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ABSTRACT

The objective of this study is to evaluate and quantify the relative

merits of soil moisture observations at a 1-km resolution rather than at

a 10-km resolution. Soil moisture information is of value for improved

runoff prediction and crop yield forecasting, and if soil moisture is to

be determined using microwave radiometers from satellites, the resolution

requirements have considerable impact on thn specification of the satel-

lite systems. The evaluation of the resolution of soil moisture informa-

tion is divided into three major areas; these are an assessment of the

rainfall-amount patterns in the central regions of the U.S., an investi-

gation of the spatial scales of surface features and their corresponding

microwave responses in the miI western U.S., and an evaluation of the

usefulness for U.S. government agencies of soil moisture information at

scales of 10 km and 1 km.

From an investigation of 494 storms, it was found that the rainfall

amount resulting from the passage of most types of storms produces

patterns which can be resolved on a 10-km scale. The land features

causing the greatest problem in the sousing of soil moisture over large

agricultural areas with a radiometer are bodies of water. Over the

mid-western portions of the U.S., water occupies less than 2% of the total

area, and consequently, the water bodies will not have a significant

impact. on the mapping of soil moisture. Over most of the areas, measure-

ments at a 10-km resolution would adequately define the distribution of

soil moisture. The spatial variation and the microwave response of other

surface features, for example, urban and forest areas, are also discussed.

With respect to the value of soil moisture information, crop yield models

and hydrological models would give improved results if soil moisture

information at scales of 10 km was available.
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1. INTRODUCTION

The objective of the study is t. ► evaluate the improved usefulness of

soil moisture observations from space with microwave radiometers having

resolutions of 10 km and 1 km. The evaluation of the resolution of soil

moisture information is divided into three major areas; these are: (1)

an assessment of the rainfall patterns in the central regions of the U.S.,

(2) an invenigation of the spatial scales of surface features of the

mid-western U.S., and (3) an evaluation of the usefulness of soil moisture

	

'	 information at scales rf 10 km and 1 km for U.S. government agencies.

	

P'	 Since the major input for producing soil moisture variability is

rain, it is essential to determine th y: fine-scale structure of rainfall

amounts. Eagleson (1978), Brady (1975), Eddy (1976), buff (1971, 1979),

and Huff and Shipp (1969) have investigated and described techniques for

the determination of patterns of rainfall amount. In some casts (Eddy,

1976), the primary effort was directed toward the rain gage network

density and procedures which would be required to estimate the rainfall

over a given area within a given accuracy. In other cases (Huff, 1971;
r

and Eagleson, 1978), the main attempt was to describe the average struc-

ture of rain or the structure of vartrids types of storms on a monthly or

seasonal basis. Generally, spatial correlations between the rainfall

amounts at cacti of the gages were obtained. The results of the correla-

tion analysis showed differences between each of the major types of storms.

The study described herein uses .rainfall amount information from 494

storms to determine some of the characteristics of rainfall amount patterns

which in turn contribute in a major way to soil moisture variability. The

analysis consisted of (1) contouring the rainfall amounts for each storm,

(2) measuring the rainfall amount at varioas locations from the storm

center, (3) assigning a synoptic type for each storm day, and (4) deriving

statistics of the storm patterns for each synoptic type. With the excep-

tion that the peak rainfall amount will usually be underestimated, it was

ri

	

	 found that the rainfall amount patterns will be well represented by systems

having a resolution of 10 km.

The second major area of investigation is an evaluation of the surface

features and land use patterns in the central region of the U.S. The

evaluation is aimed at a determination of the spatial scales of surface

features that could affect the microwave response. Although there is a



wide variety of scales of surface features within the regions chosen f

study, water bodies were found to occupy less than 2% of the total are

Also, the features usually had characteristic scales of more than SO 1

Thus, for the monitoring of large regions. , a sensor having a resolutic

10 km would he adequate over the central U.S. However, for the monitoring

of either small areas of less than a few tons of kilometers in size or

those areas with a preponderance of small xeale features, a sensor with a

10-km resolution would often lead to erroneous estimates of soil moisture.

The third area of this study is to define sources of spatial resolu-

tion constraints for soil moisture information as currently used for crop

yield conditions (forecasting) and streamflow forecasting. Having defined

the spatial resolutions and their constrairt sources, the research evalu-

ation task is to evaluate qualitatively the improvement in soil moisture

information that would result by changing from a 10-km to a 1-km resolution.
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2. RAINFALL PATTERN ANALYSIS

2.1 Previous Studies on Rainfall Patterns

Rainfall is a prime contributor to the pattern of soil moisture. At

a particular instant in time, it is known that intense rainfall cells

having diameters of about 2.5 km can occur (Crane, 1979). The cell

diameter, as eefined by Crane (1979), was the distance across the cell

as detected by radar where the radar reflectivity fell to one-half of

the maximum. The one-minute rainfall rate maps presented by Charignon

and Huff (1980, p.121) show cell diameters, again using the one-half the

maximum rate as the definition, of between 2.7 and 4.1 km. Howcver,

these near instantaneous rainfall rate patterns and the radar patterns

are not representative of the total rainfall-amount patterns produced

during the course of an entire storm event. Crane and Hardy (1981) have

demonstrated that storms characterized by rainfall rates of more than

about 12 mm hr
-1
 are usually made up of several storm elements with each

element containing several clusters, and in turn the clusters may be

made up of from one to about six individual cells. Similarly, Changnon

and Huff (1980, p.25) present hourly maps of rainfall amount over a

10-hour period for a storm on 21 August 1953, and these maps clearly

demonstrate the passage of three distinct rainfall events being advected

over the same region of the network. This feature of distinct cells

passing over the same area was also demonstrated in storm data presented

by Eddy (1978).

It is the summation or integration of the rainfall over the entire

storm period over a day which is of concern for this particular study.

These patterns have much larger scales than exhibited by the individual
r	

cells within a storm. For example, Huff and Shipp (1969) present correla-

tion patterns of total rainfall amounts about the central rain gage for

summer storms in central Illinois. Over a distance of 5 km from the

central gage, the correlation is very high and ranges from a low of .9

for air mass storms to about .97 for storms associated with low centers

or for steady rain. Consequently, it is evident that the rainfall amount

patterns produced by an entire storm have larger scales than the scales

seen instantaneously by a weather radar or the scales represented by one-

minute rainfall rate maps.



One of the major concerns for this study is how representative is

the r®infall pattern as determined from given rainguge networks. With

an average spacing of 4.8 km as occurs in the Chickasha, Oklahoma rain

gage network, Mignogno et al. (1980), report that the correlation of

precipitation amount between neighboring gages averages 0.9 for all pre-

:ipitation types combined. This correlation is consistent with the values

given by Huff (1979) for different types of storms in central Illinois.

On the other hand, Fogel and Duckstein (1969) report much larger varia-

bility in Arizona storms in which the duration was less than two hours;

these authors analyzed storm data for a 50 km2 network with an average

gage spacing of 1.6 km. It was found that the rain amounts at adjacent

gages were better correlated as the amount at the center of the storm

increased. For example, if the storm center rainfall was 25 mm, the

amount at 5 km is, on the average, only .4 mm or about 1.5% of the

maximum; if the storm center rainfall was 100 mm, then at 5 km the rain-

fall amount is about 57% of the maximum. Eddy and Hembree (1978) also

demonstrate this feature by the consideration of both a small storm with

maximum rain amount of less than 2.5 mm in a total area of about 62 km2

and a large storm in which the averagerage rainfall amount over an area of

about 1700 km2 was more than 5 mm. Eddy and Hembree (1978) used data

from the Montana HIPLEX rain gage network which had an average separation

distance of about 3.b km. From an analysis of both radar and rain gage

data for the small storm, Eddy and Hembree (1978) state "(the storm)

wormed its way rather nicely between the gages".

It is evident that the spacing of ?:he rain gages in a network is

an important factor for the accurate depiction of rainfall patterns.

Moreover., a network designed for giving the distribution of annual rain-

fall will probably be inadequate for depicting the patterns of individual

storms. In this regard, the results of past studies as summarized above

point to the inference that networks having gage spacings of about 5 km

will be adequate for describing the patterns of entire storms or of

daily rainfall amounts. In addition, for a given network, the patterns

of rainfall amounts will be more representative of the true patterns as

the total rain amount over the network increases.

The primary objective of the rainfall pattern analysis in this study

is to determine the spatial characteristics rf rainfall amount for entire

4
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storm periods. These characteristics are considered to be adequate to

provide the information needed as a first stop in describing soil moisture

patterns. The variability of the rainfall amounts between different

storm types is also presented.

2.2 The Sources of Rain Gage Data

The rain gage data used in this study were obtained from two sources;

these are from (1) Project HIPLEX (High Plains Cooperative Program) of

the Water and Power Resources Service (formerly the Bureau of Reclama-

tion) and (2) the U.S. Department of Agriculture's Washita Riier Water-

shed observation network centered near Chickasha, Oklahoma.

The HIPLEX rain-gage networks at Goodland, Kansas and Big Spring,

Texas provided data for the summer periods of May-August 1977 and 1978;

data for a few storms which occurred in April, September or October were

also included. The Goodland site contained 38 gages with a network

density of 1 gage per 16.8 km 2 (spacing of about 4.5 km). The Big

Spring network contained 68 gages with an average density of 1 gage per

104 km2 (spacing was variable from 4 to 12 km). Figures 2-1 and 2-2

show the rain gage placements for the Goodland, Kansas and Big Spring,

Texas networks. The rain gage information for both sites was stored in

15-minute intervals.

For the purposes of this study, a storm in the HIPLEX networks was

defined by a minimum precipitation duration of 30 minutes, and a parti-

cular gage must ha ,.e reported a minimum precipitation amount of 0.01

inches before it was counted as contributing to the stoam pattern.

Separate storms were identified when t4ey were separated by a period of

three hours or more in which no rain was observed in the network;

usually the storms had durations of less than 12 hours, but on a few

occasions storms in the HIPLEX networks had durations exceeding 48 hours.

The cases were selected for plotting when a minimum of 90% of the network

gages reported precipitation. Consequently, some small weak convective

storms, which only covered a fraction of the network, were eliminated;

this limitation was imposed in order to exclude storms which would have

a minimal effect on soil moisture.

The rain-gage network at Chickasha, Oklahoma furnished information

for the non-summer periods of September-May 1976 and 1977. The network

4

P

a
S



ANL/Atl
rMa

iJAI

iAt

J$

i
AJ®I	 AJBt

JI
JA7	 Ju

Q Rt^^ 	 IVANr	 / KI

I	 JCI A	 A

_	 R10iVNrr

oor/Nry	
JAIL

JAT

	

--	
i

101#10,11

QCr I

j

JDd +I

(i W
IM

a
	

Kid K39•	 41

LEGEND
• Recording Gages by

USSR Contractor
A Non-Recording Gages

by Others
--- Dense Network0 KWRB Meso Stations

N
See/I

1 0 1 t! 4 Miles

f 0 1 x 3 4 a a 7 a unoTOroro

Figure 2-1 Location of the HIPLEX rain-gage network in
the Goodland -Colby, Kansas area

n

6



ORIGINAL PAGE IS

f

io	 v	 w	 n v

1s
	 SC ALE 	 Of MIL 

E	 >tt

SCALE Of KILOMETRES

2-2	 Location of the 1-1I111TA rain-gage network in

the Sig Spring, Texas area

I

7

.



contained 168 gages with a spacing between Sages of about 4.8 km

(Mignogno et al., 1980). Figure 2-3 shows the placement of rain gages

for the Oklahoma network. The precipitation amounts were for 244noe:

intervals. Therefore, the storm duration are defined for the Oklahoma

data was for a fixed period of 24 hours.

The intent of this study it to obtain patterns of rainfall for all
seasons. Only summer storms were observed during the HIPLEX programs.

Therefore, data for non-summer storms were obtained from the Oklahoma

network. Figure 2-4 shows the monthly distribution of the number of

storm days used for this study. There were 20 days of storm data from

p'	 Texas, 24 days from Kansas, and 129 days from Oklahoma. The number of

storm days analyzed totaled 173.

2.3 The Analysis of the Data

The HIPLEX data from the Kansas and Texas networks were analyzed by

means of a contour plotting rnutine (Water and Po'%,er Resources Service,

a) which provided isohy-oss of the storms. The output was obtained from

an interactive computer display and an example is illustrated in Figure

2-5. The Oklahoma data were not available on computer tape or cards and

consequently i • was most efficient to hand plot the data and carry out a

manual analysis of the isohyets. The contour intervals for the HIPLEX

data were between 0.1 and 0.2 inches whereas the intervals for the

Oklahoma data were between 0.01 and 0.2 inches; the larger intervals

were used when the maximum rainfall amount was large.

Once the contours of rainfall amount were obtained, the problem

remained of how the patterns were to be catalogued. Since the primary

objective was to determine the spatial features of individual storms, a

spatial correlation analysis about the central gage of the network, as

was carried out by Huff and Shiop (1969), was not considered to be an

optimum technique. That is, an objective correlation analysis taken

without regard to the position of the storm centers would not provide

the required statistical information about the structure of the storms.

A correlation analysis centered around a storm maxima was a possibility,

but this was thought to be an unnecessarily detailed approach considering

8
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that the data were obtained from gages spaced at intervals of about 5 km.

The technique selected was rather straightforward and was designed to

obtain the desired feature of the storms in a quantitative manner. This

technique involved determining the probable direction of the storm

motion by using the direction at the 700 mb level. The direction was

obtained from radiosonde data which were considered to be representative

for conditions over the network at the time of the storm. A grid in

this direction and perpendicular to the direction wits then centered over

the maximum rainfall amount for the storms in the network. By making

measurements parallel and perpendicular- to the general direction of

storm movement,  information on the storm shape will be obtained. The

correlation patterns presented by Huff (1979) for Illinois show an

I

	

	 orientation effect for both individual storm rainfall and annual rainfall;

the orientation is generally southwest to northeast which is the most

`

	

	 frequent dire.:tiop of travel for storms moving across Illinois. Often,

there would be more than one maximum within the analyzed field and in

these cases each maximum was considered as it separate storm. Thus,
i

although 173 storm days were considered, a total of 49.' individual storm

maxima were identified and measurements from all of these were obtained.

Once the rainfall maximum had been identified and the grid aligned along

the 700 mb direction, the :precipitation amount at a distance of 5 km

(and sometimes 10 km) from the storm maximum was determined in the four

directions of the grid. An example of the grid as it would apply to the

storm of 27 ,June 1978 is given in Figure 2-5. A direction of 360% as

used in this analysis, is the direction of the 700 mb wind which was

applicable foi- each of the storms. These basic measurements provided

an estimate of how rapidly the rainfall amount diminished from ?he

storm maximum. A rapid drop would indicate a small storm cell, whereas
t

	

	 a slow decrease in the amount would "Indicate a generally larger storm.

The format for the information extracted for each storm cell and the

listing of the data for the 494 storms are given in Appendix A.

In addition to the precipitation .:a t.a t descriptive parameters for

synoptic classification were also collected. Initially, oach case was

assigned a type code for both the 500 mb and the surface synoptic

patterns. Although 10 types or patterns were originally assigned, it

was found that only four types occurred with significant frequencies.

12
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These were identified by the Surface weather map and are as follows:

•	 cold front,

•	 stationary front,

•	 Surface high, and

•	 Surface law.

The Surface high cases were those to which it high pressure dominated the

regions east of the networks resulting In it generally 011sterly flaw or

upslope flaw over the network under consideration. The surfacV high

M

	

	 classification is the one that is used to indicate the Situation often

catalogued or identified as air-mass showers. The surface low cases

were characterized by it low pressure to the wrst of the networks and

`

	

	 generally Southwest to northwest flow over the network. The frontal

cases were chosen by the proximity to the network of the frontal type.

The classification .:f they Storm days by Synoptic scale features

I► ,.	 ,	 ,	 •,	 s	 ,}.raved to lie difficult because two or main chrlen. for a given situation

were sometimes possible. Figures M-G and 4-7 illustrate the difficulty.

A day classified as a Surface low is shown in Figure	 it weak low is

centered near the southwest corner of Kansas with it Stationary front

running from southwest to northeast across the State. The flow at the

Surface over the 1111'L1*X rain gage network in Kansas is easterly and the

rainfall pattern shows an increase from vast to west. A day classified

as i surface high iS shown in Figure 21-7; at high is to the north of

Kansas, but there is it front to it similar position as for the case 'in

Figure a-b and the flow over the network is also easterly. The rainfall

pattern is more Showery in nature than for the case shown to Figure 21-0.

(loth of the cases in Figure 21 -0 and 2-7 might have been classified

its stationary front cases; it is also evident that the basic flow

f

	

	 pattern differs only slightly for the cases chosen to illustrate It

Surface law and it surface high classification. With these types of

difficulties in using, a Synoptic classification scheme, there is bound

to be some overlap in the attempts to isolato the rainfall patterns

associated with large scale weather patterns„

There is, howeve.• , i► more basic problem with using Synoptic-scale

features to classify precipitation which generally occurs at much smaller

B
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scales. The problem as quoted from Lilly (1975) is "that the actual

development of convective cloud arrays occurs on a considerably smaller

scale (than the synoptic ;kale) and often with a degree of organization

which is clearly nonrandom but alsu largely unresolvable from convention-

able data processed in conventional operational ways". Ludlam (1976)

also describes sub-synoptic scale features which may control the precise

location of convective activity, although he emphasizes that favorable

large scale flows must be present before any important convection is

initiated. These interactions between synoptic-scale and smaller scales

cannot be sorted out in the present study in which the days were classi-

fied only through synoptic-scale features.

Data from the four points of the grid at a 5 km (and sometimes also

at a 10 km) distance from the storm center were extracted for all storm

cells. 'The total of the maximum rainfalls for the 355 Oklahoma storms

was about 210 inches, and for the 139 storms in the Kansas and Texas net-

works it was about 190 inches. The breakdown of the number of storms

having it maximum rainfall within three categories for both the IIIPLEX

and the Oklahoma storms is presented in Table 2-1. For the purposes of

statistical analysis, the rainfall amount patterns were normalized to the

maximum precipitation for the storm.

TABLE 2-1

CATEGORIES OF RAINFALL MOUNT USED IN THE ANALYSIS

Num er of	 Percentage

Rainfall Amount	 Code	 Storms	 Occurrence

HIPLEX

less than 1.0 inch 	 1	 44	 31.7%

1.0 to 1.75 inch2	 48	 34.5`k

greater than 1.75 inch	 3	 47	 33.8%
Total	 139

OKLAHOMA

less than 0.25 inch	 1	 110	 31.0%

0.25 to 0.75 inch	 2	 115	 32.4%

greater than 0.75 inch 	 3	 130	 36.6%

Total	 355

16



The rainfall amount categories in Table 2-1 refer to the maximum amount

recorded at a gage for a particular storm. The amounts are separated

into three categories of about equal frequency although the NIPLEX

rainfall categories are considerably larger than thooe for Oklahoma.

Each of the rainfall amount categories shown in Table 2-1 were

subdivided into the four weather typos (cold front, stationary front,

surface high, or surface low). Then, for each storm, the value of the

rainfall amount, expressed as a ratio to that of the maximum for the

storm, was obtained at distances of 5 km and often also at 10 km in each

of the four directions of the grid as illustrated in Figure 2-5. For

each weather type and for each of the rainfall amount categories of

Table 2-1, the normalized value at each grid point was tabulated and

average and standard deviation values were calculated. This led to a

total of 22 normalized patterns of storm types. The maximum number of

categories would be 24 because there were four weather types for three

rainfall categories for both the NIPLEX and the Oklahoma networks. How-

ever, there were insufficient cases to warrant the computation of average

an.', standard deviation values for the stationary front with rainfall less

than .25 inches in Oklahoma and for a surface low with rainfall greater

than 1.75 inches in itne NIPLEX networks.

2.4 The Results of the Statistical Analysis

An example of one of the patterns of rainfall amount is shown in

Figure 2-8. The pattern is for storms classified as occurring with a

stationary front when the maximum rainfall amount of the storms fell

between 1.0 and 1.75 inches in the Texas and Kansas NIPLEX networks.

The upward direction of the figure is in the direction of the wind at

700 :nb. The values along the axes are the mean values of the normalized

rainfall amount at 5 and 10 km from the storm center. The numbers in

brackets are the standard deviations comported for the approximately 17

cases which wer,, used to determine the pattern. For each point in the

grid the number of available cases usually varied because locations at

5 or 10 km from the storm center would sometimes fall outside the rain

gage network.

The pattern in Figure 2-8 is almost symmetrical although it is

somewhat elongated in the direction of storm motion. The storms which i
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Figure 2-8 The average pattern of rainfall amount, normalized to the
amount at the storm center, for summer storms in the Texas
and Kansas HIPLEX rain gage networks. The pattern is for
the 17 stationary front cases when the maximum rainfall of
the storms observed in the network ranged from 1.0 to 1.75
inches. The number in brackets is the standard deviaV,.on
for the rainfall amount at the point indicated.
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make-up the pattern are relatively large since rainfall amounts at 19 ka

are still about two-thirds of the value at the storm center. The pattern

shown in Figure 2-8 is fairly typical of those found for the other 21

categories; all 22 patterns are includes in Appendix B.

One cf the more variable patterns is shown in Figure 2-9. It is

for non-summer storms occurring over the Oklahoma rain gage network and

classified as being associated with a stationary front. The maximum

rainfall amount of each storm ranged from 0.25 to 0.75 inches and

approximately 7 cases were included. In contrast to the almost symmetri-

cal pattern of Figure 2-8, the Oklahoma storms of Figure 2-9 exhibit

considerable differences between the along-track and the cross-track

values fall to 0.17 or lower, whereas the 10 km along-track values are

0.53 and 0.60. Thus, the storms are definitely elongated in the direc-

tion of the storm motion and the gradient in the cross-track direction

is much larger than that for the data on the HIPLEX storm3 represented

in Figure 2-8. The standard deviations of the values of Figure 2-9 are

somewhat larger than these for most of the patterns. Generally, the

standard deviations are about 15% of the mean value at the 5-km locations

and about 25% of the mean value at the 10-km locations.

The mean values of the normalized rainfall amounts at 5 km, and

also at 10 km when these were obtained, are shown in Table 2-2 for the

HIPLEX storms and in Table 2-3 for the Oklahoma storms. The values are

also plotted and the patterns drawn for all the 22 cases. Although

there is considerable variability of the values between the categories

given ;n Tables 2-2 and 2-3, generally the rainfall amounts along the

axis of storm motion were about 10% higher than at the same distances

perpendicular to the storm axis for the Oklahoma storms; the along-axis

values were only 5% higher than the cross axis values for the HIPLEX

storms. This difference between the HIPLEX and Oklahoma storms may be

caused by the different temporal resolution of the data sources (Section

2.2). In this regard, the 24-hour data for Oklahoma during the winter

generally show smaller storms than those depicted by the finer temporal

data for the HIPLEX sites; that is, the rainfall amounts for the

Oklahoma storms fall-off more rapidly from the storm center than for the

HIPLEX storms.

There is no consistent trend of the normalized rainfall amount values
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Figure 2-9 The average pattern of rainfall amount, normalized to the
amount at the storm center, for non-summer storms in the
Oklahoma rain gage network. The pattern is for the 7
stationary front cases when the maximum rainfall of the
storms observed in the network ranged from 0.25 to 0.75
inches. The number in brackets is the standard deviation
for the rainfall amount at the point indicated.
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at S km as a function of the maximum amount for the storm (see Tables

2-2 and 2-3 and Appendix 8). At a distance of 5 km from the storm

maximum for the HIPLBX data, the normalized rainfall amounts for the

cold front and surface-low situations are about the same regardless of

the maximum rainfall amount. For the stationary front patterns, the

storms are smaller, in a normalized sense, for higher rainfall amounts,

but the reverse is the case for the storms associated with the surface

high patterns. For the Oklahoma data (Table 2-3), the cold front storms

have smaller normalized values at 5 km when the precipitation amount

exceeds .75 inches, but the reverse is the case for all other storm

types.

In general, for the HIPLBX storms, the rainfall amount at 5 km from

the storm center is about 75% of the storm maximum; at 10 km from the

storm center, the rainfall amount is about 65% of the maximum. For the

Oklahoma storms which occurred in the September to May period, the rain-

fall amount at 5 km is about 65% of the maximum and at 10 km it is about

50% of the maximum.

2.5 Implications of the Rainfall Patterns for Soil

Moisture Retrieval

Figures 2-8 and 2-9 illustrate the variation of the rainfall patterns

derived from an analysis of 494 individual storms which were separated

into various categories of synoptic type and of the maximum rainfall

4

	

	 amount at the storm center. The storm centers were chosen to be at loca-

tions within the network where the rain gages reported a peak in the

f,

	

	 rainfall amount. With a spacing of about S km between gages, it is

probable that the actual peak of the storm would fall in-between the
f

gages and thus, the maximum values used in this study would be under-

estimated. Nevertheless, for the storm total rainfall amounts or the

daily amounts used in this study, the patterns obtained from the networks

are considered to be representative of the actual patterns.

As shown for the patterns of rainfall amount in Figures 2-8 and 2-9

E

	

	 and for most of the patterns in Appendix B, the largest gradients in the

rainfall amount occur within the first S km from the storm center. View-

ing the rainfall patterns obtained in this study with a remote sensor

having a dimension of about 10 would usually result in an underestimate
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of the peak rainfall amounts. beyond S km from the storm center, the

gradients are considerably reduced and the patterns would be reasonably

well represented by a system which had a 10-km resolution. The worst case

or the pattern having the largest gradients is shown in Figure 2-9. Near

the storm center, a sensor with a 10-km resolution may underestimate the

true value oy a>aut 20%. but beyond S km from the center, a 10-km

resolution would lend to a good representation of the patterns for all

the categories of storms.

The general conclusion is that over about 75% of the storm area, a

10-km sensor will udequately represent the patterns of rainfall amounts

for individual storms or daily values. Because the gradients are large

near the center of the storms, the peak radius of rainfall amount will

nearly always be underestimated when viewed with a10-km system unless

some correction factor is applied to the observed data.
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3. MICROWAVE RESPONSE TO LAND FEATURES

3.1 General Factors Affecting the Microwave Brightness Temperature

Thermal microwave radiation from soil depends on the dielectric

coefficient and the physical temperature of the soil. Moisture produces

a marked increasein both real and imaginary parts of the dielectric

coefficient of soil, leading to a decrease in the soil's emissivity.

Since emissivity decreases with increasing dielectric constant, the

brightness temperature of soils at microwave frequencies decreases with

increasing moisture content. Experimental observations and theoretical

calculations indicate that the emissivity of soils at microwave frequen-

cies, defined as the ratio of the microwave brightness temperature to

the physical temperature, can range from >0.95 for dry soils to <0.6 for

very moist soils.

It should be noted that radiometers at shorter wavelengths (1-4 cm)

are only sensitive to the surface moisture content. At longer wave-

lengths (5-25 cm), radiation from deeper in the soil can be obtained due

to the longer skin depths for the longer wavelengths. For a fixed antenna

diameter, the spatial resolution for space borne radiometers is nearly

proportional to the wavelength (longer wavelength, coarser resolution).

Atiospheric effects, on the other hand, decrease for longer wavelength.

The atmosphere is essentially transparent above 5 cm.

The effect of the soil type on the dielectric coefficient is coupled

to soil moisture, and consequently the soil ::ype influences the microwave

brightness temperature. The coupling results because of the different

strengths by which water molecules adhere to the soil particles. In

order to compensate for the differences in different types of soils, the

brightness temperature data can be plotted as a function of the percen-

tage of field capacity which becomes essentially independent of the soil

type (Schmugge, 1977). Thus, the percentage field capacity provides a
better description of the water availability to plants and the degree of

soil saturation.

The surface roughtness is yet another factor that affects the micro-

wave brightness temperatures. It increases surface emissivity due to

scattering and therefore, the brightness temperature of rough surface is

25
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also expected to be higher. This results in the observational fact that

emissivities are never lower than 0.6 for real soil surfaces. Choudhury

et al. (1979) developed a single modification parameter to characterize

roughness effect. The results indicate that roughness effects are large

for wet soils where the difference between smooth and rough surfaces can

be as great at 50°K. Since a comprehensive model tc treat all scales of

surface roughness at various wavelengths is not developed, the simple

type of modification parameter proposed by Choudhury et al. (1979) can

be introduced, and it can be treated as an additional noise contribution

to the observed brightness temperatures.

Surface slope affects the observed brightness temperature due to

the relative change in the look angle from the antenna to the surface.

Emissivity of the vertical polarization component increases from nadir

to larger look angles until the Brewster angle (>60 0 ) and then decreases

with angle; emissivity of the horizontal polarization component varies

in the opposite manner. For satellite sensors the look angle is usually

between 45° and 55% In this range a change of slope of 10° can affect

the brightness temperature by 10 0 to 20°K.

A vegetation canopy essentially obscures the soil surface such that

the sensitivity of soil moisture content to the brightness temperature

is greatly reduced. Over forest areas, the soil moisture information is

lost at all microwave wavelengths. For agriculture fields, the moisture

information is essentially lost at shorter wavelengths (1-4 cm) but it

can be retrieved at longer wavelengths (5-25 cm), although with less

sensitivity than if the ground were bare. Complete modeling of the

vegetation effect in the microwave region is not available, but its

general tendency (increasing the observed brightness temperature with

increasing vegetation) is well understood and can be applied.

The above summarizes the overall microwave response to various

features of land surfaces. It has been demonstrated that microwave

remote sensing is a useful means of soil moisture monitoring from space.

There are limitations; for example, surface roughness and a vegetation

canopy degrade the sensitivity to a certain extent. Various soil types

and surface slope can add more uncertainty to moisture retrieval,. How-

ever, over extended farming areas, these factors are usually at a spatial

scale of more than 10 km. Therefore, sensors with a spatial resolution

26



_ _:_'rv^_	 _<_	 Wl_^_	 _

of 10 km or less will be relatively unaffected by the scale of the varia-

bility in soil type and surface slope.

On the other hand, the microwave signature can be greatly affected

if there are small water bodies within the field of view. Emissivity of

water (N.3) is substantially lower than land surfaces in the microwave

range. A mixture of dry soil and water bodies in the same field of view

can easily be interpreted as wet soil. Figure 3-1 demonstrates the

effect of brightness temperature of dry land with various percentages of

water body (or bodies) within one field of view (solid line). The dashed

horizontal lines are the corresponding brightness temperatures with soil

backgrounds of various moisture content but without any water body. It

is obvious that finer spatial resolutions can greatly reduce the ambigu-

ities which result from the presence of small water bodies. This topic

will be treated in more detail in the next section.

3.2 Spatial Scales of Surface Featuros of the Study Region

3.2.1 General Features of the Study Region

In addition to soil moisture coi ►tent, there are other factors of

natural terrain which directly affect ache . microwave response of land

backgrounds. Using microwave measurements, large areas having specific

characteristics cyan be delineated, for example, large water bodies,

urban areas, and forest. All these features have distinct signatures in

the microwave spectral region. Over water bodies the brightness temper-

atures are low and exhibit substantial polarization differences. The

brightness temperatures over urban areas are also low but with little

polarization difference. Over forest and dense vegetated areas, the

brightness temperatures are approximately the same as bare lands but

with less polarization difference. These can be distinguished from dual

polarized microwave measurements or simply from existing geological

information.

The defined region for this study is shown in Figure 3-2. Major

urban areas within the study region (between 32°N and 42 0N, 104°W and

90°W) include Dallas/Fort Worth and Lubbock in Texas, Oklahoma City and

Tulsa in Oklahoma, Wichita in Kansas, St. Louis and Kansas City in

Missouri, Des Moines in Iowa and Omaha in Nebraska. These densely pcpu-

E
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Figure 3-1 The response of microwave brightness temperature at

21 cm for backgrounds mixed with dry soil (5% soil
moisture content) and various amounts of water bodies.

The dashed horizontal lines are brightness tempera-

tures with land background of various moisture con-

tent but no water body.
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Figure 3-2	 Densely populated areas within the study region.
Each area has population over 200,000.
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lated and developed areas have dimensions which are usually of the order

of 20-60 km, and they should be easily distinguishable in the microwave

region.

The general features of the defined region for this study are

carried out using information contained in the National Atlas of the

U.S.A. (1970) and also from Landsat and other satellite imagery. In the

National Atlas of the U.S.A., the potential natural vegetation of the

U.S. is divided into 106 categories with spatial resolution of the order

of 20-50 km. Analysis for the study region utilizing these categories

are carried out and recombined into three general categories; grasslands

in the western part, forests in the eastern part anu mixed grasslands/

forests in between the two parts; th y+ distribution of these categories

is shown i.n Figure 3-3a. The characteristic dimensions of the vegetation

types shown in Figure 3-3a were determined along latitude (east-west)

and longitude (north-south) lines at 1 0 intervals. The dimension of a

specific vegetation type along a line was taken; when the vegetation type

along the line changed, then another dimension appropriate for the new

vegetation type would be obtained. A histogram of the dimensions for the

vegetation map of Figure 3-3a is shown in Figure 3-3b. ' rite grasslands

have a fairly uniform distribution of sizes, but the other two vegetation

types have a predominate dimension of less than 50 km. This general

feature can be seen qualitatively in Figure 3-3a.

'he features are also spot-checked with Landsat and other satellite

imagery. In summary, this region includes pasture and forest land of

the inland south, extensive cropland of the Great Plains, and irrigated

cotton lands of the Texas High Plains. Much of the western portion of

the study area is dominated by smooth plains, prairie grasses, and large

areas of dry land wheat. An extensive area of irrigated cropland can be

found in the Lubbock, Texas and other areas. The eastern portion of the

study area is highly diversified in both land surface form and land use.

The northeastern section consists of open hills, tablelands, high hills

and low mountains; land use includes cropland, forest and woodland,

cropland with pasture. The southeastern section is largely smooth

plains, irregular plains, plains with hills, and tablelands; predomi

land use in this section could be described as woodland and forest ii

spersed with cropland and pasture.

is
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Figure 3-3a The study region categorized according to
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and forest.
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3.2.2 Detailed Features of Selected Sites

This section includes a description of the water bodies within the

study region, and the details of land use for three test sites are mapped.

The water areas are investigated in more detail due to the fact that

they produce very different microwave signatures than land. For a mixed

background of water bodies and dry land, the microwave signature resembles

that of wet land. Therefore, if small water areas exist within agricul-

ture land, they could cause ambiguities in the interpretation of microwave

measurements. The three test sites are representative of the "scenes"

expected over the whole study region. Each is a circular area of 50 km

in diameter such that variations of 10-km and 1-km scales can be demon-

strated.

Water Areas Within Mid-Western USA

Information of total water and residual water areas was obtained

from an analysis of ERTS-1 data (Serebreny et al., 1975). By definition,

residual water area is the difference between the total water area and

the water area of those lakes equal to or greater than 10 km 2 ; it may

include both rivers and small lakes. Some of the areas analyzed by

Serebreny et al. (1975) are contained in the study region of this pro-

ject and are indicated in Figure 3-4. The common regions include:

1) eastern Colorado, southwestern Nebraska and north-

western Kansas;

2) southeastern Nebraska and north-northeastern Kansas;

and

3) the panhandle of Texas, northeastern New Mexico, south-

eastern and southwestern corners of Kansas and Colorado

respectively.

Each of the three regions of Figure 3-4 has an area of 195,200 km2

(440 km to a side). Among the three regions shown in Figure 3-4, the

total water areas are all less than 2% of the total area. Furthermore,

of this 2% of water area, 70% or more of it is composed of smaller lakes

and streams which make up the residual water area. These aspects were
	 a s
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derived from jata given by Serebreny et al. (1975) and shown in Table 3-1

which lists the size, total water area, total lake area and residual

water are of each of the regions.

Based on the information of water area for the regions in Figure 3-4,

the following conclusions can be summarzed:

1) for large area monitoring of more than a few hundred kilo-

meters in size in regions such as the mid-west region of

the U.S. studied here, spatial resolution in the order of

10 km for the microwave radiometer would not seriously

jeopardize accurate and efficient soil moisture monitor-

ing due to the presence of water bodies. This conclu-

sion is reached from the fact that water bodies occupy

less than 2% of the total area of interest. A simple

way to retrieve soil moisture information would be to

first discard any extremely low brightness temperatures

which could be due to the presence of water bodies.

Then after averaging a number of pixels of data, the

areal soil moisture content should be representative;

and

2) for small area monitoring (less than a few tens of kil-

meters in size), water bodies can pose a problem since

over 70% of all the water bodies are less than 10 km 2 in

size. Any water body within the area can produce erron-

eous information of soil moisture. However, for the

monitoring of specific small areas, regions with sub-

stantial water bodies should be known beforehand and

these can therefore be treated separately by using the

existing geological information.

In summary, soil moisture measurements using a microwave radiometer

system with a spatial resolution of 10 km will be relatively unaffected

by the presence of the water bodies which occur in the mid-western U.S.

The use of a system with a 1-km spatial resolution would generally not

provide significantly improved soil moisture information. Further

details on the basis for this conclusion are provided through the analy-

sis of the land use maps described in the next section.
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Representative Sites for D*wnstration

The three selected study areas are (1) Colby, Kansas, a typical

mixed agriculture/grassland area; (2) St. Louis, Missouri, with mixed

urban/agriculture background; and (3) Fort Smith, bordering Oklahoma and

Arkansas, a typical watershed area surrounded by forests. The area maps

used for these study sites were obtained from the USGS 1:250,000 scale

land use maps.

The Colby, Kansas study site is largely an area of smooth to

irregular plains underlaid by Upper Tertiary sedimentary rocks with 50

to 100% of the area gently sloping; 50 to 75% of this gentle slope is

in the uplands. Local relief is 100 to 300 feet, and the region has a

mean annual precipitation of 16 inches. Annual surface runoff is less

than 0.5 inches with usable reservoir capacities generally exceeding

average annual inflow. This is an area of mostly cropland (wheat and

small grains) with grazing land.

Figure 3-Sa demonstrates the general land use and background for the

Colby area. The area was selected as it is representative of the major

areas of agriculture and rangeland throughout the mid-western U.S. In

this test area, populated and built -tip areas are relatively sparse with

the test area relatively smooth and uniform throughout the whole region.

Regional soil moisture is of major concern for crop yield. For this

type of area a spatial resolution of 10 km should be sufficient due to

its uniformity. Figure 3-Sb demonstrates variations of brightness

temperatures at 21 cm along a scan line on 1-km and 10-km scales. Two

background soil moisture conditions are assumed; dry (5%) and wet (35%).

As can be seen, little additional usefulness can be obtained from soil

moisture measurements with spatial resolution of the order of 1 km.

Both the St. Louis and the Fort Smith study sites are largely areas

of irregular plains, underlaid by Upper Paleozoic sedimentary rocks,

with 50 to 80% of the surface gently sloping; 50 to 75% of this gentle

slope is in the lowlands. In both sites usable reservoir capacities

exceed average annual inflow. Wheat and small grains dominate the crop-

land theme of the Oklahoma site; with mixed cropland, pasture and forest-

land occurring in the St. Louis site.

The St. Louis, Missouri area (Figure 3-6a) was also selected due to

its uniqueness of mixed background of urban, water, agricultural and
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forest areas. The area is divided by the Mississippi River into two

parts. The region that is west of the river consists of more than 9S%

urban or built-up areas. East of the river, the region, becomes quite

mixed; 30% is populated areas with scales of 5-10 km, 40% is agricultural

land with scales ranging between 1-10 km, and the rest are spotty water,

forest and bare land spread throughout with scales of the order of 1 km

for each type. Precise monitoring from satellite should require spatial

resolution of 1 km or better due to the variability of the background.

However, due to its closeness to the major urban area, there is no large-

scale farming business in the area. A sensor with spatial resolution of

10 km would flag most of this area as urban or densely populated and

soil moisture information would be unavailable. The loss of information

due to the use of a system with a 10-km resolution can be regarded as

minimal since outside the urban area there will be large agricultural

areas for which soil moisture information could be obtained with accept-

able accuracy. The soil moisture information obtained from adjacent

areas can then be applied to the areas of mixed background. Information

obtained this way should be at least as good as direct measurement over

the area with a 1-km resolution since the background would often be

variable even with a 1-km "cell" resolution; thus the 1-km data would

lead to difficulties in interpretation. The brightness temperature

responses at 21 cm over 1-km and 10-km scales are also demonstrated in

Figure 3-6b.

Figure 3-7a demonstrates the land use and background of the Fort

Smith area. This area was chosen as a typical watershed area. The land

use is predominantly agriculture. There is a large water body created

by a dam, and the water covers a significant fraction of the western half

of the area. Spotty wetlands and forest regions also occur throughout

the entire region. Soil moisture information is obtainable with a micro-

wave system over agriculture and bare areas which account for more than

SO% of the total reference area. From Figure 3-7a, it is seen that the

scales are in the order of 5-10 km for water bodies, 1-5 km for forest

areas and 1 km for urban lands. Figure 3-7b demonstrates the brightness

temperatures at 1 km and 10 km resolutions as carried out for the other

two sites. Satellite monitoring of the soil moisture information for an

area of this type would again require spatial resolution in the order of
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I km due to the areal variability. However, prediction of watershed

runoff, a resource for irrigation and flood control, may be of more

interest than soil moisture retrieval for areas of this type. The micro-

wave brightness temperatures are high for low soil moisture content#

rough surfaces, sandy soils %nd dense vegetation. All these conditions

tend to reduce watershed runoff (Blanchard, 1974). For a specific

drainage area, information on the type and roughness of the soil, the

coverage of permanent water, and the regions of forest and dense vegeta-

tion can all be used as input to obtain an expected brightness tempera-

tures applicable for the entire watershed drainage area under both

saturated and dry conditions. These conditions can then be used as a

minimum and maximum reference indicators for the watershed surface

storage capacity. In this case, the resolution requirement can be

greatly reduced.

The concluding remark for this watershed area, and similar ones, is

that direct soil moisture information from satollite measurements should

ideally be obtained at a spatial resolution of 1 km or less. Realisti-

cally, however, an "index" of the watershed surface storage capacity can

be obtained more efficiently with a 10-km resolution provided the general

land/water surface features for the season are known.
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4. SOIL MOISTURE RESOLUTIONS FOR USE IN
CROP YIELD AND HYDROLOGICAL MODELS

4.1 Current Soil Moisture Related Information

Present users of soil moisture information rely on gross estimates

coverin- large geographic areas. The Palmer Index and Crop Moisture

Index (CMI) is presented weekly during the growing season by the U.S.

Dept. of Agriculture (USDA) and the National Oceanographic and Atmo-

spheric Administration (NOAA). Both indices utilize Palmer's two-layer

soil moisture model to evalute the weekly moisture status (Palmer, 1965,

1968). An example of a map of CMI is given in Figure 4-1. The CMI and

Palmer Index utilize temperature and precipitation data from approximately

nine climatological divisions per state. There are 25-30 stations within

each division which provide precipitation reports (Denny, 1979). The

average area per station is (50 km) 2 but can be up to (100 km) 2 for

station sparse area. A map showing the divisions used for a determina-

tion of the soil moisture index is shown in Figure 4-2. The two models

are designed to provide indices which are indicative of agricultural

drought and crop moisture stress.

Another agricultural drought monitoring program at NOAA is operated

by their Environmental Data Service's Center for Climate and Environ-

mental Assessment (CCEA). This Cumulative Precipitation program utilizes

both climatological and current values of precipitation amount (Reid,

1977). The world-wide program does not use soil moisture information

but it does use soil water-holding capacity data for rainfall stations

(Reid, 1979).

Crop estimates, which are based on field reports, are reported by

the USDA, Economics Statistical Cooperative Service (ESCS). The ESCS

has been evaluating forecasting models to be applied in an operational

program (Wilson, 1979). However, soil moisture data have not yet become

part of an operational program.

Ano*'ier major user of the soil moisture information is the Office

of Hydrology of NOAA. The River Forecast Service of the office is

responsible for river and water supply forecasts. Soil moisture is one

paraaw.;:t•r that can significantly improve the confident level of mathe-

matical models.
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Figure 4-1A Sample of the Map of Crop Moisture Index (Weekly Weather and Crop
Bulletin, NOAA Department of Commerce and Department of Agriculture)

Some general guidelines are as follows:

Unshaded Areas
Above	 3.0
2.0 to 3.0
1.0 to 2.0
0 to 1.0
0 to -1.0

-1.0 to -2.o
-2.0 to -3.0
-3.0 to -4.0
Below	 -4.0

Index Decreased
Some drying but still excessively wet
More dry weather needed, work delayed
Favorable, except still too wet in spots
Favorable for normal growth and fieldwork
Topsoil moisture short, germination slow
Abnormally dry, prospects deteriorating
Too dry, yield prospects reduced
Potential yields severely cut by drought
Extremely dry, most craps ruined

Shaded Area: Index Increased or Did Not Change

	

Above	 3,C	 Excessively wet, some fields flooded
2.0 to 3.0 Too wet, some standing water

	

1.0 to 2.0	 Prospects above normal, some fields too wet
0 to 1.0 Moisture adequate for present needs

	

0 to -1.0	 Prospects improved but rain still needed
-1.0 to -2.0 Some improvement but still too dry
-2.0 to -3.0 Drought eased but still serious
-3.0 to -4.0 Drought continued, rain urgently needed
Below -4.0 Not enough rain, still extremely dry
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All the soil moisture information utilized by these various agencies

is currently derived from precipitation reports or on-site dtreet

measurements. Average spatial scale of the precipitation reports is

SO km or more. Direct measurements are usually carried out only for

particular sites and the reports are less regular.

The Large Area Crop Inventory Experiment (LACIE) was performed by

NASA in Conjunction with NOAA and USDA to evaluate vegetative moisture

stress using Landsat digital data (Thompson and Wohmanen, 1979). The

remote sensing method showed a high degree of agreement with the CMI

model. In the LACIE program, moisture condition was evaluated from

vegetative stress rather than soil moisture.

4.2 Future Applications and Improvements of Soil

Moisture Information

It is generally accepted that soil moisture estimates can improve

crop yield and hydrological models. It was recognized at a Soil Moisture

Workshop (NASA, 1978) that there are many potential users for soil mois-

ture information. Once routine soil moisture information becomes avail-

able, operational programs would likely go through a period of develop-

ment and evaluation of the new types of data.

Models using soil moisture budgeting should be a better predictor

of crop yield than direct use of climatological data. Baier and

Robertson (1968) claim higher correlation coefficients, lower coeffi-

cients of variation, and lower standard of errors of estimate for their

soil moisture model versus models relying only on daily temperature and

monthly rainfall.

Improvement of precipitation monitoring on a finer scale it another
key to improving the accuracy of crop yield and hydrological models.

Current soil moisture resolution over large areas is dependent upon the

resolution of the climr06ological data. This study shows that the centers

of maximum precipitation can occur within a 10-km diameter. Consequently,

the incorporation of a dense rain-gage network could result in improved

soil moisture information, and this would be of value for generating

more accurate crop-yield models and forecasts.

Both soil moisture and watershed models also require accurate pre-

diction of evapotranspiration. It is recognized that the accuracy of
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the Thormraite equation for evapotranspiration is an inherent problem

in the Crop Moisture Index (Denny, 1979). The potential evapotranspira-

tion is usually calculated using the actual long-term mean monthly

climatic temperatures. It is adjusted by the actual mean temperature

and mean duration of sunlight of the past 10 to 30 days. Better accuracy

of the climatological and meteorological information can certainly

improve the estimate of the evapotranspiration.

The above summarizes the required improvements for soil moisture

information. Soil moisture budgeting takes into account the soil

texture and its capacity for holding water. Improvement of precipitation

information leads to better input on the value of soil moisture. Evapo-

transpiration information plays a crucial part as a source of "depletion'

of soil moisture. Among these factors, only precipitation information

requires a fine spatial resolution of the order of 10 km. Present reso-

lution of the order of a hundred kilometers for the other factors seem

to be adequate for all users.

A satellite sensor system with a resolution of 10 km will be highly

desirable for soil moisture monitoring. This is compatible with the

ground information and meets the requirements of most users. A sensor

with a resolution of 1 km would generate 100 times as many scenes for

processing; other than specific interest groups which may have an inter-

est in small areas, users of this fine-scale data cannot be easily

identified.

Some of the government agencies that would benefit from a satellite

sensor capable of detecting soil moisture on a 10-km resolution scale

(NASA, 1978) include:

1) NOAA, for improving flood and water level forecasts

2) SRS (Statistical Reporting Service, or ESCS of USDA), for

expanding areas for estimating and forecasting crop yields

as present information is limited to specific research

sites;

3) SCS (Soil Conservation Service) of USDA, for monitoring

drought conditions and probable future moisture availa-

bility; and

I?

SO



lII
f'

F

3

i

f.

4) AID (Agency for International Development), for antici-

p4ting drought and desertification in developing countries.

As can be seen, the capability of improving the monitoring of crop

yield and drought/wetland areas from satellite microwave sensors on a

10-ka resolution can benefit many major government agencies. Due to the

current lack of data, applications and users for sensors of a 1-km

resolution may appear once a system with a 10-km resolution is developed.

Some of the potential users of data down to a 1-ka resolution include:

1) USGS in their various water resource investigations;

2) ARS (Agricultural Research Service, or SEA) of USDA in

local requirements of irrigation, drainage needs, and

erosion;

3) the U.S. Water and Power Resources Service (formerly

the Bureau of Reclamation) in their Irrigation Manage-

ment Services Program; and

4) the U.S. Army Corps of Engineers in monitoring or pre-

dicting traf£icability and mobility of military

vehicles.

In general, these are operations and problems limited to local areas.

As a result, data management and cost of operating a satellite sensor

would be quite different from that of a system designed to monitor

regional characteristics.

r
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S. CONCLUSIONS

The intent of this study was to examine the usefulness of soil mois-

ture observations at a 10-ka and a 1-ka resolution. Basic to this

examination was an assessment of the problems inherent in the remote

sensing of soil moisture by means of satellite-borne microwave radio-

meters.

The fitPA t item investigated was the rainfall amount patterns in the

central regions of the U.S. The basic data were obtained from three

networks of rain gages and the gages were separated by about S ka. With

this spacing it was not possible to obtain any useful information on

scales of less than S km. However, from the correlation analysis of

storm rainfall amounts, several previous investigators have demonstrated

that the rainfall amounts at gages separated by about S km are correlated

at the 0.9 level or higher. Thus, for the storm total rainfall amounts or

the daily amounts used in this study, the patterns obtained from the net-

works having gage spacing of about S km are considered to be representa-

tive of the actual patterns with the exception that peak amounts and the

gradients near the peak will generally be underestimated. Near the center

of some storms where the gradients in rainfall amount are largest, a

sensor with a 10-km resolution may underestimate the true value by about

20%. Beyond S km from the storm center, however, a 10-km resolution would

lead to a good representation of the patterns for all the categories of

storms.

The second item studied was an assessment of the problems associated

with the remote sensing of soil moisture by means of a satellite-borne

microwave radiometer. It has been shown in this study that the physical

characteristics of the land features in the mid-western portions of the

U.S. are such that microwave radiometers with resolutions on the order of

10 km can obtain representative and useful soil moisture measurements.

This results was obtained from a combined analysis of the land features

and the response to these land features by a 10-km resolution microwave

radiometer.

The third major topic covered in the study was an assessment of the

current uses of soil moisture information. Soil moisture information is

essential for the generation of accurate results from crop yield and

hydrological models. At present, soil moisture values are usually being
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a
derived from temperature and precipitation reporting stations which are

separated by distances on the order of 100 km. Since considerable

variability in soil moisture can occur on scales of less than 100 km,

crop yield and hydrological models would be improved with data having a

finer resolution. The immediate users of soil moisture at scales of 10 km

include agencies which are concerned with the prediction of crop yields.at

a regional or local level and for hydrologists responsible for the predic-

tion of run-off on relatively small basins. Information at a 1-km resolu-

tion would be valuable in those areas which are dominated by small ponds

or land features which have areas of less then about 25 km2 . However,

users of this very fine resolution data are likely to be confined to a

small number of specific interest groups who are concerned with the details

of soil moisture over very small regions.

i
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APPENDIX A

FORMAT FOR THE INFORMATION
EXTRACTED FOR EACH STORM CELL
AND LISTING OF THE CELL DATA
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VAR DESCRIPTION

SITE 1-0K; 2-TX; 3-KS

DATE YYMMDD

CID CELL ID NUMBER

SFC SFC WX TYPE1

kPa50 500 mb WX TYPE2

MAXP MAX PRECIP3

VAR7 5 km (360)3

VAR8 5 km 190_-^y^_

VAK9 5 km Q 8

VARiq 5 km (270)

VAR 11 10 km , 31T)

VAR12 10 km	 90)

VAR13 10 km	 18q)_^

VAR14 10 km	 270)

VAR15 iSTORM	 ON_binj

NO.
DIGITS FORMAT

INCLUSIVE
COLUMNS EXAMPLE

1 F1.0 1 1

6 F6.0 2-7 770704

4 A4 8-11 C112

2 1X,- F1.0 12-13_ _ 2

2 F2.0 14-15 03

4 1XI F3.2 16-19 1.30

4 1X,	 F3.2 20-23 .50_

3 F3.2 24-26 .40

3 F3.2 27-29 .30

3 F3.2 30-32 .20

4 1X,	 F3.2 33-36 .10

3 F3.2 37-39 .06

3 F3.2 40-42 .04

3 F3.2 43-45 .02

5 1X,	 F4.0 46-50 1440

Sites include: 1 Oklahoma
2 Texas
3 Kansas

lCode for Surface Weather Types 	 2Code for 500 mb Types
1 AIRMASS 1 TROF W
2 UPSLOPE 2 TROF E
3 SQUALL LINE 3 RIDGE
4 SQUALL ZONE 4 SWLY FLOW
5 COLD FRONT 5 SELY FLOW
6 WARM FRONT 6 W FLOW
7 SFC HIGH 7 NW FLOW
8 SFC LOW 8 LOW
9 STATIONARY FRONT 0 NONE OF ABOVE
0 NONE. OF ABOVE

3Haximum precipitation and values at S and 10 km are in units of
0.01 inches.

EXW LE:

1	 2 3 14 15 16 17 18 9 to 11 1121131 141 15116117 118 119 120121122i23124125!2

21!26129 130 1 51 32133 134135 136 37 38 39.40 41	 42 43 44 4546 147148 49,50 51 52 53 S4 55 56

1	 1	 I
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1160~05coot 704 06 34 lO 53 30 -9q-q9-9q-q9 
1760~05COO~ 704 35 30 25 a~ ~& -9q-q9-9q-q9 
1160~05C003 704 30 a7?n 22 ~1 -9q-q9-99-99 
1160210C004 60~ 05 05 on 05 on -9q-q9-9q-99 
1160?10C005 604 03 002000000 03 -9q-q9-99-99 
"602110006 71& 04 -99-99000 02 -9q-99-99-99 
lb&0~Ir.C007 716 02 -99 01 01 01 -9q-q9-99-99 
1160l0~COOR 504 ln5 -q9 971a510S -99 80120102 
1760l0~C099 50U '2U Y6 &9 80 7n 53 S5-9q 51 
1160~0~COOO 504 III 82 4010~ 52 110 20 59 S~ 
17&0~0~C011 504 S9 U9 20 U6 3& 20 17 19 08 
11&0304C012 614 06 000 01 O~ 02 -99-q9-9q-99 
11&3~oUC01~ 61U 0& OU 03-99 05 -9q-q9-99-q9 
1760~04C014 61U 0& 04-99000 03 _9q_qq_99_qa 
11&030UC015 61U 05 -99 05 O~ OS -9q-99-9q-9Q 
1160l07COI& 70& luO 15&122136116 _09-q9_9q_q9 
1760~070017 706 129 12~110-90100 -9q-99-9a-q9 
1760307C018 70& lin 108109100 90 -99-99-99-q9 
"60307COI9 706 110 10110210~ 92 -9q-99-99-99 
176030Ro020 &In 131 100100110110 -9q-99-99-99 
"60~ORC021 61n 130 127114125116 -9q-99-99-99 
170030RC02? 61U 10~ 92 90 90 RO -99-99-99-99 
176330RC22l 61U 10? a~ 83 aO Ob -oa-qo-9a-99 
176031lC024 61~ 71 70 20-9q-09 -09-qo-9q-q9 
1760l11C025 614 70 29 15 bO 48 -9Q-99-00-q9 
176Ull1C026 614 54 ~2 35 S? lO -9Q-99-99-90 
7160l11C027 614 b3 UO-9a 56 07 _9q-Q9_9q_qo 
17&Ol24~02Rq9q9 16 05 03 oJ 01 -99-99-09-99 
1160l29C2aoq090 104 &0 lO 52 52 50 25 82 a7 
lb6032CC030qoQo 9n 12 10 70 50 80 10 70 12 
1700~29 0319990 7R UO 26 b~ ~2 -oq-qo 50 24 
176U~20C030q9qq 85 15 18 10 ~4 14 10 10 70 
1760328C03390qO 30 18 2U 16 12 -09-90-oa-99 
1760l28L034a090 25 18 14 10 fb -Q9-99-oa-ao 
176U~07C039aoqo ?65 19RIloln012o _oa_90_0a_q9 
1760407C036Q qQ 150 130118118122 -Qa-90-Qq-90 
'7&0407C037qqao 183 170162127119 _oQ-q9-oq-q9 
1760007C06RQoaQ 145 901l3110-oQ -9a-ao-aQ-a9 
17&OUI2C~3QQ9QO 26 04 13 05 lU -9a-a9-0a-a9 
7760U14C040aoaQ ua 00 06 06 Ob -9Q-Qa-oa-ao 
176041UC041aoa9 U9 OR 07 07 0& -9a-a9-oQ-aq 
17~OU1QC042a9a9 O~ 06 03 U4 05 -~a-ao-oa-ao 
17&4qI4CU4~a9a9 07 u2 04 O? 03 -99-ao-9q-a9 
1760Q15C04UQaQQ 231 16218a210215 -09-a9-aq-90 
'760U15COU9a9q9 221 la0200170-99 -9a-a9-Oa-ao 
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'160Ul&C04~Q9Q9 24 22 1& 18 Ib 14 13 18 12 
1760U16COa9QQaO 24 21 16 lR 17 17-a9 17 14 
17&UU1& 050a9Q9 23 20-9a-a 9 18 la-ao-9a lR 
1760Ul&C051Q099 23 20 14 1U 1& la 17-oa 1U 
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1760417005?aQa9 ?2A 150210140-9a -9a-ao-aq-ao ~ 
1760U1 COS3Q9Q9 oU 02 01 01 03 -99-a9-9Q-ao • 
1760ulRC05aQ9a9 un 01 01 O~OOO -9a-a9-9a-99 I 
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176UUlOCOS69aaa 21& -Qo14017&134 -99-aa-aa-ao I 
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APPENDIX B

NORMALIZED RAINFALL AMOUNT PATTERNS



APPENDIX B

The 22 patterns in this appendix are the result of separating the

storms by four synoptic types and various storm-center rainfall amount

categories for the rain gage network in Oklahoma and the networks in

Kansas and Texas. The range of the maximum storm rainfall amounts

included in each pattern is indicated to the right of the pattern. The

patterns have been normalized to the rainfall amount of the gage showing

the maximum for the storm. The number of storms in each of the categories

is indicated by -the letter N. The direction of storm motion, as indi-

cated by the 700 mb wind, is in the vertical upward direction for all

patterns.
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