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NOTATION

P projection oper p tor from	 X	 onto	 R

X Banach space of periodic, continuous functions on [0,1] x	 [0,1]	 for the

first case and similar definitions for the other cases

X piecewise linear subspace of 	 X

X Banach space isomorphic to 	 X

Aif
B AiAf,	 J Aif J 	_	 JAiJJAFJ;	

if	 I&I	 (AifJVij, then	 JAifI	
=	 JQ21

Aij = ijth rectangle of the domain

¢ linear extension of	 c0	 to	 X; ¢ _ ^oP

^0 a mapping creating an isomorphism between	 X and X

WS (6) modulus of continuity of the kernel function h(s,t) relative to 	 s;

WS (6)= sup Ih(s + a, t) - h(s,t)I(s ? 0, 	 t 5 1,	 Ia	 b)

H for all

3 there exists

11	 11 norm in the appropriate space

3 such that

implies

C' ' (S) n	 times continuously differentiable on 	 S

p pressure

u component velocity in 	 x-direction

v component velocity in 	 y-direction

A[	 ] 32[	 i/ax2 + 92 [	 ] /3 2 [	 ] /ay2

AA[	 1
9
4

[ /ax2 + 2 aX 8y	 + 94 [ ]/ay4

as boundary of domain	 S

a I (]a
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Ralph C. Gabrielsen
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S U DIARY

A general, computer solution for the stationary Navier-Stokes equations
is developed. It is explicitly proved that this solution converges to the
true solution as the grid site shrinks to zero.

INTRODUCTION

Existing algorithms for solving the Navier-Stokes equations have one
critical deficiency; if ql * were the true solution and r the computer
solution, the relationship between ?1 and q)* would be strictly heuristic
[ ). In this report, however, the relationship between q* and I will be
explicitly demonstrated, and it will be proved that T, converges to q,* as
the grid size shrinks to zero.

MAIN DEVELOPMENT

The two-dimensional stationary Navier- Stokes equations are typically
expressed by the set of equations

	

uux + vuy + qx VAu + f 1 - 0 	 (1)

	

uvx + vv  + qy - vdv + f2 - 0	 (2)

	

ux + V  . 0	 (3)

with

u(Bs) - -b 2 ,	 v(as) - bl	 (4)

Equations (1) and (2) express the conservation of momentum and equaLion (3)
expresses conservation of mass, where u and v denote the velocity
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components in the x and y directions, respectively, and as denotes the
boundary of the domain of consideration S.

Solving the set of equations M-(4) is equivalent to solving the
equation

vAA^ + ^ yA^x „ V xA► y + 
f1y	

f2  = 0	 (5)

with

^x(as) - bj .	 Vy(as) - b2	 (6)

for the stream function ^ (see ref. 1), where —^ y = u and +^, = v.

In reference 1, it is shown that solving equations (5) and (6) is equiv-
alent to solving a sequence of linear partial differential equations:

vAAT) m + ^MY4mx + A^MX my - 
Army mx - ^MXA^MY + P 

(gym) = 0

with

a ^'m^m (as) = 0	 an (as) - 0	 m = 0,1,2,

where

P (^) = vA# + ^yA*:c ^ x6 ' y 
+ f 1y -

 
f2 x

m ^m+1 - ^ m

By inspection, we see that each element of this sequence is of the form

vAA^ + ^ A^ , + A^X
	 - A^'y^ - *xA^ + P(') = 0

	
(9)

2

(7)

(8)

...	
.-.^.^„.^„... ^^	 ._--..._...e.xY['rzre4lLLWV^iY..mY.WW:•YLwA11CY^..SG:^, r°^:",-:^.:?:'_`Y YJ... °".."..,._. __. 	.....,..._.'+.^ _ • ....... .. ....



with

?10s) - 0	 %Os) - 0	 (10)

Lemma 1.

A solution of equations (9) and (10) is a solution of equation (11), and
vice versa:

1Pnj(x' 'y ') +	 (x.y) K .. (x y' x,y) dx dy 	 f

where

f ( IPM) - 
1 
f P(Vim) G dSSV 

and

V,jjj (x' y' , x , y ) - -AG (x' Y',x,y)V m (x,y) 4• AGxj)jny + 2GX 'Vmyy - hlx
y	 X

+ 'P ili
xy

 (Gxx - G YY)

and

G denotes the biharmonic Green's function of the first type on S (see
ref. 2 for the proof).

Consequently, the initial problem — equations (l)-(4) — has been reduced
to one of solving a sequence of Fredholm integral equations of the second
kind, as expressed in equation (11). In particular, if	 denotes the true
solution to equations (1)-(4), then

lint Vim - V
* 

- 'Po

of course, one could stop with equations (9) and (10) and strictly solve
them numerically, which has been done with great success for the nonstationary
case in reference 3. However, if one were to computerize equations (9) and
(10), one would end up in the following situation:
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1. From reference 1, we would have a sequence of solutions '1'm converg-

ing to the true solution ^*. Also,

2mi'l-1

< 2 21Iu.m	 H4	
\	

M p (V O ) M 1m

v ^l bfi H3
IV 0 ]

2• If Vmn were the actual computer golut on for ►gym , it would be
practically impossible to determine the accuracy of ^mn relative to gym,
since equation (9) is an unbounded operator equation.

However, because of the results of Lemma 1, the original problem has been
reduced to one of solving a sequence of bounded linear operator equations;
moreover, the equations are in a form in which it is possible to explicitly
determine the accuracy between the computer solution and the true. solution.
The one real drawback with the integral equation representation is that the
kernel is a function of the biharmonic Green's function (see eq. (11)), an
area primarily familiar to those in structural mechanics.

Therefore, it remains to develop a computer solution with error estimates
For equation (11). To accomplish this, we must first determine the character
of the kernel of equation (11).

The kernel, of equation (11) is of the form

Km # -AG yq,mx + . . .

In reference 4, it is demonstrated that G can be expressed in the form

G = 1 r2 log r + v

with v a regular biharmonic function in S with continuous fourth deriva-
tives throughout S. Let G = G + v, where

G - , 
l

r2 log r

By differentiating G, it follows directly that
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4Gy 	
_S

 81T

4ax _L 14 cos 0

81t	 r

a - Gxx-	 81T (sine 0	 cos" 0)

and

a - -L (2 cos 0 sin 0)
XY	 81T

Therefore, the kernel Xm (P.Q) of equation (11) is continuous except as
P approaches Q and there it is of the form 1/rpQ. In reference 5, a
numerical algorithm is developed for two-dimensional Fredholm integral equa-
tions of the second kind with kernels of the form log(l/rp Q). For this case
it is proved (ref. 5) 

that 
tile computer solution converges. as a function of

grid size _^, to the true solution (as A + 0). It just so happens that the
results of reference 5 also hold true if the kernel is of the form 1/r ijQ as

Q and continuous otherwise. The argument goes through 
in 

exactly tile
same manner for 1/r as it did for log(l/r) . In essence,, by substituting
1/r for log(l/r) in the development. and by slightly changing tile proofs
for the new singularity, the results immediately follow.

te t w111 be the computer solution of	 the solution of equa-
tion (11) — for partition A relative to reference G. It therefore follows
that

	

?)M" -)- 4)m	 as	 A -)- 0

Also, relative to reference 1, ^M .)- qj* as m + 	 where 0 is the true
solution of the problem (1-4). Hence.

A	
as	 A	 0	 111 4. CO

since

^*jj e 11 
y'm 
A _ q1m, +	 0	 as	 m a	 A - 0
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Hence. by applying the results proved in references 1, 2, 5, and 6, it
has been possible to develop a computer solution ^A an a function of grid
size A such that ^A converges to ** as A approaches zero, providing
of course that the conditions are satisfied as specified herein.
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