
w.

(NASA-CH-166726) SAB PBCCESSIflG ON THE flPP N82-11801
Final fieport, 9 Jan. - 31 Aug . 1981 /
(Goodyear Aerospace Corp.) 88 p /
HC A05/13F A01 CSCL 09B Dncias

63/61

SAR PROCESSING ON THE liPP

GOODYEARNAEROSPACE CORPORATION
1210 MassVllon Road
Akron, Ohio\4A315

Augut 1981
Report

Prepared for

Goddard Space Flight Center
Greenbelt, Maryland 20771

SAR PROCESSING ON THE MPP.

K, E. Batcher, et al

Goodyear Aerospace Corporation
Akron, Ohio

August 1981

N82-11801

TECHNICAL REPORT STANDARD TITLE PAGE

Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

SAR Processing on the MPP

5. Report Date

31 August 1981
6. Performing Organization Code

I 7.
I1 .K

9.

Author(s)

. E .Ba tcher , E . E . E d d e v . R . O . F a i s s . P . A . Gi lmorre
8. Performing Organization Report No.

GER-17020
Performing Organization Name and Address

Goodyear Aerospace Corporation
1210 Massillon Road
Akron, Ohio 44315

10. Work Unit No.

11. Contract or Grant No.

N A S 5 - 2 6 4 3 0

12. Sponsoring Agency Name and Address

H.K.Ramapriyan
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

13. Type of Report and Period Covered

Final
9 Jan 81-31 Aug 81

14. Sponsoring Agency Code

15. Supplementary Notes

None

16. Abstract

The massively parallel processor (MP
high-speed ground based image proces
an array unit (ARU) which processes
unit (ACU) which controls the operat
scalar arithmetic; a program and da
controls the flow of data, and a uni
buffers and permutes data. The ARU
bit-serial processing elements (PE's
are packaged in a custom VLSI HCMOS
large multidimensional-access memory
flowing within the system.

P) is designed to support ultra
sing. The architecture comprises
arrays of data; an array control
ion of the ARU and performs
ta management unit (PDMU) which
que staging memory (SM) which
contains a 128 by 128 array of
). Two-by-four subarrays of PE's
chip. The staging memory is a
which buffers and permutes data

Efficient SAR processing is achieved via ARU communication paths
and SM data manipulation. Real time processing capability can
be realized via a multiple ARU, multiple SM configuration.

17. Key Words (Selected by Author(s))

Parallel Processors, Array
Processors, Image Processing,
Radar Data Processingt Synthetic
Aperture Radar

18. Distribution Statement

TECHNICAL
INFORMATION SERVICE

US. DEPARTKKT OF COIMBtt
SP8IHGMEID. V/L 22161

19. Security Ctossif. (of this report)

None

20. Security Classif. (of this page)

None ;

21. No. of Pages

46

22. Price*

TABLE OF CONTENTS

SECTION TITLE PAGE

1 INTRODUCTION— 1

1.1
1 0.2.
1 O. J

bAK

2 1. 1
20. Z
2 0. J
2 A
. t

2.5

2 £. D

2.7
2 0
.O

9 Q

• > i n

General

1.3.1 Processing Algorithm
1.3.2 Processing System
1.3.3 Processing Flow

2.4.1 Input from Staging Memory
2.4.2 Fast Fourier Transform (FFT)
2.4.3 Frequency Domain Processing
2.4.4 Inverse FFT •
2.4.5 Output to Staging Memory
Azimuth Processing"
2.5.1 Input from Staging Memory
2.5.2 Fast Fourier Transform (FFT)
2.5.3 Frequency Domain Processing

2.5.5 Output to Staging Memory

2.6.1 Input from Staging Memory

2.6.3 Output to Staging Memory —
Clutter lock

1

- 2
6
8

i n1U
i r\1U

11
14
20
24
26
26
26
27
32
7^JJ

36
07j/
37
17j/

38
38
10jy
A 1f 1
A9

3 T7T T7VTDTT TTV- — — - /. ^r Li.E«A.LD J.LiJ.1 I — — 4$j

4 CONCLUSIONS 44

APPENDIX TITLE

A Analysis of SAR Mission Requirements
B Relatively Prime FFT
C The DFT of Small Dimension Vectors
D Design of a Massively Parallel Processor

il

FIGURE

2
3
4

5
6
7

8
9
10

LIST OF FIGURES

TITLE PAGE

FFT SAR Data Processing Approach 3
suggested by C. Wu

Processing Algorithm Flow Chart 4
Block Diagram of ADSPS 7
Layout of Range Vector Samples 15

in Work Region of Array Memory
B Indices - Field 0 17
B Indices - Field 5 18
Forward Azimuth FFT Data Layout 29

in Work Region
Typical Sub-Array 30
The Auto Focus Principle 40
Real Time SAR Processing System 45

TABLE

I
II
III
IV
V

LIST OF TABLES

TITLE

Correct Sample Slots
Elements of Move Time
Five-Point FFT Execution Time
Multiplication Factors
Forward Azimuth FFT Parameters

PAGE

13
16
20
31
32

III

GOODYEAR AEROSPACE
Corporation
GER-17020

SECTION 1 - INTRODUCTION

1.1 General

This final technical report documents efforts and achievements by
Goodyear Aerospace Corporation (GAC) under NASA Contract
NAS5-26430, "Use of the Massively Parallel Processor (MPP) for an
Advanced Digital Synthetic Aperture Radar Processor". The purpose
of the contract was 1) to determine how well the MPP presently
being assembled for NASA Goddard can execute SAR processing tasks;
and 2) to identify what changes (if any) would increase its SAR
processing capability. Under the contract GAC developed a
conceptual system design for utilizing the MPP as a SAR processor
and estimated system performance for a worst case mission.
Performance evaluation was based on a SAR processing algorithm due
to C. Wu.

The architecture of the MPP was found to be well adapted to SAR
processing. An increase in array memory capacity (more bits per
PE) will increase its SAR processing capability considerably. The
staging memory in the MPP is very useful for corner turning and
other data re-formatting operations.

1.2 Problem Overview

The processing of synthetic aperture radar (SAR) signals is of
appreciable interest to NASA since many NASA missions will employ
SAR sensors. An indication of the range of these missions is
provided in Table 1 of Exhibit A to the contract statement of work.
The mission set described by Table 1 is analyzed in detail with
respect to processing load in Appendix A of this report. There it
is shown that the ERSAR L mission out of the various missions
provides the most severe processing load closely followed by the
SEASAT mission. The baseline mission described in Exhibit A is
quite similar to ERSAR L although it possesses the wider swath
width of SEASAT. Consequently a processing system which meets the
baseline mission requirements should readily have the capability to
meet the other mission requirements.

The processing of SAR signals to produce an image represents a
severe computing load since each image pixel results from lengthy
convolutions in both the range and azimuth directions. Early
digital SAR processors formed images by direct convolution methods.
Since the development of the Fast Fourier Transform (FFT), attempts
have been made to compute the SAR convolutions by means of FFT.

Convolution by means of FFT does reduce appreciably the number of
computations required per image pixel. However other complications
arise. The FFT process is a batch process; it is most efficient
when many pixels are generated together. The batching operation in

-1-

GOODYEAR AEROSPACE
Corporation
GER-17020

turn is complicated by the need to account for range curvature. In
the case of the baseline mission the range curvature covers seven
range bins.

There have been a number of attempts to account for range curvature
while still using FFT convolution. A particularly effective
approach was suggested by Chialin Wu* (see Figure !)• The method
is an FFT convolution approach. After the forward azimuth FFT
operation, Wu obtains the composite spectrum of an image line by
assembling the appropriate segments from the spectra of several
azimuth lines. Wu used non-interpolative nearest neighbor
selection of the spectra segments. However, in order to reduce
azimuth side-lobes, interpolation over four range bins has been
used in the case of the MPP algorithms to develop the composite
spectrum, as described later in Section 2.

The MPP algorithms then employ FFT convolution procedures and use
in general the Wu approach to range curvature correction. However
the Wu approach has been modified to the extent of using
interpolative spectral composition. The algorithms are illustrated
in Section 2 of this report in application to the baseline mission.
Further it was shown earlier in this item that the baseline mission
encompasses the most stringent processing parameters of the Exhibit
A, Table 1 SAR mission set.

1.3 Processing Overview

1.3.1 Processing Algorithm

As indicated in item 1.2 the processing approach chosen
for the MPP is built upon the FFT based method developed
by Wu. The overall MPP processing flow is shown in
Figure 2. The first processing step is the range FFT
which converts the signals from one radar pulse to the
frequency domain. The length of this FFT must exceed the
swath width in output pixels plus the range pulse length
in complex samples. The value thus obtained is then
increased by filling in zeros to make the total a value
which is convenient for FFT processing, as discussed in
Item 2.3 below. For the baseline mission this length was
taken as 5120 points (5x1024). The 5120 in turn results
from being the most convenient number greater than the
sum of the 4000 pixel swath width and the 475 complex
sample range pulse length.

* Wu, Chialin, "A Digital Fast Correlation Approach to Produce
SEASAT SAR Imagery", IEEE 1980 Intl. Radar Conf. Proc., Apr. 1980.

-2-

RANGE
REFERENCE
FUNCTION

AZIMUTH
REFERENCE
FUNCTION

RAW DATA

FFT

FFT-1

CORNER

TURNING

FFT

FFT-1

IMAGES

Figure 1 - FFT SAR Data Processing Approach Suggested
by C* Wu oggo/mR

-3-

SIGNAL
DATA IN

FRACTIONAL
RANGE WALK
CORRECTION

RANGE

FFT

RANGE
REFERENCE
FUNCTION

RANGE INTEGRAL
RANGE WALK
CORRECTION

CORNER

TURN

AZIMUTH

FFT

I
CLUTTER

LOCK

MOTION

COMPENSATION

RANGE
CURVATURE
CORRECTION

fe.
FOUR LOOK

SEPARATION

IMUTH -_
FERENCE Âx\̂ .

FUNCTION

MOTION

CORRECTIONS

AUTO

FOCUS

AZIMUTH MAGNITUDE

DETECTION

REAL

IMAGE

COMPLEX

IMAGE

.Figure 2 - Processing Algorithm Flowchart

-4-
GOOD/YEAR

GOODYEAR AEROSPACE
Corporation
GER-17020

The output of the range FFT is then complex multiplied by
a reference function. This function in turn is the
product of the range compression function and a factor
which accounts for the fractional portion of the range
walk correction. This later factor is a linear phase
shift term based upon the Fourier transform pair

f(t-T) <==> F(w) exp(-iwT)

where T is the time delay needed to account for the
fractional portion of the range walk correction. The
integer portion of this correction is accounted for by an
actual shift of the data in range from pulse to pulse.

The complex multiply operation is then followed by the
range inverse FFT and the integer range walk correction,
shift. Next the corner turn needed to arrange the data
for processing in the azimuth direction is performed.
The azimuth FFT operation follows.

The length of the azimuth FFT must be greater than that
required by the azimuth compression ratio times the
number of multiple looks. Actually the length must be
appreciably longer than this value to permit batching for
efficient processing. The situation is further
complicated however by memory requirements.

The processing required for an N point FFT is roughly
proportional to N * Iog2 N. If the aperture length for
the number of multiple looks is n, then the number of
image points produced is N-n. The work W(N) per image
point is (N * Iog2 N)/(N-n). For n=1750, the value for
the baseline mission, W(N) is a minimum for N equal to
about 19,000. Such a large value of N would result in
excessive memory requirements so that a smaller value of
N must be selected for practical implementation. A value
of N = 3520 was chosen for the baseline mission as
representing a reasonable compromise between processing
and memory requirements.

The azimuth FFT is followed by the interpolation
operation necessary to correct for range curvature. As
indicated in Item 1.2 this interpolation is over four
range bins. This operation is followed by the separation
of the multiple looks based upon frequency values. The
remaining processing steps shown in Figure 2 comprise the
azimuth reference function complex multiplication, the
inverse azimuth FFT which produces the compressed complex
image and the magnitude determination operation which
produces the real image. All the steps are discussed in

-5-

GOODYEAR AEROSPACE
Corporation
GER-17020

greater detail in Section 2.

Also shown in Figure 2 are the clutterlock and autofocus
operations which.are needed to obtain motion compensation
data from the image data. These steps are initiated by
running the input tape through a few aperture lengths,
obtaining the initiating values, and then rewinding the
tape to start the image generating processing using the
motion data thus obtained. The motion compensation data
is used to modify the range and azimuth reference
functions appropriately. The clutterlock and autofocus
operations are discussed in detail in Items 2.7 and 2.8
respectively.

1.3.2 Processing System

The advanced digital SAR processing system (ADSPS)
considered in this study is built around the Massively
Parallel Processor (MPP).

The MPP is designed to process arrays of image data at
high speed. It has 16,384 processing elements (PE's) in
a 128 x 128 array. Redundant PE columns improve
availability. Processing is bit-plane oriented to
accomodate pixels and results of any length. Each PE has
a variable-length shift register, a serial adder, a logic
section and a 1024-bit RAM. The design will accommodate
changes in RAM capacity. Basic cycle time is 100
nanoseconds. Addition of array elements has a speed of
6553 MOPS (Million Operations per second) for 8-bit
elements, 4428 MOPS for 12-bit elements and 430 MOPS for
32-bit floating point elements. Multiplication speed is
1861 MOPS, 910 MOPS and 216 MOPS, respectively. Input
and output of data through wide 128-bit ports can occur
at speeds up to 1.28 billion bits per second. The array
of PE's is controlled by an array control unit containing
a micro- programmable PE control unit, a fast scalar
processor (main control unit) and an I/0-control unit. A
unique internal staging memory buffers and reformats data
flowing within the system.

A minicomputer is used as a program and data management
unit. It executes the program development software
(micro-code assembler, main assembler, linker), manages
the system and connects it to a host computer.

A block diagram of the MPP-based ADSPS is shown in Figure
3. The array unit of the MPP is connected to two staging
memories. Staging memory 1 receives the input data and

-6-

INPUT

t
t

\

[CORNER/TURN
STAGING
MEMORY

ARRAY
UNIT
(ARU)

PROGRAM & DATA
MANAGEMENT UNIT

(PDMU)

ARRAY
CONTROL

UNIT
(ACU)

OUTPUT

t

t

Figure 3 - Block Diagram of ADSPS

-7-
GOQD/YIEAR

GOODYEAR AEROSPACE
Corporation
GER-17020

the final display data. Staging memory 2 is used for the
corner-turning operation between the range processing and
the azimuth processing. The array unit alternates
between range processing and azimuth processing as
described in item 1.3.3.

1.3.3 Processing Flow

The processing algorithm as flowcharted in Figure 2 is
performed by alternating between the range and azimuth
phases. The range phase includes the range FFT, the
complex multiplication in the frequency domain, the range
inverse FFT, and the integer range walk correction. The
range-processed data samples are placed in staging memory
2 for the corner-turning operation. Initially, the range
phase is executed for 3520 radar pulses to build up
enough data in staging memory 2 for the azimuth phase.
After executing the azimuth phase once, the array unit
executes the range phase for 1760 pulses and the output
data replaces the first half of the data in staging
memory 2. Then the azimuth phase is executed again,
followed by the range phase, etc.

The azimuth phase includes the azimuth FFT, range
curvature correction, separation of the looks, complex
multiplication by the azimuth reference function, inverse
FFT, magnitude detection and combination of the looks for
the display. The length of the azimuth FFT is 3520 + 576
zeroes - 4096. On each execution the input data is
slipped by 1760 pulses so half of the input data is old
data and half is new.

Range processing is described in item 2.4 and its
sub-items. The array unit treats 32 radar pulses at one
time. Range processing is executed 55 times to treat
1760 radar pulses. Initially, range processing is
executed 110 times to treat the first 3520 pulses.

Azimuth processing is described in item 2.5 and its
sub-items. The array unit inputs 32 range bins at one
time and range curvature correction limits the number of
output range bins to about 23. To handle the 4000 output
bins requires 174 executions of the azimuth phase.

-8-

GOODYEAR AEROSPACE
Corporation
GER-17020

SECTION 2 - SAR PROCESSING ON THE MPP

2.1 Baseline Mission

As Indicated In Item 1.2 of Section 1 the baseline mission
specified in Exhibit A of the contract statement of work is similar
to the ERSAR L mission set although the swath width specified is
greater than that of ERSAR L and more similar to that of the SEASAT
mission set. In Appendix A of this report the following processing
parameter values are developed for the ERSAR L mission set:

PRF per look = 644 Hz
Radar PRF (4 looks) = 2576 Hz
Time to travel Aperture Length = 0.715 Second
Radar Pulses during Aperture Time = 2576 x 0.715

= 1841.84 pulses
Pulses for one look = 460.46 pulses

Table 2 of Exhibit A gives the following:

Radar PRF = 2500 Hz
Number of Azimuth Looks (concurrently processed) = 4
Azimuth Bandwidth per Look = 500 Hz
Azimuth Compression Ratio per Look = 350

From these data it can be concluded that:

PRF per look = 2500/4 = 625 Hz

Time to travel Aperture Length = 350/500 =0.7 Second

Pulses during Aperture Time = 2500x0.7 = 1750 pulses

Pulses for one look = 1750/4 = 437.5 pulses

The differences between the data developed from the ERSAR L mission
and that provided for the baseline mission are small. The
differences are probably caused by round-off operations or by the
use of slightly different parameters (such as satellite velocity)
for the calculation of various terms. The important fact is that
the baseline mission parameters can be tied back to basic mission
parameters very well. The baseline mission parameters from Table 2
of Exhibit A of the Statement of Work will be used in the analyses
in the remainder of this report. Actually, small differences in
the starting parameter values for the analysis will have little
effect on the procedures or timing analysis since the FFT lengths
have been increased from the exact required values to power of 2
related values which are more convenient for computation.

For the baseline mission the range FFT is a 5120 point transform

-9-

GOODYEAR AEROSPACE
Corporation
GER-17020

(5x1024) as previously indicated in item 1.3.1. The minimum value
actually required is 4000 (output swath width) plus 475 (range
pulse length) or 4,475. The difference between 4,475 and 5120 is
filled with zeros.

The minimum permissable azimuth FFT is a 1751 point transform.
However as explained in item 1.3.1 such a transform would yield
only one output point. In order to provide more efficient
processing it is necessary to batch the generation of many output
image points together. As shown in item 1.3.1 the length selected
as an optimum compromise between processing and memory requirements
is a 3520 point transform. The output points from the azimuth FFT
are broken into four 880 point single look groups. Four inverse
azimuth FFT transforms yield 440 image points for each of the four
looks. The azimuth processing then steps ahead 1760 input azimuth
values and the process repeats. The details of the various
operations discussed above are provided in the remaining items of
this section.

2.2 Processing Flow

The SAR data samples are processed in groups with the returns from
1760 radar pulses in one group. The array unit of the MPP
alternates between range processing and azimuth processing. Range
processing is performed on the returns from 1760 pulses and then
azimuth processing is performed and then range processing is
performed again, etc.

Azimuth processing treats the returns from 3520 pulses at one time.
Staging memory 2 holds the range-processed returns from two groups
of 1760 pulses each. Range processing replaces the oldest group of
returns with the range-processed returns from the next group of
1760 pulses. Then azimuth processing occurs on the two groups. In
this way, the processing marches along the flight path, 1760 pulses
at a time.

Initially, range processing is performed on the returns from 3520
pulses so the first azimuth processing step sees a full set of
returns in staging memory 2.

2.3 SAR Data Input

We assume the radar return is sampled N times for each radar pulse
where N is 5120 or less. Each sample is a complex number with a
6-bit real part and a 6-bit imaginary part. Each sample uses two
adjacent bytes with the imaginary byte following the real byte.
Each 8-bit byte contains six bits of data and two fill bits. The N
samples for one radar pulse are ordered with the nearest range

-10-

GOODYEAR AEROSPACE
Corporation
GER-17020

first and the farthest range last. The samples for one pulse are
followed by the samples for the next pulse and so on.

The samples are first stored in Staging Memory 1. The storage
format is chosen to facilitate the transfer of the data to the
array unit for range processing. Sixteen adjacent samples are
grouped together into four adjacent main stager words (each main
stager word holds 64 data bits). The first word of the group holds
the low-order 4 real bits of the 16 samples; the next word holds
the high-order 4 real bits; the third word holds the low-order 4
imaginary bits; and the fourth word holds the high-order 4
imaginary bits.

The N samples for one radar pulse are stored in N/16 adjacent
groups in the main stager (if N is not a multiple of 16 then the
last group is only partially filled). The samples for one radar
pulse occupy P/4 main stager words where P is a multiple of 16
equal to N, N+l, or N+15.

A one-word gap is inserted after the last group of samples for one
pulse and then the samples for the next radar pulse are stored.
Thus, the samples for each pulse take P/4 + 1 main stager words.
Since P is a multiple of 16, P/4 + 1 is an odd number. This
arrangement allows corresponding parts of 32 successive pulses to
be read out in parallel for the range processing.

Staging memory 1 can accept data from the input source at rates up
to 160 megabytes per second. No processing time is expended in the
array unit for this operation.

2.4 Range Processing

2.4.1 Input from Staging Memory

Range processing treats the samples from 32 successive
radar pulses at one time. The array unit is divided into
32 sub-arrays with each 32-column by 16-row sub-array
treating the samples from one pulse. Let 1=0, 32, 64,
or 96 and let J = 0, 16, 32, 48, 64, 80, 96, or 112. The
PE's in the sub-array using columns I through 1+31 and
rows J through J+15 treat samples from pulse J/4 + 1/32
of the pulse group.

The 512 PE's within each sub-array treat 5120 samples.
If the number of samples per pulse (N) is less than 5120
then the extra slots are filled with complex zeroes.
Each PE has 10 slots in its random-access memory for 10
compiex-valued samples. The slots are indexed from 0 to

-11-

GOODYEAR AEROSPACE
Corporation
GER-17020

9. The layout of samples within each sub-array is
scrambled a certain way to facilitate performing a
5120-point FFT. Let L be the index of a sample (L = 0,
1, ..., 5119). Let A = 4L modulo 5. Let B = 205L modulo
1024. Then L = (5B + 1024A) modulo 5120. If B < 512
then sample L is stored in slot A of PE B. If B > 511
then sample L is stored in slot A+5 of PE B-512. The 512
PE's within each sub-array are numbered with PE's 0
through 15 occupying the first column of the sub-array,
PE's 16 through 31 occupying the second column of the
sub-array, etc.

The input of data into the array unit for range
processing has two steps: (1) the samples are read from
the staging memory and put into the correct PE's but not
necessarily into the correct slots within the PE's; (2)
the samples within each PE are re-arranged using the PE
shift registers so they are in the correct slots.

Let C be the integer quotient when L is divided by 512
and let D be the remainder of the division. Then L <=
512C + D where C « 0, 1, ..., 9 and D = 0, 1, ..., 511.
Note that D = L modulo 512. Since B = 205L modulo 1024
then B = 205D modulo 512 when B < 512; and B = (205D
modulo 512) + 512 when B > 511. Thus, sample L should be
stored in PE (205D modulo 512) of the sub-array. In the
first step of the data input, sample L is stored in slot
C of PE (205D modulo 512) of the sub-array.

The second step of the data input re-arranges the samples
within each PE to put them in the correct slots.
Consider the samples loaded into slot 0 of the PE's by
the first step. For L from 0 to 511, sample L is put in
slot 0 of PE (205L modulo 512). Thus, for K from 0 to
511, slot 0 of PE K gets sample (5K modulo 512).

We partition the set of PE's within a sub-array into five
classes. For K from 0 to 102, slot 0 of PE K gets sample
5K; for K from 103 to 204, slot 0 of PE K gets sample
5K-512; for K from 205 to 307, slot 0 of PE K gets sample
5K-1024; " for K from 308 to 409, slot 0 of PE K gets
sample 5K-1536; and for K from 410 to 511, slot 0 of PE K
gets sample 5K-2048. For G = 0, 1, 2, 3, and 4; we put PE
K into class G if slot 0 of PE K gets sample 5K-512G.

If L = 5K-512G then A = 4L modulo 5 = 2G modulo 5, and B
= 205L modulo 1024 = K + 512G modulo 1024. For G = 1 and
3; B > 511 and the sample in slot 0 of PE K should be put
in slot A+5 - (2G modulo 5) + 5. For G = 0, 2, and 4; B
< 512 and the sample in slot 0 of PE K should be put into

-12-

GOODYEAR AEROSPACE
Corporation
GER-17020

slot A = (2G modulo 5). Thus, for G = 0, 1, 2, 3, and A;
the sample in slot 0 of all PE's in class G should be put
into slot 0, 7, A, 6, and 3; respectively.

We have seen how to move the samples in slot 0 of the
PE's. Now we examine the samples in the other slots.
Note that if the first step of the input process puts
sample L into slot C of PE K, then it puts sample L+512
into slot C+l of the same PE. If A = AL modulo 5, then
4(L+512) modulo 5 = A+3 modulo 5. If B = 205L modulo
102A, then 205(L+512) modulo 102A = B -I- 512 modulo 102A.
If B < 512 then (B+512 modulo 102A) > 511 and vice-versa.
Thus, if sample L in slot C of a PE is moved to slot E,
then sample L+512 in slot C+l of the same PE is moved to
slot F where E and F are related as follows:

E < = 0 1 2 3 A 5 6 7 8 9

F = 8 9 5 6 7 3 A 0 1 2

This relation can be used repeatedly to find the correct
slot of every sample in the PE's. Table I shows the
correct slot for every sample. The correct slot depends
on the class (G) containing the PE and the position of
the sample after the first step (C).

TABLE I - Correct Sample Slots

CLASS RANGE OF PE SAMPLE POSITION AFTER FIRST STEP (C)
(G) INDICES 0 1 2 3 A 5 6 7 8 9

0 0-102 0 8 1 9 2 5 3 6 A 7
1 103-20A 7 0 8 1 9 2 5 3 6 A
2 205-307 A 7 0 8 1 9 2 5 3 6
3 308-A09 6 A 7 0 8 1 9 2 5 3
A A10-511 3 6 A 7 0 8 1 9 2 5

The first step of the data input is performed by the I/O
control unit in conjunction with the staging memory. No
PE processing cycles are used except for the
interruptions when bit-planes are transferred from the
S-registers to the random access memories. Since there
are 10 samples per PE and 16 bits per sample there are
160 bit-planes to be loaded and 160 processing cycles
used for the transfers.

The second step of the data input uses the PE shift

-13-

GOODYEAR AEROSPACE
Corporation
GER-17020

registers to move samples according to Table I. The
shift register lengths are set to 18 so 20-bit operands
can be shifted end-around through the shift registers and
registers A and B. Two data bits from each slot are
loaded into the shift registers and using masked-shifts
the registers of PE's in class G are shifted 2G times.
Then the shift registers are unloaded with two data bits
going to each of the 10 slots. The process is repeated 8
times to treat all 16 bits of the samples. It requires 8
x 48 = 384 cycles to do the second step.

Thus, 160 + 384 • 544 processing cycles or 55
microseconds of PE time are required to input the data
for range processing. The I/O control unit moves data at
a 160 megabyte per second rate so it requires 2
milliseconds to input the data.

2.4.2 Fast Fourier Transform (FFT)

The samples from 32 radar pulses are treated as a group.
While group G is being processed in the array unit by the
PE's, group G+l is being loaded into an I/O buffer region
of the array unit memory and group G-l of range-processed
samples are being unloaded. The I/O buffer region is 240
bit planes deep so each PE can hold ten processed samples
with 12-bit real parts and 12-bit imaginary parts. The
input samples have only 8-bit real and imaginary parts
and share 160 bit planes of the I/O buffer region with
the output samples.

Processing of the samples takes place in a work region of
the array unit memory which is 320 bit planes deep (see
Figure 4). Input data is moved from the I/O buffer to
the work region by step 2 of the input process (see item
2.4.1). The work region is divided into ten 32-bit
fields indexed from 0 to 9. As described in item 2.4.1,
the sample with index values A and B is stored in field A
if B < 512 or in field A+5 if B > 511.

The 5120-point FFT's are performed in two major phases.
In the first phase, five 1024-point FFT's are performed
for each 5120-point FFT. Each 1024-point FFT treats
samples with a given A index. In the second phase, 1024
five-point FFT's are performed for each 5120-point FFT.
Each 5-point FFT treats samples with a given B index.
Appendix B of this report describes the process. Note
that in the appendix the sample indices are Greek letters
with subscripts. Index alpha-sub-1 corresponds to index
B and index alpha-sub-2 corresponds to index A.

-14-

ilN

WORK
REGION
DEPTH =
320 BITS

DIRECTION OF MOVEMENT OF
DATA BETWEEN STAGER MEMORY
AND PE I/O BUFFER.

3~l S

F/iX* / \ \f/\ \/ / '
/ A

/ ' i
' /'

^'\
'/A
/ / <

/ A
' / i

/^\

WORK REGION
STORAGE FOR
THE SAMPLES
OF ONE RADAF
PULSE, I.E.
ONE RANGE
VECTOR.

/ /

/
8/

X
LU
O

SLOT
OR FIELD
INDEX

ROW INDEX

00

Figure 4 - LAYOUT OF RANGE VECTOR SAMPLES
IN WORK REGION OF ARRAY MEMORY

-15-

OOOD/YEAR

GOODYEAR AEROSPACE
Corporation
GER-17020

First Phase

Since all five 1024-point transforms are performed in a
like manner we only describe the transform corresponding
to A = 0. Only work region fields 0 and 5 are involved.
Figure 5 shows the layout of the B indices in field 0 and
Figure 6 shows the layout of the B indices in field 5. A
standard radix-2 FFT is executed. Before each of the
last 9 iterations of the FFT the samples are moved
between fields 0 and 5 so that all complex multiply
operations involve field 5 and not field 0.

The move time for iteration I is given by:

T1ME(I) = (IMI2(I) + IN + 1) * 2 * (EXDIST + 3) * DIR

where

IMI2(I) = integer part of (I-l)/2;
IN = number of bits in real or imaginary part

of input sample (6 is assumed);
EXDIST = move distance in number of PE's; and
DIR = number of directions of move (1 if all

moves are in same direction or 2
if moves are in both directions).

The above equation assumes that the precision of the real
and imaginary parts grows by one bit every other
iteration. The elements of the move time are shown in
Table II.

TABLE II - Elements of Move Time

I IMI2+IN+1 EXDIST(I)+3 Product

1 7 1 9 1 3 3
2 8 1 1 8 8
3 8 7 5 6
4 9 5 4 5
5 9 4 3 6
6 10 11 110
7 10 7 70
8 11 5 55
9 11 4 44
10 -

TOTAL(cycles) 637

The total of Table II is multiplied by 2 and by DIR = 2

-16-

~- in 9 to r- -« m O": K! r- — in a to r- «-• in o- to r-
IT3 3 3 3 3 3 K- Kl Kl Kl K>KlKirV.«VIVirvi«VI«Vi

Kir- «-nn» 10 r- — in*
a A j ' ^ a r — - c a K i »«i

in3;33333KIKtKttOKIKIKirVirVirVirVirVIIVi-»«-« — «^»<

I t-^ ̂ i/> o-

ma a 3333KiKiKltOKIKlKIIVirVllVfVl<VIIVi

i -f) O 3|
a KI —i

in 9 KI
3 iv -*

oo-'r- .oa rvi — o-; ec >o a KI — o' CD <e in to ivt o oc- r- in a rv e-a
m a. a a; 3 33 KiKiKitOKiKiKirvirvirvirvirvirvi — —•-< — -«—«

r- —J in o-! KI r- — if"O'Kir--<ina"tor--»ina>K« :r-—in» to r-: »*
in a' a 33 a 3KiKiKiK»KiKirvir\,rur\inj*VAj — — — —

1

i rvi
— 9 r- 4) a KI — a ec « If •• KI — o; ao r- ir• V. IV o! O-

IT- 3 3 33 3 aKIKIKlKIKIKAIAjrVirvUVIAllVI — — — -«»<H

>o o

in a
r- in

a cc
r- in

a ao rvi
3 IV —

Kt r- —!
3 rvi «—

rvi <c o
3 IV *^

gui
*y

0

Cm

o
o

ir a KI r-- — in a- K(r- «- in <»• rrr-: — mo- mr- «-• in a KI r- — in; a
IT 33 33 3 3KIKIKIKIKIKI»V*VllVrVl«VII\JIV — »«•••—-

in
— m 9:
a rvi ! x

LU
a

c <c r** m 9 f\< ̂ 3 a r** *fi o fvi ̂ ^ a cc 4) 9 f^ ^^ ̂ ? '
in 3-3 33 3 3K»KiKiKiKiKirvirvirvirvirvirvirvj

rvi -O
r- in

o 3 ao!
3 rvi i O

a:

ts>

a

KI t-: — IT. a KI
c » r- in KI rvi
IT 3 3 3 3 3

rvi -o o 3 ao rvi
o ao r- IT; KI rvi
in 3 3 3 3 3

— in a K»r- -•
o oo -o in KI rvi
IT 3: 3 3 3 3

c 3 ao rvt •* o
c at « in KI rvi
in 3 3 3 3 3

o- Kt r^ — in a
a i ^c in K —
3 3 3 3 3 3

ec rvi •*. c a ao
o- cc *> in KI -*
3 3 3 3 3 3

r- «-. in o- KI r-
9 OC ^ 3 Kl »•
3 3 3 3 3 3

« o: 3 ac rvi -o
9 00' 4 3 Kl —•
3 3 3 3 3 3 *

r— *•* v^ 9' KI r** ^™ in- a to r— ̂ ^ in a KI r— ̂ ^ u^ a KV r— ^^ tf* a~ K* r—-,
oa' r—in3rv i«->9 ' r—•O3Kiv4aao^inKi^<c>aor> - inKi rv i \
3KiK»KiKiKiK'ivrvr\«rviiVirvi»-. — ^«— — — —\ \

: : ' ' . 1

~D O
C 9
3 Kl KiKiKiKiKirvirvirvirvirvirvi

o 3 ao rvi <o{
in KI — oioor-inKiiv

in o- tot-
o ao t- in
3 Kl Kl Kl

3 oo rvi *o
o ao r- in
3 Kl Kl Kl

KI r- — in
c ec t- IT
3 Kl Kl Kl

rv> .o e 3
o ao t- in
3 Kl K) Kl

— If 9 Kl
•̂ S (P. ̂Q ^̂
3 Kl K> Kl

»-inO'
afuo

o a eo
ar\ jo

a Kir-
K>ojo

at rvi «

Kl Kl Kl

r- — in
Kl Kl K^

Kir-»-ino' KI r- — in a- Ktt- —•ino-Kir-.— ini
ar^ -carv i — o - a c - C 3 K t — ooD-cinKirvj i

rvi o o 300 nj4>o3ao rvi o 03 oc rvi<o o a;
a t- * a rvi — o- ec « a KI — c eo -o in KI rv
rvi rvi ivi rvi rv» iv — — — — -« — --

«-in o Kir- — in o-
o-r- i farvi — ar-
rv»rvi«vrvirv»rvi—•. ~-

t- — in a KI
•c in K> —

: |
oaec iV '4>oaacn;«o9aD: rv -oo aac rv>!

ivicv-iv>ivirviiv—•.— — •- — — I

OK>r- — tno-Kit^^-iro- Kir-;»-ina Kir- —
«V€vrvi«vii\fivi — — — — — — • i

a KiKiKiKtKiKiivirvtrvirvirvirvi

a OD rvi * o|

CO

LT>

0)

X3QNI NWmOD

-17-

guj
40

C\j C^ CC' ^- l/̂ . 9

^V *^~ ~^C ^^ tO ^3

C3 C^ ^^ ^^ ^^ ^^

9 HV r̂ ~* ir> o-

^ ^-, • LU
i • i Q

— —' : . o
1

^O ^ '̂ 9^ ^* ^^ ^O ^^ tO ^*" ^"^ tf̂ f̂" |*O ̂ ^ ^"™ ^O f̂ f'O ^* ^*^ ̂ O O* t*} ^** ^™* If* O^ f1^ ^^ ^™* t̂ ^^
•̂̂ &* • CO ^D tf̂ t*O ^™- ^^ pp ^* |̂ t f*i ^^ ^^ ĵ* ^». ^p\ ^y ^^ v^ ^* ^* ^D ^J 1*0 "̂̂ ̂ ^ GO ""C ̂ O fO ^™*-

^ Cf ^C ^^ ^C ^O W "̂- ^"' ^^* ^^~ ̂ * V^ ^D ~C ^D ^D ^C ^D ^^ V^

3 flC CO *f ^D CD ^^ ^^ "̂ ^^ ^^ ^^ "C ^D «p ^p ^Q ̂ ^ |̂ |̂ j

^ ^^ f^ ^^ ^"^ ̂ O ^^ fO* ̂ ^ ^^ ^O ^^ tO ^* ^** ^^ ^^ ("O ^^- *^

^^ V^ O to (^ ̂ *4

. . . , . .

Clil

IT)

a

CJ
»-4
o
2T
i— i

03

I

o o- :: c o 9 o- <r co »\l —' O

X3QNI

-18-

GOODYEAR AEROSPACE
Corporation
GER-17020

to get 2548 cycles or 254.8 microseconds for the move
time of the A=0 FFT. The total move time for all five
1024-point FFT's is 1.274 milliseconds.

On each iteration an FFT butterfly is executed between
fields 0 and 5. For I = 4, 5, 10; the butterfly
time for iteration I is given by:

BFLYTIME(I) = (4 * (P + 1) * IMI2) + (8 * 12) +
(4 * (P + 3) * (IN + 1)) + (4 * G)
+ (6 * OVR) + 32 cycles

where

P = weight-precision factor (equals 10 when the
weight has 8-bit real and imaginary parts);

IMI2 = integer part of (I-l)/2;
12 = integer part of 1/2;
IN = input data precision (6 bits);
G = number of guard bits saved during internal

multiply (equals 3); and
OVR = add overhead cycles (equals 2).

The sum of the butterfly times for I = 4, 5, ..., 10
equals 3960 cycles.

The butterflies for the first three iterations are
simpler because the weight factor angles are multiples of
45 degrees. The butterfly times for iterations 1, 2, and
3 are given by:

BFLYTIME(l) = ((IN + 1) * 3 + OVR) * 4

BFLYTIME(2) = ((IN + 1) * 3 + OVR) * 4
+ ((IN + 2) * 3 + OVR) * 4

BFLYTIME(3) = ((IN + 3) * 3 + OVR) * 6
+ (P * (IN + 3)4-8)
+ (IN + 4) * 3 * 2 +

((IN + 2) * 3 + OVR) * 4

With IN = 6, P = 10, and OVR = 2, the sum of the
butterfly times for the first three iterations is 724
cycles. Thus, the butterfly time for the ten iterations
of the A=0 FFT is 724 + 3960 = 4684 cycles. The
butterfly time for the five 1024-point FFT's is 5 * 4684
= 23420 cycles or 2.342 milliseconds.

The time to execute the first phase is the move time plus
the butterfly time, 1.274 + 2.342 «= 3.616 milliseconds.

-19-

GOODYEAR AEROSPACE
Corporation
GER-17020

Note that the samples from 32 radar pulses are treated
simultaneously so in reality the array unit performs 160
1024-point transforms in this time period. The real and
imaginary parts of the input samples are each six bits (5
bits plus sign). The output samples have 12-bit real and
imaginary parts (11 bits plus sign).

Second Phase

To complete the 5120-point FFT for each radar pulse, 1024
five-point transforms are performed. Each five-point
transform combines samples for a given index B. Each PE
contains the samples for two values of B so no inter-PE
moves are required. A five-point transform is executed
as outlined in Appendix C. Figure C-4 of the appendix
shows a flow chart. Table 111 establishes the execution
time.

TABLE III - Five-Point FFT Execution Time

Scalar Mult. Adds Precision Number of Cycles

8 12 8*(12*3+2) = 304
6 13 6*(13*3+2) = 246

8 13*14 8*97 = 776
2 13 2*(13*3+2) = 82
8 13 8*(13*3+2) = 328
2 14 2*(l4*3+2) = 88
8 14 8*(14*3+2) - 352

TOTAL =2176

Each PE performs two five-point transforms so the time
for phase 2 is 2 * 2176 = 4352 cycles or 0.4352
milliseconds. Note that a total of 32768 five-point
transforms are performed in this time period.

Timing Summary

The time required to execute the forward range FFT for 32
radar pulses is the sum of the phase 1 and phase 2 times:
3.616 + 0.4352 = 4.052 milliseconds.

2.4.3 Frequency Domain Processing

After the forward range FFT, frequency domain processing
to achieve motion compensation, partial range walk
correction, and range compression commences.

-20-

GOODYEAR AEROSPACE
Corporation
GER-17020

In the frequency domain, the former two corrections force
processing that causes the frequency domain range vector
data to be multiplied by a complex number with unit
magnitude. The compression operation requires the
equivalent of a complex multiply using weights whose
magnitudes are nearly unity. The three complex correction
factors are combined prior to complex multiplying the
FFT'd range data:

Motion Compensation

Motion compensation must account for the fact that flight
perturbations displace the true origin of the range
vector indices from the assumed origin. The assumed
origin lies along the unperturbed path of the radar
platform; the true origin will be off the path.
Generally, only the component of the shift in the
direction of the radar beam center is significant. The
distance shift for each radar pulse is reduced to a
corresponding index shift value by the host computer that
supports the MPP. For the ERSAR mission, the shift
value, in range sample index units, is likely to be
fractional. This value is combined with the range walk
shift for a radar pulse and then scaled prior to
utilization by the MPP.

Range Walk

When the radar is used in a squint mode, a plot of the
power returned from a point target in a range sample
index/pulse index coordinate system is found to be an arc
that lasts for about 7000 pulses. The chord of the arc is
canted relative to the radar pulse index axis; the cant
becomes more severe as the squint angle increases. For
the ERSAR L case, a cant of as much as 86 range sample
indices in 7000 pulses can result. (When the squint angle
is zero, no canting results. The chord then is parallel
to the radar pulse axis.)

It is found that for processing convenience, it is useful
to convert to a sequence of local coordinate systems
whose sample index axes lie perpendicular to the chord
and whose pulse index axes lie parallel to the chord. The
origins of the rotated coordinate systems are set to lie
on the radar pulse index axis of the radar pulse
index/range sample index coordinate system.

By slipping (range walking) the indices of the samples of
successive pulses by ever increasing amounts, the effect
of rotation can be accomplished. Every 1760 radar pulses,

-21-

GOODYEAR AEROSPACE
Corporation
GER-17020

the origin of the rotated coordinate system is
re-initialized, and the linear increase of slippage as a
function of pulse sample index repeats as before.

The range walk delay value for a pulse is developed by
the host. When most severe, the index shift for the
pulse with index P is given by:

OFF=(86/(4*1760))*(P modulo 1760).

The range walk index shift is combined ~ with the index
shift developed for motion compensation. The residual of
the shift is treated in the frequency domain as follows.
The largest integer multiple of 16 that can be subtracted
from OFF without causing a negative result is subtracted
from OFF to get the residual shift value. This value is
scaled with the factor I/(Range FFT size). The resultant
value (described as a 12 bit integer of the form
(1.4.7)*(2**(-12)) is called CORR(P). ((x.y.z) denotes
x sign bits, y integer bits, and z fractional bits in a x
+ y + z bit value.)

Data index shifts that are integer multiples of 16 are
handled after the range inverse FFT.

Use of CORR(P)

In the frequency domain, data shifting is accomplished by
multiplying all frequency domain samples by:

C(N) - A(N) * (COS(B(N)) + i * SIN(B(N)))

where N is the index of a frequency domain sample, B(N)
is the correction phase angle, and A(N) is the correction
magnitude. Data that describe the frequency domain
representation of the range reference function in a
magnitude/phase form, namely, (A(N).REFANG(N)), in
conjunction with CORR(P), totally defines C(N). In
particular, in units of rotations:

B(N) - (N * CORR(P))/4096 + REFANG(N).

To determine C(N), the host sends CORR(P) values to the
MPP. The MPP performs the subsequent operations needed to
find C(N).

The quantity, N*(CORR(P)) is first computed. Since the
FFT's of 32 pulses exist within the array, it is
necessary to move 32 different CORR(P) values to the MPP
scalar register and to write them (masked) to the PE
registers using 32 P-region masks resident in the arrays.
When all the PE registers are loaded, the register values

-22-

GOODYEAR AEROSPACE
Corporation
GER-17020

are loaded into a 12-bit wide CORR field. The execution
time required for loading is 400 cycles. (Since 10
fields for samples exist in the arrays, 10 fields for
frequency indices must also exist. These fields are 13
bits each.)

To develop N*CORR(P), 10 field multiplies are required.
The computation time is (14*14+12)*10=2080 cycles, the
net angle, in rotations, is found by putting the radix
point (12+7) bits to the left of the right edge of the
LSB of the product field. The integer part of the product
is discarded.

Composite Phase Angle

The phase angle of the FFT'd range reference function is
then added to the combined motion and range walk phase
angle. Each such angle is described as a 6 bit integer of
the form (0.0.6). The reference function's magnitude is
described as a 6-bit unsigned scaled integer. (Note that
12*10=120 bit planes hold the reference function data.)
Thus, the add time = 230 cycles.

Cartesian Form of Weight

Next, the rotation angle, B(N), is used to develop the
complex value:

COS(B(N)) + i*SIN(B(N)).

Both COS(B(N)) and SIN(B(N)) are developed for the 10
fields. Using a second order polynominal technique, the
complex components corresponding to one field can be
computed in less than 250 cycles. Thus, the computation
time for 10 fields will be less than 2500 cycles.

Using the magnitude of the frequency domain range
reference function, A(N), the final complex correction
weights can be accomplished with 20 field multiplies. The
time for such multiplies will be about 880 cycles.

Complex Multiply

Having developed the complex correction weights as (8,8)
values, the final complex multiplication of the frequency
domain range vector data can be accomplished using 10
complex field multiplies (or 40 real multiplies and 20
field adds.). Assuming (1.0.13,1.0.13) data and
(1.0.7,1.0.7) weights, the total time for the 10 complex
field multiplies is 6980 cycles.

-23-

GOODYEAR AEROSPACE
Corporation
GER-17020

Total Time

The total time for motion compensation, partial range
walk correction, and frequency domain correlation
follows:

Motion Comp/Range Walk Data Loading = .040 millisec
Phase Angle Calculation = .208 millisec
Summing of Phase Angles = .023 millisec
Generation of COS, SIN of Phase = .250 millisec
Reference Magnitude Multiply = .088 millisec
Complex Multiply = .698 millisec

TOTAL = 1.307 millisec

2.4.4 Inverse FFT

After frequency domain filtering, motion compensation,
and fractional range walk correction, the samples are
transformed back to the time domain with an inverse FFT.
The samples for each pulse are first block normalized and
the block normalization factors are stored in the main
control memory of the MPP. The time required for block
normalization is 0.5 milliseconds. The inverse FFT is
performed by reversing the steps of the forward range
FFT.

Inverse 5-point FFT

Inverse five-point transforms are performed following the
steps in Figure C-4 of Appendix C from right to left.
The add/subtract operations of Table III are carried out
with 16-bit precision and the scalar multiplies are
carried out using 14-bit scalar reciprocals. When
appropriate, the results are scaled to prevent overflow
and underflow.

Each PE performs an inverse 5-point FFT in 2660 cycles.
Two transforms per PE require 5320 cycles or 0.532
milliseconds. Note that the array unit performs 32768
transforms in this time period. After the inverse
5-point transforms a second block normalization is
performed requiring 300 microseconds.

Inverse 1024-point FFT

The steps of the forward 1024-point FFT's (item 2.4.2)
are reversed to perform the inverse 1024-point FFT's.
The iteration coefficients require no change in location.

-24-

GOODYEAR AEROSPACE
Corporation
GER-17020

The steps are executed with 16-bit real and imaginary
parts. After the fifth and tenth iterations
normalization steps are added. The last normalization
step leaves the data with 12-bit real and imaginary
parts.

With D-bit data operands and W-bit weight operands the
number of cycles to perform the 4 real multiplies and 6
real add/subtract operations of a butterfly is given by:

BFLYTIME = 6 * (2 * D + 2) + 4 * (P(W) * D + K(W)).

Assuming D = 16 and W = 8, P(W) = 10 and K(W) = 8 so
BFLYTIME = 876 cycles. Five butterflies are required
(one for each value of index A). The BFLYTIME expression
is good for the iterations corresponding to iterations 4
through 10 of the forward FFT. The total butterfly time
for these seven iterations is 7 * 5 * 876 = 30,660
cycles.

The butterfly time for the iterations corresponding to
iterations 1, 2, and 3 of the forward FFT is computed
using the equations in item 2.4.2 for BFLYTIME(l),
BFLYTIME(2), and BFLYTIME(3) with (IN + 1), (IN + 2), (IN
+ 3), and (IN + 4) replaced by 16 and OVR = 2 and P = 10.
The butterfly time for these three iterations is 5 * 1364
= 6820 cycles.

Thus, the total butterfly time for the ten iterations of
the 1024-point inverse transforms is 30,660 + 6820 =
37,480 cycles or 3.748 milliseconds.

The move time between successive iterations is readily
computed. The length of the moves after iterations 1
through 9 are, 16, 8, 4, 2, 1, 8, 4, 2, and 1,
respectively. The total length of the moves is 46 so 46
route cycles are required per bit plane. Each bit plane
is accessed 9 times and each access uses three cycles
(read, read masked and store) so there are 27 cycles per
bit plane for accessing. The number of cycles per bit
plane is doubled since moves occur in both directions so
each bit plane requires 2 * (46 + 27) = 146 cycles. A
total of 160 bit planes are moved so the move time is 160
* 146 «= 23660 cycles or 2.336 milliseconds.

Timing Summary

The time to invert the 32 5120-point vectors back to the
time domain is summarized below:

-25-

GOODYEAR AEROSPACE
Corporation
GER-17020

First Normalization
Inverse 5-point FFT's
Second Normalization
Third and fourth Normalizations
Inverse 1024-point FFT Butterflies
Inverse 1024-point FFT Move Time

TOTAL

= 0.500 milliseconds
= 0.532
- 0.300
= 0.800
- 3.748
= 2.336

= 8.216 milliseconds

2.4.5 Output to Staging Memory

The range-processed samples are sent back to staging
memory 2 to be collected and then re-read in
corner-turned fashion for azimuth processing. The output
process is much like the input process (see item 2.4.1)
except that the real and imaginary parts of each sample
are 12 bits long instead of 8 bits and the group of
samples for the 32 pulses are moved a multiple of 16
range bins to make any gross range-walk correction
required. First the samples in the ten slots within each
PE are rearranged to invert the permutation performed by
the second step of the input process. Then the samples
are output to staging memory 2 which inverts the
permutation performed by the first step of the input
process and shifts the location of the data for the gross
range-walk correction.

Rearrangement of the slots within each PE requires 576
processing cycles. Outputting of the data interrupts the
processing 240 times (once per bit-plane) so a total of
816 processing cycles (82 microseconds) are required. The
I/O control unit moves data at 160 megabytes per second
so it requires 3 milliseconds to output the data.

2.5 Azimuth Processing

2.5.1 Input from Staging Memory

Azimuth processing reads 32 range-processed samples from
* each of 4096 pulses into the array unit. The layout of

data in the array unit is selected to facilitate
performing an FFT in the azimuth direction, interpolating
across range bins to correct for range curvature,
dividing the set of data into four looks, and then
performing an inverse FFT within each look. The array
unit is divided up into 32 sub-arrays with each sub-array
covering 4 rows and 128 columns. Each PE holds eight

-26-

GOODYEAR AEROSPACE
Corporation
GER-17020

range-processed samples and each sample has a 12-bit real
part and a 12-bit imaginary part.

For I an integer from 0 through 31, range-bin I of the 32
range-bin group is treated in the sub-array covering rows
41, 41+1, 41+2, and 41+3 of the array unit. Each PE has
eight slots indexed 0 through 7. Slot J of PE K of the
sub-array holds data from pulse 512J+K of the 4096 pulses
being treated. The PE's within each sub-array are
arranged as follows. Let K = 16W + 4X + 2Y + Z where W =
0, 1, ..., or 31; X = 0, 1, 2, or 3; Y = 0 or 1; and Z =
0 or 1. Processing element K is located in row X and
column 64Z + 32Y + W of the sub-array.

Range curvature correction may slide the range bins up to
seven places. This fact coupled with the usage of a
four-point interpolation formula means that out of the 32
range bins being processed only 23 bins may have useful
output data. Thus, successive azimuth processing steps
want some redundancy in the input data. Each step wants
32 range bins but the first nine bins should be a repeat
of the last nine bins of the previous step. In the
staging memory each main stager word holds data from 16
successive range bins. The data for the 32 bins required
by the azimuth processing may overlap 3 main stager
words. Thus, the output sub-stager of the staging memory
reads a group of 48 bins from the main stager and then
sends only the desired 32 bins to the array unit. This
means that the basic 1/0 rate of the staging memory is
reduced to only 2/3 of 160 megabytes per second (106.67
megabytes per second).

Each of the eight slots has 24 bit-planes so there are
192 bit-planes to be loaded into the array unit. This
will interrupt array unit processing 192 times for a loss
of 192 processing cycles (19.2 microseconds). The
393,216 bytes of an array load will be transferred by the
I/O control unit in 3.69 milliseconds.

2.5.2 Fast Fourier Transform (FFT)

The azimuth FFT processing proceeds in a manner similar
to the range FFT processing. As in range processing, a
total of 32 azimuth FFT's are performed concurrently.
The 4096-point FFT is about the same as the 5120-point
FFT so one might expect a similar data layout in the
array unit. But the range curvature correction requires
data moves between FFT's so the layout is different.

-27-

GOODYEAR AEROSPACE
Corporation
GER-17020

Layout

The PE allocation for one 4096-point azimuth FFT uses 4
rows by 128 columns (figure 7). Each PE holds eight
complex values. Each value is allocated 36 bits (18 real
and 18 imaginary). When first loaded with input vector
data only 24 bits per value are used (12 real and 12
imaginary). The remaining bits of each value are used to
increase dynamic range as processing progresses. The I/O
buffer is the same size as the work region, 8 x 36 = 288
bit planes. A total of eight 12-bit array fields is used
to store output look magnitudes and the remaining storage
is used for storing output look complex values. Figure 8
illustrates the layout of PE's within a typical
sub-array.

Flow

As in the range processing case, group G+l of 32 azimuth
vectors is loaded into the I/O buffer as group G-l of 32
processed vectors is being unloaded from the I/O buffer.
Meanwhile, the PE's are processing group G in the work
region.

Processing Time

i
The first three iterations of the forward azimuth FFT are \
treated specially. The remaining iterations are treated * :

in a standard radix-2 butterfly manner except for
precision increase. The formula for the execution cycles >
for all iterations is shown below:

Iteration Number of Cycles
(I)

1 NFP*(4*(IOP(I)*3-K)VR))
2 NFP*((2*IOP(I)+IIP(I))*6+5*OVR)
3 NFP*2*(((2+S*P(W)/3)*IIP(I)+IOP(I)+1)*3 c-

+S*K(W)+2.5*OVR)
(4-12) NFP*4*((P(W)+1)*IIP(I)+2*IOP(I)+K(W)+G+1.5*OVR)

where:

NFP = the number of array unit field pairs;
OVR = the overhead set-up charge;
I • iteration index;
IOP(I) « number of bits in real or imaginary part

output from iteration I;

-28-

Figure 7 - FORWARD AZIMUTH FFT DATA LAYOUT
IN WORK REGION

-29-

COOD/YEAR

ROW INDEX-
—*"X (OR I) DIRECTION

4)
BITS)'

—̂V

0
1
1
1

•̂
)

S 31
oo 32

^ 1

UJ 'i 1
s:

I

0
O

63
64

1
i
i

95
96

1
1
1

127

0
16

•

496
2
18

•

498
1

17

•

497
3
19

•

499

4
20

•

500
6
22

•

502
5

21

9

501
7
23

•

503

8
24

•

504
10
26

.

506
9
25

•

505
11
27

•

507

12
28

•

508
14
30

.

510
13
29

*

50p
15
31

.

511

Figure 8 - TYPICAL SUBARRAY

-30-

GOODYEAR AEROSPACE
Corporation
GER-17020

IIP(I) = number of bits in real or imaginary part
input to iteration I;

S = scalar multiply enhancement factor
accounting for the higher speed of scalar
multiplies over field-by-field multiplies;

P(W) = multiplicative factor for a W-bit coefficient;
K(W) = additive factor for a W-bit coefficient;
G = number of guard bits used in add/subtract

operations during complex multiplies.

For the case at hand, NFP = 4, OVR =2, S = 0.5, W = 8,
P(W) = 10 (see Table IV), K(W) = 8 (see Table IV), and G
= 3.

TABLE IV - Multiplication Factors

W P(W) K(W) W P(W) K(W)

3 6 2 1 8 2 2 1 6
4 6 4 1 9 2 2 1 8
5 10 2 20 22 20
6 10 4 21 26 18
7 10 6 22 26 20

8 10 8 23 26 22
9 14 6 24 26 24
10 14 8 25 30 22
11 14 10 26 30 24
12 14 12 27 30 26

13 18 10 28 30 28
14 18 12 29 34 26
15 18 14 30 34 28
16 18 16 31 34 30
17 22 14 32 34 32

To find IIP(I) and IOP(I) for a given iteration index, I,
use Table V. Using these values, the processing time for
32 4096-point forward azimuth FFT's is 31992 cycles or
3.199 milliseconds.

-31-

GOODYEAR AEROSPACE
Corporation
GER-17020

TABLE V - Forward Azimuth FFT Parameters

Iteration
Index
I

1
2
3
4
5
6
7
8
9
10
11
12

Lateral Shift
(steps/plane)

STEP(I)

16
8
4
2
1
2
1

32
64

Input
Precision
IIP(D

11
12
13
13
14
14
15
15
16
16
17
17

Output
Precision

12
13
13
14
14
15
15
16
16
17
17
18

Data Exchange

The execution time for the data exchanges of an iteration
is given by:

MOVE TIME = IOP(I)*(STEP(I)+3)*NFP*4 cycles

From Table V the total move time for all iterations is
4.019 milliseconds.

Timing Summary

The execution time for processing a group of thirty-two
4096 azimuth element vectors through a forward 4096-point
FFT is summarized below:

Processing Time = 3.199 milliseconds
Data Exchange Time = 4.019

TOTAL 7.218 milliseconds

2.5.3 Frequency Domain Processing

As an initial step to curvature correction, the data of
the 8 fields must be exchanged in two power of 2 lateral
moves so that all data associated with a given look is in
association with only 4*32 PE's. The shift time is
computed using the move time expression of item 2.5.2
with IOP(I)=18, NFP=4, and STEP(I)=64+32. Thus, the look

-32-

GOODYEAR AEROSPACE
Corporation
GER-17020

associate move time = 28512 cycles.

Normalization

After the data has been associated by look frequency
regions, the data is block normalized over all 32 range
indices. The normalization value is first generated by
look index and then the normalization procedure
commences. By restricting normalization to 15 or less
bit positions, it is possible to perform the
normalization of the data of all 8 fields of 36 bit
planes/field in less than .075 milliseconds.

Interpolation

Range curvature correction commences next. To perform
this task, azimuth frequency domain data must be slipped
in the range index direction up to 7 index positions.
Since the actual shift generally involves a fractional
component, a cubic convolution technique, which uses the
samples with range indices closest to the desired index,
is used to approximate the interpolated value. In
particular, the data value at azimuth frequency domain
index a and range index r is to be the sample value at
a,r+l+x where (Kx<7. The shift value x consists of an
integer N from 0 to 6 plus a fraction f. Thus, to
generate the interpolated sample value, the value of f
and the 4 sample values with indices a,r+N+J where J=0,
1, 2, 3 are required to establish the sample value at
a,r.

Since N and f can be precomputed for each a,r (based on
geometry and mission parameters) and can be associated
with the PE that corresponds to the a,r point,a
particular PE knows from where it must get its data (N)
and it has the correct parameter (f) to develop the
interpolated value for a,r. In fact, an f-field is loaded
for each of the 8 fields of sample data in the array.
(Since f is defined as a 3-bit integer, the 8 fields
require 24 bits. The fields are loaded after the sample
data is loaded.) Also, instead of loading 8 a-fields into
the array, 8 mask sets corresponding to each a-value are
loaded into the array. Each mask set of 8 bits is used to
strip off required data as it is shifted across the PE
plane in an increasing N direction.

A total of 8 x 4 «= 32 lateral shifts of each data plane
is required to make the data moves and to strip off the
desired data. Each plane must be read once and written
four times. Thus, (36 x 8) x (32 + 1 + 4) = 10656 cycles

-33-

GOODYEAR AEROSPACE
Corporation
GER-17020

are required to associate the data with the appropriate
PE's (i.e., (a,r) locations).

After the data are at location, the sample at (a,r),
SAMP, is computed using the cubic convolution
interpolation expression:

SAMP = Il+f*(I2-IO+f*(IO-Il+(f-l)*(Il-IO+l3-I2))).

Real and imaginary fields are treated separately so SAMP
must be computed for 16 half-fields, each of which is 18
bits. Each computation requires 672 cycles, and so, a
total of 10,752 cycles is required for interpolation
processing.

Correlation

Once the data are interpolated, it can be
frequency-domain cross correlated against each of the
four look reference patterns. The frequency domain
versions of the reference patterns are stored within the
arrays for each of the 8 interpolated data fields. Each
reference is described by 6 bits of real and 6 bits of
imaginary data. It requires 96-bit planes (not 4*96) bit
planes for storage.

The execution time required to cross correlate all four
looks in the frequency domain is equal to the time of 8
complex field times field multiplies, namely, 8 fields*68
cycles/field=5456 cycles.

When the frequency domain correlation processing is
completed, the data can be transformed back into the time
domain.

Total Time

The total execution time breakdown for curvature
correction and correlation for 32 range indices by 440
output azimuth samples follows:

Look associate move = 2.851 milliseconds
Normalization = .075 milliseconds
Interpolation grouping moves = 1.066 milliseconds
Interpolation = 1.075 milliseconds
Correlation = .546 milliseconds

TOTAL = 5.613 milliseconds

-34-

GOODYEAR AEROSPACE
Corporation
GER-17020

2.5.4 Inverse FFT

After correcting for curvature and multiplying the
transformed data by the transformed references for the
four looks, the azimuth data corresponding to four looks
and 32 range bins exist within the array. Each look
corresponds to one quarter of the 4096 azimuth frequency
bins; thus, if the 1024 frequency bins of a quarter are
inverse transformed, the result is one look in the time
domain with a time spacing four times as great as the
input spacing. The reduction in sampling rate is
consistent with the reduction in signal bandwidth.

Data Layout

The data layout allows the immediate start of the inverse
1024-point FFT. The data for each inverse FFT lie within
a 4 row by 32 column PE sub-array. A total of 128
inverse FFT's are performed in parallel. Only 4 x 23 =
92 of the resultant time vectors are useful since the
remaining vectors have not been fully corrected for range
curvature. The process is repeated 174 times to cover
the full swath of 4000 range bins. Each PE contains
eight 36-bit complex elements.

Processing Time

The time to process 128 inverse 1024-point FFT's is
determined using Tables IV and V and the cycle count
expressions of item 2.5.2. All processing is performed
on 18-bit real and 18-bit imaginary components. The real
and imaginary parts of the iteration weight vector is
defined using 8 bits. The processing time is 28065
cyclesv

Normalization Time

Block floating point normalization is performed after
iterations 2, 6, and 10. The total time for such
normalizations is less than 0.800 milliseconds. It
should be noted that the last normalization rescales the
output to account for a host-specified rescaling
constant. Note that since only 440 of the 1024 elements
of each output vector are useful and these lie within
just 4 of the 8 array fields, the last normalization or
re-scaling step requires less processing.

-35-

GOODYEAR AEROSPACE
Corporation
GER-17020

Data Exchange Time

Data moves required between iterations of the inverse FFT
are not as extensive as those for the forward FFT's. The
lateral shift of each bit plane after each iteration is
listed below:

Iteration (I) STEP(I)

1 1
2 2
3 1
4 2
5 4
6 8
7 16

TOTAL 34

No lateral shifts are required after iterations 8, 9, and
10 because the data exchanges occur between array fields
within the PE's. The total time for data exchange is
computed using the data exchange cycle count expression
of item 2.5.2. The total time is 15840 cycles.

Timing Summary

The total time required to inverse FFT the 128 1024-point
vectors is shown below:

Processing Time = 2.806 milliseconds
Data Exchange Time = 1.584
Normalization Time = 0.800

TOTAL = 5.190 milliseconds

2.5.5 Output to Staging Memory

After azimuth processing the complex data for one look
may be output to a display. The data format in the array
unit is as follows. Look 0 is in the first 32 columns of
the array unit, look 2 is in the next 32 columns of the
array unit, look 1 is in the next 32 columns of the array
unit, and look 3 is in the last 32 columns of the array
unit. Each look has 512 bins in the azimuth direction
and 23 to 32 bins in the range direction. Let J = 128X +
4Y + Z where X = 0, 1, 2, or 3; Y = 0, 1, ..., 31; and Z
= 0, 1, 2, or 3. Range bin K (K = 0, 1, 31) of
azimuth bin J is stored in slot X of the PE in row 4K + Z

-36-

GOODYEAR AEROSPACE
Corporation
GER-17020

of column Y of the look. Each sample has a 16-bit real
part and a 16-bit imaginary part.

To output the complex data for one look 128 bit-planes
are transferred to the S-registers but the S-registers
are only shifted 32 columns for each bit-plane. The
array unit processing is interrupted for 128 processing
cycles (13 microseconds) and the I/O control unit takes
410 microseconds.

2.6 Combining Looks

2.6.1 Input from Staging Memory

To combine the four looks an array of accumulated values
is kept in staging memory 1. After the samples have been
processed in the azimuth direction, their magnitudes are
computed and then added to the accumulated values. The
array of accumulated values is shifted appropriately so
that after four passes the four looks have been added
together.

The array of accumulated values has 14-bit operands so
that four 12-bit magnitudes can be summed together
without overflow. The values are rounded down to 12 bits
when sent to the display.

In the array unit the array of accumulated values fills
56 bit-planes (14 planes for each of the four slots).
The inputting of the array interrupts the processing 56
times for a loss of 5.6 microseconds of processing. The
I/O unit transfers the array in 717 microseconds.

2.6.2 Processing

The magnitudes of the samples are calculated by
extracting the square root of the sum of the squares of
the real and imaginary parts. This requires 882
processing cycles for each array of samples. A 12-bit
magnitude is computed from the 16-bit real and imaginary
parts. Combining the four looks requires the addition of
the magnitude arrays to the accumulated value arrays.
Addition of a 12-bit magnitude array to a 14-bit
accumulated value array takes 40 processing cycles.
Thus, processing of the four arrays requires (882 + 40) x
4 = 3688 processing cycles (368.8 microseconds).

-37-

GOODYEAR AEROSPACE
Corporation
GER-17020

2.6.3 Output to Staging Memory

As described in item 2.6.1 an array of accumulated values
is kept in staging memory 1. After adding in the current
set of looks the array is output to the staging memory.
The time required is 717 microseconds by the 1/0 control
unit and 5.6 microseconds of processing time.

One quarter of this array (the quarter that has
accumulated all four looks) is output to the display from
staging memory 1 while the other three quarters are
shifted appropriately and fed back to the array unit
later for the addition of further looks.

2.7 Clutterlock

The purpose of the clutterlock is to determine the orientation of
the synthetic aperture with respect to the physical antenna
aperture. Unless the orientation is properly maintained, either by
an accurate antenna stabilization system or through correction
signals developed from the clutterlock indications, errors will
appear in the image. The most apparent effect is that the FRF will
be inadequate for sampling the doppler frequencies.

The operation of the clutterlock is based upon the assumption that
the magnitude of the targets giving rise to the returns is
uniformly distributed throughout the illuminated area. Hence the
summation of the positive and negative doppler signals should be
zero if the antenna is properly oriented. The extent of the
departure is indicated by the magnitude and sign of the clutterlock
signal.

The clutterlock could be implemented by summing the positive and
negative frequency signal values after the azimuth FFT. A
computationally simpler approach is obtained by using the results
after the range Inverse FFT. At this point the signals themselves
represent a summation over the physical aperture.

The clutterlock signal is derived from the 64 range bins at the
nearest range and the 64 range bins at the farthest range. In each
range bin, the total phase shift is computed over a synthetic
aperture (1760 pulses). The total phase shift may include several
complete revolutions around the circle. We assume the phase shift
between adjacent samples is less than a right angle (if it were
greater than a right angle then either the assumption of uniform
target distribution is violated or the returns have a very low
magnitude). The signs of the real and the imaginary parts are used
to identify the quadrant of each sample. The quadrants of adjacent
samples are compared to derive the net quadrant changes and the net

-38-

GOODYEAR AEROSPACE
Corporation
GER-17020

quadrant changes are summed over the 1760 samples to get the total
phase shift. If two adjacent samples in a range bin are in
opposite quadrants then the range bin is discarded' because the
phase shift between these samples is greater than a right angle.

The average phase shift of the 64 near range bins is computed by
summing the total phase shifts of the bins and dividing by the
number of bins. The average of the 64 far range bins is computed
similarly. The averages are smoothed by passing the results of
each synthetic aperture through a low pass filter with a time
constant of several aperture lengths. The smoothed averages are
used to derive the clutterlock signal. Processing requires 0.4
milliseconds per synthetic aperture length.

2.8 Autofocus

Autofocus is a method by which the image focus can be improved by
means of computations made on the images. The method attempts to
correct for azimuth parabolic phase error, a major cause of image
defocusing. The approach is based upon the fact that images from
successive looks at the same target area over a short azimuth
region will not show azimuth displacement if there is no phase
error. However, if azimuth parabolic phase error exists, the two
images will show displacement in the azimuth position of targets.
The situation is illustrated in Figure 9 in which parabolic azimuth
phase error results in a difference in look angles.

A cross correlation between the two images in the azimuth direction
indicates the amount of parabolic azimuth phase error by indicating
quantitatively the azimuth geometrical displacement between the two
images. If the magnitude of the phase error is changing slowly,
the usual condition, a shift of three values in azimuth from the
previously determined value should locate the new value of the peak
of the cross-correlation curve. The amount of phase error, thus
determined can be used to correct the phase error in the images
until a new cross-correlation is made. The intervals between
cross-correlation depends upon the rate at which the parabolic
azimuth phase error is changing and is assumed in this report to be
required once for every ten aperture lengths traveled.

For computational convenience autofocus correlates the magnitude of
look L to the sum of the magnitudes of looks 1 through L-l for L =
2, 3, and 4. Multiplying the 12-bit look magnitude by the 14-bit
magnitude sum requires 208 cycles. The multiplication is repeated
for each of the four array fields in a PE and the products are
summed to form a 28-bit sum within each PE. The within-PE
operations require 4 * 208 + 140 = 972 cycles.

-39-

<J>ERROR
IMAGE AT
LOOK ANGLE ONE

IMAGE AT

LOOK ANGLE TWO

AZIMUTH POSITION

Figure 9 - The Autofocus Principle

-40-

GOODYEAR AEROSPACE
Corporation
GER-17020

Then the sums of the PE's within each 32 x 32 sub-array of the
array unit are added together into the corner elements of the
sub-arrays. The summation of N-bit operands D places apart to
generate (N+l)-bit sums requires:

N * (D + 2) + 2 cycles.

There are ten steps to the sub-array summation where:

N - 28, 29, 30, 31, 32, 33, 34, 35, 36, and 37; and

D = 16, 16, 8, 8, 4, 4, 2, 2, 1, and 1;

respectively. Sub-array summation requires a total of 2541 cycles.
The 38-bit sub-array sums are then sent to the array control unit
for final summation. This requires 114 cycles.

Thus, the time required is 972 + 2541 + 114 = 3627 cycles to do the
correlations for 23 range bins for one synthetic aperture. The
process is repeated three times with the looks shifted -1, 0, and 1
place in the azimuth direction. To treat the complete swath of
4000 range bins the steps are repeated 174 times for a time of 174
* 3 * 3627 = 1,893,294 cycles or 190 milliseconds. If the
autofocus operation is performed once for every ten aperture
lengths the time penalty is 19 milliseconds per aperture.

2.9 Output to Display

Staging memory 1 collects output data for the display. As
described in item 2.6.3, one quarter of the array of accumulated
values contains the summation of the magnitudes of the four looks.
Item 2.5.5 describes the output of the complex values of one look
to the staging memory. Staging memory 1 stores the output arrays
in azimuth- oriented format so the display should scan each range
bin for a full 440 samples before proceeding to the next range bin.
The display reads the output data from the staging memory through a
buffer so that the output port of staging memory 1 can be
time-shared with other processes. The output port transmits data
at a 160 megabyte per second rate. No processing cycles in the
array unit are required to handle the movement of data from staging
memory 1 to the display.

-41-

GOODYEAR AEROSPACE
Corporation
GER-17020

2.10 Timing Summary

The time to range process the samples from 32 radar pulses can be
calculated by summing the times shown in items 2.4.1 through 2.4.5.
Range processing requires 0.055 + 4.052 + 1.307 + 8.216 + 0.082 =
13.712 milliseconds for 32 radar pulses. Array unit input and
output times for 32 radar pulses are 2 and 3 milliseconds,
respectively, so when array unit input, output and processing are
overlapped the time is governed by processing (13.712
milliseconds). To range process the samples from 1760 pulses
requires 55 x 13.712 = 754.2 milliseconds.

Azimuth processing treats 32 input range bins by 3520 pulses at one
time, and outputs about 23 range bins by 1760 pulses. Processing
time is calculated by summing up the times shown in items 2.5.1
through 2.5.5. Azimuth processing requires 0.019 + 7.218 + 5.613 +
5.190 + 0.013 = 18.053 milliseconds. Array unit I/O time can be
overlapped with processing. The process is repeated 174 times to
process all 4000 range bins, 174 x 18.053 = 3141 milliseconds.

The time to combine the looks is computed by summing the times
shown in items 2.6.1, 2.6.2, and 2.6.3. Processing time is 5.6 +
368.8 + 5.6 = 380 microseconds. For the full swath width of 4000
range bins the process is repeated 174 times for a total of 67
milliseconds.

Item 2.7 shows that the clutterlock requires 0.4 milliseconds per
synthetic aperture length of 1760 pulses and item 2.8 shows that
the time penalty for autofocus is 19 milliseconds per aperture.

The total processing time for one synthetic aperture length is
754.2 + 3141 + 67 + 0.4 + 19 = 3981.6 milliseconds or a little less
than 4 seconds. The bulk of the processing time is spent in
azimuth processing where the array unit layout is not optimum for
the FFT operations.

-42-

GOODYEAR AEROSPACE
Corporation
GER-17020

SECTION 3 - FLEXIBILITY

Since the MPP is fully programmable in its operation, it can be
readily adapted to any desired operating parameters and modes. The
range and azimuth compression ratios can be changed as desired. As
indicated in section 2 the range and azimuth compression processing
is performed with FFT's. Changing these ratios therefore means
changing the length of the FFT. There are certain FFT lengths,
small multiples of powers of two, which are more convenient to use
than other values. If these special FFT lengths do not exactly
match a desired length, the next higher special value can be
selected and the difference between the desired value and the
special value filled with zeros. For example if a 187 point
transform were desired, a 192 point (3x64) transform would be
selected and 5 zero values filled in. The special values can be
pre-determined over a range of values, say 10 to 5120, so that the
proper value can be selected by the software.

Various swath widths can also be handled with different software
programs. The processing time is nearly proportional to the
product of the FFT length and the number of looks. Trade-offs
between resolution, number of looks, and swath width can be made
with little change in processing time if the product just mentioned
is maintained. For example a four look half swath processing mode
can be readily converted to a two look full swath processing mode
at nearly the same total processing time. If different total
processing times are permitted, a full range of resolution, number
of looks, and swath widths would be possible.

The MPP design is modular so that it could be expanded to
accommodate such items as greater swath width or more parallel
looks. The expansion could be performed in several different ways
as required for the particular application. The array memory can
be expanded which would permit faster array unit operation.
Several staging memories can be operated together to provide
greater memory capacity. Finally several array units can be
operated together with each array unit performing part of the
processing. The high I/O rates of an array unit make such
operation efficient.

-43-

GOODYEAR AEROSPACE
Corporation
GER-17020

SECTION 4 - CONCLUSIONS

Item 2.10 of section 2 shows that about 4 seconds are required to
process the SAR data from one synthetic aperture length with the
configuration described in item 1.3.2 of section 1. This is about
5.7 times the real-time input rate (0.7 seconds are required to
traverse one synthetic aperture length).

During this time the data for 1760 radar pulses are treated. An
equivalent of 438 million butterfly operations are performed. The
typical butterfly comprises six adds and four multiplications for a
total of 4.38 billion real arithmetic operations. FFT arithmetic
uses only about 1.4 seconds (35% of the 4 second processing time)
so the average processing rate while executing FFT's is 3.12
billion real arithmetic operations per second. The moves required
by the FFT's add 1.2 seconds per aperture (30% of the processing
time) and the normalizations add about 6% to the processing time so
the FFT processing rate drops to about one-half or 1.5 billion real
arithmetic operations per second when these support operations are
added.

Range processing is more efficient than azimuth processing - a
reflection of the better layout for the range processing. For
azimuth processing the layout of the array unit data has to be
optimized for azimuth FFT operations, range curvature
interpolations, and azimuth inverse FFT operations. The array unit
memory is not large enough to allow a layout which is good for all
operations.

Overall, data moves account for about half of the processing
cycles. A larger array memory (more bits per PE) would reduce move
times and also allow more scalar multiplications in the FFT's.
Populating the array unit with 4096 bits per PE will reduce move
time to about 20% of the execution time and halve the total
execution time. An ARU with 4096 bits per PE will execute the SAR
algorithm in 3 times real time.

A real-time configuration for the baseline mission is shown in
Figure 10. Each array unit has 4096 bits of storage per PE.
Staging memory 1 buffers and reformats the SAR input data for range
processing by array unit 1. The range processed samples are
collected in staging memory 2 and reformatted for azimuth
processing by array unit 2 (or by array units 2 and 3). The fully
processed samples are then collected in staging memory 3 where they
are rearranged in a convenient format for the display.

The ADSPS is based on the MPP so all of the MPP software is
available to implement SAR processing algorithms. System software

-44-

INPUT

STAGING
MEMORY

ARRAY
UNIT

STAGING
MEMORY

2

ARRAY
UNIT
2

STAGING
MEMORY

3

1

A R R A Y
UNIT

3

DISPLAY

Figure 10 - Real Time SAR Process ing System

-45- GOOD/YEAR

GOODYEAR AEROSPACE
Corporation
GER-17020

in the MFP includes two macro-assemblers: the main control
assembler to assemble application programs and the PE control
assembler to add user written micro-routines to the set of system
subroutines in the PE control unit memory. A linker and a
librarian are included to facilitate the linking of separately
assembled modules with modules from one or more libraries* The
PDP-11 editor can be used to generate program source files. The
control and debug module (CAD) loads programs into the MPP and
facilitates their debugging. The staging memory manager manages
the flow and reformatting of data through the staging memories.

To make the ADSPS a general-purpose SAR processor a number of
modules should be added to the MPP system software. Each SAR
source device should have a driver to govern the inputting of SAR
data to the input staging memory. Similarly the display output
device should have a driver to control the display of processed
data. Since most SAR processing algorithms make extensive use of
the fast Fourier transform a general-purpose FFT package is
desirable. The package should handle a range of operand lengths
and FFT sizes. The FFT size should range from 64 to 16384 and
equal a power of two or a small odd multiple of a power of two.
Other packages can be added to handle other common SAR operations
such as range walk and curvature correction, reference function
generation, complex-number magnitude determination, and the
combination of multiple looks. With these packages the task of
generating a SAR processing program for a particular mission is
considerably simplified.

-46-

Appendix A

ANALYSIS OF SAR MISSION REQUIREMENTS

1. PURPOSE

The processing of synthetic aperture radar (SAR)
signals is of appreciable interest to NASA liany
NASA missions will employ SAR sensors. The variety
of the SAR missions is illustrated in the data
provided in Table I of the technical requirements-
(For reader convenience this table is repeated as
Table I in this section). Table I presents the SAR
data in terms of mission requirements. In
considering the digital SAR processing it is more
useful to have the data expressed in terms
appropriate to the data processing.

The analyses provided in the next item serve to
develop processing related parameters from the
mission related parameters of Table I. In this way
the relative complexities of the different missions
can be compared with respect to various aspects of
the processing load- In particular data related to
the Earth Resources SAR (ERSAR-L) mission and the
SEASAT mission, which are similar to the baseline
mission, can be compared with the other missions.
It will be shown that these two missions represent
by far the most pressing processing loads. Hence if
the MPP can meet the baseline mission requirements,
which encompass the ERSAR-L and SEASAT requirements,
all other missions can be accommodated.

2.0 ANALYSIS PROCEDURES

2.1 Approach

The first step in converting the mission parameters
of Table I to processing related parameters is to
compute the wavelengths corresponding to the RF
frequencies. This computation is performed in order
to permit further calculations to be made in terms
of distance quantities. The wavelength is computed
according to the equation:

A • f CD

where c is the velocity of light and has been taken
as 3-OE10 centimeters per second.

Next the swath width in pixels, is determined by

41 -1-

dividing the swath width as given in kilometers by
the resolution. This operation places the swath
width in processor-related terms.

The slant range must now be determined from the
given altitude and incident angle values. This
computation can be carried out with the aid of the
relations shown in Figure 1.

From this figure making use of the law of sines:

cos B - -a C2)

A l s o ,

0 = B + a - Tr /2

And thus,

p - R sin Q
s ~ cos B

In applying equation (3) a value of 6378 kilometers
was used for the radius of the earth for the earth
satellite missions, a value of 6050 kilometers was
used for the radius of Venus, and a 4/3 earth radius
value of 8504 kilometers was used for the two
aircraft missions (aircraft L and aircraft X) to
account for atmospheric refraction. In the
satellite missions atmospheric refraction can be
ignored since most of the radar propagation path is
above the earth's atmosphere.

The maximum slant ranges for the two aircraft
missions were taken as the horizon limit values
since the minimum incident angle was given as 0
degrees. Two values of maximum slant range were
then computed corresponding to the two altitude
values given in Table I.. Although these slant
range values still result in lower processing loads
for the aircraft missions than the SEASAT and
ERSAR-L missions, the horizon limit slant range may
yield processing parameters that are more stringent
than actually needed for the aircraft missions.

-2-

A najor processing-related parameter, the synthetic
aperture length (LS) may now be determined:

L - S . (4)Ls ^a l l

K = Aperture Constant
W = Desired Resolution

The value of the aperture constant could
theoretically be taken as unity. In practice a
somewhat larger value is required for K to account
for broadening of the main-lobe due to various phase
errors and to permit shapening of the synthetic
array's sidelobe characteristics. A sonewhat
typical value of 1-25 was used for K in the
computations.

The azimuth compression ratio can be determined by
dividing the synthetic aperture length by the
required resolution. In the cases of the Aircraft
X, VOIR Lo-Res, and ICEX missions it was found that
the mission requirements in some cases could be met
with single-look compression ratios less than unity.
That is the desired azimuth resolution could be
achieved without SAK processing in the normal sense
- only the azimuth bandpass prefilter operations
needed to separate the different required azimuth
looks are necessary.

A quantity called the "total azimuth compression
ratio" may now be found by multiplying the
single-look compression ratio by the number of
looks- In the case of the ERSAR missions the result
is also multiplied by 2 to account for the dual
polarization. The total azimuth compression ratio
has no real physical significance but is an
indication of the extent of the total azimuth
processing required for the mission.

A second parameter of major significance to the SAR
processing may now be computed with the aid of
Figure 2. In Figure 2, the origin is taken at the
SAR platform, notion is in the X direction, and the
figure is drawn in the slant range plane. The slant
range to any target point is given by:

* *27RS = YX +y = y

If y» x (usual case) (5) 41

«, • > + 1/2 4 • «so * 1/2 4

Now,

0 = radar phase angle = 4rr R,

. 4 nRs" + 2_j*i f

A 4 T T X V

= *Rso

1 'f = Doppler frequency = — Q
O o

2 xv

The maximum fa occurs for x = —|-

f max = -y4—a ARso

The PRF must be at least twice the maximum doppler
frequency in order to eliminate azimuth ambiguities-
Hence ,

PRF - . C6)
AKso

Substituting the value of Ls from equation (4)

PRF = - C7)

The reason that the required PRF is a function of
the required resolution is that as the required
resolution W is reduced, the length of the phase
history record which must be examined and the length
of the synthetic aperture must be increased. These
considerations lead to the examination of higher
doppler frequencies with the attendant higher PRF.

The product of the PRF and the swath width in pixels
provides the pixel per second processor input rate-
Note that if D is the distance traveled during one
PRF period then,

n s
f |\ | O V

-4-

Substituting from equation (7)

D = £ C81

Thus since K is greater than unity, the distance
traveled during a PRF period is less than the
required resolution. The input pixel rate is also
higher than the product of swath width in pixels by
the platform velocity in pixels per second (an input
pixel rate which casual observation might indicate)
by the factor K. As previously indicated, K must be
larger than unity to account for phase errors and to
provide azimuth sidelobe control. However after
account has been made for these considerations in
the earlier stages of the processing, the balance of
the processing could proceed at a pixel spacing of
W- However the displayed output image should be
generated at a pixel spacing less than W to yield a
true resolution of W in the image. This result
follows because of granularity effects in the
digitally produced image.

It should be noted that because of peak transmitter
power capacity or other considerations, the actual
transmitted PRF may be higher than that indicated by
equation (6) and (7). In such cases the actual PRF
is immediately reduced to the minimum value as given
by equations (6) and (7) at the start of the digital
SAR processing by the azimuth prefilter operations.
In this way processing requirements for the balance
of the operations are kept at minimum values.

The value of V used in equations (6) and (7) was
taken to be the orbital velocity of a satellite in
circular orbit in the case of the satellite missions
and was taken to be 300 meters per second in the
case of the Aircraft L mission. The orbital velocity
of a satellite in circular orbit is given by:S
where u - Gravitational constant

-VST
•'C3.~9Bi6'E'5' Km3/sec2 for earth orbits)

r = Radius of circular orbit
Inserting the value of u for the earth,

V = 631.35 Km/sec (earth orbit) [9)
V7

Values for the quantities discussed above are
provided in Table II for the different mission sets.
The "Total Input Pixels per second" was obtained by
multiplying the "Input Pixels per second

57 -5-

single-look" by the number of looks. The Total Input
Pixels per Second is thus indicative of the
processing rate requirement. However the processing
in the azimuth direction is also related to the
azimuth compression ratio. The processing algorithm
(to be determined later) will probably make use of
some sort of FFT processing. This FFT processing
per pixel is proportional to the base 2 logarithm of
the azimuth compression ratio per look. The final
entries in Table II provide a processing index
computed by multiplying the pixels per second by the
base 2 logarithm of the azimuth compression ratio.
It is felt that this processing index is indicative
of the relative processing load of each mission.

In using the processing index described above it is
assumed that the extent of the range compression
processing is the same for each mission- This
assumption is probably not quite correct. Since no
data was provided for the range compression (except
for the baseline mission) it is not possible to make
relative computations relative to the range
compression. Since the range compression
computations are independent of the total range,
these computations may be assumed to represent, to a
first approximation, an equal processing load for
all missions having nearly equal resolutions. Hence
the processing index in Table II can be taken as a
valid indicator of the relative processing load of
the different missions.

2-2 Conclusions

From the Processing Index given in Table II, it is
seen that the processing loads for both single and
multiple-look images represented by the SEASAT and
ERSAR L missions are similar and appreciably higher
than the processing loads of the other missions.
The processing load of the ERSAR L mission is about
26 percent higher than that of SEASAT because of the
higher resolution requirements of the ERSAR L
mission.

The baseline mission parameters, as presented in the
technical requirements, are similar to those of
ERSAR L although the swath width is closer to the
SEASAT mission. Consequently a processing system
which meets the baseline mission requirements should
have the capability to meet the other mission
requirements readily.

Platform
POST tion

Center of Planet

Figure 1 - Geometry for Slant Range Determinati on

Tarqet Point

Physical Beam Limits

*- X

Figure 2 - Relations for Determining Doppler Frequencies

-7-

LU
00

OO
OO

00

I

CO
<:

OJ
•o
3

•*-> E
•t— -*:

*J

<

c
o

03
N
•r-
t-
(0

r™
o
D_

U
C
O N
3 •=.
U 21.
0>

u.

C 1/1
Ci> QJ

•O CJ CO

o cr c-
c c a)
•-• < C

i- -̂
QJ O
jQ 0
E l

-J

3

O

_C .C

(Q ^3 ,~w

* =
c
o
•'"

^
0
I/I
o>

4J
OJ

OO

c
o

U1
in

<r"
21

O O CM CM
O CO "— ' <— I
CO CM 1 1

i co co
0

CVJ

oo oo oo oo

in in m o
r*««» r^« r^ o
CM CM CM VO
«— i i— » ?— < cr>

«a- o o o

i i i
CM O O O
CM CM

-̂ r>. co co

o o m in
o in co co
f— i i i

CO CO
r— 1 <— t

m o O o
CVJ W CM CM

1 1
0 0

h-

c: — i x^^
i t—

Lu U.

< o: a:
OO CJ
< oi a:
LU .— i i— i
oo oo <

0 0
in in
CM CM

co oo

in m
r*~ r^
CM CM
f— i <— <

CM C\J
in in

*r O
CO

0 0
co co
•—

in o
I-*. O

CO

0 0
CM CM
in in

OO CO
1 1 1 i • i
rf n-

>-> O

"̂ ~"

o:
i— i
0
>

0 0 0
o o o
r^ co co

(/i o a

o vn o
o r- o
VD CM US
O1 i™~* C^

c-j o o
1 3 - 0 0

• ^O tp
VO
CO

^o ^* ^-

0 0 0
vo ^* ^~
CO

o in in
in .-* f-n
f-H

_J X

Q£ rv*

OO CO
x o; o:
LU LU I—'
o * +
•— * -t<

o

II

o

QJ S-

C •!-

•r- E
OO •—

II C
i.

00 C-
••< *

•n

-8-

OO
c;

UJ
s.
<x.
01
cC
a.

oo
oo
LJ
O
O
dL
a.

00
oo

<c
oo

CO
«=c

T>

•*- X
lrt (V

OJ C
U •— *
O

_

°-

b
<— *J »•
ID 3 C
*-> O.)
0 C •••
h- i— i C

T
C

*-> I/I (
3 •— <
O- O> C
C X I
— « -^

0. 1

^
ID

4->
O

Ol
f— J£
C7I O
C 0

•»•• •
to

TJ'-»
C in

I O C
- o o
0 CU ••-
< in r—

•—
II--.-

<U E

3 -^

3 CU C

J — * 0u en o —
n c o —

••- ̂ •""
•> 1/1 "̂

01 E
0. -•»

U. t. O N
Of. Ol <3X
O- &•— • — •

c
0

.c •
•— 4->
ID 3 1
<-> E <
0-r-

K- N
•e

- 0
n -^
/I 4->
1) ID
_ 1-
3.

3
u

c J-
(3 Ol
- D.

4-J in -ic
3 «n 0 O
E 0) •«- 0

N O. ID
•X. = 1-

3
u

•t- 01 —»
4->
o>
.C 4

4->

C
>)

- 4J in
3 -C 1-
_> o 01
- C 4->
u cu 01
3.-— E

tO ID »—

4->
c
ID Ol

00 C E
ID -*

' X !-• — •
A3
s:

4J 4J O)
10 T3 X

I/) 1 D
•"-'

.C
4-*
cr
C-—
<1J E

Ol^ —
>
ID

C
O

in oi
in 1/1
•.-

10
.

in
•9-

^"

^~
^~

O

1O

in
•

^

ro
r*.
CO

o
^
CO

o
o
CM

O

^1

0
m

o
co

o
o
o
"•

in

CO
C\J

l-
«I
to
<t
UJ
UO

co
•

CM
•—

CO
CO

«
^~

^

CM

CO
•

0

CM
^~
CM

0
VD
^~

in

o
'̂

1O
CM

O
CM

0
m
CM
fH

in

CO
CM

o>
-f-
^_
t-
01

a:

00

in
•

vo

f—
co

•
o

o
4->

C\J
CO CO
. .

o ̂

o
4J

«r 10
. •

oo

in
*}•

O
4J

O* r—
•CO

CO CM

O

CM

• in
•— CO

0
4_>

CM CM
CM in

CO

0
4-1

CO W
CM

O
4-1

O 0
O 0
a> in

CO

in

CO
CM

4J
It-
ID
t.
U
\-
^_

"̂

in
.

co
* « * * in *

vo
« * « «

*r *
•—

en
« * « « • *

10

rs.
* * « « • *

r—

^« * « « « • «
10

O
4J

in co «r
CM • O • O O

• F*» ^ Cn *tf ^^ O
t— CO i— *»• CM

r—

O

**
in en *r «»•
•— 10 o 10 r- o en

01- o o <o

o
4J

cn o o o o o
en • f** ot ^— CM *r

• \o r^» ^^ r~~ in r**
CM ̂ in

o
4-*

COT O 0 O O O
CM en cn m \o 10

co co co m in

o

O O O o r- r~
O O ' O O vo 10
cn in ^H -̂ 10 *o

CO CM CM CM

ro co co
«— * in in i— i in ^^

co co co ro co co
CM CM CM

x ai ai
U. i-

4J 1 1

it- -^ O — J
1C £ •—
i. cr u
O OC «K X «T «4'
L. » - < » - - • uj m i/>
-̂ c- c. o o: a:

c£ >• > ^^ UJ UJ

ptiu

oa
CHJ

ai
u
o

c
ID

ai
T3

ai
2
0>

O.

O

<u
Q.

C
o

CD

.a

•o
ai

Q.
E
O
U

ai
2

- 9-

A P P E N D I X B

Relatively Prime FFT (Review)

The Discrete Fourier Transform (DFT) is described by

N-l
i) y . 1

m " N Xk WN
k m where W/"1 = e-127rkni/N and

k, m = 0, ---- , (N-l).

If N can be written as the product of two integers
(N, and Np) which are relatively prime, then any unique
Mn the range, 0 <a " , can be written in the form

2a) 1= (a, N, + a0N,) where a, and a0 are integers and1 1 2 2 MOD N ' 2

0 <

,0 <a2 <(Nrl),

In l ike manner, m can be wri t ten as

whereB- j andB2 are integers and

From 2a) and 2b),

3a)

3b)

4a)

4b)

4e)

m , Y2 are integers, and so

W

using 4c) in 1) ,

V1 " °i T "2

where

v°
Yl = (61N1>MOD N2 <"• 61N1 ' V "1N2

<

Y9 = C^9N9) or 69N9 = Y9+ V9N,
* * ' MOD N1 ^ ̂ ^ ^ i

y2 are integers.

The inner bracketed term of 5) describes N, FFT's of size N«
(one for each val u e of a). The outer bracketed term
describes N2 FFT's of size N, (one for each value of .̂.(or &-|))

Note that the FFT's of size N-| could be performed first since
5) can be written as

\
? 2-» I ni £" MUI.UO; MI /a ' ct ic i /

1=0 2=0

No twiddle factors are required because N-j and N£ are
relatively prime.

Consider, now, the specific SAR example of an N=5120 point
transform. Since N can be written as N = N-j*N2 (where N^ = 5
and N2 = 1024) and N, .N^ are relatively prime, equations 5)
or 6) can be used to accomplish the transform. Arbitrarily,
5) wil l be used first as the basis for executing the DFT.

Using 2a),

JL- (5 a. + 1024 a2) where

< 1024

4><cu <5

Table IA shows a vst

82 for fixed a,.
a, for fixed a2; Table IB shows t, vs

Table IA - The &-index vs. a, (Fixed a2)

al
0
1
2

3
4

•

1023

a2 = °

SL

0

5

10
15

20

•

5115

a2
sl

SL

1024

1029

1034

1039

1044

•

1019

cx2
 = 2

SL

2048

2053

2058

2063

2068

•

2043

a2 =
 3

SL

3072

3077
3082
3087

3092

3067

= 4

£

4096

5001
5006
5011

5016

•

*

4091

Table IB - The 8,-index vs. (Fixed

a2

0

1

2

3

4

a^O
£

o

1024

2048

3072

4096

«,-!

£

5

1029

2053

3077

4101

a, =2.'. .ai=205.'..on = 410.l..ai=615.'. .a,-820.'. .3, =10231 1 i ' I ' 1 ' 1 'i i I i i
1 \ I i £ | £ | £ I £

i ' i
' i l l 1

10 ..'. .1025. . ..2050.3075. ... 4100 ..'..5115
1 1 | (5124) 1

1034. ... 2049. . .'.3074. . . .'. .4099. . ' 4 ...'..1019
I 1 (5123) | (6148) i

2058 3073. . .'.4098 '. . 3 ...'.. 1028. ..'. .2043
i(5122) 1 (6147) i (7172) 1

3082 4097...'. 2'.. 1027 ...'.. 2052 ...'.. 3067
(5121) |(6146) 1 (7171) 1 (8196) I

4106 1 ...'.1026 '. .2051 ...'. .3076. ..'. .4091
i i i

Since a-| can assume 1024 different values, 1024 inner 5-point
DFT's are performed to produce the inner bracketed value of 6).
Durinq any one of the inner DFT's, a-j is held constant. By using
2a), it is possible to identify the input sample index, £, for
each (±2 value. These indices are shown in Table IB and are used
to locate the corresponding complex sample values that are stored
•in the MPP memory.

Appendix C '- The DPT* of Small Dimension Vectors

Generally, a DFT of a high dimension vector can be described as
a succession of DFT's of vectors of smaller dimension.

Explicity, the DFT of X, a large dimensioned N component vector,
yields a like dimensioned vector, Y, whose elements, y., are
given by

(CD yk=
£ = 0

Suppose N=L*K. Then if k is described by k=kQ+k,K and
£=£Q+£. L, the elements of Y are given by

K-l
L-l

(C2) yk +k K« £
n i
° l *0=0

The inner bracketed term simply defines a DFT of dimension
K for each £, (L such values) whereas the outer summation
defines a DFT of dimension L for each kQ (K such values).
By performing the L DFT's of dimension K and then performing
the K DFT's of dimension L on the results, Y is obtained.
Thus a large dimensioned DFT can be accomplished by
executing a sequence of short DFT's. This appendix shows how
various short DFT's can be realized.

* DFT = Discrete Fourier Transform

The DFT of a vector of dimension N is simply a linear
transformation of the vector X into a new space. The expression
(Cl) in matrix form is given by

(C3) Y=WX where the k-indexed row, £-indexed column element
kc.of W is WN . The exponent array of W, namely, S, is

defined to be the array whose elements are the exponents
of the elements of W. Let LLOG be the operator that
strips off the exponents. Then

\f 0
S=LLOG(W)=

N*N N*N

which is displayed in Figure Cl. When dealing with the
elements of W, it makes no difference whether k*2, is
treated as a Modulo N number or a Modulo (N**2) number.
Let the operator MOD(S.N) imply that all elements of S are
reduced to modulo N numbers.

FIGURE C2 displays B=MOD(S,N) for various small
N's.To emphasize conjugate symmetry properties,

several of the smaller BN'S are defined using
negative modulo N numbers.

The inverse operator, INVLLOG, acting on BN, restores the
W matrix with dimension N. Let the inverted carrot symbol,
A, represent this operator. Then W= Bj,.
When restoring W using the FIGURE (B2) displays, the symmetry
properties and values of Table Cl are useful.

The re-inverted B^'s, namely BN ' s , are shown in
Figure C3.

(el

C3
O

TD
CD
•o
c
<o
CL
X

LU

{_>

UJ
o;

I ̂ _ ̂ ^ ^
»-H t—I «-H i—< t—I
I I I I I
Z Z Z Z Z • o o

* * * * *O I-H CM ro ^~

«a- rr «• *a- «a-
* * * * * . .
o «—i c\j ro ^r

OO OO f^5 OO OO
* * * * * . . .
C t—I CM OO «3-

CM CM CM CM CM

* * * * * .O t-i CM OO ^~

i—I <—l «—(»—I i—I

* * * * * 0 0O t-i CM OO Q-

O O O O O

* * * * * . .O t-l CM OO ^~

O t-H

* * *
•-H ro ^r

CO

*

I
z

CM

CM

*

E
i.
O

O
fO
a.
E
O
o

OJ
i-
o
E

o ir> o LD o
»-l t—I CM

O *3- 00 CM

O CO VO O> CM

O CM 00

*•51-

*00

*CM

o o o o o • • o

II
t/0

II
to

ID

CO

4-
O

O)
.C
I/)

'0 ^ CVJ «-•] *

O CM O CM

O «— 1 CM i— I

. O O O O

1 O CO CM i-i 1 *
1 «3-

O CM O CM

O r-> CM CO

O O O o

"O «-H CM CO CM i-H 1 *
I I V£>

O CM CM O CM CM
I I

O CO O CO O CO

O CM CM O CM CM
I I

O i—I CM CO CM t—I
I I

. 0 0 0 0 0 0 ,

'o

o

o

o

o

,0

ID
t UD

CO CM r-t> *
VO

CO O CO O CO

CM ^" O CM ^"

O O O O Oi

CO
O 1-1 CM CO -̂ CO CM i-i' *.

I l l C O

O C M ^ T C M O C M ^ a - C M

O C O C M i - l ' S - i — I C M C O

O C O C M f — < « 3 - t — I C M C O

O C M ^ - C M O C M ^ J - C M

O i - H C M C O « d - C O C M » - i
I I I

, 0 0 0 0 0 0 0 0)

s-
o

00

o
O

I

CM

UJ
a;

o

CD

lo I-H t-i | ro
I *

co

O >—i «—l

,o o o I

II

1 O CM »-ll

O I-H CM

O O O

CO .

*CO

1C
CO

•o

o

o

o

.0

•—i CM CM t-i|
I I

CM I-H .-l CM
I I

CM •—I i—l CM
I I

i-H CM CM i-1
I I

O O O O I

Lf>
*
in

o

O

o

o

.0

CO CM
—I ̂~ *

in

ro «-i

CM

o o o o i

II
CO

CO

O «-H CM CO CO CM «-l *
i l l r > -

O CM CO t-H »-l CO CM
I I I

O CO - t-t CM CVJ
I I

CO

O C O t - H C M C M r - « C O
1 1 1

O C M C O « - i i - H C O C M
1 1 1

O « - (C M f O r O C M « - i
1 1 1

O O O O O O O

co
CO

in
co CO

fri

o ^-l

ro

14-
O

CVJ

QJ
OJ

o CTicor^vom^co

O O O V O * J - C \ J O C O V O « 3 - C M

O r v . ^ - t - t o o t r > c s j C T i v o r o

O l O C M C O ^ ' O ^ D C N J O O ^ '

o u " > o i r > o u " > o u " > o i r >

o

c

o
—I "-1

t-H
1 *

CSJ

CO

oo

[o c p o o o o c o o o | [O O O O O O O O O O O O[

en

II
CM
«-H

CO

lc> oo r»» VD CM •—
•K
CTi

•o
03
3
c

c
o
o

I

CsJ

c r o v o o c o v o o r o ^ o

|0

II
o

CD

I—I

»—I

1—(

I—I

1—I

1—I

1—I

1—I

o •—i csj co ^ to vo r*«* co CT*

j O O O O O O O O O O

II
1—I

CO

o .-
t—i

O]

•-
•a-

Io ro CM 4-* o Oi co r»- vo in •» ro CM «| «_H — — „ 49

O C M O C O t O * a ' C M O C M O C O V O * 9 - C M
«-H f-H 4—4 •— t

ro
O 4 - > c o i n c M 4 - 4 O r » « O ' > — C M C n v o r o

' o o v o c M C M C o < a - o o v o c M C M C O < a -

• O O i « a ' P O C O r o c M r ^ C M - " V O « - < O i n

o c o c M O * a - c M v o o c o c M O * a ' C M v o
4-4 4-* t— 1 4— 1

r o o v o c M 4 a - o c M c c o v o c M « a - O C M c o
14-

o <o i n o 4 - * v O 4 - 4 C M r ^ c M r o c o c M « a p e n

ro
O ' a - c o c M C M v o o o T C O C M C M i o o

4W — i— 1 4-H .—
QJ
0 1 o r o v o e n c M 4 — i « a - r - . o r o c M i n c O 4 - i

£ — H — — —in
O C N J 4 a > V O C O O C M O C M * 3 ' V C C O O C M

| O O O O O O O O O O O O O c I

l o - o - r o c M — o c n c o r ^ v o i n w ro CM —| in

ro -. CM 0 *"

O C M O i v o r o o c M C n v o r o o c M o i v o r o

O 4 - N r - . r o « a - O t o c M r o e n i n 4 - » CM CO *a-

o o i n o o m o o m o o m o o m

o e n r o C M V O o e n r o c M V D O C n r o c M v o
•-i "-1 —

o c o * - « O ! C M O r o * — i w a - C M i n r o v o » a - r ^

o r ^ « J - v o r o i n c M « a - 4 - < r o O C M c n — c c

O i O C M r o o i O V O C M r o e n o v o C M r o o i

o m o o m o c i n o o i n o o i/> o

o « a c o C M » — i i n c n r o c M v o o ^ a - r o r ^ * - *

o r o v o o i c M O r o v o e n c M O r o V D O > C M

O C M « a - v c c c O C M « a - — r o i n r ^ cn — ro

O — C M r o « a - i n v o r ^ e o e n o — c M r o « a -

• c 0 , 0 o o o o o o o c o o o 0 1

•o
VV

c
o
u

CM
<_J

EC.

U

•Jo ^ — o 01 tt r** vo in "a1 ro CM 4— | *
- _ _ _ . - r o

' o — c n r s . i n r o . — C M O C O v O ' a ' C M

O O r ^ « a > 4 ^ 4 - 4 C o m c M C M O i v o r o

O O i i n — H O v o c M — 4 r ^ r o c M C C « a -

o c o r o « - < v O 4 » i c n « a p C M r ^ c M O i n

o r » 4 - 4 c o e M e n r o o > a - 4 — i n c M v c

O v o e M i r > 1 - 4 « » o r o c n e M C O « — r > -

O i n o c M r ^ c M « a - e n » — vo — r o c c
4—4 4-4 4-4

o v c o c M r o r » . - < C M V o o « — m e n

o r o v o c n c M C M i n c c < - " 4 - < ' a ' r ^ o

O C M « a ' v o c o o c M « — r o m r ^ e n ^ M

O - » C M r o « a - i n v o r ^ c o e n O 4 — C M

l o o o o o o o o c o o o o l

| o in

0 «T

O ro

C CM

O —
O O

<O ff*

O CO

O r^

O VO

O in

o «a-

o ro

O CM

O — i

|o o

u
VO

CO

r̂ ro CM 4̂ ^̂ 01 CO

CM o co vo «a- CM o

o r^ •a* *^ ^ *— < co

co «a- o CM' co «a- O

\D — CM r^ CM ro CO

•a- •? co CM CM vo O

CM •- «a- ro vo in co

O CO O CO O CO O

•a- in CM ro o 4— co

CM CM co «a «» o o

o in «a- cn «a- ro co

cc CM o «a co CM o

vo en CM in CM in co
4-4 •—

•0- VO CO O CM •«• O

CM ro «o- in vo r» co

o o o o o o o

r«. vo in

•» CM O

in CM in

CM co «a-

ro «a- en

O -a- •»

^« O ro
4-4

CO O CO

in vo ro

VO CM CM

ro CM r*.
4-4

«T CO CM

Z Z ~

CM *? VO

en c —

000

«a- ro

co vo

CM cn

O CM

•a in

CO CM

CM in

O CO

•a- •— i

co «a

CM 4—
1—4

O «a

•a- p»

CO O

CM ro

0 0

CM

•»
vo

co

o

CM
4-H

O

CM

~

VO

co

o
4-4

CM

«,.

0

- 1

CM

ro

^

in

vo

r̂

CO

en

o

— - 1
CM

ro
4—4

*3-

— H

m

°l

Table Cl - Values of W Elements Commonly Used

WN • (1.0)

W N / 2=-W N = (-1.0)
N/3 where a = cos 60° b = sin 60°

= sin 30 = cos 30)lfc = (_ a > b)

._ _i (WN} __ (0>.1}

N/5 = (c,-d) wheref C = cos 72° d = sin 72°
= sin 18°, = cos 18°

™/<; ?M/t; v e = cos 36°, f = sin 36° •:'.
w3N/5 = (w2N/5^ = (_ e > f) Note: cos 36-cos 72=1/2=2 cos 36 cos 72

w4N/5 = (wN/5)* = (C)d) cos 72 = sin 18 = (YT-l)/4

WN/6 = (a,-b) COS 36= (̂+1)/4

w5N/6 = (wN/6} = (a§b)

W
N/7 = (g,-h) where /g = cos (51 3/7°) h = sin (51 3/7°);

w2N/7 = (_Q _p) \ =sin (38 4/7°) = cos (38 4/7°)

3N/7 " " *~ <o = cos (77 1/7°) p = sin (77 l/7°)\
W = (-Q'~r)) =sin (12 6/7°) = cos (12 6/7°)

= (W3N/7) * = (-g,r) (q=cos (25 5/7°) r = (sin 25 5/7°)

w5N/7 = (w2N/7) . = (.0>p) '[

w6N/7 = (HN/7, . . (g§h)

W
N/8 = (s,-t) where s = cos(45°) t=sin(45°) I

= (.i WN/B, . (.t§.s)

w5N/8 = (w3N/8) . = (.t§s)

W7N/8 = (s.t)

Table Cl (Continued)

W
N/9

w2N/9 . {W,.

w4N/9 .

w5N/9 = (W
4N/9)* =

w7N/9 s (

w8N/9 = (W
N/9)* « (u,v)

WN/
10 = (e.-f)

W3N/10 „ (.Cf.d)

MJN/10 = (.Ctd)

9N/10 . (e§f)

WN/H = (aa.-bb)

/T1 = (cc,-dd)

W3N/U = (.ee,-ff)

/11 = (-gg,-hh)

I/I"1 = (-oo,pp)

W

W7N/H = (W
4 N / 1 1) '

W8N/11 .

M9N/H = (W
2N/U)

ioN/n . W
N/11)

where u=cos40° v-s n 40
w=cos 80°, =sm 80

_ _ _ _

y=cos 20°, sin 20

cos 32 8/H. bb = s i n (3 2 8/11)

cos 65 5/11. d d - s i n (6 5 5/11)

C 0 s(81 9/ll).ff sm(81 9/11

C O S (4 9 l / l l) .hh.s1n(49 1/11

C O S (16 4 / lD ,PP-s in (16 4/11)

s i n (2 4 6 / lD ,dd -cos (24 6/11)

sin (8 2 / l l) . f f " C O S (8 2/11

S l n(40 10 /H)hh -cos (40 10/H)

M

Table Cl - (Continued)

WN/12 - (b.-a)

W6N/12 - (-b.-.)

W7N/12 - (-b,a)

W 1 1 N/ 1 2 = (b..)

W2N/13 s (ss _ttj V ss = cos(54 5/13),tt=sin(54 5/13)
'

W N / 1 3 = (qq , - r r) where/qq = c o s (2 7 9/1 3) ,rr = si n (2 7 9 / 1 3)

ss = cos (54 5 /13) , t t=s in (54 5/13)

3N/13 uu = cos(53 l/13),vv=sin(83 1/13)
W = (+uu,-vv) \ ww = cos(69 3/i3),xx=sin(69 3/13)

W
4N/13 = (-ww,-xx) / yy = cos(41 7/1 3) ,zz=si n(41 7/13)

,,5N/13 _ / uv __v \ aaa = cos(13 1 1 /1 3) ,bbb = si n(l 3 11/13)w ~ \ • yy 9 ~ z z)
C Kl / 1 ̂

W = (- a a a , - b b b) r s s = s i n (3 5 8 / 1 3) , t t = c o s (3 5 8 /13)

W
7 N / 1 3 = (- a a a . b b b) < u u = s i n (6 1 2 / 1 3) , v v = c o s (6 12 /13)

. .8N/13 / v / ,,x t w w = s i n (2 0 1 0/1 3) ,xx = cos (20 10/13)w = l-yy > zz ;

U9N/13 - (-w»,xx)

W10N/13 = (uu.vv)

W11N/13 - (ss.tt)

W12N/13 - (qq.rr)

WN/14 = (q.-r)

• (-g.h)

W11N/14 • (o.p)

W13N/14 = (q.r)

Table Cl - (Cont inued)

W N / 1 5 = (c c c , - d d d) where f c c c = c o s 24, ddd=s in 24

W
2 N / 1 5 = (e e e . - f f f) \ e e e - c o s 48, f f f = s i n 48

A M / I C) g g g = c o s 84 , hhh=s in 84
" ' • (-999, -hhh) (000 = cos 12_ ppp.,1n ,2

W7N/15 . (.000i.ppp) or

W 8 N / 1 5 = (-000, ppp) (eee=s in 42, f f f - cos 42
11N/15 , (9 9 3 = s i " 6, hhh=cos 6

W ' = (-ggg.hhh)

W 1 3 N / 1 5 = (eee . f f f)

W14"' '15 = (c c c . d d d)

WN/16 = (a, -6) where a=cos(22 1/2), 6= sin(22 1/2)

U3N/16 - (6, -a)

U5N/U - (-6,-.)

U7H/16 - (-..-B)

W 1 3 N / 1 6 • (6.C.)

W 1 5 N / 1 6 - (a .B)

1,1

SL .0 .0 SL i i

^* ro ro ^~ ro ro
«— I I i *-*

SL JD I SL -Q I

f^™ (O ^J f^ ^J (Q

SL i— Si i
r> * » *i

t- Sl i— CX

Si Si Si Si SL

Si Si SL Si I JD Si I -O

r— ro ro i— ro
i

SL i Si •—
* * * * *

i— Si r— Si

JQ --~^ *—*
i SL x>

•— ro ro
i i

CO

ii

SL Si SL Si Si SL Si SL SL SL

I/O
z

CO

a.
i

i— cn O cr cr o
«— -—• i i i i

€/)
$_

SL 4- 1
* •» •»

^ <O IO

i— O OJ OJ

SL »«- i -o i

t— QJ o o 0)

O- I

cr cn cr
i

0-

o

Si S-

•— CT

*—^ Q.
O. I

o
1

O cn cr

ro
CJ

<D

3

cn

r— fO (O

SI S>. St

n

ro

<m

n

— it- ^- -O
SL i -D i

0)

^» -D I L(- —»

SL i •> •> T>
" • Q» 0)

i— <J I I O)

Si SL SL Si SL

o
i

Q.

O

SL O. S-

i
cn

L.
I

cr
i

i— O cr cn cr cr o
i •—• •»-* i i

Q.
I i. Q.

cn O cr cr o »
— i i i i cr.

SL SL SL SL Si SL

in

<CD 10

Si 4-> r— l/J Si | I

i— </) Si 4-> i— 4-> (St.

SL •—

CD
=3
G

SI to I 4-> SU I i— I

•— 4J Si in r— <si Sk 4J

SL (Si SI

ro
O

O)

cr>

Si I i— I

Si i «*a. i— si i

*—• 4J r— I St. in
Si I I •> •> •

•• « « 4J n- 4J
^ i/l ^y i i i

Si SL SL Si Si Si

CO

> — . — . . - » - ^ c e m B — • -^ «-^ ^
.—. —. —•. —» •—• S in t ^ i i i *— O in «O

« 'J *". *. -. * * e -T a v," « '• ^ '. '.

• in •— in
in »— in

tn
i

V)

_^ v, , _ ai ,-~ e ^ i vi ^» *^ * i 8
5 . » i i i n . . . i C O ^ . . |
» i n ? • • » C. ̂ . CO . . • O in •

— i i ^. S in i i i vi 6 B̂h. i i C£

^ » i

^ ^- vi i

d in
i in • i

in CO i cc in
- in CQ

O i i

in —• i
in •

in • i •—

in
i

in

i tn i

e
cl

Gk. C£ m C ^ i

i in i
» in »

'-^ i e
- ca

— »i e

•- C wi

in i in

l * in •— •
• •- » i v>

in i in Vh. i

f m — ^ ' ^ ' ^ . ' e ^ . ^ ' v T , - ^ " « T * 1 e
• • C C . i » i n i » e i • • — I • •

i i r ^». i in Ci i el m i ^t C i i

• tr. z

e — ci
• m i

c=. . .
i tn C

- e

in *~
i i

—• in —• i ^. in •— —«^ i i • • • •- m
• • • i n ^ - m • •

•— in ^k, i i i ^t in

= T ? T '. '. '. ^ °: i f. r *e "7 *•
— e- i i i i i i i

Reproduced from

Since N=5 w i l l be used to accomplish a transform of the order
of 4660 for the SAR range processing, Bg w i l l be examined in more
detail. First note in Figure C3 that only row/column terms with
index values greater than 0 require m u l t i p l i e s . Moreover, note

•ft * *that if B5 acts on a real input vector, y^ = y1 and y~ = y2

Since a complex input can be treated as a pair of real inputs*,
it is only necessary to show how to compute y-j and y2 f°r a

input vector. Note that for the complex input vector X

*1 = (Xo + CX1 " eX2" eX3 + CX4)

+ (-dX 1 - fX2 + fX3 + dX4)i and

y2 = (XQ - eX1 + cX2 + cX3 - eX4)
+(-fX] + dX2 - dX3 + fX4)i

where i = 1-1
c = cos 72° d = sin 72°
e = cos 36° f = sin 36°

* To produce the DFT of the complex input vector, both the real
part of the input and the imaginary part are treated as 2 distinct
real input vectors. After the DFT's of both real input vectors
have been generated, the 2 transforms are recombined so as to
develop the DFT of the complex input vector.

To minimize multi p l i e s needed to compute y-j and y2, first assume
that the auxiliary calculations P,Q,R,S,T are performed as
shown below:

+x3))*(-(c-e)/2)

S= (x1-x4)*(-f)

T= (x2-x,)*d where

(c+e)/2=. 55901699= ys74 , (- (c- e)/2>l/4, (-f + d)) = 1 . 5388417

-f= -.58778525, and d=. 9510565. Then, for the real part of x,x,

y_,-y.= IMAGINARY(yJ=S + T= -f(x -x)+d (X9-
X.)

£. «J £ J. H £ o

y1,-y
i
4=IMAGINARY(y1) = R-(S-T) = -d (x1-x4).f (xg-Xg) A like result is

found when treating the imaginaly part of X. Thus, the
processing flow diagram for a complex vector X whose
components are given by (x^.x-) where i=0,..,4 is that shown
in Figure C4.

4->
3
O.

3
O O.

o.

o>
c

•r-
in
in
QJ
o
o

o
Q-

<D
>

I

O

C3

A P P E N D I X D

DESIGN OF A MASSIVELY PARALLEL PROCESSOR
Kenneth E. Batcher

Goodyear Aerospace Corporation, Akron, Ohio

Abstract -The massively parallel processor (MPP)
system is designed to process satellite imagery at high
rates. A large number (16,384) of processing elements
(PE's) are configured in a square array. For optimum
performance on operands of arbitrary length, proces-
sing is performed in a bit-serial manner. On 8-bit inte-
ger data, addition can occur at 6553 million operations
per second (MOPS) and multiplication at 1861 MOPS.
On 32-bit floating-point data, addition can occur at 430
MOPS and multiplication at 216 MOPS.

Index Terms -Array processing, bit-slice proces-
sing, computer architecture, image processing, parallel
processing, satellite imagery.

INTRODUCTION

In this decade, NASA will orbit imaging sensors
that can generate data at rates up to 101:1 bits per day.
A variety of image processing tasks such as geometric-
correction, correlation, image registration, feature
selection, multispectral classification, and area
measurement are required to extract useful informa:

tion from this mass of data. The expected workload is
between 10" and 1010 operations per second.

In 1971 NASA Goddard Space Flight Center initi-
ated a program to develop ultra high-speed image pro-
cessing systems capable of processing this workload.
These systems use thousands of processing elements
(PE's) operating simultaneously (massive parallelism)
to achieve their speed. They exploit the fact that the
typical satellite image contains millions of picture ele-
ments (pixels) that can generally be processed at the
same time.

In December 1979 NASA Goddard awarded a con-
tract to Goodyear Aerospace to construct a massively
parallel processor (MPP) to be delivered in the first
quarter of 1982. The basic elements of the MPP
architecture were developed at NASA Goddard. This
correspondence presents the design of the MPP sys-
tem. The major components are shown in Fig. 1. The
array unit (ARU) processes arrays of data at high
speed and is controlled by the array control unit
(ACU), which also performs scalar arithmetic. The
program and data management unit (PDMU) controls
the overall flow of data and programs through the

system and handles certain ancillary tasks such as (
program development and diagnostics. The staging •
memories buffer and reorder data between the ARU;
PDMU. and external (host) computer.

ARRAY UNIT <

Logically, the array unit (A R U) contain? 16.384
processing elements (PE's) organized as a 128 by 128
square. Physically, the ARU has an extra 128 by.'"4.
rectangle of PE's that is used to reconfigure the ARU
when a PE fault is detected. The PE's are bit-serial
processors for efficiently processing operands of any
length. The basic clock rate is 10 MHz. With 16.384
PE's operating in parallel, the ARU has a very high
processing speed (see Table 1). Despite the bit-serial
nature of the PE's. even the floating-point speeds com-
pare favorably with several fast number crunchers.

TABLE I - SPEED OF TYPICAL OPERATIONS

Operations

Addition of Arrays

8-bit integers (9-bit sum)
12-bit integers (13-bit sum)
32-bit floating-point numbers

Multiplication of Arrays
(Element-by-Element)

8-bit integers (16-bit product)
12-bit integers (24-bit product)
32-bit floating-point numbers

Multiplication of Array by Scalar

8-bit integers (16-bit product)
12-bit integers (24-bit product)
32-bit floating-point numbers

Execution
Speed*

6553 - -
4428
430

1861 >
910'.--'"
216

2340 -
1260
373 .

^Million operations per second

Reprinted from IEEE Transactions on Computers Sept. 1980. Copyright © 1980, IEEE, Inc.

-1-

Routing Topology Redundancy

Each PE in the 128 by 128 square communicates
with its nearest neighbor; up, down, right, and left—a
topology similar to Illiac IV and some other array pro-
cessors. Alternative routing topologies such as the flip
network (1) or one of its equivalents (2) were investi-
gated. They have the ability to shift data over many
PE's in one step and allow data to be accessed in many
different directions (3). Certain paths in the alternative
topologies have long runs that complicate their layout
and limit their cycle rate. When the number of PE's
interconnected is only 256 as in the STAR AN - computer,
this is no problem: when 16,384 PE'? are inter-
connected, it is a severe problem.

.^ , Most of the expected workload does not use the
routing flexibility of the alternative topologies. The
ability to access data in different directions is impor-
tant when arrays of data are input and output; it can be
used to reorient the arrays between the bit-plane for-
mat of the ARU and the pixel format of the outside
world.

•, These considerations lead to the conclusion that
the ARU should have a two-dimensional nearest neigh-
bor routing topology such a? Illiac IV since it is easy to
implement and matches the two-dimensional nature of
satellite imagery. The problem of reformatting I/O
data is best handled in a staging memory between the
ARC and the outside world.

Around the edges of the 128 by 128 array of PE's
tlpe edges can be left open (e.g.. a row of zeros can be
ehtered along the left edge when routing data to the
right) (>]• the opposite edges can be connected. Cases
were found where open edges were preferred and
other cases where connected edges were preferred. It
was decided to make edge-connectivity a program-
mable function. A topology-register in the array con-
trol unit defines the connections between opposite
edges of the PE array. The top and bottom edges can
either be connected or left open. The connectivity be-
tween the left and right edges has four states: open (no
connection), cylindrical (connect the left PE of each
row to the right PE of the same row), open spiral (for
l'sns-127. connect the left PE of row n to the right PE
of row n-1). and closed spiral (like the open spiral, but
ajso connect the left PE of row 0 to the right PE of row
127).

The spiral modes connect the 16,384 PE's together
in one long linear array. One can pack several linear
arrays of odd sizes (e.g., lines with thousands of image
pixels per line) in the ARU and process them in parallel.

The ARU includes some redundancy so that a faul-
ty PE can be bypassed. Redundancy can be added to a
two-dimensional array of PE's by adding an extra col-
umn (or row) of PE's and inserting bypass gates in the
routing network. When a faulty PE is discovered, one
disables the whole column containing the faulty PE and
joins the columns on either side of it with the bypass
gates.

The PE's in the ARU are implemented with two-
row by four-column VLSI chips: thus, it is more
convenient to add four redundant columns of PE's and
bypass four columns at a time. The PE array has 128
rows and 132 columns. It is divided into 33 groups, with
each group containing 128 rows and four columns of
PE's. Each group has an independent group-disable
control line from the ACU. When a group is disabled,
all its outputs are disabled and the groups on either side
of it are joined together with 128 bypass gates in the
routing network.

When there is no faulty PE. an arbitrary group is
disabled so that the size of the logical array is always
128 by 128. Application programs are not aware of
which group is disabled and need not be modified when
the disabled group is changed. They always use the
logical address of a PE to access PE dependent data.
The logical address of a PE is a pair of 7-bit numbers A"
and Y showing its position in the logical array of en-
abled PE's. A simple routine executed in 27 fis will load
the memory of each PE with its logical address.

When a faulty PE is discovered, its data cannot be
trusted so the normal error recovery procedure is to
reconfigure the ARU to disable the column containing
the fault and then to restart the application program
from the last checkpoint or from the beginning.

Bit-Serial Processing

The data arrays being processed have a wide range
of element lengths. A spectral band of an input pixel
may have a resolution of 6 to 12 bits. Intermediate
results can have any length from 6 to more than 30 bits.
Single-bit flag arrays are generated when pixels are
classified. Some computations may be performed in
floating point. Thus, the PE's should be able to process
operands of any length efficiently.

Conventional computers typically use bit-parallel
arithmetic units with certain fixed-word lengths such
as 8. 16. or 32 bits. Operands of odd lengths are ex-
tended to fit the standard word sizes of the machine.
Some of the hardware in the memorv and the arithme-

•n
-2-

tic unit is wasted storing and processing the ex-
tensions.

Bit-serial processors process operands bit by bit
and can handle operands of any length without any
wasted hardware. Their slower speed can be counter-
acted by using a multitude of them and processing
many operands in parallel.

There is a wide variety of operand lengths and a
prevalence of low-precision operands in the expected
workload. Thus, bit-serial processors are more effi-
cient in the use of hardware than bit-parallel proces-
sors.

Processing Elements

The initial MPP design had PE's using downshift-
ing binary counters for arithmetic (4), (6). (7). The PE
design was modified to use a full adder and shift regis-
ter combination for arithmetic. The modified design
performs the basic arithmetic operations faster. Each
of the PE's has six 1-bit registers (A. B. C, G, P.and S).
a shift register with a programmable length, a random-
access memory, a data bus (D). a full adder, and some
combinatorial logic (see Fig. 2). The basic cycle time of
the PE is H»U ns.

Logic and Routing: The P-register is used for logic
and routing operations. A logic operation combines the
state of the P-register and the state of the data bus (D)
to form the new state of the P-register. All 16 Boolean
functions of the two variables P and D are im-
plemented. A routing operation shifts the state of the
P-register into the P-register of a neighboring PE (up,
down, right, or left).

Arithmetic: The full adder, shift register, and
registers A, B. and Care used for bit-serial arithmetic
operations. To add two operands, the bits of one oper-
and are put into the A-register. one at a time, least
significant bit (LSB) first: corresponding bits of the
other operand are put into the P-register: the full adder
adds the bits in A and P to the carry bits in the C-
register to form the sum and carry bits: each carry bit is
stored in Cto be added in the next cycle: and each sum
bit is stored in B. The sum formed in B can be stored in
the random-access memory and/or in the shift register.
Two's complement subtraction is performed by adding
the one's complement of the operand in P to the oper-
and in A and setting the initial carry bit in Cto 1 instead
ofO.

Multiplication is a series of addition steps where
the partial product is recirculated through the shift
register and registers A and B. Appropriate multiples
of the multiplicand are formed in P and added to the
partial product as it recirculates. Division is performed

with a nonrestoring division algorithm. The partial ,
dividend is recirculated through the shift register and ,
registers A and B while the divisor or its complement is •
formed in P and added to it.

Floating-point addition compares exponents:
places the fraction of the operand with the least expo-;
nent in the shift register; shifts it to the right to align,it|,;
with the other fraction; adds the other fraction to the;t

shift register; and normalizes the sum. Floating-point,
multiplication is a multiplication of the fractions, a noiv
malization of the product, and an addition of the expo-
nents.

Masking: The G-register can hold a mask bit that
can control the activity of the PE. Unmasked logic,
routing, and arithmetic operations are performed in all
PE's. Masked operations are only performed in tho?e:

PE's where the G-register equals 1. :. • j : •.
Several operations may be combined in one 100'ris

instruction. Logic and routing operations are masked •
independently of arithmetic operations so one can com-
bine a masked routing operation with an unmasked
arithmetic operation or vice versa. This feature proves
to be quite useful in a number of algorithms.

Storage: The random-access memory stores 1024
bits per PE. Standard RAM integrated circuits are
used to make it easy to expand storage as advances.;
occur in solid-state memory technology. The ACT •
generates 16-bit addresses so ARU storage can be
expanded to 65.536 bits per PE. Thus, the initial com-
plement of 2 Mbytes of ARU storage can be expanded
sixty-fourfold if technology allows it.

Parity error detection is used to find memory
faults. A parity bit is added to the eight data bits of
each 2 by 4 subarray of PE's. Parity bits are generated
and stored for each memory write cycle and checked
when the memories are read. A parity error sets an'
error flip-flop associated with the 2 by 4 subarray. A
tree of logic element gives the ACT an inclusive-or of
all error flip-flops (after some delay). By operating the ;

group-disable control lines, the ACU can locate the
group containing the error and disable it. ";

Sum-Or Tree: The data bus states of all enabled
PE's are combined in a tree of inclusive-or elements •;
called the sum-or tree. The output of this tree is fed to
the ACU and used in certain operations such as finding
the maximum or minimum value of an array in the
ARU.

Input/Output: The S-register is used to input and
output ARU data. While the PE's are processing'data
in the random-access memories, columns of input data
are shifted into the left side of the ARU (Fig. 1) ancP'
through the S-registers (Fig. 2) until a plane of 16.384
bits is loaded. The input plane is then stored 'in fKe
random-access memories in one 100 ns cycle by inter-

-3-

ruptihg the processing momentarily in all PE's and
moving the S-register values to the memory elements.
Planes of data are output by moving them from the
memory elements to the S-registers and then shifting
them out column by column through the right side of
the ARU. The shift rate is 10 MHz: thus, up to 160
Mbytes/s can be transferred through the ARU I/O
ports. Processing is interrupted for 100 ns for each bit
plane of 16,384 bits transferred—less than 1 percent of
the'time.

Packaging
''•"•*.'
•:• Standard 4 by 1024-bit RAM elements are used for

the-.PE memories. All other components of a 2 by 4
subarray of PE's are packaged on a custom VLSI
CMOS/SOS chip. The VLSI chip also contains the par-
ity tree and the bypass gates for the subarray.

Each 8-1/2 in. by 14 in. printed circuit board con-
tains 192 PE's in a 16 by 12 array. A board contains 24
VLSI chips, 54 memory elements, and some support
circuitry. Eleven boards make up an array slice of 16 by
132 PE's.

Eight array slices (88 boards) make up the ARU.
Eight other boards contain the topology switches, con-
trol fan out. and other support circuitry. The 96 boards
of the ARU are packaged in one cabinet (the leftmost
cabinet in Fig. 3). Forced-air cooling is used.

reads 64-bit-wide microinstructions from PE control
memory. Most instructions are read and executed in
100 ns. One instruction can perform several PE opera-
tions, manipulate any number of index registers, and
branch conditionally. This reduces overhead signifi-
cantly so that little, if any, PE processing power is
wasted.

PE control memory contains a number of system
routines and user-written routines to operate on arrays
of data in the ARU. The routines include both array-to-
array and scalar-to-array arithmetic operation?. A
queue between PE control and main control queue? up
to 7 calls to the PE control routines. Each call contain?
up to 8 initial index-register values and up to 64 bits of
scalar information. Some routines extract scalar in-
formation from the ARU (such as a maximum value)
and return it to main control.

I/O Control

I/O control shifts the ARU S-registers. manages
the flow of information in and out of the ARU port?,
and interrupt? PE control momentarily to transfer
data between the S-registers and buffer areas in the
PE memory elements. Once initiated by main control
or the PDMU. I/O control can chain through a number
of I/O commands. It read? the command? from main
control memorv.

ARRAY CONTROL UNIT
\('-
i, .Like the control units of other parallel processors,

the.array control unit (ACU) performs scalar arithme-
tic and controls the PE's. It has three sections that
operate in parallel (seeFig. 4): PE control, I/O control,
and main control. PE control performs all array arith-
metic of the application program. I/O control manages
the flow of data in and out of the ARU. Main control
performs all scalar arithmetic of the application pro-
gram. This arrangement allows array arithmetic, sca-
lar/arithmetic, and input/output to be overlapped for
minimum execution time.

PE Control

.PE control generates all ARU control signals ex-
cept those associated with I/O. It contains a 64-bit
common register to hold scalars and eight 16-bit index
registers to hold the addresses of bit planes in the PE
memory ̂ elements, to count loop executions, and to hold
theWlex of a bit in the common register. PE control

Main Control

Main control i? a fast scalar processor. It read? and
execute? the application program in the main control
memory. It perform? all scalar arithmetic itself and
places all array arithmetic operations on the PE control
call queue. It contains 16 general purpose registers,
three registers to control the ARU group-disable lines.
13 registers associated with the call queue. 12 registers
to receive scalars from PE control, and six registers to
monitor and control the status of PE control. I/O con-
trol, and the ARU.

PROGRAM AND DATA
MANAGEMENT UNIT

The program and data management unit (PDMU)
controls the overall flow of programs and data in the
system (Fig. 1). Control is from an alphanumeric ter-
minal. The PDMU is a minicomputer (DFC PDP-11)
with custom interfaces to the ACU control memories
and registers and to the staging memories. The operat-

ing system is DEC'S RSX-11M real-time multipro-
.gramming system.

The PDMU also executes the MPP program-
development software package. The package includes
a PE control assembler to develop array processing
routines for PE control, a main assembler to develop
application programs executing in main control, a link-
er to form load modules for the ACU. and a control and
debug module that loads programs into the ACU, con-
trols their execution, and facilitates debugging. This
package is written in Fortran for easy movement to the
host computer.

STAGING MEMORIES

The staging memories reside between the wide L'O
ports of the ARU and the PDMU. They also have a port
to an external (host) computer. Besides acting as buffers for
ARU data being input and output, the memories reorder
arrays of data.

Satellite imagery is normally stored in pixel order
in the PDMU and other conventional computers. That
is, line 1 pixel 1 followed by line 1 pixel 2. etc., followed
by the pixels of line 2, line 3, etc. The imagery might be
band-interleaved (all spectral bands of a pixel stored
together) or band-sequential (band 1 of all pixel? fol-
lowed by band 2 of all pixels, etc.).

Arrays of data are transferred through the ARU
ports in bit-sequential order. That is. the most (or
least) significant bit of 16.384 elements followed by the
next bit of 16,384 elements, etc. Reordering is required
to fit the normal order of satellite imagery in the
PDMU or the host. Thus the staging memories are
given a reordering capability.

The staging memories are packaged together in a
large multidimensional-access (MDA) or corner-
turning memory. Items of data flow through a substa-
ger which is a smaller MDA memory. Input data items
from the ARU, PDMU, or host are reformatted in the
substager into patches which are sent to the large
staging memory. Output data patches from the large
staging memory are reformatted in the substager for
transmission to the ARU, PDMU, or host.

The large staging memory uses 1280 dynamic
RAM integrated circuits for data storage and 384
RAM's for error-correcting-code (ECO storage. (A
6-bit ECC is added to each 20-bit word.) Initially, the
boards will be populated with 16K bit RAM's for a
capacity of 2.5 Mbytes. Later, as memory technology
advances, the 16K bit RAM's can be replaced with 64K
bit RAM's or 256K bit RAM's to increase the capacity
of 10 Mbytes or 40 Mbytes.

The substager can access the main stager at a 320
Mbyte per second rate (thirty-two 20-bit words every

250 ns). The accesses can be spread across the main
stager in a variety of ways. Patches of data in various
orientations can be read or written conveniently.

The substager has a smaller memory with 1-bit
words. It assembles input data into patches for the
main staging memory and disassembles patches of data
from the main staging memory for output.

The main staging memory and the substager are
controlled by a control unit that can be programmed to
input and output imagery in a wide variety of formats.

HOST INTERFACE

The MPP to be delivered to NASA will use a DEC
YAX-11/780 for a host computer. The staging memor-
ies of the MPP are connected to a DR-78U high-speed
user interface of the VAX-11/780. Imagery can be
transferred over this path at the rate of the DR-780 (at
least 6 Mbytes/s). To allow control of the MPP by the
host, the custom interface of the MPP is switched from
the PDMU to the host. The switching is simplified by
the fact that both the PDMU (a DEC PDP-11) and the
host (a DEC VAX-11/780) have a DEC UNIBUS. The
transfer of system software to the host is simplified by
writing much of it in Fortran and using the compatibil-
ity mode of VAX to execute those portions written in
PDP-11 code.

CONCLUSIONS

The massively parallel processor is designed to
process satellite imagery at high rates. Its high-
processing speed, large memory capacity, and I/O re-
formatting capabilities should make it useful in other
applications. Preliminary studies indicate that the
MPP can support such diverse application areas as
genera] image processing, weather simulation, aerody-
namic studies, radar processing, reactor diffusion
analysis, and computer-image generation.

The modular structure of the MPP allows it to be
scaled up or down for different applications. The num-
ber of processing elements in the ARU can be adjusted
to support different processing rates. The sizes of the
ARU and staging memories are also adjustable. Host
computers other than the VAX-11/780 can be
accommodated. The PDMU functions can be absorbed
by the host or alternatively, the PDMU can act as the
host (since the PDMU is in the PDP-11 and VAX fami-
ly, a wide variety of PDMU capacities and configura-
tions is feasible).

As part of its ongoing program to develop space-
borne image processors. NASA-Goddard is pursuing
the design of a miniaturized version of the MPP (5).

-5-

REFERENCES

(1) K. E. Batcher, "The Flip Network in STAR AN,"
in 1976 Proc. Int. Conf. Parallel Processing, pp. 65-71.

(2) H. J. Siegel and S.D. Smith. "Study of Multistage
SIMD Interconnection Networks," in Proc. 5th Annual
Svmp. Computer Architecture, April 1978, pp. 223-229.

(3) K. E. Batcher, "The Multi-dimensional-access
Memory in STARAN." IEEE Trans. Computer, vol.
C-26. pp. 174-177, Feb. 1977.

(4) L.W. Fung, A Massively Parallel Processing
Computer: High-Speed Computer and Algorithm
Organization. D. J. Kuck et al. Ed. New York:
Academic, 1977, pp. 203-204.

(5) D. H. Schaefer, "Massively Parallel Information
Processing Systems for Space Applications." pre-
sented at A1AA Computer Aerospace Conf. II. Oct.
1979.

(6) L. W. Fung. "MPPC: A Massively Parallel Pro-
cessing Computer." Godclard Space Flight Center.
Greenbelt. MD. GSFC Image Systems Section Report.
Sept. 1976.

(7) Request for Proposal. RFP GSFC-5-45191/254
(Appendix A).

123-BIT
INPUT
INTERFACE

STAGING
MEMORY

ARRAY UNIT (ARU)

CONTROL STATUS

ARRAY CONTROL
UNIT (ACU)

PROGRAMS
DATA

STATUS

PROGRAM AND DATA
MANAGEMENT UNIT
(PDMU;

MAGNETIC
TAPE

D I S K

CO

:
CO

J
128-BIT
OUTPUT
INTERFAC!

STAGING
MEMORY

f

ALPHA-
NUMERIC
TERMINAL

LINE
PRINTER

EXTERNAL COMPUTER S.

Figure 1 - Block Diagram of the Massively Parallel Processor (MPP)

-7-

SUM CARRY

FULL ADDER

(N=2,6,10,14
18.22,26 OR 30)

RANDOM-ACCESS

MEMORY

FROM PE

ON LEFT
ADDRESS

Figure 2 - One Processing Element O^SS&U PAGE IS
OF POOR QUALITY

Figure 3 - MPP Physical Configuration
U

-8-

PDMU
PE
CONTROL
MEMORY

PE
CONTROL
UNIT

1

ARU

QUEUE

PDMU
MAIN
CONTROL
MEMORY

MAIN
CONTROL
UNIT

I/O
CONTROL
UNIT

ARU

Figure 4 - Block Diagram of Array Control Unit (ACU)

-5-

