NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



HIGHER-LEVEL SIMULATIONS OF TURBULENT FLOWS

by
J. H. Ferziger

(NAS.=CR=-164936) HIGHER-LEVEL SLMULATICNS
OF TURBULENT FLOWS (Stanford Univ.) 152 p
HC AQd/MF AQ1 CSCL 200

G3i/34

Prepared in part from work done under giants
NASA-NgR-2-15 and NSF-ENG-78-17619

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California

March 1981

N82-11395

Unclas
08242

. r-—»wmm.wmmmmmd



KNIGHER~LEVEL SIMULATIONS OF TURBULENT FLOWS

by

J. H. Ferziger
Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California 94305

Technical Report Number TF-16

Prepared in part from work done under grants
NASA-NgR-2-15 and NSF-ENG-78-17619

March 1981



Chapter

I. BACKGROUND: TURBULENT FLOW COMPUTATION METHODS

lo
2,
3.
1‘0

II.

l.
2.
3.
“.
5.
III.
l.
2,
3.
4.
J.
6.
7.

8.
9.

Table of Contents

~

Methods of Computing Turbulent Flows: Classification

Classification of Turbulent Flows . .
A Sllorc Histgry [ ] L * 1 ] . L ] L[] . » ] 1 ]
Outline of "his Report « « « ¢ « o o o

FOUNDATLONS OF LARGY EDDY STMULATION . . .

Rationale =« « ¢ ¢ o & o &
Flltering « « ¢ o o o o o o s o o o o
The Deardorff-Schumann Approach . . .
The large Eddy Simulation Equations .
Tradeoffs « « o ¢ ¢ o ¢ o o a o o o o

» . L4 . L] L]

SUBGR\LD SC\Aw Mowls L] . ® L] L] L] L] L] . . L]

The SGS Reynolds Stress8 .« « « « ¢ o o
The SGS Stress Equations . o o o e
Computational Validation of bcb Models
Eddy Viscosity Models .+ & « o ¢ o &
The Role of Theory « « « + «
A Scale Similarity Model . « « + o« o+ &
W gher-Order Models .+ ¢ ¢ o ¢ ¢ o o &
Other Physical Effects « « « « o o« o &
Summary of the State of SGS Modeling .

I[V' NUWRICAL bETMOl)S . . L L] ° L] L] L] L] L] L] . *

1.
2.
3.

4.
5.

Mathematical Preliminaries « « « « o &
doundary Conditions o+ ¢ « o o o o o &
Treatment of the Spatial Derivatives:

Properties « « ¢ o ¢ o o o o o o s o
Time Advancement . « o « «
Initial Conditions « o« « ¢ o ¢ o o o =

. e o ¢ .

V 3 HONOGE NEOUS TURBULENCE . [ . [ [] [ . * . °

e
2,
3.
4.
5.
6.
7.
8.

LT T

Classification « « o« o o o o o ¢ o o o
Isotropic Turbulence e s s 8 e e s e
Anisotropic Thfbulence s s e e s s e a
Rotating Turbulence .
Strained Turbulence .« « + o+ o ¢ o o o
Sheared Turbulence . . ¢ o« ¢ ¢ o o o &
Compressible Turbulence « . « « « o «
Mixing of a Passive Scalar . . « . « &«

ii

3

Conservation

Page

[- S

33
33
34

30
b4

46
46
48
52
53
55
57

04



Chapter
VIi.

VIil.

VILl.

Ix.

FREE SHEAR FLOWS .+ o « o « « « &

1. Overview . « « « « o o ¢ o &
2. Mix,ln’g Luyer s o & 5 & o s @
3. Wakes e » & @ o 6 e © * e @

WALL"BOUNIED FLOWS * o o e e s @

,l. ()vetvie.w L] L L] . L * L] L ] . °
2., Fully Developed Channel. Flow
3. Transition « o « o o o o o o

OTHER APPLICATIONS .« o o « ¢ o &

CONCLUSLONS AND FUTURE DIRECTIONS

L Where Are We Now? . . . . .
2. Where Are We Going?

Acknowledgments .+ « o o o o o o o o s

Refere“(‘.es e o . e o o & o o ¢ e o &

Figures

. e @ . . e« o @ . ¢ o 8 o & @&

114

Page
o8

o8
69
74

76

76
78
83

8o

88

88
89

92
94

102



i rd

A TR e W TN

Chapter I

BACKGROUND : TURBULENT FLOW COMPUTATION METHODS

1. Methods of Comwputing Turbulent Flows: Classification

A few years ago, the author and two of his colleagues wrote a paper which
attempted to classify methods of dealing with turbulent flows (Kline et al.
(1978)). This paper is reviewed and extended here as a means of setting the

mala subject of this report in context.

There are two sub~areas that need to be dealt with in classifying methods
of computing turbulent flows. These are the method by which the fluctuations
are treated and the manner in which the geometry of the flow is handled.
These are, of course, coupled to some extent, but it is useful to separate
them for purposes of this work. We shall take up the problem of dealing with
the turbulence first. According to the classification scheme in the paper
cited above, there are five broad classes of methods of dealing with the

turbulence; there are also subclasses of eech. The five major categories are:

i) Correlations. Thege are the familiar correlations that give the

nondimensional skin-friction coefficient as a function of the Reynolds number,
Nusselt number as a function of Reynolds and Prandtl numbers, etc. They are
extremely useful, but very limited. Their applicability is especially limited
in high-technology applicatlions in which the geometry plays an important role
in the fluild dynamics (such as airfoils); for such problems, a new set of

correlations would be needed each time the geometry of the device is changed.

1) Integral Methods. In these methods the equations governing the

fluid dynamics (which may be the equations used on level (iii) below) are
integrated over at least one coordinate direction. This decreases the number
of independent wvariables and greatly simplifies the mathematical problem to be
solved. These methods allow considerable use of experimentzi data and
physical insight and have proven quite useful. One of their principal
drawbacks 1is that they need to be reworked when a new type of flow is to be

computed.
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t11) Reynolds-Averaged Equations. In this approach, one averages the

Navier-Stokes equations over either time, homogenecus directions in the flow,
o* an ensemble of essentially equivalent flows. When averaging of any of
these kinds 1is performed, the equations describing the mean field contain
averages of products of fluctuating velocities, and there are fewer equations
than unknowns--the well-known closure problem. In fact, the set of equations
can never be closed by further averaging; a closure assumption or, what is the
same thing, a turbulence model has to be introduced. The closure assumption
must represent the unknown higher-order average quantities in terms of the
lower-order quantities that are computed explicitly. This subject 1s
undergoing a rapid expansicn at the present time. It is also likely thet this

level should be broken into sublevels or zeparate levels.

iv) Large Eddy Simulation. In this approach, the equations are averaged
over a Eﬂﬂiﬁ spatiai region. The object 1s to remove the small eddies from
the flow fileld so that an equation for the large eddies 1s derived. The ef-
fects of the small eddies on the large ones is then modeled. This 1s one of
the principal subjects of this report and is discussed in considerable detail

below.

v) Full Simujation, This 1s the numerical solution of the exact
Navier-Stokes equations. The only errors made are numerical ones which, with
care, can be kept 4s small as desired. By its nature, this approach 1s
limited to low Reynolds numbers. This is the other principal subject of this

report and will be covered ip detall below.

Currently, computations at levels (iv) and (v) are limited to people with
access to very large, fast computers. They are not sultable for engineering

design at present and we anticipate that it will be some time before they will
be (if ever). We call levels (iv) and (v) together higher-level methods of

turbulence computation~~hence the title of this report,.

A significant point about this classification scheme is that calculations
on any levels can be used to generate information that can be used on the
lower levels. In applications, engineers commonly use methods at level (ii)
or (i14) to produce correlations from which the design is actually done.
Large eddy simulation (LES) can be used to produce information that can be
used in wmodeling for Reynolds-averaged calculations. LES c¢ould be used in
principle at the lower levels as well, but there is little need for this

2



application, Full simulation can be used to test wmodels for both the
Reynolds-averaged equations and large eddy simulation. This will receive

considerable attention in this report.

It should be noted that the nomenclature we have used for classifying
wethods differs from that of Schumanr et al. (1980). What we have called
higher-level simulations they called direct «imulation, and they did no¢ make
the distinction between levels (iv) and (v). We believe the distinction

important and prefer the nowmenciature used in this report.

The second type of classiflcation of methods of computing turbulent flows
concerns the treatment of the geometry. This scheme contains just two cate~
gories:

a) Full Field Methods. 1In this approach, the same set of zquations is
applied everywhere in the flow field. This has the great advantage of not

requiring any kind of matching in the interior of the flow and of being easier
to program for computer solution. The principal drawback iz that fine meshes
are needed in some regions of the flow (such as near the boundaries and in

shocks), and this can make the cost very high.

b) Zonal ﬂethods. In zonal wmothods the flow is considered as &

collection of "modules,” and each module or zome is treated by a separate
method. The most common example of this kind of method is the division of
flows over bodies into boundary layers and potential flows which are treated
by separate methods. In zonal methods, the solutions in the various zones
have to be matched at thelr common boundaries, by an iterative process that
may or may not converge well. The modules can be treated by different
methods. Thus one can use an integral method for the boundary layer and the

full partial differential equations ifor the outer flow.

The classification scheme given here differs a little from the earlier
one of Kline et al. (1978). We believe that the current scheme represents an
improvement in clarity. We have found it useful, and it will be one of the

ways in which various methods will be compared in the 1980-81 Stanford-AFOSR

Symposium on the Computation of Complex Turbulent Flows.
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2, Classification of Turbulent Flows

An 1ssue that 1s quite separate from that of how turbulent flows are
computed 1is that of trying to clasgify the flows. In a field as complex as
this, any classification scheme 1is 1inexact, but it is better than having no
scheme at all. Thus we shall classify flows according to the phenomena that

occur in them. This scheme 18 not new and contains three categories:

a) Homq&eneougnFlows. In these flows the state of the fluid is the

same at every point in space; fthey develop in time. There is a limited number
of flows of this kind; the experimental data for them have been reviewed re-
cently by the author (Ferziger (1980)). In homogeneous flows without mean
strain or shear, the turbulence decays with time; when mean sirain or shear
are applied, the kinetic energy of the turbulence may increase with time. The
mechanism by which the turbulence length scales increase in these flows is not

well ynderstood.

b) Free Shear Flows. It is well known that free shear flows are

extremely unstable. The laminar mixing layer is unstable with respect to
disturbances over a wide range of wavelengths. The 1instability 1s of the
Kelvin-Helmholtz type in which the perturbation grows rapidly. There 1is
controversy about the precise mechanism of growth of the turbuleni free shear
layer, but 1t seews clear that there are large coherent regions of
concentrated vorticity in all of these flows. The concentrations of vorticity
cause strong large-scale moiions within the flow and the vorticity tends to
agglomerate further. The controversy centers on the nature of the

agglomeration, cf. Roshko (1978) and Chandrsuda et al. (1977).

A subclassification of these flows 1s necessary. In the mixing layer
(the simplest type of free shear layer), the velocity difference across the
layer remains fixed as the layer develops. As a result, the layer grows lin-
early in space or time, injefinitely. In other flows, for example, jets and
wakes, the velocity differences are reduced as the flow develops and the

turbulence tends to wwaken in the downstream direction.



¢) Hall*Boundgd Flows. The effect of a wall on a shear layer is to

prevent (or at least reduce) the large-scale motions described in the previous
paragraph and thus dinhibit the shear layer from growing so rapidly. Thus,
boundary layers and related flows grow less rapidly and have lower turbulence
levele than do free shear layers. Another, weaker, mechanism of turbulence
production takes over. This mechanism is less well understood than that of
the free shear layer and, perhaps for that reason, seems much more complica-
ted. It is known to involve the presence of thin regions of high- and low-
speed fluid that exist close to the wall and which are long in streamwise
extent (Runstadler et al. (1967), Kim (1969)) and large-scale motions of the
outer part of the boundary layer, but several details remain to be filled in.

A further extension of this classification scheme was given by Bradshaw.
His view 1s that the mean turbulent flows can be thought of as a combination
of “"normal" strains--the mean sttains that occur in the "standard” flows=-and
"extra" rates of strain. There are many extra rates of strain. Som¢ of them
are: curvature, rotation, lateral divergence (in axisymmetric flows),
buoyancy, blowing or suction, and wall roughness. Although these effects
generally appear as small terms in the equations, they have profound effects
on the structure of the turbulence and, indirectly, on the behavior of the
flow as a whole. Therefore, they are very jJmportant, and we shall devote part

of this report to investigating thelr effects on turbulent flows.

Finally, it should be noted that some complex flows may be of one type in
one region and another type in another region. In particular, in flows with

separation, wall boundary layers may become free shear layers and vice versa.

3. A Short History

There are no known analytical solutions of the Navier-Stokes equations
for turbulent flows, and it is unlikely that there ever will be any. This
fact, plus the obvious technological importance of turbulent flows, is the
reason for the development of computational methods of predicting turbulent
flows.

Prior to 1960, computers had too little capacity to do anything more than

solve the ordinary differential equations of integral methods or the partial

differential equations for simple, two-dimensional potential flows. Progress



in this period was larpely vestricted to the computerization of methods that

had heen carried out on deck calculators up to that time.

As. computer's grew in sophistication, so did the problems for which people
sought solutions. The 196Us saw the development of good boundary layer meth-
ods based the use of both integral methods and purtial differential equations
levels (i1 and 1i1 of the above scheme). The 1968 Stanford Conference (Kline
(1968)) marked a milestone in this development. At that time, people were
beginning tn solve the Reynolds-averaged Navier-8tokes equations using simple
models for relatively simple flows. Through the 19708, the sophistication of
the models grew, as did the complexity of the flows that researchers were

willing to try to compute.

The first applications of wkat we have defined as higher-level methods
were made by the meteorologists. That field has needed models for predicting
the world's weather patterns for a long time. As soon as computers were large
enough, meteorologists t.r-ied global weather simulations. The first three-
dimensional attempt at this of which the author is aware is that of Smago-
rinsky (1963); this paper presented a model that will be used extensively
later in this report. The grid systems used In these early calculations were
necessarily very coarse, and the method used was necessarily what we have
called large eddy simulation. Improvements fin computers have allowed the use
of finer grids, but the grids are still coarse compared to what 1s desired,
this sitnation, unfortunately, will not change in the foreseeable future.
Hence, subgrid-scale modeling will remain an important issue in meteorology

(and ovceanography) for quite some time.

The first computation of a flow of engineering interest was the simula-
tion of channel flow by Deardorff, a meteorologist, in }970. In this landmark
paper, he laid out many of the foundations of the field. Improvements in his
methods were made by Schumann (1973) and Grotzbach (1976). The latter and
their group at Karlsruhe have subsequently extended the method to the
computation of annular flows, the inclusion of heat transfer, and the

inclusion of the effects of buoyancy.

The author's group at Stanford, which is jointly led by W. C. Reynolds,
began work in higher-level simulations in 1972. Their objective was to put a
sound foundation under the method of large eddy simulation by computing simple
flows first. It was felt that in this way the fundamentals of the subject

6
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could slowly be put in order. The first flows chosen for study were the
= Jot was Jlearned about numerical

(1975) and Shaanan et al.

homogeneous turbulent flows, and quite
methods and subgrid-scale modeling (Kwak ei al,
(1975)), When the group felt that the teciniques for the simulation of homo-
geneous flows were well developed, it was decided to go on to the study of
flows which are inliomogeneous in one coordinate direction. The simplest such
flows are the mixing layer and channel. The fully developed mixing layer was
computed by Mansour et al. (1978), transitice in the mixing layer was studied
by Cain et al. (198l), and the channel flow was studied by Moin et al. (1978)

and Kim and Moin (1980,1981).

Almost from the beginning it was realized that the effort in computing
flows would have to be accompanied by an effort at developing better models

for treating the small scales (subgrid scale models) or at least understanding

the models that are in vsz. The method of using direct simulations for this

purpose was developed by Clark et al. (1976) and extended by tcMillan and
Ferziger (1978), McMillan et al. (1980), and Bardina et al. (1980).

It is clear that large eddy simulation will not be a method of direct
engineering applicability for some time. For that reason, the major impact
the method will have is in the improvement of the understanding of the physics
of turbulent flows and in helping to develop, test, evaluate, and improve
models that are used in Reynolds-averaged methods. Recently, exact simula=
ticns of compregsible homogeneous turbulent shear flows and homogeneous
turbulent shear flow with a passive scalar weie made Iin order to evaluate

these models; cf Feiereisen et.al. (1981, and Shirani et.al. (1981).

A group under leslie in London has been active in the field since 1975.
Their early work centered on the understanding of subgrid scale models (Love

and leslie (1976) and leslie and Quarini (1979)). Since then they have simu-

lated the mixing of a passive scalar in homogeneous isotropic turbulence

(Antonopoulos (1981)).
A number of French groups have studied subgrid scale models from a theo-

retical point of view and have made several contributions in this area.

Orszag and coworkers have been working since 1970 on the direct simula-

tion of turbulent flows, Their early work centered on the prediction of

homogeneous isotropic turbulence (Orszag and Patterson (1971)), and more

T
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have become¢ interested in the study of transition in wall-

recently Lhey
The main

bounded f£lows (Kells and Orszag (1979), Orszag and Patera (1980)).
interest of this rroup has been in the development of numerical methods (they

are responsible for the widespread use of spectral wethods in this field), on
the study of turbulence theories, and on the prediction of transition.

Riley and Metcalf (1Y80) have made direct simulations of free shear
flows. ‘inelr etforts have been directed at the simulation of fully developed
wakes at relatively low Reynolds numbers, which may be thought of as the last
stages of the decay of a turbulent wake.

Rogallo (1978, 1981) has wmade extensive direct simulations of all of the

homogeneous turbulent flows. lHis results are an important rasource for

modelers.

4,  Outline of This Report

In Chapter Il, we shall consider the fundamentals of large eddy

simulation and compare the various approaches to {it.

In Chapter LIl we shall discuss the subgrid scale models required by

large eddy simulation. We shall also study the use of large eddy simulation
for the Reynolds-averaged equations and the

in the development of wodels
subgrid scale and

application of full simulation to the testing of both
Reynolds=-averaged models.
used in large eddy

In Chapter IV we shall discuss the numeyical methods
are almost always

and fall simulation. Since the numerical methods used

somewhat tailored to a particular flow, we shall just touch on some of the

speclal-purpose methods 1in this chapter. The latter methods will be

considered in more detsil in the chapters in which the flows are described.

Chapter V will be devoted to the discussion of the simulation of

Te flows will be categorized, and the numerical methods
of the cases will be described, along with physical
We shall give the results from both full and large

how they can be applied to the

homogeneous flows.
needed for some
descriptions of the flows.
eddy simulations of these flows and show
testing and development of models. This chapter contains a considerable

amount of recent work.,

et e s i X
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Free shear flows will be considered in Chapter VI. The bulk of the chap~-
ter will be devoted to the mixing layer, which has been the principal focus of

attention in this area, but we shall also look at wake simulations.

Chapter VII will be concerned with wall-bounded flows. Most of the at~
tention will be given to channel flow, but soue discussion of recent work on
the boundary layer will also be given. Particular actention will be given to

terms which have not been measured in the laboratory.

In Chapter VIIL we shall briefly cover applications of large eddy simula-
tion and full simulation that have not been given in the previous chapters.
The most important of these applications are in meteorological and other
environmental flows. However, a few applications have been made to other

laboratory flows, and these will be briefly covered as well.

The concluding chapter, IX, will discuss some directions in which the
work is proceeding and what can be expected from higher-level simulations in

the next few years.

This report will give greater emphasis to work done in the author's group
than to that of other groups. The reader is reminded that this 18 a conse-
quence of greater familiarity with his own work and that of his colleagues and

is in no way intended to imply that work done elsewhere is any less important.
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Chapter 1I

FOUNDATIONS OF LARGE EDDY SIMULATION

1, Rationale

It is generally believed that the largest eddies dominate the physics of
any turbulent flow. The differences between the large and small eddies can be
summarized as follows:

a) The large eddies interact strongly with the mean flow. The small

eddies are cieated mainly by nonlinear interactions among the large eddies.

b) Most of the transport of maps, momentum, energy, and (in flows
containing more than one species) concentration is due to the large eddies.
The small eddies dissipate fluctuations of these quantities but affect the
mean properties nnly slightly.

c) The structure of large eddies is very strongly dependent on the geom-
etry and nature of the flow. They are usually vortical, but their shapes and
strengths are flow dependent. The small eddies are, on the other hand, much
more universal.

d) Due to their dependence on the geometry, the large eddies are highly
anisotropic. The small eddies are much more nearly isotropic and, therefore,
universsi.

e) The time scales of the large eddies approximate the time scales of
the mean flow. For flow past a body, the large eddy scale is approximately
the dimension of the body divided by the free stream velocity. The small

eddies seem to be created and destroyed much more quickly.

An important consequence of these properties is that the large eddies
should be harder to model than the small ones. Also, as they vary so much
from flow to flow, one should not expect to find a model for the large eddies
to be universal. There is hope, however, that one might be able to find a

useful model of the small eddies.
This leads to the concept of large eddy simulation. In this approach,

the large structures in the flow are computed explicitly and the small ones

are modeled. This method should have advantages over methods in which all of
the eddies are modeled.

10
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These arguments provide the rationale tor Llarge eddy simulation.
However, not all of the premises given above hold in all tlows. ‘They scem to
hold in homogeneous turbulent flows and in free shear flows. ln wall-bounded
ilows, however, the structures responsible for much of the momentum transport
(und, presumably, the transport of the other properties as well) may be quite
small, especially in the region close to the solid boundary. Special care is

necessary in these flows; this will be discussed further in Chapter VIL.

1f, tor now, we accept the statements wade above as correct, it follows
that large eddy simulation ought to have a unumber of advantages over Reynolds
or time average methods. The most significant advantage is that much ol the
actual  transport of mass, momentum, energy, and specles is computed
explicitly, and the portions of these fluxes which need to be modeled are much
smallor  than  what is modeled {n the Reynolds-averaged equations.
Consequently, the overall results are less sensitive to modeling inaccuracy in
Large eddy simulation than in other approaches. The probability of tinding a

widely applicable model should be much higher.

The principal disadvantage of large eddy simulation velative to Reynoldus~
averaged mathods is that the computations ave necessarily three-dimensional
and time=dependent. This means that the cost is much higher. In fact, the
cost L& currently high enough that, except for the simplest tlows, use ot the
method 1is vestricted to people with access to large amounts of time on very

large cowputers.

The first thing that one needs to do in developing large eddy simulation
i to define the large scale qompouent of the flow field--the portiex which is
to be computed explicitly. ‘'There are two tommon approaches to doing this,
they will be described and compared in the next two sections. The remainder
of the chapter will present the LES equations and describe the parametr

tvadeotfs that must be faced in large eddy simulation.

The equations for the large scale field always contain terms which
involve the small scale field, which s not computed. These terms play the
same role in the large eddy equations as the Reynolds stresses play in the
Reynolds—-averaged equations. They are theretore called the subgrid scale
(568) Reynolds stresses, and they must be modeled. A discussion of subgrid
scale models and a comparison of them with Reynolds-averaged turbulence models

is given in the next chapter.

11



ks LA athRiadie. il

R

-

sl L

The first task in large eddy simulation is that of defining the large
scale component of the flow field--the portion which the method will attempt
.0 calculate. There are several wayé of doing this maillematically. All are
essentlally equivalent to averaging the equations over a wmall region of epace
or low-pass filtering the equations in Fourier space. The starting point is

the incompressible Navier-Stokes equations:

2
du 9%u
i 9 , 13 i ;
TR T | P T TR T (2.1)
J ~ i J )
which must be solved together with the continuity equation:
du
i vy ¥
-5-')—‘: 0 (2.2)

For homogenecous flows, we prefer to define the large scale field (also

called the resolved field) by means of a convolution filter:
u(r) = ./'G(lf~ -x') u(x') dr’ (2.3)

In Fourier space, this has the form:

~

W = 6K a(k) (2.4)

Note that for this kind of filter 6 is a function only of the magnitude of
ke

A number of simple filters have been used. These are illustrated in Fig.
2.1, If the equations are simply integrated over a small control volume in
space, we have the box filter; most finite-difference and finite-volume
methods implicitly use this filter. Its Fourier transform is also shown in
the figure. Another common cholce is a sharp cutoff filter in Fourier space,
this 1s essentially the Fourler-space version of the first filter. Both of
these filters have the difficulty that their Fourier transforms have negative
reglons, they also are difficult to differentiate. For this reason, we prefer
to use the Gaussian filter. Its Fourier transform is also Gaussian, so it is
well behaved in both configuration and Fourier space, and it can be differen-

tiated as many times as one likes in both spaces. The Gaussian is

12
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2,2
G(r) = A e 0F /8 (2.5)

oxr, in Fourier space,

Gao - o824 (2.6)
The numerical factors have been chosen to make the second moment of this fil-
ter the same as that of a box filter of width A. G(r) and &(K) are
Fourier inverses of each other when the variables are continuous, but not in
the discrete case; {(n the latter case, a cholce has to be made. The
normalization factor, A, has been left unspecified in kEq. (Z2.5) in order to
admit the conservation property that the integral of G(r) over all space be

unity whether continuous or discrete quadrature is used.

Use of this type of filtgr was first suggested by leonard (1973), he
showed how the concept could be generalized. It is sometimes useful to use
expansions other than standard Fourier seéries. For example, Chebychev
polynomial expansions have been used (Orszay (1978), Kim and Moin (1980)) as
the basils for numerical methods. The filter can be defined in the space of
the Index of the expansion functions; a sharp cutoff (ignoring all components
of the expansion beyond suvwme specified N) 4s the simplest possibility, but

it is easy to construct Gaussian-like filters as well.

When the filter (2.3) is applied to the Navier-Stokes equations (2.1) and

the continuity equations (2.2), we have:

W, 1 3p 327“1
4,3 . .19 ).
e T o YUY 3 axi* v o% 9% | (2.7)
and
-
”““axl - 0 (2.8)
1

The difficulty comes from the nonlinear term. The approach taken by everyone

in the field is to write:
Ui - ‘:I“i + u.i (2°9)

which causes the nonlinear terms to take the form:
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vy G‘iﬁj + ;1‘u'3 + ui"Jj + LTJ; (2.10)
The first term is entirely dependent on the large scale component of the field
and is computable in LES. The semall scale component of the velocity field,
u{, 1s not computed, so the terms containing it need to be modeled. wuj 1is
called the subgrid scale component of the velocity field, but this is a
misnomer (in this formalism), because the width of the filter (A) need not
be related to the size of the grid on which the computations will be done.
However, it has become standard nomenclature, and the set of terms involving

the small scale velocity component,

e\

- ' ] -TT Yo
Rij uiuj + 1uj+ uiuj (2.11)
are commonly called the subgrid scale (SGS) Reynolds stresses. They must be
modeled in large eddy simulations--hence the name subgrid modeling. We shall

look at models for these terms in the next chapter.

The approach presented above is the rcne favored by the author and his
colleagues at Stanford. It decouples the definition of the large scale field
from the numerical solution of equations that result. We favor this method,
even though it is more cumbersome than the one given in the next section, be-
cause we feel it provides more flexibility. This flexibility will be useful

when we discuss methods of testing subgrid scale models jin the next chapter.

3. The Deardorff-Schumann Approach

An alternative to the method presented in the previous section is based
on the recognition that we shall be solving the equations numerically. The
computerprogram will be based on a set of discretized equatioms. It therefore
makes sense to use an approach that arrives at the discretized equations as
quickly as possible. The method originally presented by Deardorff (1970) and
extended by Schumann (1973) is one which accomplishes this.

The 1dea 1is to introduce the grid on which the numerical couputations
will be done at the outset. Deardorff and Schumann used a staggered grid,
which is probably the best choice for solving the incompresisible equations,
but other grid systems could be used as well. The two-dimensional version of

the staggered grid is shown in Fig. 2.2. One 1ﬁtegrates each of the equations
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over an appropriate control volume; the control volume for the x—momentum
equation is shown in Fig. 2.2. The resulting equations have the form (2.7)
and (2.8), provided the operation represented by the overbar is interpreted as
the volume average. Because the averaging operation 1is defined relative to
the grid, .:; is defined only at the grid points. However, it is convenient
to think of wuy; as constant within the control volume. This definition of
the large scale velocity differs from the one presented in the previous sec-

tion. The two definitions are 1llustrated in Fig. 2.3,

The Deardorff definitions lead to some convenient simplifications. In

particular, one can assume that:

u,u, % u,u (2.12)

173 1]

and

—

uy = 0 (2.13)
which are properties this approach shares with Reynolds-averaged modeling.

The subgrid scale Reynolds stresses then reduce to:

R,, = uful (2.14)

Models are introduced for RiJ and the discretized equations are similar co

those commonly used on staggered grids.

In Schumann's modification of this approach, the integrals of spatial
derivatives are carried out analytically. This results in equations which
contain integrals over the surfaces of the control volumes. The difficulty
with this approach 1s that four different types of averages appear: averages
over the three types of faces of the grid volume and volume averages. These
must be related in some way. Schumann introduced several approximations that
relate the surface averages to a single volume average, but the assumptions
required are Jdifficult to evaluate and may be questionable, especially at low
Reynolds numbcers. It 1s not clear that this method has any significant advan-

tages relative to Deardorff's.
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In the Deardorff-Schumann approach, the subgrid scale velocity field is
discontinuous at the edges of the coitrol volumes, and the behavior of the
subgrid scale Reynolds stress as a function of position is not very smooth.
This problem and the increased flexibility in defining the filter are the
primary reasons why we prefer the filtering approach to the one presented in

this section.

4. _The large Eddy Simulation Equations

The equations of large eddy simulation are essentially (2.7) and (2.8).
However, one needs to take into account Eqs. (2.10) and (2.11) as well. Also,
one further modification is usually made. The subgrid scale Reynolds stress,
defined by Eq. (2.11), can be decomposed into the sum of a trace-free tensor

and a diagonal tensor:

1 1
- - + = 6.
Ry Rey =38R0+ 38R,

1
Tyt 8 R

(2.15)

]

Although the diagonal component of this tensor can b: modeled, there is no
need to do so. When the decomposition (2.12) is substituted into the filtered
Navier-Stokes equations (2.7), the diagonal component produces a term which is
equivalent to the gradient of a scalar. It is similar to the pressure
gradient term and can be combined with it. It is therefore advantageous to
define a modified pressure:

P = %+.13Rkk (2.16)

The filtered Navier-Stokes equations can then be written:

—_ 2—
b e 9u aT, |
i 9 — - _op i _ 13

at t 5% Y4y 3%, T VX ox, 90X (2.17)
J i i J

Once a model for T4 has been introduced, these equations are to be solved

numerically along with the filtered continuity equation, which is repeated

here for completeness:

2
[N

(2.18)

|
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[
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5. _ﬁxudeoffs

In any kind of flow computation, there are tradeoffs. Higher accuracy
can always be by reducing the grid size and increasing the number of mesh

points. The price is paid in the form of increased computer time.

A similar tradeoff exists in large eddy simulation. Ideally, we would
1like all the eddies in the large scale field to behave in the manner ascrvibed
to large eddies at the beginning of this chapter and the swall eddies to
behave as they are supposed to. This separation of large and small eddies is
possible only at high Reynolds. At sufficiently high Reynolds numbers, the
turbulent energy spectrum contains an inertial subrange in which there is
essentislly no turbulence production or viscous dissipation. The eddies which
are larger than those in the subrange (i.e., lie at lower wavenumbers) behave
like "large eddies”, and those that lie at wavenumbers below the subrange are
"small eddies.” Since the width of the filter (4) 4is supposed to mark the
boundary between the two classes of eddies, the ideal is to choose the filter
width such that the corresponding wavenumber (w/A) 1lies in the subrange. If

this is the case, large eddy simulation should be successful.

There are, of course, d¢ifficulties that we need to address. The

principal of these are:

a) The size of the physical domain considered in the calculation needs
to be sufficiently large to hold the largest eddies. We also wish the filter
size to be such that all of the "small"” eddies lie in or below the subrange.
Finally, the computational grid size must be smaller then the filter width
(this 1s discussed in Chapter 4). These requirements set the number of mesh
points required in each coordinate direction. It is not unusual to find that
the number of mesh points needed to meet these requirements is much greater
than the available computer resource will allow. We are then forced to use a

filter width which lies outside the subrange.

b) At low Reyncids numbers there is no subrange in the turbulence spec—

trum.

In ei’her case, we are forced to use a filter width which does not lie
within the inertial subrange of the turbulence spectrum. It has been argued
by some that one should not do this. We believe that it is reasonable to do

large eddy simulation under these circumstances. However, the mode) may need

to be changed to account for the fact that the cutoff is not in an inertial

subrange. This problem wiil be discussed further in the next chapter.
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Chapter 1I1

SUBGRLID SCALE MODELS

1. The SGS Reynolds Stress

In the preceding chapter we saw that there are terms in the equations of
large eddy simulation that involve the amall or subgrid scale component of the
velocity field, and, as this small-scale velocity field will not be computed,
these terms must be modeled. This chapter will be devoted to a discussion of

the models used for the so-called subgrid scale (SGS) terms.

To begin, it is well to look at the physical significance of the §GS
terms. Equations (2.2) and (2.3) describe the development of the large
eddies. In them, the terms containing the small scale velocity represent the
interactions between the large and small eddies. On the average, kinetic
energy is transferred from the large eddies to the small ones, there is energy
flow in both directions, but the net flow is usually toward the small scales.
leslie and Quarini (1979) estimated that the gross transfer to the small
scales is about 1.5 times the net transfer. In other words, approximately
one-third of the energy transferred to the small scales is returned. We shall
see later that the net energy flow may be in the reverse direction in some
cases, The stbgrid scale terms in Eqs. (2.2) and (2.3) must represent the
effect of these transfers on the large scales. In the normal situation, the
net energy transfer to the small eddies appears to be a dissipation to the

large eddies--energy lost that will not reappear. Thus the model should

normally be dissipative.

The terms which need to be modeled were derived in the previous chapter

and can be written:

R, = uUu.-u,u, = u u3 + uiﬁ' + u'u’ (3.1)

As we stiowed, we prefer to work with the SGS Reynolds stress defined by

1
Tiy = Ry o3 Rady (3.2)
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It is plso worth mentioning at this point that the terws we have called

the Leonard stresses:

e

My " t-JJ -I.‘iIIJ. (3.3)
(which were first discussed by Leonard (1973)) may need special treatment.
These terms are zero in the Deardorff-Schumann approach but not in the filter-
ing method. Investigation has revealed that they are responsible for only a
small amount of energy transfer between the large and small scales. Their
major effect seems to be redistribution of energy among the various large

scales.

The contents of this chapter are as foliows. In the next section, equa-
tiong governing the SGS Reynolds stresses will be derived and discussed. We
shall also compare SGS5 modeling to Reynolds-averaged modeling. In Section 3,
a computational method for validating SGS models will be described and some
results given. This will be followed in Section 4 by a discussion of eddy
viscosity models, the ones in most common use today. Section 5 will describe
gome of the contributions that theory has made to the state of the art in S5GS
modeling. Some new ideas about SGS modeling form the subject of Jection 6.
Higher-order modeling will be taken up in Section 7. Finally, Section 8 will
discuss some effects that arise when there are extra rates of strain (in Brad-
shaw's sense) 1in the flow. We shall end the chapter with a short summary of

the principal points.

2. The SGS Stress Equations

It is not difficult to derive a set of equations deecribing ihe dynamical
behavior of the quantities Rij defined by Eq. (3.1). However, the process
is somewhat tedious. One takes the Navier-Stokes equations for uy and also
writes them with 1 replaced by Jj. The equation for uy is multiplied by
uy and vice versa. Adding the two resulting equations and filtering the
result ylelds an equation for-uiuj. By repeating the same procedure_using
the dynamical equation for Uy one can derive an equation for Eiﬁj.

Subtracting these two equations, we have the desired equation for R

1j°
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There are many diffusion terms, they are not written explicitly, as we shall
not need them. Here, Xij 1is the Leonard stress defined by Eq. (3.3). An
equation: for R, the subgrid scale turbulent kinetic energy, can be derived
by taking the trace of Eq. (3.,4). Subtracting Gij times the resulting
equation from Eq. (3.4) gives an equation for Tij'

All of the terms in Eq. (3.4) are analogous to terms in the familiar Rey-
nolds stress equations of time-average modeling. The interpretations are also
similar. However, the differences are quite important. Lqs. (3.4) contain
more terms than the equations for the time-average Reynolds stresses because
som¢ items that are zero in time~average approach are not zero when filtering
i8 used. In particular, note the appearance of the Leonard stress in the
production term and, more importantly, the fact that the production term is
filtered. All of the terms i Eq. (3.4) can be computed by the methods de-
scribed in the next section and models for them studied, but this has not been

done to date.

The most common assumption in turbulence modeling is that production and
dissipation terms dominate the turbulence budget, and, as a first approxima-
tion, we can equate them and ignore the other terms. For the time-average
equations, this approximation is reasonable when applied to the turbulent
kinetic energy budget far from solid boundaries, but it is less valid for the
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component ¢quations because the redistribution terms may be quite large. Near
walis, the diffusion terms become quitaz important and the approximation 4is
even more questionable. The low Reynolds numbers in this region may also
affect the structure of the turbulence. Nonetheless, tha “"production equals

dissiration argument” is frequently invoked.

For LES, the situation is somewha* different. lt is8 important to note is
that the model is assumed to represent a local spatial average of the local

instantaneous small-scale turbulence. This is quite different from what is

modeled in time- or ensemble-average modeling and our understanding of subgrid
scale turbulence (and consequently, our ability to model it) 1is more
limited. This 1is compensated for by the fact that a large eddy simulation
calculation of a given flow 1s less sensitive to modeling errors than s a

Reynolds-averaged calculation of the same flow.

In particular, becauvse the small scales of turbulence are highly inter-
mittent, we expect gradients of subgrid scale quantities to be relatively
large. If this is the case, it is probable that the convection and diffusion
terms, which are ignored in many time-averaged wodels, are more important in
SGS modeling. On the other hand, we have recently found evidence that the
pressure fluctuations and, more particularly, the pressure-strain correlations
reside mainly in the large scales (this will be presented in Chapter 5), and
they may b2 lesn important in SGS modeling than they are in conventional mod-
eling. Despite these differences, most SGS models to date have relied on

ideas developed for time average models.

3. Computational Validation of SGS Models

Two approaches are commonly used for developing and testing time-average
models. One method, favored by Lumley, Reynolds and others, uses simple tur-
bulent flows (usually homogeneous flows) to test the validity of the models
and to determine the adjustable parameters, The major cbjection to this
approach {s that the structure of homogeneous flows differs considerably from
the flows one really wishes to simulate, and the constants may not be valid in
more complex flows. The other method, used by Spalding, Launder, and others,
adjusts the parameters to fit flows similar to the ones that one wishes to
calculate. This is difficult because many of the parameters must be adjusted

simultaneously and this can be a difficult procedure.
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It {8 even more difficult to develop mcdels for the subgrid scales. Data
on the small scales of turbulence are quite scarce, and direct validation of a
model using experimental data is nearly fmpossible. Conscxguently, the con-
stants have to be found by other methoils. One approach 1is almost completed
basad on theory and uses the properties of the inertial subrange. 1411y
(1967) and others have shown that the constant in the model can be derived on
this basis. Unfortunately, it {is not always possible to to assure that in a
computation the cutoff between the large and small scales will lie in the sub-
range, 60 one ueeds to be cautious about adopting the results of this
approach. Indeed, a number of authors found it necessary to modify the SGS

model constant to obtain good results.

There 18 a second approach. With the current peneration of computers it
is possible to compute homogeneous turbulent flows with no approximations
other than those present in any numerical simulation. At present, it is
possible to do such calculations with grids as large as 64 x 64 x 64 and, in a
limited number of cases, 128 X 128 x 128, This allows simulation at Reynolds
numbers based on Taylor microscale up to approximately 40 (80 with the larger
grids). The results can be regarded as realizations of physical flow fields
and are an interesting and important complement to laboratory results. In
particular, the computational results provide all three velocity components
and the pressure at a large number of spatial points for a relatively shert
time span. The laboratory data typically give one or two velocity components

over a longer time span at just a few spatial points.

Having a realization of a flow, we proceed in much the same manner an
experimentalist would. The computed field can be filltered to give its large
scale component; the small scale component is obtained by difference. We can
then compute the terms that need to be modeled, and, from the large scale
field; we can also compute what the model predicts these terms to be. Direct
comparison between the model and the exact value is then possible. This can

be done in a couple of ways.

One method is to use a scatter plot. The exact value of the SGS Reynolds
stress at each mesh point is plotted against the value predicted by the model.
If the model is correct, the results lie on a straight line; a totally invalid
model produces a random pattern of points (usually a circle). This is a very

graphic test of a model. Some scatter plots will be shown later.
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The second method 1is to compare the model and exact results statistic-
ally., In our work we have used the correlation coefficient as a measure of
the validity of a model. This 18 a crude tcst, but it seemo to be sufficient
for our purposes. It is imporiant to recall that the square of the correla-
tion coefficient is approximately the fraction of the data that the model is

correctly predicting.

These are very severe tests of models--much more severe than the tests
usually applied to Reynolds-averaged models. It s possible for a model which
performs noorly in these tests to do well in actual simulations. However,

failure of a model to do well is a signal for caution.

Use of this kind of testing for Reynolds-averaged models will be taken up
in Chapter 5.

4.  Eddy Viscosity Models

Eddy viscosity models can be "derived” from the "production eguals dis-
sipation” argument discussed earlier. This is done in a number of places and
need not be repeated here. For subgrid scale turbulence, the eddy viscosity
model amounts to assuming that the subgrid scale Reynolds stress 1is propor-

tional to the strain in the large scale flow:

du, du
1 .
Tyy " Pp Sy ot "T(ﬁ‘j'+ 5‘:(‘3) (3.5)

The eddy viscosity vy has the dimensfons of a kinematic viscosity.
Most work is bhased on the ac.amption that the eddy viscosity could be repre-
sented by:
where A is the width associated with the filter and |5| = (slj§1j>l/2'
Recently, a number of authors have shown that this is correct only if the in-

tegral scale of the turbulence 18 smaller than A . Since LES is designed for

this not o be the case, it is better to assume that:

v, = ¢ a2y (3.7)
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where L 18 the intcgral scala of the turbulence. Usually L 16 estimated
from L = q3/e, where ¢ 1s the dissipation.

Eddy viscosity models have a long record of reasonable success in time-
average modeling of simple shear flows, and one might expect them to do well
as SGS models. In fact, they have been fourid to do well in some of the homo-
geneous flows: In particular, for the homogeneous flows in which there is mo
mean strain, one is able to predict most of the low-order statisticzl quanti-
ties (for example, the mean square velocity fluctuations and spectra) quite
well using eddy viscosity models; that the higher—~urder statistics, which are
sensitive to the small scales, are not well predicted should be no surprise.
In the homogeneous flows with strain or shear, there is evidence (McMillan et
als (1980), Shirani et al. (1981)) that the energy transfer can be reversed
and flow from the small scales to the large ones. In such cases, the model
should no longer dissipate the energy of the large scales. Eddy viscosity
models, which are guaranteed to dissipate energy from the large scales, cannot
predict this behavior. Despite this, they may not function badly in actual
simulations. The reason is that the smallest scales of the resolved field,
from which the model normally extracts energy, become relatively weak in these
flows, and the model mday actually dissipate very little energy. Furthermore,
the principal difficulty in computing these flows usually arises from the
delivery of a significant amount of energy to scales larger than the compu-

tational domain. This makes the normally used periodic boundary conditions

incorrect, and the results cannot be relied upon.

Eddy viscosity models are incapable of handling other classes of flows.
For example, in transitional flows, we must expect that most of the energy
will be in the large scales i.e., the small scales are not in equilibrium with
the large scales and the "production equals dissipation” argument is
incorrect. Furthermore, although Moin et al. (1978) had reasonable success in
simulating channel flow with these models, later extensions by Kim and Moin
(1979) and Moin and Kim (1981) clearly show the deficiencies of the model.
They found that eddy viscosity models (several were tried) were unable to
maintain the energy of the turbulence. The problem is only partially due to
the model, as the turbulence tends to decay even when the model 1is

eliminated. This will be discussed in more detail in Chapter 7.
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Clark et al. (1979) and McMillan and Ferziger (1979), and McMillan et al.
(1980) have applied the model-testing method described above to eddy viscosity
S8GS models. A typlcal scatter plot is shown in Fig. 3.1, in which the exact
subgrid scale stress is plotted against the Smagorinsky model value. It can
be scen that there is a little correlation between the two data sets (the
correlation coefficient is approximately .4 for the case shown), but it is
even more clear that this 1is far from an adequate model. This result {is
fairly typlcal, although there are varfations in the correlation coefficent

with many of the significant parameters.

The results show that eddy viscosity models are rather poor and, in fact,
they become even poorer when there is mean strain and/or shear in the flow.
However, (it 1s not easy to find more acciutate models (we shall look at this
below), so we may be forced to use eddy viscosity models until something
better is developed. Furthermore, as McMillan and Ferziger have shown, the
method can be used to predict the effect of Reynolds number on the wmodel
parameter. ‘Thedir resuliy ave shown in ¥Fig. J.2. VWhen these results were
applied to channel flow by Moin and Kim (private communication), they did not

produce the desired effects, probably for the reasons given above.

In the above, we have used the fact that the natural length scale of the
5CGS eddies {s the width, A, associated with the filter. By defiunition, this
is the scale that defines whether an eddy is large or small, and there is

little reason to suspect that this is not a correct chofce.

However, when the filter is anisotropic, as it should be in computing
shear flows, it is not quite so clear what 18 the correct length scale.

Almost everyone has used the cube root of the filter volume:
- 1/2 .
A 8 ,8,8,) (3.8)
However, Bardina et al. (1980) showed that a better choice might be:
p o= @F 4l alyli (3.9)

It 1is recommended that Eq. (3.9) be adopted for general use.
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5. '™Te Role of Teory

Theorevical insight plays a considerable role {in understanding the phys~
les of turbulence and contributes considerably to modeling it. Turbulence is,
however, a problem of such complexity that the role of theory in our present
state of knowledge is smaller than in most areas of physics or engineering.
Progress has been frustratingly slow. A review of recent theories is given by
Leslie (1973).

Most theories provide limite! information about turbulence. Usually, the
theories were developed for homogeneous turbulence and have proved difficult

to generalize.

The theories which have attracted the most atteuwtion are Kraichnan's
direct Interaction approximation and others related to it. These theorles are
stutistical in nature i.e., they attempt to make statements about averages of
turbulence quantities rather than the detailed dynamics, The question of
whether this theory could be extended so as to yleld information about the
smail scales of turbulence and, thus, to provide a SCS model has been inves-

tigated by leslie and his co-workers.

The theory necessarily deals with statistically averaged SGS turbulence.
We 1lmagine an ensemble of flows which have the same large-scale motions but
different small-scale motions and ask for the average behavior of the small-
scale motions. Whether this is adequate for modeling purposes is an open
question, but the information generated should be helpful. This theory, like
many others, is capable of predicting the existence of an inertial subrange,

but, unlike most others, it can predict the Kolomogorov constant as well.

Love and Leslie (1976) extended the theory and showed that a form of the
eddy viscosity model could be deduced from it. In particular, they predicted
the constant in the model and showed that the large scale strain rate that
appears in the eddy viscosity model ought not to be the local one but a spa-
tial average. The constant prediéted in this way 1is in good agreement with
that obtained by other theoretical arguments and from empirical f£its to
experimental data.

With respect to spatial averaging of the strain rate in the eddy viscos-
ity, the evidence is mixed. Love and Leslie (1976) found that it was impor-
tant in the solution of Burgers' equation, but Mansour et al. (1978) found

that it did not matter amuch.
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A number of other issues were jnvestigated by Leslie and Quarini (1979).
In particular, they divided the SG5 terms into "outscatter” and "backscatter"
terms representing, respectively, the energy flows to and from the subgrid
scale. They found that eddy viscosity models appear to represent the outscat-

ter fairly well, but they could not say much about the backscatter.

Although limited, these theories are proving useful in choosing and vali-

dating models.

6. A Scale Similarity Model

All models, by definition, relate the SGS5 Reynolds stress to the large
scale flow field. Eddy viscosity models view 1, as a stress and make an
analogy between it aiid the viscous stress. These models are guaranteed to ex—
tract energy from the large scale field (i.e., they are dissipative). It is
difficult to construct other models with this property. However, as noted
above, the desirability of this property 1is questionable 4 sheared and

strained turbulence.

It is important to observe that the interaction between the large and
smdall scale components of the flow field takes place mainly between the seg-
ment of each that is most like the other. The major interaction is thus be-
tween the smallest scales of the large scale field and the largest scales of
the small scale field (regions 1 and 2 of Fig. 3.3). This is what the S$GS
term in the filtered equations represents. Since the interacting components
are very much alike, it seems natural to have the model. reflect this. To do
this requires that we find some way of defining the small scale component of

. One way to do this was suggested by Bardina et al.

the large scale field u,
(1980). Since Gi represents the large scale component of the field, fil-
tering it again produces a field (51) whose content is still richer in the

largest scales. Thus,

(3.10)

is a field which ¢outains the smallest scales of the large scale component of

the flow field. This suggests that a reasonable model might be

T - U u 3.11
14 c uiuj ( )
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or, better yet

Tyomoe (uiuj - Giﬁj) (3.12)

This modification is suggested by considering the "cross-terms,” e.g., Gius.
Preliminary tests Jltave shown that this model is not dissipative, but it
does correlate very well with the exact stress, a scatter plot is given in
Fig. 3.4. This suggests that a combination of the two models might be better
yet. The correlation is largely due to the fact that, with a Gaussian filter,
the two fields in question contain much the same structures. with other
filters, particularly one which is a sharp cut-off 1in Fourier space, the

correlation is smaller. These models are currently being investigated.

7. Higher-Order Models

The inadequacies of algebraic eddy viscosity models in Reynolds-averaged
modeling have been known for a long time. A number of more complex models
have been proposed, and, since they have analogs in SGS modeling, a brief

review of them is in order. We shall go into some of these models in more

detail later.

Many of the improvements are based on the notion that proportionality
between Reynolds stress and mean strain rate is valid, but the eddy viscosity

formulation needs improvement. In these models one writes:

VT - Clql (3.13)
where q and & are, respectively, velocity and length scales of the turbu-
lence. In the simplest such models, the length scale 1is prescribed and a
partial differential equation for the turbulence kinetic energy (q2/2) is
solved along with the equations for the mean flow field. These are called
one-equation models; their record has not been particularly good, and most
people now use still more complex models. In particular, the assumption of a
prescribed length scale has been questioned, and methods of predicting the
length scale have been proposed. Of these, the most widely used models are
those 1in which an equation for the dissipation of turbulent kinetic energy
(which really represents energy transferred to the small, dissipating eddies)
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is added to the equations used in one-equation models. The length scale 1is

related to the dissipation € by:
3 -
€ = 02q /% (3.14)

and we have the so-called two-equation models. This 1is the most popular

method of computing time-average flow fields at present.

Finally, the most recent development has been the use of the full Rey-
nolds stress equations. In two dimensions, thwee PDE's are needed to define
the Reynolds stress, while in three dimensions, six are required. Clearly,

this is a rather expensive approach.

A way of avoiding the computational cost of full Reynolds stress methods
is obtained by noting that the convective and diffusive terms can frequently
be neglected. If they are, and approximations are made to the redistribution
terms, the equations reduce to algebraic ones, Algebraic models have become
popular in recent years. However, there is doubt as to whether the neglect of

diffusion is correct near the wall.

All of these models have analogs in SGS modeling, and a number of them
have been used. let us consider them in the order in which they were intro-

duced above.

First, consider one- and two-equation models. They have as their funda-
mental basis the proportionality of the SGS Reynolds stress and the large-
scale stress. We saw earlier that the Smagorinsky model (an algebraic eddy
viscosity model) correlates poorly with the exact SGS Reynolds stress. Clark
et al. (1979) looked at the behavior of one-equation models as well as an
"optimized” eddy viscosity model. In the latter, the eddy viscosity was cho-
sen, at every point in the flow, to give the best local correlation between
the SGS Reynolds stress and the large-scale strain. By definition, no eddy
viscosity model can do better than this. It was found that the correlation
coefficient improved somewhat relative to the Smagorinsky model (from approxi-
mately .35 to .50 in a typical case), but this still leaves the model far
short of what we would like to have. The lack of correlation seems to be due
to the difference between the principal axes of the two tensors. This model-
ing assumption needs to be changed 1if further improvement is to be obtained

(cf. McMillan and Ferziger (1980)), and more complex models are required.
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Schumann (1973) also used one-equation modiils without finding improvement over

algebraic eddy viscosity models.

Next, recall the earlier remark that convection and diffusion are likely
to be more important in SGS modeling than they are in time-average modeling.
This means that the approximations needed to reduce the full Reynolds strese
equations to algebraic model equations are less likely to be valid in the SGS
case. However, several authors have used algebraic models. The applications
have been almost exclusively to meteorological and environmental flows in
which stratification and buoyancy effects are important. These flows are sen-
sitive to small variations in both properties and model, making it difficult
to assess the accuracy of a wmodel with precision. To our knowledge, no

applications of these models to engineering flows have yet been made.

It is probable that, to obtain a significant improvement over the Smag-
orinsky eddy viscosity model, we shall need to go to full Peynolds stress
models. This, of course, is not something to be looked forward, to as the
computing cost is likely to be wore than doubleds The only use of these
equations to date was in meteorological flows by Deardorff (1972, 1973a,b),
who reported a computer time 1increase of a factor of 2.5. Furthermore, the
results were not improved to the degree that he had hoped for. Although this
is discouraging, Deardorff's simulation was considerably ahead of its time and
had the additional difficulties associated with buoyancy, so it is hard to
make definitive conclusions. Thus, we cannot conclude much about these models
at present, and quite a bit of work necds to be done on them before they

become useful tools of the trade.

8. Other Physical Effects

The author's group has done full simulations of the effects of compres-
sibility on turbulence and the mixing of passive scalars in turbulent flows.
To date, the work has concentrated on evaluating time-average models, because

it was felt that this is the area in which the work has the most immediate
impact.

The effects of compressibility on SGS turbulence are probably quite
small. The effect on the turbulence as a whole have been found to be fairly

weak, except for effects due to the propagation of acoustic pressure waves.

Since the latter are large scale phenomena and the Mach number of the SGS
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turbulence 1is small, we expect that compressibility will have only a weak

effect on S5GS modeling.

On the other hand, SGS modeling of turbulent mixing 18 quite important.
If we are to simulate combusting flows, it will be necessary to treat the
small scales accurately, since that is where the action is in these flows.
The effect of the Prandtl/Schmidt number on time-average models is moderately
strong, and we expect 1its effect on 8GS models to be even stronger.
Furthermore, the specific effects due to combustion are also likely to be
important on the small scales. The author intends to look at SGS modeling of

mixing and combusting fliows in the near future.

Another effect of considerable importance in application is buoyancy,
which was mentioned earlier in connection with the meteorological simulations.
Flows in which buoyancy is important and, particularly, those which are driven
by buoyancy are very difficult flows to measure or simulate, and a great deal
of work will need to be done in this area. Important work in this area has

been done by the Karlsruhe group (Grotzbach et al. (1979)), and further work
is under way in london (Leslie (1980)).

Finally, we should state that meteorologists and environmental engineers
have a great interest in both wixing and buoyancy effects, and considerable
effort in these areas has been made by these people. In particular, we note
again the work of leardorff cited above and that of Sommeria (1976), Schemm
and Lipps (1978), and Findikakis (198l1). One of the principal difficulties of
these flows 1is that the Reynolds numbers are so large that eddies of length
scale equal to the grid size are quite important. Consequently, the SGS
eddies do not behave entirely like "small eddies;" they carry a significant

fraction of the total energy and are therefore hard to model.

9, Summary of the State of SGS Modeling

From the arguments given above, we can reach the following conclusions

about the current state of the art in SGS modeling.

1. Although they are inadequate in detail, eddy viscosity models can be
used in simulating homogeneous turbulent flows. However, they seem to be
inadequate for inhomogeneous flows, especially those in which solid boundaries

are important.
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2, For models in which the length scale is prescribed, the length scale
of Eq. (3.9) 1is preferred.

3. One- and two-equation turbulence models are unlikely to provide

significant improvement relative to algebraic eddy viscosity models. An

exception to this might be transitional flows.

4, Full Reynolds stress models offer promise as future SCGS models.
However, the modeling assumptions probably need to be different from those

used in time-average modeling.

5. The scale-similarity wmodel 1s promising, but only when used in con-

Junction with other, dissipative, models.

6. Full simulations seem to be the best way available at present for
testing SGS models and determining the parameters in them. Turbulence theo-

ries can also be profitably used in this regard.

7. Full simulations and large eddy simulations can both be used in time-
averaged model building. This is the area in which both types of simulations
will make their greatest impact in practical engineering calculations in the

near future.

32



e T A Serpis

Chapter 1V

NUMERICAL METHGDS

1. Mathematical Preliminaries

This chapter is devoted to setting out the numerical methods used in full
and large eddy simulations. To some extent, numerical methnds are always
tailored to the problem, higher-level simulations of turbulent flows are no

exception.

The partial differential equations governing a flow were given in Chapter
2. To complete the methematical setting, it is necessary to specify initial
and boundary conditions. This 1is not easy. Higher-level simulations need
details of the initial state, and experimentalists are unable to provide suf-
ficlent data about the initial state of their flows; some of the initial data
therefore has to be invented. An equally serious problem is that, as the
Navier-Stokes equations are nonlinear, it is not always known what boundary
conditions should be speacified, i.e., we may not know whether a problem is
well-posed or not. There are a number of examples of people attempting to
solve mathematically 1ll-posed problems. Another issue 1is that the partial
differential equations have several conservation properties, and it is impor-
tant that they be preserved in the numerical treatment of the problem.
Finally, there are the difficulties inherent in the numerical methods them-

selves~~accuracy, stability, and aliasing, among others. All of these need to

be considered.

The equations governing incompressible flows are of mixed type, they
contain elements of both parabolic and elliptic parctial differential
equations. This is a consequence of the momentum equations containing time

derivatives, but the continuity equation not having any. As a result, one
cannot advance the continuity equation in time. These equations are called

incompletely parabolic by mathematicians. Means of dealing with both typeg of
behavior are needed. The compressible equations, which are hyperbolic, are

actually easier to deal with from a numerical point of view.

All of these issues will be taken up in the remainder of this chapter.

Additionally, we shall need to describe the numerical approximatiras used in
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the computations. Thioughout the chapter, it is important to keep in mind the
kinds of flows that we are trying to simulate. They are geometrically simple
turbulent flows. The fact that they are turbulent means that the high wave-
number components of the velocity field are large. Large gradients of the
variables can occur in any part of the flow, this has an important influence
on the choice of numerical methods. OUn the other hand, the simplicity of the

geometry helps considerably in developing accurate numerical methods.

2. Boundary Conditions

The simplest flows to be simulated are the homogeneous turbulent flows.
By definition, these flows are statistically identical at every point in the
flow., For these flows, the most convenient and most accurate boundary condi-
tions are periodic ones. The portion of the flow within a rectangular paral-
lelepiped is simulated, and the boundary conditions prescribe that the state
of the fluid at a point adjacent to any of the boundaries is identically that
on the opposite face of the parallelepiped. Tiese conditions avold the need
for specifying the details of a highly chaotic motion on the surfaces and are
the most realistic means of enforcing the idea that any point in the flow is

indistinguishable from any other point.

There is one point that requires extra care. In homogeneous turbulent
flows on which mean straining or shearing flow is imposed, it 1is convenient to
solve for just the part of the flow containing the turbulent fluctuations; the
mean flow is eliminated. When this is done, it is found that there are teims
in the equations that 4o not admit the use of periodic boundary conditions.
It is then necessary to do the computation in a coordinate system that deforms
with the mean flow, and the ability to use periodic boundary cenditions is

restored. This will be taken up again in Chapter 5.

The only other flows that we shall consider in any detail in this report
are 1inhomogeneous in one coordinate direction. Of course, this means that
they are homogeneous in the other two directions, and these directions can be
treated by the periodic conditions described above. There are two types of
conditions we must deal with in the inhomogeneous direction; they follow from

the nature of the flows we shall be simulating.
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For free shiear flows, we would like to prescribe the condition that the
flow is at rest infinitely far from the shear layer. Dealing with an infinite
region is difficult, and two methods have been used for this problem:

1) One can use a finite computational domain. At the top and bottom of
the domain one specifies that the vertical derivatives of the horizontal
components of the velocity are zero, and the component of the velocity normal
to the boundary is set to zero. These are known as no-stress houndary condi-
tions., Unfortunately, no-stress conditions imply the existence of image flows
outside the computational domain; the images are reflections of the flow in
the boundaries. To aesure that the image flows do not interfere with the
physical one, there must be no vorticity close to “the no-stress boundary.
This means that a considerable portion of the computational domain must be

wasted in computing the potential part of the flow.

11) One can use a coordinate transformation that wmaps the infinite do-
main onto a finite one. Standard numerical methods can then be used. It is
important to choose a mapping that 1s compatible with the method used for

evaluating derivatives. This issue will be dealt with in more detail later.

The second type of inhomogeneous flow that we shall consider is fully
developed turbulent channel flow. Two different approaches have been taken

for simulating this flow:

i) Deardorff and Schumann decided not to treat the wall directly. The
reasons will be stated in detail in Chapter 7. Instead, they decided to com~
pute only the part of the flow within and beyond the region in which the
velocity profile is logarithmic. The boundary conditions must then assure
that the velocity profile be logarithmic at the edge of the computational
domain. In addition, it 1is necessary to specify something about the nature of
the turbulent fluctuations at thils boundary. They assume a relationship
between the velocity and stress fluctuations at the boundary, this 1is the
simplest assumption one can make, and there is no evidence for any other

choice, but it has been called into question.

11) One can compute the entire flow, including the region near the wall.
The wall conditions are then the no-slip conditions that must be imposed at
any solid surface. This is a much simpler boundary condition to deal with

numerically. The price one pays is that all of the small structures near the
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wall must be computed explicitly; this leads to considerable difficulty, as we

shall see in Chapter 7.

3. Treatment of the Spatial Derivatives: Conservation Properties

In all flow computations, the spatial derivatives are approximated in
terms of the values of the dependent variables at grid points. Higher-level
turbulence computations are no different from others in this respect; the
methods used in these flows are also used in other types of flow simulation.
Again we note that the geometric simplicity of the flows treated by higher-
level simulations allows use of methods that might not be easily applied in

more complex geometry.

Before giving the specific approximations to be used, it is important to
discuss conservation properties. We believe that this issue is not emphasized
sufficlently in the literature. The dynamical equations are essentially
microscopic conservation equations. The ceontinuity equation expresses
conservation of mass. In the compressible case, the Mavier-Stokes equations
express momentum conservation (or what is the same ching, Newton's second
law), and there is a separate energy equation to express the fact that total
wnergy is conserved. In the incompressible case, the Navier-Stokes equations
still express momentum conservation, but, in the absence of an explicit energy
equation, they are also responsible for conserving the only significant energy
in the flow--the kinetic energy. This leads to one of the principal

difficulties 1in the treatment of incompressible flows.

By integration of the microscopic conservation equations over a finite
volume, we¢ obtain macroscopic conservation equations. For the incompressible

form of the continuity equation we obtain the global comnservation of mass

Pu ds - 0 (4.1)
J it

The Navier-Stokes equations give rise to the well-known momentum theorem:

relation:

d aui auj 7
E?/; puidv - —/; (puiu:j + péij + u(-s—{;+ WI)) de (4.2)
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Finally, multiplying the Navier-S5tokes equatione by uy and integrating over
a finite volume, we obtain the equation of kinetic energy conservation:

u.u du
H"_/"”T‘"V - -‘/;(p—ifi"i+puj+u“j7if)dsi
du, du
i i
- T dv
./\: Xy %%y

Each of these equations states that the conserved property changes only by
flow of the property through the bounding surface, this is a consequeice of
the fact thot there are no sources of any of these properties within the voul-
ume. If periodic boundary conditions are applied, the surface terms integrate
to zero. In Eqs. (4.1), (4.2) and (4.3), S 18 the surface of the volume V.

(4.3)

The kinetic energy conservation equation (4.3) is especially interesting.
The only non-surface term %18 the viscous dissipation term, which is usually
small. It 1s essential to note that the kinetic energy within the control
volume 1is not changed by the convection and pressure gradient terms and that

the chain rule .uv)' = u'v 4+ v'u) and the continuity equation are used in

eliminating the volume integral of the pressure.

It is crucial that the numerical approximations to the equavions retain
these properties. For the continuity and momentum conservation, this is usu-
ally not difficult. It usually turns out that, if the equations are written
in the proper form (the so-called conservative form we have used throughout),
then almost any approximation will yield these conservation properties. The
principal difficulty is with the kinetic energy. Normally, the verification

that the numerical approximation guarantees energy conservation has to be done

on a case-by-case basis. A means of avoiding this difficulty was found by

Mansour et al. (1978). If the Navier-Stokes equations are writtenm in the

form:
2
du du
—-—_—1-'-'. .—a— ———?—« m -..—?.—.B i ..—....——1.'—.- 4
T ax, "1%j ax, Y44y Bxi(p + ujuj)+'“ Qx,axj (4.4)
J

rather than (2.1), the derivation of the conservation of kinetic energy equa-

tion (4.3) can be based on a symmetry property, and the use of the chain rule
can be avoided. Since numerical approximations do not always have a chain

rule but the symmetry property always holds, using the Navier-Stokes equations
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in the form (4.4) can simplify the job of finding well-behaved numerical

methods,

Many workers (Deardorff (1970), Schumann (1973), Antonopoulos (1981),
Shaanan et al. (1975), among others) have used the staggered-grid mesh
system. The grid is shown in Fig. 2.2 for the two-dimensional case, the
varisbles are given at the mesh points shown in the figure. The control
volumes for the various equations are different and are displayed in the
figure, we shall not give the finite difference equations here, as they appear
in several other works. This grid system has the nice property that all of
the conservation properties are obtained without difficulty, and, as we shall
see 1n the next section, it gives no problem with the calculation of the
pressure. It 1s the natural grid system for the incompressible equations and
has been used more widely than any other. Part of the reason for the success
of the staggered mesh system was explaired by Shaanan et al. (1975). The
approximation 3;35 = Uiij which has been used by Deardorff and Schumann is
valid in the staggered grid system, because the truncatiun errcrs represent
the difference between chese two terms (the Leonard stress) quite well.
Stated otherwise, the s;aggered grid approximates Jiﬁj more accurately than
it does uiuj and thus leads to great simplification in the finite difference
equations.

If a reyular grid is used, it is necessary to use a fourth-order finite

difference method in order to assure that the leonard stress is properly com-

puted. This can be done, but the method is cumbersome (Kwak et al. (1975)).

Another popuiar method of computing derivatives in directions in which a
fiow 1s homogeneous 1is by means of Fourier transforms-~the pseudospectral
method. In tlhis method one uses the discrete Fourier transform. Any function
defined at a set of equally spaced mesh points Xy = jox, 3 =1,2,...,N, can
be represented by the discrete Fouriler series:

N

ikzx. ~
=]
where kg . 270/NAx. This has the inverse:
- L N -ikng
fk,) = ﬁz e f(xj) (4.6)
j=1
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which differs from Eq. (4.5) only by the sign of the exponent and the factor
1/N;  thus, bpoth transforms can be computed in the¢ same way. these results
can be used in the following way: Given the values of the function £(x) on
the grid points Xy = JAX, we can compute ;(kz) from Eq. (4.6). When theue
are used in Eq. (4.5) and X is replaced by the continuous variable x, the
result {s an interpolation formula. As such, {t can be differentiated with
respect to x, and this provides a method of computing spatial derivatives.

In fact, specializing the result to the grid points, we have:

N
. A ik, x
G (x) = z ik, £(k,) e £73 (4.7)
=1

[ o

1

The derivetive df/dx can be computed by using the discrete values f(xj) to
compute f(kz), multiplying the result by 1k2, and computing the inverse
transform. The result is an extremely accurate estimate of the derivative.
This method is especially well adapted to the calculation of the derivatives
of periodic functions, which explains its widespread application in the compu-

tation of homogeneous turbulent flows.

The practical use of the PFourier transform as a numerical tool is made
possible by the existence of an extremely faot algorithm for its computation—-

the so-called fast Fourier transform (FFT) algorithm.

For later application it 1s important to note that this method could also

be used to compute finite differences. It is not effective to use this as a

tool for computing derivatives, but it can play an important role when we come

to solving the equation for the pressure. As an example, we take the standard
second-order central difference approximation:

LFA —y—ﬁi,—-—-—)j—li (4.8)

ox |, 28x%
|J

The derivative obtained from this formula can be put into the form of Kq.
(4.7) with ik, replaced by iki w i(sin kgAx)/Ax; we call k; the effec-
tive wavenumber. Effective wavenumbers are a good way to measure the accuracy
of finite difference methods that are required to differentiate functions
which contain significant high-wavenumber components, and it is not difficult
to derive the effective wavenumber for various finite difference approxima-

tions. Some effective wavenumbers are plotted in Fig. 4.1.
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Next, let us discuss the treatment of directions in which the flow is not
homogeneous. For the free shear layer, we noted in the previous section that
there are two ways of dealing with the direction normal to the flow (the shear
direction). When the no-stress boundary conditions are used, one can geneial-
ize the Fourier method described above. The key idea is to expand the func-
tions in terms of sines or cosines (using the set appropriate to the boundary
conditions for the particular function) rather than the complex exponentials
of Eq. (4.5). The numerical algorithm for computing sine and cosine trans-
forms is equivalent to computing the exponential transform (4.5) using 2N
rather than N points. Thus the cost of computiag the derivatives is approx-

imately doubled when this method is used. We noted earlier that this approach

suffers from loss of accuracy due to images.

The alternative to the use of no-stress conditions is the use of a trans-

formation which takes the physical coordinate 2z into a computational coordi=-

nate &
z = h(g) (4.9)
such that - ® { z { ® transforms to -1 < < l. The derivative becomes:
g_; - Tl\'"'g'i (4.10)

The trick to making this a successful method 1is to choose the transformation
such that 1/h' can be expressed in terms of just a few low-order sines
and/or cosines. It is then possible to obtain accuracy almost as good as that
of the Fourier method for infinite rcgions. Details of this method are given

in the report by Cain et al. (1981).

Finally we come to dealing with directions in which there are solid
walls, i.e., a numerical method for treating channel flow. There are two
choices that have been commonly used. The first is the use of Chebychev poly-
nomial expansions. This 1is equivalent to a Fourier method on a nonuniform

grid and has been used by Kells and Orszag (1980) and by Orszag and Patera
(1980); see also Kim and Moin (1980).

The other method for treating the channel is to use a finite difference

method on a nonuniform grid; this is equivalent to ueing a coordinate trans-
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The choice has generally been adopted (Moin et

formation in this direction.
We shall deal with this further in Chapter

al. (1978), Moin and Kim (1981)).

7.

Another important issue 1is aliasing. Aliasing is the error introduced

this happens implicitly when the non-

when two Fourier waves are multiplied;
The waves resulting from the product of

linear convective terms are computed.
two Fourier waves contains the sum and/or difference of the original wavenum—

These may fall outside the range of wavenumbers (~n/A < k < n/a)

bers.
When this happens, the wavenumber

which can be carried in the calculation.

which falls outside computational range is misinterpreted (“"aliased”) as one

of the wavenumbers which lies 1inside the band. The result 1is a numerical

in mild cases, adds to the normal truuncation errvor of a finite

error which,
can cause the calculation to

difference approximation and, 1n severe cases,

become totally inaccurate or even unstable.
The simplest way 1is to assure

Aliasing can be controlied in two ways.
Since these are the

that the high wavenumbers are relatively uunpopulated.

ones that cause the problem, eliminating them also solves the problem. In

large eddy simulation, one can assure that the high wavenumbers are relatively

unpopulated by using a filter which cuts off at a moderate wavenumber. In

full simulations, the best way to control the problem is to keep the Reynolds

numnber low,

The other method of controlling aliasing 18 to cowmpute the portion of the
field which will be aliased and explicitly eliminate 1:. This requires extca
computation, but it allows one to include more energy in the high wavenumbers

and the extra resolution gained may be worth the cost.

4, Time Advancement

We now come to the method of advancing the solution in time. One of the

first issues that arises is that of selecting an explicit method or an impli-

It is important to remember that in higher-level simulations one is

cit one.
This con~

looking for time-accurate solutions to the equations of motion.

relaxation methods, 1n which the object is to reach

trasts strongly with
The point of view that we adopt is that

steady state as quickly as possible.
a well~balanced, time-accurate method is one in which the errors caused by the

time advancement method approximately equal those introduced by the spatlal
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introduced by the spatial differencing method. Once spatial difference ap-
proximations and the time-advancement method have been chosen, this criterion
selects the time step., The time advancement method must be stable for the
time step' so chosen. It is usually the case that the time step found in this
way 1is well within the stability bounds of explicit methods, so there 1is no
need to pay the extra cost associated with an implicit method. Thus, with a
few exceptions, noted later, the time-advancement methods used in higher-level
simulations are explicit; - The common choices have been second-order methods
such as leapfrog and Adams—Bashforth and the fourth-order Runge-Kutta method.
These are standard methods of numerical analysis, so the formulas will not be

given here.

For purposes of discussing time-advancement methods, it is convenient to

rewrite the Navier-Stokes equations in the form:

‘E’i“ - 13 Ly (4.9)

where the viscous and convective terms have been included in Hi‘ There is no
difficulty in time-advancing this equation by an explicit method. Most of the
difficulties in solving the incompressible equations come from the lack of a
time derivative in the continuity equation; the compressible equations have no
such problem. One method of avoiding this difficulty is to treat the flow as
if it were compressible and iteratively drive the compressibility effects to

zero; the iterative nature of this process makes it inefficient, however.

A more efficient procedure is to note that application of the divergence
operator and use of the continuity equation on Eq. (4.9) gives the Poisson

equation for the pregzsure:

02 aHi
2P . 5.1 (4.10)
axiaxi {

When one looks at the time-discretized version of Eq. (4.9), it is found that
forcing the pressure to satisfy the Polsson equation (4.10) at time step n
guarantees that continuity will be maintained at time step n + l. The mixed

nature of the equations is brought into clear focus. The Navier-Stokes equa-
tions (4.9) are treated as parabolic partial differential equatioms, but the

pressure must be calculated from the Poisson equation (4.10), which is ellip-

tic.
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One further important point needs to be made here. Recall that, 1f the
Navier-Stokes equations in the form (2.1) are used, then the derivation of the
energy-conservation equation (4.3) requires use of the chain rule and the con-
tinuity egquation. If we are to have numerical energy conservation, it is
necessary to derive the numerical equivalent of Eq. (4.3). Assuming that tke
required analog to the chain rule exists, the choice made for the numerical
approximation to the pressure gradient dictates the numerical approximations
used in the continuity equation. Otherwise, one cann¢t obtain energy conser-—
vation; the usual consequence is an unstable calculation. For example, 1if the
central difference approximation is used to estimate 3p/dx, it must be used
for the continuity equation as well. If a backward difference is used for the
pressure gradient, the continuity equation must use the forward difference

operator, and vice versz; this is what s done on the staggered grid.

Furthermore, one is not free to finite difference the Poisson equation
(4.10) arbiirarily. The correct approximation 1s derived by applying the
numerical divergence operator obtained in the manner described {in the pre-
ceding paragraph ito the finite difference version of thg Navier-Stokes equa-
tions. Thus, the choice of the finite difference approximation for the
pressure gradient dictates the method of differencing the Poisson equation.
For example, 1f the central difference operator is used for 3p/dx, it turns
out that the difference operator for the Poisson equation must be the second-
order central difference operator (as one might expect), but the grid spacing
must be 2Ax and not Ax. We reiterate that the function of the Poisson
equation 18 to maintain continuity iIn the numerical sense; it is more impor-
tant to solve the correct equation than to obtain the most accurate solution

to the exact partial differential equation.

The most efficient method of solving the Poisson equation is by means of
the fast Fourler transform. This is the case whether one uses finite differ-
ences or the pseudospectral method, the spatial derivatives. When finite
differences are used, one can solve the Poisson equation by using Fourler
transforms, but one must be careful to use the effective wavenumber rather

than the exact wavenumber.

The staggered grid method accomplishes all of this very efficiently. It
does this so well that the need for being careful with finite difference meth-

ods 1s often overlooked.
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There 1is one case in which we cannot use explicit methods. In the compu-
tation of flows with solid boundaries, it is necessary to use a very find grid
in the direction normal to the wall, close to the wall. A consequence is that
the time step allowed by stability is then smaller than the time step allowed
by the accuracy criterion. The principal difficulty comes from the viscous
term. In this case, it 18 necessary to treat the viscous terms containing
derivatives in the normal direction implicitly. In fact, a special numerical

method had to be invented for this problem; it will be sketched in Chapter 7.

5. Initial Condicions

The 1initial conditions for higher-level simulations cannot be derived
directly from experimental results. The data never contain enough information
to construct a complete initial field. In fact, the reported results of some
expeximents are quite incomplete and leave the computor so much freedom that
it is always possible to find initial conditions that allow the simulation to
match the experiment. From the point of view of one doing higher-level simu-
lations, an ideal experiment reports not only the mean velocity and turbulence
intensities, but information about the length scales as well. Ideally, com—

plete spectral information should be provided.

We begin by considering the construction of & velocity field for the
simulation of homogeneous isotropic turbulence; the velocity fields required
by the other cases dre frequently derived from this., The task 1s to create
an initial field that has a specified energy spectrum and is divergence~
free. There are several ways to do this; of thes=s, the following is one of

the easiest. There are three steps in the process:

l. Each component of the velocity at every grid point is assigned a
random value. ‘The resulting field is not divergence-free, nor does it have

the desired spectrum.

2. The curl of the field is taken; the resulting field is divergence-
free. The numerical operator used to take the curl must be the same as the

operator used to define the divergence.

3. The Fourier transform of the velocity field is taken and in each
Fourier mode 1s assigned an amplitude required to give the desired spectrum.
The Fourier transform 18 inverted, and the result is the desired initial

field.
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This procedure is easily modified to give an initlal field which is

anisotropic. This can be done by biasing the random numbers used in the first

step of the process.

For flows in which there 1s a mean velocity profile (specifically, the

mixing layer and the chamiel), it 1is necessary to give the mean velocity

profile in addition to the turbulence.

turbulence field must also be modifiled.

want the fluctuations to be more intense near the central plane of the flow
that

The method of producing an initial

In the case of the mixing layer, we

than near the edges. Such a field can be produced in a manner similar to

Insteady of allowing the fileld created in Step 1 to be uni-

described above.
The

Eormly distributed in space, we give it the desired spatial distribution.

steps for removing the divergence and producing the given spectrum are then

essentially as described above.
For the channel flow it was found that the subgrid scale model destroyed

and tended to make the flow become laminar if conditions of

too much energ:
To prevent this, it was necessary to

the kind described above were used.

introduce large structures into the flow. These were obtained from solutions

of the Orr-Sommerfeld equations. Although these are not the correct large

structures for a fully developed channel flow,
Randomness was added to the flow by introducing a small

they are apparently similar

enough to them.
amount of more or less isotropic turbulence which 1s divergence~free and is

zero at the walls.
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Chapter V

HOMOGENEOUS TURBULENCE

1. Classification

A homogeneous turbulent flow 1is one in which each point in the flow is,
in the statistical sense, equivalent to every other point. Ideally, this re-
quires an infinite medium of fluid, every part of which experiences the same
forces. In practice, close approximations to these flows are produced in wind
tunnels. The mean flow is designed into the tunnel, while the turbulence is
usually created by a grid (or, in a few cases, by a set of jets) and carefully
controlled. The time evolution of the flow 1is simulated by observing its de-
velopment as it moves downstream in the tunnel and invoking Taylor's hypothe-
sis. If the gradients of mean quantities and other parameters of the flow are
carefully chosen, an accurate approximation to a homogeneous flow is produced.
It is not difficult to show that homogeneity requires the mean flow to be one
in which the mean velocity 1s a linear function of all of the spatial coordi-
nates. This severely limits the possibilities.

Nearly all turbulent flows of engineering interest are inhomogeneous, the
inhomogeneity is usually the result of the shear varying through the flow.
When the Reynolds stresses in these flows are modeled, five separate effects
are commonly considered. ‘They were mentioned in Chapter 3 and are repeated
here:

a. Production. The creation of new Reynolds stresses via the inter-

action of the Reynolds stresses with the mean flow.

b. Dissipation. The destruction of turbulent energy and Reynolds

stresses by the action of viscosity.

c. Redistribution. The conversion of one component of the Reynolds

stress into another without rhange of the total turbulent energy.
Much of this effect is mediated by the pressure.

d. Convection. The convection terms usually require no modeling, but
their inclusion makes the local Reynolds stresses depend on the mean
field in other parts of the flow.

e. Diffusion. The carrying of Reynolds stress from one part of the flow

to another via the self-interactions of the turbulence.
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By definition, homogeneous flows have no convection or diffusion, so we need

to deal with, at most, production, dissipation, and redistribution.

Homogeneous turbulent flows can te grouped into three categories accord-
ing to the phenomena contained in them. The first group contains the one flow
in which the only interesting effect is dissipation. (lnertial energy trans-

fer among the wavenumber components is, of course, an element in all flows bLat

is not counted separately.)

® Homogeneous Isotropic Turbulence. ™is flow, which at one time was
heavily studied because it was thought that it might provide the insight

into the nature of all turbulent flows, 1is the decay back to rest of

fluid which has been set into raudom motion. It is still used as a means
of finding turbulence model constants associated with dissipation and is

usually the first flow simulated by people dojag higher-level

gsimulations.

The second group of flows contains those in which there 1s exchange

between the various components of the Reynolds stress (redistribution) in
addition to dissipation, but there is no direct production of turbulence
energy. There are two such flows.

a. Homogeneous Turbulence with Rotation. The effect of rotation on

isotropic turbulence is to produce anisotropy. The effect is primarily on the

length scale and reduces the rate of decay of the turbulence.

b. Return to Isotropy. Turbulence which has been made anlsotropic by

the action of strain (see below) tends to return toward 4isotropy if the

additional force 1is removed.

© The final group contains the flows in which all of the phenomena that are
possible in homogeneous flows actually occur. There are two major flows

of this type.

a. Strained Homogeneous Turbulence. Turbulence which 1is initially

isotropic (or nearly so) is put through a wind-tunnel section in whi:h a fluid
element is stretched in one direction and compressed in either one or two di-

rections. The result is irrotational strain which interacts with the existing
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turbulence; there 18 considerable turbulence energy production, and the flow

becomes quite anisotropic.

b. Sheared Homogeneous Turbulence. Nearly isotropic turbulence 1is

produced in a flow which has uniform shear (a straight-line velocity profile).

The effects are similar to those observed in the strained turbulence case.

The experimental data for these flows have been reviewed in a paper by

the author (Ferziger (1980)).

We shall also consider flows with ccmpressibility and mixing of a passive

scalar.

All of the flows described in this chapter are ones which develop in
time. It is uncertain that any of them reaches a steady state or even a self-
similar state. This issue is controversial;, some authors believe that a self-
similar state will be rcached, while others do not believe s0. In any case,
these flows are sensitive fo the initial conditions. In turn, this means that
caution 1is required 1w interpreting them and that careful documentation of the

initial conditions is necessary.

All of these flows have been calculated by both full and large eddy
simulation. The results show that all of the physical phenomena observed in
the laboratory have been shown to be a valuable tool in evaiuating turbulence
models. Much of the work in the area of wmodel validation is recent and unpub-
lished, and we shall give a brief overview of some of the principal results.
It is also worth pointing out that a complete compendium of results from full
simulaticns of homogeneous turbulence is being assembled by Dr. R. 5. Rogallo
of NASA-Ames Research Center and will probably be available in the summer of

1981, His results should be an important resource for people developing tur-

bulence models.

2. Isotropic Turbulence

As we have mentioned earlier, isotropic turbulence 1is the simplest tur-
bulent flow. It is therefore an obvious first target for any method of simu-
lating or modeling turbulent flows. It has long been used by the developers
of Reynolds-averaged models as a basis for choosing the constant(s) assocliated
with the dissipation. It has also been a popular choice as the first flow to
he simulated by higher-level methods, and it has been used extensively as a
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basls for testing subgrid-scale models. We shal! review this work briefly in

this section.

To simulate these flows numerically, one begins with an initial condition
that has the desired energy spectrum and {s divergence-free, Methods of
constructing such flelds were described in the preceding chapter. 1In full
simulations it 1is not necessary to begin the calculation with a realistic
spectrum; one will develop in time. Of course, if one is trying to match an
experiment, the experimental spectrum ought to be specified. 1In large eddy
simulations of this flow, the initial spectrum is obtained by filtering the

experimental spectrum.

The initial condition defines the initial Reynolds number. The Reynolds
number commonly used to characterize this flow is based on the Taylor
microscale A and the turbulence intensity q. Although these may not be the
optimum choices, we shall follow custom and use them. In this flow the
turbulence intensity decays and the uicroscale increases with time, but the

microscale Reynolds number decreases.

At the first few time steps, the flow field cannot be regarded as repre-
senting true turbulence. The {nitial field does not contain the proper
higher-order statistics or correlations; only after at least some of these
have developed can the field he taken as representing physical reality. We

have pgenerally taken the behavior of the skewness of the velocity derivative:
s = < (u/ax)d > / < (du/axn)? >3/ (5.1)

as the measure of th: quality of the flow €ield. It is nearly zero in the
initial field and quickly rises to an asymptotic value at which it tends to
remain for a considerable time, except at low Reynolds numbers. The time
period in which the skewness is rising is considered a "development” period.
This 1is followed by a period in which the flow is realistically simulated.
¥{nally, the size of the large structures grows to an appreciable fraction of
the size of the computational domain, and periodic boundary conditions are no
longer valid. At this point, the flow 1is no longer realistic, unphysical

behavior is observed in the results, and the program has to be stopped.

First, let us consider full simulations of this flow. Using 64 x 64 x

64 mesh points in a calculation, one is able to compute at Reynolds numbers
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up to R, = 50, Tis is the practical limit on most present computers, a few
cases have been run on a 128 x 128 x 128 grid which allows the Reynolds
number doubled. These Reynolds numbers are on the low end of the experimental
ones; most experiments have been run with Ry in the range 30-4600. The
results of these computations match the experiment very well in terms of the
decay of the turbulence intensity, the growth of the length scales, and the
value of the skewness. 'Typical results are shown in Figs. 5.1-5.3.

The principal use to which these results have been put has been in the
development and testing of subgrid scale models. Clark et al. (1979) and
McMillan and Ferziger (1979,1980) used fiow fie¢lds generated by full simula-
tion of isotropic turbulence in the way suggested in Section 3.3. Some of the
principal results of this work were: that the Smagorinsky model correlates
very poorly with the actual SGS Reynolds stress (the actual correlation coef-
ficient is typically .30-.40), that the width of the filter used in large eddy
simulation ought to be at least twice the grid size, that changing the shape
of the filter matters little, and that the model "constant" (which really
ought to be called a parameter) is a function of Reynolds number that can be
derived from this type of calculation. Since these results were covered in

Chapter 3, we shall not repeat them here.

Full simulation has also been used to study isotvopic turbulence at low
Reynolds number, a purpose for which it 1is ideally suited. At low Reynolds
numbers (Ry < 10), it is possible to do full simulations with only 16 x 16
X 16 mesh points. Interest in these flows centers on the decay rate and the

skewness. The decay of isotropilc turbulence can be represented by:
Q¢ = ACt-r )" (5.2)

Theory shows that the decay exponent (n) 1is 2.5 at very low Reynolds number,
and both theory and experiment show it to be approximately 1.2 at high Rey-
nolds number. It is therefore of interest to compute the decay exponent as a
function of Reynolds number. The results are compared with experiment in Fig.
5.4,

The velocity derivative skewness defined by Eq. (5.1) is approximately
.5 at high Reynolds number and can be snown to drop t¢ zero as the Keynolds
number goes to zero. The direct simulation and experimental results are shown

in Fig. 5.5. Figures 5.4 and 5.5 are from a report by Shirani et al. (1981).
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Now let us turn our attention to large eddy simulations of this flow.
The major advantage of large eddy simulation 1s that, since the small eddies
are modeled, the computation time is considerably reduced for a given Reynolds
numver, Alternatively, it 1s possible to go to higher Reynolds number with
LES than with direct simulation.

When large eddy simulations of homogeneous 1isotropic turbulence were
first made, the results of full simulations were not available. Consequently,
the constant had to be chosen to fit the decay of the turbulent kinetic
energy. It was found that the same constant can be used whether 103 or 323
mesh points were used, it was later found that the value obtcined in this way
agreed with those obtained from direct simulation to within 104. It is also
in good agreement with theoretical estimates (Lilly (1967)) despite the fact
that these flows are at Reynolds numbers too small to support an inertial
subrange. Since the constant needs to be adjusted by this amount to account
for changes in numerical method (mainly changes in the spatial differencing

method), this was one of the most {mportant early successes or large eddy

simulation.

It was found that it made little difference whether the primitive Navier-
Stokes equations or the vorticity form of those equaiions were used; it made
very little difference whether the model was based on the strain rate or the
vorticity; and it made very little difference which filter was used. However,
if pseudospectral differencing is applied to the original Smagorinsky model,
the shape of the spectrum at high wavenumbers 1is distorted. To remedy this
problem, it was found necessary to evaluate all of the derivatives that occur
in the model by second-order finite-difference approximations. This is simi-
lar to the finding by love and Leslie (1976) that the model ought to be aver-
aged over a finite volume. A typical result obtained by large eddy simulation

is shown in Fig. 5.6; other curves are similar and therefore not shown.

Finally, it was found that large eddy simulation is incapable of comput-
ing the higher-order statistical quantities such &s the skewness and flatness
with sufficient accuracy. These quantities are strongly affected by the small
scale motions that are "iltered out, and there is no way to recover the lost

information; all attempts to do so failed.

Most of the results on large eddy simulation are taken from a report by

Mansour et al, (1978).



3. Anisotropic Turbulence

Anisotropic turbulence (turbulence in which the fluctuating components
are unequal so tha‘ uf p u% ] u%) usually returns to an isotropic state if
not strained in any way. However, it is possible for the flow to beccme even
more anisotropic. Thus, if the large scales are such that uf_ﬁ ug_ and the
small scales have uf > ué but the total field is such that uf < Uy, it 1is
quite likely that the turbulence will become more anisotropic with time. This
is not the case in most flows, however, and the asyumption that anisotropic
turbulence tends to return to an isotropic state 1s reasonable in most flows

of interest.

In the laboratory, anisotropic turbulence is usually created by straining
the flow and then allowing the anisotropic turbulence to relax in the absence
of strain. The alternative approach of using the anisotropy of turbulence
created by grids has not been successful. The apparent reason is the one
mentioned above--the anisotropy resides mainly in the large scales, and the
flow may become more rather than less anisotropic. Creating anisotropy by
straining an initially isotropic field distributes the anisctropy over the

range of scales and is thus better behaved.

Simulations can emulate either of the above methods. One can simply
create an initial field in which the components of the velocity fluctuations
are unequal, or one can strain an initially isotropic field to produce the
anisotropy. Because one has control of the anisotropy as a function of the
scale size in the initial conditions in a simulation, there is no important
factor favoring one method over the other. The method of creating an aniso-

tropic initial field is preferred, as it is the simpler approach.

Full simulations of homogeneous anisotropic turbulence were made by
Schumann and Herring (1976) using the method suggested above. Some of their
results are shown in Fig. 5.7. We see that their flow does indeed relax
toward isotropy. The tendency of the dissipation and pressure-strain terms
toward their values in the isotropic flow is also evident. One should note,
however, that the calculation was done on a 323 mesh. All of the apantities

averaged in Fig. 5.7 fluctuate very strongly in both space and time, and it 1is
likely that nearly all of the contribution to the mean values comes from a few

small regions in which the fluctuations are very intense, this statement is

based on some of the author’s unpublished work. It is therefore likely that
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the uncertainty in the reported values 1is quite large. This 1s true in some

of the other flows that we shall look at as well.

Schumann and Herring used their results to test two versions of Rotta's

model for the return to isotropy. This model assumes that the pressure-strain

term can be represented by:

du! du’
—te d 5 = - - s =L < utae
<p 3xj + 3x1 > = oij K < ujul > 5 61j < upup > (5.3)

and che other assumes K = C'q/L, where

where one model assumes K = Ce/qz,
The brackets < >

€ 1is the dissipation rate and L 1s the integral scale.
represent an average over the computational field which is assumed equivalent
As can be seen from the figure, there is
obtained from the various runs.
Schumann

to an experimental time average.
considerable variation in the '"constant”
Clearly, this indicates that something may be wrong with the model.
and Herring were not able to discern any ¢ynasistent Reynolds number effects in

their results.

4. Rotating Turbulence

The effects of rotation on turbulence are subtle and complex. In the

thi# only appearance of the rotation is via the Coriolis

equations of motion,
One effect of the

force; the centrifugal force can be transformed away.
’
Coriolis force 1s to redistribute the kinetic energy among the components of

The Coriolis force does not

the turbulence normal to the axis of rotation.
Neverthe-

appear explicitly in the equation for the turbulent kinetic energy.

rotation has a profound effect on turbulence and, especially, on its

less,
In shear flows, rota-

rate of production (cf. Ferziger and Shaanan (1976)).
there 1is evidence that it can cause

tion may in fact stabilize the flow,
It can also destabilize; the

relaminarization of a turbulent boundary layer.
well-known Thylor-Gértler instability 1is a prime example of this.

The effect of rotation on isotropic turbulence is even more subtle. It

seems quite likely that the principal effect is the conversion of turbulent
energy into inertial waves—-waves that propagate principally along the axis of

rotation and which are not dissipated except near walls.

the study of the interaction of rotation and turbulence

Experimentally,
One major difficulty (about which we shall say more later)

is very difficult,
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is that cthe fludd must be set into rotation before it passes through a grid
that generates turbulence, this is a consequence of the Helmholtz theorem.
Three experiments have been pertormed. Lbbotson and Trittom (1967) found a
faster decay of the turbulence when the fluid was rotating, while Traugott
(1950) found a decrease in the decay rate. The latest expeirment, and the one
that is generally regarded as the best, was done by Wigelund and Nagib (1978).
They found cases which went 4in both directions; however, the predominant
effect was a decrease in the decay rate.

Since che source of the effects observed In the experiment was unknown,
preliminavy calculations using large eddy asimulation on a 103 grid were
made. A serdes of simulations using the identical 1nitial condition with
various rotation rates was made. The rvesults, shown in Fig. 5.9, indicate
that the predominant effect of the rotation may be to decrease the rate of
decay of the turbulence, but there is unusual behavior, particularly at the
early times. This 4s simflar to the behavior observed by Wigeland and Nagib,

but a detailed comparison is impossible.

On the lLesis of these results, Lt was surmised that rotation decreases
the rate of dissipation bur that this effect is masked by other effects in the
psarly development of the flow. 1ln order to check this hypothesis, we made
full simulations of an experiment that is impossible to do in the laboratory.
We allowed the turbulence to develop without rotation for a short time; this
is identical to the initial stages of an isotropic turbulence experiment. When
the turbulence had developed futn a physically rvealistic field (see thp pre-
ceding section for details), the votation was "turned on." Under these
conditions, it was found that increasing the rotation rate always decreased

the rate of decay of the turbulence. The results are shown in Fig. .10,

It appears that the anomalous effects found in the experiments are caused
by interactions of the rotation with the thin shear layers produced by the
turbulence-producing grid, and similor affects can be produced in the simu-
lation. These are impossible to avoid in the laboratory. In some of the

experiments, interactions with the walls also play an iwmportant role.

It was also possible to search for the cause of the effect. Lt was found
that the turbulence remains nearly isotropic, so the decrease in the rate of
dissipation must be due to an increase in the length scales. Since the length
scales are readily computed in these simulations, this was easily checked, and
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it was found that there is a large increase in the length scale in the direc-
tion of the rotation axis. A theoretical explanation for this (based on the

properties of inertial waves), was gilven and a modification of the model was

offered.

5. Strained Turbulence

We now come to flows In which there is turbulence production. In both
the strained and sheared turbulence rxperiments, the turbulence decays for a
short time after the start of the flow and then increases with time. The
length scales of the turbulence increase more rapidly than in the unstrained
decaying isotropic flow. All of this makes these flows interesting objects of

study.

In the laboratory, strasined turbulence is created by first producing iso-
tropic turbulence with a grid, in the same way as in the experiments described
earlier. The turbulence is allowed to develop for a short time and s then
made to pass through the test section. In some test sections, the cross-
sectional area i1s kept constant but the aspect ratio in the plane normal to
the flow is changed; the effect is to exert plane strain on the turbulence. In
other experiments, the test section is a contraction, and the turbulence 1is
compressed in the two directions normal to the flow and stretched in the

streamwise direction; the result is axisymmetric strain.

To simulate these flows numerically, an isotropic turbulent flow field 1s
created in the same manner as for the previous flows. The effect of the
strain is turned on immediately, and the flow is allowed to develop. In order
to simulate this flow correctly, it 1s necessary to use a straining coordinate
system, one which moves with tbe mean flow that produces the strain. This is
necessary because one of the terms due to the applied strain does not permit
the application of periodic boundary conditions, the transformation removes

this term. For the details of this transformation see Rogallo (1977).

Use of this transformation also introduces a difficulty. After some
time, the strained coordinate system becomes quite thin in the direction which
is beilng compressed. When this happens, the length scales in that direction
become appreciable compared to the size of the computational domain in that
direction. As a result, periodic boundary conditions are no longer vaiid,

and the computation has to be stopped. This happens when the total strain
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exp(St) =« 2, where S = 3u/dx. The problem can be partially alleviated by
starting with a coordinate system that is distorted in the other direction.
Thus the flow contains three periods similar to those found in the flows
described above. First there is a development period; this is followed by a
period in which the fl.w is physically realistic, finally, there is a period
in which the simulation is invalid, and the cal¢ulation must be stopped.

The detailed behavior of strained turbulence is dependent on the initial
conditions. However, the trends are fhe same in all cases. As in the experi-
ments, the turbulent Kkinetic energy decays until the turbulence becomes orga-
nized; then the production of turbulence increases and, somewhat later, so
does the kinetic energy of the turbulence. As can be seen in Fig. 5.11, the
turbulence becomes highly anisotropic. The fluctuations in the direction
being compressed (the x -direction for the case shown in Fig. 5.11) increase
most rapidly, while the fluctuations in the stretched direction (XZ) con-
tinue to decrease. The off-diagonal components of the Reynolds stress tensor

are all zero in this flow.

The results of this computation could be used to test Reynolds—averaged
models, but they have not been used for this purpose. The reasons are that
the majority of engineering flows are shear flows, and sheared homogeneous
turbulence seems more appropriate for this purpose and that the experimental
data can be used as well. For this reason, Reynolds-averaged models are

deferred to the following section.

McMillan and Ferziger (1980) have used strained turbulence simulations
for checking subgrid scale models. They found that the Smagorinsky model
becomes less accurate as the flow is strained. The correlation between the
exact and model results drops from the already low value of 0.3-0.4 to nearly
zero. However, the scale similarity model proposed in Chapter 3 iz nearly

equally valid with or without strain.

In a few cases the correlation between the exact stress and the Swmago-
rinsky model becomes negative. On further investigation, it is found that, if
the strain rate is high and maintained for a long time, the energy flow is

from the small scales to larger scales, i.e., from the unresolved or subgrid

scales to the larger or resolved scales. This seems to be physically correct,
although it has not been reported in any of the experimental results of which

we are aware. 1t appears that the smallest scale of the turbulence may be
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determined by the strain rate rather than the viscosity. Direct evidence of a

similar phenonemon in sheared turbulence will be presented in the following

section.

6, Sheared Turbulence

Homogeneous turbulence interacting with mean shear behaves in a manner
very similar to strained turbulence. One can regard shear as a combination of
strain and rotation; the effect of the rotational component is to weaken the
effect of the strain somewhat. The behavior with time is qualitatively simi-
lar to that for the strain case; after a period of decay, the turbulent
kinetic energy begins to increase. The anisotropy produced is such that the
streamwise component of velocity has the largest fluctuations and the normal

component has the smallest fluctuations.

Homogeneous sheared turbulence 1is more difficult to create in the
laboratory than strained turbulence. The essential reason 1s that, because
shear has a rotational component, it cannot be suddenly introduced intc the
flow. It has to be created along with the turbulence. The apparatus used to
produce this flow is an array of parallel channels whose flow resistances are
arranged so that the velocity distribution at their exits 1is linear in the
direction normal to the channel walls. In this way, a flow with a straight-
line mean velocity profile (uniform shear) is created. With careful
adjustment, the turbulence can be made to be approximately uniform across the
flow. The flow is then followed down the test section, and measurements of
the turbulence quantities are made at the midplane of the test section at a

number of stations.

Simulation of this flow on a computer is very similar to simulation of
strained flow. An 1initial isotropic velocity field is created in the manner
described earlier. It is possible to let the flow relax before the shear is
introduced, but this 1s not done. For this flow it 18 necessary to use a
shearing coordinate system (one that moves with the applied linear mean flow)
in order to remove the terms that forbid the use of periodic boundary condi-
tions. The deforming coordinate system is shown in Fig. 5.12. 1t begins as a
Cartesian system at t = 0 and deforms as shown until St = 1/2. At this
point, the computational domain is on the point of becoming too narrow in the

normal direction to support the use of periodic boundary conditions. This
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flow permits the "remeshing" of the coordinate system in the manner shown in
Fig. 5.12., The shear then causes the coordinate system to become Cartesian,
and the cycle is begun again. With the aid of this trick, it 1is possible in
principle to carry on for as long as desired. 1In practice, the length scales
in the streamwise direction eventually become too long for the computational
domain, and one is forced to stop on this account. Sheared turbulence thus
passes through the same three periods as strained turbulence: development,

realistic representation of physics, and, finally, breakdown.

The detailed behavior of the flow may depend on the initial conditions,
but the trends are essentially independent of how the calculation is started.
As one can see from Fig. 5.13, the behavior of the components of the turbu-
lence is very similar to that in the strain case. It also follows the exper-

imental trends very well.

McMillan and Ferziger (1980) used the results of direct simulations of
sheared turbulence as the basis of tests of subgrid scale models. The find-
ings differed in no important respect from those found for strained turbu-
lence; for this reason, we shall not give them here. However, we point out
that the transfer of energy from the smallest scales to larger scales was

noted in this case as well. Further evidence for this will be given below.

Let us look at the results of the simulations in somewhat more detail.
Many of the results are those of Feiereisen et al. (198l), Shirani et al.
(1981), and Rogallo (1981) which have not yet been published. Only partial
results will be given. Three-dimensional spectra of the velocity field are
shown in Fig. 5.14. We see that there is a very strong shift of the spectrum
of ¢‘he normal velocity component toward low wavenumbers or large scales. Care
is required in dealing with the integral scales. They are the integrals of
two-point correlation functions, some of which have regions in which they are
negative. The negative reglons can cause the integral scales to behave very
erratically. The spectra probably show the length-scale benravior more accu-

rately.

The behavior of the pressure spectrum is rather remarkable. The initial

condition has a peak at a relatively high wavenumber. The pressure spectrum
near the end of the physically realistic period is shown in Fig. 5.15. The

spectrum is broken iiato two components. The decomposition is suggested by the

Poisson equation for the pressure; the terms on the right-hand side of that
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equation can be classified according to whether or not they contain the mean
velocity field. The component P; 1s a ceonsequence of the applied mean
field, it develops a k-5 spectrum, and the peak in the spectrum moves to the
left with advancing time. The component P, 1is due to the self-interactions
of the turbulence and is much more brosd-band in nature. This has important

consequences for pressure-strain modeling.

Finally, we show the time behavior of the terms that contribute to the
spectral behavior of the turbulent kinatic enerygy as a function of wavenumber;
these are shown in Fig. 5.16. It is seen that, as 2xpected, the production is
mainly in the large scales or low wavenumbers, and the dissipation occurs at
higher wavenumbers. Finally, we note that the transfer term, which redistri-
butes ehergy among the wavenumbers is negative at low wavenumbers (indicating
a transfer away from the large scales) and becomes positive at higher wave-
numbers. All of this is as anticipated. The surprise is that the transfer
again becomes negative at the highest wavenumbers, indicating that the trans-
fer i1s from both ends of the spectrum to the center. This can be taken to be

a confirmation of the finding of McMillan and Ferziger discussed earlier.

Let us now look at some of the applications of these results to Reynolds-
averaged modeling. Since this is the first application of this type in this
report, we should first look at the possibilities. The time averages can be
replaced by averages over the flow field. Although the number of mesh points
is large (643 = 2062,144), they cannot be regarded as statistically indepen-
dent. A more reallstic measure of statistical reliability is the number of
large eddies captured in the computational domain. There are several ways to
measure this-~-none of them exact~-but the number of large eddies 1s small
enough that the statistical reliability of the results is not very high. A
good test of their validity i1s to compare results obtained from two simu-

lations which are identical except for the set of random numbers used to

initialize them.

From each realization of a shear turbulent flow, we may compute the
averaged quantities as a function of time. Since the quantities vary slowly,
the values at neighboring times are not independent, and should not be treated
as if they are. For this reason, we chose to analyze the flow fields only at
those times at which the grid is Cartesian. This 1is also convenient computa-

tionally. The result is that we have the averaged quantities that need
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to be modeled at three or four time steps for each of several realizations.
The data sets are thus much smaller then those used in subgrid scale model
testing, and the kinds of tests performed need to account for this. Further-
more, one needs to consider the effects of changes in the basic parameters of

the flow.

These flows contain two independent nondimensional parameters. The first
is the Reynolds number. There are several length scales on which a Reynolds
number can be based. The integral scale suffers from the difficulties de-
scribed earlier, and we have used the microscale instead. The two should be
related (possibly as a function of Reynolds number), so it does not matter
much which length scale i1s used; however, if we try to apply the results to
other flows, the choice of length scale may be very important. The second

nondimensional number is the ratio SL/q, where S ie the applied mean shear
rate and q and L are the velocity and integral length scales. We call

this parameter the shear number, and it measures the ratio of an eddy time
scale to the time scale imposed on the flow. It can also be shown that the

shear number 1is proportional to the ratio of production to dissipation.

From the results of a simulation, one can compute the Reynolds shear
stress < uju, 2. This is just a single quantity, and one cannot test eddy
viscosity models using it alone. Eddy viscosity models could be tested by

1 2
asking whether the Reynolds stress tensor, Rij < Uy > =74 Gij’ is

proportional to the rate of strain tensor

Bui du ,
%j = szsij =V ij + axi

Since tie model could not be tested directly, we computed the "constant” in
the model defined by
< uyu, >
\Y bl - l 2 - CqL (5-4)

T 8U1v3x2

and correlatee it as a function of the two nondimensional parameters given
above. The result showed that C 1is nearly inverse to the shear number,

which 1s equivalent to saying that < ujuy >/< q2 > 1is nearly constant, note
that this result is incompatible with C's being a true constant. On further

investigation, it was found that all components of the Reynolds stress anisot-

ropy tensor:
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< uiu.} > 1 .
by, = T3 (3.5)

appear to become constant at long times in homogeneous shear flow. It is

impossible to carry the calculation far enough to determine whether this is

really the case or whether the bij simply change very slowly in the later

We are of the opinion that there is aaymptotic struc-

stages of this flow.
the basis of some

tural similarity in this flow; this assumption has been
recent models. In many other shear flows, < uju, >/< q2 > s approximately

constant over a large part of the flow;, for example, in the boundary layer

this holds except for the region close to the wall.

Another example of model testing with these simulations is provided by

the pressure-strain terms. We showed earlier that the pressure can be

considered to be composed of two parts, one arising from interaction of the

turbulence witli the imposed mean field and the other a purely turbulent

quantity. The corresponding decomposition of the pressure-strain terms is

.

made by many modelers.

For the part of the pressure strain terms proportional to the mean strain

(the "rapid" terms), one can show that, if one allows only terms which are

linear in the anisotropy of the Reynolds stress, the model contains only a

single constant, which for the 1,1 component can be written (Reynolds

(1976)):
aul Al aul ]
< Py —é';"l" > = 2 1+ 15 < MU, > *a-—x‘; (5.6)

There are similar expressions for the other components. Given the computed

values of the rapid part of the pressure-strain term, we can calculate a value
of the "constant” for each of the four tensor components that are nonzero. If
the values obtained should be the same for each tensor

The results showed that the "constant” is nearly

the model is correct,

index and all realizations.

independent of the Reynolds and shear numbers, but it varies by a factor of
nearly seven among the various components of the tensor. These results show a

deficiency in the model and suggest that an improved model should be possible,

but we have so far been unable to suggest one.,
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The paxt of the pressure-strain term that results from purely turbulent

interactions (the "Rotta" term) are usually modeled by:

du,

du
. S - - ;.
< Py axj + axi > Ce bij (5.7)

This model is based on the notion that the effect of these terms is to return
the flow to 1sotropy. It, too, is easily tested by the method used for the
rapid term. It was found that the "constant" displays a great deal of
variation with Reynolds number, and many of the values were below the value of

2 required for return of the turbulence to an isotropic state.

Further investigation showed that the anisotropy of the dissipation does
not behave as had been expected. It is generally assumed that the dissibacion
is isotropic at high Reynolds numbers but may be anisotropic at low Reynolds
numbers. Thus we expected to find a strong Reynolds number dependence of the
anisotropy of the dissipation. In fact, we found almost no variation with
microscale Reynolds number in the range from 10 to 100 (see Fig. 5.17). This
does not mean that the dissipation canunot become isotropic at still higher

Reynolds numbers, but it does suggest that the assumption of isotrony may be

questioned.

Since the anisotropic component of the dissipation acts to reduce the
isotropy of the Reynolds stress tensor, it should be included with the
pressure-strain term. When the combined terms are modeled, it is found that
the variatior of the "constant"” with Reynolds number is greatly reduced (see
Fig. 5.18), and the model is fairly good. Modelers who assumed the dissipa-
tion to be isotropic have gotten reasonably good results because the aniso~

tropy of the dissipation is implicitly included in their models.

This 1s a sample of some of the results obtained by Feiereisen et al.
(1981) and Shirani et al. (198l1). The reader is referred to those reports and

forthcoming papers for more complete details.

7. Compressible Turbulence

It is possible to make a compressible version of the homogeneous turbu-
lent shear flow treated in the preceding section. One need only make the
velocity gradient large enough that the velocity difference across a large

eddy is a significant fraction of the sound speed. It is not possible to
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produce this flow in the laboratory, the large velocity differences would make
it impossible to maintain homogeneity. This is unfortunate, bacause it means
that we have to believe the results of the calculation witlhout experimental

verification. We can, however, check the results at low Y.ich number against

the incompressible experiments.

To compute this flow, the major change we need to make from the incom-
pressible case 1is that the full set of compressible equations must be used.
One can show that a linear velocity profile is a solution to the steady equa-
tions, and this solution can serve as the source of the shear imposed on the
turbulence. In compressible computations (cf. Ballhaus (1980)), it is rustom—
ary to use the continuity, momentum, and energy equations 1in conservation
form; the dependent variable in the energy equations isg usually the total
energy (stagnation enthalpy). However, in the present case, this equaiion
cannot be used without destroying the homogeneity (Feiereisen et al. (1981}),
80 we are forced to treat the enthalpy as one of the primary dependent vari-

ables.

The most popular numerical methods for the compressible equations are
designed to relax the solution to a steady state as quickly as possible. They
are not t'me-accurate; that is, they do not produce an accurate picture of the
relaxation to steady state, and therefore they cannot be used for the purpose
we have 1in mind. Instead, we have used a standard explictt method. The
fourth-order Runge-Kutta method was chosen. The fact that all of the compres-
sible equations contain time derivatives means that one does not need to solve
a special equation for the pressure. All variables are advanced in time, the
variables which are not explicitly computed from the differential equations

are obtained from equations of state.

Morkovin (1963) hypothesized that compressible turbulence behaves very
much like incompressible turbulence, and most models are based on this assump-
tion. For most of the quantities in homogeneous turbulent shear flow, this
hypothesis turns out to be correct. Most of the differences between the two
cases are small, so we shall concentrate on the few cases in which the differ~

ences are significant.

The major difference between the incompressible and compressible flows
(at least when the turbulence Mach number is not too large) is due to the

appearance of acoustic waves in the latter case. The acoustic waves that are
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most apparent are those propagating normal to the shear, and we expect the
quantities which can be affected by acoustic waves to show the wost important
differences from the incompressible case. The largest change 18 in the
fluctuating velocity component normal to the shear; it is reduced relative to

the incompressible case.

The most striking difference between the two flows is in the pressure and
the terms associated with it. In the incompressible case, the pressure was
decomposed into two parts: one arising from the mean flow that produces the
shear and another that is entirely due to the turbulence. In the compressible
case, there is a third term due to the presence of acoustic waves. This term

turns out to be significant even at fairly low Mach numbers.

Of course, the pressure-strain terms are also affected in the same way;
there are now three of them. It turns out that the third term behaves like
the rapid term--the one due to the mean shear--and can therefore be combined
with dit. ‘However, the "constant” 1is now a function of the turbulent HNach
number in addition to the two dimensionless parameters of the incompressible
case-—the Reynolds and shear numbers. The resulting constant was fit as a
function of these three parameters. The results are shown in Fig. 5.19, and

the Mach number depeudence is found to be significant.

Further details and results for this flow can be found in the report of

Felereisen et al. (1981).

8. Mixing of a Passive Scalar

By definition, a passive scalar is any quantity that can be convected by
a flow and diffuse through it without affecting the velocity field. There are
many applications that require knowledge of how a passive scalar behaves, any
problem in which heat or mass transfer is important is in this class. Under-
standing the mixing of a pasuyive scalar is also a preliminary to handling

reacting flows, including combustion.

A passive scalar could be introduced into any flow treated in this chap-
ter. In fact, only two of these have been done experimentally, these are
isotropic turbulence and sheared homogeneous turbulence, so these are the
cages which have been simulated. One also has to decide whether the scalar

has a mean component or not. In the experiments, isotropic turbulence has
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been measured without a mean gradient of the scalar, and the shear flow has
been performed both with and without a mean wecalar gradient. To facilitate
comparison with these experiments, isotropic turbulence was simulated with an

isotropic scalar field, and the shear flow had a mean scalar gradient.
The equation describing the scalar concentration is;

2

3¢ , 3 . a%c
5F+'53Z;“jc - DWJ 3 (5.8)

If there is a mean scalar field, it is subtracted from the total scalar field
to obtain an equation for the fluctuating scalar fleld. The velocity field is
also decomposed into itse mean and fluctuating parts. The resulting equation
for the scalar fluctuations has the same difficulty as the equation for the
velocity field--{he mean shear and mean scalar gradient terms do not admit the
use of periodic boundary condit¢ions. To remove this problem, the coordinate
transformatior made for the momentum equations has to be made here as well.
It is possible to compute the velocity field prior to the computation of the
scalar field, but this would require storing an enormous data set on tape and
transferring it back into the machine as needed. For this reason, the
velocity and scalar fields were computed simultaneously. The numerical

methods used for the scalar field are identical to those used for the veluzity

field,

In the case of the isotropic field, the most important items to study are
the decay rates of the velocity and scalar fields. The scalar field follows a

decay law similar to Eq. (5.2):
¢ = B(t-t )™ (5.9)

where c¢' 18 the fluctuating part of the scalar field, ft.e., ¢ =< C> + c'.
We wish to look at the ratio m/n. The parameters on which this ratio depends
are the Reynolds number and the Prandtl or Schmidt number, which is the ratio
of kinematic viscosity to diffusivity (Sc = v/D). It was found that the
scalar decays more rapidly than the velocity field when the Schmidt number is
less than unity and more slowly than the velocity field when the Schmidt num-
ber is greater than unity; this is no surprise. The dependence of the ratio
n/n  on Reynolds number also depends on whether the Schmidt number is less
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than or greater than unity. For Sc < 1, it is found that the ratio m/n
decreases with increasing Re, and vice versa for Sc > 1.

The cases which include shear and a mean gradient of the scalar were ana-
lyzed in a manner simiiar to that used for the homogeneous shear flow. An
important result is that the behavior of the scalar field becomes independent
of the initial conditions after a short time. 1Its properties depend almost
entirely on the velocity field and the mean gradient of the scalar.

The next quantity studied was the scalar flux < ujc >. This quantity is
usually modeled by gradient diffusion:

Cued> = D 22 (5.10)
h|
In the standard case, the concentraticn gradient is in the same direction as
the velocity (radient; the nonzero gradients are 3U1/3x2 and 80/8x2 and
there are two nonzero eddy diffusivities, Dy, and Dy, The important one
in most applications is b22. It was computed for a number of different val-
ues of the dimensionless parameters of the flow. One can form the turbulent
Prandtl/Schmidt number, PrT, by taking the ratio of the eddy viscosity to
the eddy diffusivity. A number of models havez been proposed for Pry, and
the ones that were recommended most strongly in the literature were tested.
None of them was found to be very accurate. A new model was constructed which
glves D1j in terms of bij’ the anisotropy of the Reynolds stress tensor.
Although this model models a low-order quantity 1in terms of a higher-order
quantity, it can be made into a useful correlation by using other correla-
tions; this model was found to be a significant improvement over the onee

suggested in the literature. A test of the new correlation is shown in Fig.

5.20.

It is also possible to compute the other nonzero elements of Dij' Dur
to the design of the computer program, this was not done for the fuil range of
cases for which D;, was computed. Also, since the elements of the diffusiv-
ity tensor depend on the nondimensional parameters and, because it was not
possible to match the Reynolds number used in the experiments, a quantitative
comparison with experiment is not possible. However, the results are in good

qualitative agreement with the data.
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We also correlated the mean-square scalar fluctuations as a function of
the nondimensional parameterg. The priancipal finding was that, to a good

approximation,

éﬁ;?;i - 5%_§F;Z'SC'L (5.11)
1 "2

One can also construct models for the scalar field based on the ideas
used for the velocity field. In particular, one can derive equations for
< ¢ > and < cu, > , which are similar to the Reynolds stress equations.
The terms in them that are most difficult to model are the correlations be-
tween the fluctuating pressure field and the gradient of the fluctuating
concentration < p ac/axi > . They are analogous to the pressure-strain

terms, and models for them can be based on models used for the latter. In

particular, the pressure decomposition used in deriving pressure-strain models

can be used here as well.

The model for the rapid term (the one containing the pressure derived
from the mean shear) contains no adjustable constants. However, we introduced
an arbitrary multiplicative constant and found good agreement between the
exact and wmodel results. The constaat was found to be approximately 0.5,
indicating that the arguments made in deriving the model are deficient.
Another model suggested by Lumley to overcome some of the undesirable prop-

erties of the first model was tested and found to be less accurate than the

first model.

The term arising from the component of the pressure that depends entirely
on the turbulence was modeled by an analog to Eq. (5.7). The results show

this model to be quite good--about as good as the modified Rotta model de-

scribed earlier.
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Chapter VI

FREE SHEAR Fiiil3

1. Overview

Free shear flows are one of the classes of flows of major technological
interest. They occur in many kinds of devices, and we shall begin this

chapter by briefly describing the types of free shear flows.

Free shear flows can be divided into three majer categories, there are

also more complex cases. The three major types ave:

1. Mixing layer. This 1s the flow that occurs when two parallel flows

of different velocity are brought together. 1In the laboratory thig flow is
created by having the fluid of different speeds on opposite sides of a divid-
ing plate. At the end of the plate, the two streams come into contact, and
the thickness of the layer in which the velocity pgradient occurs grows with

downstream distance.

2. Jet. A stream of high-velocity fluid issuing from an opening is
called a jet. As the high-speed fluid mixes with the surrounding lower-speed
fluid, the maximum velocity of the jet decreases, and the rate of growth of
its thickness also decreases. The most commonly studied jets are the plane

and round ones, but others, such as the rectangular jet, have been studied.

3. Wake, A wake is similar to a jet, but it is a velocity defect in an
otherwise uniform stream. Like the jet, the wake has decreasing velocity
gradients with dowrstream distance. Most wakes result from flows around
bodies. The wakes form by merging of the boundary layers behind the body or

from separation of the boundary layers.
We should also mention:

Complex shear layers. This 1s not a single type of flow, but a category

containing the flows that do not fall into the above categories. Curved jets
and wakes are quite common. Another important flow 1s one in which a laminar
boundary layer separates, creating a free shear layer. The free shear layer
then undergoes transition to a turbulent free shear layer which grows so
rapidly that Lt soon reattaches to the surface., This is a common mechanism of

transition from a laminar to a turbulent boundry layer.

68



g .

e

f&& F wc*?qwm‘<

— ——— o -
- ——

T T — we

It is also important to distinguish the early phases of free shear flows

from the far-downstream flows. The early stages are sensitive to the initial

conditions., Fully developed free shear layers are usually self-simllar in

nearly all of the wmeasured variables and grow according to a power of the

downstream distance. A majority of free shear layers occurring in applica-

tions are of the early type, but fully developed cases are also of importance.

To date, there have been large eddy and full simulations of mixing layers

and full simulations of wakes. The jet has not yet been simulated (although

it probably will be in the near future),
Thus we shall devote the rest of this chapter to the

Complex free shear flows have also

not yet been attempted.

mixing layer and the wake.

Nearly all laboratory free shear flows develop with downstream distance.

It is much easier to simulate a layer that develops in time. One must be very

careful in comparing the two cases. Consider the mixing layer. Fluid ele-

ments on the two sides of the laboratory shear layer have been in the flow for

differing amounts of time. As a result, the development of the flow 1s not

symmetric and the plane on which the mean velocity is the average of the two
The simulated wixing layer is, however,

free stream velocities is inclined.
the laboratory flow, the

symmetric. The two flows may be compared 1if, in
velocity difference across the flow is small compared to the average veloc-

This experiment requires a long apparatus, but cases exist which meet

ity.
and these are the ones to which the simulations

this criterion fairly well,

should be compared.

2. Mixing layer

As discussed above, this is the gimplest of all of the free shear flows.

Despite the apparent simplicity of this flow and the large number of experi-

ments that have measured 1t, there 1is still controversy about it. Let us

consider the fully developed mixing layer first and the tyansitional case

later.
It is generally agreed that the velocity profile of the fully developed

mixing layer is self-similar, and so are the components of the Reynolds stress
Another point of general agreement is that the growth of the free

tensor.
The major point of

shear layer 1s linear in the fully developed region.
disagreement in this regime of the flow concerus the rate of growth of the
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layer. For the mixing layer sketched in Fig. 6.1, the growth rate parameter

is conventionally defined as:

T u - u
R (6.1)
1 2

The measured values of ¢ cover the range 0.08-0.16, a much wider range
than would be expected for a flow this simple. Birch (1980) recently reviewed
the data and believes that there is a single correct value of this parameter,
which he believes to be 0.115. However, no reason was given for the spread in

the data.

There 18 less agreement about the early stages of the shear layer. One
group, including Roshko and his coworkers and Browand and his coworkers, among
others, believes that this part of the flow 1s essentially two-dimensional.
In this view, the initial laminar shear layer rolls up into two-dimensional
vortices, which then agglomerate or pair to form larger vortices of the same
type (with larger spacing). This process has been observed to continue for
several pairings. At this point the flow reaches the end of the apparatus.
According to this view, the important process in the growth of the mixing
layer 1is the pairing of the vortices, However, there is evidence that stream-
wise vortices form in this flow. This is a kind of three-dimensionality, but

it is quite regular rather than chaotlic.

The other view, held by Bradshaw and others , is that the mixing layer is
normally strongly three-dimensionzl and chaotic. According to this picture,
the highly two-dimensiongl layers that sowme experimenters have observed are
the result of careful arrangement of the initial conditions and design of the

experimental apparatus.

Large eddy simulations of the mixing layer were made by Mansour et al.
(1978). They used the vorticity equations rather than the primitive equations
because the vorticity is confined to a relatively ndrrow region of the flow.
In fact, it appears that it makes little difference which spet of equations
is used. The subgrid scale model had to be modified to account for this
change. At the top and bottom of the computational region, no stress boundary
conditions (see Section 4.5) were applied. Fourler sine and cosine transforms

were used in the normal direction.
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This work showed that it is possible to explain the rapid growth of the
mixing layer by vortex pairing. The flow was begun with an initial condition
that contained well defined two-dimensional vortices. Although there were
only two vortices in the computational domain, the boundary conditions imply
that they are part of an infinite array. Varilous perturbations to a regular
vortex array were tried. It was found that small perturbations would cause
the vortices to pair. Natwrally, the pairing occurred more rapidly when the
perturbation was larger. Surprisingly, it was found that the mean velocity
profile (defined by averaging the velocity over a plane) was self-similar and

that the growth of the momentum thickness of the layer was very nearly linear.

A nunber of three-dimensional perturbations on this basic flow were also
made. First, small, random, three-dimensional disturbances were added to the
initial conditions. The three-dimensionality was somewhat amplified by the
pairing process, but there were only minor changes in the overall properties
of the flow. Another variation was produced by the addition of streamwise
vortices to the initial condition. The streamwise vortices were distorted in
the pairing process, and they produced slighc kinks in the large two-
dimensional vortices that result from the pairing. It was conjectured that
the kinks would produce larger-scale instability of the mixing layer and would
then lead to covgsiderable three-dimensionality, but this could not be demon-

gtrated because the nuaber of grid points was severely limited.

A simulation of the initial stages of the mixing layer was made by Cain
et al. (1981). This simulation used numerical methods described in Section
4.5. The transformation of an infinite region to a finite one was used, and
the modified Fourier method of taking spatial derivatives in the normal direc-
tion was used. The initial profile was a laminar mixing layer with a small
random disturbance; the disturbance was strongest on the center plane of the

layer.

The results turned out well. Use of the coordinate transformation and
the Fourier method allowed the method to be continued until the original layer
had grown by nearly a factor of ten in some cases. No effect of image layers

was found, and, in most cases, the calculation was stopped only because the

layer developed horizontal scales which were too large to permit application

of periodic boundary conditions.
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Several variations in the computational method were tried. A full
simulation was made; this calculation was stopped because the turbulence in
the small scales became too strong. The calculation was repeated with fil-
tering, but no subgrid scale model; the problem with the small scales disap-
peared, and the calculations could be carried almost twice as far in time, at
which point the difficulty with the large scales appeared. A final calcula-
tion with both filtering and the subgrid scale model was made; it differed
only a little from the preceding case. Thus, most of the results were ob-

tained with filtering but no model.

Simulations were made with three levels of initial disturbance. 1In the
low initial turbulence cases, the turbulence intensity was four orders of
magnitude smaller than that of a fully developed turbulent layer, this might
represent the behavior of a mixing layer produced from laminar boundary
layers. The medium initial turbulence level was two orders of magnitude
stronger. The high initial turbulence level cases started with turbulence
intensities nearly those of the fully developed layer; these might represent a
mixing layer produced from turbulent boundary layers. Cases which differed

only in the set of random numbers used to generate the initial conditions were

also run.

The results show that the low-turbulence cases produced a layer 1in which
the momentum thickness grew very slowly at first but, after a latency period,
grew linearly with time at a rate similar to that observed in experiments.
The medium-level case gave a shorter latency period and a slightly slower rate
of growth at later times. Finally, the high-turbulence level cases gave
almost no latency period at all but a still slower growth rate. These results

are in qualitative agreement with experimental data. They are shown in Fig.

6.2, 6.3, and 6.4.

All of the cases have mean velocity profiles that are self-similar.

The growth of the turbulence level on the center plane of the mixing
layer 1s shown in Figs. 6.5, 6.6, and 6.7. In the low-turbulence case, the
turbulent kinetic energy grows exponentially in the early stages and then
levels off; the exponential growth rate is close to that of the most rapidly
growing mode according to linear stability theory. The medium initial turbu-
lence cases show similar growth, but the exponential period does not last as

long. The high initiail turbulence cases grow only slowly as they begin near
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the level for a fully developed layer. 1In all of the cases the kinetic energy

of the turbulence overshoots the value for the fully developed layer before

settling down. This has been observed in some experiments.

The profile of the turbulent kinetic energy is shown for a typical case

in Fig. 6.8. The initial profile is too broad compared to the fully developed

profile. This 1is corrected, but the profile becomes too thin before the final

state is reached.

The simulations were also used as the basis for flow visualirzations. A

grid of “"dye lines" was placed on the center plane of the flow at the initial
The ones in the streamwise direction are essentially vortex 1lines in
The dye lines

The initial

time.
the low-intensity cases and remaln so by Helwholtz's theorem.
are moved with the flow, and plctures are drawn at various times.

picture is shown in Fig. 6.9, and the final result is shown for two differvent

initial fields in Figs. €.10 and 6.11. It is clear that the layer has rolled

up into vortices, but they are much more two~dimensional in one case than the
other. We believe that the three=dimensional shear layer does rell up into
vortical structures, but that these structures do not have spanwise uniformity

except when precautions are taken to insure that the three-dimensional distur-

bances are weaker than the two~dimensional ones.

The above results were taken from the report of Cain et al. (1981).

Two-dimensional simulations of the mixing layer were made by Patnaik,

Sherman, and Corcos (1976), Acton (1976), Knight (1575}, Ashurst (1979), and

Riley and Metcalfe (1980), among others. In these simulations, the shear

layer rolls up 1into an array of vortices.

studies was the determination of the effect of initial perturbations on the
These papers contalin interesting

The principal object of these

speed and nature of the rollup of the layer.
results, but, as they are esseatlally outside the topic of this report, they

are not covered here in detail.

Full simulations of the turbulent mixing layer were made by Riley and

Metcalfe (1980a,b). These simulations are similar to the work of Cain et al.,

Their calculations are performed at low Reynolds nuiber
Their initial condition is eimi-
but they also ran a

which they predated.
so that no subgrid scale model is required.
lar to the high initial energy condition of Cain et al.,
number of cases in which a deterministic perturbation was added to the initial
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conditions; this perturbation was the most unstable wave of linear theory.
They observad that the layer tended to roll up into vortices and found linear
growth of the thickness of the layer, self-similarity of the velocity profile,
and, 1in the case with the largest numbsr of mesh points, constancy of the
turbulent energy in the center plane of the layer. All of these observations
are in agreement with experiment and the computations described above. An
important contribution of this work 1s the demonstration that the properties
of the mixing layer can be reproduced in a simulation which contains no large
vortical structures in the initial conditions. They also showed that the
addition of the perturbation corresponding to the m.st unstable wave of linear

theory to the initial condition reduced the rate of growth of the layer.

3. Wakes

As stated in the introduction to this chapter, wakes are flows in which
there 18 a defect in the velocity profile. As a vake develops, the velocity
profile widens and the velocity gradients decrease. These factors and the
fact that the rate of growth of the length scales is not as rapid in wakes as

in mixing layers make wakes a little easier to simulate than mixing layers.

There are several types of wakes. The classification plays some role in
determining how the flow will be simulated. A selr-propelled body (vne that
drives itself through the fluid) leaves a wake in which the net mowentum is
zero; the momentum added by the propulsion just equals that due to the drag of
the body. On the other hand, the wake of a towed body (or a body in a wind
tunnel) has a net momentum deficit. Finally, both types of wakes can occur in

plane, axisymmetric, and other geometric arrangements.

The first full simulation oi a momentumless wake was made by Orszag and
Pao (1974). Their work has been extended to the simulation of towed wakes by
Riley and Metcalfe, in a series of papers. They concentrated mainly on the
axisymmetric wake, because most of the experimental data is for this case.
Despite the axisymmetry of the flow, they used a rectangular grid in their

simulations; the axisymmetry is inserted via the initial condictious.

In some respects, their simulations behave very much like the simulations
of the preceding section. As in all other flows, a short time period is
required for the 4initial condition to develop into a physically realistic
flow. During this period there 1s relatively little broadening of the wake
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and some decay of the turbulence. The higher-order statistics also change

from their original values during this period; in particular, the velocity-
derivative skewness incresses. Finally, the vorticity tends to concentrate

during this phase,

Figure 6.12 shows the decay of the maximum mean velocity and the maximum
Several experiments have shown that these

axial component of the turbulence.
Since the simulated

quantities decay as x”2/3 with downstreaw distance.

wakes are temporally developing, the analogous behavior would have these quan-
e~2/3, The figure shows that the maximum mean velocity fol~

tities decay as
The turbulence decays a

lows the expected similarity behavior quite well.

little more slowly than expected. Two different realitations of this flow are

shown.
Similarity arguments suggest that the radii of the wake and of the turbu-~

tl/j, the spatially decaying wake radius

lence profile should increase as
repro-

x1/3. Figure 6.13 showes that the simulation

increases in radius as
The decay of the integrated mean and

duces this behavior quite well.
lent energies are also well predicted.

turbu-~

The velocity profiles behave in a self-similar manner after the initial

They agree quite well with the measured profiles except in the wings

petiod.
The Reynolds shear stress

of the profile; the results are shown in Fig. 6.14.
is also reasonably well predicted, as are some of the higher-order statistics.

To conclude this chapter, we note that full simulations seem to be able

to predict free shear flows quite well. The major stumbling block to contipu-

ing the simulations further in time is the growth of the length scales with
This can be partially cured by doing the simula-

downstram distance or time.
It would be more efficient to re-

tions with larger numbers of grid points.
scale the problem after gsome time, but no way has yet been found to do this

without invoking very serious approximations.
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Chapteéer VII

WALL~BOUNDED FLOWS

1. FOVerview

The last group of flows that we shall consider in detail in thie report
is the wall-bounded flows. This is the most studied single class of flows
because of 1its many important technological applications. Despite the enor-
mous amount of analytical and experimental attention lavished on these flows,

there remains a great deal to be done.

The most important single flow in technological applications is the tur-
bulent boundary layer. The standard case for this flow is the boundary layer
in the absence of "extra rates of strain"--no pressure gradient, curvature,
rotation, suction, blowing, or roughness, etc. A great deal 1s known about
this flow. In particular, the mean velocity profile has been well measured,
and one can "predict” its behavior. (Quotes are used because all of the pres-
ent prediction schemes rely heavily on experimental data and should be called
"postdictive” methods.) However, the mechanism by which momentum is trans-
ferred to the wall is only partially understood. Furthermore, the information
that is availlable about the mechanism has not been used in model construction.
Thus there 1s still much to do. It is hoped that higher-level simulations can
play o role in this, but it is clear at the outset that the task is not easy.

It is known that the mechanism of momentum transtfer to the wall in the
boundary layer 1s connected with the flow structure observed close to the
wall. In the near-wall region, the flow consists of alternating "streaks” of
high- and low-speed fluid; the streaks are very long in the streamwise direc-
ti.» and thin in the spanwise direction. Their dimensions are believed to
scale with the shear stress, which is nearly constant in the vicinity of the
wall; however, thelr size relative to the boundary layer thickness 1s quite
Reynolds nuvmber-dependent. The mechanism of momentum transfer involves 1lift-
ing of the low-speed streaks from the wall. When they are lifted, they are
carried a considerable distance into the boundary layer and exchange momentum
with the fluid they encounter there. The existence of streaks and their
importance in the flow plays a very lmportant role in the simulation of wall-

bounded flows.
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The boundary layer 1is made up of at least three sublayers. There 18 an
inner layer in which the viscosity plays an important role (the viscous sub-
layer), here the length scales are dependent on the shear stcess and are small
compared to the boundary layer thickness. The outer reglion of the flow is
essentially inviscid and behaves much like a free shear low. In fact, it is
frequently called the "wake" tegion, in the wake region the length scales are
approximately 0.1 of the boundary layer thickness. Between these two re-
gions is one in which the shear stress is nearly constant and the viscosity is
not important., In this region, the mean velocity has a logarithmic profile,
and it 4is called the logarithmic or buffer region, here the length scales
increase linearly with distance from the wall. 'This knowledge is very impor-

tant in higher-level simulations of these flows.

The turbulent boundary layer increases in size with downstream distance.
This is difficult for higher-level simulations to handle at the present time.
One can consider a temporally developlng boundary layer, this has been done
and will be described in the last section of this chapter. Unfortunately, the
velocity profile of the time-developing layer is different from that of the
spatially developing layer, and the difference is significant because wall-

bounded rflows are quite sensitive to small changes in the velocity profile.

Most of the attention to date has been given to turbulent channel flow.
It is the ideal choice for simulation, because it is the one true "equilib-
rium” flow of the class. It reaches a state at which none of its properties
changes with downstream distance. Despite this, the physics of the near-wall
flow is similar to that of the boundary layer. 'Thus this flow can be simula-
ted with periodic boundary conditions without making any important assumptions
that might affect the results. Of course, one must be careful that the usual
criteria needed for the application of periodic boundary conditions be main-

tained. This flow has been simulated a number of times and will occupy the

major part of this chapter.

Another very important issue in wall-bounded flows 1is that of transi-
tion. Laminar boundary layers are much more stable than are laminar free
shear flows, but transition takes place when the Reynolds number is high
enough. The ability to delay transition would enable us to reduce the drag on
bodies, with obvious and important consequences. This 1is one of the major

reasons why transition has received so much attention.
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Transition in boundary layers is sensitive to relatively small changes in
the velocity profile. ‘Keeping the disturbance level small can delay
transition for a long way. On the other hand, minor disturbances, such as a

bit of roughness, can trigger transition.

Theory predicts that laminar channel flow is stable with respect to small
disturbances at Reynolds numbers below about 5700. One can also show that it
is more unstable with respect to large disturbances, but the predicted Rey=-
nolds number of transition is smaller than the Reynolds number at which
transition 1is observed to occur. An explanation ¢f this phenomenon will be

glven later in this chapter.

The next section will take up the computation of fully developed channel
flow. There are two approaches to doing this, and we shall discuss them and
give results obtained by both approaches. In particular, we shall describe

recent results that promise tn provide a great deal of interesting information
about this flow.

The last section of this chapter will consider transition in wall-bounded
flows. This problem has been done recently for both the channel and the time-

developing boundary layer. A number of interesting results have been pro-
duced, and there is considerable hope that still more will be forthcoming in

the near future.

2. Fully Developed Channel Flow

The dynamical behavior of fully developed channel flow is similar in many
respects to that of the boundary layer. In particular, the inner layers of
the two flows are quite similar. The major differences are that the channel
flow requires a pressure gradient to overcome the frictional forces and that
the channel flow has no region in which the flow is not completely turbuient,

outside the boundary layer, the flow is potential.

Of particular importance in the simulation of the channel flow is the
behavior of the length scales. What makes these flows especially hard to
simulate is the fact that the spanwise length scales are much smaller near the
wall than in the central portion of the flow. This means that a grid that is
well adapted to capturing the streaks near the wall will be much finer than

necessary near the center. On the other hand, a grid which is scaled for the
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central region will not be able to see the streaks at all. 'The variation in

the length scales in the direction normal to the wall is less serious, because
a variable grid size can be used in this direction.

Two approaches have been taken to simulate channel klow. In the first

method, which was developed by Deardorff and extended by Schumann and co-

workers, the wall fis not treated explicitly. 'This avolds much ot the diffi-

culty with the small-scale structures that oc¢cur near the wall, and reduces

the amount of computation considerably. The limit of the computational domain

is placed in the logarithmic region of the flow, because this 1is probably the

best understnod part of the flow. Another argument put forward for this

method is that viscous effects prohibit the existence of an inertial subrange

in the inner layers, but one cxists in the buffer and wake regions. The

difficulty with this method is that the boundary conditions at the top and

bottom of the computational domain are noi well defined, and assumpticns must

be made. Also, this approach does not simulate much of the physics of the

flow and cannot be used to study its structure and modeling.

that the derivative of the streamwise velocity in the
the first guarantees

Deardorff assumed
normal directin could be written as a sum of two parts,
the existence of a logarithmic region, and the second is responsible for the

fluctuations. His expression is:
2— o

9%u u
e (7.1)
ax2 K(Ax2/2) 3x3

where Kk 1s the von Karman constant (0.41) and 8xy 18 the distance of the

first mesh point from the wall. This boundary condition assumes that the

fluctuations of the velocity are the same in the normal and spanwise direc-

The validity of thig¢ assumption 1is open to questilon, the reason that
Kim

tions.
beardorff gave for favoring it 4is that it produced reasonable results.

(private communication) has tested this boundary condition and finds it is not
good at all.
Schumann's assumption 1is that the shear stress and the velocity are in

phase at the first mesh point; according to Kim, this assumption is also

inaccurate. Mathematically, his assumption 1s:
< T, >
12 T Ta>
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where < u > 1is the mean velocity at the first mesh point, < 1, > 1s the

mean wall shear stress, and u 1is the instantaneous velocity.

For the subgrid scale model, Deardorff used the Smagorinsky model. The
only modification that he found necessary was the reduction of the magnitude
of the constant in the model from tche value obtained from theory  r the iso-

tropic decay simulations.

Schumann modified the model. He assumed that the subgrid scale model
should be composer of two parts. The first 1s proportional to the time-mean
velocity gradien. at the particular distance from the wall, the second is
proportional to the deviation of the instantaneous velocity from the time-
mean. He called these the inhomogeneous and locally isotropic components of
the subgrid scale stress. He also used an equation for the subgrid scale
turbulent kinetic -~ ergy, but found that it gave no significant improvement

over an algebraic eddy viscosity model.

For the mean velocity profile, Schumunn obtained very good results. The
results for the components of the Reynolds stress are also quite good. Schu-
mann also used his results for testing the Rotta model for the pressure-strain
term. These results are shown in Figs. 7.1 and 7.2. It is interesting to
note that the "constant” is different for the various components. However,
one shiould be cautious about accepting these rsults, because the pressure is
very sensitive to changes in the way in which the flow is computed, and we
believe that large uncertainties must be assigned to these results. In fact,
the results near the boundary seem to be due to the boundary conditions used.

We shall have more to say about this below.

Moin et al. (1978) made the first attempt to solve the channel flow prob-
lem while treating the wall boundary conditions exactly. Doing this means
that a nonuniform grid has to be used in the direction normal to the wall, the

use of Chebychev polynomials is an alternative.

One of the major difficulties with this method is that the length scales
of the flow become very small near the wall, the local turbulence Reynolds
number also becomes very small, and it is not clear that the Smagorinsky model
can be uscd any longer. In fact, it 1is possible that the overall length

scales of the turbulence will be smaller than the size of the grid in this
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region. It is thea improper to use the grid or filter size in the subgrid
scale model. Instead, Moin et al. used the minimum of the Prandtl mixing
length and the grid size. This modification is arbitrary but is a simple

method that appears to work.

Another difficulty is that the smallness of the grid tends to make
numerical methods unstable. There are two nondimensional numbers that deter-
n'inhe the stability of a numerical method. They are the Courant number
uzsz/At and the viscous parameter vAc/Ax%. Roughly speaking, stability
requires that both of these numbers be smaller than some constant of the order
of unity. It turns out that the viscous condition is more stringent near the
wall, and if an explicit methed were used, it would be necessary to usc an
extremely small time step. Consequently, a method which treats the viscous
terms containing derivatives with respect to the rcormal coordinate implicitly
was devised and used. Doing this meant that the normal method of solving for
the pressure via the Poisson equation had to be abandoned. We shall briefly

describe the revised numerical method.

Most of the terms in the momentum equations are time-differenced using
the second-order Adams-Bashforth explicit method. The exceptions are the
pressure pradients and the viscous terms containing derivatives with respect
to the normal coordirate, which are treated by the implicit Crank-Wicolson
method. The contiaulty equation, which contains no time derivatives, is
evaluated at the niv time step. The resulting set of equations if Fourider-
transformed in both horizontal directions to produce a set of equations which
are essentially ordinary differential equations with vespect to the normal
coordinate. ‘These are finite-differenced by a second-order method, and the
resulting set of equations is block-tridiagonal with 4 X 4 blocks. This
system 1s easily solved by a standard block-tridiagonal algorvithm, and, when
the resulting functions are inverse Fourier—transformed, we have the veloclty
and pressure fields at the new time step. Kim and Moin (1979) made improve-

merits on this method.

The initial conditions were described in Chapter 3; t'.y consist of a
mean profile, solutions obtained from stability theory, and random fluctua-
tions, The program was required to run for some time to ascertain that the
turbulence wculd not decay and to develop the proper statistics. When this

was done, it was found that the resulting velocity field contained many of the
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features observed in the laboratory, In particular, the mean velocity profile
was very close to the experimental one, and the fluctuating components were
also quite close to the experimental ones. The most interesting observation
about the results was the tendency of the fluid near the boundaries to form
high- and low-speed streaks and for the Reynolds stress to be highly inter-
mittent in both time and space. All of this suggests that much of the physics
is captured. However, the gild was not fine enough to resolve the small
structures near the wall adequately (the "streaks" are too wide), and the
quantitative results have to be treated cautiously. HMoin et al. (1978) showed
that this appreach to simulating wall-bounded flows can succeed and indicates
that betier resolution would probably produce still better results. The
pressure-strain correlations calculated by Moin et al, (.978) differ consid-
erably from tihese of Schumann (1973). Une should be very careful about
accepting any of these results without further confirmacion. The pressure~
strain results are very sensitive to small changes in the flow, we believe
that the trends (and the "splat” effect in particular) are correct, but the

quantitative values are somewhat uncertain.

Over the last three years, Kim and Moin have improved the chanpel flow
calculation in a nuwber of ways. The principal improvement has been in the
ability to use more grid points the original 64 x 64 x 64 grid and, in some
recent calculations 128 grid points have been used in one or two of the direc-

tiongs. They have also made improvements in the subgrid scale model and in the

numerical method.

Kim and Moin (1979) reported the results of 64 x 64 x 64 simulations
with a model which damped the subgrid scale viscosity near the wall more
strongly than the previous model. We shall look at some of their results.
The mean velocity profile they obtained is compared with several experiments
in Fig. 7.3. The existence of a logarithmic region in the flow with the
correct slope is one of the major achievements of the whole of higher-level
simulations. The profilc near the wall liws below the expected profile (indi-
cated by u+ = y+ in the figure), and this is probably due tv a weakness of
the model in the region near the wall. The components of the turbulence are
shown in Fig. 7.4, although the experimental data are not shown, the agree-
ment 1is quite good~~the experimental data show quite a bit of scatter. The

pressure-strain terms are shown in Fig. 7.5. In the center of the channel,
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these terms drain energy from the fluctuations of the streamwise velocity and
transfer it to the other components; this accords with expectation. However,
near the wall there 1is a large transfer from the normal fluctuations to the
spanwise ones. This had also been found by Moin et al. (1978) and was unex-
pected. It is apparently due to fluld moving toward the wall being stopped by
the wall. The vertical motions are converted into horizontal motions, and the
result of this "splat"” effect and the normal energy transfers is shown in the
figure. Again, the quantitative results may be incorrect, but it is unlikely
that the qualitative result is incorrect. More recent (and more accurate)
results by Moin and Kim (1981) show a smaller, but still significant, "splat”

effect.

Contoure of the fluctuating velocity on a plane parallel to and close to
the wall are shown in Fig. 7.6, the presence of long streaks is obvious. A
similar plot for a plane close to the center of the channel 1is shown in Fig.
7.7; there is no evidonce of streaky behavior at this plane. A number of

other plots of this kind are given in their paper.

In a more recent paper, Kim and Moin (198l) have done calculations with
still greater resolution and further improvements in both models and numerical
methods. The results are qualitatively similar to those presented above but
differ quantitatively. They have also produced a simulated flow-visualization
motion picture that duplicates most of the phenomena observed in laboratory
motion pictures. This application of the results should play a very important

role in the future.

The splat effect 1is also seen in the shear-free wall layer. This 1is
simply a turbulence near a wall which is moving at the same mean velocity as
the wall. The preclse nature of this flow depends on the Reynolds number. A
simulation by Biringen and Reynoids (1981) captured most of the effects ob-
served in the experiments. However, we shall not review these results in

detail here.

3. Transition

As stated in the introduction, transition in boundary layers is a subject
of great technological importance. However, transition is very sensitive to a
number of factors, including the precise velocity profile, the level of the

disturbance, wall roughness, etc. As a result, transition experiments are
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very difficult to perform reproduceahly, and there is considerable scatter 1in
the data. Naturally, simulations of these flows will be very sensitive to
similar ftactors. Thus, a great deal of care will be necessary to simulate

these flows.

Linear stability theory predicts that the laminar boundary . ayer profile
is unstable with respect to disturbances that result in Tollmieu-Schlichting
waves, This dinstability is much 498 explosive than that of the free shear
layer. It is generally believed that the Tollmien-Schlichting waves grow
until nonlinear effects take over and complex interactions lead to the fully

turbulent boundary layer. However, the late stages of transition are poorly

understood.

The first direct simulation of tramsition in wall-bounded flows was made
by Kells and Orszag (1979) and Orszayg and Patera (1980,198L). They chose to
study channel flow at Reynolds numbers for which the flow is linearly stable.
However, transition does take place at the Reynolds numbers studied. 1In their
simulation, Orszag and Patera took a fully developed laminar channel profile
(Poiseuille profile) and added finite-amplitude two-dimensional Tollmien-
Schlichting waves to 1t, these waves are different in the channel than in the
boundary layer. They found that the waves decayed slowly and that the rate of
decay decreases as the Reynolds number increases, this is expected. However,
they found that, when a small three-dimensional disturbance is introduced into
the flow, it grows very rapidly. The growth of the three-dimensional wave is
rapid enough to enter the nonlinear regime before the two-dimensional wave has
decayed. At this point the simulation develops considerable energy at high
wavenumbers and has to be stopped; as there is no model in the simulation,
there is no way to continue. However, this simulation has provided an expla-
nation of the instability of this flow; it is apparently due to the three-
dimensional instability of stable two-dimensional waves. Orszag and Payera

(1981) have done similar simulations for Couette and cylindrical tube flows.
Some of their results are shown in Fig. 7.8. The decay of the two-
dimensional wave and the growth of the three-dimensional wave are quite
apparent.
A simulation of cthe instability of the boundary layer has been made by

Wray (unpublished). In order to avoid the difficulty that arises from the
spatially developing boundary layer, he chose a time-developing boundary

84



layer; physically, this corresponds to the boundary layer that develops on a
suddenly started plate. Although the velocity profile of the time-developing
boundary layer is different from that of the spatial layer, the calculation
was started with the Blasius profile appropriate to the spatial layer. To
this profile, a weak Tollmien-Schlichting wave and a weak three-dimensional

random disturbance was added.

The disturbance grows very slowly at first (as expected) until it builds
up to a level at which nonlinear effects become important. At this point, the
rate of change of the layer becomes spectacular. The contours of the various
velocity components and the vorticity develop more and wore structure. Compa-
risons with experimental results for the parameters reveal a considerable sim:

ilarity; the comparison is necessarily qualitative, but it is remarkably good.

Eventually, this simulation develcpsd & considerable amount of energy at
hiigh wavenumbers, and it had to be st¢pped. There is no way to continue this
simulation beyond this point without more resoclution. Unfortunately, it may
be that the small scales play an important role in the development of this
flow, and it is not known whether the addition of a moudel will cure the prob-

lem. .
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Chapter VIII

OTHER APPLICATIONS

As we have stated earlier, higher~level simulation began in meteorology
and oceanography. These fields have maintained an active interest in the
simulation of the global circulation of the Earth's atmosphere and oceans.
The methods used are similar to the ones described in this report, but there
are additional difficulties. The principal of these is that thermal energy
and the transport of water vapor (in the atmosphere) and salt (in the ocean)
are very important in these flows, and one must deal with the effects of
stratification, evaporation, and condensation. When coupled with the limita-
tion to very coarse grids {200 km is typical in these simulations today), we
see that the problems are considerably more difficult than the ones dealt with
in this report. They are, however, of great importance, and considerable
effort is being devoted to them. The author has only a passing knowledge of

the work in these areas, and this is the reason why the subject is not covered

in this report.

Methods similar to the ones given in this report have also been applied
to smaller-scale environmental problems. For example, simulations have been
made of local parts of the atmosphere by these methods; these are called
mesoscale simulations. The author 1is familiar only with a few papers by
Deardorff in this area, in these papers, he used a complete Reynolds stress
model for the subgrid scale Reynolds stresses. Others have applied these
methods to the prediction of the flow in lakes, harbors, and other small
bodies of water. Of the work in this field, the author is familiar only with
some of what has been done at his institution. Findikakis (1980) has recently

developed a finite-element method for computing such flows.

On a still smaller scale, theré have been a number ¢f extensions of the
work covered in the earlier sections of this report. Schumann and his cowork-=
ers have used the method that was described for channel flow for the simula-~
tion of flows in annuli and made otler extensions. In particular, they have
computed the channel and the annulus with heat transfer, in the simulations,
the temperature is treated as a passive scalar. We have not dealt with this
work at length in this paper for several reasons. It is covered in detail in

the report of Schumann et al. (1980). Also, since the results produced by
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Schumann's method differ considerably from those of Kim and Moin (1979) and

Moin and Kim (1981) for the channel flow, we are unsure about the accuracy of

the method when applied to heat transfer. For similar reasons we have not

covered their work on the effect of roughness.

have applied their method to mnatural

Schumann, Crotzbach, and Kleiser
They covered a very large

convection flow between parallel horizontal plates.
range of Rayleigh number and were able to predict the observed transitions

from one flow regime to another. This 1s an excellent plece of work and was

not covered because it did not £it any of the subject headings used in this

paper. Grotzbach (1Y79) has also investigated simulated flows in vertical

channels with the influence of busyancy.

Finally, we shall mention a method that competes with the grid-based

methods that are the primary subject of this report. These are methods in

which the motions of vortices are followed (vortex—-tracking methods). A number

of interesting features of transitional and turbulent flows have been computed

by this method, including flows with separation. The full capabilities of

this approach and a comparison of it with the methods discussed in this report

are given in a review paper by Leonard (198l). Hybrid methods which use some

ideas from vortex—tracking and some from pgrid-based methods are also beilng

investigated at the present time, the iInterested reader 1s referred to the

paper by Couet, leonard, and Buneman (1980).

There 1re undoubtedly areas that have been overlooked in this report.

The author has tried his best to be complete, but in any subject area that has

become this large something is likely to be missed. There 1is no intent to

minimize any contributions tlhiat have been missed.

87

o RN i
sl e

0 b i

Bk g



&»V-‘W‘ B

$~T§@mvnw~m s i

Chapter IX

CONCLUSLONS AND FUTURE DIRECTIONS

1. Where Are We Now?

We hope that this report has shown that higher-level simulations of tur-
bulent flow have reached a point in their development which allows them to
play an dmportant role in turbulent fluid mechanics. Let us now sum up where

the fleld stands today. We start with the positive points.

a) The basic 1ideas of large eddy simulation seem sound. Specifically,
they seem to be able to handle homogeneous turbulent flows and free shear
flows quite well. For wall-bounded flows, the importance of small structures
near the wall is a problem, and these flows are difficult to deal with, but

gecod progress has been made.

b) Direct simulation of many interesting flows are now feasible. We are
limited to low Reynolds numbers, but this restriction may not be important in
some flows, as the large scales may be nearly Reynolds number independent.
Alternatively, one can regard the viscosity as a simple subgrid scale model
and pretend that a higher Reynolds number flow is being simulated. Both of
these approaches have been taken. Orszag has used the concept of "Reynolds
number similarity" with considerable success. Rubesin (1979) regarded direct

simulations as large eddy simulations, also with ccasiderable success.

¢) Higher-level simulations have come to the point at which they are
able to provide information on quantities that are difficult to measure in the

laboratory. In this role, they are able to evaluate turbulence models in a

way that is vevy difficult to do by any other method.

d) Higher-level simulations are able, in some cases, to simulate flows
that are very difficult or impnssible to perform in the laboratory. Sonme

examples are flows with rotation and/or compressibility.
e) It ie now possible to do flow visualizations using full and/ov large
eddy simulations. These visualizations reproduce much of what is seen in the

laboratory. They also offer flexibility that is difficult to match in the
laboratory. They can be used to look in detail at specific regions, and can

even be used backwards in time.
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How let us consider some of the difficulties.

a) The most obvious problem is that these methods require large amounts
of computer time. Although some of the simpler flows can be done in a few
minutes on large machines, running times of the order of hours are not unusual
for the more difficult flows. Use of these methods must be restricted to
individuals with access to the machines that can do these simulations. Some

means of assuring that the problems of greatest 1interest are done is

necessary.

b) Although some flows are amenable to full simulation, Reynolds nunmber
similarity does not hold for all flows, so it is not possible to treat low
Reynolds number flows as models of a high Reynolds number flow in all cases.
Better subgrid scale models will be necessary if high Reynolds number flows
are to be simulated, but it may be very difficult to find models with wide
applicability.

On balance, the contribution of higher level simulations seems to be more
than worth the cost, and the approach is just beginning to reach its poten-
tial. With new generations of computers, it should be possible to do much

more with these methods.

2. Where Are We Going?

It is clear that a great deal remains to be done in turbulence simula-
tion. There are many directions which can be taken in the future, and, with
more groups beginning to do these types of simulations, we expect the area to
broaden rapidly. Of course, it is difficult to predict the future with any
precigsion, but it is always interesting to try. Let us look at what can be

expected in the next few years.

a) One obvious direction in which highe¢-level simulations will be
extended is toward the simulation of a larger number and greater variety of

flows. There are many possibilities, so the following list cannot be all-

inclusive.

i) T™e flows which have already been simulated can be done with
additional effects. Thus, to any of the flows treated in this report we can
add rotation, curvature, heat transfer, passive scalars, ani/or pressure

gradients alone or in combination. In the wall-bounded flows we can also add
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wall roughness and blowing or suction. Many of these effects are quite

important in engineering flows and should be considered at an early date.

ii) To date, no method has been found for dealing with inflow or
outflow boundaries. The outflow boundary can probably be handled by the usual
method of requiriung the streamwise derivatives to be zero at the outlet. The
inflow condition is much morve difficult, because it is necassary to prescribe
a realistic representation of the turbulence in order not to require too mich
of the computation; to do this would waste a very large part of the computa-
tional resource. Being able to handle 1inflow and outflow boundaries is cen-

tral to the computation of many flows of interest.

i11) There are some fairly simple flows which have not been done.

Included among these are the jet and the wall jet.

b) Simulation of wall-bounded flows is much simpler if the kinds of
boundary conditions used by Deardorff and Schumann can be applied. Chapman
(1980) estimated that the savings to be realized in this way could make the
differenge betwezen practical wuse of the higher-level simulations and thedir
continuing to be confined to research. Accurate boundary conditions nf that

type need to be searched for.

c) Use of higher-level simulations in conjunction with flow visualiza-
tion and statistical methods should become a very powerful tool for investi-
gating the structure of turbulent flows. It is possible that such an approach
may be able to tie the structure of turbulent flows to the modeling. This is
highly speculative, but, 1if it can be done, it could be an important step for=-

ward. We may become "computational experimentalists.”

d) The interaction of higher-level simulations and conventional model:
should become stronger. We can envision a time when people developing new
models will routinely validate them using higher-level simulations. Cer-
tainly, we can expect higher-level simulations to be helpful in determining
the constants in the models. It 1s worthwhile to set up a facility which is

available for this purpose.

e) We expect that there will be considerable work on the improvement of

subgrid scale models, but the direction this work will take 1is not obvious.

f£) Higher-level simulations will be extended to include a number of phe-

nomena that are not currently treated. Sound generation should be relatively
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easy, as it secms to depend mainly on the large scales. Combustion should be
very challenging, because the chemical reaction depends on intimate mixing at

the small scales.

g) Something has to be left to the reader's imagination.
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b) VFourier Space Sharp- cutoff
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Figure 2.1 Some Filters Commonly Used in Large Eddy Simulation
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Pigure 2.3 Definition of the lerge scale field by
(a) the Deardorff averaging method
(b) filtering
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Figure 3.1 Scatter plot of uiari /ij (the dissipation due to

the subgrid scale mode%) for the Smagorinsky model in
weakly strained tucbulence. The correlation coefficlent
is 0.4 for this case. From McMillan et al. (1980) .
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large scale strain. From McMilian and Ferziger (1978).
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wmme=s  Full epectrum

Filtered spectrum

Figure 3.3 A typical turbulence spectrum and the effect of filtering.
Region 1 represents the smallest scales of the filtered
or resolved component of the field. Region 2 represents
the largest scales of the subgrid scale or unresolved com-

ponent of the field. The scale similarity model relates
these.
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Figure 4.la The effective wave member for a number of approximations.
The methods nsed are: kA ,pseudospectral; k"A , second
order central difference; k'A , fourth order central dif-
ference; kA , compact method,

10 I l |

(KA)2
(KA)?

(KA)2

Figure 4.lb The square of the effective wave number in various
second derivative approximations. The methods are
given in Figure 3.1. From Mansour et al. (1978).
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sixth, the r.m.s. pressure fluctuations. From

Schumann and Herxing (1976).
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Figure 5.8 Rotta's constants C and C' (see eqs. 5-6, 5-7)
versus time for several axisymmetric anisotropic
cases. From Schumann and Herring (1976).
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Figure 5.9 The decay of rotating turbulence. Lines are
large eddy simulation; points are data.
Rotation was present from the start of the
calculation. From Bardina et al, (1981).
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10 Direct simuiation of rotating turbulence. The
flow was all.wed to relax before rotation was
"turned on." From Bardina et al. (1981).
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Figure 5.12 The mesh used in sheared turbulence. Flow is
started with coordinate system shown on top.
When it has sheidared to the position of the
middle figure, the flow is interpolated on to
the grid shown at the bottom. From Felereisen
et al. (1981).
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Figure 6.1 A schematic of the mixing layer.
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Figure 6.2 Momentum thickness of a developing mixing layer

vs time; low initial intensity cases.

From
Cain et al. (1981).
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From Cain et al. (1981).
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Figure 6.5 Turbulence intensity at center of mixing layer vs time;

low intensity cases.
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From Cain et al. (1981),.
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Figure 6.6 Turbulence intensity at center of mixing layer vs time;
medium initial intensity cases. From Cain et al. (1981).
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Figure 6.7 Turbulence intensity at center of mixing layer vs time;
high initial intensity cases. From Cain et al. (1981).
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Figure 6.8 Profiles of turbulence intensity vs time; low
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Figure 6.10 '"Dye lines" late in mixing layer development;
low initial intensity case. From Cain et al.
(1981).
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Figure 6.11 '"Dye lines" late in mixing layer development; medium
initial intensity case (same as Figure 6.1 except
for intensity). From Cain et al. {1981).
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function of the normal
From Schumann et al. (1980).

Figure 7.1 The pressure-strain terms as a
coordinate in a channel flow.
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Figure 7.2 The 'constant' in the model of the pressure-strain term

as a function of the normal coordinate. From Schumann
et al. (1981).
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Figure 7.3 The mean in the channel flow compared witn three sets
of experimental results. From Kim and Moin (1979).

Figure 7.4 Turbulence intensities in channei flow (resolved component
only). From Kim and Moin (1979).
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near the wall.



s oL

~
N
W

)

\
o o NN
=

- s

<
~a=
~ P

NN D
o

P 7 SN

-
S>3

v/ f
h .
- ‘ t ‘\

: ']
- ) ‘
iy
TR o':‘l:’\.é\
t '

\
TR
TR :u'fv‘n

L3 X T ﬂ//;")m’
i W eSs” v A
Ny 7\ WA

B\ 7 A

6 Hee
¢
G\

iy WA AN
l/,gﬁu oot
n
-\‘-

0 T A

Vo,
WA
T
AT T
m_u-:'& Wy
PR S RAN
V’ M

Y -

WPV Vil o 10N HI 2 2N S

S AW IR ) 3
. Z=2

NOERIN . = OV A\ ARV O
" e NI, 4 um 1 7

N Sy e n:-:;’.’.'y':( m nd

~ 955 .

W AN Nt
Sno ()
' 7 ‘
v

[
¢

-

[,/
\\\\,n,ﬁ‘s'nn n vy ac
WS JLAR S 1 NI

: )

by AWh i
AL NS
O X7V

\TZAEEXULE I R Y

= I
g y
AT T

2 g
(

-
W LN Y I T

Y, W
@‘\‘\(
Al _“/*'.l

-

“Yraapl

u” x-z PLANE
v/ =0.73

"""'H""‘.““' .

ET A I
\.a'ﬂ"( /lNT\\\.;t:)\\' (W \"A
RN
TLWZA R
O[‘t\"/l‘c Il
AL
w1l

5

"N

\\(\1// 1
nes

XA ’ x

- -

147

Figure 7.7 Contours of the fluctuations of the streamwise velocity

From Kim and Moin (1979).

near the center of the channel.
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Figure 7.8 Energy O mensional waves in a perturbed
laminar channel flow. The 2-D waves decay while the 3-D
waves grow. From Orszag and Patera (1981).
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