generated both
hydrodynamic and scalar fields. As will be discussed in Chapter VI, our
results are in very good agreement with the results obtained from this
experiment. However, since the experimental results are obtained at

higher Reynolds number than the simulated results, there are slight

differences between the results.

3.4. Description and Details of the Computer Runs

We have simulated several flow fields for both isotropic homoge~

neous turbulence and homogeneous turbulent shear flow. For each run,

the computed flow field can be divided into three parts.

A, The "Developing” Region

As described in the last chapter, we start the computations with
artificial initial. fields. Therefore, there is an initial period in
which the simulated flow fields are not true turbulent fields. This is
called the "developing” perlod. 1In the case of isotropic homogeneous
flow, the development is considered complete when the velocity and the
scalar derivative skewnesses reaéh asymptotic values. The skewness is

defined as:
2 3/2

du, 3 Bui
8, = < (§§i> >/ < 5;;) > (no summation) (3-2)

In the shear flow with mixing of a scalar whose mean is linear in
space, the criteria by which the end of the development period is judged
are: |

(1) The shear stress correlation coefficient <u1u2>/uiué and one

point velocity scalar correlation coefficient <6u;>/6'uj
reach asymptotic values (see Fig. 6-17), where uj and 6'
are the r.m.s. velocity and scalar fluctuations.

(2) The three-dimensional spectra of kinetic energy and the scalar

reach asymptotic shapes.

29



(3) The ratio of production to dissipation in the turbulent ki-

netic energy and r.m.s. scalar fluctuation equations reach

asymptotic values.

(4) The rate of change of Reynolds stress anisotropy tensor with

time becomes small.

B. The "Developed" Region

After the initial period, there is a period in which the simulated
flow fields can be regarded as true turbulent flows. 1In this period,
the statistics are extracted from the flow fields. These will be
discussed extensively in Chapters V and VI. For all computed runs, the
developed region lies between St =4 and St = 7, where St is non-

dimensional time.

C. The "Anomalous” Region

In both isotropic and shear flows, the scales of motion grow with
time, and there is a time at which the scales become too large for the
computational box and the periodic boundary conditions are no longer
accurate. Beyond this point, the flow fields do not accurately repre-
sent homogeneous shear flow (or isotropic flow). Therefore the simu-
lation 1is stopped. This time 1s chosen by looking at the two-point
correlations of the velocity and the scalar fields. The two—point

velocity correlation is defined as

< ug(R) uy(RT) >
Ri .(r) == o e (3“‘3)
J <ug () uy(x) >

For the isotropic flows, we used 323 mesh points and various

values of Reynolds and Prandtl numbers. The results will be discussed

in Chapter V.

For homogeneous shear flow, we used 643 mesh points and simulated
fourteen scalar fields and six different flow fields. Table 3-1 gives

some details of the rums.
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Table 3-1

DETAILS FOR EACH SIMULATED FIELD

Reynolds* Shear Number* Prandtl
Run Number SL/q Number Symbol
HS64A 44.56 18.55 1.00 2
HS64B 19.00 23.73 1.00 o
HS64C 19.00 23.73 5.00 v
HS64D 44.56 18.55 5.00 8
HS64E 44.56 18.55 0.20 X
HS64F 19.00 23.73 0.20 O
HS64G 60.35 66.88 1.00 A
HS64H 60.35 66.88 5.00 O
HS64 T 60.35 66.88 0.20 i
HS64J 24.20 11.23 1.00 +
HS64M 29.16 8.94 1.00 X
HS64N 29.16 8.94 .20 i3]
HS640 64 .31 6.38 1.00 O
HS64P 64 .31 6.38 0.20 ®

*
All values are given at St = 4.00.
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Fig. 3-1. The computational box with three columns of
data in different directions.
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Chapter IV

STATISTICAL MODELS OF TURBULENCE

In this chapter, we present averaged equations for both the hy-
drodynamic and scalar fields. We are interested in comparing and con-
trasting the behavior of terms in the equations for two fields. We also
present some of the models which have been used for the various terms in
these equations. The terms which are modeled can be calculated from the
numerical results of the preceding chapter and will be discussed in the

following chapters.

The equations are derived for homogeneous shear flow. They can be
= 0. In order

used for isotropic homogeneous flows by setting S = Sy
to avoid complexity, we derive the equations for the case when the coor-

dinates are orthogonal, i.e., St = 0.

4,1 Equations for Turbulent Statistical Quantities

The equations of motion for homogeneous turbulent shear are Eqs.
(2-22) through (2-24). The momentum equation and the convection-
diffusion equation for a scalar quantity have the following forms (note

that we set St = 0):

du,
1 - — — — —
rraii (uiuj),j Su26il p,i + vui,jj (4-1)
and
38 = - (eu,) , -syu, +DO . (4-2)
ot i3 272 33
where, as before,
oU =
s = I and S2 = 3%—
2 2

Assuming the boundary conditions for two fields are similar, one sees
that there 1s a close analogy between X;-momentum u; and the scalar

 if Pr = v/D =1, s =85,, and 0P/dx is small compared to the
other terms. Similarly, if 8P/3x2 or 3P/3x3 and Sjupy are small

33



(L.e., in the isotropic case), Pr =1 and S = Sy, then an analogy
exists between xy or xg-momentum and the scalar.

The equations describing the three components of turbulent kinetic
energy can be derived by taking the volume average of Eq. (4-2) multi-

plied by uy (no summation):

5 < u% >/2 ) .
3t = 7by 7 TSy, S (4-3)
3 < u% >/2 1 1
T = 7% 77 %2 | (4=4)
2
3 < uf >/2
3 1 1 _
5t = 7933 77 %33 (4=5)
where
435 <pluy g+ ug ) (4~6)
eij = 2v< LTRATRY > (4-7)

and < > denotes the volume average. The third term on the right—hand
side of Eq. (4-3) is the production term. Through the action of this
term, energy is transferred from the mean flow to the fluctuating part
of the flow. The pressure-velocity covariance terms, ¢ij’ transfer
energy from < u% > to < u% > and < u% >. Thus we expect ¢1, <0,
¢ 2 0, and ¢34 > 0. Also, ¢37 + gy + ¢33 = 0, so the sum of
these terms neither produces nor destroys turbulent kinetic energy.
Thus, these terms merely transfer energy from from one component to
another. Since energy is transferred from the mean flow to the large
scales of turbulence, we expect the production term and ¢ij to be most
important at low wave numbers. Eij is the dissipation term. Its
trace, €, + €5, *+ €44, 1is positive-definite, and is important at
relatively high wave numbers. We shall show direct evidence of the

spectra of these terms in the following chapter.

The turbulent kinetic energy equation can be obtained by summing
Eqs. (4-3), (4-4), and (4-5), and is
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3q2/2

3t = = < 111u2 >SS ~-v< ui’jui’j > (4—8)

The first term represents production and the second, dissipation.
The equation for the r.m.s. scalar quantity can be derived from Eq.
(4-2) and is:

5 < 6% >/2

5t = -<ub>8, -D<O 08 > (4=9)

»J )
The first term on the right-hand side of Eqs. (4-9) is the production

term, and the second is the dissipation term.

The Reynolds stress < u;uy, > and turbulent heat flux < euj >
equations can be derived in a manner similar to those used in deriving

the above equations, and have the following forms:

3 _ 2 _ -
=T < “yu, > = < uy > 8 919 * €1 (4-10)
8 ¢ bu, > = <ul >SS, -b +e ) (4-11)
T v} o) 2 2 2

3 _ _
§E-< 6u1 > = =< uze >8 ~-X U u,y > 82 + ¢1 - g (4-12)

where ¢;, 1is defined by Eq. (4.6) and

and
€y = (V) < 6 juy g > (4-14)

In the above equations, the terms < u% > s, <u% > 8y, and - [ uyb > S

+ < ujuy > S9] are production terms.

It is not obvious whether €12, €2, and g help or prevent the
growth of the correlations. However, from our results, they are nega—
tive and are thus dissipative. The pressure-velocity and pressure-—
scalar covariances also tend to hinder the growth of the correlations.
This can be shown by considering the return to isotropy at high Reynolds
number. In this case the dissipation terms are negligible; thus the
pressure-velocity and pressure-scalar covariance are responsible for

destroying the correlations, and must therefore be negative.
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The equations given above are exact, but they contain many more
variables than there are equations, so the system is not closed. To
close the system, it is necessary. to make assumptions about the rela-
tionships among the variOusﬁgﬁgzéjasThis is the issue of modeling that

will be discussed next.

4.2 Statistical Models

In this section we further consider the production, dissipation,
and pressure-velocity and pressure-scalar covariance terms which were

discussed in the last section. We review a number of models.

A. Turbulent Reynolds Stress and Heat Flux

The Reynolds stresses < uiuj > appear in the mean momentum
equations, and the heat flux (mass flux if the scalar is concentration)
< Bu; > appears in the mean diffusion equation. If the only mean
velocity gradient is Bﬁi/ax , the mean turbulent Reynolds stress tensor

takes the following form:

2
< u; > < uu, > 0
2.
< uiuj > = I uu, > < u, > 0 (4-15)
0 0 < ug >
The principal stresses are
Cuisecd?y [T u>-<uly? /2
-o = 1 2”4 L 2 + <, >
1 2 2 Y2
< >+<cu?y Tweds-<u?y? 172
-0, = 1 2 . 1 2 + < uu >2
2 2 2 172
L. .
(4-16)
and
2
-0y = - < ug >
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The direction of the principal axis in the Xx;, X, plane relative to

the coordinate system is

v 2< uu, >
o, = : tant 12

1 2 < u% > - < ug >

(4-17)

To close the mean momentum and diffusion equations, the Reynolds
stress tensor and the heat flux vector must be modeled. The most common
models for those terms are Newtonian—like constitutive equations, which
1s the Boussinesq eddy-viscosity concept. 1In the most general form the

Reynolds stress tensor can be modeled by

1 2
= = 2V_.. + S, . -
< uiuj > T4 jpq Spq 54 ij (4-18)
where
s =@ +v7 ) (4-19)
Pq 7 *p,q q,p
(2 = < -

and vTiqu is a fourth-rank eddy viscosity tensor which needs to be

defined. We looked at models for which are linear and quad-

Vg s
Tijpq
ratic functions of Sij’ and Gij' For each case the model was reduced
to a simple expression which can be obtained using the following form of

the eddy viscosity model:

Cuu,> = - 208, + §.aijq2 (4-21)
where Vp 1s a scalar eddy viscosity. This model is not accurate for
this flow because it requires < ui > =X “% > A more complicated
model for < ujug > was derived by Wilcox and Rubesin (1980). This
model 1is especially good for the log region of the boundary layer when
the magnitudes of production and dissipation are close. The model pre-
dicts the behavior of < u% >, < u% >, and < u% >. For Reynolds shear
stress, < ujug >, the model reduces to Eq. (4-21). Rodi (1976) also

derived an algebraic model for < ujuy > which is nonlinear in < ujuy >
and is based on the assumption that < uju >/< uju; > = constant and is
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good for high Reynolds number flows. The model (4-21) is used by many
people to calculate the Reynolds shear stress < uju, >. We shall use
this model for < u;uy > and calculate the eddy viscosity. Modelers
have used various forms for Voo We describe the ones applicable to our

flow and specifically exclude models designed to apply only to boundary

layers.
on

The simplest model for Vv is based entirely jaf information from
the mean flow.
= 2 -
vp = C /§;§§;j L (4-22)
where C 1is a constant and L, 1is a mixing length. Models of this
kind are used in boundary layers (for which Lm is a function of the

distance from the wall) and free shear layers (for which Lm is a given

fraction of the shear layer thickness).

A more complex model for the eddy viscosity, which involves some
information about the fluctuating field, has the following form:

vp = Cqly (4-23)

where C is constant and the turbulence velocity, q, 1s obtained by
solving the turbulent kinetic energy equation, in which the higher-order
terms are modeled (see W. C. Reynolds, 1976, for more details). L, is

a mixing length which is prescribed as above. This is known as a one-

equation model.

A still more complex model is obtained by using Eq. (4-23) with a
length scale defined by

L, = ¢, L (4-24)

in place of Ly here, € 1is the dissipation or, more correctly, the
energy transfer from the large scales to the small ones, and can be ob-
tained from an equation for the dissipation (see W. C. Reynolds, 1976).
This is a two—equation model. For the low Reynolds numbers, the dissi-

pation length scale is modified as follows:
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3 Cl
Ly = €, %- 1+ Re; (4-25)

where Re is Reynolds number based on a Taylor microscale and gq.

Similarly, the heat flux vector can be modeled as follows:

ac
<bu > = D, — (4-26)
i 1j 9x,
]
where Dij is turbulent eddy diffusivity and is a second-rank tensor.
I aﬁi/axz is the only nonzero mean velocity gradient, Dij has the

following form:

P Pi2 0
iy = Py Dy 0 (4-27)

I)ij is 'not necessarily symmetric. To model this term, we decompose it

as follows:

= p(L (2) (3 -
Dij Dij + Dij + Dij (4-28)
where
1y _ 1 -1 -
Py 7 Py5 ¥ Dyg) =3 Dby (4-29)
1s a symmetric trace-free tensor,
(2) = .:!'_ - -
Dij 5 (Dij Dji) (4-30)
Is an antisymmetric tensor, and
p{3) = lp s (4-31)

13 T Ykk°1j

is a diagonal tensor. The above three expressions for Dij need to be

modeled. In general, Dij can be written as:
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D =

4-32
13 Dij(bij’ sij’ Qij’ scalars) (4-32)

where bij is the Reynolds stress anisotropy and is defined as

< uu, > 1
bij = ~———7Zl- - §'Gij (4-33)
q
Sij is defined by Eq. (4-19), and Qij is the mean tensor defined as
9, = >~ (@ . -T, ) (4-34)
ij 2 71,7 kY

Note that we do not include the dissipation anisotropy, dij’ in the
right side of Eq. (4-32), because dij results mainly from the small

scale structures, while Dij is dependent mainly on the large scales.

Dgg) and bij are both symmetric, trace-free, and have the same
zero components. Since the scalar fluctuation is similar to the veloc—
ity fluctuations, Dgg) and bij are both quadratic functions of the
velocity field. Therefore, we assumed Diﬁ) is a linear function of
bij.

2
p) = ¢ Lop

ij 1 ij

where C1 is a constant and L 1is a length scale. Dgg) is an anti-
symmetric tensor; therefore it must be modeled with the only antisymmet-
ric tensor available, Qij’ Neglecting higher—order terms, D§%)

should have the following form:

2
(2) _ q
Dij =63 Qij

S

where C2 is a constant.

Finally, Dgg) can be written as follows:

3 _
Diy" = G

mro
(o]

i

Therefore, Eq. (4-28) becomes
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D. .
ij _ 1 -
—— = ‘Clbij +\c2 3 Qij + .0361:] (4-35)
q /s &

ol P

where Cl, €y, and €3 may be functions ofwkeynolds shearf,Prandtl

numbers, and invariants of the above-mentioned tensors.

B. Turbulent Prandtl Number

The conventional turbulent Prandtl number (or turbulent Schmidt

number if passive scalar is concentration) is defined as

Pr, = 2 (4-36)

or

The turbulent Prandtl number measures the degree of analogy between
momentum and heat transport in turbulent flows and is required for heat
transfer calculations. For flows involving mixing of chemical species,
the important transport property is the diffusivity and the counterpart
of the turbulent Prandtl number is turbulent Schmidt number. Reynolds
(1885) proposed the Reynolds analogy, and Prandtl (1925) gave his
mixing-length theory, both of which assume that Pro = 1.0. However,
this assumption has been challenged by experimental results. Several

models have been suggested (see, for example, A. J. Reynolds (1974)).

We shall consider models which are recommended by several authors
or used by many people in this field. The models we shall look at are:

a) A. J. Reynolds proposed an empirical model based on experiments
in wali flows, free turbulence, and core flows. Prq should depend on
the molecular Prandtl number and a Reynolds number based on local turbu-
lence intensity. The latter can be replaced by vT/v, which is assumed
to be a function of this Reynolds number. Based on these observations,

he suggested that Prp be modeled as follows:
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C3 VT 4
Prp, = C, exp |- C,Pr (?T') (4-37)

where Cl’ Cz, C3, and C4 are positive constants.

b) Wassel and Catton (1973) used mixing-length theory and assumed
that eddies are spheres which move normal to the mean flow and have a

radius proportional to the mixing length. Their model, based on this

assumption, is v
~C,/(Pr )
-1 l-e ’ 4-38
PrT (ClPr) -C3/(vT/v) ( )
l-e

Cl’ C2, and C3 are parameters, and they suggest the values C; =
1.05, Cz = 5-25, and C3 = 5,

¢) A model which simulates the idea that an eddy tries to equili~-
brate with the surrounding fluid has the following form:

2 ~(a/C,Pe.) 7L
Pr, = [%*+ oC, Pe,, - (C1PeT)2 (1-e LT ):, (4-39)

where Peq is the turbulent Peclet number,

v
T
PeT = T Pr

and o and Cl are constants. Crawford (1976) suggested = a = 1.08
and C = 0.2.

d) Using the models for turbulent eddy diffusivity, Eq. (4-35),
and turbulent eddy viscosity, Eq. (4-21), the turbulent Prandtl number

becomes:
(4-40)

where C3 and C, are constants. They may be functions of Reynolds

number; shear number and Prandtl number, and invariants of various ten-

sSOors.
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C. Pressure-Strain Covariance

The pressure-strain covariance, ¢ij’ is defined by (4-6). ¢ij
is responsible for exchanging energy between the various Reynolds

stresses.

The equation for the fluctuation pressure is obtained from the
Navier—-Stokes equation, as explained in Section 2-1. For the homogene-

ous shear flow, the equation has the following form:

Poai = 7 20 qU5,0 7 U gt (4-41)

The right—hand side of this equation contains two parts. The first part
is proportional to the mean strain, El,j’ and given a sudden change
of Ui,j’ it changes rapidly. On the other hand, the second term on
the right of Eq. (4-41) does not depend explicitly on the mean strain,
and it takes some time to change after a sudden change of the mean
strain. Therefore, the two terms behave differently and need to be

considered separately. We let p = p(l) + p(Z), where

a — |
p,ii = Zui,jUj,i (4-42)
@ _ »
Pl T T Y4,5%,1 (4-43)

Following Lumley and Khajeh-Nouri (1974), for homogeneous flows
p(l) can be defined in terms of the Fourier transform of the velocity

field. By definition,

pPPx) = /p(l)(k) 1K gy (4-bts)
In homogeneous flows, the mean velocity gradient is constant, so Eq.
(4-42) gives
~ ~ k—'
L = J —4
p (k) 12uiuj’JL 2 (4-45)

where kz = kiki' The part of the pressure-strain covariance associated
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CONNNN¢ D "
¢pq <p (up,q + uq,p) > (4-46)

which can be reduced to (Lumley and Khajeh-Nouri K 1974):

¢(1) - 26 l_(l;(k) l:*(k')k""l:*(k')k'] dk'dk (4-47)
pq 11 J ) 2 B U e T N T

The double integral on the right-hand side of the above equation is a

fourth-order tensor, so we can write

(1) =
= 2 4-48
4>pcl UJ’ ,iGiqu ( )

From continuity, Giipq = 0; also Gijjq =< uyug >. This tensor can-
not be simplified and must be modeled. Following Lumley's argument,
Giqu should be linear in the Reynolds stress, and it can also be a
function of scalar invariants of the mean strain and Reynolds stress

anisotropy tensor. The most general form of the pressure-strain term

consistent with the above is:

L _ 2 2 _3 2 = s
¢pq 3 (1+A1) Spqq szl Rpkskq + quskp §-< uiuj > Ui,j pq
415 7 T
5 §-+ TE'AI:][#pkgkq + qugng (4-49)
where
1 (= -
S = —-(U + U ) is the mean strain,
Pq 2 \"pyq q,p
qu = < u Uy > 1is the Reynolds stress, (4-50)
Q = l—(ﬁ' - U ) 4is the mean rotation tenmsor,
Pq 2 "'pyq q,p

and A.1 is constant. The value suggested for this constant by dif-
ferent workers varies between -1.23 and =2.5 (see W. C. Reynolds

(1976) for more details).

The above model for our case, where ﬁ} j = 0, except for
?

Bi 2 =8, has the following form:
’
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¢11 = £ p(l) ul,1 > = §-+ Té'Al s < uu, >
by = <P uy > = - Za LA sCuu, > (45D
b3 = <pMuyg> = $a S Cupuy >
and
¢12 < p(l) (u1’2+u2’1) > = é.(1+A1) sq2 - L§-+ T.g.AI)S < u% >
+E-da)scuds> 4-52)

The part of pressure-velocity covariance associated with p(z) is

(2) . (2) -
¢i. <p (ui,j + uj,i) > (4-53)
and the total pressure-strain term is
V¢S NG ) 45
by = 055 05T (4-54)

Rotta (1951) proposed the following model for ¢§3):

2 - _ -

where bij is the anisotropis part of the Reynolds stress tensor and
defined by Eq. (4-33), and A, is constant.

Lumley (1978) suggested including the dissipation anisotropy in the

model, so
(2) . - -
$; 2€dij A3ebij » (4-56)
Here
2 <(:?’KTJ;T >
v . .4 1
dij = é - E'Gij (4-57)

1s the anisotropy of the dissipation tensor and
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e = 2v < ui,jui,j > (4-58)

is the dissipation. Using the dynamical équation for bij’ it can be
shown that A3 must be bigger than 2. The term edij acts to inter-
change energy among components of turbulent kinetic energy, but neither
creates nor destroys total energy. Lumley also included a second-order
anisotropy tensor in the model; however, the model (4~56) seems to work
quite well for homogeneous flows (see next chapter). Lumley (1978) also
afgues that the proportionality constant A3 in the model (4-56) 1is a
function of Reynolds number and first-, second-and third-order invari-

ants of the anisotropy tensor.

D. Pressure-Scalar Covariance

The pressure-scalar covariance, ¢4 is defined by Eq. (4-13).
This term, which appears in the < 9u1'> equation, is responsible for
destroying the velocity-scalar correlation. Following the procedure
used in the last section, we divide ¢i into two terms. ¢§1) involves

the mean shear explicitly, and ¢g2) is the.remainder.

b, = o1 + {2 (4-59)
Let us first consider ¢£1). From Eq. (4-13), we get

ot = <pMo > © (4-60)

From Eq. (4-45), the Fourier transform of the pressure is

p. = -20 LTy (4-61)

~k
Let us multiply both sides by 6 and add to the conjugate of Eq.

(4-61) multiplied by 6 and integrate over Fourier space.

R R ¥ Wi SR S
p,i p,i = qij kz (uj uj ) d ( —62)
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By definition, the integral on the left is the volume average of
p ie. On the other hand, in a homogeneous flow,
’

<pg8> = -<po > (4-63)

Using Eqs. (4-49) and (4-52), Eq. (4-51) becomes

k k
(1) — i ~ A*
= 20 [ -5~ u6 dk 4=64
% 1,3) 2 1 (4-64)

The integral on the right-hand side of (4-64) is a third-rank tensor.
It cannot be computed analytically and needs to be modeled. Let wus
define ¢§1) as follows:

(1) =
= - 20 . 4-65
by a,38q1] (4-65)
~ where
k ki A AR
, = A2 w8 dk 4-66
gqu / K2 %3 ( )

A model for gqij must satisfy the following conditions:

® TFrom continuity, 8qiq = 0.

® From the definition of . ., =<8 .
on e defin no gqu, gqu uj >

® From symmetry, gqij = giqj'

By analogy to the assumptions applied to the pressure-strain model, Eq.
(4.49), we assume 8q1j is a linear function of Bui. The following

model satisfies all of the above assumptions:

- 2 -1 . ;
Bqij F[qu <COuy > =g 855 < bu >+ 8, < By >] (4.67)

Thus the model for the fast term, ¢{1), 1is

(1) 4 1
= = =< U § ] - §,, ] + 6§ 0
¢i 5 < 4, > [:iq < uj > % 17 < uq > 4 < uy >‘]

(4-68)
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For our case, where T_ . = 0, except for t,2 = 8, the model has the

q,3
following form: : .
< p(l)e’l > = 284 < 8u, > (4=69)
SA
(1) = - _0 -
<pMo, > 5> < Bu > (4-70)

where A = 2/5. Comparing the above equations with Eq. (4-40), we see
great similarity between the models for the hydrodynamic field and the

corresponding models for the scalar field.

Lumley (1978) argues that, as < eui >+ 0, ¢; » 0. He construc-

ted an expression for ¢gl), which satisfies all the above conditions:

¢§1) = -2AT

. <bu, >  (4-71
0 q,] %3 (=71

81 "% o, > < 0>

[ < Bu > < Bu, >
q i
I k

where Ab =1/2.

For our case, this model becomes

(1) < 6u2 >2
<pPo > = 245 5 > < Buy > (4-72)
’ < 6ul > + < euz >
< bu, > < Bu, >
< pMPe ,> = -2 L 2 < By, > (4-T3)
’ < Sul > + < Suz >

Now let us consider the second part of the pressure-scalar covari-

ance,
#42) = <pPe > (4-74)

This term appears in the heat flux equation and tends to destroy the

velocity—scalar correlation. The average heat flux equation in the

absence of a mean scalar gradient is:

3 < uia >

—3r > (4-75)

- - (2) _
<pte > - (vD) <8 Luy
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Both terms on the right side of the above equation tend to destroy the
< uje > correlation. To model these terms, let us define i 4 by

<oug> S o= < pMe > - < (v O Uy > (4-76)

Lumley argues that the principal axes of ¢ij are aligned with the

principal axes of Bij’ where

<umu,> < Bu, > < bu; >
By, = ——pi— - — ] 4-77)
q e2 q2

Therefore, wij must be a function of Bij‘

Assuming a linear relation, we get

Yiy = Alﬁij +AyBy 5 (4-78)

where A1 and A, are functions of anisotropy imvariance.

Assuming A2 = 0, the model for our flow will have the following

form:

(2) - € -
<0 ) > - < (viD) €y (> A ?< bu, > (4-79)

and

(2) - ; = € -
CRE0 ) > =< (VD) 8 u, D A =< By, > (4-80)

The above model in fact is very similar to Lumley's model for the Rotta

term, Eq. (4-56).
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Chapter V

DECAY OF A PASSIVE SCALAR IN HOMOGENEOUS ISOTROPIC TURBULENT FLOWS

In this chapter we present results for decay of the velocity field
and a passive scalar in isotropic homogeneous flows. The decay rates,
various length scales, two—point correlations, and one~ and three-
dimensional spectra of various terms are presented and discussed for
both the hydrodynamic and scalar fields. The effects of the Reynolds
and Prandtl numbers on the decay rates, microscales, and skewness are
also considered. All of the results presented in this chapter were ob-
tained using 32 x 32 x 32 mesh points, so the Reynolds number range is
limited to Re, < 25.

5.1 Results from a Typical Run

In this section, we present the results obtained for a typical run
(IH32-2). This run has the following initial values:

Reynolds number Re = gé— = 11.00.

A
Integral length scale ratio L/Le = 1,30,

Taylor micro-scale ratio A/Ag = 1.23.

Integral length scale L = 0.82.

Taylor micro-scale A = 0.23.

Time step At = 0.0210.

Computational box lemgth L, = 6.28.

Initial turbulence velocity q = 0.02.

Molecular Prandtl/Schmidt number Pr = v/D = 1.00.

The results are shown in Figs. 5-1 through 5-13 and discussed

below.

A, The Hydrodynamic Field

Figure 5-1 shows the evolution of the three-~dimensional energy

spectrum. The 3-D energy spectrum is obtained by summing the energy in

spherical shells of inner radius k and outer radius k + Ak, where

50



k is the magnitude of the wavevector and Ak 1is the difference between
the magnitudes of the two nearest wavenumbers. As stated in Chapter II,
the initial 3-D spectrum is a squaré wave. The 3-D spectrum evolves
from the artificial square wave inertial condition to a realistic low
Reynolds number energy spectrum. Since the Reynolds number is small,
there is no inertial subrange. At low wavenumbers, the slope becomes
4 at long times-—-an expected result. The energy at wave numbers higher

than 2/3 of the maximum wavenumber is set to zero to avoid aliasing.

Figure 5-2 shows the 3-D spectra of the components of the turbulent
kinetic energy at the final time step. As can be seen, the flow is
slightly anisotropic at low wavenumbers and isotropic at high wavenum-
bers. This, too, is expected, especially as there are only a few low

wavenumbers.

The lateral and longitudinal one-dimensional spectra of the veloc-
ity field are shown in Fig. 5-3. The 1-D spectrum of the velocity field
in the kK, direction i1s defined as

o R >
Eij(kl) = ui(k) uj(k) dk2 dk3 (5-1)

As shown, velocity field is isotropic, E22(k1> = E33(k1), as expected.

Figure 5-4 shows the time evolution of the turbulent kinetic energy
and its three components in log-log coordinates. As can be seen, ne-
glecting the "developing” regilon (defined in Chapter II), the turbulent
kinetic energy is a straight line. If e(t) 1is the turbulent kinetic

energy at time t, then
e(t) = At D (5-2)

where n 1is the decay exponent. In this particular run, n = 2.4. The
decay 6f the turbulent kinetic energy has been observed in many experi-
ments. It has been shown analytically that the exponent, n, for very
low Reynolds numbers is 2.5. It has been shown both experimentally and

analytically that the decay exponent for high Reynolds numbers is 1.20.
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Figures 5~5 show the lateral and longitudinal two-point correla-
tions at initial time and the final time. The two-point correlations of
the velocity are defined as

R, (F) = < u (WD) uj&) > 1 < ug(¥) uJ.(?:) > (5-3)

3
As shown in Fig. 5-5a, the initial two~point correlations oscillate
sinusoidally. This is due to the narrow band nature of the initial

spectrum. This effect vanishes with time.

The integral length scale, Lij(rz)’ is defined as twice the dis-
tance at which Rij(rk) first reaches 0.1, This differs from the
standard definition of the integral length scale, which is the integral
of the two-point correlations. However, since the two—-point correlation
can have negative values at large 1r, the standard integral length
scale may behave poorly. The time evolution of the integral length

scales is shown in Fig. 5-6.

The Taylor micro-scales are shown in Fig. 5-7. The Taylor micro-
scale, Xij(rz), is defined as the inverse of curvature of a two-point
correlation at r = 0. Both the integral and Taylor micro-scales in-

crease with time. However, the integral length scales increase faster.

B. The Scalar Field

Figure 5-8 shows the time evolution of the 3-D spectrum of the sca-
lar quantity. It is very similar to the 3-D energy spectrum. However,
the scalar fluctuation spectrum is slightly higher at high wavenumbers.
This is also observed experimentally for the flows with Prandtl number
close to 1. It suggests that the dissipation in the velocity field is

lower than dissipation in the scalar field.

The one-dimensional spectrum, two—-point correlations, integral- and
micro-scales of the scalar quantity are also similar to those for the

velocity field. They are shown in Figs. 5~4 through 5-7, along with

corresponding values for the velocity fields.
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The decay of the scalar intensity < o2 >, with time is shown in
Fig. 5-9. As can be seen, its behavior is similar to that of the tur-

bulent kinetic energy history and can be fit by:
> = Bt " (5-4)

where m 1is the decay exponent of the scalar and B 1is a constant. In
this particular run, m = 2.25, which is within the range obtained from
the experimental results. The behavior of < 02 >, Eq. (5-4), is also
observed experimentally. The magnitude of m obtained from several ex-
perimental results (see Table 1-1, also Lumley and Warhaft (1978), and
Domis (1979) for more details) varies between 0.87 to 3.0, depending on
the initial length/scale ratio, A/Ay, and scalar intensity; the Prandtl

number was 0.7. There are no experimental results for m at low Rey-

nolds numbers or other Prandtl numbers.

5.2 Description of the Simulations

Nine simulations of isotropic homogeneous flow were made. The
simulations were obtained for various Prandtl numbers and a limited
range of Reynolds numbers. The initial micro- and integral-length/scale
ratios for all of the runs are fixed: A/Ag = 1.23 and L/Lg = 1.30.
Table 5-1 shows some statistics for the various runs. In this table,
Rey in the third column is the Reynolds number at the final time step.

R is the ratio of the decay exponents:
R = m/n (5-5)

The decay exponent ratio, R, 1is an important parameter. It is
the ratio of characteristic time scales of the velocity and scalar

fields:

2
R = —+1o— /e (5-6)
<6 >/ee

where € 1is the rate of dissipation of kinetic energy and €y is half
the rate of the dissipation of the scalar intensity, and is defined as
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1
= =~DK6 .6 > 5-7
Ee 2 3] ] ‘ ( )

In the following section we shall discuss the effects of Reynolds

and Prandtl numbers on the decay-rate exponents.

5.3 Effects of Reynolds and Prandtl Numbers on Some Turbulence Statis-

tics
As explained in the previous section, flow fields at various Rey-~

nolds and Prandtl numbers were generated. In this section we examine

the behavior of the various turbulence statistics.

A. The Length Scale Ratio

Figure 5-10 shows the behavior of the microscale ratio, A/Ae, as
a function of Reynolds number for various Prandtl numbers. As can be
seen, the microscale ratio increases with Re; when Pr < 1, and it
decreases with Re, when Pr > 1. On the other hand, at high Reynolds
numbers, the length scale ratio is independent of Prandtl numbers.

Ironically, as Rey *0, the length scale ratio reaches a constant.

This constant depends on the Prandtl number.

B. The Decay Rate

Figure 5-11 shows the decay exponent n vs. Reynolds number. As
can be seen, at very low Reynolds numbers n reaches 2.5. This has
heen shown analytically (see Batchelor (1948)). As the Reynolds number
increases, the decay exponent n decreases. At high Reynolds numbers,
however, it reaches an asymptotic value. W. C. Reynolds (1976) argues
that the asymptotic value is 1.2. The experimental values for =n at
high Reynolds numbers, obtained by Warhaft and Lumley (1978) and Comte-
Bellot and Corrsin (1971), is 1.25 + 0.06. As shown in Fig. 5-11, the
experimental value for n obtained from Tavoularis et al. (1978) is
very close to our simulated results. The Bennett and Corrsin (1978)
result, however, does not agree with our results. This may be due to

the difference in origin of the decay rate.
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C. The Decay Rate Exponent Ratio

The decay exponent ratio,. R, defined by Eq. (5-5), is shown in
Fig. 5-12 as a function of Reynolds number for various Prandtl numbers.
As can be seen from the figure, R increases with Reynolds number at
Pr < 1, and it decreases with Reynolds number at Pr > 1l. At high
Reynolds number, R asymptotically reaches a constant. This constant
depends on the Prandtl number. As Re, * 0, however, it seems that the

decay exponent ratio reaches a constant. This constant is independent

of Prandtl number.

D. The Velocity Derivative of Skewness

Velocity derivative skewness is defined by Eq. (3-2). Figure 5-13
shows the skewness vs. Reynolds number. The results shown in this fig-
ure were obtained from a 16 x 16 x.16 mesh point code and various
numerical and experimental results. As can be seen, skewness has a
maximum value of approximately 0.5 at ReA_ = 20. For Re, > 20,
skewness decreases and it seems to reach a constant at about Rey =
100. At low Reynolds numbers (Rey < 20), the skewness decreases and

Sk >0 as Re) > 0.
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Table 5-1

DESCRIPTION OF COMPUTER RUNS FOR DECAY OF A PASSIVE SCALAR
IN ISOTROPIC HOMOGENEOUS TURBULENT FLOWS

Simulations (ReA)z Re, Pr Aulkg* n m r
IH32--2A 11.00 3.00 0.20 0.634 2.40 3.00 1.25
IH32-3A 22.30 (10.00 0.20 0.703 1.70 3.00 1.76
IH32-4A 44.40 [22.00 0.20 0.830 1.50 2.90 1.93

- IB32-2 11.00 3.00 1.00 1.27 2.40 2.25 0.94
IH32~3 22.30 10.00 1.00 1.23 1.70 1.70 1.00
TH32-4 44.40 ]22.00 1.00 1.19 1.50 1.61 1.07
1H42-2B 11.00 3.00 5.00 1.68 2.40 0.75 0.31
IH32-3B 22.30 |10.00 '5.00 1.40 1.70 0.50 0.29
IH32-48 44.40 j22.00 5.00 1.26 1.50 .34 0.23

*(Rex)o is the initial turbulent Reynolds number.

ek

The initial microscale ratio for all of the flow fields is the same,
and its value is (Aulke)o = 1.23. The initial lateral integral length
scale ratio for all flow fields is (Lu/Le)o = 1.30.
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WAVE NO.
Fig. 5-1. Three-dimensional energy spectra at three different times.

1 S K]
WAVE NO.

Fige 5-2. Three-dimensional spectra of the turbulent kinetic energy compb-
nents at St = 4.0.
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WAVE NO.

Fig. 5-3. One-dimensional spectra of the velocity components and scalar
fluctuations at St = 4.0,

510" R i ) ’
TIME
Fig. 5-4. Decay of the turbulent kinetic energy and its components with time.
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Fig. 5-5{a) Two-point correlations of velocity coionents and the scalar fluc-
tuations at St = U.U.
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5-5 (b} Two-point correlattions of velocity components and the
scalar fluctuations at St = 4.0.
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Fig. 5-8. The 3-D spectra of scalar quantity at various times.
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Chapter VI

RESULTS FOR HOMOGENEOUS TURBULENT SHEAR FLOWS
WITH A MEAN GRADIENT OF A PASSIVE SCALAR

In this chapter the results for both the velocity and the scalar
flows in a homogeneous turbulent shear flow with a passive scalar, whose
mean is linear, are presented and discussed. 8Six velocity and fourteen
scalar fields were generated. The flow fields are obtained for various
Reynolds, Prandtl, and shear numbers. In this chapter a complete set of
results for one of the simulated flows is presented. Also, the effects
of the parameters on various turbulence statistics are discussed and

models for Reynolds stress, heat/mass flux, pressure-strain, and

pressure-scalar covariances are tested and their validity is discussed.

6.1 Dimensional and Non-Dimensional Parameters

The important dimensional parameters of this flow are presented in
Tables 6-1 and 6-2. The dimension of the scalar, ©, in Table 6~2, is
(a) degrees if the scalar is temperature and (b) mass if the scalar is

species. The integral and microscales are defined in the previous

chapter.

From the parameters in the tables, the following nondimensional

parameters can be formed:
Re = ¢qA/v, Reynolds number.
.~ = 8L/q, shear number.
Pr = v/D, Prandtl number.
Atﬁz = 6'/SZL, nondimenéional scalar fluctuations.
L/Lg = length scale ratio.

St = nondimensional time.

Note that L/A depends on Reynolds number and therefore is not

included above. The shear number & can be written as

A = 11:% (6-1)
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which is the ratio of the time scales of the large scale structures and
the mean flow. Assuming L = q3/€, A%’ can be written in the following

form:
2 = 54 (6-2)

which is proportional to the ratio of the production to dissipation of

turbulent kinetic energy.

The parameter Adgé is analogous to the inverse of .44 It is

approximately the ratio of the production to dissipation of the scalar

fluctuations.

Some of the nondimensional parameters mentioned above are related
through the dynamics of the flow, that is, they are not independent.
The results obtained from a set of 32 x 32 x 32 mesh point computer
runs show that the length scale ratio, L/Le, and the nondimensional
scalar quantity, /462, are dependent parameters. Figure 6-1 shows

/4@2 as a function of time for four different runs. The initial Rey-

nolds, shear, and Prandtl numbers and length scale ratios are the same
for all runs, but the initial ,4£§§ is changed from one run to another.
As shown in the figure, the final value of /462 is independent of its
initial value. 1In other words, A¢@2 is a function of Reynolds, shear,

and Prandtl numbers, i.e., a dependent parameter.

Similarly, as shown in Fig. 6-2, the final value of the length
scale ratio L/Le is independent of its initial value, i.e., L/Le is
a dependent parameter. Therefore, the only nondimensional parameters we
need to deal with are Reynolds, shear, and Prandtl numbers. The scalar

field is determined by the velocity field and the Prandtl number.

6.2 Description of the Simulations

8ix simulations of the hydrodynamic field and fourteen simulatioms
of the scalar field have been performed. All of the simulations used

64 x 64 x 64 mesh points. The results presented in the rest of this

chapter are from these simulations.

66



As discussed in Chapter III, the simulations use an artificial ini-
tial field. There is also a time at which’the turbulent structures
become large compared to the size of the computational domain, and the
periodic boundary conditions no longer hold. The results are not accep-
table after that time. According to the criteria mentioned in Chapter
III, the period in which the data are acceptable lies between St = 4
and St = 7 for all of the simulations.

The simulated flow fields are stored on tape, and the turbulence
statistics are calculated only when St is an integer. This is done
mainly because, when St 1is an intéger, the coordinate is Cartesian and
the calculations of the turbulence statistics involving derivatives are

easier.

Thus, four flow fields (at St = 4, 5, 6, and 7) are available
from each simulation. Consequently, a total of 24 hydrodynamic fields

and 56 scalar fields are available. The available flow fields cover a
rather large range of Reynolds, shear, and Prandtl numbers. Table 6-3
shows the range of these nondimensional parameters in our simulations

and from the available experimental results.

As can be seen from the table, the range of Reynolds number covered
is lower than the available experimental values. We are limited to low
Rejy because there is a maximum Rey beyond which we are not able to
resolve the full range of scales of turbulence. As will be shown in the
following sections, we are mainly interested in turbulence statistics
which depend on the large structures and which may be only weakly Rey~
nolds number dependent, so the Reynolds number limitation may not be
very serious. This will become clear in later sections, where we com—

pare our low Reynolds number results with the experimental results.

As can be seen from Table 6-3, we have covered a rather large range

of the shear number. Near the upper limit the nonlinear and viscous
terms in the Navier-Stokes equations (Eq. (2-18)) become negligible, and
one can apply rapid distortion theory. At lower values of the shear
npumber, the flow becomes isotropic (the results for this case are dis-

cussed in the previous chapter).
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The only available experimental data for the scalar field, obtained
for Pr = 0.7, were taken by Tavoularis and Corrsin (1978). We have

covered a significant range of Prandtl number (from 0.2 to 5.0).

At very high Prandtl numbers (Pr >> 1), the diffusion equation
(2~20) becomes:

= 0 (6-4)

Therefore, the results are independent of Prandtl number (we assume
viscosity is fixed). On the other hand, for very low Prandtl numbers

(Pr << 1), the effect of shear becomes negligible and the diffusion

equation is

2
30 _ 30 _
ot D 90X .9X. (6-5)
J 3]

and the results are discussed in the previous chapter.

For the region between these two extremes, where Pr ~ 1, there is
no analytical solution. The effect of the Prandtl number on the various
turbulence statistics in this region is studied and discussed, using our

simulated results, in the following sections.

Table 6-4 shows the nondimensional parameters for each simulation
in the "developed” region. 1In Appendix C, we have provided a set of
tables which give the raw data and various turbulence statistics from
each simulation. These tables may be helpful to the readers in further

investigations.

6.3 Complete Results for a Typical Simulation

In this section, we present the results obtained for a typical run

(Run HS64J), which has the following initial values:
Reynolds number Rey = 20.00.

Shear number .«&“= 3.30.
-1
Nondimensional scalar fluctuation.ﬂbbz = 3.20.

Prandtl number Pr = 1.00.
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Integral length scale ratio L/Lg = 1.40.
Taylor microscale ratio A/Ag = 1.29.
Integral length scale L = 0.71.

Taylor micro-scale X = 0.22,

The above values are non-dimensionalized, as explained in Section
2.3. The results will be discussed for both hydrodynamic and scalar

fields in the following sectiouns.

A. The Hydrodynamic Field

A-1l. Three-Dimensional Energy Spectrum

Figure 6-3 shows the evolution of the three-dimensional energy
spectrum. The initial 3-D energy spectrum is a square wave. At a later

time, the 3-D energy spectrum has a slope of 4 at low wavenumbers, as
expected. No inertial subrange with slope of =-5/3 appears in the 3-D
energy spectrum because the Reynolds number is low. Figure 6-4 shows
the 3-D spectra of the three components of the turbulent kinetic energy
at St = 4. As can be seen, there are anisotropy effects at low and
moderate wavenumbers. The 3-D spectrum of ug has more energy at low
wavenumbers and less at moderate wavenumbers, whereas ui has more

energy at moderate wavenumbers and less at low wavenumbers. These are

effects of the applied shear.

A~2. Turbulent Kinetic Energy History

The time evolution of turbulent kinetic energy and its three compo-
nents are shown in Fig. 6-5. At St = 0, the flow field is nearly iso-
tropic. At later times, however, the flow becomes anisotropic. The
streamwise component of the kinetic energy becomes the largest while the
normal component is the smallest. This is also observed experimentally
in both homogeneous shear flows (Champagne et al. (1970) and Harris et
al. (1976)) and boundary layers (Klebanoff (1955), Bradshaw (1967)).

As shown in Fig. 6-~5, the turbulent kinetic energy first decreases
with time and then increases. This is because the production of turbu-

lent kinetic energy is small at early times. The production increases
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with time, and there is a time after which the production is larger than
the dissipation and the energy begins to grow. This effect can be seen
from the experimental results obtained by Harris et al. (1976) and
Tavoularis (1979). The experimental results obtained by Champagne et
al. (1970) and Rose (1970), however, do not show the increase in the

turbulent kinetic energy. Their measurements did not go far enough

downstream.

From our computed results and the experimental results of Tavou-
laris (1979), the flow fields seem to be going toward some kind of
structural equilibrium. Statistical equilibrium is a state in which the
components of the Reynolds stress anisotropy tensor, bij’ reach
asymptotic values. As noted before, we were able to carry out the simu-
lations only up to St = 7 and did not reach an equilibrium region.
Rogallo (1981) simulated this flow with 128 x 128 x 128 mesh points.
He was able to continue the computation to St = 16 and found that the

rate of change of components of bij with time decreases, but it does

not become zero.

A-3. Length Scales

Figures 6-6 and 6~7 show the evolution of integral and Taylor mi-

croscales in the streamwise direction, respectively. The length scales
were obtained from the two-point correlations in the manner explained

in the previous chapter. - Figure 6-8 shows the Kolmogorov scale, the
mixing-length scales, and the transfer (or dissipation) length scale,

where the Kolmogorov length scale, n, 1is defined by Eq. (2-1) and the

< u,u
L = @Z (6—6)

n 3ﬁ78x2

mixing length is defined as

and the transfer length scale, Ltr’ is defined as

Lep = @/¢ (6D)

As can be seen, all length scales increase with time. As shown in the

figure, the mixing 1length is nearly constant, while Ly and n
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increase with time. The Kolmogorov length scale is the smallest, and
transfer length scale is the largest length scale. Thus the mixing
length cannot be correlated with any of the other length scales.

A-4., Two~Point Correlations

Figures 6-9 through 6-11 show the two-point correlations of the
velocity (Eq. (5-3)) in the streamwise direction at three different
times. As can be seen, the two-point velocity correlations, Rij(r)’
at St = 0, are nearly zero at large r, i.e., there exist only small
eddies in the computational box. However, at later times, the results
show that the velocities become well correlated in the computational

box. As discussed before, there is a time after which the large eddies

become comparable with the box length (in other words, Rij(r) becomes
large at large r), and the computation has to be stopped. In most of

our results, Rij(r) is less than 0.3 at r = Lb/2 at the end of the

computation, where Lb is the computational box length.

A-5. One-Dimensional Spectra

Figures 6-12 through 6-14 show the 1-D spectra of the velocity
components in three directions. The difference between the three con-
ponents of the velocity spectra show the anisotropy at varilous eddy
sizes. As can be seen, even at high wavenumbers the three components
are different, i.e., the small scales are anisotropic. This may be
because the Reynolds number is low. The anisotropy at high wavenumbers
will be discussed in more detail in Section 6-5D. The fluctuations of
the spectra at the low wavenumbers are due to the small number of sam—

ples at which spectra are calculated.

A-6. Three-Dimensional Pressure Spectrum

As discussed in Section 4-2C, the pressure consists of two parts.
p(l) is proportional to the mean shear, while p(z) does not depend
explicitly on the mean flow. Figures 6-15 and 6~16 show the 3-D spectra

of each component, as well as the 3-D spectrum of the total pressure at
various times. Understanding the behavior of each component helps in

modeling the pressure-strain and pressure-scalar covariances. As shown
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in Fig. 6~16, p(l) is larger at low wavenumbers, i.e., it depends
p(?) s

larger at high wavenumbers, i.e., it depends mainly on the small scale

mainly on the large scale structures. On the other hand,

structures. We also see that the 3-D spectrum of p(l) has a slope

of -5 at high wavenumbers. This is observed in all of the simulated

flow fields. Also, the k"5 part of the spectrum is observed to become

more important with time; the peak in the spectrum moves upward and to

the left as time goes on.

A-7. One-Point Correlations

The one-point correlations of the velocities are defined as

< uu, >
C.,. = ——T—TQ—- (no summation) (6-8)
ij u;u’,
i7]
Note that Cii = 1. Figure 6~17 shows the one-point velocity correla-
tions as a function of time. The only non-zero component for (i # j)
is < u,u, >/uiué, which starts from zero and reaches an asymptotic

value of about =-0.6." Similar values were obtained from computed flow
fields by Feiereisen (1981) and Rogallo (1981). The experimental value
lies between ~0.4 and -0.5. The reason for this difference may be
the Reynolds number difference between the computed and the experimental

results.

The one-point correlation, C;, 1is Reynolds number depemndent, be-
cause < uju, > depends mainly on the large scale structures and is
therefore not strongly Reynolds number dependent, whereas uj and
ué depend on both the large and small scales and are thus more Rey-
nolds number dependent. Therefore, as the Reynolds number decreases,
< u;u, >/uiué increases. The effect of Reynolds number on this quan~-

tity is given later in this chapter.

A-8. Reynolds Stress Anisotropy Tensor

The Reynolds stress anisotropy tensor, bij’ is defined by Eq.
(4-44). Figure 6~18 shows bij as a function of time. If the compo-
nents of bij reach asymptotic values, the flow has reached structural

equilibrium. As shown in the figure, bj; start from zero, indicating

J
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that the initial velocity field is isotropic, and change with time. At

early times the by change rapidly; later, however, the variation of

3
bij is smaller. It seems that the flow might reach a state of equilib-

rium if the computation were continued.

A-9. Dynamical Reynolds Stress Equations

The volume~averaged equations for the Reynolds stress, <’uipj >,
are given by Eqs. (4-3)-(4-5) and (4-10) and discussed in Chapter IV.
The equations contain production, pressure-strain, and dissipation
terms. Transfer terms do not appear in these equations because the vol-
ume averages of these terms are zero. Figures 6-19 through 6-22 show
the values of each term in the various stress equations as a function of

time. As can be seen, the pressure—~strain term is negative i1in the
< uf > equation and positive in the equations for the other components

of the Reynolds stress. That 1s, energy is transferred from < uf > to
the other components of < ujuy > fhrough the action of the pressure-

strain terms.

Figure 6-23 shows the terms in the volume-averaged turbulent ki-

netic energy equation (4-8). No pressure-strain term appears in this
du,
figure because, by continuity, < p §§£ > 1s zero.

i
Figures 6~24 through 6-28 show three-dimensional spectra of various

terms in < uiuj > equations at St = 4., The production and pressure-
strain terms are concentrated on the large scales, whereas the dissipa-
tion terms mainly come from the small scales, as expected. As can be

seen in Fig. 6-25, unlike its behavior in the other equations, the
du
2
pressure-strain term, < p I o in the < u,y > equation is not only
2 Jdu
2
a source term but it acts as a transfer term, too. That is, < p 5;—->
2

takes energy from moderate-sized eddies and transfers it to the small

and large eddies.
The transfer terms have the following form:

du .u du,u
ik ik (6-9)

= u

Tij 1 7ox +“j LEN
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The 3-D spectrum of Tij is defined by

A

A fOu.u \* ., /Ou.u A fOu u \* . /3u.u
= u(——J—E) + u ( JR) o, (k) + o -—1—5> (6-10)
ij i Bxk i Bxk i Bxk j axk

As can be seen from Figs. 6-24 through 6-28, the transfer term transfers

~ A~

=3 >

energy from both small and large scales to the medium-sized eddies,
except for the transfer term in the < ui > equation, which transfers
energy from large eddies to the small eddies. These effects, which are
somewhat surprising, have been observed in all the calculated flow
fields. McMillan and Ferziger (1978) have also found that the transfer

term is negative at high wavenumbers when the shear is high. These

results were obtained at high Reynolds numbers.

A-10. The Dissipation Anisotropy Tensor

The dissipation anisotropy tensor, dij’ is defined by Eq. (4-47).
Figure 6-29 shows dij as a function of time. It has generally been
assumed that the small scales in turbulent flows are isotropic, i.e.,
the dissipation anisotropy is nearly zero. However, as can be seen, the
components of dij start from zero and vary with time. d11 increases

while d decreases in the developing region. It also can be seen

22
that d33 is an order of magnitude smaller than the other components
and is therefore not significant. Furthermore, as we shall see later,
d seems not to be very Reynolds number dependent, and this result is

ij
of considerable significance in turbulence modeling. Also note that the

dissipation anisotropy is very similar to the Reynold stress anisotropy

(Fig. 6.18); its components behave in the same way with time.

B. The Scalar Field

The length scales, two point-correlations, and one-dimensional
spectra of the scalar fluctuations behave in a manner similar to those
of the velocity field. They are shown in Figs. 6-~7 through 6-14. From
the two—-point correlations and the 1-D spectra of the scalar and veloc-
ity fields, it can be seen that the scalar quantity behaves very much

like the streamwise velocity.
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The time evolution of fhe 3-D spectrum of the scalar fluctuations
is shown in Fig. 6-30. As can be seen from the figure, the behavior of
the 3~D spectrum of the scalar quantity is similar to that of the 3-D
energy spectrum. The scalar—fluctuation intensity as a function of time
is shown in Fig. 6-31. The scalar intensity increases with time in the
developed region. Its behavior with time is similar to the behavior of -

< ui > i.e., they both increase at the same rate in the "devel-

oped” region.

The one-point velocity—-scalar correlations as a function of time

are shown in Fig. 6-32. As can be seen, there are two non-zero compo-

nents:
< fu. > < bu, >
6"y anc  —gvur o

This suggests that there are heat/mass fluxes in both the streamwise and
normal directions. The one-point correlation with the streamwise veloc-
ity reaches a value of 0.75. The experimental value for this term,
which was obtained by Tavoularis (1979), is about 0.6. The one-point
correlation for the normal direction reaches a value of =-0.52; the
corresponding experimental value is -0.4. The difference between our
computed results and the experimental results for these terms is prob-

ably due to the Reynolds number difference, as discussed in Section 3A-7

of this chapter.

As can be seen from Fig. 6-32, the streamwise velocity and the sca-

lar quantity are well correlated. This is consistent with the Prandtl
mixing-length theory, which is based on the assumption that the stream-
wise velocity component acts as a scalar which is transported verti-

cally.

The volume-averaged equations for the scalar intensity and the
heat/mass flux are given by Egs. (4-9), (4-11), and (4-~12) and are
discussed in Chapter IV. Figures 6-33 through 6-35 show the time evo-
lution of each term in these equations. As can be seen, the pressure-
scalar covariances for both < Bu; > and < Bupy > equations are such
that they tend to destroy the correlations. This effect is similar to
that of the analogous terms in the Reynolds shear stress, < ujuy >,

equation.
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Figures 6-36 and 6-37 show the 3-D spectra of each term in the 62

and 9u2 equations. The transfer terms behave in a manner similar to

that of the transfer term in the ujuy equation.

6.4 Statistics of the Velocity Fields and Models

As stated above, 24 velocity fields were produced at various Rey-
nolds and shear numbers. In this section, the effects of these nondi-
mensional parameters on various turbulence statistics will be tested and
their validity will be examined. To do this, we use a power law of the
nondimensional parameters to fit the data. The accuracy of the fit can

be judged by r.m.s. relative error obtained from the simulated data and

the power law.

A. Reynolds Stress Tensor

The values of the Reynolds stress tensor components, < “iuj >,
are given in Appendix C. Their behavior is particularly important,
because they appear in the mean momentum equations and are modeled most

often.

The angle of the principal axis of the Reynolds stress tensor rela-
tive to the computational coordinate system (cf. Eq. (4-17) is given in
Table 6-5. As can be seen, the principal axis angle varies between 11.5
and 26 degrees, depending on the shear and Reynolds numbers. The beha-
vior of this angle as a function of the Reynolds and shear number is
shown in Figs. 6-38 and 6-39, respectively. As shown in these figures,
the principal axis angle is Reynolds— and shear-number dependent. It
decreases with both Rey and £ At high Reynolds numbers, however,
the angle seems to reach an asymptotic value. This value is shear

number dependent.

The most common model for < uiuj > 1s based on the Boussinesq

eddy-viscosity concept, Eq. (4-21), i.e., < uiuj > 1is proportional to
the mean shear. The problem with this model is that it requires < u% >
= < u% > =X u% > for the shear flows. On the other hand, the angle
of the principal axis of the mean strain, Sij (cf. Eq. (4-19)) 1is 45

degrees, while the angle of the principal axis of < ujuy > varies
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between 1l1.5 and 26 degrees in our flow fields. Thus this model cannot

represent the Reynolds stress tensor.

A modified version of this model was suggested by Wilcox and
Rubesin (1980). Their model has the following form:

2 6

1 q
= = - -¢c 4 Q .+s.Q -
< uiuj > 74 Gij 2\)TSij C 82- (Sim i Sjm mi) (6-10)

The last term in this model is designed so that < u% > K< u% > > K< u% >

in a shear flow such as the one we have treated; it makes no
contribution to < ujuy > 1in these flows and this model is identical to
Eq. (4-21) for this term. For the other components of < ujuy >, the

model has the following form:

6.2
2 1 2 C S
<o > = 3q +x5is
€
6.2
2 - 1 2 _ Cqs _
< u, > = 39 5 ———ez (6-11)
2 1 2
<u3> = -3-'(1

Wilcox and Rubesin suggested that the coefficient C, for boundary
layers, 1s 1.23. From our results, however, the coefficient C 1is
found to vary between 0.00022 and 0.0145, depending on the Reynolds
and shear numbers; the variation of C does not exhibit any clear-cut
pattermn. This suggests that this model is not good for homogeneous

shear flows.
e
A more complicated model for“ﬁeynolds stress tensor was derived by
Rodi (1976). Rodi's nonlinear algebraic model is based on the assump-
tion that bij is time-independent and 1s derived for high Reynolds
number flows. It has the following form:

2
_o2|ls ,1a-n (lee_géijfle)

<uu, > = ¢q S, ., (6-12)
i 34T 7TC 1+é_(§’/e—1)
1
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where

ﬂ’ aﬁj BUl
= - < u,u, > - < u.u >
13 i 5xk jk Bxk

and

Cl and Y are model constants. Although the values of Y and C;
are constant, this model requires < u% > = <,u§ > in our flow, which

is not true.

For the Reynolds shear stress, < uju, >, Eq. (4-21) has the fol-

lowing form:

uu, > = -V, —0 6-13
1Y ( )
where the eddy viscosity, Vips itself needs to be modeled. Models for

v are discussed in Chapter IV. TUsing the results for each of the

T
fourteen simulated flow fields and Eq. (4-23), vp = CqL, and Eq.

(6-13), we calculate the constant C in Eq. (4~23) and correlate it
with the nondimensional parameters. (Note that the length scale used
here is the integral length scale, L.) The fitting function used for

this purpose has the form:
F = C Re®ab (6-14)

where a, B, and C are determined using least-squares fitting. ' The
results are shown in Fig. 6-40. The straight line in this figure rep-

resents a perfect fit, and the symbols are our simulated results. The
r.m.s. error shown in the figure indicates the deviation of the data
from the fit. It is defined as the average of the squares of difference
between our computed data and the fitting function normalized by the
average of the data. The solid points are the experimental results of
Tavoularis (1978). As shown in the figure, VT/qL is nearly Reynolds
number independent (the exponent o in Eq. (6-14) is -0.08), and is

approximately proportional to the shear number.
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\Y
T ~ -0008 "'1007 -

From this relation, one gets

< uu, > - -
—L20 = -0.265 Re, 0 0000 (6-16)

q

Note that the above relation is good only for .+ > 1. As can be seen,
< ujuy >/q2 is nearly constant in homogeneous shear flows and does not

depend heavily on Reynolds and shear numbers.

B. Reynolds Shear Stress Correlation

< u, >
The values of the Reynolds shear stress correlation, -—Eﬁaﬁ—— s
172
obtained from the simulated flow fields, are given in Table 6-6. As can
< u,u, >
be seen, ——G%E;_— varies from - 0.54 to - 0.74, depending on the
172 ,
Reynolds and shear numbers and time. Assuming that it depends only on
< u; u, >
Re) and L4 we use the function (6-14) to correlate —Tu with
172

the nondimensional parameters. The results are shown in Fig. 6-41. As
shown, the correlation decreases slightly with the Reynolds number and
increases with the shear number. This is expected, as discussed in Sec-
tion 3A-7 of this chapter. The dependence on Reynolds number is very

weak. The result is

< u,u, >
— 127 . _0.515 Re 0:043,0:134 (6-17)
o ) A

The experimental results of Tavoularis (1979), which obtained at St =
8 to 11, are also shown in this figure. They lie slightly below our
computed results. This may be because the Reynolds shear stress corre-

lation is time~dependent and/or the fitting function is not exact.

C. Reynolds Stress Anisotropy Tensor

The Reynolds stress anisotropy tensor, bij’ is defined by Eq.

(4-33), It is a symmetric and trace-free tensor, which is zero in iso-
tropic flows. To determine the effects of Rek and _<Z—on the compo-
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nents of bij’ we again use function (6-14) and least-squares to fit
the results. The results are shown in Figs. 6—-42 through 6-44. As can
be seen, bij is almost independent of Reynolds number. _<Z“ has a
rather strong effect on bj; and by,, but does not have much effect

on  by,e b33 is an order of magnitude smaller than the other compo-

nents of bij and is negligible. It can also be seen from the figures
that the function does not fit the data well, i.e., there is consider-~
able scatter. It may be because (a) the fitting function is not suit—
able for bij’ or (b) bij is time-dependent. The latter seems more
reasonable, since the data figures belonging to one flow fall in a line

which is not parallel to the fit line.

D. Pressure-Strain Terms

As discussed in Chapter IV, the pressure-strain term ¢ij’ which
is responsible for transferring energy from one component of the turbu-
lent kinetic energy to another, can be divided into two distinct parts,
the fast term and the Rotta term. The magnitudes of each part of the
pressure-strain tensor are given in Appendix C. Since the fast and
Rotta terms behave differently, each requires a different model. In

this section, we test models which were introduced in Chapter IV for

these terms.

D-1. The Fast Term

The part of the pressure strain which is proportional to the mean
shear is called the fast term (Eq. (4~46)). A model for this term is
given by Eq. (4-49). This model, which was introduced by Hanjalic and
Lumley (1974) and W. C. Reynolds (1976), has only one constant A;. The
constant is computed for each component in each flow. A; changes only
slightly from one flow field to another; the effects of Reynolds and
shear numbers are very small. However, the constant A1 obtained for
¢f%) is very different from the constants for the other components of

¢§3). The average value of the constant for each component is shown
in the first column of Table 6.7. The constant was also fit with the
function (6.11), and the results are shown in the last three columns of

this table. The Gibson—Launder model is a simplified version of the
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above model. It assumes ¢§;) = Qé;), which is found to be incorrect

in our flow; therefore this model is poor compared to the more general

model, Eq. (4-49).

D~1. The Rotta Term

The part of the pressure strain which is not explicitly dependent
on. the mean flow, ¢§%), is the Rotta term (Eq. (4-53)). As shown in
Table (C-5, the magnitude of ¢§%) is very small compared to the magni-
tude of the other components. For this reason, this component is not
considered in this section.

Two models for ¢%) are given in Chapter IV. The Rotta model,
Eq. (4-55), assumes that the pressure-strain temnsor is proportional to
the Reynolds stress anisotropy. The constant A, for this model is
calculated using our simulated results and is given in Table 6-8. The
63) . is fitted by a

ij
function of the form (6.11). The results are given in the table. As

constant A2 obtained from each component of

can be seen, A2 varies very much from one flow to another and is not
alfam
well fit as a function of the nondimensional £ . This suggests

that this model is not likely to be useful.

Table 6-9 shows the constant A3 and its invariants obtained using
the modified Rotta model, Eq. (4-56). As shown, A3 has less variation
and is nearly constant for all of the components. The variation of A3
with Re, and &~ is obtained using least-square fitting, and the re-
sults are given in Table 6-9. The constant Ay increases with the
Reynolds number and decreases with the shear number. If a constant

value for A3 is to be used, our results suggest A5 = 2.7.

E. Dissipation Anisotropy Tensor

The dissipation anisotropy tensor, dij’ is defined by Eq. (4-57).
Its magnitude can be calculated from the dissipation tensor, given by

Table C-3. 4 is a symmetric; trace-free tensor. The dissipation is

ij
frequently assumed isotropic at high Reynolds numbers, and we expect
Idijl to decrease with Reynolds number. On the other hand, Idijl is
zero in isotropic flows when &£/ = 0, and one expects it to increase

with the shear number. We use a least-squares fit to our simulated
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data, using function (6-11) to study the pehavior of dij as a function
of &~ and Re). Figures 6-45 through 6-47 show the results. Note that
d33 is very small, so its behavior is not shown here. As can be seen
from the figures, all of the components decrease with Re, and increase
with &« This is expected, as discussed above. However, the effect of
Reynolds number is smaller than expected, suggesting that the dissipa-
tion may remain anisotropic even at quite high Reynolds numbers. This
is contrary to the assumption made by many people that the dissipation

is isotropic at high Reynolds numbers.

6-5. Behavior of the Scalar Fields and Their Models

In this section, the effects of Reynolds, shear, and Prandtl num-

bers on various turbulence statistics obtained from 56 generated scalar
fields will be studied. Models introduced in Chapter IV for these terms

will be tested, and their validity over the range of Rek,,/41 and
Pr will be examined. The constant(s) for each model will be calcula-
ted, and their behavior as functions of the non-dimensional parameters

will be discussed. We use least-squares fits to correlate the results.

A. The Non-Dimensional Scalar Fluctuations

The non~dimensional scalar fluctuation, g, = 0'/S,L, 1is a de-

pendent parameter, as discussed in Section 6-1. Therefore, we suspect

~4¢, to be a function of Reynolds, shear, and Prandtl numbers. We use

the following power-law function to determine its dependence on Re,,

A and Pr:
F = C Re;’\‘,czﬁ Pr’ ° (6-18)

where C, a, B, and Y are determined by least-squares fitting. The

results, along with the experimental results, are shown in Fig. 6-48.

As can be seen, the experimental results behave very similar to the
simulated results. It can also be seen that g, is almost independent
of Re,. The result is
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Substituting the definitions of/é%z and zéz/in the above equation, the

above relation can be approximated as:

%
O . 9 p,0172 (6-20)
80/8x2 BUl/ax2

so the ratio of the r.m.s. scalar fluctuation to the mean scalar gradi-

ent is proportional to the ratio of the turbulence velocity to the mean

velocity gradient.

B. Turbulence Heat Flux

The magnitudes of the turbulence heat fluxes, < Buy > and < bu, >,
obtained from the simulated scalar fields, are given in Appendix C. Note

that < Bug > = 0. As can be seen from Table C-7, the heat flux ratio,
< By >/< Guz > varies from 1 to 4, depending mainly on the shear num-

ber. This is expected because, as .<Z“increases, the flow becomes more
anisotropic and ui/ué increases. Therefore, < 6u; >/< bu, > in-

creases with 4%

C. One-Point Velocity-Scalar Correlations

The velocity-scalar correlation 1is defined as < Ou >/9'ui'

(no summation). There are two non-zero components, < By >/6'ui

and < Ouy >/6'ué. They are given in Table 6-10. The magnitudes of
these terms change only slightly from one flow to another. To correlate
these terms with the independent parameters of the flow, we use function
(6-18). The results are shown in Figs. 6-49 and 6~50. They have the

following form:

< Bu, >
' } - 0.417 Re0'021,4£93138 Pr0.012 (6-21)
0 u1 A
and
< 6u2 > 0.066 0.139 -0.061
—ay - 0.561 Re, L7770 Pr (6-22)

Comparing these with Eq. (6-17), we see the one-point velocity-velocity

and velocity-scalar correlations are very similar. They all increase
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with the shear number at the same rate and have very weak dependence on

Reynolds number.

D. Turbulent Eddy Diffusivity Tensor

The turbulent eddy diffusivity tensor, Dij’ is defined by Eq.
(4-26). It is non-symmetric. Only two components D;5 and Dy, can
be calculated from our 56 simulated scalar fields. The other components
can be computed when 3678x1 and aEVaxs are not zero and will be dis-
cussed later. Let us consider the behavior of Do and Dy, Then we
study the behavior of the other components using the results obtained
from two particular runs with non-zero 8678x1 and 3578x3. Figures
6-51 and 6-52 show DlZ/qL and Dzz/qL as power law functions of the
non—-dimensional parameters. The results obtained by using least-squares

fitting have the following forms:

D -

qiz - 0.259 ge0-014 =0.72 , 0.19 (6-23)
Dy2 -0.132 -1.1 _ 0.11

- 0.487 Re) ' <z T Pr’ (6-24)

Using the definition of Dij and Z4 and Eq. (6-16), the above rela-

tions are approximately

< eul
q6'
< 6u, >

_Eg._ 0.248 (6-26)

0.478 (6-25)

R

14

These are very similar to the relation for the one-point velocity~
velocity correlations, Eq. (6-16). This suggests that the eddy viscos-
ity and diffusivity behave similarly. This is also seen from the exper-
imental results (Tavoularis (1979)).

In Chapter IV, we derived a model for the eddy diffusivity tensor.
The models for D12 and D22, Eq. (4-35), have the following forms.

D < uu, 2 C
12 _ 172 2 o :B Y _
q?‘/S i [Cl q ' ]Rex " e
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and

2 -
D <ul >
22 _ 2 1 a' B' o Y' _
5= = Cl (_-_-Z—-—— 3) + C3 Re}‘ A Pr (6-28)
q /s q

The magnitudes of the constants in the above relations were ob-
tained using least-squares of our computed results. The results are
shown in Figs. 6-53 and 6-54. As shown, the magnitudes of the constants
are C; = 1.20, C, = 0.99, and Cq = 0.569; the constant C; 1is
fixed for both D12 and D22' The constants are nearly independent of
Reynolds number and are proportional to Pr0'17. This model fits the

data quite well.

So far, we have discussed only the two components of Dij that
participate when 3C/8x2 is the only non-zero mean scalar gradient. To
obtain the other components of Dij’ we ran two further cases. Each
run used the same hydrodynamic field and initial conditions, but one had
non-zero 3578x1 and the other was for non-zero 3678x3. Table 6-11
shows the components of Dij obtained from these simulations. As can
be seen, D11 has the largest value. This is expected because Dy, is
proportional to Uy which is the largest velocity component. D22 and
D21 have the smallest values, for similar reasons. Only a few compo-
nents of Dij are experimentally determined. Table 6-12 shows the
values of Dij/DZZ obtained from the experimental results of Corrsin
(1980) and the present results. The experimental results are obtained

at Rey = 396 and £ = 12.76.

Note that the diffusion equation (2-20) is linear, so the 6 ob-
tained from different runs can be added or subtracted. Results for a
case in which the mean scalar gradient 1s non-zero in all three direc-
tions can be obtained from three runs, each of which has a mean gradient
in one direction. However, the 0 fields are not uncorrelated, because
the same velocity field is the same. Then, < 6,8, > is not
necessarily zero when 61 and 62 are results from two different runs.

E. Turbulent Prandtl Number

The turbulent Prandtl number, Prq, 1is the ratio of eddy viscosity
to eddy diffusivity (Eq. (4-36)). The magnitude of turbulent Prandtl
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number for each flow field is given in Table 6-13. 1Its behavior as a
function of Reynolds, shear, and Prandtl numbers is shown in Fig. 6-55.
As can be seen, Pro 1is almost independent of Re, and & It de-
creases when molecular Prandtl number increases, and vice versa. The

result of least—squares fitting of the data is:

Pry = 0.528 Re$'0>_0-036 py=0.105 (6-29)

The valoes of
PrT obtained from 56 simulated flow fields were used to test models

described in Chapter IV. The results are shown in Figs. 6-56 through
6-59.
The first three of these figures test Reynolds', Wassel's, and

Crawford's models, given by Eqs. (4-37) through (4-39), respectively.
All of the models behave similarly and fit the simulated results rather

poorly. The suggested values for the model constants suggested in the

literature are different from the constants obtained from our simulated
results.
Figure 6-59 tests the model derived in Chapter 1V, Eq. (4-40).

This model fits the data much better than the models mentioned above.

The model can be approximately simplified to:

Pr = 0038 (6_30)

T < u2 >
49:2 p 0.12 (1.20 ——-%—-+ 0.169)
q

F. Pressure—-Scalar Covariance

Like the pressure-strain, the pressure-scalar covariance contains
two parts. The magnitudes of each part of the pressure-scalar covari-
ance computed from our simulated flow fields are given in Appendix C.
In this section we examine the pressure~scalar covariance models intro-

duced in Chapter 1IV.
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F-1. The Fast Term

The part of the pressure-scalar covariance which is proportional to
the mean velocity gradient ¢§1) is called the fast or rapid term
(Eq. (4-60)).

Let us consider the model given by Egs. (4-69) and (4-70). The
constant AO in this model is 2/5, according to the assumptions made in
Chapter IV. In this section we use our simulated results and calculate
Ao‘ The behavior of Ao as a function of the nondimensional parameters
is obtained using the least-squares fitting and function (6-21). The
results are shown in Eigsw—b6mi0—to—6—Fk-—and—alse~ in Table 6-14. As
shown, the value of A changes very slightly throughout the 56 flow

[¢]

fields (i.e., the variance of Ao is small) and has small dependency

on Rey, A&7y and Pr. This suggests that much of the important physics
is captured by the model. On the other hand, the computed value of A/
is less than one-half of the expected value. This suggests that the as—
sumptions (mentioned in Chapter IV) made in deriving the model are not
sufficient, and a more complicated model may be needed to get better

results.

Let us now consider lumley's model, Eqs. (4-72) and (4-73). This
model satisfies all of the conditions of the previous one plus a new
condition mentioned in Chapter IV. The constant Aj in this model is

predicted to be 1/2. The values of Ao and its behavior as a function
(L
i

Table 6-15. As shown, the variation of Ao over 56 flow fields is

of ReA,,fig and Pr for the two components of ¢ . are given in

small, and therefore the model captures much of the important physics.
However, the magnitude of the constant is different from 1/2 and variles

from one component to another.

F-2. The Rotta Term

The second part of the pressure-scalar covariance, ¢§2), is
defined by Eq. (4-74). This part does not explicitly depend on the mean
flow. Equations (4-79) and (4-80) represent a model for this term. The
model is analogous to the modified Rotta model used for the pressure-
strain covariance. The constant A1 obtained by using our simulated

results is given in Table 6-16. The behavior of A; as a function of
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Re, and £~ are also given in the table. As we see, the constants for
both components of ¢§2) are nearly the same and have very small vari-
ation due to the Rey, &, and Pr. This is similar behavior to that

of the modified Rotta model for the pressure-strain terms.

6.5 Comparison with the Other Flows

Nearly all turbulent flows in nature are inhomogeneous, i.e., the
shear varies through the flow. The homogeneous flows may be structur-—
ally different from their inhomogeneous counterparts; the two kinds of
flows might require different types of models, and thus our results and
discussion for mixing of a passive scalar in homogeneous flows might not
be valid for inhomogeneous flows. We shall briefly compare some of our

results with those for inhomogeneous flows.

Table 6-17 compares non—-dimensional quantities obtained in the log-
arithmic region of a boundary layer and in one of our runs. These

values are nearly constant in the logarithmic region but differ in the

outer region.

The shear number was found to play an important role in homogeneous
flows. Its value as a function of y+ in the boundary layer is given
in Table 6-18. It is nearly constant in the logarithmic region but
changes rapidly in the other regions. In this region, the agreement
with our results is quite good. In the inner region, the shear number
changes rapidly and the wall has a very strong effect on the behavior of
the turbulence. Both of these effects make the flow very different from
a homogeneous flow, and our results cannot be applied. Clearly, spe-
cific models which account for these effects are needed and are, of
course, in common use. In the outer (wake) region of the boundary
layer, the shear number rapidly becomes small and there are again
inhomogeneity ‘effects which make comparison with our results very
difficult. The interaction with the irrotational outer flow also has a
strong effect. '

Table 6-19 shows the variation of some of the turbulence statistics
through a turbulent free shear layer and compares them with our homoge~

neous shear flow results. The turbulence statistics are nearly constant

for -0.5 < n < 0.5. In this region the shear rate, Bﬁi/axz, is
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nearly constant and the results, as expected, are comparable to our
homogeneous shear flow results. The shear number is also nearly con-
stant in this region and is of the same order of magnitude as in bound-
ary layers. In the region where |[n| > 0.5, the interaction with the
irrotational flow causes strong inhomogeneity effects and the comparison

with our flow is difficult.
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Table 6-1

VELOCITY FIELD

Parameter Notation Dimension
Turbulence Velocity q =< u ug >1/2 L T_l
Kinematic Viscosity v L2771
Integral Length Scale L L
Taylor Microscale A L
Time t T

Table 6-2
SCALAR FIELD
Parameter Notation Dimension

Turbulent Scalar Intensity o' = < 62 >1/2 ©
Diffusion Coefficient D L2771

3C -1
Mean Scalar Gradient S, = +—— 0L

2 3x2

Integral Length Scale Lg L
Taylor Microscale Ae L
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TARLE 6-3

Rande of Non-~Dimensional Farameters

Non-Dimensional

Farameters For Each Flow Field

Farameters Present DNatsa Exrerimental Data
Re 10 - 120 130 - 400
<~ 5 - 70 3 ~ 14,8
Fr 0.2 - 5 0.7
St 0O - 7 0 - 12
TABLE 6-4

Simulations Farameters St=4 St=95 St=6 St=7
Re 44,560 52,057 59,215 66,762
HS64A < 18,549 18.983 19.485 19,993
Fr 1,000 1,000 1.000 1,000
Re 18,996 21.840 24,545 27,175
HS64B Lo 23,727 25,178 26.790 29,397
Pr 1,000 1,000 1,000 1,000
Re 60,348 75.711 92,476 10,080
HS64G L 66.879 694205 68,924 68.878
Pr 1.000 1,000 1,000 1,000
Re 24,202 27,626 31,233 35,222
HS64J L 11,228 12,617 14,493 16,328
Fr 1,000 1,000 1,000 1,000
Re 29,156 34,132 39.054 44,550
HS64M < 8,936 10,333 11.987 13,853
Pr 1,000 1,000 1.000 1,000
Re 64,310 71.840 78,990 86,910
HS640 < 6.376 7.120 7.738 8.236
Pr 1,000 1,000 1,000 1,000
Re 18.996 21.840 24,545 27,175
HS64C </ 23,727 25,178 26.790 29,397
Pr 5.000 5.000 5,000 5,000
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TABLE 6-4 Continued
Simulations | PArameters St=4 St=3 St=6 8t=7
Re 44,560 52,057 59,215 664,762
HS64D A 18,549 18,983 19,485 19.993
Pr 5,000 5.000 5.000 5.000
Re 44,560 52,057 59,215 66,762
HS64E & 18,549 18,983 19,485 19.993
Pr 0,200 0.200 0.200 0.200
Re 18.996 21,840 24,545 27,175
HS64F < 23,727 25,178  26.790  29.397
Pr 0.200 0.200 0.200 0.200
Re 60,348 75,711 92,476 10.080
HS64R < 66.879 69,205  6B.924 68,878
Pr 5.000 5,000 5,000 5,000
Re 60,348 75.711 92,476 10,080
HS64Z Py 66,879 69,205  68.924 68,878
Pr 0.200 0.200 0.200 0.200
Re 29,156 34,132 39.054 44,550
HS64N & 8.936 10,333 11.987 13.853
Fr 0.200 0,200 0.200 0.200
Re 64,310 71.840 78,990 86,910
HS64P £ 6,376 7.120 7.738 8.236
Pr 0.200 0.200 0.200 0.200
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TABLE 6-5
Princiral Axis Andle ( Radians)
Eauation 4-17

Simulation ST=4 8T=95 8T=6 ST=7
HG64A 0.31886 0.27182 0.23674 0.,22285
HS64B 0.32776 0.27180 0,224677 0.20689
HS56406 0.26261 0.21147 0.17420 0.,15333
HS64J 0.,40883 0.34481 0.,29152 0.,26612
HS64M 0.43080 0.37272 0.32677 0.30371
HS640 0.,45910 0.42296 0.,40323 0.39940
TAERLE 6-6

One-Foint Correlations of the Velocity Field
] 1
Suy uy>/ g uy

Simulation St=4 St=5 St=6 St=7
HS64A 0.68350 0.678%90 0.68780 0.67250
HS64R 0.67680 0:.67560 0,70390 0.69340
HS646 0,72830 0.73470 0.76240 0.74390

HS644 0+62960 0.63344 0.63720 0.61760
HE864M 0.61800 0.61646 0.604%90 0.59520
HS8640 0.54260 0.54720 0.54800 0.54280
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TARLE 6-7

Constant For the Fressure-Strain Modelsy Ea, 4-49
The Fast Term
. . . - o ,B
Fitting Function Al = C Re” A
Eeuation Ay c o B reM.Ss E€rrovr
i=1y J=1 -6.94 £ 0,519 Q.75 -0.028 ~-0.,082 0.038
i=2y J=2 -1.,83 +0.,400 1.55 0.038 0.008 0,060
i=3y =3 -1.57 t0.380 6.82 -0.18% -0.282 0.092
i=1y J=2 -1,82+0,077 2,01 -0.082 0.010 0,032
TABLE 6-8
Constant For the Fressure-strain model, Ea. (4-53)
Rotta Model
, . . _ a , 8
Fitting Function A3-C Re™ 4.
Ecuation A c o 8 FeMsSe ETTOT
i=1y J=1 0.673 t0 1.143 0.678 ~1.,195 0,15
i=2y =2 0.672 0.57 0.724 0,715 -1.,075 0.13
i=1y J=2 0.679 +0.,452 0.238 0.813 ~-0.776 0.15
TARBLE 6-9
Constant For the FPressure-8train Models Ea. (4-36)
Modified Rotta Model '
Fitting Function A, = C Re% ZB
Eauation A, C o 2 reMseS. ETTOT
i=1y J=1 2.862 10,3249 2.342 0.144 ~0.225 0.04%5
i=2y J=2 2.080 i0.428 4,200 0.119 ~04+245 0.048
i=1, J=2 2,472 20,426 1.633 0.330 -0.266 0.085
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TABLE 6-10

One-Point Velocituy—-Scalar Correlation

. <ui e >{ u;. 8’

Simulation I Gt=4 St=5 St=4 St=7
1 0.6674 0.6513 0.6351 0.5822
HS64A
2 0.7064 0.6742 0.6370 0.5891
HS64B 1 0.6504 0.6130 0.5726 0.5197
2 0.7476 0.7302 0,7072 0.6410
HS64GC 1 0.7949 0.7541 0.,7041 0.6583
2 0.7803 0.7746 0.7765 0.,7320
HS64T 1 0.8552 0.8236 0.7709 0.7102
2 0.6890 0.,6542 0.5878 0.5197
HS6AM 1 0.7721 0.7662 0.7687 0.7244
2 0.6570 0.6134 0.5570 0.5222
HS640 1 0.8131 0.8058 00,8031 0.7564
2 0.5682 0.5506 0.5195 00,4999
HS64C 1 0.7877 0.7464 0.6871 0.6524
2 0.6674 0.,6513 0.46351 0.5822
HS64D 1 0.,7090 0.,6724 0.6291 0.6078
2 0.6504 0.6130 0.5726 0,5197
HS64E 1 0.6561 0.6806 0.7051 - 0.,7414
2 0.7949 0.7541 0.7041 0.6583
HSGLF 1 0.6054 0.6129 0.6282 0.,6706
2 0.8552 0.8236 0.7709 0.7102
HS64H 1 0.7315 0.7887 0.8301 0.8614
2 0.7721 0.7662 0.7687 0.7244
HS64T 1 0,7306 0.,7770 0.8099 0.8366
2 0.,8131 0.8058 0.8031 0.7564
HS64N 1 0.5949 0.6310 0.6506 0.6805
2 0.7877 0.7464 0.6871 0.6524
HS64P 1 0.5495 0.5793 0.5991 0.6198
2 0.7090 0.6724 0.6291 0.6078
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TABLE 6-11

Components

of Nomalized Eddy Diffusivity Tensor

Dij-/ qL
Eauation St=3 St=4 St=5 St=6
i=1ly J=1 -0,08770 -0.,09750 ~0.10690 ~0.09810
i=2y J=2 -0,03200 ~-0.,02530 -0.01792 -0.01200
i=3, J=3 -0,03430 -0,03325 -0.03335 ~0.,025%90
i=1y J=2 0.04645 0.,04786 0.04696 0.03910
i=2y J=1 0.,03253 0.03026 0.02442 0.01910

TABLE 6-12

Experimental and Comruted Values of Normalized
Turbulent Eddy Diffusivity

D;3/P2
Equations | Computed Values Exrerimental Results
_ at St=3 (Corrsin (1980)) .
i=1y j=1 -6.00 X
1=2y j=1 1.40 X
i=1y j=2 2.30 2.20
i=2y j=2 1,00 1.00
i=3y j=3 -1.460 -1.60
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TARLE 6-13

Turbulent Frandtl Number
Eaquation (4-36)

Simulations St=4 St=5 St=6 St=7
HS8644A 0.6617 0.7089 0.7850 0.8585
HS64B 0.5984 0.6173 0.6766 0.7550
HS 646 0.6589 0.6950 0.74453 0.,7945
H864.] 0.5800 0.6125 0.7006 0.8010
HS&64M 0.6093 0.6602 0,7321 0.7950
H5640 0.6143 0.6386 0.6917 0.7269
HS864C 0.5302 0.5452 0.5900 0.6522
HS64D 0.612¢9 0.6538 00,7192 0.7870
HS64E 0.8609 0.92190 1.0280 1,1200
HS64F 0.8769 0.8910 0.9996 1.1310
HS464H 0.6461 0.6790 0.7241 0.7695
HE641 0.7217 0.7716 0.8417 0.9125
HS 64N 0.8584 0.8722 0.9208 0.9710
HS64F 0.7482 0.7712 0.8166 0.,8335
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TEALE 6-~14

Constant for Pressure—-Scalar Covariance Modelsy Eas. (4-69) and (4-70)
The Fast Term
Fittind Function AO = ¢ Re* 48 pr ¥
Eauation Ao C o B Y TeMeSe ETTOT
(4-69) 0.229 +0.,079 0.543 0.025 -0.341 ~-0.096 0.17
(4-70) 0.144 10,066 0,312 {~-0.018 -0.287 ~0.,148 0.11
TABLE 6-15
Constant for Fressure-Scalar Covariance Models Ea,(4-71)
Lumlew’s Model for the Fast Term
Fitting function Aj=C Re® £ B pr Y
i AL C o B Y TeMmeS. ETTOT
1 0.676 £0.081 0.754 0.014 -0.,059 -0.,043 0.17
2 0.276 10,103 0.085 ~0,035 0.401 -0.018 0.18
TARLE 6-146
Constatnt for the Fressure-Scalar Model
The Rotta-like Term
Fittinmg Fumction Al =G Rea J-B Pr Y
Eauation Ay C o 8 Y reMmsS, @LTOT
(4-79) -1.580 10,477 | 1.021 0.170 -0.128 ~-0.,307 0.16
(4-80) ~1.789 *0,730 0.744 0.461 ~0,322 -0.,157 0.14
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Table 6-17

Comparison of Turbulence Statistics in Homogeneous Shear Flows

and Boundary Layers

Homogeneous Shear Flow

Boundary Layer*

Quantity Run HS64J
at St =7

< uu, >

-_--1-2-3-—_ ~0.147 -0.130
q

< ule >

e 0.547 0.50
q9

< u26 >

—— -0.160 ~0.20
q6
PrT 0.80 1.05
D
. -2.30 ~2.40
22

*Johnson (1959)
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Variation of Non-Dimensional Quantities in Channel Flow

Table 6-18

1.

%k
ué
Re, = < = 13800
*
y* Rep, 4
3.85 747.8 1117.90 |
16.09 2200 111.63
Sublayer
38.18 2190 27.47
77.18 1496 9.50 y,
143.4 1540 3.95
248.9 961 2.13 Log-region
440.7 770 1.79
590.1 528 0.348 Centerline

TMoin (1981).

*ReL is Reynolds number based on the

£33

Ue

integral length scale.

§ is channel half-width.
is mean velocity at the centerline.
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Table 6-19

%

and Free Shear Layers

Free Shear Layer** Homogeneous Shear
Quantity Flow, Run HS64J
n=-1.0 |n=-0.75 n = 0.5 n=0.8 | n=0.5 n=20.75 jn=1.0 at St =7
< uu, >
- —T 0.312 0.38 3.45 0.5 0.40 .28 0.16 0.62
uju
< euz >
5o 0.55 0.59 0.60 0.65 0.42 0.332 0.23 0.520
Pr, 0.60 0.62 0.65 0.82 0.79 0.70 0.56 0.80
0.987 1.16 1.25 1.58 2.00 1.82 1.82 16.00
Re; 6231 8107 9340 9262 8936 7678 6234 140

s .
Batt (1977).
**The values obtained at X~ X9 = 18.5" for U1 = 23 ft/sec and E; = 0.0.

12(x - (x,) ) L
i _ x2 0.5 , ReL —%— , Wwhere L 1is integral length scale

1 10

-l

n =
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Fig. 6-1. ' Nondimensional scalar quantity,‘tez, as a function of time for
various runs with different i{nitial values.
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Fig. 6-2. Integral lenyth scale ratio of the velocity and scalar field as a
function of time for various runs with different initial values.
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Fig. 6-12. One-dimensional spectra of velocity components and scalar in the

xy~direction.
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Fiy. 6-13. One-dimensional spectra of velocity components and scalar in the
xp-direction.
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Fiy. 6-14. One-dimensional spectra of velocity components and scalar in the
xy-direction.
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Fig. 6-15. Three-dimensional spectra of two components of pressure and total
pressure at St = 0.0,

L
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Fig. 6-16. Three-dimensional spectra of the components of pressure and total
pressure at St = 4.0.
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this work we have numerically solved the three-dimensional,
time~dependent equations of motion and the diffusion equation for two
cases, homogeneous isotropic furbulence and homogeneous sheared turbu-
lence. In order to do this, we were required to work at rather small
Reynolds numbers. The results obtained have been compared with avail-

able experimental results, and good agreement was obtained.

For the homogeneous isotropic flows, it has been found that the
Reynolds and Prandtl numbers (within the range considered) have strong
effects on the decay rates and the length scale ratios. The decay expo-
nent of the turbulent kinetic energy, =n, decreases with increasing
Reynolds number (from 2.5 at Rey = 0 to 1.2 at Rey ~ 25). The decay
exponent of the scalar fluctuation intensity,. m, decreases with both
Reynolds and Prandtl numbers. Both the decay exponent ratio, R, and
the length scale ratio, Au/ke, increase with the Reynolds number when
Pr < 1 and decrease with the Reynolds number when Pr > 1. The abso-
lute value of the velocity derivative skewness, Sk, has a maximum
value of 0.5 at Rey = 20. Sk is zero at Rej = 0 and reaches an

asymptotic value of approximately 0.4 as Re), approaches 100.

In homogeneous shear flows, unlike homogeneous isotropic flows,
the initial conditions, such as the initial length scale ratio, Au/xe,
and the initial non—-dimensional scalar fluctuation do not affect the
scalar field. Many of the turbulence statistics are nearly independent
of the Reynolds number. The shear number has the most important influ-
ence in this flow. In homogeneous shear flows, the length scales grow
faster than in the isotropic flows. The behavior of the dissipation (or
transfer) length scale and integral length scales are similar, but the
mixing length seems to behave differently. The turbulent kinetic energy
first decreases and then increases. Due to the shear, the flow is ani-
sotropic; the streamwise velocity fluctuations are the largest, while

the vertical velocity fluctuations are the smallest. The dissipation
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tensor is very anisotropic and does not become isotropic even at rather
high Reynolds numbers. This is contrary to the assumptions made by many
people. The behavior of the scalar fluctuation intensity is very simi-
lar to that of the streamwise turbulent kinetic energy components; they
are well correlated, and their spectra are similar. It is unclear
whether this flow reaches statistical equilibrium. OQur- results show
that < uu, >/q2, < by >/q0', and < 6u, >/q6' are nearly constant
in this flow. However, the other components of bij slightly change

with time.

From the three-dimensional spectra of the production, dissipation,
pressure-strain, and the transfer terms, it is found that influence of
the transfer term is very small compared to that of the other terms. In
sheared turbulence, this term, contrary to a common assumption, trans-

fers energy from both large and small eddies to the moderate~sized

eddies.

The three-dimensional spectra of the components of pressure field
(p(l) and p(z)) have been studied. It has been found that the part of
pressure which is explicitly associated with the mean flow dominates at
the large scales and has a k'S shape at moderate wave numbers. The
second part of the pressure is important at the small scales. The
relative magnitude of the two parts of the pressure depends on the shear

rate.

The turbulent Prandtl number is almost independent of the Reynolds
number, and decreases as the molecular Prandtl number increases. A new
model for the turbulent Prandtl number seems to correlate the data bet-

ter than a number of other models.

Several models for various turbulence statistics were tested, and

the following conclusions made:

The eddy viscosity model fits the turbulent shear stress quite
well, but is incapable of predicting the diagonal components of the
Reynolds stress accurately. The parameter in the model is proportional
to the inverse of the shear number. Rodi's algebraic model for the
Reynolds stress is also incapable of predicting the diagonal components

of the Reynolds stress in this flow, but its coefficient is relatively
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constant for the turbulent shear stress. Eddy diffusivity models behave
similarly to the eddy viscosity model. Their parameters are nearly pro-
portional to the inverse of shear number and depend slightly on Prandtl

number.

The Rotta model for the pressure-strain term correlates the data
rather well. The modified Rotta model correlates the data even better.
The constant for this model is about 2.7. Similarly, the model similar
to the modified Rotta model for the pressure-scalar covariance fits the

data very well. The models for the fast term are not good and need to

be improved.

7.2 Recommendations

In this work, we have assumed the scalar is passive; therefore, we
have neglected the effects of buoyancy. It would be interesting to
study the effects of buoyancy in these flows. Our simulated flow fields
have provided "exact" results for the flow fields. We have used these
results to check some of the models for various volume-averaged turbu-
lence statistics. We suggest using the "exact” results to obtain some

models for the subgrid scales of the scalar fields.

Finally, it should be possible to extend this work to simulate the

reacting flows. .
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Appendix A

LINEAR STABILITY ANALYSIS

In this section we study the stability and accuracy of numerical
methods of solving the equations of motion (2-18) and the diffusion

equation (2-20).

For the sake of simplicity, let us assume that the problem is two-
dimensional. In two dimensions, the Fourier transform of the linearized

equation (2-18) has the form:

au ~ ~ ~ ~ A
L
r uojikjul + St quiklul - Suz(k) 621 - ikzp + St iklpG22
_ L e2,.2,2y "
+ v( kjkj + 28t k1k2 s°t kl) u,

(A-1)

where wu,; 1s assumed to be constant. In component form, this becomes:

oy o[- u k. + st u.k)i+vi-kk +2 5t kk, - s2c2k?) |
ot 1 oj ] 021 3] 172 I‘J
- ik;p - S u, (A-2)
333. = u, | (- u k, +Stu.k) i+ v(-kKk, +25tkk - S t2k%)
3t Y Y03 Y0251 i3 172 1

~

- ik,p + St ik;p (A-3)

Let us define

i - _ L2 _ .2 _ el 2 2
a = ( uolkl uozk2 + St qukl) i+ v( kl k2 + 2 St klkZ 7t kl)
(A-4)

which is simply a known function of the wavenumber. Then the equations

(A-2) and (A-3) become
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aul A PN PN
35 = ula - iklp + Su2

ah (A—5)
2 ~ ~ ~

T u,a - ikzp + St klp

Following the standard linear stability analysis for Navier-Stokes
equations, since the dynamics of the pressure is totally dependent on

the dynamics of the velocity field, we consider the following equations.

A

aul N a

Fr i + Su2 (A-6)
8u2 n
W = auz (A—7)

The solution of the above equations using the Adams-Bashforth method
(2-11) is

“ml _ ‘n 1 “n _ “n-1 1 “n _ I n-1 _
u, = u, + 5 At(30zu2 au, ) + 7 At:cSil(BSu2 Su2 ) (A-8)
Let us assume
“ml “n
u, = Ru2 (A-9)

?

First let us consider the stability of the u, equation. From (A-9)

and (A-8), for i = 2, one can get:

R = 1+%At3a—% (a-10)

or
Rz—(1+%Ata)R+g—ta =0 (A-11)

or
R1,2 = %-%—EQL:I:J%—T%AtZaZ - alt (A-12)

where ao is defined in (A-4).
137



We can write the maximum value of o as
o = (iNC + ND)/At (A-13)

where NC is the Courant number and is defined as

| k ) At (A-14)

NC = (lu + St|u2 max 1 max

j max kj max

and N, is the viscous stability parameter

= - k2.2, 2 _
Nv [jkj maxkj max + 2 5t kl maxkz max st kl ma%] VAt (A-13)
For our problem the maximum wavenumber is
kl max k2 max k3 max kmax = w/A

where A 1is mesh size. Note that the computational box length is 2w,

80 A= 2w/(N-1), where N is the number of mesh points in each direc-

tion. Therefore, kmax becomes :
. = N-1 -
kmax = =5 (A-16)

From (A-14), (A-15), and (A-16), the values of Nc and N,, are

- N-1 -
NC - —7—-[}ullmax + A+ St)luzlmag] At (A-17)
and
N-1 2 2.2
N, = (_.2_._> [— 3+ 2 st -5t :l VAt (A-18)

and are time dependent. (Note that St varies between -%Q and H&)-

Following the same procedure, one can set the following N. and

N, for the u; equation:

v
2 u
N-1 2 2 1 2
N =vAt< )(:;-zsr-s:;)+ s = (A-19)
v [2 ya U pax
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and N, is the same as before, Eq. (A-14). The magnitudes of R, and
R, of Eq. (A-12) depend on the magnitudes of N, and N,. R; 1is
the physical root and R, is the spurious root. It should be noted that
the method is stable even if |R| > 1, because in shear flows the vel-

ocities increase with time. The limit on R is obtained by comparing

Eq. (A-9) and the analytical solution of Egqs. (A-6) and (A-7).

The magnitudes of R; and R, for various N, and N, (Eqs.
(A-12) and (A-13)) are given in Table 2-1.

For the diffusion equation (2-20), we follow a similar procedure,
and the important parameter governing stability is:

N, = D S-N-g—ll (- 3+ 2 st - s2t2) At (4-20)

For the three-dimensional case, the Courant number is defined as

N-1 ]
NC B _5—'[]u1|max s St)'“ZImax + Iu3'maxJ At (A-21)

Stability is affected by St and SIUZ/ullmax’ but as we keep
Istf < 0.5, the effect is small. Also, as we increase S, qu/ull
becomes small and therefore S|u2/u1|max is always small compared to

the other term in Eq. (A-19).
The time step at which the results are reasonably accurate and sta-

ble is chosen by using Table 2-1. We chose N, = 0.1 to 0.3 and N, =
0.1. Note that N = N,/Pr.
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Appendix B

COORDINATE TRANSFORMATION

In this section, we consider the coordinate transformation which

was used to eliminate the non-periodic terms in the equations of motion
and the diffusion equation.

The transformed coordinates are

x, = X - SK,T
X = X
(B-1)
X3 = X
t = T

where X, and T are the physical (laboratory) variables. As shown

below, the tranformed coordinate moves with time.

/
! 0
x.,=0 / X.= /
x2 k/l x? / , 1 x2 //
/ L1
/ /
/
// d
/ /
/ /
X X
1 1
t =o0 tl. > [o] t2 > tl

Using the chain rule, the derivative of any function with respect
to Xy and T can be obtained as follows:

] 9
o = : (B-2)
8X1 axl
3 9 9
wo— = x— = St = (B-3)
BXZ | 8x2 Bxl
9 9
= — (B~4)
8X3 3x3
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) 9 )
3T - 3t 5% 7%, (B-5)
2 2
R * (8-6)
p) 2
X 9 x
% 5 . az1 22 9
= 5 - 2 St -5——'5'}'{—-4- St —5 (B-7)
Y o °x % 9%y ax
2 2 A 9%
3 3
= (B-8)
%> 52
3 ¥3

The above relations were used to transform the non-periodic

equations (Section 2.5b) into Eqs. (2-17) through (2-20).
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Appendix C

TABULATED DATA FOR THE SIMULATED FLOW FIELDS

In this appendix, we present a set of tables containing various

information, raw data, and turbulence statistics obtained from 24

simulated homogeneous shear flow fields and 56 scalar fields.

The initial values used in all of the simulations are:

Turbulence velocity, q = 0.600.

Integral length scale, L = 0.71.

Taylor micro-scale, A = 0.22.

r.m.s. scalar fluctuations, 6' = 0.600.

Integral length scale of the scalar field, Lg = 0.51.

Taylor microscale of the scalar field, Ag = 0.17.

The above parameters are nondimensionalized, as stated in Section

2.3.

The following table shows other parameters used for each simula-

tion.
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TARLE C-1

Iimensional Parameters For Each Simulation

Simulation Shear Rate | Viscosity | Diffusivity | Mean Scalar

S v D Gradlent S,
HS5644A 8.851 0.00500 0.,00500 8.500
HS64R 8.851 0.01000 0.,01000 8.500
HS 646G 42,890 0.00500 0.00500 42.500
HS64J 2.860 " 0.00525 0.00525 2.860
HS64M 1.716 0.00350 0.00350 1.716
HS640 2.230 0.00175 0.00175 2,230
H564C 8.851 0.01000 0.00200 8.500
HSé64DN 8,851 0.00500 0.00100 8,500
HS64E 8.851 0.00500 0.02500 8.500
HS&64F 8.851 0.01000 0.05000 8.500
HS64H 42,890 0.00500 0.00100 42,500
HS641 42.890 0.00500 0.02500 42,500
H564N 1.716 0.00350 0.01750 1.716
HS64P 2,230 0.00175 0.,00875 2.230
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TABLE C-2
Comronents of the Reuynolds Stress Tensor

< ui uj>
| Simulation | Equation 5t=4 5t=5 St=6 St=7

i=1, j=1 0.,27469  0.32620 0.37760  0.42920

HS64A i=2, j=2 0.05271 0.04726 0.04150 0.,0436%
i=3, j=3 0.11650 0.,13095 0.,14270  0.14600

i=1, =2 [ -0.08224 -0,08429 -0,08610 -0,09209

i=1, i=1 0,15980 0.17530 0.18870  0.20080

1S64B i=2, j=2 0.03265 0.02558 0.01842 0.01689
i=3, j=3 0.07240 0.07840 0,08198 0.07798

i=1y j=2 | -0,04889 -0.04524 -0.04150 -0.04038

i=1, j=1 0.49410  0,64560 0.80250 0.946740

i=2, j=2 0.06029  0.,05133  0.04100  0,04025

HS64C i=3%, j=3 0.,17620 0.19430 0.21100 0.,21700
i=1y j=2 | -0.,12570 -0,13374 -0.1382%9 -0.14479

i=1y j =1 0.,07135 0.,07475  0.07931  0.08491

HS64J i=2y j=2 0.02326 0,01816 0,01428 0,01361
i=3, j=3 0.04360 0.04696 0.04753  0.04428

i=1y j=2 | -0.02565 -0,02334 -0.02144 -0,02099

i=1y j=1 0.,04595  0.04829 0.05160 0.05602

HS64M i=2, j=2 0.,01663 0,01380 0,0i211  0.,01187
i=3, j=3 0,03022 0,03129 0,031468 0.03097

i=1y j=2 | -0.01708 -0.01592 -0.01512 -0.01535

i=1y j=1 0.11160 0.,11920 0.12920 0,14100

=2y j =2 0.04978  0.044680 0.04717 0.05120

H5640 =3, j =3 0.07717 0.08100 0,08603 0.09166
=1y =2 | -0.,04044 -0.04087 -0,04278 -0.04612
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TABLE C-3

Dissiration Tensor

Equation (4-7)

Simulation | EQUATION St=4 5t=5 St=6 st=7
i=1, j=1| 0.43040 0.49920 0.55380 0,60440

Seon 1=2, j=2| 0.05560 0.05220 0,05204 0.05352
i=3y §=3| 0.18396 0.18280 0.18514 0.18714

1=1y j=21 -0,10240 -0.10040 -0.09895 -0.,09735

i=1y §=1 | 0.,40380 0.41180 0.42000 0,43420

564D i=2, 3=2| 0.04466 0.03322 0,02662 0,02350
i=3y j=3 | 0.19286 0.17758 0.16624 0.16634

i=1y §=2 | -0,09403 -0,07925 -0.06819 -0,05889

i=1y j=1 | 0.90380 1,17700 1,44540 1,73120

s6c i=2y §=2 | 0.05318  0,04346 0.03804 0.03522
i=3y j=3 | 0.35980 0.35300 0.35480 0.35740

i=1y 3=2 | ~0.17890 -0.18600 -0.19080 =-0.19480

i=1y =1 | 0.,07158 0.06688 0,06488 0.06400

. i=2y j=2 | 0.01742  0.,01299 0,01071  0.00953
i=3y j=3 | 0.05168 0.04582 0,04146 0.03740

i=1s» j=2 | -0.01863 -0,01485 -0.01229 -0.01054

i=1» j=1 | 0.02746 0.02486 0.,02398 0.02374

. 1=2y 3=2 | 0.,00940 0.00680 0.00564 0.00508
‘ i=3, j=3 | 0.02304 0.01943 0.01726 0.01545
i=1s =2 |-0,00725 -0,00568 -0,00465 -0,00401

i=1, =1 | 0.,06126 0.05868 0.05822 0,05858

640 =2y 3=2 | 0.02830 0.02500 0.02374 0.02418
1=3, =3 | 0.05148 0.04446 0.04562 0,04522

=1y =2 |-0.01565 -0,01432 =-0,01387 -0,01310
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TABLE C-4
Fressure-Strainit Fast Terms
Eauation (4-46)

Simulation | Eeuation| St=4 St=5 St=6 St=7
=1, j=1] -0.17800 -0.15840 -0.12280 -0.12870
. 1=2, 3=2| -0,02782 -0.04524 -0.03911 -0,04536
1=3y =3| 0.,20590  0.20370  0.16200  0,13340
1=1,3=2| 0.,27786  0.24533 0.16045  0,13980
1=1y j=1| -0.12380 -0.10185 ~0.06916 ~-0,06710
1=2y =2 -0.01748  -0.03175 -0.02452  0,00236
HS64B 1=3, 3=3| 0.14134 0,13360 0.09348 0.06474
1=1y, j=2| 0.20186  0.16937 0.09913  0,07299
T=1,3=1] -1,08190 -1.00550  -0.76612 -0,81830
122, J=2| -0.16999 -0.21173 -0.19234  0.06255
HS64G 1=3, 3=3| 1.,25190  1.21730  0.95850  0.75580
i=1y, j=2| 1.77020 1,61540 1,12534 1,00770
i=1; 3 =1] =0,02569 -0.02006 -0.01378  -0,01316
i=2y j=2|-0,00394 -0,00732 -0.00458 ~-0,00070
HS64J i=3, =3 0.02962 0.02736 0.01835 0.01386
i=1y §=2| 0.,04423  0,03468 0.02242  0.01839
1=1y j=1| -0.01037 -0.00865 -0.00671 ~0.00599
Sean i=2y §=2|-0,00147 -0.00205 ~-0.00171 -0.00101
1i=3, 3=3]| 0,01184  0.01070  0.00842  0.00700
i=1y §=2] 0.01707  0.01482  0.01130  0,00960
1=1y =1 -0.03178 -0.,03053  -0.03006 -0.03238
1S640 i=2, =2 -0,00386 -0,00462 -0.00295 —0.00332
i=3,3=3| 0.03565  0.,03515 0.03302  0.03570
i=1y §=2| 0,06338  0.,05923 0.05570  0.05798
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TABLE C-5

Fressure-Strains Rotta Terms
Eauation (4-53)
Simulation { Ecuation St=4 St=5 St=6 St=7
i=1y 5=1 |-0.04969 ~-0.06133 -0.07108 -0,07963
HSG4A i=2, j=2 0.03892 0.04890 0.05630 0.06261
i=3y j=3 0.01073 0.01238 0.01475 . 0,01699
i=1y j=2 0.06990 0.08400 0.09830 0.11640
i=1y j=1 {-0.,01629 -0.01727 -0.01722 -0.01736
HS64B i=2y j=2 0.01338 0.01506 0.,01543 0,01586
i=3» j=3 0,00291 0.00221 0,0017¢9 0.00150
i=1y 3 =2 0.02320 0.02340 0.02240 @ 0.02330
i=1>» j=1 1-0,03234 -0,043556 -0.,05800 -~0.,06822
HS64G i=2y 5=2 0,02912 0.04139 0.05148 0.05567
i =3 j =3 0.00322 0.00417 0.00651 0.,01255
j_=1: j =2 0.05210 0.06800 0,07730 0.08730
i=1y j=1 [-0.00698 -0.00715 -0.006%91 -0.00676
HS64J 1=2y j=2 0.00627 0.006488 0.00679 0.00644
i=3y j=3 0.,00072 0.00068 0.00013 0.,00013
i=1ly j=2 0.,01002 0.00975 0,00992 0,01096
i=1y =1 |-0,00348 -0.00369 -0.00378 -0.003964
HS64M i=2y 3 =2 0.,00320 0.00343 0.00373 0.00377
i=3y j=3 0.00027 0.00025 0.00005 0,00019
i=1y j =2 0.00587 0.00568 0.,00355 0.00620
i=1ly =1 |-0.,01349 -0,01716 -0.02000 -~0,02358
HS640 i=2y3=2 0,01393 0.01606 0.01869 0.02144
i =3y j =3 0.00155 0.0011 0.00130 0.00214
i=1y j =2 0.03340 0.03152 0.03267 0.03784
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TABLE C-6

Scalar Fluctuation Invariance

2

<0 >
Simulation St=4 8¢=3 St=6 St=7
HE64A 0.54163 0.60711 0.65946 0.69973
HS64R 0.33816 0.36453 0.37910 0.38215
HS8646G 0.97368 1,18150 1.3717¢9 1.55312
HS5644 0.17704 0.18678 0.18985 0.18687
HS64M 0.10957 0.11203 0.11335 0.11522
HS5640 0.27862 0.28854 0.,30051 0.31448
HS864C 0.354059 0.58781 0.61802 0.62865
HS864D 0.74447 0.86420 0.97217 1.06741
HS64E 0.25490 0.28871 0.31474 0.32945
H864F 0.12294 0.13980 0+14577 0.13915
H564H 1.03400 1.26380 1.47800 1.69150
HS8641 0.76096 0.90115 1.02008 1.12416
H564N 0.03820 0.04333 0.04716 0.04942
HS6 4P 0.11670 0.13284 0,14692 0.16191
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TABLE C-7

Turbulent Heat Flusx

Simulation | I St=4 §t=5 St=6 St=7

HS64A 1 | 0.3641  0.4099  0.4482  0,4512
2 | 0.1688  0.1615  0.14%0  0.1457

1 | 0.2138  0.2191  0.2166  0.2036

HS64B 2 | 0.1111  0.0997  0.0836  0.0728
1 | 0.7797  0.9314  1.0448  1.,1412

HS64G 2 | 0.2674  0.2698  0.2604  0.2588
, 1 | 0.1359  0.1376  0,1338  0.1265
HS64J 2 | 0.0625  0.0539  0.0433  0,0371
1 0.0775  0.0797 _ 0.0832 _ 0,0823

HS64M 2 | 0.0397  0.0341  0.0292  0,0273
1 | 0.2028  0.2113  0.2238  0.2253

18640 2 | 0.0946  0.0905  0.0875  0.0897
1 | 0.3274  0.3388  0.3318  0.3278

HS64C 2 | 0.1254  0.1129  0,0958  0,0848
1 | 0.4534  0.5049  0.5390  0.5818

HS64D 2 0.1822 0.1752 0.1627 0.,1587
1 | 0.2455  0.2954  0.3438  0.3943

HS64E 2 | 0.1303  0.,1246  0.1138  0,1117
1 | 0.1200  0,1357  0.1473 _ 0,1585

HS64F 2 0.0766  0.0697 0.0565  0.0487
1 | 0.7394  1.,0075  1.2785  1.5583

18641 2 | 0.2726  0.2760  0.2676  0.2673
1 | 0.6336  0.8381 1,0363  1,2338

HS641 2 | 0.2463  0.2451  0.2323  0.2275
1 | 0.0352  0.0408  0.0454  0.0506

HS64N 2 0.0281 0.0258 0.0232 0.0223
1 | 0.0887  0.1031  0.1167  0.1324

HS64P 2 | 0.0764  0.0750  0.0741  0.,0783
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Dissiration

TARLE C-8
in the Heat Flux Eaustions
Eauation (4-14)

St=7

Simulations i St=4 gt=5 St=6
, 1 0,4079 0.4862 0.5546 0.6103
HS64A
2 -0,1290 -0.1102 -0,0983 ~-0.0891
1 0.3906 0.4213 0.4421 0.4686
HSG4B 2 ~0.1274 -0.0965 -0.0768 -0.0611
1 0,9269 1,2450 1,5495 1.8530
HS64G 2 ~0.2409 ~0.2307 ~0.2229 ~0.2192
1 0,0619 0.,0732 0,0661 0.,0670
HS64J 2 -0,0272 -0,0201 -0.,0116 -0.0082
1 0,0214 0.0221 0.,0227 0.0234
HS64M
2 ~0.0117 ~0.,0069 -0.0040 -0,0028
1 0.0386 0.0406 0.0431 0.0448
HS640 2 -0,0294 -0,0241 -0.,0201 -0.,0172
+ 2 * * 2 ® S
as6hC 1 0.3207 0.3566 0.3829 0.3965
2 -0.0996 ~0,0770 -0.0622 -0,0512
1 0,3223 0.4053 0.4426 0.4967
HS64D
2 ~0,1061 ~-0.0877 -0.0763 ~-0.0646
. 592 5
iS64E 1 0.5024 0.5364 0.5924 0.5717
2 -0,1808 -0.1458 -0.1322 -0.1116
1 0.4374  0.4493 0.4537 0.4498
HS64F
2 ~0.1807 -0.1380 -0.1111  ~0.0925
<y
. 1 0,5809 0.7876 0.9889 1,1932
2 ~0.1500 -0.1450 ~-0.1415 ~-0.1405
2,2700 2,9279 3.5175 24,0632
HS641 2 ~0.6073  -0.5607 ~0.5225 -0.,4965
1 0,0264 0,0265 0.,0269 0.0280
HS64N 2 ~0.0192 -0.0137 -0.0106 -0.0092
1 0.0645 0.,0669 0.,0700 0.0737
HS64P 2 -0,0571 -0,0489 -0.0431 -0.0407
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Pressure-~Scalar Covariances

TABLE C-9

Eauation (4-60)

Fast Term

Simulation i St=4 St=5 St=6 St=7
Hs6in 1 |-0.5182 ~0,4350 -0.2959 -0.,2565
2 0.1842 0.1986 0.1740 0.0768

1 [-0.3897 -0.3136 -0.1923 -0,1448

HS64B 2 0.1414 0.1592 0.1369 0.0597
1t [-3.2060 -2,8110 -1,9854 -1,7207

HS64G 2 1.6390 1.6950 1.5810 0.9050
1 [-0.0832 -0.0430 -0.0400 -0.,0309

HS64J 2 0.0227 0.,0274 0.0207 0.0096
1 [-0.0310 -0.0254 -0.0194 -0,0164

HS64M 2 0.0078 0.0076 0.0063 0.,0042
1 [-0.1044 -0.0981 -0.0932 -0.0932

HS640 2 0.0188 0.0179 0,0151 0.0145
hs6hc 1 |-0.3353 -0.2312 -0.1194 -0.0816
2 0.1297 0.1209 0.0871 0.0333

S64D 1 [-0.5344 -0.4475 -0.3061 -0.2662
2 0.1938 0.2040 0.1759 0.0751

1 |-0.4605 -0.3923 ~0.2641 -0,2283

HS64E 2 0.1501 0.1763 0.1614 0.0741
1 [-0.3174 -0.2618 -0.1565 -0,1165

HS64F 2 0.0966 0.1230 0.1085 0.0442
1 [-3.2840 -2.8303 -2,0009 -1,7348

HS64H 2 1.6716 1.7254 1.6090 0.9296
1 [-3.1525 -2.7229 -1.9157 -1.6583

HS641 2 1.4977 1.5639 1.4650 0.8042
1 |-0.0234 -0.0205 -0.0161 -0,0140

HS64N 2 0.0055 0.0063 0.0059 0.0042
1 |~0.0865 -0.0831 -0.0786 -0.0796

HS64P 2 0.0155 0.0168 0.0155 0.0144
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TABLE C~-10

Pressure~Scalar Covariance’ Rotta Term
Equation (4-74)
Simulation i St=4 S§t=5 St=6 St=7
) | ~-0.,1209 -0.,1231 -0.1258 -0.1314
HS64A
2 0.1816 0.1936 0.1964 0.2082
1 -0.0444 ~-0.0379 ~-0.0324 -0.0300
HS64B 2 0.0687 0.0635 0.0542 0.0522
i -0.0812 ~0.086%5 ~0.0946 -0.1062
HS64G
2 0.1502 0.1664 0.,1573 0.1692
1 ~-0.0222 -0.,0193 ~-0,01469 -0.0144
HS64JF
2 0.,0296 0.0281 0.02469 0.0268
1 -0.,0123 ~-0.0115 ~0.0096 -0.0085
HS64M
2 00,0157 0.0158 0.0144 0.0136
1 -0.0601 -0,0612 -0.0648 ~-0.0692
HS640
2 00,0711 0,04696 0.,0732 0.0772
HS64C i -0.0467 -0,0352 ~-0.0254 -0.0205
2 00,0731 0.0590 0.0437 0.0343
1 -0.1417 ~-0,1473 -0.,1538 ~-0.1625
HS64D -
2 0.212%5 0,2303 0.2381 0.2678
i -0.,0678 -0,0664 -0.0673 -0.0707
HS64E
2 0.0997 0.1010 0.0981 0.1009
1 -0,0176 -0,0141 -0.0124 -0,0110
HS64F
2 0.0257 0.0217 0.0175 0.0142
i -0.,0839 -0.0902 ~-0.,0988 -0.,1114
HS64H ' ~
. 2 0.1547 0.1727 0.1635 0.1767
1 -0.0693 -0,0710 -0.0771 -0,0859
HS64T
2 0.1298 0.,1383 0.1297 0.1370
| -0.0055 -0.,0054 -0.0047 ~-0.,0043
HS64N
N 2 0.0061 0.0065 0.0063 0.00462
1 -0.03693 -0,0378 -0.0450 -0.0458
HS64P
2 0.0426 0.0425 0.04465 0.0500
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