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NOTATION

projection operator from X onto X

Banach space of periodic, continuous functions on [0,1] % [0,1] for the
first case and similar definitions for the other cases

piecewise linear subspace of X
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wg (8) = sup |h(s + o,t) - h(s,t)|(s 2 0, t 51, |0| £ 9)

for all
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A COMPUTER SOLUIION TO THE STATIONARY NAVIER-STOKES EQUATIONS
IN TWO DIMENSIONS WITH PROVEN CONVERGENCE
Ralph E. Gabrielsen

Ames Research Center
SUMMARY

A general computer solution for the stationary Navier-Stokes equations
is developed., It is explicitly proved that this solution converges to the
true solution as the grid size shrinks to zero.

INTRODUCTTION

Existing algorithms for solving the Navier-Stokes equations have one
critical deficiency: 4if w* were the true solution and ¥ the computer
solution, the relationship between { and * would be strictly heuristic
[ 1. In this veport, however, the relationship between w* and @ will be
explicitly demonstrated, and it will be proved that @ converges to w* as
the grid size shrinks to zero.

MAIN DEVELOPMENT

The two-dimenslonal stationary Navier-Stokes equations are typically
expressed by the set of equations

uuy + vuy + qy = vAu + £ = 0 (1)
uv, + vy + qy - VAv + f2 = 0 (2)
u, + vy = 0 (3)
with
u(ds) = ~by , v(as) = b, (4)

Equations (1) and (2) express the conservation of momentum and equation (3)
expresses conservation of mass, where u and v denote the velocity



components in the x and y directions, respectively, and 09s denotes the
boundary of the domain of consideration s.

Solving the set of equations (1)~(4) is equivalent to solving the
equation

VABY + Yy - Yxbly + £ - £y = 0 (5)

with

U(38) = by, ¥y(38) = by (6)

for the stream function 1y (see rvef. 1), where ~by = u and +y, = v,

In reference 1, it is shown that solving equations (5) and (6) is equiv~
alent to solving a sequence of linear partial differential equations:

vAAD, + U AT+ Awmxiﬁ P

my 2P, A, + P(y) = 0 )

- A -
my = SV ™ Yy ¥y
with

. By
p(3s) =0, =L () =0, m=0,1,2, ... (8)

where

i

POY) = WY + Wbl = by + 1 - f2

1
1]
i-e
s
1
=

By inspection, we see that each element of this sequence is of the form

VAY + yoAb, + AU By = BU T = Y A0 + P(Y) = 0 (9)



ot

with
PCas) = 0,  {p(ds) = 0 (10)

Lemma 1:

A solution of equations (9) and (10) is a solution of equation (1l), and
vice versa:

‘I’m(x‘ ’y') + ir {pm(xl}') Km(x' -)" WX »)’) dX dy - j:(‘pm) (ll)
s
where
1
Eh) = 3 [ 2o as
8
and

Km(X' W' ax,y) = "ﬁcy(x»i ayivxvy}‘pmxcxt)') + Aqu’“‘y + 2ny(wn5'y - ‘ifmx:{)
+ mey(Gxx = Gyy)
and

G denotes the biharmonlc Green's function of the first type on S (see
ref, 2 for tba proof).

Consequently, the initial problem — equations (1)-(4) — has been reduced
to one of solving a sequence of Fredholm integral equations of the second
kind, as expressed in equation (11). In particular, if w* denotes the true
solution to equations (1)-(4), then

Lm p, = w* = Py

m-ree

0f course, one could stop with equations (2) and (10) and strictly solve
them numexically, which has been done with great success for the nonstationsary
case in reference 3. However, if one were to computerize equations (V) and
(10), one would end up in the following situation:



1. From reference 1, we would have a sequence of solutions ¥, converg-
ing to the true solution ¢ . Also,

mtl

2 1

RCU ™

H
¥ = S 220w |t
vil - 3 Mq,olia)

2, If 4yYpp were the actual computer solution for Y, it would be
practically impossible to determine the accuracy of Y, relative to VY,
since equation (9) is an unbounded opervator equation.,

However, because of the results of Lemma 1, the original problem has been
reduced to one of solving a sequence of bounded linear operator equations;
moreover, the equations are in a form in which it 1is possible to explicitly
determine the accuracy between the computer solution and the true solution.
The one real drawback with the integral equation representation is that the
kernel is a function of the biharmonic Green's function (see eq. (11)), an
area primayily familiar to those in structural mechanics.

Therefore, it remains to develop a computer solution with error estimates
for equation (11). To accomplish this, we must first determine the character
of the kernel of eguation (11).

The kernel of equation (11) is of the form
K, = -AGywmx + 0.,
In reference 4, it is demonstrated that G can be expressed in the form

=l 2
G Yol log r + v

with v a regular biharmonic function in § with continuous fourth dexiva-
tives throughout S, Let G = G + v, where

G = = 2
G 8r © log r

By differentiating G, it follows directly that



= 1l (4 sin B
46y = g5 ( T )

= 1 (4 cos G)
AGx ™ By r

R 28 - anal
Gyy = Gy, B (sin= 0 = cos* 0)

and

axy - é; (2 cos £ sin B)

Therefore, the kernel Kj(P.Q) of equation (11) is continuous execept as
P approaches Q and therve it is of the foxm L/rpg. In reference 5, a
numerical algorithm is developed for two-dimensional Fredholm integral equa-
tions of the second kind with kernels of the form log(l/rPQ). For this case
it is proved (vef. 5) that the computer solution converges, as a function of
grid size &, to the true solution (as A =+ 0). It just so happens that the
results of reference 5 also hold true if the kernel is of the form 1/rpg as
P » Q and continuous otherwise. The argument goes through in exactly the
same mamner for 1/r as it did for log(l/r). 1In essence, by substituting
1/r for log(l/x) in the development, and by slightly changing the proofs
for the new singularity, the rvesults immediately follow.

Let @mA be the computer solution of Y, — the solution of equa-
tion (L1) = for partition A vrelative to reference 6. It therefore follows
that

a A

Wm > wm as A=>0

Also, relative to reference 1, U m* as m > «, where ¢* is the true
solution of the problem (l-4). Hence,

\pmA -+ Y%  as A0, m > ®

since

19> = o™ < n{,{mA =gl +lyy - 9¥ >0 as mae . A0



Hence, by applying the results proved in references 1, 2, 5, and 6, it
has been possible to develop a computer solution ¢, as a function of grid
size A such that ‘I’A converges to Y* as A approaches zero, providing
of course that the conditions are satisfied as specified herein,
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