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Chapter I 

BACKGROUND: TURBULENT F.LOW COMPUTATION METHODS 

1. ",Methods of Computing Turbulent Flows: Classification 

A few years ago, the author and two of his colleagues wroto a paper which 

attempted to classify methods of dealing with turbulent flowe (Kline et al. 

(978» • This paper is reviewed and extended here as a means of setting the 

maJn subject af this report in context. 

There are two sub-areas that need to be dealt \\Itth in classifying methods 

of computing turbulent flows. These are the method by whic.h the fluctuations 

are tr.eated and the manner in which the geometry of the flow is handled. 

These are, of course, coupled to some extent, but it is useful to separate 

them for purposes of this work. We shall take up the problem of dealing with 

the turbulence first. According to the classification scheme in the pal'er 

cited above, there are five broad classes of methods of dealing with the 

turbulence; there are also subc.lasses of eech. The fiv~ major categories are: 

i) Correlations. ThMi:! are the fam.iHar correlations that give the 

nondimeneional skin-.friction coeffi.cient as. a function of the Reynolds number, 

Nusselt number as a function of Reynolds and Prandtl numbers, etc. They are 

extremely useful, but vary li~ited. Their applicability is especially limited 

in high-technology applicat1.,o.ns in whic,h the geometry plays an j.mportan~ role 

in the fluid dynamic.s (such as a.irfoils): for such problems, a new set of 

correlations would be needed each time the geometry of the device is changed. 

11) Intea:!ll Methods. In these methods the equations gove.rning the 

fluid dynam:lcs (which may be the equations used on level (11i) below) are 

integrated oVer at least one coordinate direction. This decreases the number. 

of independent variables and greatly simplifies the mathematical problem to be 

solved. These methods allo'~ considerable use of exper,1IDent~1 dt}ta and 

physical insight and have prove.n quite useful. One of their. principal 

drawbacks is that they need to be reworked when a llew type of flow is to be 

computed. 
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iii) Reynolds-Averaged Equatio~,: In this approach, Olt~ Qverages the 

Navier-Stokes equations over either time, homogeneous directions in the flow, 

0·.... an ensemble of essentially equivalent flows. When averae,ing of any of 

these kinds is performed, the equations describing the mean field contain 

averages of pl'oducts of fluctuating velocities, and there are fewer equations 

than unknowns--the well-known closure problem. In fact, the set of equations 

can never be. closed by further averaging; a closure assumption or, what is the 

same thing, a turbulence model has to be introduced. The closure assumption 

must represent the unknown higher-order average quantities in terms of the 

lower-order quantities that are computed explicitly. Xhis subject is 

undergoing a rapid expansicn at the prescnt time. It is also likely th£t this 

level should be broken int<;\ suble"els or ~epal'ate ,l,evels. 

iv) },!'t'ge EdrlL Si~~lation. In this approach, the equations lltc aveuged 

over a. smaH spatial r.egion. The object is to remove the small eddies trom 

the flQW field 80 that an equation for the large eddies is derived. The ef­

fects of the small eddie,s on the large ones is then modeled. This is one of 

the principal 8\lbj~cts of. this report and is discussed .1n considerable detail 

below. 

v) Full Simulation . This is the nUlllericalsolutioll of the eXlict 
. . ~-

Navler-Stokes equatioll8. The only errors made are numerical ones which, with 

care, can be kept I1S small as desired. By its nature, this approach 1s 

limited to low Reynolds nUIllt1e rs • This is the other principal subject of this 

report and will be covered in detail below. 

Currently, computations at lev~ls (lv) and (v) are limited to people with 

nccess co vel:Y large, fast computers. 'rhey are not suitabl~ for engine.ering 

design at present and we anticipate that it will be sOllie time before they will 

be (if ever). We c.all levels (iv) and (v) together higher-level methods of 

turbulence computation--hence the title of thl~ report. 

A significant point about this classification scheme is that calcul~tions 

on any levels 

lower leve.ls. 

can be used to generate informatiol\ that can be used on the 

tn appUcations, engineers commonly lise methods at level (11) 

or (1.U) to f'[oduce correlations from which the dcsign i.s actually done. 

Large eddy simulation (LES) can be used to produce information that can be 

used in modeling for Reynolds-averaged calculations. LES could be used in 

principle at the lower levels as well, but there is little need fOf this 
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application. Full simulaUoll can t.e ulled to teat modela for both tho 

lteynolde-averaged equation8 and large eddy dmulat1on. Thh will receive 

considerable attention in this report. 

It should be note.d that the nom.,.nc..lature we have u.ed for cl ... Uyina 

methods differs from that of SchuPl41n.', et a,1. (1980). What we hnve called 

higher-lev~l simulations they called direct ~ll11ulation, and they did not make 

the d.18tinct.lon between levels (iv) and (v). We believe the dietinct.ton 

important and prefe .... the nOlnenclature, used in thle, rel,ort. 

The second type of c1assU!cation of m.ethod. of cOUiputlna turbulent flowe 

concerns the tteatment of thlc geometry. This scheme contain .. just two cate"" 

goris~ : 

a) Full ~'.!eld M~thods. III this approa~h, tilt! 88l1e 8et of. ~quaUon. 1.' 

appUed everywhere in th~ fl.o~ field. This has the gteat advantage of not 

requiring any kind ()f l1~atchitlg in the interior of th~ U()W and of being eader 

to prog.ram for. computer solutio!,. l'he principal drawback. is that Hne meshes 

are needed insorne regions of the flow (such as near the boundaries and in 

shocks), and this can make the cost very hiSh. 

b) In zonal m~\thod8 the flow is considered as 81 

collection of "modules ," and each module or zone i8 treated by a separate 

method. The most common example of this kind of method is the division of 

flows over bodies into boundary layers and potential flows whi.ch are treated 

by separate methodS. In zonal methods, the solutions in the various zones 

have to be matched at their Ci,"Immon boundaries, by an iterative process that 

mayor may not converge well. The modules can be treated by different 

methods. Thus one can use I<\n integral method tor the boundary layer and the 

full partial differential equations for the outer flow. 

The classifjcatioll scheme given here differs a little from the earlier 

one of Kline et 81. (1978). We believe that the current scheme represent.s an 

improvement in clarity. We have found it useful, and it will be one of the 

ways in which variouS methods will be compared in the 19aQ-81 Stanford-A}i'OSN. 

Symposilnn on the Computa t:ton of Complex Turbulent Flows. 
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2 • Cla881fication of 'l\i.rb~~nt Flows 

An issue that 1& quite separate from that of how turbulent flows are 

computed is tha,t of trying to classify the flows. In a field as complex a. 

this, .aily classification scheaa .is inexact ~ but it is better than hav~ng no 

Icheme at aU. Thus we shall clau.ify flows according to the phenomena that 

occur 1n them. This scheme is not new ~nd contains three categories: 

e) HoIll~8eneOU8 ., Ft~!.' In th··~se flows the state of the fluid is thil! 

IJame at every point 1n space; they develop 111 time. There is a limtted n,amber 

of flows of this kind; the experimental data for them have been 'rev1ewedre­

cently by the author (Ferz.iger (1980». In homogeneous flows without mean 

strain or shear, the turbuience decays w.1th time; when mean st..ratn or. shear 

·are appUed, the k:l:net$.c. energy ·of t.he tur.bulence may increase wHb time. Thp. 

mer.h'!nism by whi,clt the turbulence length scales increue 1'0 th~se flows is not 

well understood. 

b) Fre~ Shear Flows. It is well known that free she!\[ flows are 

extremely unstable. The laminar mixing layer is unstable with respect to 

disturbances over a wide range of wavelengths. The instability is of the 

Kelvin-Helmholtz type in which the perturbatjJ.)(l grows rapidly \ There is 

controversy about the precise mechanism of growth of the turbulen~ free shear 

layer, but it see~8 clear that there are large coherent regions of 

concentrated vorticity in al), of these flows. The (ion('entrations of vortlcity 

cause strong large-scale mot;ions within the .flow and the vorticit.y tends to 

agglome'rate further. The controveuy centers on the nature of the 

agglomeration, cf. Roshko (1978) and Chandrsuda et a1. (1977). 

A subclassification of these flows is nece&8ary. In the mixing layer 

(the simplest type of free shear layer), the velocity difference across thE', 

layer remains fixed as the layer develops. As a result, the larer grows 1.1n­

early in space or time, inJefinitely In other flows, for example, jets and 

wakes, the velocity c,1fferences are reduced tiS the flow develope and the 

turbulence tends to w~aken in the downstream direction. 
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c) .W_8_l_l_·-_B_o_u_n_d..,e .... d_F .... l_ow_.,;;,... The effect 0.( a waU on a Ihear layer 18 to 

prevent (or 8t lea8t reduce) the large-scale motions de8crib0d in the previou. 

patllgraph and thU8 inhibit the shear layer from g[owing 10 rapidly. ThuI, 

boundary layers and related flows grow leas l:apidly- anf~ have lO'Jer turbulenc~ 

levels than do free shear layers. Another, we8ket t mechanism of tl;\.rtulence 

production takes over. This mechanism is l.ess well understood than that of 

the fre~ shear layer and, perhaps for that reason, 8eems much more complica­

ted. It is known to involve the pre8ence of thin regions of hig~ and l.ow­

speed fluid that exist close ~o the wall, and which are long in streamwise 

extent (~.unstadler et a1. (1967), Kim (1969» and large-scale motions of the 

outer part of the boundary layer, but several details remai~l to be fiUed 1n. 

A further extenslon 0.£ this cla88if1cati(~n scheme was given by Bradshaw. 

His view 1$ that the mean turbulent flo!~s can be thought of as a combination 

of "norwal" strains--the mean sttaills that oC:!l::.ur in the "standard" fl~W',,-"and 

"extra" rates of strain. There are many extra rates 0,[ strain. Som(¢ of them 

are: curvature, rotation, lateral d.ivergJence (in ax.hJylDmettic fli)WB) , 

buoyancy, blowing .).r suction. Bnd wall roughneSli. Al though these effects 

generally appear as small terms in the. equaUons, they have profound eUects 

on the structure of the turbulenc,e and, indirectly, on the behavior of the 

flow 8S a whole. Thet'e.fore, they are very j.:lIlportant! and we shall devote part 

of this report to inveatigating their effects on turbulent flows. 

nnaHy, it should be noted that SOmf.l complc:K .flows 'may be of one type in 

one region and another type in anotherr.egion. In partlcular, in flows with 

separation, wall boundary layers may become free shear layers and vice versa. 

3. A Short History 

There are no known analytical solutions of the Navier-Stokes equations 

for turbulent flows, and it is unlikely that there ever will be any. This 

fact, plus the obvious technological importance of turbulent flows, is the 

reason for the development of computational methods of predicting turbulent 

flows. 

Prior to 1960, comp~ters had too little capacity to do anything more than 

solve the ordinary differential equations of 1utegral methods or the partial 

differential equations fol' siDlple, two-dimensional potential flows. Progress 

5 
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~.n this period \oI(IS larnely restricted to the computerizatlon of methods that 

had ~een carried out on deck calculator~ up to that time. 

A~ computets grew in $ophistic&tion, GO did the problems for which people 

sought solutions. The. 1960s fjl,n~ th(l development of good boundary layer meth­

ods based the use. of both integral m~thod8 and p~rtial differential equations 

levels (it and iii of the above scheme). The 1 96t' Stanford Conference (Kline 

(1968» markerl a milestone in this dtwe1opme.nt. At that thle t people were 

beginning t') solve tht: R~ynolds-averaged Wavier-Stokes equations using simple 

models for relatively simple flows. Through the 19708 t the sophistication 9f 

the models grew t as did the complexity of the flows that researchers were 

willing to try to compute. 

The first a..,pli,cations of wi';at we have defined as higher-level, methods 

Were made by the IUf:;teorologists. 'l'hat Held has needed models ,for predic ting 

the world's weather patterns for a long time. As soon as computers were large 

enough t meteorologists t,:ied global weather simulations. The first three­

dimen~1Qnl11 attempt at this of whit.h the author is aware is that of Smago­

rinsky (1963); this pape'r presented a model that wUl be used extensively 

later in this report. 1110 grid systems used in these early calculations were 

necessarily very Goarse, and the method used ,~as necessarily what we have 

callud large eddy simuJ.ation. Improvements in computers have allowed the use 

of finer grids t but the grids are still coarse c.ompared to what is desired t 

this sit'lation, unfortunately, will not change in the foreseeable future. 

Hence, subgr1d-scale modeling will remain an impor tant issue in meteorology 

(anJ ~ceanography) for quite some time. 

The .first computation of a flow of engineering interest was the simula­

tion of channel flow by Deardorff, a meteorologist t in 1970. In this landmark 

paper t he laid out many of. the foundations of the field. Improvements in his 

methods were made by Schumann (1973) ,and Grotzbach (1976). The latter and 

their group at Karlsruhe have subsequently extended the method t6 the 

computation of annular flow6, the inclu~ion of heat transfer t and the 

inclusion of the effects of buoyancy. 

The author's group at Stanford, which is jointly leu by W. c. Reynolds, 

began work in higher-level simulations in 1972. Their objective was to put a 

sound foundation under the method of large eddy simulation by computing simple 

flows first. It was felt that in this way the fundamentals of the subject 

, 

1 

. 1 
i i 
~ I 

j 
; ! 
) j , , 
r i 



could slowly be put in order. nle first flows chosen for study were tht'! 

hOPllogeneoua turbulent flows, and quite " lot was learned about numerical 

methods and subgrid-scale mode.l1ng (Kwak tHo 111. (1975) and Shaanan et al. 

(1975». When the group felt that the techniques for the simul.ation of homo­

geneous flo\rls were well deve.loped. it was decided to go on to the study of 

flows which are inhomogeneous in one coordinate direction. The t,4implest such 

flows are the mixiog hyer and channel. The fully developed mixing layer wa. 

computed by Nansour et ale (.1 918), transiti(,:l1 in the mixing layer was studied 

by Cain et 81. (l9I:H), and the c.hannel How was studied by tobin et d. (1978) 

and Kim and Hoin (1980. 1981 ) • 

Almost ftom the beginning it was realized that the effor.t in computing 

flows \rIould have to be accompanied by an effort at:. developing bet te.r models 

for. treating the small scales (subgrid sClile models) or at leaat understanding 

the models that are in !.!sc. The method of using direct simulations for this 

purpose was de,,-eloped by Clark e.t a1. (1970) and extended by t/dlillan and 

Ferziger (1978). McM~l~an at al. (1980), and ~ardina et al. (1980). 

It is (',lear that: large eddy simulation wiJ.l not be a method of direct 

engineering appliaabil.ity for some time.. For chat reasoil, the maJo:: impact 

the method w.HI have is in the improvement of the understanding of the physics 

of turbul~nt flo\rls and in helping 1.:0 develop, test, evaluate, and improve 

model'S that arc used in keynolds-averaged methods. Recently, exact simula'" 

Lioos of comprelisible homogeneous turbulent shear flows lInd homogeneous 

turbulent shear flow wl,eh a passive scalar wet e made in order to evaluate 

these models; cf Feiereiaen et.nI. (1981, and Shirani et.al. (19ijl). 

A group under Leslie in London has been active in the field since 1975. 

Their eady work centered on the understanding of subgdd scalemodela O.o\/e 

and leslie (1970) and leslie and Quarini (1979». Since then they have eimu­

lated the mixing of a passive scalar in homogeneous isotropic turbulence 

(Antonopoulos (1981». 

A number of F'rench groups have. studied subgrid scale models from a the(l­

retical point of view and have made several contributions in this area. 

Orszag and coworkers have been working since 1970 on the direct simula­

tion of turbulent flo\!ols. Their early work centered on the prediction of 

homogeneous isotropic turbulence (Orszag and Patterson (1971», and more 
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l"ecently they have become interested!n the study of transit ton in wa11-

bounded flows (Kells and Ouzag (1979), Ouzag and Patera (1960». The main 

tntcrcst of thia })'rQup has been 1n the development of numerical method. (they 

dfe responsible tor the widespread Uie of .pectral methods in this field), on 

the study of turbulence theories, and on the prediction of transition. 

RUey and Metcalf (1)80) have made direct simulations of free .hear 

flows. ~n~ir efforts have been directed at the simulation of fully developed 

wakes at rdl.H.ively l.ow Reynolds numbers, which lDlly be thought ()£ as the la.t 

st.ages or thu decay of Ll turbulent wLlke. 

Rogallo (1978, 1981) hLlS made extensive direct simulations of all of the 

homogeneous turbulent flows. ids results are an important r8source for 

modelers. 

'+. ~f This Report 

in Chapler 11, we shall consider the fundamentals of large eddy 

simulatiol'\ and compare the various approaches to it. 

In Chapter ILl we shall discuss the subgdd scale models required by 

large eddy simulation. We shaH also study the ufte of large eddy simulation 

in the dt1velopment of models for the Reynolds-averaged equations and the 

application of full simulation to the testi.ng of both subgrid scale aor! 

Reynolds-averaged models. 

In Chapter IV we shall discuss the nume.:ical methods used in large eddy 

llnd full sillll.liation. Since the numer1cal methods llsed are almost always 

somewhat tuUot'cd to ,1 parUcular flow, we shall just touch on some of the 

spec.ial-purpose methods in this chapter. rhe latter methods will be 

considered in more. det&il in the chapters in which the flows are descr:ibed. 

Chapter V will be devoted to the discussion of the simu.!.atj,on of 

homogeneous flows. The flows will be categorized, and the numerical methods 

needl:~d for some of; the cases ,,,.,ill b(> described, along with physical 

descriptions of the flows. We shall give the results from both full and large 

eddy simulations of these flows and show how they can be applied to the 

testing and development of models. This chapter r.ontains a considerable 

amount of recent work. 
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Free shear flows will be considered in Chapter VI. TIle bulk of the chap­

ter '.Iill be devoted to the mixing layer. which has been the prbctpal focull of 

attention in this area. b\at we shaJ.l also look at wake simulations. 

Chapter VU will be concerned with wall-bounded flows. Host ot: the at­

tontionwill be given to channel flow. but sOllie discussion of recent work on 

the boundary layer will also be given. Particular uttention will be given to 

te.fms which have not been measured in the laboratory. 

In Chapter V In we shall briefly cover applicatiolis of large eddy simula­

tion and full simulation that have not been given in the previous chaptars. 

The most il1lportant. of these applications are in meteorological and other 

~1l.vironmental flows. However. a few applications have been made to other 

laboratory flowa, and the"le 1I,1ill be briefly covered as well. 

The concluding chapter, IX, will discuss some directions ill wid ch the 

work is proceeding and what can be expected from higher-level simulations in 

the next few yearg. 

TIlis report will give greater emphasis to work done in the author' 8 group 

than to that of other groups. The reader is reminded that this is a conse­

quence of greater familiarity with his own work tlIlct that of his colleagues and 

is in no way inte.nded to imply that work done elsewhere is any less important. 
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Chapter II 

FOUNDATIONS OF LARG~ EDDY SIMULATION 

1. Rationale 

It is generally believed that the largest eddies dominate the physics of 

any turbulent flow. The differences between the large and small eddies can be 

summarized as follows: 

a) The large eddies interact strongly wHh the mean flow. The small 

eddies are Cl'ea ted mainly by nonlinear interac tion~ amona the large eddies. 

b) Most of the transport of mans, momentum, energy, and (in flows 

containing more than one species) concentration is duc to thp. large eddies. 

The small eddies dissipate fluctuations of these quantities but affect the 

mean properties only slightly. 

c) The structure of large eddies is very strongly dependent on the geom­

etry a"d nature of the flow. They are usually vortical, but their shapes and 

strengths are flow dependent. The small eddies are, on the other hand, much 

more universal. 

d) Due t.o their dependence on the geometry, the large eddies are highly 

anisotropic. The small eddies are much more nearly isotropic and, therefore, 

uni VersEJJ .• 

e) The time scales of the large eddies approximate the time scales of 

the mean flow. For flow past a body, the large eddy scale is approximatel~' 

the dimension of the body divided by the free stream velocity. The small 

eddies seem to be created and destroyed much more quickly. 

An important consequence of these properties is that the large eddies 

should be harder to model than the small ones. Also, as they vary so much 

from flow to flow, one should not expect to find a model for the large eddies 

to be universal. There is hope, however, that one migbt be able to find a 

useful model of the small eddies. 

This leads to the concept of large eddy simulation. In this approach, 

the large structures in the flow are computed explicitly and the small ones 

are modeled. This method should have advantages over methods in which all of 

the eddies are modeled. 

10 
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'l'hCIH~ n q~UIII(,1\ ts l)rov idl~ the tlltiOllnh' flH' In r~c l~ddy l;i,mu in t ion. 

HOWl~V(\r, not. u11 of the premhes lollvcll ubovu hold in ull flows. 'l'hey Sl'."'llI to 

hold!1\ hOlllOgC'1COUS turbulent flows ~'nd in free shenr flows. 1n wllll-buundt·d 

L lows, howl'vt'r, tlw structures reuponsible (or much of tht, llIoment.UlII lrllnSI10t'C 

(11114', prt\!l\lIl1uhly, the trunsport: of lht.' othur propel'tie,s 118 well) \lilly hI.! quill' 

tJlllUll, caped.nily in tht,' rl'Sion clost' to the solid boundary. Spcdnl c.nrt.\ it> 

Ill'rcftsury in these flows~ this will be discussed further in Chapter VIle 

if. h)l' nuw, we llccept. the sljltt~mel\t8 made llbovc us correl'l, it [0110w8 

t hut largl' l'ddy tdlll,ilution ought to huve La number of lldvuntugcs ovt.'r N.eynolds 

01: Lillie aV\H'ug .. ~ methods. 'l'ht..' most. signiHcul\C ndVUl\tll~c is thul much ol lhc 

lwtllul ttunsp0l:t of muss, momentum, energy, lltld species is computl'd 

,~xpli(·ltly, (Hul the portiol\s oj: these ,fluxes which Ilt~ed to be\ III()dell~d nrt~ 1I\\II.'.h 

HIllUl.ll'l: thLl" wlln t 1s modeled in lhe N.eynolds-uVQ1'l1gt.>d equu t lonti. 

COlltitHllienUy. tht! ovel:all results lire les8 sensitive to m()dcli,~ inIH'.c.Ul:llCY in 

lal~g(' t.~lldy i:iilllllliltlon thlln ill othtu: npprollchcs. 'nle probubility ot linding II 

whit''!'y llppl.:Ll;IlLJi.)c model should be \lllich higher. 

11u.' prinl.'.ipul d,bmdvllllt:ttKc of lnrge eddy simulation n·llltlV't..~ tl.) I{l~YIIO,ldl:l­

HVt\l'jigt1d IIl'.:\thods 16 thllt the computlltions lll:e neceiHHtrily chl'ce-dilllt..'lIijioilul 

<lllll t.i11\('-dl~Pl'lHll~nt. 'l1litl ml"nns chnt the, cost is lIIut'.h h.1Khtn'. 11\ (M't., tlll' 

(;,ost ls c.urrcnt.ly high enough chue, l1xccpt fot: tIlt' tlilllplest flows, usc 01: tit .. , 

Illc,thod l.H l'estrictt~d to people with ncc(~ss to lllrg'" llmouuts of U.me on Vl',ty 

lnl'ge c()wputers. 

'11\(,' Ht'st thing that one needs to do ill dt>vclopillg large l'ddy s;lmulat..i.o!\ 

1I:l to d(!HIl(~ the lllt:gc s(;,nle c;olllpOnent of the flow .fie,ld--the portiQ:"\ whi("h iti 

to bl' cOlllput~d e){p.Li(~i ely. '1lere llrc two ::ommon nppr'olwhes to dOi.ns this, 

tlll.'y will b(', desc,r:tbe,d and compared in the next two sections. 1.1Il', n',lIud,\),llil'.l' 

of till] (;\ulpccr w,Ul, present the L.E~ l~qulltions and describe the panullctr 

tl'lldcot:h thal must be heed :in large eddy simulntion. 

'l1w equntlons for the lllr~e $cllle field alw,)ys cQntn;i,J\ tern\s whidl 

;invl)l.vc tilt' /;IIIIII!! I!!c~ue .field, which is not computed. 'l'h~se tl,rlllS pluy till' 

flIlUIl'.rolt.' in till' lurge f!ddy equutions Uti t,.hc ReYllolds stl'etHH~S play ill the 

I{eynolds-uvctugcd equlltl,ons. They arc thcretore (,'llllcd the subgt'id sc.lllt' 

(I:WS) Reynolds attcS8cS, and they must be modeled. A disC118f:Jion ot !H1bgdd 

st~1I1c, models llnd a compnrisoll of them with Reynolds-llvcraged turbulellce lIIod~~ls 

:ls &:tvcn .in the nt~xt chapter. 
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2. Filtcr1n~t 

The Hrst task 1n large eddy simulation 18 that of def1nin~ the large 

scale component of the flow field--the portion which the method will attempt 

'wo calculate. There are several ways of doing this mat~"ematical1y. All ate 

essentially equivalent to averaging the equations over a ~mall regiol\ of space 

or low-puH filtering the equations in "'ourier spact,. 'llle starting point is 

the incompressible Navier-Stokes equati.ol\s: 

• (2.1) 

which must be solved together with the continuity equation: 

(2. 2) 

For homogeneous flows, we prefer to define the largo scale Ue'.d (also 

culled the resolved field) by means of a convolution til ter: 

(2.3) 

In Fourier space, this has the .form: 

,. .. 
;(~) - G(k) u(~) (2.4) 

" Note that .for this kind of filter G is a function only of the magnitude of 

k. 

A number of simple filters have been used. nlOSe are Ulustruted in 1·'lg. 

2.1. If the equations an~ simply integrated over a small contr,ol volume 1n 

space; we have the bo){ filter; most finite-difference and finite-volume 

lUethods implicitly use this fUt:er. Its "'ourier transform is also shown in 

the figure. Another common choice is {\ sharp cutoff Ulter in Fourier space, 

this is essentinlly the "'ourier-space version of the first filter. lioth of 

these ,filters have the difficulty that their "'ourier transforms have negative 

regions, they also are dif.ficult to differentiate. ~'or this reason, Wt1. prefer 

to use the Gaussian fi.lter. Its Fourier transform is also GaUSSian, so it 1s 

well behaved in both configuration and Fourier space, and it can be dHferen­

tinted as many times as one likes in both spaces. 'llte Gaussian is 

12 
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Ger) • (2.5) 

.. 
G(k) • (:l.b) 

The nUIDtn:icnl factors have been ('hosen to make the second moment of this fi.l-,. 
tor the same as that of a box. filter of width fl. G(r) and G(k) nl'e 

Fourier inverses of each other when the variables arc continuous, but not in 

the discrete case; ,1n the llltter case, a choice has to be IDllde. '{'he 

normuUZl.tion factor, A, has been left unspecified in l<.:q. (2.5) in order to 

admit the, conservlltion property that the integral of Ger) over ull space be 

unity whether continuous or discrete quadrature is used. 

Use of this type otfUt(lr wu.s first suggested by leonurd (197:3), he 

ahowed how the concept could be generalized. It is sometimes useful to use 

(ncplHlsiolls other than standard I"ourier series. It'or examp.le, Cht~bych~v 

polynominl expansions have been used (OrsZtlg (19713), Kim Lmd Moin (1960» as 

the basis for numc.lr.ical methods. The Ulter can be deUned in the spnce of 

th(\ index of the expllllsion functions; a shllq) cutoff (ignorin8 all components 

(If the t~)(pansion beyond tI{tIDC specH:led N) is the s1mplest possibility, but 

it is easy to construct Gaussian-like filters as well. 

When the fHter (2.3) is applied to the Novier-Stokes equlltiollS (2.1) llnd 

the continu:lty equstion8 (2.2), we have: 

• (2.7) 

und 

o (2.13) 

'I'he difficulty come. from the Ilonlil'lear term. The approach t"ken by everyone 

in the field h to wri te: 

(2. 9) 

which causes the nonlinear terms to take the form: 
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• (2.10) 

The first term is entirely dependent on the large Bcale component of the field 

and is computable in LES. 'llle smoll Bcale component of the velocity field, 

"1 t is not computed, so the terms containing it need to be modeled. u1 is 

called the subgrid scale component of the velocity field, but this is a 

misnomer (in this formalism), becau~e the width of the filter (A) need not 

be related to the size of the grid on which the computations will be done. 

Uowever, it has become standard nomenclature, and the set of terms involving 

the small scale velocity component, 

• (l.ll) 

are commonly called the subgrid scale (SOS) Reynolds streues. TIley must be 

modeled in large eddy simulations--hence the name subgr1d model1n~. We shall 

look at models for these terms in the next chapter. 

TIle approach presented above is the cne favored by the author and his 

colleagues at Stanford. It decouples the definition of the large scale field 

from the numerical solution of equations that result. We favor this method, 

even though it is more cumbersome than the one given in the next section, be­

cause we feel it provides more flexibility. This flexibility will be useful 

when we discuss methods of testing subgrid scale models tn the next chapter. 

3. The Deardorff-Schumann Approach 

An alternative to the method presented in the previous section is based 

on the recognition that we shall be solving the equations numerically. 1'he 

computer program will be based on 8 set of discretized equations. It therefore 

makes sense to use an approach that arri,ves at the discretized equations as 

quickly as possible. The method originally presented by Deardorff (1970) and 

extended by Schumann (1973) is one which accomplis hes this. 

TIle idea is to introduce the grid on which the numerical computaUons 

will be done at the outset. Deardorff and Schumann used a staggered grid, 

which is probably the best choice for solvil'lg the incompres::oible equations, 

but other grid systems could be used as weH. The two-dimensional version uf 

the staggered grid is shown in Fig. 2.2. One integrates each of the equations 
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over an appropriate control volume; the control volume for the. x-momentum 

equation is shown in F.1g. 2.2. The resulting equations have I;:he f01"111 (:l.7) 

and (2. ij), provided the operation represented by the overbar is interpreted iiS 

the volume average. Because the av.,~raging operation 18 defined relative to 

the grid, u1 is def ined only at the grid points. However, it is convenient 

to think of u1 as constant within the control volume. This definition of 

the large scale velocity differs from the one presented in the previout' sec­

tion. The two definitions are Ulustrated in Hg. :l.3. 

TIle Deardorff definitions lead to some convenient simplifications. In 

particular, one can assume that: 

u (2.12) 

and 

(2. 13) 

which are properties this approach shares with Reynolds-averaged modeling. 

TIle 8u'bgrid scale Reynol.ds stresses then. reduce to: 

(2.14) 

Models are introduced for RiJ and the discretized equations are simUnl' t:o 

those commonly used on staggered grids. 

In Schumann's modification of th1.s approach, the integrals of spatial 

del' iva tives are carried out analytically. This results in equations which 

contain integrals over the surfaces of the control volumes. TIle dlfticul ty 

with this approach is that four different types of averages appear.: averages 

over the three types of faces of the grid volume and volume averages. These 

mllst be related in some way. Schumann introduced several approximations that 

relate the surface averages to a single volume average, but the assumptions 

required are difficult to evaluate and may be questionable, especially at low 

Reynolds numb(!.rs. It is not clear that this method has any Significant advan­

tages relative to Deardorff's. 
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In the Deardorff-Schumann approach, the aubgrid acale velocity field 18 

discontinuous at the edges of the couuol volume., and the behavior of the 

subgrid Bcale Reynolds stress as a fun(~tion of position 18 not very smooth. 

This problem and the increased flexibility in defining the filter are the 

primary reasons why ue prefer the filtering approach to the one pre.ented in 

this section. 

4. The Large Eddy Simulation ~uation8 

The equations of large ~ddy simulat1.on are essentially (2.7) and (2.8). 

However, one needs to take into account Eqs. (2.10,1) and (2.11) as well. Also, 

one further modification is usually made. 'Ille subgrid scale Reynolds stress, 

defined by Bq. (2.11), can be decompose~ toto the sum of a trace-free tensor 

and a diagonal tensor: 

• 
(2.15) 

Although the diagonal component of this tensor can b,~ modeled, th~re is no 

need to do so. When the decomposition (2.12) is substituted into the filtered 

Navier-Stokes equations (2.7). the diagonal component produces a term which is 

equivalent to the gradient of a scalar. It is similar to the pressure 

gradient term and can be combined with it. It is therefore advantageous to 

define a modified pressure: 

p • .P. + .!- R 
P .J kk 

The filtered Navier-Stokes equations can then be written: 

• _ ap + 
ax.-

i 

(2.16) 

(2.17) 

Once a model for T ij has been introduced, these equations are to be solved 

numerically along with the filtered continuity equation, which is repeated 

here for completeness: 

aU
i 

-- • 0 ax. 
j 
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5. !radeoffs 

In any kind of flow computa Han. there are tradeoffs. tUgher accuracy 

can always be by reducing the grid size and increasing the numtler of mesh 

points. 'nle price is paid in the fO'rtn of increased computer time. 

A similaJ: tradeoff exists in large e~dy sillulation. Ideally. ,,~ wou ld 

like all the eddies in the large scale field to behave in the manner as~ ~ibed 

to large eddies at the beginning of this chapter and the small eddies to 

behave as they are supposed to. This separation of large and small eddies is 

possible only at high Reynolds. At suf fidently high Reynolds numbers ~ the 

turbulent energy spectrum contains an inertial subrange in which there .l,s 

essentif.lly no turbulence production or viscous dissipation. The eddies which 

are larger than those in the subrange (I.e •• lie at lower wavenumbers) behave 

like "large eddies". and those that lie at wavenumbers below the subrange are 

"small eddies." Since the width of the filter (6) is supposed to !nark the 

boundary b(·tween the two classes of eddies, the ideal is to ;::,Iwose the filter 

wid th such tha t the corresponding wavenumber ('IT i 6.) lies in the subrange. If 

this is the case, luge eddy simulation should be successful. 

There are, of course. ~J,fficulties that we need to address. 'nle 

principal of these are: 

a) The size of the physical domain considered in the calculation needs 

to be sufficie~tly large to hold the largest eddies. We also wish the filter 

size to be such that all of the "small" eddies lie In or below the subrange. 

Finally. the computa tional grid size must be smaller then the filter width 

(this is discussed in Chapter 4). These requirements flet the number of mesh 

points required in each coordinate direction. It is not unusual to fj,nd that 

the number of mesh points needed to meet these requirements is much greater 

than the available computer resource will allow. We are then forced to use a 

filter width which lies outside the Bubrange. 

b) At low Reynolds numbers there is no subrange in the turbulence spec~ 

trum. 

In ei:.,her case. we are forced to use a f:Uter width which does not l;ie 

within the inez:tial subrange of the turbulence s~ectrum. It has been argued 

by some that one should not do this. We beli~ve that it is reaSonable to do 

large eddy simulation under these circums tances. However, the modeJ, may (leed 

t.o be changed to account for the fact that the cutoff is not in an inertial 

subrange. Thin problem will De discussed further in the next chapter. 
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Chapter III 

SUBeRID SCALE HODEI$ 

1. 'nle SG5 Reynolds Stress 

In the preceding chapter we saw that. there are terms in the equation. of 

large eddy simulation that tn'/olve the amall or subgrid scale component of the 

velocity field, and, as this small-scale velocity field will not be computed, 

these terms must be 1II0deled. This chapter wUl be devoted to a discussion of 

the models used for the so-called Bubgrid scale (8GS) terms. 

To begin, it: is well to look at the physical significance of the 8GB 

terms. Equations (2.2) and (2.3) describe the deVelopment of the large 

eddies. In them, the terms containing the small scale velocity represent the 

interactions between th~ large and small eddies. On the average, kinetic 

energy is transferred from the large eddies to the small ones~ there is energy 

flow in both directions, but the net flow j,s usually toward the small scales. 

Leslie and Quadni (1979) estimated that the gross transfer to the small 

scales is about 1.5 times the net transfer. In other words, approximately 

one-third of the energy transferred to the small scales is returned. We shall 

see later tha~ the net energy flow may be in the reverse direction in some 

cases. The slbgrid scale terms in Eqs. (2.2) and (2.3) must represent the 

effect of these transfers on the large scales. In the normal situation, the 

net energy transfer to the. small eddies appears to be a dissipation to the 

large eddies--energy lost that will not reappear. Thus the model should 

normally be dissipative. 

The terms which need to be modeled were derived in the previous chapter 

and can be written: 

• • (3.1) 

As we s~Jowed, we prefer to work with the 5G5 Reynolds stress defined by 

• (3.2) 
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It is .,,1&0 worth mentioning at this point that the terms \ole have called 

the Leonard stresses; 

~ij • (3.3) 

(which were first discussed by Leonard (1973» may need special treatment. 

These terms are zero in the Deardorff-Schumann approach but not in the filter­

ing method. Investigation has revealed that they are responsible for only a 

small amount of energy transf(,[ between the large and small scales. Their 

major effect seems to be redistribution of energy among the various large 

scales. 

The contents of this chapter are as follows. In the next section, equa­

lionG governing the SGS Reynolds stresses will be derived and discussed. We 

shall also compare SGS modeling to Reynolds-averaged modeling. In Section 3, 

a computational method for validating SGS models will be described and some 

results given. This will be followed in Section 4 by a discussion of eddy 

viscosity models, the ones in most common use today. Section 5 will describe 

some of the contributions that theory has made to the state of the art in SGS 

modeling. Some nt:W ideas about SGS modeling form the subject of 3ection 6. 

Higher-order modeling 101111 be taken up in Section 7. Finally, Section 8 will 

discuss some effects that arise when there are extra rates of strain (in Brad­

shaw's sense) in the flow. We shall end the chapter with a short summary of 

the principal points. 

2. The SGS Stress Equations 

It is not difficult to derive a set of equations describing ih~ dynamical 

behavior of the quantities Rij defined by Eq. (3.1). However, the process 

is somewhat tedious. One takes the Navier-Stokes equations for ui and also 

writes them with i replaced by j. The equation for ui is mllltiplied by 

and vice versa. Adding the two resulting equations and filtering the 

result yields an equation for_u t u j' By repeating the same procedure using 

the dynamical equation for u i' one can derive an equation for u
i 

u
j

• 

Subtracting these t\olO equations, we have the desired equation for Rij : 
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~ 

~ - a 
t + uk ~~ Rij 

(Convec don) 

• 
[

a uj a \ii1 
- (R ik + >, ik) a ~ + (R jk + Ajk) a~ 

(Production) ~ 

.£ (3 "i ~.) _ (au i a~) 
+ p ~ + rxt - p ~ + ~X1 

(Redistribution) (3.4 ) 

- 2 

(Died pa tion) 

+ Diffusion terms 

'fhere are many diffusion terms, they are not written explicitly. 811 we shall 

not need thew. Here. Aij is the Leonard stress defiraed by l:!q. (3.3). An 

equa ti01; for ~k' the subgrid scale turbulent kinetic energy. can be derived 

by taking the trace of Eq. (3.4). Subtracting <5 ij times the resulting 

equation from Eq. (3.4) gives an equation for Tij • 

All of the terms in Eq. (3.4) are analogous to terms 1n the fam1liar Rey­

nolds stress equations of time-average modeling. The interpretations are also 

similar. However. the dHferenci~s are quite 1mf)ortant. I::qs. (3.4) contain 

more terms than the equations fole the time-average Reynolds stresses because 

som(/ itema that are zero in time-average approach are not zero when filtering 

is used. In particular. note the appearance of the Leonard stress in the 

production term and. more importantly I the fact that the production term is 

filtered. All of the terms :~,;i!. Eq. (3.4) can be computed by the methods de­

scribed in the next: section and models for them stl,d1ed. but th.1s hail not been 

done to date. 

The moat common assumption in turbulence modeling is that product1on and 

dissipation terms dominate the turbulencl~ budget. 8,nd. as 8 first approx1ma­

tion. we can equate them and ignore the othet' terms. For the time-average 

equa tions. this approximation is reasonable when applied to the turbulent 

kinetic energy budget far from solid boundaries, but it Is less vRlid for the 

20 

)1 
:J 
i j 

!! 
j 
1 
1 
I 
j 

1 

J 



- • .."...- ~-.<-- ~ 
.""<""~~<IW.W_",'" 

compon«mt equation. becaus" the redhtribuUon tera ... y be quiu ler".. Near 

walls, the diffusion teru becollle quit:! important and the approxiaat ionh 

even more questionable. The low Reynolds nuaben in this reston uy aha 

affect the structure of the turbulence. Nonethehu, tlh,\ "production equal. 

dtssir.lUon a.rgument" .iB frequently invoked • 

• '01: U;S, the sHuation is 80aewhat different. It h important to note 1& 

that the model is anumed to represent a local spatial average of Lhe local 

instantaneous small-'scale turbulence. This 1& quite different from what 18 

mode.led in time- or ensemble-average model!ng and our understandi.ng of subgrid 

~cale turbulence (and consequently, our ability to model it) is more 

Umited. This is compensated for by the fact that a large eddy simulation 

calculation of a given flow is less sensitive to modeling errors than is a 

Reynolds-averaged calculation of the same flow. 

In particular, becau8e the 8mdll 8cales of turbulence are highly inter­

mittent, we expect gradients of 8ubgdd 8cde quantities to be re.lativ(.ly 

large. If this is the case, it is pr'l}blble that the convection and diffusiol\ 

terms, which are ignored in many time-averaged models, a~e more important in 

SOS mOdeling. On the other hand, we have recently found evidence that the 

pre8sure. fluctuation8 and, more particularly, the pressure-strain correlation8 

reside ma.inly in the large scales (this will be pre8ented in Chapter 5), and 

they may bl~ lesl\ important in SOS modeling than they ar ... in conventional mod­

eling. Despitf:. these diffe.rencea, most SOS models to date have relied on 

idea8 developed for time average model8. 

3. .~mputational Validation of SGS Model8 

Two approaches are commonly used for developing and testing tlme-average 

models. One method, favored by Lumley, Reynolds and others, U8e8 simple tur­

bulent flows (usually homogeneous flows) to test the validity of the models 

and to determine the adjustable parameters. The major objection to this 

approach is that the 8tructure of homogeneous flow8 differs considerably from 

the flow8 one really wishes to 8imulate, and the con8tants may not be valid in 

more complex flow8. The other method, used by Spalding, Launder, and others, 

adjusts the parameters to fit flow8 8imilar to the ones that one wishes to 

calculate. This is di.fficult because many of the parameters mU8t be ad,i'.1e,ted 

81mul taneously and this can be a dif fiC'ult procedure. 
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It is e\len .ote dHHcult to develop.~deh for the .ubgrid leale.. Dlta 

on the •• all scaies of turbulence are quite .car< .• , and direct validation of a 

model ullina experillental data h nearly ll1po18ible. Con.~q~,e."ny, the con­

stants havtl to be found by other •• thc!js. Olle approach 18 al.o.t cODlplltted 

based on theory tlnd uus the properUea of the inertial lJubranae. 1.111)' 

(967) and others have shown that the con.tant in the model can be derived on 

thh basis. Unfcfrtunately, it is not always po .. lblfl to to aSliur. that in a 

compu tae,ion the cutoff between the large and •• all .cales w111 11e in tbe flub-

range, so one needtJ to be cautioul about adopting the r.lulu of thia 

approach. Indeed, a number of authoufound it ncceuary to .odify the 8GS 

model constant to obtain ~ood results. 

Thete is a second hpproach. With the current t>eneratlon of computer.s .it 

is possible to compute homogeneous turbulent flows with no aPt>roximations 

other thall those present ill any numerical simulation. Atprescnt, it 1& 

possible to do such calculations with gr.ids as large as 64 )( 64 )( b4 and, in a 

limited number of cases, 128 x l28 )( 128. This allows simulation at Reynolds 

numbers based on Taylo.r microscale up to approximately 40 (80 with the larger 

grids). The refwlts can be regarded as realizations of physical flow fielda 

and are an interesting and important c.omplement to laboratory results. In 

particular, the computational results pr<.wide all three velocity components 

and the pressure at a large number of spatial points for a relatively shcrt 

time span. nle laboratory data typically give one or two velocity components 

over a longer time span at justa few spatial points. 

Havin~ a realization of a .flow, we proceed in much the same manner an 

experimentalist tJould. The computed f1eh~ can be filtered to give its large 

scale component; the small scale component is obtained by difference. We can 

then compute the terlDB that need to be modeled, and, from the large scale 

field,. we can also compute what the model predicts these terms to be. Direct 

comparison between the model and the exact value is then possible. This can 

be done in a couple of ways. 

One method is to use a scatter plot. The exact value of the 5GS Reynolds 

stress at each mesh point is plotted aijainst the value predicted by the model. 

If the model is correct, the results lie on a strai~ht line; a totally invalid 

model produces a random pattern of points (usually a circle). This is a very 

graphic test of a model. Some scatter plots will be shown later. 
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, nle aecond .. thod 18 to CQmpare the model and exact r •• ultl ;,taUltic-

aUy. [n our work. we have uled the correlation cod fieient QI a mea.ure of 

the vaUdity of a model. nlh h a cl"Jde teet. but it .eemo to be aufUcient 

for our purpoaea. lt ia imporunt to recall that the .quare of the correla­

tion coefficient 11 approxlutely the fraction of the data that the model is 

correctly predicting. 

Theae are very levere telt. of modeh--much more aevere than the teat. 

usually applied to Reynolda-averaged modele. It 18 pO.l8ible for a model which 

performs roorly in thele telts to do well in actual Ii.uhtionl. However. 

failure of a model to do well il a lignal for caution. 

U*,e of 'chh kind of teating for Reynoldl-averaged model. will be tak.en up 

in Chapter 5. 

4. Eddy Vhcodty ,Hodela 

Eddy viscosity models can be "deriVed" froll the "production eQual~ dis­

sipation" argument discussed earlb:r. Thh 18 dOQein a number of' places and 

need not be repeated here. .'01' 8ubgrid IiIcale turbulence, the eddy viscosity 

model amounts to assuming that the subgr.1d Bcale Reynolds stre .. is propor­

tional. to the strain in the large Bcale flow: 

• (3.5) 

The eddy viscod ty \)T has the dimen.d ona of a k.inell8tic viscosity. 

Most work is based on the at. .. omption that the eddy viocosity could berepre­

sented by: 

(3.6) 

1/2 where A is the width associated with the filter and 1]"1· (-S-ij'S" lj) • 

Recently, a number of authors have shown that this is correct only if the in­

tegral scale of the turbulence 1& slDaller than fl. Sinee .LES is deSigned for 

this not to be the case, it 1s better to aSSWDe that: 

(3.7) 
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where L is the integral scala of the turbulence. Usually L 1.a estimated 

from L· q3/e , where e: is the dissipation. 

Eddy viscosity models have a long record of reasonable success in time­

average modeling of simple shear flows, and one might expect them to do well 

as SGS models. In fact, they have been found to do well in some of the homo­

geneOUti flows" In particular, for the homogeneous flows in which there is no 

mean strain, one is able to predict most of the low-order statistic~l quanti­

ties (fur example, the mean square velocity fluLtuations and spectra) quite 

well using eddy viscosity models, that the higher-order statistics, which are 

sensitive to the small scales, are not well predicted should be no surprise. 

In the homogeneous flows with strain or shear, there is evidence (Mdl1llan et 

,,1. (1980), Shirani et ale (1981» that the energy transfer can be reversed 

and flolo1 trom the small scales to the large ones. In such cases, the model 

should no longer dissipate the energy of the large scales. t<.:ddy viscos.ity 

models, which are guaranteed to dissipate energy from the large scales, cannot 

predict: this behavior. Despite this, they may not function badly in actual 

simulations • The reason is that the smallest scales of the r~~solved field, 

.crom which the nlodel normally extracts energy I become relatively weak in these 

flows I and the. model may actually dissipate very little energy. Furthermore I 

the princ.1pal difficulty in computing these flows usually arises from the 

delivery of a significant amount of energy to scales larger than the compu­

tational domain. 1111s makes the normally used periodic boundary conditions 

incorrect, and the results cannot be relied upon. 

Eddy viscosity models are incapable of handling other classes of flows. 

}l'or example, in transitional flows, we must expect that most of th~ energy 

will be in the laq!;t.!. scales i.e., the small scales are not in equilibrium with 

the large scales and the "production equals dissipation" argument is 

incorrect. Furthermore, although Moin et a1. (1978) had reasonable success in 

simulating channel flow with these models, later extensions by Kim and Moin 

(1979) and Moin and Kim (1981) clearly show the deficiencies of the model. 

ThEJY found that eddy viscosity models (several were tried) were unable to 

maintain the energy of the turbulence. TIle problem is only partially due to 

the model, as the turbulence tends to decay even when the model is 

eliminated. This will be discussed in more detail in Chapter 7. 

24 

!J 

ji 

J 
I, 

·1 
l 

. l 
.~ 

1 
~~ 

) 
.~ 

l 

J.

1 

.. 
I 



Clurk ct ale (1979) and McMilbn and ~'erzigcr (1979), and ~IcHUhll lit nl. 

(1980) have applied the model-testing method described above to eddy viscosity 

SOS models. A typical scatter plot is shown in .'1g. 3.1, 1n which the exact 

subgdd scule 6tress ,is plotted against the Smasorinsky model. value. It cun 

b,~ scen tlmt there is u little correlation betweull the two untn sets (the 

corrclat10n coefHcient is apprc'ximately .4 for the CllSe shown), but it is 

even more clelar tlmt this is far from un adequate model. '11\18 result is 

fairly typical, lllthough there nrc. vadations in the correlation coefHccnt 

with mllny of the signlflClli)t I>u['umeters. 

The results show thut eddy viscosity modellii Ilre ruther poor und, 1n (act, 

they become even poorer when there is mean serni" land/or sheat' in the flow. 

However, i.t is not CllSY to find more IH\Cl1rate models (We shull look at th1s 

below), so We muy be forced to \1S0 (~ddy viscosity models untLl .,otllcthing 

better is developed. ~'urt:hermore, llS HcMillull and Ferziger have shown, the 

m(~thod elln be used to predict the eHect of Reynolds number Ol'\ the 1I\('jdel 

parameter. '['heir resuli,.ij u['e tihOWIi in ~'ig. 3.2. When thelH~ r~sults were 

Llpplied to chnl'\l\t.'\l flow by fuin lind Kim (privllte communication), they did not 

produce the des.ired effects, probllbly for the reUI!IOns give.n above. 

In the llbove. p We hnve used the fut"t tlult tht! Illlturul length Henle of the 

SG!> eddies is the w:idth, 6, associuted wlth the filter. By dehllition, thia 

is the scutt? thut defines wlU!ther an eddy is large or small; and there is 

.little rellson to suspect that this j.8 not II correc,t choice. 

"vwever, when the filte.r .1.s alllaotropic, as .tt should be in computing 

shear flows, it is not quite 80 clear what is the correct length scale. 

Almost ,everyone has used the cube root of the filter volume: 

to - (6 66 )1/2 
12:3 

However, Kllrdinll et lll. (1980) showed thllt: II better choice mig~\t be: 

!:I -

It is recommended that Eq. (3.9) be adopted for general use. 
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5. n1e Role of 1\\eory 

'l11eorel.,(cal insight plays u considerable role in undeutanding the phys­

ics of turbul~nce und contributes considerably to modeling it. Turbulence h. 

however. u problem of such complexity that the role of theory in our present 

state of knowledge 1s smuller than in most areas of physics or engineering. 

Progress has been frustratingly slow. A review of recent t.heories is given by 

Leslie (1973). 

Most theories provide limite,j informat1on about turbulence. Usually. the 

theorios were developed for homogeneous turbulence and have proved dif ficul t 

to generltlize. 

'rhe theories which have attracted the m!)st attention are Kraichnan's 

direct interaction approximation and others related to it. 111ese theories are 

statisclcol in nature i.e., they attempt to make statements about averages of 

turbulence quuntltics rnther than the detailed dynamics. The question of 

whether this theory could be extenlAed so as to yield information about the 

Sllu\.Ll, sCll.lca of turbulence and, thus, to provide a SGS model hlls been inves­

tigated by Leslie and his co-workers. 

TIle theory necessarily deals with statistically averaged 9GS turbulence. 

We illla~ine nn ensemble of flows which have the same large-scale motions but 

different smull-scale motions and ask for the average behavior of the small-

scale motions. Whether this is adequate for modeling purposes is an open 

question, but the inforolClcion generated should be helpful. 1111s theory. likp 

many others, is capllble of predicting the existence of an inertial subrange. 

but, unlike most others, it can pr"<!l.ct the l\.olomoQorov constant as weil. 

Love and Leslie (1976) extended the theory all'~ showed that a form of the 

eddy viscosity model could be deduced from it. In part1cular. they predicte~ 

the constant in the model and showed that the large scale strain rate that 

llppears in the eddy viscosity m.:>del ought not to be the local one but a spa­

tial average. The constant predicted in this way is in good agreement with 

that obtained by othet' theoretical arguments and from empirical fits to 

experimental datll. 

With respect to spatial averaging of the strain rate in the eddy viscOS­

ity, the evidence. is lObed. Love and Leslie (1970) found that it was impor­

tlmt in the solution of Burgers' equation. but t-lansour et ale (1978) found 

that it did not matter much. 
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A number of other issues were J,nvestigated by leslie and Quarini (1979). 

In particular, they divided the SGS terms into "outscatter" and "backscatter" 

terms representing, respectively, the energy flows to and from the subgrid 

scale. They found that eddy viscosity models appear to represent the outscat­

ter fairly well, but they could not say much about the backscatter. 

Although limited, these theories are proving useful in choosing and vali­

dating models. 

b. A Scale Similarity Model 

All models, by definition, relate the SGS ReYllolds stress to the large 

scale flow field. Eddy viscosity models view iJ as a stress and make an 

analogy between it and the viscous stress. These models are guaranteed to eX­

tract energy from the large scale field (i.e., they are dissipative). It is 

difficult to construct other mode.ls with this property. How~ver, as noted 

above, the desirability of this property is questionable ,.,1' sheared and 

strained turbulence. 

It is important to observe that the interaction between the large and 

sOldll scale components of the flow field takes place mainly between the seg­

ment of each that Is most like the other. The major interaction is thus be­

tween the smallest scales of the large scale field and the largest scales of 

the small scale field (regions 1 and 2 of Hg. 3.3). '[his is what the sas 
tenn in the filtered equations represents. Since the irlte'cacting components 

are very much alike, it seems natural to have the model ceflect this. To do 

this requires that We find some way of defining the small scale component of 

the large scal~ field u
i

• One way to do this was suggested by Sardina et ale 

(1980). Since u
t 

represents the large Beale component of the field, fU­

tering it again produces a field (~i) whose content is still richer in the 

largest scales. Thus, 

• (3.10) 

ill a field which ct"iiltains the smallest scales of the large scale component of 

the flow field. This suggests that a reasonab.le model might be 

T 
ij 

• 
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or, better yet 

• (3.12) 

- , This modification is sU8l~ested by considerill3 the "cross-terms," e.g., "iUj. 

Preliminary tests bave shown that this model is not dissipative, but it 

does correlate very well with the exact stress, a scatter plot is given in 

Fig. 3.4. This suggests that a combination of the two models might be better 

yet. 'nle correlation is largely due to the fact that, with a Gaussian filter, 

the two fields in question contain much the same structures. With other 

filters, particularly one which is a sharp cut-off in Fourier space, the 

correlation 1s smaller. These models are currently being investigated. 

7. Higher-Order Models 

The inadequacies of algebraic eddy viscosity models in Reynolds-averaged 

modeling have been known for a long time. A number of more complex models 

have been proposed, and, since they have analogs in SGS modeling, a brief 

review of them is in order. 

detail later. 

We shall go into some of these models in more 

Many of the improvements are based on. the notion that proportionality 

between Reynolds stress and mean strain rate is valid, but the eddy viscosity 

formulation needs improvement. In these models one writes: 

• (3.13 ) 

where q and t are, respectively, velocity and length scales of the turbu­

lence. In the simplest such models, the length scale is prescribed and a 

partial differential equation for the turbulence kinetic energy (q 2/2) is 

solved along with the equations for the mean flow field. These are called 

one-equation models; their record has not been particularly good, and most 

people now use still more complex m.odels. In particular p the assumption of a 

prescribed length scale has been questioned, and methods <>f predicting the 

length scale have been proposed. Of these, the most widely used models are 

those in which an equation for the dissipation of turbulent kinetic energy 

(which really represents energy transferred to the small, dissipating eddieil) 
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is added to the equations used in one-equation models. nUl length scale is 

related to the dh&i.,,,,,,:ion e: by: 

c • (J.14) 

aroJ we have the so-call~d two-equation models. This is the most popular 

method of computing time-average flow fields at present. 

Finally, the mOflt recent development has been the use of the full ltey­

nolds stress equations. In two dimensions, th':;ee PDE' sure needed to define 

the Reynolds stress, while in three dimension8, six. are required. Clearly. 

this is a rather expensive approach. 

A way of avoiding the computational cost of full Reynolds stress methods 

is obtained by noting that the convective and diffusive term.:. can frequt~ntly 

be neglected. If they are, and approximations are made to the redi6tributiol~ 

terms, the equations reduce to algebraic one&, Algebraic models have become 

popular in (ecent years. However, there is doubt as to whether the neglect af 

diffusion is co(rect neat the wall. 

All of these models have analogs in SGS modeling, and a number of them 

have been used. Let us (';onsider them in the order 1n which they were 1nt(0-

duced above. 

First, cons,t.der one- and two-eq.,u'Ition models. 1bey have a6 their fundn­

mental basis the proportionality of the SGS Reynolds stress and the lllrge­

scale stress. We saw earlie( that the Smagorinsky model (nn algebraic eddy 

viscosity model) cortelates poorly with the exact SGS Reynolds st(es8. Clnrk 

et a1. (1979) looked at the behavior of one-equation models as well as an 

"optimized" eddy viscosity model. In the lat ter, the eddy viscosity was cho­

sen, at every point in the flow, to give the best local correla,tion between 

the SGS Reynolds stress and the large-scale strain. By definition, no eddy 

viscosi ty model can do better than this. It was found that the correlation 

coefficient improved somewhat relative to the SmaKorinsky model (from approxi­

mately .35 to .50 in a typical case), but this still leaves thl2 model far 

short of what we would like to have. The lack of cor(elation seems to be due 

to the difference between the principal axes of the two tensors. This model­

ing assumption needs to be changed if further improvement is to be obtained 

(cf. McMillan and Ferd,ger (1980», and more complex models are required. 
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Schumann (1973) also used one-equation modnls without finding improvement over 

algebraic eddy viscosity models. 

Next, recall the earUerremark that convection and diffusion are Ukely 

to be more important in SGS modeUng than they are in time-average modeUng. 

This means that the approximations needed to reduce the full Reynolds stress 

equations to algebraic model equations are less likely to be valid in the SGS 

case. However, several authors have used algebraic models. The applications 

have been almost exclusively to meteorological and environmental flows in 

which stratification and buoyancy effects are important. These flows are sen­

sitive to small variations in both properties and model, making it difficult 

to assess the accurncy of a model with precision. To our knowledge, no 

applications of these, models to engineering flows have yet been made. 

It is probable that, to obtain a significant improvement over the Smag­

orins,'Ky eddy viscosity model, we shall need to go to full J1.eynolds stress 

models. This, of course, is not something to be looked forward. to as the 

computing cost is likely to be more than doubled. The only use of these 

equations to date was in meteorological flows by Deardorff (1972, 1973a,b), 

who repl)rted a computer time increase of a factor of 2.5. Furthermore, the 

results were not improved to the degree that he had hoped for. Although this 

is discouraging, Deardorff's simulation was considerably ahead of its time and 

had the additional difficulties associated with buoyancy, so it is hard to 

make definitive conclusions. Thus, we cannot conclude much about these models 

at present, and quite a bit of work needs to be done on them before they 

become useful tools of the trade. 

8. Other Physical Effects 

The author's group has done full simulations of the effects of compres­

sibility on turbulence and the mixing of passive scalars in turbulent flows. 

To date, the work has concentrated on evaluating time-average models, because 

it was felt that this is the area in which the work has the most immediate 

impact. 

The effects of compressibility on SGS turbulence are probably quite 

small. The effect on the turbulence as a whole have been found to be fairly 

weak, except for effects due to the propagation of acoustic pressure waves. 

Since the lat ter are large scale phenomena and the Mach number of the sas 
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turbulence is small, we expect that compressibility will have only a weak 

effect on 8GS modeling. 

On the other hond, SGS modeling of turbulent mixing 18 quite important. 

If we are to simulate combusting flows, it will be necessary to tr~lat the 

small scales accurately, since that is where the action is in these flows. 

TIle effect of thePrandtl/Schmidt number on time-average models is mode1rately 

strong, and we expect its effect on SOS models to be even stronger. 

~'u[thermore, the specific effects due to combustion are also likely to be 

important on the small scalel:J. The author intends to look at 80S modeUng of 

mixing and combustin8 flows 1,n the near future. 

Another effect of considerable importance in application is buoyancy, 

which was mentioned earlier in connection with the meteorological Simulations. 

Hows in which buoyancy is important and, particularly, those which are driven 

by buoyancy are very difficult fl9WS to measure or simulate, and a great deal 

of work will need to be done in this area. Important work in this area has 

been done by the Karlsruhe group (Grotzbach et ale (1979», and further work 

is under way in London (Leslie (1980». 

Finally, we should state that meteorologists and environmental engineers 

have a great interest in both mixing and buoyancy ef fects, and considerable 

effort in these areas has been made by these people. In particular, we note 

aga:1.n the work of L'leardorff cited above and that of Sommeria (197b), Schemm 

and Lipps (1978), and Findikakis (1981). One of the principal difficulties of 

these flows is that the Reynolds numbeu are so large that eddies of length 

scale equal to the grid size are quite important. Consequently, the SGS 

eddies do not behave entirely like ~small eddies~" they carry a significant 

fraction of the total energy and are therefore hard to model. 

9. Summary of the State of 8GS Modeling 

From the arguments given above, we can reach the following conclusions 

about the current state of the art in SGS modeling. 

1. Although they are inadequate in detail, eddy viscosity models can be 

used in simula ting homogeneous turbulent flows. However, they seem to be 

inadequate for inhomogeneous flows, especially those in which solid boundaries 

are important. 
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2. For models in which the length scali; is prescribed, the length scale 

of Eq. (3.9) is preferred • 

3. One- and two-equation turbulence models are unlikely to provide 

significant improvement relative to algebraic eddy viscosity models. An 

e~ception to this might be transitional flows. 

4. Full Reynolds stress models offer promise as future SGS models. 

However, the modeling assumptions probably need to be different from those 

used in time-average modeling. 

5. The scale-similarity model is promising, but only when used in con­

junction with other, dAssipative, models. 

6. Full simulations seem to be the be$it way available at present for 

testing SGS models and determining the param(;ters in them. Turbulence theo­

ries can also be profitably used in this regard. 

7. Full simulations and large eddy simulations can both be used in time­

averaged model building. TIlis is the area in which both types of simulations 

will make their greatest impact in practical engineering calculations in the 

near future. 
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Chapter IV 

NUM£RICAL MKTHODS 

1. Mathematical Preliminaries 

This chapter is devoted to setting out the numerical methods used in full 

and large eddy simulations. To some extent, numerical methnds are alwaYH 

tailored to the problem, higher-level simulations of turbulent flows are no 

exception. 

The partial differential equations governing a flow were given in Chapter 

2. To complete the methematical setting, it is necessary to specify initial 

and boundary conditions. This is not easy. Higher-level simulations need 

details of the initial state, and experimentalists are unable to provide suf­

ficient data about the initial st.ate of their floWG; some of the initial data 

therefore has to be invented. An equally serious problem if; that ~ as the 

l-Javier-Stokes equations are nonlinear, it is not always known what boundary 

conditions should be spacified, i.e., we may not know whether a problem is 

well-posed or not. There ar~ a number of examples of people attempting to 

solve mathematically ill-posed problems. Another issue is that the partial 

differential equations have several conservation properticG, and it is impor­

tant that they be preserved in the numerical treatment of the problem. 

Finally, there are the difficulties inherent in the numerical methods them­

selves--accuracy, stability, and aliaSing, among others. All of these need to 

be cons,ldered. 

The equations governing incompressible flows are of mixed type, they 

contain elements of both parabolic and elliptic partial differential 

equations. This is a consequence of the momentum equations containing time 

derivatives, but the continuity equation not having any. As a result, one 

cannot advance the continuity equation in time. These equations are called 

incompletely parabolic by mathematicians. Meano of dea'ung w:f.th both types of 

behavior are needed. The compressible equations, which are hyperbolic, are 

actually easier to deal with from a numerical point of view. 

All of these bsueR will be taken up in the remainder of this chapter. 

Addi tionally, we shall need to de sc r ibe the numer ical approxima tir.'.'lS used in 
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the computlltions. 'nwoughout the chapter, it is important to keep in mind the 

kinds of flows that we are trying to simulate. 'nley are geometrically simple. 

turbulent flows. 'nle fact that they are turbulent means that the high wave­

number components of the velocity field are large. Large gradient~ of the 

variables can occur in any part of the flow, this has an important influence 

on the choice of numerical methods. On the other hand, the simplicity of the 

geometry helps considerably in dev~loping accurate numerical methods. 

2. Boundary Conditions 

TIle simplest flows to be. shlulated are the homogeneous turbulent flows. 

By definition, these flows are statistically identical at every point in the 

flow·. For these flows, the most convenient and most accurat.e boundary condi­

tions are pen.odic ones. TIle portion of the flow within a rectangular paral­

lelepiped is simulated, and the boundary conditj.,ons prescribe that the state 

of the fluid at a point adjacent to afiY of the boundaries i:il identically that 

on the opposite. .face of the parallelepiped. 1Hesc conditions avoid the need 

for specifying the details of a highly chaotic motion on the surfaces and are 

the most realistic means of enforcing the idea that any point 1n the flow is 

indistinguishable from any other point. 

TIlere is one point that requires extra care. In homogeneous turbulent 

flows on which mean straining or shearing flow is imposed, it is convenient to 

solve for just the part of the flow containing the turbulent fluctuations; the 

mean flow is eliminated. When this is done, it is found that there are tetms 

in the equations that ~o not admit the use of periodic boundary conditions. 

It 1s then necessary to do the comru.tation in a coordinate system that defome 

with the mean flow, and the ability to use periodic boundary co.lldHions is 

restored. TIlis will be taken up again in Chapter 5. 

The only other flows that we shall consider in any detail in this report 

are inhomogeneous in one coordinate direction. Of course, this means that 

they are homogeneous in the other two directions, and these directions can be 

treated by the periodic conditions described above. There are two types of 

conditions we must deal with in the inhomogeneous direction; they follow from 

the. nature of the flows we shall be simulating. 
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For free Ih~ar flowl, we would Uke to pre.cribe th~ condition that the 

flow is at rest inUn1 tely far frOll the ahear lay~r. Deal1l\i with an infinite 

region is difficult, and two methods have been uaed for thia problem: 

1) One can use a Unite computational domain. At the top and bottom of 

the domain olle specifies that the vertical derivativea of the horizontal 

components of the velocity are zero, and the component of the velocity normal 

to the boundary is set to zero. These are known as no-stress boundary condi­

tions. Unfortunately, no-stress conditions imply the. existence of image flows 

Qutside the computational domain; the images are reflections of the flow in 

the boundaries. To ap.dure that the image Hows do not interfere with the 

physical one, there must be no vorticity closE' to '.:he no-.tress boundary. 

This means that a considerable portlon 0( the computational domain must be 

wasted in computing the potential part of the flow. 

11) One can use a coordinate trunsformation that Iilaps the infinite do­

main onto a finite one. Standard numerical methods can then be used. It is 

important to choose a mapping that is compat ible with the method used fot 

evaluating derivatives. 'ntis issue w111 be dealt: with in more detail later. 

The second type of inhomogeneous flow that we shall consider is fully 

developed turbulent channel flow. Two differp.nt approaches have been taken 

for simu:La ting this flow: 

i) Deardorff and Schumann decided not to treat the wall directly. The 

reasons will be stated in detail in Chapter 7. Instead, they decided to com­

pute only the part of the flow w1thin and beyond the r~sion ill which the 

velocity pt:ofile is logarithmic. The boundary conditions must then assure 

that the velocity profile be logarithm1c at the edge of the computational 

domain. In addition, it is necessary to specify something about th~ nature of 

the turbulent fluctuations at this boundary. They assume a relationship 

between the velocity and stress fluctuations at the boundary, this is the 

simplest assumption one can make, and there is no evidence for any other 

choice, but it has been called into queDtion. 

H) One can compute the enUre How, including the region near the wall. 

The wall condi tions are then the nO-I;;lip conditions that must be 1.mposed at 

any solid surface. This is a much s.lmpler boundary condition to deal with 

numerically. 'the price one pays is trnlt all of the small structures near the 
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wall muat be computed explicitly; thh leada to condderable difficulty, aa we 

.. hall aee in Chapter 7. 

3. Treatment of the Spatial Derivatives: Conservat.ion Proft;lrties 

In aU flow computations, the spatial derivaHves are approximated in 

terma of the values of the dependent variables at grid points. Higher-level 

turbulence computations are no dif.ferent from otheu .in this respect, the 

methods used tn these flows are aho uaed in other typea of flow simulation. 

Again we note that the geometric siDlplicity of the flows treated by higher­

level simulations allows use of methods that might not be easily applied in 

more complex geometry. 

Before giving th~ specific approximations to be used, it is important to 

discuss conservation properties. We believe that this issue is not emphash.ed 

sufficiently in the literature. 111e dynamical equations are essentially 

microscopic conservation equations. 'n1e ~ontinuity equation expresseo 

conservation of mass. In the compressible case. the Navier-Stokes equations 

express momentum conservation (or what is the same thing. Newton's second 

law), and there 1s a separate energy equation to express the fact that total 

"'nergy 1& conserved. In the incompressible case, the Navter-Stokes equations 

still express ",.amentum conservation, but. in the absence of an explicit energy 

equation, they are also responsible for conserving the only significant energy 

in the flow--the kinetic energy. This leads to one of the principal 

,::Uficulties in the treatment of incompressible flows. 

By integration of the microscopic conservation equations over a finite 

volume, WEI obtain macroscopic conser\lation equa tiond. For the incompressible 

form of the continu! ty equation we obtain the global conservation of II8SS 

relation: 

(4.1 ) 

The Nav!er-Stokes equations give rise to the well-known momentum theorem: 

• (4.2) 
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Finally, multiplying the Nav1er-StokeB equation. by ui and integraUng ovor 

a finite volulle, we obta.in the equation of kinetic eneray con,ervation: 

• 
(4.3) 

Each of th~se equations _tate. that the con8ervedproperty change. only by 

flow of the property throuah the bounding Burface, thia 18 a consequence of 

the fact th,"',t there are no sources of any of these properties within the v(ll­

ume. If period!.c boundary condi tions are applied, the lurface terms intesrate 

to zero. In Eqs. (4.1), (4. i) and (4.3) t S is the surface of the volume V. 

The kinetic energy conservation equation (4.3) .is especially interesting. 

The only non-surface term f,s the viscous dissipation term, which is usually 

small. It is essential to note that the kinetic energy within the control 

volume is not changed by the. convec tion and pre8sur'e gradient terms and that 

the chain rule "uv)'· u'v + v'u) and the contin.uity equation arc used .in 

eliminaUng the volume integral of the pressure. 

It is crucial that the numerical approximations to the equal:ion~ retain 

these properties. lo'or the continuity and momentum conservation, this is U8U­

ally not difficult. It usually turns out that, if the equations are written 

in the proper form (the so-called conservative form we have used throughoul!:) , 

then almost any approximation will yield these conservation properties. The 

principal difficulty is with the kinetic energy. Normally, the veri fication 

that the numerical approximation guarantees ene'rgy conservation has to be done 

on a case-by-case basis. A means of avoiding this dif Hculty was found by 

Hansour et a1. (1978). If the Navier-Stokes equations are written in the 

form: 

,. - _0_. (E + u ,u .) +\1 
oXi P J J I 

(4.4) 

rather than (2.1), the derivation of the conservation of kinetic energy equa­

tion (4.3) can be based on a s)I'mmetry property, and the use of the crain rule 

can be avoided. Since numerical approximations do not .always have a chain 

rule but the symmetry property always holds, using the Nader-Stokes equations 
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in the form (4.4) can simplify the job of finding well-behaved numerical 

methods. 

Many workers (Deardorff (1970), Schumann (1973), Antonopoulos (1~I:U), 

Shaanan et a1. (.1975), among others) have used the staggered-griu mesh 

system. The grid is shown in I<'1g. 2.2 for the two-dimensional case, the 

varic:bles are given ftt the mesh pOints shown in the figure. The control 

volumes for the various equations are different and are displayed in the 

figure, we shall not give the finite difference equations here, as they appear 

in several other works. !his grid system hits the nice property that all of: 

the conservat1.on properties are obtained without difficulty t and, as we shall 

see in the next stl('.tion, it gives no problem with the calculat.t.on of the 

pressure. It is the natural grid system for the incompressible equations and 

ha~ been used more widely than any other. Part of the reason for the success 

of the sta&sered mesh system was explair:ed by Shaanan et ale (1975). The 

approximation u
i 

u j - u i u j which has been used by Deardorff and Schumann is 

valid in the staggered grid system, because the truncation errors represent 

the difference between .:hese two terms (the Leonard stress) quite well. 

Stated otherwise, the staggered grid approximates u
i 

u j more accurately than 

it does uiu
j 

and thus leads to great simplification in toe finite difference 

equations. 

If a rl.il\ff..lar grid is lIsed, it is necessary to use a fourth-order finite 

difference. method 1.n order to assure that the J..eonard stress 1.8 properly com­

puted. This can be done, but the method 15 cumbersome (Kwak et ale (1975». 

Another popular method of computing derivatives in d1.rections in which a 

flow 1s homogf;neous is by means of Fourier transforms--the pseudospectral 

method. In t~tis method one uses the discrete Fourier transform. Any function 

defined at 0 set of equally spaced mesh points Xj. jAx, j - l,2, ••• ,N, can 

be represented by the discrete Fourier series: 

where 
n 2Tr£./NAx. This has the inverse: 

N 
1 r; -iktx. 

- _ e J 
N 

j-l 
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which differs from Eq. (4.5) only by the sign of the exponent and the factor 

liN; thus, bpoth transforms can be computed 1n the sam(~ way. these results 

r.an be used 1n the following way: Given the values of the function f( x) on 
'" the grid points Xj - jax, we can compute f(kR,) from t.:q. (4.6). When thelJe 

are used in Eq. (4.5) and Xj is replaced by the cOl),tinuous variable x, the 

result is an interpolation formub. As such, it can be differentiated with 

respect to x, and this provides a method of computing spatial derivatives. 

In .fact, specializing the result to the grid points, we have: 

The derivat:i.ve 
" 

compute f(kR,)' 

N 

-1: (4.7) 

R,-1 

df/dx can be computed by using the discrete values f(xj) to 

multiplying the result by ikR,. and computing the inve.rse 

transform. 'L11e retlult is an extremely accurate estimate of the derivatlve. 

'rhis method is especially well adapted to the calculation of the derivLltives 

of periodic functions. which explains its widespread application in the compu­

tation of homogeneous turbulent flows. 

'111e practicLll use of the Ifourier trans:Eorm as Ll numerical tool. is made 

possible by the existence of em extremely fLlot algorithm for its computation-­

the so-called .fast Fourier transform O'~'T) algorithm. 

Par later application it is important to note that this method could also 

be used to compute finite differences. It is not effective to use this as a 

tool for computing derivatives, but it can play an important role when we come 

to solving the equation for the pressure. As an example, we take the standard 

second-order central difference approximLltion: 

2L 
6x 

j 

TIle derivative obtained .Erom this formula can be put into the form of Kq. 

(4.7) wlth ikR, replaced by ik,i" i( sin kR,ax) I Ax; we call k~ the effec­

tive wavenumber. Effective wave-numbers are a good way to measure the accuracy 

of finite dHference methods that are required to differentiate functions 

which contain significant h.l.gh-wavenumber components. and it is not diffi.cult 

to derive the effective wavenumber for various finite difference approxima­

tions. Some e,fi:ectlve wavenumber.s are plot-ted in Fig. 4.1. 
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Next, let us discuss the treatment of directiono in which the flow is not 

homogeneous. For the free shear layer, we noted in the previous section that 

there are two ways of deaUng with the direction normal to the flow (the shear 

direction). When the no-stress boundary conditions are used, one can genel'al­

ize the Fourier method described above. The key idea is to expand the func­

tions in terms of sines or cosines (uslng the set appropriate to the boundary 

conditions for the particular func,tion) rather than the cot'lplex exponentia19 

of Eq. (4.5). The \Iumerical algoritlun for computir,g sine and cosine trans­

forms is equivalent to computing the exponential transform (4.5) using 2N 

rather than N points. TIms the cost of comput1.i'lg the derivatives is approx­

imately doubled when this met.hod is used. We noted earlier that this approach 

suffers from loss of accuracy due to images. 

The alternative to the use of no-stress conditions is the use of a trans­

formation which takes the phYf.lical coordinate z into a computational coordi­

nate i.;: 

such that - 00 < z < 00 

z • 

transforms to 

d 
dz • 

h( r;) 

- 1 < t; < 1. 

1 d 
hi Mdt; 

The derivative becomes: 

(4.10) 

TIle trick to making this a successful method is to choose the transformation 

Sl~c.h that l/h' can be expressed in terms of j'ust a few low-order sine,fJ 

i\nd/or cosines. It is then possible to obtain accuracy almost as good as that 

of the Fourier method for infinite r~3ions. Details of this method are given 

in the report by Cain et ale (1981). 

Finally we come to dealing with directions in which there are solid 

walls, i.e., a numerical method for treating channel flow. TIlere are two 

choices that have been cOIII.'llonly used. The first is the use of Chebychev poly­

nomial expansions. TIlis is equivalent to a ~'ourier method on a nonuniform 

grid and has been used by Kells and Orszag (1980) and by Orszag and Patera 

(1980); see also Kim and Moin (1980). 

The other method for treating the channel is to use a finite difference 

method on a nommiform gridi this is equivalent to uflng a coordinate trans-
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formaUon in this ditection. 11le choice has generlwlly been adopted (Moin et 

a!. (1978); Hoin and Kim (l9tH». We shan deal with this further in Chapttlr 

7. 

Another important issue is aliasing. Aliasing is the error introduced 

when two Fou!" ler waves are multiplied, this happens implicitly when I:he non­

linear convective terms are computed. The waves resulting from the pro(\u('t of 

two Fourier waves contains the sum and/or difference of the original wavenum-

bers. 'nlese may fall outside the range of wavenumbers (-T//tJ. < k < TI/tJ.) 

which Clin be carried in the calculation. When this happens, the wavenumber 

which fal18 outside computational range is misinterpreted ("aUased") as one 

of the wave numbers which 11es inside the band. The result is a numerical 

error Which, ,1.n mild cases, adds to the normal truncation error of a finite 

dif f\~ren(!e approximation and, in severe cases, can cause the calculation to 

become totally inaccurate or even unstable. 

Aliasing can be cont rolled in two ways. The simplest way is to assure 

that the high wavenumbers are relatively unpopulated. Since these are the 

ones that cause the problem, eliminating them also solves the problem. In 

large eddy simulation~ one can assure that the high wavenumbers are relatively 

unpopulated by using a filter which cuts off at a moderat~ wavenumber. In 

full simulations, the best way to control the problem is to keep the Reynolds 

number low. 

The other method of controlling aliasing is to comput:e the portion of the 

field which will be aliased and explicitly eliminate j;. This requires ext;:a 

computation, but ~,t allows one to include more energy in the high wavenumbers 

and the extra resolution gained may be worth the cost,. 

4. Time Advancement 

We now come to the method of advancing the solution in time~ One of tht! 

first issues that arises is that of selecting an explicit method or an impli­

cit one. J.t is important to remember thdt in higher-level simulations one is 

looking fot time-acc.urate solutions to the equations of motion. This con-

trasts strc;mgly with relaxation methods, in which the obJect ,i.s to reach 

steady state as quickly BS possible. The point of view that we adopt is that 

a well-balanced, time-accurate method is one in which the errors caused by the 

time advancement method approximately equal those introduced by the spatial 
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introduced by the spatial differencing method. Once spatial difference ap-

proximations and the time-ad'.;ancement method have been chosen, this criterion 

selects the time st~,\p. The time advancement method must be Jtable for the 

time step' so chosen. It is usually the case that the time step found in this 

way is well within the stability bounds of explicit methods, so there is no 

need to pay the extra cost associated with an implicit method. Thus, with a 

few exceptiOUilJ, noted later, th-a time-advancement methods used in higher-level 

simulations are explicit. . The common choices have been second-order methods 

such as leapfrog and Adams-Bal,hforth and the fourth-order Runge-Kutta method. 

TIlese are standard methods of numerical analysis, so the formulas will not be 

given here. 

For purposes of discu6sing time-advancement methods, it is convenient to 

rewrite the Navier-Stokes equations in the form: 

- (4.9) 

where the viscous and convective terms have been included in Hi. There is no 

difficulty in time-advancing thi.1',! equaUon by an explicit method. N()st of the 

difficulties in solving the incompressible equations come from the lack of a 

time derivative in the continuity equation~ the compresBible equations have no 

such problem. One method of avoiding this dif ficulty is to treat the flow as 

if it were compressible and iteratively drive the compressibility effects to 

zero; the iterative nature of this process mak~a it inefficient, however. 

A more efficient procedure is to note that application of the divergence 

operator and use of the continuity equation on Eq. (4.9) gives the Poisson 

equation for the preEsure: 

- (4.10) 

When one looks at the time-discretized vecslon of Eq. (4.9), it is found that 

forcing the pressure to satisfy the Poisson equation (4.10) at time step n 

guarantees that continuity will be maintained at time step n + 1. The mi:!ted 

nature of the equations is brought into cle~r fOCU6. The Navier-Stokes equa­

tions (4.9) are treated as parabolic partial differential equations, but the 

pressure must be calculated from the Poisson equation (4.10), which is ellip­

tic. 
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One further important point needs to be made here. Recall that, if the 

Navier-Stokes equations in the form (2.1) are used, then the derivation of the 

energy-conservation etJuat!on (4.3) requires use of the chain rule and the con­

tinuity equation. If we are to have numerical energy cOilservation, it is 

necessary to derive the numerical equivalent of Eq. (4.3). Assuming that thl! 

required analog to the chain rule exists, the choice made for the numerical 

approximation to the pressure gradient dictates the numerical approximations 

used in the continuity equation. Otherwise, one cannc.,t obtain e.nergy conser­

vation;. the usual consequence is an unstabl'e calculat,ton. For example, if the 

central difference approximation is used to estimate ap/ax, it must be used 

for the continuity equation as well. If a backward difference is used for the 

pressure gradient, the continuity equation must use the forward difference 

operator, and vice verse; this is what 1s done on the staggered grid. 

Furthermore, one is not free to finite difference the Poisson equation 

(4.10) .:.r~J1L:rarlly. The correct approximation is derived by applying the 

numerical divergence operator obtained in the manner described in the pre­

ceding paragraph to the finite difference version of the Navier-Stokes equa­

tions. Thus, the choice of the finite difference approximation for the 

pressure gradient dictates the method of differencing the Poisson equation. 

For example, if the central difference operator is used for ap/ax, it turns 

out that the difference operator for the Poisson equation must be the second­

order central difference operator (as one might expect), but the grid spacing 

must be 211x and not llx. We reiterate that the function of the Poisson 

equation ia to maintain continuity in the numerical sense; it is more impor­

tant to solve the correct equation than to obtain the most accurate solution 

to the exact partial dHferential equation. 

The most efficient method of solving the Poisson equation is by means of 

the fast Fourier transform. This is t.he case whether one uses finite differ­

ences or the pseudospectral method, the spatial derivatives. When finite 

differences are used, one can solve the Poisson equation by using Fourier 

transforms, but one must be careful to use the effective wavenumber rather 

than the exact wavenumber. 

The staggered grid method accomplishes all of this very efficiently. It 

does this so well that the need for being careful with finite difference meth­

ods is often overlooked. 
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There is one case in which we cannot use explicit methods. In the compu­

tation of flows with solid boundaries, it is necessary to use a very find grid 

in the direction normal to the wall, close to the wall. A consequence is that 

the time step allowed by stability is then smaller than the time step allowed 

by the accuracy cdterion. The principal difficulty comes from the viscous 

term. In this case, it is necessary to treat the viscous terms containing 

derivatives in the normal direction implicitly. In fact, a special numerical 

method had to be invented for this problem; it will be sketched in iJhapter 7. 

5. Initial Conditions 
~~~~~~~.----

The initial conditions for higher-level simulations cannot be derived 

directly from experimental results. The data never contain enough information 

to construct a complete initial field. In fact, the reported results of some 

expex-iments are quite incomplete and leave the computor so much freedom that 

it is always possible to find i.nitial conditions that allow the simulaUon to 

match the experiment. ~'rom the point of view of one doing higher-level simu­

lations, all ideal expel'imefit reports not only the mean velQcity and turbulence 

intensities, but information about the length scales as well. Ideally, com­

plete spectral i,lltormation should be provided. 

We begin by considering the construction of & velocity field for the 

simulation of homogeneous isotropic turbulence~ the velocity fields required 

by the other cases are frequently derived from this. The task is to create 

an initial field that has a specified. energy spectrum and is divergence­

free: There are several ways to do this; of the~-e, the following is one of 

the easiest. There are three ste,ps ill/ the process: 

1. Each component of the velocity at every grid point is assigned a 

random value. Ute resulting field is not divergence-free, nor does it have 

the desired spectrum. 

2. The curl of the field is taken~ the resulting field is divergence­

free. The numerical operator used to take the curl must be the same as the 

operator used to define the divergence. 

3. The Fourier transform of the velocity field is taken and in each 

Fourier mode h assigned an amplitude required to give the desired spectrum. 

The Fourier transform is inverted, and the result is the desired initial 

field. 
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This procedure is easily modified to give an initial field which is 

anisotropic. This can be done by biasing the random numbers used in the first 

step of the process. 

l<'or flows in which there is a mean velocity profile (specifically, the 

mix:f ng layer and the channel), it is necessary to give the mean velocity 

pro,file in addition to th" turbulence. The method of producing an initial 

turbulence field must also be modified. 1n the case of the mixing layer, we 

want the fluctuations to be more intense near the central plane of the flow 

than near the edges. Such a field can be produced in a manner s,imilar to that 

described above. Insteady of allowing the field created in Step 1 to be uni­

formly distributed in space, we give it the desired spatial distribution. The 

tI teps for removing the diver.gence and producing the given spec' rum are then 

essentially as described above. 

}<'or the channel flow it was found that the subgdd scale model destroyed 

too much energ: and tended to make the flow become laminar if conditions of 

the kind described above were used. To prevent this, it waS necessary to 

introduce large structures into the flow. These were obtained from solutions 

of the Orr-Sommerfeld equations. Although these are not the correct large 

structures for a fully developed channel flow, they are apparently similar 

enough to them. Randomness was added to the flow by introducing a small 

amount of more or less isotropiC tl,lrbulence which is divergence-free and is 

zero at the walls. 
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Chapter V 

HOMOG~NEOUS TURbULENCE 

1. ClassifIcation 

A homogeneous turbulent flow is one in which each point in the flow iSr, 

in the statistical sense, equivalent to every other point. Ideally, this re-

quires an infinite medium of fluid, every part of which experiences the same 

forces. In practice, close approximations to these flows are produced in wind 

tunnels. The mean flow ia designed into the tunnel, while the turbulence is 

usually created by a grid (or, in a few cases, by a set of jets) and carefully 

controlled. The time evolution of the flow is simulated by observing its de­

velopment as it moves downstream in the tunnel and invoking Taylor's hypothe­

sis. If the gradients of mean quantities and other parameters of the flow are 

carefully chosen, an accurate approximation to a homogeneous flow is produced. 

It is not difficult to show that homogeneity requires the mean flow to be olle 

in which the mean velocity is a linear function of all of the spatial coordi­

nates. This severely limits the possibilities. 

Nearly all turbulent flows of engineering interest are inhomogeneous, the 

inhomogeneity 1,s usually the result of the shear varying through the flow. 

When the Reynolds stresses in these flows are modeled, five separate effects 

are commonly considered. They were mentioned in Chapter 3 and are repeated 

here: 

a. Production. The creation of new Reynolds stresses via the inter-

action of the Reynolds stresses with the mean flow. 

b. Dissipation. The destruction of turbulent energy and Reynolds 

stresses by the action of viscosity. 

c. Redistribution. The conversior,I of one component of the Reynolds 

stress int.o another without change of the total turbulent energy. 

Much of this effect is mediated by the pressure. 

d. Convec t ion. The convection terms usually require no modeling, but 

their inclu~ion makes the local Reynolds stresses depend on the mean 

field in other parts of the flow. 

e. Diffusion. The carrying of Reynolds stress from one part of the ft.,w 

to another via the self-interactions of the turbulence. 
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By definition, homogeneous flows have no convection or diffusion, 80 we need 

to deal with, at most. production, dissipation. and redistribution. 

Homogeneous turbulent flows can "'~ grouped intl) three categories accord­

ing to the phenomena contained in them. TIle Brost group contl\ins tha one flo~ 

in wh'1ch the only interesting effect is dissipation. (Inertial energy trans­

fer among the wavenumber components is, of course, an element in all flows bot 

is not counted separately.) 

• Homogeneous Isotropic 'furbulencp.,. Th.1s flow j which at one time was 

heavily studied because it was thought that it might provide the insight 

into the nature of all turbu1.ent flows, is the decay back to rest of 

fluid which has been set into random motion. It is still used as a means 

of finding turbulence model constants associated with diSSipation and is 

usually the first flow simulated by people doj ~lg h1.gher-level 

simulations. 

• The second group of flows contains those in which there is exchange 

between the various components of the Reynolds stress (redi&U'ibution) in 

addition to diSSipation. but there is no direct production of turbulence 

energy. The.re are two such flows. 

a. Homogeneous 'furbulence with Rotation. The eff~ct of rotation on 

isotropic turbulence is to produce anisotropy. TIle effect is primarily on the 

length scale and reduces the rate of decay of the turbulence. 

b. Return to lsot ropy. Turbulence which has been made. ani.sotropic by 

the action of strain (see below) tends to return t.oward isotropy if the 

additional force is removed. 

~ The final group contains the flows in which all of the phenomena that are 

possible in homogeneous flows actually occur. There are two major flows 

of this type. 

a. Strained Homogeneous 'furbulence. Turbulence which is initially 

isotropic (or nearly so) is put through a w1.nd-tun.nel section in whi,!h a fluid 

element is stretched in one direction and compressed in either one or two di­

rections. The result is irrotational strain which interac.ts with the existing 
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turbulence; ther~ 18 considerable turbulence energy production, and the flow 

becomes quite anisotropic. 

b. Sheared HomoHeneous 'furbulence. Nearly isotropic turbulence. 18 

produced in a flolol which has uniform shear (a straight-line velocity profile). 

The effects are similar to those observed in the strained turbulence case. 

The experimental data for these flows have been revl.e"'e<J in a paper by 

the author (Ferziger (1980». 

We shall also consider f10lols with ccmpressibility and mix Lng of a passive 

scalar. 

All of the flows described in this chapter are onefl which develop in 

time. It is uncertain that any of them reaches a steady state or even a self­

similar state. 111is issue is controversial; some authors believe that a se1£­

similar state will be rcached, while others do not believe 80. In any case, 

these flows are sensitive to the initial conditions. In turn, this meaklS that 

caution is required in interpreting them and that careful documentation of the 

initial conditions is necessary. 

All of these flows have been calculated by both full and large eddy 

simulation. TIle results show that all of the physical phenomena observed in 

the laboratory have been shown to be a valuable tool in evaluating turbulence 

models. Nuch of the work in the area of model validation is recent and unpub­

lished, and we shall give a brief overview of some of the principal results. 

It iB also worth pointing out that a complete compendium of results from full 

simulations of homogeneous turbulence is being assembled by Or. R. S. Rogallo 

of NASA-Ames Research Center and will probably be available in the summer of 

1981. His results should be an important resource for people developing tur­

bulence models. 

2. Isotropic TUrbulence 

As we have mentioned earlier, isotropic turbulence is the simplest tur­

bulent flow. It is therefore an obvious first target for any method of simu­

lating or modeling turbulent flows. It has long been used by the developers 

of Reynolds-averaged models as a basis for choosing the constant(s) associated 

with the dissipation. It has also been a popular choice as the first flow to 

be simulated by higher-level methods, and it has been used extensively as a 
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basis .for testing subgrid-Illcale models. We 8h81,' review this work briefly in 

this section. 

To simulate these flows numerically, one begins with an init.ial condition 

that has the desired energy spectrum and is divcrgence-.free. ~tcthods of 

constructing such Helds were described in the preceding chapter. In full 

simulations it is not necessary to begin the calculation with a real.htie 

spectrum; one will develop 1n time. Of course, if one is trying to match an 

experiment, the experimental spectrum ought to be specified. In large eddy 

simulations of this flow, the inH1.:ll spectrum is obtained by filtering the 

experimental spectrum. 

The initial condition defines the inlt1al Reynolds number. The Reynolds 

number commonly used to characterize this flow is based on the Taylor 

microscale X and the turbulence intensity q. Although these may not be the 

optimum choices, we shall follow custom and use them. tn this flow the 

turbulence intensity decays and the ruie roseale increases with time, but the 

microscale Reynolds number decreases. 

At the first few time steps, the flow field cannot be regarded as repre-

senting true turbulence. TIle initial field does not contain the proper 

higher-order statistics or correlations; only after at .'least some of these 

have developed can the field he taken as representing physical reality. We 

have generally taken the behavior of the skewness or the velocity derivative: 

s - (5.1 ) 

as the measure of tl,> quality of the flow field. tt is nearly zero in the 

initial field and qui(tkly rises to an asymptotic value at which it tends to 

remain tor a considerable time, except at low Reynolds numbers. The time 

period in which the skewness is rising is considered a "development" period. 

This is followed by a period in which the flow is realistically simulated • 

. ~'inally, tht.> size of the large structures grows to an appreciable fraction of 

the size of the computational domain, and periodic boundary conditions are no 

longer valid. At this point, the flow is no longer realistic, unphysical 

behavior is observed in the results, and the program has to be stopped. 

First, let us consider full simulations of this flow. l:.dng 64 x 64 x 

64 mesh points in a calculation, one is able to compute at Reynolds numbers 
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up to R,).. 50. This is the practical limit on moat present. COIIIputer., a tew 

case.8 have been run on a 128)( 128 )( 128 grid which allows the Reynolds 

number doubled • These Reynold8 number. are. on the low end of the experimental 

one8; m08t experiments have been run with RA in the range 30-400. The 

results of these COml)utations match the experiment very well in term8 of the 

decay of the turbulence intensity. the growth of the length scales, and the 

value of the skewness. Typical results are shown in Figs. 5.1-5.3. 

The prinCipal use to which these results have been put has been in thQ 

development and testing of f;ubgrid Bcale models. Clark et ale (1979) and 

McHillan and Feuiger (1979,1980) used flow fields generated by full simula­

tion of isotropic turbulence in the way suggested in Section 3.3. Some of the 

principal results of this work were: that the Smagorinsky model correlates 

very poorly with the actual SOS Reynolds stress (the actual correlation coef­

ficient: is typically .30-.40), that the width of the filter used in large eddy 

s.1mulation ought to be at least twice the grid size, that changing the shape 

I,)f the filter matters little, and that the model "constant" (which really 

ought to be called a parameter) is a function of Reynolds number that can be 

derived from this type of calculation. Since these results were covered in 

Chapter 3, we shall not repeat them here. 

Full simulation has also been used to study isotropic turbulence at low 

Reynolds number, a purpose for which it is ideally suited. At low Reynolds 

numbers (RA < 10), it is possible to do full simulations with only 1b x 16 

x 16 mesh points. Interest in these flows centers on the decay rate and the 

skewness. The decay of isotrop.1c turbulence can be represented by: 

_ A(t-t )-n 
o (5.2) 

Theory shows that the decay exponent (n) is ~.5 at very low Reynolds number, 

and both theory and experiment show it to be approxinlately 1.2 at high ~y­

nolds number. It is therefore of interest to compute the decay exponent a6 a 

function of Reynolds number. The results are compared with experiment in Fig. 

5.4. 

The velocity derivative skewness defined by Eq. (5.1) is approximately 

.5 at high Reynolds number and can be SIlOwn to drop to zero 8ft the Reynolds 

number goes to zero. The direct simulation and experiment.al results are shown 

in Fig. 5.5. Figures 5.4 and 5.5 are from a report by Shirani et al. (1981). 
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Now let us turn our attention to large eddy simulatlonB of thh flow. 

The major advantage of large eddy simulation 1& that, since the small eddies 

are modeled, the computation time is considerably reduced for a given Reynolds 

m .. mUcr. Alternatively, it is pOB8ible to go to higher Reynolds number with 

LES than with direct simulation. 

When large eddy dmulations of homogeneous isotropic turbulence were 

first made, the results of full simulations were not ava.ilable. Consequen tly, 

the constant had to be chosen to fit the decay of the turbulent kinetic 

energy. It was found that the same constant can be used whether 103 or 323 

mesh po.ints were used; it was later found that the value obt{.ined in this way 

agreed with those obtained from direct Simulation to within 10%. It is also 

in good agreement with theoretical estimates (Lilly (1967» despite the fact 

that these flows are at Reynolds numbers too small to support an inertial 

8ubrange. Since the constant needs to be adj'.lst:ed by this amount to aCC016nt 

for changes in numerical method (mainly changes in the spatial differencin~ 

method). this totas one of the most important early successes or large eddy 

simulation. 

It was found that it made little difference tothether the primitive Navier­

Stokes equlltions or the vorticity form of those equai::1ons were used; it made 

very little difference whether the model was based on the strain rate or the 

vorticity; and it made very little difference which filter was used. Hototever, 

if pseudospectral differencing is applied to the original Sruag,orinsky model, 

the shape of the spectrum at high wavenumbe.rs is distorted. To remedy this 

problem, it was found necessary to evaluate all of ~he derivatives that occur 

in the model by second-o.rder finite-difference apPJ oximat10ns. 'Ibis is simi­

lar to the finding by Love and Leslie (1976) that the model ought to be aver­

aged over a fini te volume. A typical result obtained by large eddy simulation 

is shown in Fig. 5.6; other curves are similar and therefore not shown. 

Finally, it was .found that large eddy simulation 1s incapable of comput­

ing the higher-order statistical quantities such 8S the skewness andflatnes8 

with sufficient accuracy.. 'l'hese quantities are strongly affected by the small 

scale motions that are :<'ilter.:ed out, and there 1s no way to recover the lost 

information; all attempts to do so failed. 

Most of the results on large eddy simulation are taken from a report by 

Mansour et aI, (1978). 
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3. Anisotropic TUrbulence 

Anisotropic turbulence (turbulence in which the fluctuating components 

are unequal so that uf ~ u~ ~ u~) usually returns to an isotropic state 1f 

not stra.1ned in any way. However, it is possible for the flow to become even 
2" 2" 

more anisotropic. Thus, if the large scales are such that u1 < u2 and the 
~ ~ ~ ~ 

small scales have u1 > u2 but t.he total field is such that u1 < u2 , it is 

quite likely that the turbr,llence will become more anisotropic with time. This 

is not the case in most .nows, however, and the a:sdumption that anisotropic 

turbulence tends to return to an isotropic state .18 reasonable in most flows 

of interest. 

In the laboratory. anisotropic turbulence is usually created by straining 

the flow and then allowing the anisotropic turbulence to relax in the absence 

of strain. The alternative approach of using the anisotropy of turbulence 

created by grids has not been successful. The apparent reason is the one 

mentioned above--the anisotropy resides mainly in the large scales, and the 

flow may become more rather than less anisotropic. Creating ald.sotropy by 

straining an initially isotropic field distributes the anisotropy over the 

range of scales and is thus better behaved. 

Simulations can emulate either of the above methods. One can simply 

create an initial field in which the components of the velocity fluctuations 

are unequal, or one can strain an initially isotropic field to produce the 

anisotro1;>Y· Because one has control of the anisotropy as a function of the 

scale size in the initial conditions in a stmulation, there is no important 

factor favoring one method over the other. The method of creating an aniso­

tropic initial field is preferred, as it is the simpler approach. 

Full simulations of homogeneous anisotropic turbulence were mario by 

Schumann and Herring (1976) Ilsing the method suggested above. Some of their 

results are shown in Fig. 5.7. We see that their flow does i~deed relax 

toward! isotropy. The tendency of the dissipation and pressure-strain terms 

toward their valu.:;s in the isotropic flow is also evident. One should note, 

however ~ that the calcul.ation was done on a 323 mesh. All of the~llantities 

averaged in Fig. 5.7 fluctuate very strongly in both spsce and time, and it is 

likely that nearly all of the contribuUon to the mean values comes from a few 

small regions in which the fluctuations are very intense, this statement is 

based on some of the author's unpublished work. It is therefore likely that 
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the uncertainty in the reported values is quite large. This is true in som~ 

of the other flows that we shall look at as well. 

S~humann and Herring used their results to test two versions of Rotta's 

model for the return to isotropy. This model assumes that the pressure-strain 

term can be represented by: 

au' au' 1 < p' 2+ -=:J. > - t 1j • - K < uiu ; > - '3 61j 
( u'u' > (5.3) 

ax. aX
i 

k k 
J 

where one model assumes K· C£/q2, and the other assumes K· C'q!L, where 

£ is the dissipation rate and L 1s the integral scale. The brackets < > 
represent an average over the computational field which is assumed equivalent 

to an experimental time average. As can be seen from the figure, there is 

cons.tderable variation in the "constant" obtained from the various runs. 

Clearly, this indicates that something may be wrong with the model. Schumann 

and Herring were not able to discern any Ci.Hlsistent Reynolds number effects in 

their results • 

4. Rotating 'furbulence 

The effects of rotation on turbulence are subtle and complex. In the 

equations of motion, th(" only appearance of the rotation is via the CorioUs 

force; the centrifugal force can be transformed away. One effect of the 
• 

Coriolis force is to redistribute the kinetic energy among the components of 

the turbulence normal to the axis of rotation. The Coriolis force does not 

appear explicitly in the equation for the turbulent kinetic enerGY. Neverthe­

less, rotation has a profound effect on turbulence and, especially, on its 

rate of production (cf. Ferziger and Shaanan (1976». In shear flows, rota­

tion may in fact stabilize the flow, there is evidence that it can cause 

relaminarization of a turbulent boundary layer. It can also deatabilize; the .. 
well-known Taylor-Gortler instability is a prime example of this. 

The effect of rotation on isotropic turbulence is even more subtle. It 

seems quite likely that the principal effect is the conversion of turbulent 

energy into inertial waves-"wave~ that propagate principally along the axis of 

rotation and which are not dissipated except near walls. 

Experimentally. the study of the interaction of rotation and turbulence 

is very difficult. One major difficulty (about which we shall say more later) 
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is that the fluid lIIUSt be sot into rotation bofore it passes through a grid 

that gonol'llLcs turbult!nce, Lhts is 1.\ con8eqllm~ce of tht!. Helmholtz theorem. 

111rce expedlllcnts have been pertormed. lbbotson and 'l'rittoll (19b7) found a 

hater decllY of tho tUL'bulence when tht~ fluid wus rotating, while Trnugott 

(19)0) found u d,.'~creuse ill the decay rut,,~. 111e latest expeirlllent, and the one 

thut .ts gc.nerally regarded as the btHft, wus done by W.igelllnd and Nagib (1978). 

'nley .found cuscs which went in both direct i om;; however, the predolld.nant 

effect was II decrtHlsc 1n the decay rute. 

Since the sourCe of the efft!{,ts observed in the e)f}Jct'imentwas unknown, 

preliminary (~alclilutions \)sin~ laq;e ed.:ly simulation on II loJ grid WtH'e 

llI11de. A <Jel"il,\s of s:lmulal:lt)ns using the J.dentic.111 initinl condit.ion with 

vaL'ious rotation Cates was lIIade. 'nle t:l~sults, shown in Fig. 5.9, indicate 

thut the pr.~dominanL effe(:t ot' tht.~ rotat1on lI\uy bt! to decrease thu l"ute of 

dt!l~llY ot: the t.urbulence, but ther~ it> unusual behaviol', p(ll:til'.ullu'ly at tlw 

ellrly times. This is sbd.1Hr to the behavit)c observed by Wigelund und Nagib, 

but u detuiled comparlson is imposHible. 

On the li,~6is of these l'esulCs, it: was surmised thut rotation decreuses 

the rate of dissipation but that this cffe(:t is musked by othet' etftH~ts in the 

t1llrly development of the. flow. 1n ordl~l' to check this hypothesis, we IIlllrle. 

.fuLl S:LlI\ulaUon!:l of an experiment that is impossible to do in the laboratory. 

We allowed the turbultHlce to develop without l'otut:tOIl tor u short tilll(:!; thiu 

is identicu.l to the initi.nl stllges of lln isotropi{! turblilenet.~ t.~xperiment. When 

the turbulence had developed intr> a physically real1st:lc Held (see tlH~ pre-

~~edil\g se(~tion fot deta:i.ls), the rotation was .. turned on. II llndtH' these 

conditions, it w~'S fOland thae increas:Lng the totu tion tate ulways deC.l'uased 

the rHtt~ of d(;\~lly 0.£ tht.~ turbulence. '1'he r~su.tts llrc shown ill Fig. 5.10. 

It appear!:! thl't the lHlOllll:llo\l!:1 e.ffects round in thi? e.xperimc\1ts 11 re t'.aused 

by inte.ractiOI1S of the rotation with the thin shear layers produ..:ed by the 

tllrbulence'-producing grid, and 81111i1ll\: effects can be produced in the silllu­

lation. 'l1H;H1If> Hl'l~ ilnpussible to a\told in the laboratory. 11\ sOllie of the 

experiments, interactions with the walls also pluy an important role. 

I.t wns also possible to search for the calise of the ef.fect. It was found 

that the turbulence rema:tns neat'ly tsotropic, so the decrease in the tClte of 

dissipation Il\ust be due to 1m incro~(\e in the length scales. Binee the length 

scales are readily COlllplIt(;).d in thc.~e silllulntions, this was easily checked, and 
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it was found that there is a large increase in the length scale in the direc­

tion of the rotation axis. A theoretical explanation for this (based on the 

properties of inertial waves). was given and a modification of the model was 

offered. 

5. Strained TUrbulence 

We now come to flows in which there is turbulence produc tion. In both 

the strained and sheared turbulence r.xperiments, the turbul.ence decays for a 

short time after the start of the flow and then increases wit.h time. The 

length scales of the turbulence increase more rapidly than in the unstrained 

decaying isotropic flow. All of this makes these flows interesting objects of 

study. 

In the laboratory, strd,ned turbulence is created by first producing iso­

troplc turbulence with a grld, in the same way as in the experlments descrlbed 

earlier. The turbulence is allowed to develop for a short time and is then 

made to pass through the test sectiun. In some test sections, the cross­

sect.ional area is kept constant but the aspect ratio in the plane normal to 

the flow is ~hanged; the effect is to exert plane strain on the turbulence. In 

other experiments, the test section is a contraction, and the turbulence is 

compressed in the two directions normal to the flow and stretched in the 

streamwise direction; the result is axisymmetric strain. 

To s.imulate these flows numerically, an isotropic turbulent flow field is 

created in the same manner as for the previous flows. The effect of the 

strain is turned on immediately, and the flow is allowed to develop. In order 

to simulate this flow correctly, it is necessary to use a straining coordinate 

system, one which moves with the mean flow that produces the strain. This is 

necessary because one of the terms due to the applied strain does not permit 

the application of periodic boundary conditions, the transformation removes 

this term. For the d~tails of this transformation see Rogallo (1977). 

Use of this transformation also introduces a difficulty. After some 

time, the strained coordinate system becomes quite thin in the direction which 

is being compressed. Whe~ this happens, the length scalefi in that direction 

become appreciable compared to the size of the computational domain in that 

direction. As a result, periodic boundary conditions are no longer valid, 

and the computa tion has to be stopped. This happens when the total strain 
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exp(St) QI 2, where S· au/ax. The problem can be partially alleviated by 

starting with a coordinate system that is distorte.d in the other directiol1. 

ThuB the flow contains three periods similar to those found in the flows 

described above. }o'irst there is a development period; this is followed by a 

period in which the flvw is physically realistic, finally, theJ;'e is a period 

in which the simulation is invalid, and the cal~ulation must be stopped. 

The detailed behavior of strained turbulence is dependent on the initial 

conditions. However, tha trends are the same in all cs.ses. As in the expel"i­

ments, the turbulent kinetic energy decays until the turbulence ~ecomes orga­

nized, then the production of turbulence increases and, somewhat later, so 

does the kiMtic energy of the turbulence. As can be seen in Fig. 5.11, the 

turbulence becomes highly anisotropic. The fluctuations in the direction 

being compressed (the Xl-direction for the case shown in Fig. 5.11) increase 

most rapidly. while the fluctuations in the stretched direction (x2) con­

tinue to decrease. The of f-diagonal components of the Reynolds stress tensor 

a re all zero in this flow • 

The results of this computation could be used to test Reynolds-averaged 

models, but they have not been used for this purpose. The reasons are that 

the majority of engineering flows are shear flows, and sheared homogeneous 

turbulence seems more appropriate for this purpose and that the experimental 

data can be used as well. For this reason, Reynolds-averaged models are 

deferred to the follOWing section. 

McMillan and F'e rziger (1980) have used strained turbulence simulations 

for checking subgrid Bcale models. They found that the Smagorinsky model 

becomes less accurate as the flow is strained. The correlation between the 

exact and model results drops from the already low value of 0.3-0.4 to nearly 

zero. However, the scale similarity model proposed in Chapter 3 ijl nearly 

equally valid with or without strain. 

In a .few cases the correlation between the exact stress and the Smago­

rinsky model becomes negative. On further investigation, it is found that, if 

the strain rate is high and maintained for a long time, the energy flow is 

from the small scales to larger scales, i.e., from the unresolved or subgriJ 

scales to the larger or resolved scales. TIlis seems to be physically correct, 

although it 'has not been reported in any of the experimental results of which 

we are aware. it appears tha t the smallest scale of the turbulence may be 
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determined by the strain rate rather than the viscosity. Direct eVidence of a 

similar plilenonemon in sheared turbulence will be presented in the following 

section. 

6. Sheared TUrbulence 

Homogeneous turbulence interacting with mean shear behaves in a manner 

very similar to strained turbulence. One can regard shear as a combin~tion of 

atrain and rotation; the effect of the rotational component is to weaken the 

effect of the strain somewhat.. The behavior with time is qualitatively simi­

lar to that for the strain case; after a period of decay, the turbulent 

kinetic energy beKins to increase. The anisotropy produced is such that the 

streamwise component of velocity has the largest fluctuations and the normal 

component has the &mallest fluctuations. 

Homogeneous sheared turbulence is more difficult to create in the 

laboratory than strained turbulence. The essential reason is that, because 

shear has a rotational component, it cannot be suddenly introduced l.nto the 

flow. It has to be created along with the turbulence. The apparatus used to 

p.!.oduce this flow is an array of parallel channels who&e flow resistances are 

arranged so that the velocity distribution at their exits is linear in the 

direction normal to the channel walls. In this way, a flow with a straight­

line mean velocity profile (uniform shear) is created. With careful 

adjustment, the turbulence can be made to be approximately uniform across the 

flow. The flow is then followed down the test section, and measurements of 

the turbulence quantities are made at the midplane of the test section at a 

number of stations. 

Simulation of this flow on a computer 11;;; very similar to simulation of 

strained flow. An initial isotropic velocity field is created in the manner 

described earlier. It is possible to let the flow relax before the shear is 

introduced, but this is not done. For this flow it is necessary to use a 

shearing coordinate system (one that moves with the applied linear mean flow) 

1n order to remove the terms that forbid the use of periodic bound.ary condi­

tions. The deforming coordinate system is shown in Hg. 5.12. it begins as a 

Cartesian system at t - 0 and deforms as shown until St - 1/2. At: this 

point~ the computational domain is on the point of becoming too nar~ow in the 

normal direc tion to support the use of per iodie boundary condi tions. This 
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flow per:m1ts the "remeshins" of the coordinate system in the manner shown 1n 

Fig. 5.12. The shear. then causes the coordinate system to become Cartesian. 

and the cycle is begun again. With the aid of this trick. it is possible in 

principle to carryon for as long as desired. In practice. the length scales 

in the streamwise direction eventually become too lons for the computational 

domain. and one is forced to stop on this account. Sheared turbulence thus 

passes through the same three periods as strained turbulence: development. 

realistic representation of physics~ and, finally. breakdown. 

The detailed behavior of the flow may depend on the initial conditions. 

but the trends are essentially independent of how the calculation is started. 

As one can see from Fig. 5.13. the behavior of the components of the turbu­

lence is very similar to that in the strain case. It also follows the exper­

imenral trends very well. 

McMillan and Ferziger. (1980) used the results of direct simulations of 

sheared turbulence as the basis of tests of subgrid scale models. The find­

ings differed in no important respect from tho,<;,e found for strained turbu­

lence; for this reason. we shall not give them here. However. we point out 

that the transfer of energy from the smallest scales to larger scales was 

noted in this case as well. Further evidence for this will be given below. 

Let us look at the results of the simulations in somewhat more detail. 

Many of the results are those of t'e1ereisen et a1. (l91:!l). Shirani et a!. 

(1981). and Rogallo (1981) which have not yet been published. Only partial 

tes\Jlts will be given. 7hree-dimensional spectra of the velocity field are 

sho'lln in Fig. 5.14. We see that there is a very strong shift of the spectrum 

of 'Lhe normal velocity component toward low wavenumbers or large scales. Care 

is required in dealing with the integral scales. They are the integrals of 

two-point correlation functions. some of which have regions in which they are 

negative. The negative regions can cause the integral scales to behave very 

erratically. The spectra probably show the length-scale behavior more accu-

rately. ,l 

The behavior of the pressure spectrum is rather remarkable. The initial 

condition has a peak at a relatively high wavenumber. The pressure spectrum 

near the end of the physically realistic period is shown in Fig. 5.15. The 

spectrum is broken iato two components. The decomposition is suggested by the 

Poisson equation for the pressure; the terms on the right-hand side of that 
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equation can be classified according to whether or not they contain the mean 

velocity .field. The component P 1 is a consequence of the applied mean 

field; it develops II k-5 spectrum, and the peak in the spectrum moves to the 

left with ad\iancil,l& time. The component P2 is due to the self-interactions 

of the turbulence and is much more broad-band in nature. nlis klas important 

consequences for pressure-strain modeling. 

Finally, we show the time behavior of the terms that contribute to the 

spectral behavior of the turbulent kih~tic energy .\s a function of wavp-m.unber; 

these are shown in Fig. 5.16. It is se~n that, as I,!xpected, the production is 

mainly in the large s('I.lles or low wavenumbers, and the dissipation occurs at 

bigher wavenumbers. F1.nally, we note that the transfer term, which redistri­

butes el'lergy among the wavenumbers is negative at low wavenumbers (indicating 

a transfer away from the larg"· scales) and becomes positive at higher 'iVllve­

numbers. All of this is as anticipated. The surprise is that the transfer 

again becomes negative at the highest wavenumbers, indicating that the trans­

f.er is from both ends of the spectrum to the center. Th13 cali be taken to be 

a confirmation of the finding of McMillan and Ferziger discussed earlier. 

Let us now look at some of the applications of these results to Reynolds­

averaged modeling. Since this is the first application of this type in this 

report, we should first look at the possibUities. The time averages can be 

replaced by averages over the flow field. Although the number of mesh points 

is large (64 3 • 2b2,144), they cannot be regarded as statistically indepen­

dent. A more realistic measure of statistical reliability is the number of 

large eddies captured in the computational domain. There are several ways to 

measure this--none of them exact--but the number of large eddies is small 

enough that the statist.ical reliability of the results is not very high. A 

good test of their validity is to compare results obtained from two simu­

lations which are identical except for the set of random numbers used to 

initialize them. 

From each realization of a shear turbulent flow, we may compute the 

averaged quantities as a function of time. Since the quantities vary slowly, 

the values at neighboring times are not independent, and should not be treated 

as if they are. For this reason, we chose to analyze the flow fields only at 

those times at which the gl'id is Cat'tesian. This is also convenient computa­

tionally. The result is that we have the averaged quantities that need 
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to be modeled at three or four time steps for el)ch of several realizations. 

Th~ data sets are thus much smaller then those used in subgrid scale model 

testing, and the kinds of tests performed need to ae,count for this. Further­

more, one needs to consider the effects of changes in the basic parameters of 

the flow. 

These flows contain t\;/O irldependent nondimensional parameters. TIle first 

is the Reynolds numbe r • 

number can be base,d. 

There are several length scales on which a Reynolds 

The integral scale suffers from the difficulties de-

scribed earlier, and we have used the microscale instead. The two should be 

related (possibly as a fUnction of Reynolds number) , so it does not matter 

much which length scale is used; however, if we try to apply the results to 

other flows, the choice of length scale may be very important. The second 

nondimensional number .is the ratio SL/q, where S .i.e the applied mean shear 

rate and q and L are the veloc.ity and integral length scales. We call 

thiB parameter the shear number, and it measures the ratio of an eddy time 

scale to the time sC3le imposed on the flow. It can also be shown that the 

shear number is proportional to the ratio of production to diss.ipation. 

From the results of a simulation, one can compute the Reynolds shear 

stress This is just a 

viscosi ty models using i.t alone. 

single quantity, and one cannot test eddy 

Eddy viscosity models could be tested by 

asking whether the Reynolds stress tensor, 
1 2 

RiJ - < uiu j > - ~ q °ij' is 

proportional to the rate of strain tensor 

2v_S 
rij 

• 

Since the model could not be tested directly, we computed the "constant" in 

the model defined by 

- • CqL (5.4) 

and correlatee it as a function of the two nondimensional parameters given 

above. The result showed that C is nearly inverse to the shear numbO!r, 

which is equivalent to saying that < u1 u 2 >/< q2 > is near,ly constant, note 

that this result is incompatible with C's being a true constant. On further 

investigation, it was found that all components of the Reynolds stress anisot­

ropy tensor: 
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• (5.5) 

appear to become cons tant at long times in homogeneous shear flow. It is 

impossible to carry the calculation far enough to determine whether this :is 

really the case or whether the bij simply change v(~.ry slow.ly 1n the later 

stages of this flow. We are of the opinion that there i6 asymptotic strue­

tural similarity in this flow; this assumption has been the basis of Bome 

recent models. In many other shear flows, < u1u2 >/< q2 > .La approximately 

constant over a large part of the flow; for example, in the boundary layer 

this holds except for the region close to the wall. 

Another example of model testing with these simulations is provided by 

the pressure-strain terms. We showed earlier that the pressure can be 

considered to be composed of two parts, one arising from interaction of the 

turbulence witlt the imposed mean field and the other a purely turbule\\t 

quantity. The corresponding decohlposition of the pressure-strain terms is 

made by many modelers. 

~'or the part of the pressure strain terms proportional to the mean strain 

(the "rapid" terms), one can show that, if one allows only tenD6 whir,h are 

linear in the anisotropy of the Reynolds stress, the model contains only a 

single constant, which for the 

(l97b»: 

> :: 

1,1 component can be written (Reynolds 

2 (5.6) 

7.'here are similar expressions for the other components. Given the computed 

values of the rapid part of the pressure-strain term, we can calculate a value 

of the "constant" for each of the four ten(~or components that are nonzero. If 

the model is correct, the values obtained should be the same for each tensor 

index and all realizations. The reFlults showed that the "constant" is nearly 

independent of the Reynolds and shear numbers, but it varies by a factor of 

nearly seven among the various components of the tensor. These results show a 

deficiency in the model and suggest that an improved model should be possible, 

but we have so far been u.nable to suggest one. 
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The pa;(t of the pressure- .. train term that results from purely turbulent 

interactions (the "Rotta" term) are usually modeled by: 

(5.7) 

This model is based on the notion that the effect of these terms is to return 

the flow to isotropy. It, too, is easily tested by the method used for the 

rapid term. It was found that the "~onstant" displays a great deal of 

variation with Reynoldo numbf.tr, and many of the values were below the value of 

2 required for return of the turbulence to an isotropic state. 

Furt.her investigation showed that the anisotropy of the dissipation does 

not behave as had been expected. It is generally assumed that the dissipation 

is isotrop:l.c at high Reynolds nambers but may be anisotropic at low Reynolds 

numbers. Thus we expected to find a strong Reynolds number dependence of the 

anisotropy o,f the dissipation. In fact, we found almost no variation with 

microscale Reynolds number in the range from 10 to 100 (see Fig. 5.17). This 

does not mean that the dissipation cannot become isotropic at still higher 

Reynolds numbers, but it does suggest that the assumption of isotrony may be 

questioned. 

Since the anisotropic component of the dissipation acts to reduce the 

isotropy of the Reynolds stress tensor, it should be included with the 

pressure-str~in term. When the combined terms are modeled, it is found that 

the variation of the "constant" with Reynolds number is greatly reduced (see 

Fig. 5.18), and the model is fairly good. Modelers who assumed the dissipa­

tion to be isotropic have got ten reasonably good results bec,ause ehe aniso­

tropy of the dissipation is implicitly included in their models. 

This is a sample of some of the results obtained by Feiereisen et a1. 

(1981) and Shirani et a1. (1981). The reader is referred to those reports and 

forthcoming papers for more complete details. 

7. Compressible Turbulence 

It is possible to make a compressible version of the homogeneous turbu­

lent shear flow treated in the preceding section. One need only make the 

velocity gradient large enough that the velocity difference across a large 

eddy is a significant fraction of the sound speed. It is not possible to 
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produce this flow in the laboratory, the large vi.!locity differences would make 

itimpo8s:1ble to ma.lntain homogeneity. This i8 untortunntc ~ bi~causc it lueans 

that we have to believe the results of the calculation w~tl'out experiment.ll 

verification. We can, however, check the results at low t')Jch number against 

the incompressible experiments. 

'1'0 compute thi8 flow, the major change we need to make from the incom­

pressible case is that the full set of compressible equations must be used. 

One can show that a linear velocity profile is a solution to the steady equa­

tions, and this solution can serve as the source of the shear imposed on the 

turbulence. In compressible computations (cf. BaUhaus (1980», it is (',ustom­

ary to use the continuity, momentum, and energy equations in conservation 

form; the dependent variable in the energy equations is usually the total 

energy (s tagnation enthalpy). However, in the present case, this equa don 

cannot be used without destroying the homogeneity (feiereiscn et a1. (l~\H), 

tiO we are forced to treat the enthalpy as one of the primary dependent vari­

ables. 

The most popular numerical methods for the compressible equations are 

designed to relax the solution to a steady state as qUickly as possible. They 

are not t~me-accurate~ that is, they do not produce an accurate picture of the 

relaxation to steady state, and there.fore they cannot be u~ed for the purpose 

we have in mind. Instead, we have used a at.andard explit;..1t method. The 

fourth-order Runge-Kutta method was chosen. The fact that all of the compres­

sible equations contain time derivatives means that one does not need to solve 

a special equation for the pressure. All variables are advanced in time, the 

variables which are not explicitly computed from the differential equations 

are obtained from equations of state. 

Morkovin (1963) hypothesized tha t compressible turbulence behaves very 

much like incompressible turbulence, and most models are based on this assump­

tion. For most of the quantities in homogeneous turbulent shear flow, this 

hypothesis turns out to be correct. Most of the differences between the two 

cases are small, so we shall concentrate on the few cases in which the differ­

ences are significant. 

The major difference between the incompressible and compressible flor.t/s 

(dt least when the turbulence Mach number is not too large) is due to the 

appearance of acoustic waves in the latter case. The acoustic waves that are 
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most apparent are those propagating normal to the shear. and we expect the 

quantities whi,<.!h can be affected by acoustic waves to show the IDOst important 

differences from the incollipreu1ble case. 'lbe largest change is in the 

fluctuating velocity component normal to the sheaf; it is reduced relative to 

the incompressible case. 

The most striking dUrel'ence between the two flows is in the pressure and 

the terms associated with it. In the incompressible case!. the pressure was 

decomposed into two parts: one ar1&ing from the mean flow that produces the 

shear and another that is ent:lrely due to the turbulence. In the compressible 

case. there is a third term due to the presence of acoustic waves. 'Ibis term 

turns out to be significant even at fairly low ,Mach numbers. 

Of course t the pressure-strain terms are also affected in the same way, 

there are now three of them. It turns out that the third term behaves like 

the rapid tea:m--rhe one due to the mean shear--and can therefore be combined 

with it. However. the "constant" is now a function of the turbulent Hach 

number in addition to the two dimensionless lJarameters of the incomp,ressible 

cllse--the Reynolds and shear numbers. The result.1ng constant was fit as a 

fUnction of these three parameters. 'lbe re~ults are shown in ~'ig. 5.19. and 

th~ Mach number depi,~(ldence is found to be significant. 

Further details and results for this flow can be found in the report of 

Feiereisen et al. (1981). 

8. Mix:tng of a Passive Scalar 

By definition. a passive scalar is any quantity that can be convected by 

a flow and diffuse through it without affecting the velocity field. Ther.e are 

many applications that require knowledge of how a passive scalar behaves. any 

problem in which heat or mass transfer is important is in this class. Under­

standing the mixing of a pas~~ive scalar is also a preliminary to handling 

reacting flows, including combustion. 

A passive scalar could be introduced into any flow treated in this chap­

ter. In fact, only two of these have been done experimentally, these are 

isotropic turbulence and sheared homogeneous turbulence t so these are the 

cases which have been simulated. One also has to decide whether the scalar 

has a mean component or not. In the ex:periments. isotropic turbulence has 

64 

1 
J 



;0 ..' -~ •• ~- ~ ~ .. ....,... ...... .--..._." _._- -

been mea.ured wi thout a mean gradient of the .caler, and the shear flow hal 

been performed both with and without Ii mean Mt;alar gradient. '1'0 facilitate 

compad.on with thele experiments, iaotropic turbul.ence was simulated with an 

iaotropic Itcaler Held, and the .hear How had a mean scalar gradient. 

The equation de.criblng the Icalar concentration is: 

• (5.8) 

If there is a mean scalar field, it 1& subtracted from the total scalar field 

to obtain an equation for the fluctuating scalar field. The velocity field is 

also decomposed into itl mean and fluctuating parts. The resulting equation 

for the scalar fluctuations has the same difficul ty as the equation for the 

velocity field--the mean shear and mean scalar gradient terms do not admit the 

use of periodic boundary condi Hons. To remove this problem, the coordinate 

traneformatior made for the momentum equations has to bp. made here as well. 

It: is possible to compute the velocity field prior to the computation of the 

dcalar f:teld, but this would require stori08 an enormous data set on tape and 

transferring it back into the machine as needed. For this reason, the 

velocity and scalar fields were computed simultaneously. The numerical 

methods used for the scalar field are identical to those used for the veJ.Qi;;lty 

field. 

In the case of the isotropic field, the most important items to study are 

the decay rates of the vel.ocity and scalar fields. The scalar field follows a 

decay law similar to Eq. (5.2): 

(5.9 ) 

where c' is the fluctuating part of the scalar field, Le., c· < c > + c'. 

We wish to look at the ratio min. The parameters on which this ratio depends 

are the Reynolds number and the Prandtl or Sclunidt number, which is the ratio 

of kinematic viscosity to diffus!vity (Sc· V/D). It was found thllt the 

scalar decays more rapidly than the velocity field when the Sclunidt number is 

less than l,nity and more slowly than the velocity field when the Sclunidt num­

ber is greater than unity; this is no surprise. The dependence of the ratio 

min on Reynolds number also depends on whether t.he Sclunidt number is less 
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than or greater than unity. For Sc < 1, it is found that the ratio mIn 

decreases with increasing Re, and vice. versa for Sc > 1 • 

The cases which include shear and a mean gradient of the scalar were ana­

lyzed in a manner tiimilar to that used for too homogeneous shear flow. An 

important result 1s that the COh9_'lior of the scalar field becomes independent 

()f the in1Ual conditions after a ~hort time. Its properties depend almost 

Eintirely on the velocity field and the mp.an gradient of the scalar. 

The next qllEtntity studied was the scalar flux < uic >. This quantity is 

usually modeled by gradient diffusion: 

• (5.10) 

In the standard case, the concentration gradient is in the same direction as 

the velocitj' C~'ldient; th~ nonzero gradients are au1 /ax2 and ac/ax2 and 

there are two nonzero eddy diffusivities, D12 and 022 , The important one 

in most applications is 1.122 ' It was computed for a number of different val­

ues of the dimensionless parameters of the flow. One can form the turbulent 

Prandtl/Schmidt number, Pr T , by taking the ratio of the eddy viscosity to 

the eddy d1ffusivUy. A number of modeh have been proposed for PrT , and 

the ones that were recommended most strongly in the literature were tested. 

None of them was found to be very accurate. A new model was constructed which 

gives Dij in terms of bij , the anisotropy of the Reynolds stress tensor. 

Although this model models a low-order quantity in terms of a higher-order 

quantity, it can be made into a useful correlation by using other correla­

tion6~ this model was found to be a significant improvement over the onee 

suggested in the literature. A test of the new correlation is shown in Fig. 

5.20. 

It is also possible to compute the other nonzero elements of Dij • Duc 

to the design of the computer program, this was not done for the full range of 

cases for which 022 was computed. Also, since the elements of the diffusiv­

ity tensor depend on the nondimensional parameters and, because it was not 

possible to match the Reynolds number u~ed in the experiments, a quantitative 

comparison with experiment is not possible" However, the results are in good 

qualitative agreement with the data. 
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We also correlated the mean-square scalar fluctuatL:lns as a function of 

the no.o<Umeos.ional parame tert~ • 

approximation, 

The princ.ipal finding was that, to a good 

• (5.11) 

One can also construct models for the scalar field based on the ideas 

used for the velocity fhld. In particular, one can derive equations for 

< c2 > and < cU2 > , which are similar to the Reynolds stress equations. 

The terms in them that are most difficult to model are the correlations be­

tween the fluctuating pressure field and the gradient of the fluctuating 

concentration They are analogouR to the pressure-strain 

terms, and 

particular, 

can be used 

models for them can be based on models used for the latter. In 

the pressure decomposition used in deriving pressure-strain models 

here as well. 

The model for the rapid term (the one containing the pressure der.ived 

.from the melUl shear) contains no adjustable constants. Ibwever 1 we introduced 

an arbitrary multi.p11cative constant and found good agreement between the 

exact and 

indicatIng 

model re!:iults. The 

that the arguments 

constant was found to be approximately 0.5, 

made in deriving the model are; deficient. 

Another model suggested by Lumley to overcome some of the undesirable prop­

erties of the first model was tested and found to be less accurate than the 

first model. 

The term arising from the component of the pressure that depends entirely 

on the turbulence was modeled by an analog to Eq. (5.7). 'l'he results show 

this model to be quite good--about as good as the modified Rotta model de­

scribed earlier. 
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Chapter VI 

1. Overview 

Fr:ee shear flows are one of the classes of flows of major technological 

interest. They occur in many kinds of devices, and we shall begin this 

chapter: by brieflY describing the types of free shear flows. 

Fr:ee shear floW8 can be divided into three majQr categories, ther.e are 

also more complex cases. The thrP'e major types at'e: 

1. .~Uxing layer. This is the flow that: occurs when two paraliel flows 

of: different velocity are brought together. tn the laboratory thh flow is 

created by having the fluid of di.Herent speeds on opposite sides of a divid­

ing plate. At the end of the pl(~te, the two streams come into contact, and 

the thickness of the lay~r in wh:i.ch the velocity gradient occurs grows with 

downstream distance. 

2. Jet. A stream of: high~veloc1ty fluid issuing from an opening is 

called a jet. As the high-speed fluid mixes with the surrounding lower-speed 

fluid, the maximum velocity of the jet decreases, and the rate of growth of 

its thic.kness also decreases. The mOl:it commonly stud:i.ed jets are the plane 

and round ones, but others, such (is the rectangular jet, have been studied. 

3. Wake~ A wake is similar to a jet, but it is a velocity defect in an 

otherwise uniform stream. Like the jet., the wake has decreasing velocity 

gradients with downstream distance. Most wakes result frol1l flows around 

bodies. The wakes form by merg:lng of the boundary layers behind the body or 

from separation of the '.>ounda.ry layers. 

We should also mention: 

Complex shear layers. This is not a single type of flow, but a category 

containing the flows that do not fall int.o the abo'Ve categories. Curved jets 

and wakes are quite commoa. Another important flow is one in which a laminar 

boundary layer separates, creating a free shear layer. The free shear layer 

then undergoes transit.ion to a turbulent free shear layer which grows so 

rapidly that it soon reattaches to the surfa\':,e. This is a common mechanism of 

transition from a laminar to a turbulent boundry layer. 
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It b abo important to distinguiflh the eady phases of fr.ue shear flows 

from the far-downstream flows. The eady stages are sensitive to the initial 

conditions. Fully developed free I'Jttear layers are usually self-simllar in 

nearly all of the measured variables and grow according to a power of the 

downstream distance. A majority of free shear layers occurr.ing in applica­

tions are of the early type, but fully developed cases are also of importance. 

To date, there have been large eddy and full simulations of mixing layers 

and full simulations of wakes. The jet has not yet been simulated (although 

it probably will be in the near future). Complex free shear flows have also 

not yet been attempted. Thl.,s we shall devote the rest of this chapter to the 

mixing layer and the wake. 

Nearly all laboratory free shear flows develop with downstream distance. 

It is much easier to simulate a layer that develops in time. One must be very 

careful in comparing the two cases. Consider the mixing layer. Fluid ele­

ments on the two sidec; of the laboratory shear layer have been in the flow for 

differing amounts of time. As a result, the development of the flow is not 

syuunetric and the plane on which the mean velocity is the average of the two 

free stream velocities is inclined. The simulated mixing layer is, however, 

symmetric. The two flows may be compared if, ill the laboratory flow, the 

velocity difference across the flow is small compat'ed to the average veloc­

ity. This experiment requires a long apparatus, but cases exist which meet 

this criterion fairly well, and these are the ones to which the simulations 

should be compl'(red. 

2. Mixing Layer 

As disc,ussed above, this is the simplest of all of the free shear flows. 

Despite the apparent simplici.t:y of this flow and the large number of experi­

ments that have measured it, there is still controversy about it. Le t us 

consider the fully developed mixing layer first and the t,\'Cl'l.lsitional case 

later. 

It is generally agreed that the velocity profile of the fully developed 

mixing layer is sel f-similar, and so are the components of the Reynolds stress 

tensor. Another point of general agreement is that the growth of the free 

shear layer is linear in the fully developed region. The major point of 

disagreement in this regime of the flow concenlS the rate of growth of the 
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layer. For the mixing layer sketched in Fig. 6.1 t the growth ·tate parameter 

is conventionally defined as: 

d6 
dx • (6.1) 

The measured values of (1 cover the range 0.06-0.16, a much wider range 

than would be expected for a flow this simple. Birch (1980) ree.ently reviewed 

the data and believes that there is a single correct value of this parameter t 

which he believet'l to be o. US. However, no reason was given for the spread in 

the data. 

There is less agreement about the early stages of the shear layer. One 

group t including Roshko and his coworkers and Browand and his coworkers t among 

others, believes that this part of the flow is essentially two-dimensional. 

In this view t the initial laminar shear layer rolls up into two-dimensional 

vortices, which then agglomerate or pair to form larger vortices of the same 

type (with larger spacing). This process has been observed to continue for 

several pairings. At this point the flow reaches th~ end of the apparatus. 

According to this view t th.~ important process in the growth of the mixing 

layer is the pairing of the vortices" However t there is evidence that stream­

wise vortices fom in this flow. This is a kind of three-dimensionality, but 

.it is quite regular rather than chaotic. 

The other view t held by Bradshaw and others , is that the lIIi xing layer is 

normally strongly three-dimensionul and chaotic. According to this picture, 

the highly two~dimensionhi,l layers that some experimenteL's have observed are 

the result of careful arrangement of the initial conditions and design of the 

experimental apparatus. 

Large eddy simulations of the mixing layer were made by Mansour et ale 

(1978). They used the vorticity equations rather than the primitive equations 

because the vorticity is confined to a relatively narrow region of the flow. 

In fact, it appears that it makes little difference which set of equations 

is used. The subgrid scale model had to be modified to account for this 

change. At the top and bottom of the computational region, no stress boundary 

conditions (see Section 4.5) were applied. Fourier sine and cosine transforms 

were used in the normal direc tion. 
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This work showed that it is possible to explain the rapid growth of the 

mixing layer by vortex pairing. The flow was begun with an initial condition 

that contained well defined two-dimensional vortices. Ai though there were 

only two vortices in the computational domain, the boundary conditions imply 

that they are part of an infinite array. Various perturbations to a regular 

vortex array were tried. It was found that small perturbations would cause 

the vortices to pair. Nalll,rally, the pairing occurred more a:apidly when the 

perturbation was larger. Surprisingly, it was found that the mean velocity 

profile (defined by averaging the velocity over a plane) was self-similar and 

that the ~rowth of the mo:nentum thickne&s of the layer was very 'learly linear. 

A nlIDlber of three-dimensional perturbations on this basic flow were also 

made. First, small~ random, three-dimensional disturbances were added to the 

initial conditions. The three-dimensionality was somewhat amplified by the 

pairing process, but there were only minor changes in the uverall properties 

of the flow. Another variation was produced by the addition of streamwise 

vortices to the initial condition. The streamwise vortices were distorted in 

the pairing process, and they produced sHghc kinks in the large two-

dimensional vortices that r:esult from the pairing. It was conjectured that 

the kinks would produce larger-scale instability of the mixing layer and would 

then lead to cov~iderable three-dimensionaltty, but this could not be demon­

strated because che number of grid points was severely limited, 

A simulation of the initial stages of the mixing layer was made by Cain 

et a1. (1981). This simulation used numerical methods deser ibed in Sec tion 

4.5. 'the transformation of an infinite region to a ii,nite one was used, and 

(Che modi.fied Fourier method of taking spatial derivatives in the normal direc­

tion was used. The initial profile was a laminar mixing layer with a small 

random disturbance; the disturbance was strongest on the center plane of the 

layer. 

The resul ts turned out well. Use of the coordinate transformation and 

the Fourier method allowed the method to be continued until the original layer 

had grown by nearly a factor of ten in some cases. No effect of image layers 

was found, and, in most cases, the calculation was stopped only because the 

layer developed horizontal scales which were too large to permit application 

of periodic boundary conditions. 
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Several variations in the computational method were tried. A full 

simulation was made; this calculation was stopped because the turbulence 1n 

the small scales became too strong. The calculation was repeated with fil­

tering, but no subgr1d scale mOdel; the problem with the small scales disap­

peared, and the calculations could be carried almost twice as far in time, at 

which point the difficulty with the large scales appeared. A final calcula­

tion with both filtering and the subgrid scale model was made; it differed 

only a little from the preceding case. 

taincd with filtering but no model. 

Thus, most of the results were ob-

Simulations were made with three levels of initial disturbance. In the 

low initial turbulence cases, the turbulence intensity was four orders of 

magnitude smaller than that of a fully developed turbulent layer; this might 

represent the behavior of a mixing layer produced from laminar boundary 

layers. The medium initial turbulence level Was two orders of magnitude 

stronger. The high initial turbulence level cases started with turbulence 

intensities nearly those of the fully develuped l,ayer; these might represent a 

mixing layer produced from turbulent boundary layers. Cases which differed 

only in the set of random numbers used to generate the initial conditions were 

also run. 

The results show that the low-turbulence cases produced a layer in which 

the momentum thickness grew very slowly at first but, after a latency period, 

grew linearly with time at a rate similar to that observed in experiments. 

The medium-level case gave a shorter latency period and a slightly slower rate 

of growth at later times. Finally, the high-turbulence level cases gave 

almost no latency' period at all but a still slower grotl1th ra te. These results 

are in qualitative agreement with experimental data. They are shown in Fig. 

6.2, 6.3, and 6.4. 

All of the cas(;s have mean velocity profiles that are self-similar. 

The growth of the turbulence level on the center plane of the mixing 

layer is shown in Figs. 6.5, 6.6, and 6.7. In the low-turbulence case, the 

turbulent kineti.c energy grows exponentially in the early stages and then 

levels off; the exponential growth rate is close to that of the most rapidly 

growing mode according to linear stability theory. The mediwn initial turbu­

lence cases show similar growth, but the exponential period does not last as 

long. The high initial turbulence cases grow only slowly as they begin near 
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the level for a fully developed layer. In all of the cases the kinetic energy 

of the turbulence overshoots the v,alue for the fully developt!d layer before 

settling down. This has been observed in some experiments. 

The proftle of the turbul.:nt kinetic energy is shown for a typical case 

in Fig. 6.8. The initial profile is too broad compared to the fully develop~d 

profile. This is correc.ted, but the profile becomes too thin before the final 

s ta te is reac hed • 

The simulations were also used as the basis for flow visuali~ations. A 

grid of "dye lines" was placed on the center plane of the flow at the initial 

time. The ones in the streamwist! direction are essentially vortex lines in 

the low-intensity cases and remain so by Helmholtz's theorem. The dye lines 

are moved with the flow, and pictures are drawn at various times. The initial 

pic.ture is shown in Fig. 6.9, and the final resu.l.t.: is shown for two cliffe'tent 

initial fields in Figs. 6.10 and 6.11. It is clear that the layer has rolled 

up into vorUces, but they are much mor'e two-dimension;;).l in one case rl.dn the 

other. We believe that the three-dimensional shear layer does roll up into 

vortlcal structures, but that these structures do not have spanwise uniformity 

except when precautLons are taken to insure that the three-dimensiol~l distur­

bances are weaker than the two-dimensional ones. 

The above results were taken from the report of Cain et al. (1981). 

Two-dimensional simulations of the mixing layer were made by Patnaik., 

Sherman, and Carcos (1976), Acton (1976) I Knight (Li7:;) , Ashurst (1979), and 

Riley and Metcalfe (1980), among others. In these simulations, the shea,r 

layer rolls up into an array of vortices. The principal object of thesi~ 

studies was the determination of the effect ot initial perturbations on thle 

speed and nature of the rollup of the layer. These papers cant02in interesting 

results, but, as they are essentially outside the topic of this report, they 

are not covered here 1n detail. 

(o'u11 simulations of the turbul(1!nt mixing layer were made by Riley and 

Metcalfe (1980a,b). These simulations are similar to the work of Cain et al., 

which they predated. Their calculations are performed at 10v Reynolds nUIi.ber 

so that no subgrid scale model Is required. Their initial condition is 81.mi­

lar to the high initial energy condition of Cain et al., but they also ran a 

number of cases in which a deterministic perturbation Was added to the initial 
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conditions; this perturbation was the most unstable wave of linear theory. 

'L'hey observed that the layer tenJed to roll up into vortices and found linear 

glowth of the thickness of the layer, self-similarity of the velocity profile, 

and, in the case with the largest numb~r of mesh points, c,onstancy of the 

turbulent energy in the center plane of the layer. All of these ob~ervations 

are in agreement wHh experiment and the computations described above. An 

important contribution of this work is the demonstration that the propertie~ 

of the mixing layer can be reproduced in a simulation which contains no large 

vortical structures in the initial conditions. They also showed that the 

addition of the perturbation corresponding to the ftl',lst unstable wave of linear 

theory to the initial condition reduced the rate of growth of the layer. 

3. Wakes 

As stated in the introduction to this chapter, wakes are flows in which 

there is a defect in the velocity profile. As a Hak.e develops, the velocity 

profile widens and the velocity gradients decrease. These factors and the 

fact that the rate of growth of the length scales is not as rapid in wakes as 

in mixing layers make wakes a little easier to simulate than mixing layers. 

There are several types of wakes. The claSSification plays some role in 

determining how the flow will be simulated. A selr-propelled body (vne that 

drives itself through the fluid) leaves awake in which the net momentum is 

zero; the momentum added by the propulsion just equals that due to the drag of 

the body. On the other hand, the wake of a towed borly (or a body in a wind 

tunnel) has a net momentum deficit. Finally, both types of wakes can occur in 

plane, axisymmetric, and other geometric arrangements. 

The first full simulation oi a momentumless wake was made by Orszag and 

Pao (1974). Their work has been extended to the simulation of towed wakes by 

Riley and Metcalfe, in a series of papers. They concentrated mainly on the 

axisymmetric wake, because most of the experimental data is for this ~ase. 

Despite the axisymmetry of the flow, they used a rectangular: grid in their 

simu!f.\tions; the axisymmetry is inserted via the initial conditions. 

In some respects, their simulations behave very much like the simulations 

of the preceding section. As in all other flows, a short time period is 

required for the initial condition to develop into a physically realistic 

flow. During this period there is relatively little broadening of the wake 
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and sOlie decay of the turbulence. The higher-order statistics also change 

from their original values during this period; in particular, the velocity-

derivative .kewo'!.. increa.es. 

during this phase. 

Finally, the vorticity tendt. to concentrate 

Figure 6.12 ShoWI the decay of the maximum mean velocity and the maximum 

axial component of the turbulence. Several experiments have shown that these 

quantities decay a. x-2 /3 with downstrealtl distance. Since the simulated 

wakes are temporally developing, the analogous behavior would hav~ these quan­

tities decay a8 t-2 / 3 • The figure shows that the maximum mean velocity £01-

lows the expected similarity behavior quite well. The turbulence decays a 

little more slowly than expected. Two different realhaUollt!l of this flow are 

shown. 

Similarity arguments suggest that the radii of the wake and of the turbu­

lence pr.ofile shOUld increase as tl/J. the spatially decaying wake radius 

increases in radius as xl / 3 • F1 gure 6.13 shows that the simulation repro­

duces this behavior quite well. The decay of the integrated mean and turbu­

lent energies are also well predicted. 

The velocity profiles behave in a self-similal:' manner after the initial 

period. They agree quite well with the measured protiles except in the wings 

of the profile; the reoul ts are shown in Fig. 6.14. The Reynolds shear stress 

is also reasonably well predicted. as are some of the higher-order stati8ti~s. 

To conclude this chapter, we note that full simulations seem to be able 

to predict free shear flows quite well. The major stumbling block to continu­

ing the simulations further in time is the growth of the length Acales with 

downstram distance or time. This can be partially cured by doing the simula­

tions with larger numbers of grid points. It would be more efficient to re­

scale the problem after some time, but no way has yet been found to do this 

without invoking vety serious approximations. 
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Chapter vn 

WALL-BOUNDED Ft.OWS 

1. Overview 

The hst group of flows that we shall consider in detail in this report 

is the wall-bounded flows. This is the most studied Bingle class of flows 

because of its many important technological applications. Despite the enor­

mous amount of analytical and experimental attention lavished on these flows. 

there remains a great deal to be done. 

The most important single flow in technological applieations is the tur­

bulent boundary layer. The standard ca~e for this flow is the boundary layer 

in the, absence of "extra r.ates of strain"--no pressure gradient. curvatur'>. 

rotation, suction. blowing. or roughness, etc. A great deal is known about 

this flow. In particular, the mean velocity profile has been well measured t 

and one can "predict" its behavior. (Quotes are used because all of the pres­

ent prediction schemes rely heavily on experimental data and should be called 

"postdictive" methods.) However, the mechanism by which momentwn is trans­

ferred to the wall is only partially understood. Furthermore. the information 

that is available about the mechanism has not been used in model construction. 

Thus there is still much to do. It is hoped that highe['-lcvel simulations can 

play <l role in this. but it 1s clear at the o'41tset that the task is nct easy. 

It is known that the mechanism of momentum transfer to the wall in the 

boundary layer. :1.8 connected with the flow structure observed close to the 

wall. In the near-wall region, the flow consists of alternating "streaks" of 

high- and low-speed fluId; the streaks are very long in the streamwise direc-

t:1 "~( and thin in the spanwise direction. Their dimensions are believed to 

scale with the shear stress, which is nearly constant in the vicinity of the 

wall; however, their size relative to the boundary layer thickness is quite 

Reynolds number-dependent. The mechanism of momantwn transfer involves lift­

ing of the low-speed streaks from the wall. When they are lifted. they are 

carried a considerable distance into the boundary layer and exchange momentum 

wi th th~ fluid they encounter there. The existence of streaks and their 

importance in the flow plays a very impottant role in the sim~Jlation of wa11-

bounded flows. 
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The boundary layer is made up of .ut least three /;ublayerB. 'll,ere is ,10 

inner layer in which the viscosity plays an important tole (the vhcoul;l Hub­

layer), here the length scales are dependent on the shear stcess and I~re smal.l 

compared to the boundary layer thickness. The ollturr;egion Q,f the flow is 

essentially inviscid and behaves much like a free sheut' low. In fact, H is 

frequently called the "wake" region, .in the wake region the length scales ate 

approximately 0.1 of the boundary layer thickness. Between these two .re­

gions 1s one in which the shear stress is nearly constant and the viscosity is 

not important. In this region, the mean velocity has a logarithmic profile, 

and it is called the logarithmic or buffet region, here the length scales 

increase linearly with distance from the wall. 1111s knowledge is very impor­

tant in higher-level aimulations of these flows. 

The turbulent boundary layer increases in size with downstream distance. 

This is dif.ficult for higher-level simulations to handle at the present time. 

One can consider a temporally developtng boundary layer, this has been done 

and will be described in the last section of thb chapter. Unfortunately, the 

velocity profile of the time-developing layer i.s different £rolll that of the 

spatially developing layer, and the difference is significant because wa11-

bounded flows are quite sensitive to small changes in the velocity profile. 

Motit of the attention to date has been given to turbulent channel flow. 

It is the ideal choice for Simulation, because it is the one true "equilib­

rium" flow of the class. It reaches a sta te at which none of its prop2rties 

changes with dmmstream distance. ~spite this, the phySir;:.s of the near-Wall 

flow is similar to that of the boundary layer. 'rhus this flow can be simula­

ted with periodic boundary ~onditions without making any important assumptions 

that might affect the results. Of course, one must be cateful that the usual 

criteria needed for the application of periodic boundary conditions be main­

tained. This flow has been simulated a number of times and will occupy the 

major part of this chapter. 

Another very important issue in wall-bounded .flows is that of transi'­

tion. Laminar boundary layers are much more stable than are laminar .free 

shear flows, but transition takes place when the Rf.lynolds number is high 

enough. The ability to delay transition would enable us to reduce the drag on 

bodies, with obvious and important consequences. This is one of the major 

reasons why ttansi.tion has received so much attention. 
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Transition in boundary layeu is send tive to relatively small changes in 

the velocity profile. \ Keeping the disturbnnce level small can delay 

transition for a long way. On the other hand, minor disturbancE:s. such as a 

bit of roughness. can trigger transition. 

Theory predicts that laminar channel flow is stahle with respect to omaH 

disturbances at Reynolds numbers below about 5700. One can also tihow that it 

is more unstable witllrespect to large disturbances. but the predicted Rey­

nolds number of transition is smaller than the Reynolds number at which 

tunsitlon is observed to occur. An explanation vt! this phenomenon will be 

given later in this chapter. 

The next section 101111 take up the computation of fully developed. channel 

flow. There are two approaches to doing this. and we 6hall discuss them and 

giVe results obtained by both al>proaches. In particular. We shall describe 

recent results that promise tn provide a greae deal of int€resting information 

about this flow. 

the last section of this cnapter will consider transition in wall-bounded 

flows. 'rhis problem has been done recently for both the channel and the tim.e­

developing boundary layer. A number of interl'lsting tesults have been pro­

duced, and there is conSiderable hope that still more will be forthcoming in 

the near future. 

2. :!"ully l~veloped Channel Plow 

The dynamical behavior of fully developed channel flow is simillir in many 

respects to that of the boundary layer. In particular, the inner layers of 

the two flows are quite similar. The major differences are that the channel 

flow requires a pressure gradient to overcome the frictional forces and that 

the channel flow has no region in which the flow is not completely turbuient, 

outside the boundary layer, the flow is potentiaL 

Of patticular importance in the simulation of the channel flow is the 

behaVior of the length scales. What makes these flows espee,ially hard to 

simulate is the fact that the spanwise length scales are much smaller near the 

wall than in the central portion of the flow. Thl s means that a grid that is 

well adaptlad to capturing the streaks near the wall will be much finer than 

necessary near the c,enter. On the other hand, a grid which is scaled for the 
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c~ntralregion \oIill not be able to sce the tltrcuka at all. 1'he vc;lriationin 

the J.en~th scales ln the direction normal to the wall is less serious, because 

a variable grid size can be used in this direction. 

1\10 approaches have been taken to simulllte channel How. In the first 

method, which was developed by Deardorffllnd ext(md~d by ,);)ch~lJn8nn and co­

\oIol:'kers, the wall J.8 not: treated explicitly. 'n,l,S !lVoids much ot the diffi­

culty with the small-scale structures that. 0(:'-:'01; IUMU: the wall, andteducet; 

the amount of computation considerably. The limit of the computational domain 

1s placed in the logarithmic region of the flow. because this :ta probably the 

best understl;)od part of the flow. Another argument put forwll):'d for: this 

method is that viscous effects prohibit the existence of an inertial 8ubrange 

in the inner layers. but one cxists .In, the bui,fer and wake regions. 'rhe 

difficulty with this method is that the boundary conditions at the top and 

bottom of the computational domain ar.e not well defined, and assumpticns mUBt 

be made. Also, this approach does not simulate much of the physics of tlu.~ 

flow and cannot be, used to ~tudy its structure and modeling. 

Deardorff assumed that the derivative of the stregmwise velocity in the. 

normal directin could bt: written as a sum of two parts, the first guarantees 

the existence of a l,ogarithmic tegion, and the second is responsible for the 

fluctuations. His expression is: 

• (7.1) 

where K is the von Karman constant (0.41) and AX2 is the distance of the 

first meRh pOint from the wall. This boundary condition assumes that the 

fluctuations of the velocity are the same in the normal and spanwise direc­

tions. The validity of this assumption 1s open to question, the reason tha t 

l.leardorff gave for favoring it is that it produced reasonable results. Ki.m 

(private communication) has tested this boundary condition and finds it is not 

good a tall. 

Schumann's assumption is that the shear stress and the velocity are tn 

phase at the first mesh point; according to Kim, this assumption is also 

inaccurate. Ma thematically» his assumption is: 

• 
< 't > 

101 

"'<"--u~>- U 
(7.2) 
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I,' where < u > is the mean velocity at the first mesh point, < 'fw > is the 

mean wall shear stress, and u is the instantaneous velocity. 

Fo r the subgrid scale model, ~ardorff used the Smagorinsky model. The 

only modification that he found necessary was the reduction o.f the magnitude 

of the constant in the model from the value obtained from theory~r the iso­

tropic decay simulations. 

Schumann modified the model. He I)ssumed that the subgrid t'lcale model 

should be compose( of two parts. The first is proportional to the time-mean 

velocity gradien~ at the particular distance from the wall, the second is 

proportional to the deviation of the instantaneous velocity from the time­

mean. He called these the inhomogeneous and locally isotropic components of 

the subg'rid aGale stress. He also used an equation for the subgrid scale 

turbulent kinetic . 1ergy, but ,found that it gave no significant improvement 

over an algebraic eddy viscoslty model. 

For the mean velocity profile, Schumunn obtained very good results. The 

results for the components of the Reynolds stress are also quite good. Schu­

mann also used his results fot' testing the Rotta model for the pressure-strain 

term. These results are shown in Figs. 7,1 and 7.2. It is interesting to 

note that the "constant" is different for the various components. However, 

one should be cautious about accepting these rsults, because the pressure is 

very sensitive to changes i.n the way in which the flow is computed, and we 

believe that large uncertainties must be assigned t(l these results. In fact, 

the results near the boundary seem to be due to the boundary conditions used. 

We shall have more to say about this below. 

Moin et a1. (1978) made the first attempt to solve the channel flow prob­

lem while treating t.he wall boundary conditions exactly. Doing this means 

that a nonuniform grid has t-o be used in the direction normal to the wall, the 

use ,')f Chebychev polynomials is an altet"native. 

One of the major difficulties with this method is that the length scales 

of t he flow become velY small near t hC1 wall, the local turbulence Reynolds 

number also becomes very small, and it is not clear that the Smagorinsky model 

can be used any longer. In fact, it is possible that the overall length 

scales of the turbulence will be smaller than the size of the ~rid in this 
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region. It is thcll improper to use the grid or filter tdze in the subgrid 

scale model. Instead, Noin et al. used the minimum of the Pralld tl mixing 

length and the grid size. TIlis modification is arbit..rary but is u simple 

method that appears to work. 

Another difficulty is that the smallness of the grid tends to make 

numerical methods unstable. There are two nondimensiol'lal numbers that deter-

CI,.:~\e the stability of a numerical 

and the viscous parameter 

method. They are the Courant numbl~r 

:l V6t/hx2. R()ughJ.y !1peak:i.ng, stability 

requires that both of these numbers be smaller than SOIlIC constant of the order 

of unity. It turllS "ut that the viscous condition is more I:ltringent near the 

wall, and if an explicit method were used, it would be neceSS8 ry to usc an 

extremely small time step. Consequently, a method which troats the viscous 

terms containing derivatives with respect to the l:orm81 coordinate implicitly 

was devised and used. Doing this meant that the I\ormal method of solving for 

the pressure via the Poisson equation had to be abandoned. We shall briefly 

describe the reVised numerical method • 

Most of the terms in the momentum equations ure time-differenced using 

the second-order Adams-Bllshforth explid.t method. The ex.cepUons are the 

pressure gradients and the viscous terms containing derivatives with respect 

to the normal coordinate, \'ofbich are treated by the imp:L:i.cit Crank-l~ic.olson 

method. The cOtH:1nuity equation, which contains no time d(~tivatives, is 

evaluated at the nr',' time step. The resulting set of t:lquatiOllG 1f lrourier­

transformed in both horizontal direct10ns to produce a set of equations which 

are essentially o,rdinar:y dif ferent.ial equa tions with -cespect to the normal 

coordinate. These are. finite-differenced by a second-order method, and the 

resulting set of equations is block-tridiagonal with 4 x 4 blocks. This 

system is eas:.Uy solved by a standard block-tridiagonal algorithm, and, when 

the resulting functions are inverse Foutier-tr~nsformed, we have the. velocity 

and pressure fields at the new time step. Kim and Hoin (1979) made improve­

ments on this method. 

The initial conditions were described in Chaptet· 3; tl""y consist of a 

mean profile, solutions obtained from stability theory, and random ,fluctua-' 

tions, The program was r:equired to run for Some time to <lGcertain that the 

turbulence wculd not de~ay and to develop the proper statif.) tics • Whel) this 

was done, it was found that the result.ing velocity Held contained many of the 
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features observed in the laboratory. In particular, the mean velocity profile 

was very close to the experimental one, and the fluctuating components were 

also quite close to the experimental ones. The most i.nteresting observation 

about the results was the tendency of the fluid near the boundaries to foX'm 

high- and low-speed streaks and for the Reynolds stress to be highly inter­

mittent in both time and space. All of this suggests that much of the physics 

is captured. However, the g,:id \V~flS not fine enough to resolve the small 

structures near the wall adequately (the "streaks" are too wiele), and the 

quantitative results ~1ave to be treated cautiously. Hoin et ale (1978) showed 

that this approach to simulating wall-bounded flows can succeed and indicates 

that better resolution would probably produce still bettt:!r results. The 

pre')sure-stra~.n correlations calculat.ed by Moin et a1. (978) differ consid­

erably from ti10se of Schumann (1973). One should be very careful about 

accepting any of these resul.ts without further confirmac.ion. The pressure'­

straill results are very sensitive to small changes in the flow, we believe 

that the trends (and the "splat" effect in particular) are correct, but the 

quantitative values are somewhat uncertain. 

Over the last three years, Kim and Hoin have improved the channel flow 

calculation i,n a number of ways. The principal improvement has been in the 

ability to use more grid points the original 64 x 64 x 64 grid and, in some 

recent cal~ulaLions 128 grid points have been used in one or two of the direc­

tions. They have also made Improlit:!111ents in the subgrid scale model and in the 

numerical method. 

Kim and Moin (1979) reported the results of 64 x 64 x 64 simulations 

with a model which damped the subgrid scale viscosity near the wall more 

strongly than the previous modeL We shall look at some of their' results. 

The mean velocity profile they obtained is compared with several experiments 

in Fig. 7.3. The existence of a logarithmic regIon in the flow with the 

correct slope is one of the major achievements of the whole of higher-level 

simulations. The profil(;: near the wall li\',~s below the expected profile (indi­

cated by u+ = y+ in the figure), and this is probably due to a weakness of 

the model in the region near the wall. The components of the turbulence are 

shO\oJn in Fig. 7.4; although the experimental data are not shown, the agree­

ment is quite good-,,-the experi.mental data show quite a bit of scatter. The 

pressure-strain terms are shown in Fig. 7.5. In the center of the channel, 
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these terms drain energy ffom the fluctuations of the streamwtse velocity and 

transfer it to the other components; thit, accords with expectation. However, 

near the wall there is a large transfer from the normal fluc tua tions to the 

spanwise ones. This had also been found by Noin et al. (1971;) and was unex­

pected. It is apparently due to fluid moving toward the wall being stopped by 

the wall. The vertical motions are converted into horizontal motions, and the 

result of this "splat" effect and the normal energy transfers is shown in the 

figure. Again, the quantitative [c!sults may be incorrect p but it is lI::ll1kely 

that the qualitative result is lncorrect. Hore recent (and mor.e accurate) 

results by Moin and Kim (l9tH) show a smaller, but still stgnificant, "splat" 

effect. 

ContourE of the fluctuating velocity on a plane parallel to and close to 

the wall are shown in Fig. 7.6, the presence of long streaks is obvious. A 

similar plot for a plane close to the cent.er of the channel is shown in Fig. 

7.7; there is no eVidonce of streaky behavior at this plane. A number of 

other plots of this kind arc given in their paper. 

In a more recent paper ~ Kim and Moin (1981) hav,e done calculations with 

still gr.eater resolution and further i~provements in both models and numerical 

methods. The results are qualitatively similar to those presented above but 

differ quantitatively. nley have also produced a simulated flow-visualization 

motion picture that duplicates most of the phenomena observed in laboratory 

motion pictures. nlis application of the results should play 8. very important 

role in the future. 

The splat effect is also seen ill the shear-free wall layer. This is 

simply a turbulence near a "Jall which is moving at the same mean velocity as 

the wall. The prec:lse nature of thin flow depends on the Reynolds nwnber. A 

simulation by Biringen and Reynolds (1981) captured most of the effects ob-

served in the experiments. 

detail here. 

However, we shall not review these results i.n 

3. TransHion 

As stated in the introduction, transition in boundary layers is a subject 

of great technological importance. However, transition is very sensitive to a 

nwnber of factors, including the precise velocity profile, the level of the 

disturbance, wall roughness, etc. As a result, transition experitrJfJots are 
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very difficult to perform reproduceably, and there is considerable scatter in 

the data. Naturally, simulations of these flows wi.ll be very sensitive to 

similar hctors. 'Oms, a great deal of care will be necessary to simulate 

these flows. 

Linear stability theory predicts that the lamir:ar boundary ; ayer profile 

is unstable with respect to disturbances that result in Tollmieu-Schlichting 

waves. 'Ods instabiJ.ity is mucb 'JS explosive than that of the free shear 

layer. It is generally believed that the Tollllllen-Schlichting waves grow 

until nonlinear effects take over and complex l.nteractions lead to the fully 

turbulent boundary layer. 

understood. 

However, the late stage~ of transition are poorly 

1be first direct simulation of transition in w~ll-bounded flows was made 

by Kells and Orszag (1979) and Or.szag and Patera (1980,19IH). They chose to 

study channel flow at Reynolds numbers fnr which the flow is linearly stable. 

However, transition does take place at tI1l.,~ Reynolds numbers studied. In their 

simulation, OrHzag and Pa tera took 3 fully developed laminar channel profile 

(Poiseuille profile) and added finite-amplitude two-dimensional Tollmien­

Schlichting waves to it, these \t1'1ves ar.e <iifferent in the channel than in the 

boundary layer. 'tlley found that the waves decayed slowly and that the rate of 

decay decreases as the ReynoldR number j,ncreases, this is expected. However, 

they found that, when a small three-dimensional disturbance is introduced into 

the flow, it grows very rapidly. The growth of the three-dimensional wave is 

rapid enough to enter the nonlinear regime before the two-dimensional wave has 

decayed. At this point the si.mulation develops considerable energy at high 

wavenumbers and haG to be stopped; HS there is no model in the simulation, 

there is no way to continue. However, this simulation has provided an expla­

nation of the instability of this flow; it is apparently due to the three­

dimensional instability of stable two-dimensional waves. Orazag and Pa\;.era 

(l ~Bl) have done similar simulations for Couette and cylindric,al tube flows. 

Some of their results are shown in Fig. 7.B. nH~ decay of the two-

dimensional wave and the growth of the three-dimensional wave are quite 

apparent. 

A sill),ulation of the instability of the boundary layer has been made by 

Wray (unpublished). In order to avoid the difficulty that arises fro'in th~ 

spatially developing boundary layer, he chose a time-developing boundary 
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layer; physically, this corresponds to the boundary layer that develops on a 

suddenly started plate. Although the velocity profile of the time-develop1.ng 

boundary layer is different from that of the spatial layer, the calculatiol'l 

was started with the Blasius profile appropriate to the spatial layer. To 

this prof:Ue, a weak T:>llmien-Schlichting wave and a weak three-dimensional 

random disturbance was added. 

The disturbance grows very slowly at first (as expected) until it builds 

up to a level at which nonlinear effect~ become important. At this point, the 

rate of (',hange of the layer becomes spectacular. The contours of the various 

velocity components and the vorticity develop more and more structure. Compa­

risone with experimental results for the parameters reveal a considerable aim' 

ilarity; the comparison is necessarily qualitative, but it is remarkably good. 

Eventually, (~his simulation develop(ld l'i considerable amount o,t energy at 

high wavenumbers, and it had to be st(~pped" There is no way to continue this 

simulation beyond thi" point without more resolution. Unfortunately, it may 

be that the small scales play an important role in the development of this 

flow, and it is not known whether the addition of a ~~del will cure the pr.ob­

lem. 
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Chapter VnI 

OTHER APPLICATIONS 

As we have stated earlier, higher-level simulation began in meteorology 

and oceanography. These fields have maintained an active interest in the 

dmulation of the global circulation of the Earth's atmosphere and oceans. 

The methods used are similar to the ones described in this report, hut there 

are additional difficulties. Ule principal of these is that thermal energy 

and the transport of water vapor (in the atmOSphere) and salt (in the ocean) 

are very important in these flows, and one must deal with the effects of 

stratification, evaporation, and condensation. When coupled with the limita­

tion to very coarse grids (200 kIn .is typical in these simulat.ions today), we 

see that the problems are co!',.siderably more difficult than the ones dealt with 

in this report. They are, however, of great importance, and considerable 

effort is being devoted to them. The author has only a passing knowledge of 

the work in these areas, and this is the reason why the subject is not covered 

in this report. 

Hethods si.milar to the ones given in this report have also been applied 

to smaller-scale environmental problems. For example, simulations have been 

made of local parts of the atmosphere by these methods; these are called 

mesoscale simula tj,ons. The author is familiar only with a few papers by 

Ieardorff in this area, in these papers, he used a complete Reynolds stress 

model for the subgrid scale Reynolds stresses. Others hav~ applied these 

methods to the prediction of the flow in lakes, harbors, and other small 

bodies of water. Of the work in this fie.ld, the author is familiar only with 

some of what has been done at his institution. Findikakis (l9tW) has recently 

developed a finite-element method for computing such flows. 

On a still smaller scale, there have been a number af extensions of the 

work covered in the earlier sections of this report. Schumann and his cowork­

ers have used the method that was described for chanI1el flow for the simula­

tion of flows in annuli and made other extensions. In particular, they have 

computed the channel and the annulus with heat transfer. in the simulations, 

the temperature is treated a~ a passive scalar. We have not dealt with this 

work at length in this paper for several reasons. It is covered in detail in 

the report: ol Schumann et al. (1980). Also, since the results produced by 
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Schumann's method .differ considerabl.y from those of Kim and Nolo (1979) and 

Moin and Kim (1981) for the channel How, we are Unsure about the accuracy of 

the method when applied to heat transfer. For similar reasons we have not 

covered their work on the effect of roughnesl:l. 

Schumann, Crotzbach, and Kleiser have applied their method to natural 

convection flow betltleen parallel horizontal plates. 'they covered a very large 

range of Rayleigh number and were able to predict the observed transitions 

from one flow regime to another. l1ds is an excellent piece of work and was 

not covered because it did not fit any of the l:Iubject headings lIsed in this 

paper. Cr~tzbach (1979) has also investigated simulated flows in vertical 

channels with the influence of bUQyancy. 

Finally, we shall mention a method that competes with the, grid-based 

methods that are the primary ~ubjcct of this report. 'OlCSC are methods in 

which the motions of vortices are followed (vortex-tracking methods). A number 

of interesting features of transitional and turbulent flows have been computed 

by this method, including Hows with separa tion. The full capabilities of 

this approach and a compar.ison of it with ehe methods discussed in this report 

are given in a review paper by Leonard (198L). Hybrid methods ~'hich usc some 

ideas from vortex-tracking arid some from grid-based methods are also being 

investigated at the present time, the interested reader is referred to the 

paper by Couet, leonard, and Buneman (1980). 

'l11cre lIe undoubtedly areas that have been overlooked in this report. 

'Ine author has tried his best to be complete, but in any subject area that has 

become this large something is likely to be missed. There is no intent to 

minimize any contributions t~ac have been missed. 
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Chapter IX 

CONe LUSWNS ANI.) ~'Ul'URE \llRECTION::> 

1. Where Are We Now? 

We hope that this report has shown that higher-level simulations of tur­

bulent flow have reached a point in their development which allows them to 

play an important role in turbulent fluid mechanics • Let us now sum up where 

the field stands today. We start with the positive points. 

a) 'Ille basic ideas of large eddy simulation seem sound. Specifically, 

they seem to be able to handle homogeneous turbulent flows and h'ee shoiHlr 

floW's quite well. For wall-bounded flows, the importance of small structures 

near the wall is a proble.m, and these flows are difficult to deal wlth, but 

gcod progress has been made. 

b) Direct. simulation of many interesting fJows are now feasible. We are 

limi ted to low Reynolds numbers, but this resLrict'ion may not be important in 

some flows, as the large scales llIay be nearly Reynolds number independent. 

Alternatively', one can regard the viscosity as a simple subgrid scale model 

and pretend that a higher Reynolds number flow is being simulated. Both of 

these approaches have been taken. Orszag has used the concept of "Reynolds 

number similarity" with considerable succeSB. Rubesin (lY79) regarded direct 

simulations as large eddy Simulations, also with ccnsiderable success. 

c) Higher-level simulations have. cOllie to the point at which they are 

able to provide information on quantities that are difficult to measure in the 

laboratory. In this role, they are able til evaluate turbulence models in a 

way that is ve~y difficult to do by any other method. 

d) Higher-level simulations are able, in some cases, to simulate flows 

that are very difficult or imp0ssibJ.e to perform ttl the laboratory. Some 

examples are flows with rotation and/or compressibility. 

e) It is now possible to do flow visualizations using full and/ot' large 

eddy simulations. TIlese visualizations reproduce much of what is seel'\ in the 

labora tory. They also offer fleXibility that is dif ficult to match in the 

labo\'"atory. They can be used to look in detail at specific regi.ons, and can 

even be used backwards in time. 
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How let uS consider some of the diHiculties. 

a) The 1D0st obvious problem is that these methodtt require large amounts 

of computer tilDe. Although some of the simpler flows can be done in a few 

minutes on large machines, running times of the order of hour.s are not unusual 

for the more diffi.cult flows. Use of these methods must be restri.cted to 

individuals with access to the machines that can do these simulations. Some 

means of attsuring that the problems of greatest interest are done is 

necessary. 

b) Although some flows are amenable to full simulation, Reynolds number 

simUarity does not hold for all flows, so it is not possible to treat low 

Reynolds number flows as models of a high Reynolds number flow in all cases. 

Better subgdd scale models will be necessary if high Reynolds numbe,r flows 

are to be simu].ated, but it may be very difficult to find models with wide 

applicability. 

On balance, the contribution of higher level simulations seems to be more 

than worth the cost, and the approach is just beginning tv reach its poten­

tial. With new generations of computet'S, it should be possible to do much 

more with these methods. 

2. Where Are We Going? 

It is clear that a great deal remains to be done in turbulence simula­

tion. There are many directions which can be taken in the fut.ure, and, with 

more grouph beginning to do these types of simulations, we expect the area to 

broaden rapidly. Of course, it is dl.fficult to predict the future with any 

precision, but it is always interesting to try. 

expected in the next few years. 

Let us look at what can be 

a) One obvioi.ls direction in whj.ch highet-level simulati.ons will be 

extended is toward the simula [ion of a larger number and greater variety of 

flows. There are many possibilities, so the following list cannot be a1l­

inclusive. 

i) The flows which have already been simulated can be done with 

additional effects. TI'lUS, to any of the flows treated in this teport we. can 

add rotation, curvature, heat transfer, passive scalars, and/or pressure 

gradients alone or in cOlllbination. In the wall-bounded flows we can also add 
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wall roughness and blowing or suction. Hany of these efit!ctH are quite 

import,lot in engineering flows and should be conSidered at an early date. 

11) To date, no method has been found for dealing with inflow or 

outflow boundaries. 111e outflow boundary can }>l;"obably be handled by the usual 

method of requiring the streamwise derivatives to be zero at the outlet. TIle 

inflow condition is much mo~e difficult, because it is necessary to prescribe 

a realistic representation of the turbulence in order not to ruquire too much 

of the computation; to do this would waste a very large part of the computa­

t10nal resource. Being able to handle inflow and outflow boundaries is cen­

tral to the computation of many flows of interest. 

iii) There are Somi:! fairly simple flows which have not been done. 

Included among these are the jet and the wall jet. 

b) Simulation of wall-bounded flows is much simpler if the kinds of 

boundary conditiono used by Deardorff and Schumann can be applied. Chapman 

(1980) estimated tha t tbe sav:i.ngs to be realized ,tn this way could make the 

dJfference betw3€n pract:lcal use of the higher-l.e\!'<!l simulations and their 

continuing to be confined to research. Accurate boundary conditions of that 

type need to be searched for. 

c) Use of higher-level simulations in conjunction with flow visu,aliza­

tioll and statistical methods should become a very powerful tool for ir.,!'v'esti­

gating the structure of turbulent flows. It is possible that such an approach 

Ulay be able to tie t'i1e structure of turbulent flOW6 to the modeling. This is 

highly speCUlative, but, if it can be done, it could be an important step for­

ward. We may become "computational experimentalists," 

d) The interaction of higher-level simulations and conventional model: 

should become stronger. We can envision a time when people developing new 

models will routinely validate them using higher-level simulations. Cer­

tainly, we can expect higher-level simulations to be helpful in determining 

the constants in the models. It is worthwhile to set up a facility which is 

available for this purpose. 

e) We expect tha t there will be considerable work on the improvement of 

subgrid scale models, but the direction this work will take is not obvious. 

f) Higher-level simulations will be extended to include a number of phe­

nomena that are not currently treated. Sound generation should be relatively 
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ea8Y. as it seems to depend mainly on the large scales. Combu8tion should be 

vt!ry challenging. because the chemical reaction depends on Int.imate midng at 

the 811al1 scales. 

g) Something has to be left to the reader's imagination. 
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Eij Reynolds stress tensor 

£ij 

<l>ij 

Lij 
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Pressure strain tensor 

Integral length scales 

The fifth is the r.m.s. pressure gradient and the 
sixth, the r.m.s. pressure fluctuations. FrDm 

Schumann and Herr-ing (1976). 
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Homentcm thickness of a mixing layer vs time; high initial 
intensity cases. From Cain et a1. (1981). 
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Figure 6.5 
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Turbulence intensity at center of mixing layer vs time; 
low intensity cases. From Cain et al. (1981). 
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Figure 6.6 Tut'bulence intensity at center of mixing layer VB time; 
medium initial inten8ity ca.es. From Cain et a1. (1981). 
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Figure 6.7 Turbulence intensity at, center of mixing layer vs Ume; 
high initial intensity cases. From Cain et ale (1981). 
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Figure 6.8 Profiles of turbulence intensity va time; low 
in.iUd intensity case. From Cain et a1. (1981). 
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Figure 6.9 "Dye lines" at intUal time in mixing layer. 
From Cain et a1. (1981). 
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Figure 6.10 "Dye lines" late in mixing layer development; 
low initial intensity case. From Cain et ale 
(1981). 
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Figure 6.11 "Dye lines" late in mixing layer development; medium 
initial intensity case (same as Figl.l'ce 6.10 except 
for intensity). From Cain et a1. {198l). 
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Figure 6.12 Decay of Maximum Mean Velocity (t~) and Maxi:mum Axial 
Turbulent Intensity (um) in "'Ja':.:... .From Riley and 
Metcalfe (1978). 
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Figure 6.13 Growth of Mean Wake Radius (rm) and Turbulent Wake 
Radius (rT)' From Riley and Metcalfe (1978). 
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Figure 7.1 The pressure-strain terms a8 a function of the normal 
coordinate in a channel flow. From Schumann et al. (1980). 
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Figure 7.2 The 'constant' in the model of the pressure-strain term 
as a function of the normal coordinate. From Schumann 
et ale (1981). 
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Figure 7.5 The pressure-strain terms in a channel flow. 
From Kim and Main (1979). 
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Figure 7.8 Energy of two- and three-dimensional waves in a perturbed 
laminar channel flow. The 2-D waves decay while the 3-D 
waves grow. From Orszag snd Patera (1981). 
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