NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



(NASA-CR-164980) A VORTEX-FILAMENT AND CORE N82-12039

MODEL FOR WINGS WITH EDGE VORTEX SEPABATION

(Kansas Univ. Center for Research, Iac.)

132 p HC AO7 /Mm% - C3SCL 01A Unclas
G3s/02 08302

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.

2291 leving Hill Drive—Campus West
Lowrence, Kansos 66045

I




:

S

.

| |
5 ;
F’ ;4
E !
ﬂ A VORTEX-FILAMENT AND-~-CORE MODEL

FOR WINGS WITH EDGE VORTEX SEPARATION

o~
PROFEINDY
T e TP R R T T T PR




e

eI

|

\
]
\

A VORTEX-FILAMENT AND-CORE MODEL
FOR WINGS WITH EDGE VORTEX SEPARATION

by

Jenn-Louh Pao ard C. Edward Lan

Techn?’zal Report CRINC-FRL-424 -1

November 1981

The Flight Research Laboratory

The University of Kansas Center for Research, Inc.

Lawrence, Kansas 66045

Prepared under NASA Cooperative Agreement NCCI-18

for

Langley Research Center

National Aeronsutics and Space Administration

i TR 2 e 50 AR ek L i A 1 P kS Y T n s L




-Abstract

An improved vortex filament-vortex core method for predicting aerodynamic

characteristics of slender “ings with edye vortex separation has been deve-
loped. Semi-empirical but simple methods are used to determine the initial
positions of the free sheet and vortex core. Comparison with available

data {ndicates that: (1) the present method is generally accurate in pre-
dicting the lift and induced drag coefficients but the predicted pitching
moment is too positive; (2) the spanwise lifting pressure distributions
estimated by the one vortex core solution nf the present method are
significantly better than the results of Mehrotra's method relative to the
pressure peak values for the flat delta; (3) the two vortex-core system
applied to the double delta and strake-wing produce overall aerodynamic
characteristics which have good agreement with data except for the pitching
moment; and (4) the computer time for the present method is sbout two thirds

of trat of Mehrotra's method.
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1. List of Symbols

ols

a Percentage of allowed movement of a free segment based on
the total velocity at its control point

a' Tan a/ Tan(90° - A)

ay Fourier coefficients

a, Leading-edge boundary condition term

a (x1 -1 + (vy - Y)j ‘(2 - )X m (£t )

& (xy - 0T + 8@y, - T + 8¢z - )% m (£r)

A1j Induced downwash coefficient due to wing

b Wing span m ( ft )

? Gy =T+ @y, - T+ (zy- Dk m (£r)

B (x, = 1 + B(y, - i+ B(z, - 2)k m (£t )

B1k Induced dgﬁywash_s?efficient due to lezding-edge vortex
system m - ( ft )

c Local chord m ( ft )

c Mean geometric chord m ( ft )

4 Sectional induced drag coefficient

CDi CD - (CD/CL-O of cambered wings) Induced drag coefficient
( Drag/(q_S) )

cy Sectional 1ift coefficient

. Total 1ift coefficient ( Lift/(q_S) )

n Sectional pitching moment coefficient about Y-axis

Cm Total pitching moment coefficient about Y-axis based on c
( Moment/(q_S ¢©) )

CLi The initially computed lift coefficient in the core model

CLs The reference 1lift coefficient based on suction analogy

<, Pressure coefficient ( (P-P_ )/q_)
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Koot chord m ( ft )

Sectional leading-edge thrust coefficient

Total leading-edge thrust coefficiert ( Thrust/(qS) )
Side-edge chord length m ( ft )

The Joukowsky force components acting on a segment of
vortex core N ( 1b )

ixl (B & gl ety
B AT TR
. & -%xd ) -
fx' 4 3 m 1 ( ft 1 )
Rg

Unit vectors along X~, Y- and 2- axes, respectively

(x, - xl)T + (yy - Yl)j + (zy - zl)ﬁ m ( ft)

(x, - xT + 8Gy, ~ y)T + 82y - 2Dk m (£2)

Mach number, or number of spanwise strips plus one

Free stream Mach number

Number of chordwise bound elements

NM - 1)

M-1)

A unit vector normal to the wing surface

A unit vector normal to the free stream velocity vector
Dynamic pressure, (pVi/Z) N/m2 (1b/ft2)

Free stream dynamic pressure (p_ V: /2), N/m? (1b/ft2)
Perpendicular distance of bound element to the core segment
Characteristic radius of vortex core cm ( in. )

[ix, - k2 + 820y, - yp? + 8z - 2p? ]

1 + y] + 2k m ( ft )

xi+8y] +82k =m (€t)

d+nf+ck  m (fr)

e+ onl + 8k m (f£e)
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zc (x, Y)

min

Reference wing area mz ( ttz

)

A unit vector along the free stream velocity vector

Induced velocity components along X-, Y-, and Z-axes,
respectively m/sec ( ft/sec )

Free stream velocity m/sec ( ft/sec )
Induced velocity vector due to lending-edge vortex system

m/sec ( ft/sec )

Induced velocity vector due to wing m/sec ( ft/sec )

Induced normal wash m/sec ( ft/sec )

Wing rectangular coordinate system with positive X-axis

aloag axis of symmetry pointing downstream, positive Y-axis
pointing to right, and positive Z-axis pointing upward.m ( ft ).
The centroid of the leading-edge vortex filament system m ( ft )

The ordinate of camber surface measured from X~Y plane m ( ft )

Minimum vertical distance of a vortex segment from the
wing plane m ( ft )
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Greek

Angle of attack ( rad )
a - v

Vortex density referred to freestream velocity

Concentrated vortex strength based on free stream velocity

m(ft)
Differential pressure coefficient,

(c -C )
Plower  Pupper

Chordwise argular distance ( rad )

Sweep anglg of wing leading-edge

Fluid density kg/m3 ( sluga/ft3 )
Spanwise angular distance ( rad )

Local dihedral angle, (Tun"! ;;5) ( rad )

Sweep angle of leading-edge vortex element or wing
bound element ( rad )

Integration variables in cartesian system m ( ft )
Relaxation parameter for the y coordinate of vortex core

Relaxation parameter for the y coordinate of vortex core

vi




: Subscripts
? | 1 The first endpoint of a vortex element
3‘ f' 2 The second endpoint of & vortex selement |
E B Bound element 4
‘5; cp Control point
? i Chordwise bound element number
b Sipanwise strip number
[ k Chordwise bound element number
i 2 Leading-edge
l Le Leading~edge vortex element
i L Left trailing leg
; R Right trailing leg
;, t Trn ling-edge
’ T Chordwise trailing vortices
}
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2. Introduction

It 1{s w. .l known that at moderate to high angles of attack, the flow
separates going around the leading-edge of a sharp-edged wing. The
separation produces rolled-up vortex sheets above the wing surface which
emanate from the local leading-edge. The concentrated vorticity abcve
the wing induces high suction pressure over a large portion of the upper
surface of the wing, resulting in & nonlinear contribution to the wing
loading. In the analysis and design of slender high speed airplanes
flying at off design conditions, a detailed knowladge of the particular load-
ing on the wing surface is required to estimate aerodynamic performance
and structural loads.

There have been s¢veral different theoretical approaches in solving
the vortex flow separation problem since the early 1950's. In general,
they can be classified as conical and non-conical flow methods.

In the first category, based on the slender wing approximation, the
solutions are obtained from a simplified governing flow equatlon by
neglecting the variation of longitudinal velocity. Therefore, the problem
is solved in the so-called cross-flow plane. Legendre (ref. 1) assumed
that the rolled-up vortex sheets could be replaced by a pair of concentrated
cores over the wing and inboard of the leading-edge. Two boundary
conditions were imposed such that velocities along the leading-edges
must be finite and the total force on each isolated vortex must be zero.
Later, Brown and Michael (ref. 2) used feeding cuts to connect the line
vortices and the wing leading-edges. Again, the boundary conditions require
tangency of flow on the wing aurface, finite velocity at the leading-edges,

and zero resultant force on the vortex-plus-cut combination. Mangler and
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and Smith (ref. 3), modifying the model in reference 2, assumed that the
vortex sheets are shed tangentially at leading-edges and roll up as spiral
vortices. The boundary conditions of zero pressure discontinuity across
the separated vortex sheet and zero total force on the vortex sheet and
feed cut are imposed. Finally, Smith (ref. 4) developed the wndel of &
segmented feeding vortex sheet by improving the numerical procedure
in reference 3. The main shortcomings of all these models described
asbove are limited to conical flow. The assumption of slenderness leads
to a theory which is independent of Mach number. Thus, the theory
breaks down at low Mach numbers in the trailing-edge regions, because
the traiiing-edge Kutta condition is not satisfied. It breaks down also
when the aspect ratio is greater than one.

In the sccond category, the conical flow assumption is removed so
that the Kutta conditions are satisfied at both leading-and trailing-edges.
In the earlier stage of development, the classical lifting surface theory
was extended by including a relatively simple representation of the leading-

edge separatior. Bollay {ref. 5) suggested a method for low aspect ratio

rectangular wings in which all the vorticity is shed from the wing side-edge

and is assumed to be along straight lines making an angle of a/2 with respect

to the wing planform. Gersten (ref. 6) and Garner and Lehrian (ref. 7)
extended Bollay's model to cover wings of arbitrary shape. Vorticity is

assumed to be shed from the leading-edges at an angle of a/2 to the wing

plane. The wing was replaced by a series of lifting elements. A Multhopp-type

1ifting surface method (ref. 8) was used to solve the integral equations in

reference 7.

Nangia and Hancock (ref. 9) combined the conventional lifting surface

theory with the detached flow model of Brown and Michzel (ref. 2).
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In the latter model, two concentrated cores lie above the wing, connected to
the leading-edges by feeding cuts. The trailing wake consists of vortices
shed from the trailing-edge and the continuing concentrated vortices. To
determine the separated vortex strengths, their position and the wing vor-
ticity distributions, the flow tangency condition on the wing surface and the
trailing-edge Kutta condition are applied at selected collocation

points, together with the conditions of zero loading on the vortex

and cut. The leading-edge Ki .ta condition it automatically satisfied

by the choice of the loading function.

When the wing loading distribution is not required, Polhamus' method of
leading-edge suction aralogy (ref. 10) has been found to be simple and accurate.
He assumed that the overall 1lift force can be estimated from the sum of
potential and vortex lift contributions. The potential 1lift is defined as
the 1ift due to potencial flow about the wing with zero leading-edge suction.
Vortex 1ift is caused by large suction forces induced by vortices
in the separatad flow, acting on the upper surface of the wing, and
is assumed to be equal to, in magnitude, the leading-edge suction force in
the attached potential flow.

The detailed literature survey of the above flow concepts were
reviewed by Matoi (ref. 11) and Parker (ref. 12).

Since 1970, several methods have been developed by including a more
precise representation of the leading-edge separation. Two popular methods
under the second category are of the doublet-panel type (refs. 13, 14 and
15) and the free vortices (refs. 16, 17 and 18). In the method of doublet-
panel type, such as the free-vortex-sheet method of Johnson, et al. (refs.

13 and 14), tue wing surface and free sheet are replaced with doublet

panels that have biquadratic strength. The free sheet, whose shape and
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position must be determined by the iteration, is attached ur.isr all conditions
to a fed sheet. The fed sheet approximately represents the vortex core
effect and moves with the free sheet. The entire set of doublet utrengths

is determined simultaneously during the iteration process. Hoeijmakers

(ref. 15) extended the method of Johnson, et al. (ref.l14) by including the
entrainment effect of rotational cores. In this model, the spiralling free
shear layer springing from the leading-edge is replaced by a free vortex sheet
which is terminated by a combination of a feeding sheet and a discrete line
vortex and sink. The strength of the sink is related to the entrainment of
the rotational core and derived from semi-empirical arguments. The combi-
nation of vortex/sink and feeding sheet sustains no resultant force and pro-
duces the condition rieeded for determining the vortex core position in the
cross-flow plane. From references 13 to 15, the panel method has been shown
to nredict accurate results for flat delta wings. However,

the computing time involved is lengthy and the methods are generally re-
stricted to simple geometries.

In the method of free vortices, Mook and Maddox (ref. 16) have used an
extension of the vortex lattice method to account for leading-edge separation.
In addition to standard vortex lattice, a series of kinked vortex lines are
assumed :0 be shed from the leading-edge. An iterative procedure is used
to determine the strength and local flow directions with appropriate boundary
condition. In the Kandil method (ref. 17), the flow is modelled in a
manner similar to that of Mook and Maddox (ref. 16), but included wing-tip
separation. In this model, the bound elements of the vortex lattices were
unswept, and the wake behind the trailing-edge and tip vortex elements
were force free. The quasi-vortex-lattice potential flow method of Lan
(ref. 19) has been extended by Mehrotra (ref. 18) to include vortex flow
effects. This is done by modelling with discrete trailing vortex filaments

emanating from the leading-edges. The leading-edge Kutta condition is exactly

4
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satisfied and partial span vortex separation is allowed. The results of Meh-
rotra's model (ref. 18) indicate that the predisted spanwise pressure distri-
bution is more diffused than the experimental data show. This is because the
effect of a concentrated vortex core in the real flow is not well represented
by a numbar of free vortices. From the published results, it is clear that
none of the existing free-vortex methods is capable of predicting accurately
the lifting pressur2? distribution over the wing surface within a reasonadble
amount of computer time.

The main objectives of this investigation are : (1) to reduce the computer
time through the use of a pair of concentrated vortex cores above the wing sur-
face, which should also improve the pressure prediction of Mehrotra's model
(ref. 18); (2) to allow the effect of side-cdge vortex separation; and (3) to
extend the method of reference 18 to more realistic geometries, Configuratioms,
which are applicable to real airplane geometries include features such as
camber, strakes and leading-edge vortex flaps. All these configurations will
be treated in this report.

In the follcwing, the aforementioned improvement will be described. First,
the leading-edge vortex system is superimposed on the regular quasi-vortex-
lattice grid by using segmented vortex filaments, as shown in reference 18.
Second, the side-edge vortex system is obtained by extending all the bound
elements to the tip chord in the last vortex strip. Third, the leading-edge
diffused vortex elements, in reference 18, are allowed to merge into a con-

centrated core after two iteratioms.

1




Tus

e e T R 8 TR T e T T ST S ) ) I

3. Description of Theoretical Formulation

Mehrotra's method (ref. 18) is a diffused vortex-filament model of the
vortex core but serves as a basis for the present method. in the¢ present
analysis, the bacic assumptions are: (1) th: wing is repres:nted by a bound
vortex sheet across which there exists a pressure difference; (2) the sep-
arated flow along lcading-edges is represented by force free leading-edge
vortex elements which feed vorticity into a concentrated core. In the present
mathod, the Quasi-Vortex-Lattice method (QVLM) (ref. 19) is used to simplify
the induced velocity expressions due to the wing bound vortex sheet.

During the iteration process, the following boundary conditions are
imposed: (1) the wing syrface must be impermeable; (2) Kutta conditions are
imposed along the leading- and trailing-edges of the wing; (3) in the diffused
vortex-filament model, the force free condition is applied on the leading-edge
vortex filaments and trailing wa'e elements; and (4) in the core model, the
force free condition is applied on the free vortex elements, concentrated
core and trailing wake elements.

Thi{s is a non-linear problem because the strength of the wing bound vor-
tices and free element vortices, the locations of the leading-edge free

vortex elements, and the concentrated core are unknown.

3.1 Mathematical Model of the Wing
The wing lies in the x-y plane and the x-axis is taken to be streamwise
along the wing center line. The origin of the right-handed rectangular coor-

dinate system is assumed to be at the moment reference point of the wing.

3.1.1 Wing Bound Element and Trailing Vortices
According to the QVLM, the semi~circle method is used to determine the
control station locations and the vortex strips in the spanwise direction, and

the wing control points and bound elements in the chordwise direction. The

6
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locations of bound- and trailing-vortex elements are as shown in Fig. 1. The

x-location of bound elements is given t::

X, "X, 2 (1 - cos (————-—w)). 1 =1, -==N (1)
where X, is the leading-edye x-coordinate, c is the local chord and N is
the number of bound elements in the chordwise direction. The spanwise lo-

cations of trailing vortices are given by

y, =3 - cos Ezinyy, g =1, - (2)
A 2M
where b is the wing span and M is the number of legs of trailing vorticity,
wiitch i8 one higher than the number of spanwise vortex strips. The locations

of control points are given by

c
g - k - ———
xcpk - xlj + 5 (1 - cos (ﬁw)), k=0,1, N (3)
b
Yep, "7 (17 o0 dmy, =1, -1 4)
where xl‘ and cj are the leading-edge x-coordinate and local chord at ycp .
k) h|
respectively.

For the strake-wing configuration, there are two sections in the span-
wise direction. Each spanwise section is divided into vortex strips by the
semi-circle method. The edges of the vortex strips in each section are ob-

tained through the following relation

b
' k
¥y =¥y * 7 (1 - cos (—{,:—n)). 1, M (5)
and y control points are given by

' b
l
Yep, ™ Yie1 ¥ 7 (17 cos (E:n)). =1, -t -1 (6)
where bk is the width of the k th spanvise section and Mk is the number of

spanwise strips plus one in kth section (see Fig. 2).
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are defined as
y; =0
und
vy = by

3.2 Model of Free Vortex Element System

3.2]1 Leading-Edge Vortex System Geometry
The leading-edge vortex system is superimposed on the regular quasi-
vortex-lattice grid. A typical leading-edge vortex element is shown by
points A through J in Fig.3. These points are connected by a series of
short straight segments, A typical set of initial locations for these
segments is indicated with dashed lines and the locations after two iterations
are given by solid lines.
The segments of the vortex element have the following characteristics:
(1) Initially, points A through E lie along a wing trailing vortex
filament with point A being one root chord away from the
trailing~edge (point D) in the downstream direction, and the line
segments between A and D are parallel to the axis of symmetry. The
segments B-C and C-D are 0.1 R long. The length of each line segment
between A and B remains unchanged as the solution progresses. Segment
B-C is allowed to move only in the vertical direction, whereas segment
C-D 1s fixed in the wing plane because of the trailing-edge Kutta
condition. Segment D-E is also fixed in the wing plane.
(2) Points E, F, G and H lie in the wing plane. The location of segment E-F

is :head of the wing first bound elemernt and is given by
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X = X ¢+ % n

E te '2—(1-coa(m)) D
x e X 4+ F n

ooty 5 (- cos Copmyy)) (8)

The segments F-G and G-H are of the same length and point G lies on the leading-

edge.

These segments are fixed in the wing plane to satisfy the leading-edge Kutta

condition.

(3)

(4)
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The initial loca“ion of point T is a function of a and is given by

(ref. 18)
xI .x? 9)
i * Yp (10)
z; = 0.1 ¢ Ten (22.5 - 0.5 a), for ag  15° (11)
or
21 = 0.1 cr Tan a, for a > 15° (12)

Where R is the root chord and a 18 the angle of attack. 1Initially point

J is one rool chord away from the trailing-edge. The line connecting

I and J may be divided into segments of equal length which lie in a

plane parallel to the x-z plane. The initial height of these segments is
approximately 0.1 R above the wing piane. In the final converged locationm,
all segments between point H and J (free vortex elements, concentrated core
and trailing wake elements) are aligned in the local velocity direction at
their mid-points to satisfy the force free condition.

The semi-infinite segments from point A to infinity and J to infinity are
straight and are parallel to the undisturbed free stream direction. Since
the far wake of the leading-edge vortex element has very little effect

on the wing aerodynamic characteristics, the far wake is assumed to be semi-

infinite and parallel to the free stream.

e g
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3.2.2 Side Edge Vortex System Geometry

To establish the side-edge vortex system as showm in Fig. 4, the leading-

o edge vortex element and wing bound element of the last vortex strip is modified i

as follows: ;

° (1) Extend the leading-edge bound element to the side-edge (point D). Points

o o iz

D, E, F, G and H lie in the wing plane. The segments F-G, G-H, H-I and

I through J are given in the same manner as in the precading section. The

extended leading-edge bound element consists of segments D-E and E-F.

The location of each point is given by

- e T AT e TR

Cry "
Xy = xlrip + —3—2 (1 - Cos ( E-YE_:T)) ) 13)
] CF n i
| Xp = Xy * 7 (- Cos () ) s
'

(2) The initial location of each vortex segment along the trailing leg of ;

the extended leading-edge bound element, point A through D, is given by

xj+1 = xJ + Ay cos % (16) :
j f

Y341 = Y11p “an ;
) 3
; z, =z, +Ay sin > (18)

341 %y 2

where

Ay = 0,95 x (width of the last vortex strip).

el andiag o Mgl iduand . el de Aaadak .

(3) Extend the regular wing bound element to the side-edge. (Points P, Q, R
g S). Points P, Q, R and S lie in the wing plane and at the side-edge. The

location of each point is given by

x, = x“ri cTi TP 3 - ocos A=y, 4 ——-N (19)
P

Vi ® Yrip (20)

10
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)

(5

where L is the leading-edge x coordinate at the side-edge of the wing;
Tip
qrip the side-edge local chord length.

Initially, all the segments between points D and A, P and T, Q and V, etc.
lie in a plane parallel to x-z plane at the wing side-edge. Points A, T,
U, V and W are one root chord away from the trailing-edge. The initial
side-edge vortex segment along points P through T (or Q through U, etc.)

is given by,

Xepp " %y + Ax cos %» (21)
Y41 © Y1ip (22)
2441 " 2y + Ax sin % (23)

where Ax is assumed to be half length of the side-edge chord.
The semi-infinite segments from points A, J, T, U, etc. to infinity are

straight and are parallel to the undisturbed free stream.

11
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3.3 Induced Velocity Computation

3.3.1 Indured Velocity Due to Wing

In the quasi-vortex-lattice method (ref. 19), to satisfy wing boundary con-
dicion, the continuous vortex distribution over the wing i{s replaced by a quasi-
continuous one, being continuous chordwise but stepwise constant in the spanvise
direction. Thus, the wing surface can be divided into a number of vortex
strips with the associated trailing vortices (Fig. 1). In any strip, consider

a vortex element y dx with an arbitrary direction 'f (Fig. 5). The induced

h

velocity due to all bound elements in the 1t strip is given by (ref. 19)

axt (B ety et o

Zrxt0)? % |3

and due to the associated trailing vortices by

2 X
4 8 t
V11 R) = H{l y (x")

v, ® -8 fry & (= <§1-§) x df i)
X

i, T x, -
8 (25)

The transformation, x' = x, + c(y) (l-cos® )/2, reduce equations (24) and

(25) to
2 T
@ - ssc(z) S5 8 (@ v (&) sin o de (26)
1 i Q
and
2 A
> a ge(y) €. (08 vy (6) Sin8 d @ 27
9, @ = HEE-L%
where

-+ > *,
. (4) = axT (22— - i ye 10
1 |-5'x'f'|2 |8 |a*|

(R - R) x di
FEORPH 3
8

-

and c(y) = =Xy 8 -l;. etc. are defined in the List of Symbols.
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(28)

l v
E
.
The total induced velocity due to the 1th strip of vortex distribution
is given by
2 "
B ¢

;» Ty« B0 L2 (o) v (o) stnede
b 2
. B8° c(y) m '
; "_'ua« { &3 (8) v (6) Stne de
% - 32 c u
r, £ <) £ (0) y(8) Sind do
- 8n o 2

Where the

first term 1is due to bound element, second due to left leg of

element and third due to the right leg of trailing elements. The above

are reduced to finite sums through the mid-point trapezoidal rule (ref.

where Ok

2 N
¥, @) =B v @& +8& -8 ) y sine
1 8N ST e M A k k

= (2k -~ 1) n/2N and locations of bound elements are given by

X
1k - 21 + clsk

r
| X, = Xg 4k

and

written as

k 2

-;,(1-cos(-2-"—2—;-i—n>).k-1.---w

S

X, o the leading-edge x -coordinate at Y1 (left leg)
1

X, = the leading-edge w»cordinate at Y, (right leg)

2

¢y = chord length af Yy

c, = chord length at Yy

(1) through (6).

M-1
v - T ®
1=1
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trailing
integrals

19):

(30)

(31)

(32)

The location of control points and trailing vortices are described in equations

Thus, the induced volocity due to all vortex strips of the wing can be

(33)
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3.3.2 Induced Velocity Due to Free Vortex Element System
The leading-edg: free vortex system consists of M - 1 distinct vortex

elements. Each element may have different number of small vortex segments.

Assume that the 1th set has L small segments. The i{nduced velocity at a given
point (x,y,z) due to jth segment of ith element is given by (ref. 19)
2 - > -+
ﬁij ('ﬁ) - 8 I‘i a X I b' a' ) .'Io (34)

( -
R I T
where

RexT+y T+zk

2= (xj-x) 1+ (yJ -y) I + (zj -z) k
b (xj+1- x) 1T+ (yj+1- T+ (zj+1- 2) k

7. (xJ+1 _ xj) T+ (yj+1- y) T+ (zj+1- zJ) k

e -0T+s-nTreE -2k
B - (x4 = ® 1+8 (Yy41~ ¥ T+ 8 (244 - 2) K
Te gy = x) T80, -yl 48 (z-2) K

Iy = leading-edge bound vortex strength of ith strip.

The subscripts j and j + 1 correspond to the end point of jth segment. The

induced velocity due to ith element can be written as
L
i, ®>_ T, @® (35)
1 T i3

Therefore, the induced velo~ity due to the entire leading-edge free vortex

elements 1is

M-1
7 @® -Z 'ﬁi ®) (36)

i=1

3.4 Formulations of Wing Boundary Condition

The bound elements and the corresponding control points of the wing
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surface are numbered from the leading-edge to the trailing-edge and from

EEEEE

the root to the side~edge. The flow tangency condition can be written as

; \

% TCooa (—g-,i- )4 - Sina —:i:

E [A“](vj}+[a“] (T} =4« »_‘_

4 ds N (37)
E‘ \'lk + Cosa (&-)k - Sin uJ _l_

where Nn is tho total number of wing bound elements; Nb the number of

th

leading=-edge vortex elements; Aij the induced downwash at the i~ control pcint

cf wing due to a unit horsehoe vortex density at j; B,, the induced downwash at

ik
the 1th control point due to the kCh leading-edge vortex element of unit

strength; Yj the vortex density of the jth boulid element; Py the strength of

h th

the k* leading-edge vortex element; (dz/dx)i the camber slope at the 1

control point and a the angle of attack. According to equations (52) and (53)
of reference 19, the leading-edge thrust coefficient is related to the normal-

?
f wash on the leading-edge by the following equation

+ Sin a)|

a, = (induced normalwash - Cos a (%3 (38)

Rk x)k at 2.e.

which leads to the last expression on the right hand side of equation (37). In

L the expression, 80 is defined as (ref. 19)

l 2 ¢ Con A
tk l,
8, = N/ Tani A+ B ( )
n:;1 - ML Cos: A

where

} N = number of chordwise bounded vortex elements
|
: A = leading-edge sweep angle

M, = free stream Mach number

g =l - ¥
h

= gectional leading-edge thrust coefficient of the kt strip

k
For complete leading-edge separation cases, the sectional leading-edge suction

t
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3.5 PForce Free Condition
The vortex segments of each free element above the wing surface and the
trailing wake are to be aligned in the direction of local velocity vector cal-

culated at their mid-points. Consider the 1th

segment of a vortex element,
The coordinates of its end points are given by (xi. Yyo zi) and (x1+1’ Yie1®
zi+1). Assume that the induced velocity at the mid-point of this segment at
a given iteration is given by (dI + 03 + hﬁ). In the following sections, the

formulations of force free condition will be derived in the diffused vortex

filament and core models respectively.

3.5.1 Formulation of Force Free Condition of Free Vortex Elemants in The

Diffused Vortex Filament Model

th

For the 1~ segment, the new location of the (1-0-1)th end point can be ob-

tained by aligning the segment in the direction of local velocity vector.

That is
- u
Xipl ™ %y + T As (40)
Yiep =YV * % As (41)
w
zi+1 - zi +ﬁ As 42)
where

Ue (u2 + v2 + wz)k

e = [rgy = %%+ gy = 97 # (g - 2p?)
Before equations (40) ~ (42) are used, the following points should be considered:

(1) The length of each segment is to be preserved.

(2) The free vortex segments above the wing should not come too close to
the wing surface to avoid numerical difficulty in the present inviscid
theory.

(3) The adjustment of the location of each segment to satisfy the force

free condition should be such that it does not resul: in numerical
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fluctuations.
Based on the above considerations, equations (40) to (42) will be modified as
followe:
Consider the same ith segment. If this segment moves "a" percent only
according to the velocity computed at its mid-point, the equations (40)to (42)

can be modified to be

by' mag s+ (1= a)y,, -y, (43)

bz' = a8+ (1 - a)(zg,, - 2,) (44)

ax' = |as? - (ay")? - (Az’)2] b (45)
It follows that

Xipp = %y + Ax' . (46)

Yigp " Vg + O (47)

241" 2y + Az’ (48)

The free elements of the leading-edge vortex system have been restricted not to
come any closer than a minimum specified height to the wing surface, which is

given empirically by Mehrotra (ref. 18) as follows

o
2 in " 0.1 cg Tan (22.5 - 0.5a) , for @ < 15 (49)
o
Z4n " 0.1 R Tan a , fora > 15 (50)
' -
If Zin is less than 2 in’ it is then set Zin equal to zmin and Az' 1is re

calculated by using

0z = Z04n = %4 (51)
This restriction is needed because whenever the free elements are close t» the
wing surface, they induce large velocities on the wing and vice versa, which
makes the locations of free elements fluctuate. In the real flow, at small
angles of attack, the leading-edge vortex system is weak and diffused. The
effect of the free vortices is artificially reduced by increasing 2 4n 38 the
angle of attack is decreased below 15 degrees. Note that equations (43) through

(48) described above are mainly used to (1) establish the leading-edge vortex

filament system in the first two iterations; and (2) find the new position of

17
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trailing wake elements and side-edge vortex system in the entire iteration

process.

3.5.2 Formulation of Force Free Condition of Free Sheet Vortex Element in The

Core Model

For the 1Ch segment along a free vortex element between the leading-edge
and concentrated core, the initial slopes are determined by the total in-

duced velocities at the mid-point of this segment

@' .Y (52)

Az’ . ¥ (53)
The new slopes of the 1th segment of a free vortex element are given by:

Eh* e d* @&+ a - dHED' (54)

E5* ot @+ - D (55)

Similar to the parameter "a'" in equations (43) and (44) of section 3.5.1, the
relaxation parameter of free sheet.dt 18 used in equations (54) and (55) in
the core model, to avoid any rapid variation of free sheet shape and divergence of
the iteration procedure. The initial value of d* is 0.5. During the itera-
tion process, when the rate of change of the total free sheet vortex element
force is less than five percent, d* is set %o 0.95.

Since the length of each segment is conserved, therefore,

As = Ox [1 + @H? 4 (—ﬁ-:-)z]” (56)

Hence

* As
(ax) = (57)
[1+ (%)*2 + (%,z; *2]15

It follows that

" = o " (58)
) = 0" " (59)
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Thus, the new location of the (1+1)th end point is given by

Ky = X+ (00" (60)
Vigy = g *+ 00" (61)
Zigp " %4t (az)" (62)

3.5.3 Formulation of Force Free Condition of Vortex Core in The Core Model
During each iteration, the Joukowsky force acting on each segment of the

core 18 computed. Let

Falxf

- (uf + vl + wk) x (PXI +PyI + Pzﬁ)

Then
F r
?_Z «-¥. TE - ¥ _ 42 (64)
xu u x u Ax
F r
2. Y_ V. by Y
P‘u Fx u (Ax) u (65)

If the new position of the core is such that Fy = 0 and Fz = 0, then

w,' Az,'

(;) - G =0 (66)
8y LYy .

(Ax) (u) 0 (67)

Assume that
w w,'
I
v vy'
G-

Combining equations (64), (65) and (66), (67) yields the following equations

for the ith segment :
F
Ayy' o &Yy L (2
(Ax i Ax)i qu i (68)
az,' Az _Ex
@y " @y YR, (69)
The new slopes of the 1th segment of the concentrated core are taken to be:
Y e - Ay Ay,
@y = A -AGED A, Gy (70)
Az * Az Az, '
GK; N 1 - *z"Z&’i + Xy (Ax N (71)

Where Ay and A, are relaxation psrameters and are discussed in Section 3.8.
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Combining equations (68) through (71) results in:

<—1) - <-1) - Ay<—> (70)
&2 ) - S “z(rﬁ) )
i x 1 .

During the iteration process, when the rate of change of the vortex core force

is less than five percent, the relaxation parameters Ay and A, of each core seg
ment will be further reduced by multiplying the factor 0.1l. Thus, the move-
ments of core segment will not cause excessive fluctuation in the aerodynamic

characteristics.

Since the segment length 1s conserved, it follows that

bs = ox [t + GH* + (A"’)z]" (74)
As
(Ax) (75)
E-"’ (A )*2 + (%f_‘)*z ]’ﬁ
Hence,
e = 0" & ) (76)
)" = (0" E&" (77
4

Thus, the new position of (i+1)th end point of the concentrated core are found

as follows

Xy X (ax) " (78)
Vi =¥y * N (79)
2y " %4 + (Az)* (80)

In the present analysis, the effect of the secondary vortices has not been in-

cluded.

3.6 Centroid of the Leading~Edge Vortex Filament System
After establishing the leading-edge vortex filament system based on exer-
cising Mehrotra's code (ref. 18) through two iterationms, the centroid of that

4iffused vortex element system can be found as follows (ref. 20):
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Consider a series of cross flow planes, proceeding from the wing apex
toward the trailing-edge. The centroids of the vortex filaments penetrating

these planes are given by,

|
- DT,y
5, - 181 ri 14 1)
nj Cj
. qh Ty
ZJ - = T (82)
cj

where,

;j' Ej are the centroid position in the jth plane,

are the interseccion position of the ith vortex filament with the

Yagr 244
jth plane,

h

I'c is the circulation around the it vortex filament,

i
' . 18 the concentrated line vortex strength at the jt

c)
3

h plane,

n, is the number of vortex filaments penetrating the jth plane.

3.7 Modification of Z-Coordinates of the Initial Concentrated Core

In order to have better starting solution so that the number of iteratioms
and computer time can be reduced, the initial z-coordinates of the concentrated
care from Section 3.6 are modified to take the experimental values summarized

by Smith (ref. 4):

z, = 0.154a' + 0.1 a'< 1.2
z, = 0.1333a' + 0.158 1.2 < a' < 2.2 (83)
z, = 0.13a' + 0.132 a' > 2.2

where
a' = Tan a/Tan 6
o =90° - A
z, is the nondimensional z~coordinate of the concentrated core, referring to

the local semi-span; A the leading-edge sweep angle; and o the angle of attack.

Equation (83) will be used only in the simple wing configuration.
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The initial configuration on the core model, on the right half of the
wing, is shown in Figs. 6A through 6C. The top view of the initial free sheet
and the modified y-coordinate of the core location are shown on the x-y plane
in Fig. 6A. The inicial modified y-coordinate of the core location is such that
it 18 at least at a location equal to 60 percent of the local semi-span of the
wing (see references 4 and 22). The rear view of the detailed free sheet shape
and its relative vortex core location above the wing surface are shown on the
y-z plane in Fig. 6B. The side view of the free sheet and the modified z-coor-
dinate of the core location are shown on the x-2z plane in Fig. 6C. Note that

the initial modified z-coordinate of the core location is based on equation (83).

3.8 Formulation of Relaxation Parameters in the Core Model
In the first two iterations of the core model, the core is forced to
move either in the y or z direction. The direction depends on the sign and
the difference between the initially computed 1ift coefficient and the reference
1lift coefficient based on the suction analogy (references 26 and 27). From

the numerical experimentation, the relaxation parameters Av and A,, in equa-

z'

tions (70) through (73), are taken as follows:

First iteration

If the initially computed lift coefficient is smaller than the reference
lift coefficient based on the suction analogy, the core will move down and

the corresponding reliéationcpafameter is
L - "L

8 i

Tan a) (84)

Az = "1-5
1 LS

If the initially computed lift coefficient is greater than the reference

(c

1ift coefficient, the core will move out and the relaxation parameter is

( -C, ) Sina
CLi Ls

A= =2,0 85
¥, ¢ (85)
8
where CL is the reference 1lift coefficient, and CL is the initially computed
8 i
lift coefficient. The initial set of Ay and Az are designed so that the
1 1
22
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movement of core segments is proportional to the difference in CL and CL .
i 8

Also, the higher the angle of attack, the larger the value of Ay or the lower
1
the value of Az is used. It was determined from numerical experimentation that
1

the initial core needs larger move-down movement in the z direction than the

move~-out movement in the y direction.

Second iteration

If the initial movement of the concentrated core is in the z direction, the
y~coordinates of the core will be adjusted next in the second iteration. The
computed 1ift coefficient after the initial adjustment of the concentrated core
is denoted by CL' The core will be caused to move out if CL is greater than

CL and to move in if CL is less than CL +» The corresponding relaxation para-
8 8
meter is:

(CL - CLB) Sin a
A [ (86)
Y2 CLB

On the other hand, if the initial movement of the cuncentrated core is in
the y direction, the z-coordinate of the core will be adjusted in the second

iteration., The core will move down if C. 1is less than C, and move up if C

L Ls L
is greater than CL . The corresponding relaxation parameter is:
® (¢ - ¢ )
L Ls
Azz = 0.75 T Tan o) (87)
Ls

The relaxation parameters Ayz and Xzz have the same form as the initial set ex-
cept the magnitude is reduced by half. Special conditions are imposed for all
configurations when the angle of attack is below 20 degrees. They are (1)

the magnitude of Azl in equation (84) is to be reduced by half; and (2) for the
angle of attack below 10 degrees, the angle of attack in equations (84) and (87)
is set to 10 degrees to avoid the singularity in a in computing Azl and Azz.
Therefore, the movement of the core in the first two iterations for angles of

attack below 20 degrees will not cause a large fluctuation in the aerodynamic

characteristics.
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The relaxation parameters Ay and Az of each segment of the core are to be
used from the third iteration on, based on the force gradients of core segments
before and after the adjustment of the free sheet vortex elements. Thus, the

relaxation parameters to the ith segment of the core are:

2" 'yl
A =C , c |= 4IF
v A (-*T;;r-y—)i | yi| LL (88)
F.,-F
A, =, (E—El , IC. | IF (89)
1 1 21 1 1

In the above, Fyl' le, Fyz and Fzz are the segment forces of the core before

and after the adjustment of the free sheet vortex elements, and LF is the
algebraic sum of segment forces acting on the core after adjustment of free sheet
vortex elements. The.uign of Cyi and Czi are uetermined so as to reduce the
total force acting on the free sheet vortex elements.

In the core model, the locations of free sheet vortex elements and coancen=-
trated core have a very sensitive effect on wing loading. To avoid the div-
ergence of the iteration procedure: (1) the restrictions are imposed on the
movement of free sheet vortex elements and concentrated core as discussed in
sections 3.5.2 and 3.5.3; (2) the end point of the first core segment near

apex will remain fixed from the third iteration; and (3) the z-coordinates of

concentrated core are not allowed to be below 2 in given by equations (40 and (50),
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3.9 Aerodynamic Characteristics

In reference 26, the more accurate expressions to calculate the overall

aorogynnmic characteristics are derived by Lan for the cambered wing. Both ;;5
and 3%? are included in the computation.
Assume that the wing surface (Fig. 7) can be described by:

z = zc(x.y) (90)
where zc(x,y) is the ordinate cf camber surface measured from the x-y plane.
Introduce a function f such that:

f =z ~ zc(x,y) (91)
Therefore, a unit normal vector on the wing surface can be defined as:

9z 3z
TR skt A o2

ns =
3z 2 3z 24k
Bl v o'+ 59 ]

The unit vectors ;m and gw are related with n (Fig. 8) in the following expressions:

g; = -Sina i+ Cos a k 93)
t =Csal+sinak (94)

Tiic computed lifting pressure ACp (see Appendix A) is acting normal to the local
camber surface, i.e., in the % diiection. Then, this pressure force can be de-
composed into K@ and ?m directions to determine the lift and drag components,
respectively. Hence, the component in the 1lift direction is:

- 9z [ 3z 4 azc 2] &

n'n_ = 63§5 Sin a + Cos a)/ |1 + (3;5) + (3;— (95)

the component in the drag direction is:

dz -} 3z X
mf, = (- 5= Cos a+Sina) [1 + %+ (5 2]

To find the pitching moment about y axis, the ] component of (4x T+ Az i) x n
is needed, where Ax and Az are the moment arms of the pressure elements refer-
enced to the coordinate system. In the present analysis, Az is assumed to be
zero. Hence, the corresponding }¥component of (Ax T x K) is:

3z o 3z 1 I
-Ax/ [1 +¢5;£) + (3;5 ] 97
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3.9.1 Sectional Aerodynamic Characteristics

To find the sectional characteristics, {t is assumed that the wing vor-
tices are situated along the cambered surface. Since the resulting lifting
pressure is acting normal to the local camber surface, the sectional life,

induced drag and pitching moment coefficients can be determined by combining

the lifting pressure ACP and equations (95) to (97) thrrugh the local chord

integration. Hence, the sectional 1ift, induced drag and pitching moment co-

efficients at the jth strip have the following expteuion-

32 / . C 2 ]l’
CR'J - —r j ACP (ax Sin a + Cos a) [1 + (Bx ) ( ]
J ;] 3 9 i |
z H F
c c,2 ¢,
+ [(a—x—) Sin a + Cos ‘;Le /[1 D+ GO ]2 (98)
b b b e
3z 3z 02 v
c -——J‘ j ac (--——Cosa+Sina)/[1+( )+(— ] dx ]
dJ X g
2
J 9 3 ;’ :
z, z
- c, [ (——-) Cos a + Sin a] / 1+ (axc)2 + (3;9- 2] (99) ﬂ
3 3 3 3de,
dz 3z
1 [* cy2 c, 21k ,;
¢ ==z 10, @x/ [1 + G+ 5D ] dx (100)
3 "%,
, :
where the Ct terms in equations (98) and (99) are the leading-edge suction !
3
effect; Xy and X, the leading-and trailing-edges x-coordinates of the chord ;

j -

passing through the control station of the jth strip: T the mean geometric chord,

J

Cj the local chord length., The subscript ie, in equations (98) and (99), means
az 9z ek :
(-3-;‘-(&)j and (ng are evaluated at the leading-edge of the j ~ strip. Using ,

this transformation,

X=X

c
Ej+§i(1-Cos 8)

equation (98) can be reduced to:

3z Nz a2 L
” c c,2 ('
clj - s,]; AC, Sin @ (57~ Sin a + Cos a)/[l + G+ (ay ) ] deé
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+ct [(;;9—) Sina-o-Co:a] /[1+(")+(8y j]‘,

b h| b
N+l 3z 8z I
x n _$F 2¢ )2
- m & AC k [(38 )k Sin a + Cos 0]51“ 9 /[1 + ( ) + (3)' l)‘ ]
9z 3z 3z I
c ‘ c\2 c,2
+ CtJ [(-5;-)1 Sin a + Cos a]l./ [1 + (-5;‘-.)3 + (-3_)'—-)‘1]9. (101)
and
L el ey

where the mid-point trapezoidal rule has been used to reduce the integral inwo
a finite sum (ref. 19). Similarly, the sectional induced drag and pitching

moment coefficients for the jth strip are given by:

o N+l azc 3zc 2
Cdj- —mz AC [— (-a—x——)k Cos a + Sin a] Sin ek/ [1 + ('é'i_ i}
92 . 21k 2. 32 2
+ (== -c [-( ) Cosa+81nu] /[14'(—)"'
dy K tj W.j Q'e ax j
dz I
5 2] (102)
3 Ee
N+1 C 3z
~ " | c\2
c ¥ -—"—— S ac. [x, +5l(1-Cos ek)] smek/[u(_.) +
my TN + 1) kel [ by 2 9% "k
27k
(== °)] (103)
3y K
According to equations (52) and (53) of reference 19, the sectional
leading-edge thrust coefficient is given by:
' o dz, _ 2
. L - M2 cos? ny [¥] ~(Cos o GGy - Sin @] (106)
t 2N% Cos A (1 - M2 + Tan? A)

where M_ 1s the free stream Mach number; A the sweep angle of the leading-edge;

w3 and (%-i—)j are the induced normalwash and slope of the wing surface at the
leading-edge. For sharp-edged wings, Cp is assumed zero.
27
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3.9.2 Overall Aerodynamic Characteristics

The total induced drag, lift, pitching moment and leading-edge thrust
coefficients of the wing are determined by spanwise integration of the sectional
characteristics. Again, the integration is first transformed to an angular
coordinate (0 < ¢ < 7), and then reduced to finite sum by the conventional
trapezoidal rule (vef. 19). Therefore, the total lift coefficient has the

following expression,

CL = g fblz clc dy (105)
(¢}

where b is the wing span and C the wing area. By the transformation:
y == (1-Cos ¢) (106)

equation (105) can be reduced to:

™
CL.%Q',[ 9 cSin ¢ d¢
o
M-1

bw
A c ¢, Sin « (107)
2SM =i 21 i i
and
b, = =n fel,-m=(M-1)
1 M 1] ’
where M-1 i3 the total number of spanwise strips.
Similarly, the induced drag, pitching moment and leading-edge thrust
coefficients are given by:
s o° fg%‘ (108)
c >on c Sin ¢ 108
D, 28M &5 ‘4 4 1
bn M-l
B ——
Cp ® 75 2y ¢ Sin ¢ (109)
i=] 4
b M=-1
~
CT = 35H 12.:1ct1 o4 Sin ¢i (110)

3.10 Summary of Solution Procedures

In the diffused vortex filament model of Mehrotra (ref. 18), the basic
unknowns of the problem are the bound vortex density on the wing, the strengths
and locations of the elements of the leading-edge vortex system and the
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trailing wake. The problem is solved in the following iterative manner:

(a) Prescribe the vortex-lattice for the wing surface, and the
initial locations of the leading-edge and side-edge free
elements over the wing and in the wake.

(b) By satisfying the wing boundary condition, equation (37), ob-
tain the bound vortex density of the wing and the strengths of
free eslements.

(c) Calculate the ssrodynamic characteristics and loads.

(d) Adjust the free elements of the leadiig- and side-edges vortex
system and the trailing wake in the local velocity vector dir-
ection,

(e) Repeat steps (b) through (d) for two iterations.

After two iterations in Mehrotra's diffused vortex filament model, the
present model with the leading-edge vortex core is then introduced (See Fig. 9),
In the core model, the basic unknowns of the problem are the bound vortex
density on the wing, the strengths and locations of the free sheet vortex
elements, the concentrated core and the trailing wake. The problem is still
solved in the iterative manner:

(£) Find the centroid of the established leading-edge vortex

filament system, equations (81) and (82), from step (e).

(g) Allow the leading-edge vortex elements to merge and feed
vorticity into the concentrated core through connecting
segments.

(h) From the numerical experimentstion, the z-coordinate of the
initial core is modified by equation (83), and the y-coordinate
of the initial core is adjusted so that the initial core
location is at least 60 percent of the local semi-span

of the wing to have a better starting solution.
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(1) By satisfying the wing boundary condition, equation (37),

, the initial bound vortex density of the wing and the

'~ strength of free vortex elements are obtained.

k i (J) 1In cthe fi:st two iterations of core model, the core is

. forced to move either in the y or z direction. Ti. 2 dir-
;: ection depends upon the sign and the difference between

the initially computed lift coetficient and the reference

1lift coefficient based on the suction analogy. The relax-
ation parasmeters Ay and Az are based on equations (84)

through (87).

| : (k) From the third i{teration of the core model, the movement of

, the core is based on the relaxation parameters for each seg-

|
i

. ment of the core, equations (88) and (89). These are used
l

to keep the core moving in a direction for which the total i
algebraic sum of the forces acting on the frze sheet is to

be decreased.

s vl e epg s i o ey

(1) Based on step (k), the orientation of the leading-edge free

elements of the free vortex sheet, side-edge vortices, the

N e S S

concentrated ccre and the trailing wake are adjusted in the

| local velocity vector direction,

(m) By satisfying the wing boundary condition, equation (37), ;]
<he bound vortex density of the wing and the strength of

free elements are obtained.

T Ty T

(n) Calculate all the aerodynamic characteristics and loads.

(o) Calculate tne force acting on all free elements of the free
} vortex sheet over the wing surface and the concentrated core.
(p) Repeat steps (j) through (o) until a converged solution is

obtained.
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The converged poséitions and orientations for the free sheet vortex
elements, side-edge vortex elements, and the concentrated core are assumed
to have occurred when the sum of the magnitvue of the total force acting on
the core and free sheet has reached a local minimum value in the iteration
cycle,

Numerical results to date indicate that when the angle of attack is
decreased below 20 degrees, the present method has difficulty in generating
a satisfactory starting solution. The main reason is the poor initial shape
of the free vortex sheet from Mehrotra's model. Thus, with the ccre model
metl:od, the starting solution for wings at angles of atteck la2ss than 20 de-

grees is taken to be the initial shape for 20 degrees angle of attack.
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4. Numerical Results and Discussions

This section presents numerical characteristics of and predictions by the
present method. These predictions are compared with results from the methods
of Mehrotra (ref. 18), Johnson, et al. (refs. 13 and 14) (called Free Vortex
Sheet (FVS)), Lan (ref. 26), Lamar (ref. 27) (called Vortex-lattice Method bas-
ed on Suction Analogy (VLM-SA)) and with data. Numerical characteristics

and results of the present method will be presented and discussed next.

4.1 Numerical Characteristics

The umerical results predicted by the present method have the following
numerical characteristics:
(a) Convergence Characteristics

In the present method, numerical convergence can be expected during
the iteration process if certain restrictions are imposed on the movements
of the free shecet and vortex core (see sections 3.5 and 3.8),
(b) 1Initial Vortex Shape

For the angle of attack below 20 degrees, the starting solution is
taken to be the initial vortex shape from the 20 degrees angle of attack
solution.
(¢) Spanwise Strips

In reference 18, Mehrotra made a parametric study to find a relation
between the aspect ratio and the number of spanwise strips which should be
used to represent the lifting pressure on delta wings in order to obtain
reasonably accurate aerodynamic results. The relation just mentioned is re-
produced and displayed graphically in Fig. 10. Freom this figure eight
vortex strips over the wing semi-span are seen to be needed for simple
deltas in the aspect ratio range from 1.0 to 1.75. Because of this study
and because of the strake-wing and double delta configurations to be treated

here being also of low aspect ratio, the same number was used initially.
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Due to the leading-edge kink these configurations had to be represented by
two spanwise regions per semi-span. Experience with the QVIM of Lan's
(ref. 19) has shown that for two spanwise region solutions, it is better
to have a different number of spanwise strips in each region. The final
choice of spanwise strips used here is four for the strake raegion and five
for the wing region.
(d) Chordwise Vortex Elements

All results to be presented have been calculated by using six chordwise
vortex elements for all configurations.
(e) Reference Lift Coefficient

The reference lift coefficient discussed previously (see section 3.8)
for use in adjusting the core movement is based on the suction analogy as
implemented by Lan (ref. 26).
(f) Complete Leading~Edge Separation

In this study, only wings having complete leading-edge separation will

be counsidered.

4.2 Numerical Results

This section presents numerical results by the present method based
on the preceding ideas. These results are compared with other methods
and data for certain test configurations which are shown in Figs. 11 to 15.
Note that they consist of a flat delta wing (Fig. 11), a conical cambered
delta wing (Fig. 12), a delta wing with leading-edge vortex flap (Fig. 13),
a double delta wing (Fig. 14) and a strake wing (Fig. 15). The one vortex
core system is used for the delta wings while the two vortex-core system is

used for the others.

Overall Forces and Moments

The overall aerodynamic characteristics are presented in Figs. 16 to 20.
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All theoretical curves for the results generated are graphed by fairing

through those at the a's given in the following table.

Method Solution a's

Present method

Flat delta wing 5°, 10°, 20.4°, 30.7°

Conical cambered delta 5°, 10°, 20.4°, 30.7°

Delta wing with LEVF 5%, 10°, 20°, 24°

Double delta wing 5°, 10°, 20°, 28°

Strake Wing 5°, 10°, 21.6°, 27.7°

Mehrotra 5°, 10°, 15°, 20°, 25°, 30°

Lan All a's

VLM-SA All a's

FVS 10°, 15°, 20°, 25°, 30°
Delta Wing

(a) Planar

The results for the flat delta wing are shown in Fig, 16, It is seen
that CL and CDi can be accurately predicted by the present method as well as
by the other methods. However, the present method predicts the Cm to be
more positive ({.e. more nose up) at high angles of attack, whereas the
methods of VLM-SA and Lan predict more nose down pitching moment. This
nose up moment of the present method could be due to the estimated peak
load being too forward. Mehrotra's results have good agreement with data
(ref. 22) even though he used a diffused vortex model.
(b) Conical camber

The results for a conical cambered delta wing are presented in Fig. 17.

The CL results from Lan's method have the best agreement with data. The CL

results are underpredicted by the present method at lower angles of attack
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and by the VIM-SA at higher angles of attack. FVS results (ref. 30) are
generally low. The CDi results of Fig. 17(b) show that the FVS method is
best at angles of attack below 20 degrees and the present method is best
for angles of attack above 20 degrees. The other methods all predict

values of C, which are too low over the angle of attack range. Similaw

D
to the case :or the flat delta, the present method predicts a pitch up
tendency for the cambered wing.
(¢c) Leading-edge vortex flap

Recently, there has been much interest in applying the leading-edge
vortex flap to increase the lift-drag ratio under maneuvering conditions.
Some low speed results for a 74°-ﬁelta wing have been reported in Fefetence 29.
The geometry of the planform is shown in Fig. 13 and it was modeled theore-
tically with its undeflected trailing-edge flap omitted for simplicity. The
results are presented in Fig., 18 where the CL' CDi and Cm have been based
on the total planform area excluding the leading-edge flap. It is seen
that the predicted results by the methods of Lan and VLM-SA agree well wi:h
data. The CL and CDi results estimated by the presented method slightly
exceed the values of the data at moderate angles of attack. The Cm re-
sults show the present method *u have a more nose uv> moment than the data
for angles of attack above 12 degrees.

Having compared the results in the one vortex-core system, it is of

interest to see the aerodynamic characteristics in the two vortex-core system.

Double Delta Wing

For the double delta wing (ref. 28), the comparison is made in Fig. 19.
The results show that the CL and CD are well predicted by the present
i
method and the methods of Lan and VLM-SA. At high angles of attack the

present method predicts the Cm results better chan others.
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Strake Wing

From reference 28, it is understood that the aerodynamic advantage of
strake-wing planforms are (1) the transonic maneuvering capability, and
(2) the utilization of vortex lift. For the strake-wing configuration of
Fig. 15 (ref. 3)), the results are presented in Fig. 20. It is seen that
the CL predicted by the present method has good agreement with data whereas
the method of Lan overpredicts the data in the high angle of attack region.
The experimental dats in Fig. 20(b) shows tha'. the pitcliing moments become
more positive as the angle of attack is increased. This could be due to the
wing vortex breakdown on the main wing. From the geometry of strake wing in
Fig. 15, it can be seen that the wing area is much larger than the strake.

As shown in the data in Fig. 20(a), the C, values start to decrease at about

L
14 degrees of angle of attack, signifying the start of the wing vortex

bursting.

Lifting Pressure Distribution

Figs. 21 chrough 2% show the spanwise pressure distributions for different
planforms at specified angles of attack and for constant x-locations. The

results are discussed below.

Delta Wing

(a) Planar

For the flat delta wing, the spanwise pressure distributions are cal-
culated at angles of attack equal to 10.20. 20.4° and 30.7%, and compared
with data at the two x-locatioms, x/cR = 0.5333 and 0.9333 in Figs. 21 to 23.
In general, the pressure peak obtained by using Meorctra's method is lower
than the data near midchord, higher near the trailing-cdge and is shifted
toward the root chord. One objective in the present method is to improve
the pressure distribution of Mehrotra's method, sv as to allow for the occur-

rence of a sharper pressure peak. The predicted pressure distributions
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of the present method more closely resemble the data than do those of Meh-
rotra. At the low angle of attack (a = 10.20). the present method predicts
a pressure peak that is inboard of the data at midchord and is lower near the
trailing-edge. This may be due to the free sheet being too large, since its
initial shape and core location is taken from the 20-degree solution and the
size of free sheet will not shrink in the iteration process. Thus, the in-
board pressure distribution are higher than those measured.
(b) Conical camber

The results of the estimated spanwise pressure distribution for the con-
ical cambered delta are presented in Figs. 24 through 26, and are compared
with data (ref. 22) and the FVS solution (ref. 30). Again, the presented
results are at the angles of attack equal to 10.20, 20.4° and 30.7° and
comparisons are made at two x-locatioms, x/cR = 0,67 and 0,935, At low and
moderate angles of attack, the present method predicts values of the pressure
peak which are lower than data, whereas the FVS solution predicts higher peaks.
At high angles of attack the spanwise pressure distribution predicted by
the present method has better agreement with data than does the FVS solution.
There are two pressure peaks near the trailing-edge at all angles of attack.
The inboard peak is expected and is typical for flat delta configurations.
However, the reason for the outboard peak is not conclusively known. Some
possible reasons for its occurrence are as follows: (1) the wing vortex
distribution is not located on the highly cambered surface; instead, it is
on a flat surface; (2) the large spanwise camber slope term (3z/3y = =1.4402)
near leading-edge is not included in the boundary condition; (3) eight span-
wise strips may not be sufficient to resolve the 1lifting pressnres in the tip
region of this conically cambered wing.
(¢) Leading-edge vortex flaps

Spanwise pressure distributions predicted by the present method at 24-de-
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gree angle of attack and two x-locations, x/cR s 0,5197 and 0.8937, are pre-
sented in Fig. 27 for a 74%-delta wing with leading-edge vortex flap. Since
there are no data or other theoretical results available, only the present

theoretical results are presented on each figure. Fig. 27(a) shows that

the pressure peak is at about 60 percent of the local semispan and that
matches the vortex core location. Near the trailing-edge the interaction
of the vortex core and leading-edge vortex flap produces large lifting

pressure in the vortex flap region as seen in Fig. 27(b).

Double Delta Wing

From Fig. 28, the spanwise pressure distribution at 20-degree angle of

R i

attack at two x~locations, x/cR = (0.5686 and 0.8099 are presented. In

Fig. 28(a), the results near middle root chord indicate that there are two

pressure peaks present. The lower pressure peak is behind the highly ]
swept inboard region with the higher pressure peak being on the outboard

wing region. The two vortex cores induce large sidewash in the tip region é

which result in a large pressure peak there. Fig. 28(b) shows the lifting
pressures near the trailing-edge and from this figure it is seen that another
pressure peak has been produced. This outboard peak may be due to the large
sidewash induced near the tip due to the interacting inboard-located vortex

cores. The exact reasons for this require additional investigation.

Strake Win
From Fig.29, the spanwise pressure distribution at an angle of attack of

12 degrees at three constant chord stations, x/c = 0.4,0.7 and 0.9, are
presenter. In Fig.29(a), the results near the kink region show that the lifting

pressure are mainly from strake vortex. In Figs.29(a) to 29(c), the predicted ;
pressure distributions are generally higher than experimental values. the ;

large pressure peak near the tip region of each figure is mainly due to the
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effect of side-edge vortex system. Near the trailing edge the flow field is
dominaled by the wing with most of the predicted lifting pressure being on
the wing. It should be noted that at an angle of attack of about ié‘ , the
wing vortex breakdown may have occurred (ref. 37). The effect of vortex
breakdown is not modelled in the present method.

For a slender delta wing, a typical cormputer CPU time by the present
method is 3230 seconds in 7 iterations with CDC Cyber 175 at Langley Research
Center. This is to be compared with 4540 seconds in 10 iterations by Mehrotra's
model. For the double delta wing analyzed in this report, the CPU time is
5620 seconds in 8 iterations as compared with 22,450 seconds in 8 iterations

by the Boeing code (Ref.14). If the first two iterations in Mehrotra's model

can be by-passed by directly assuming a reasonable initial configuration, the

saving in CPU time 1is about 1200 seconds for simple delta configurations.
4.3 Mean Square Error Computation. k
To check the accuracy of the results predicted by the present and other

theoretical methods, the so-called mean square error (MSE) will be used. y

Mean square error is defined as:

MSE = [‘?:(:_1“’1' - a4k JH2 (111)
where d1 is the { th experimental data value, K the total number of data points,
and d; the interpolated theoretical results at the location of data point di'
Thus, the typical results of mean square error of each theoretical method to the @
overall 1ift coefficient and lifting pressure distributions are as shown in the
following:
MSE for Overall Lift Coefficient

(a) a flat delta wing (Fig. 16(a)) {

Present Theory 0.0209 ;
Lan's Method 0.0172
VLM-SA 0.0045
Mehrotra's Method 0.0242

39




b P

£ %2

e

T RS T s e W Tw—

Sy T W

(b) a conically cambered wing (Fig. 17(a))

Present Theory

Lan's Method

ViM-SA

FVS Method

(c) a delta wing with L. E. vortex flap (Fig. 18(a))

Present Theory

Lan's Method

VLM-SA

0.0407
0.0237
0.0423
0.0470

0.0405
0.0378
0.0628

(d) a double delta wing (Fig. 19 (a))

Present Theory

Lan's Method

VLM-SA

(e) a strake-wing configuration (Fig.20(a))

Present Theory

Lan's Method

P T e il R il i s i
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0.0351
0.0330

0.U534

0.0724

0.1197
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MSE for Lifting Pressure Distribution

Configuration_ . a, deg. _ Present Method Mehrotra
Flat Delta, Fig. 2i(a) 0.5333  10.2 0.169 0.1198
" " Fig. 21(b) 0.9333 10.2 0.1391 0.1539
" " Fig. 22(a) 0.5333 20.4 0.2642 0.3804
" " Fig. 22(b) 0.9333 20.4 0.1060 0.1906
" " Fig. 23(a) 0.5333 3o.7 0.5011 0.7773
" " Fig. 23(b) 0.9333 30.7 0.1496 0.4111
Configuration x/‘:R a, deg. Present Method FVS Method
Delta with Conical
Camber, Fig. 24(a) 0.67 10.2 0.1540 0.1744
" Fig. 24(b) 0.935 10.2 0.1470 0.2163
" Fig. 25(a) 0.67 20.4 0.3146 0.3027
" Fig. 25(b) 0.935 20.4 0.1690 0.1358
" Fig. 26(a) 0.67 30.7 0.5090 0.4868
" Fig. 26(b) 0.935 30.7 0.1491 0.3139

pressure indicate that the present theory is better than Mehrotra's model.

For a delta wing with the conical camber, the present results are also good.

For the flat delta wing, the mean 3quare errors for the lifting

However, the lower values of MSE of present results partially may be due

to the appearance of an unexpected pressure peak near the tip region.
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5. Concluding Remarks

B S 220 caliutie ot

different sets of relaxation parameters for and by imposing certain

| low to moderate angles of attack ( a < 20° ), the starting solution is
taken to be the initial shape of the 20~-degree angle of attack solution.
Comparison with available data indicates thac: (1) the present

method is generally accurate in predicting the lift and induced drag coeff-
icients but the predicted pitching moment is too positive; (2) the
spanwise lifting pressure distributions estimated by the one vortex core

solution of the present method are significantly better than the resulte
of Mehrotra's method relative to the pressure peak values for the flat
delta; (3) the two vortex-core system applied to the double delta and
strake-wing produces overall aerodynamic characteristics which have good
' agreement with data except for the pitching moment; (4) the computer
time for the present method is about two thirds of that of Mehrotra's

method for a delta wing and one quarter of that of FVS method for a

double delta wing configuration.

In view of the improvements embodied in the present method and
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A free sheet-vortex core model to predict pressure loadings and
overall aerodynamic characteristics of low aspect-ratio wings with edge
vortex separation has been developed, by incorporating a vortex core in
the free sheet of Mshrotra's method. In the present method, Mehrotra's
model is used in the first two iterations to establish the vortex fila-
ment system. Based on Smith's empirical results, the initial vortex
core location is adjusted to improve the starting solution.
tion of a vortex core in the flow model increases the numerical diffi-

culty to obtain a converged solution. The problem is solved hy using

restrictions on movements of the free sheet and the vortex core.

‘ ' possible further refinement, it would be of interest to:

L
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(1) model the fuselage portion as a potential flow region, with
the assumption of attached flow in the fuselage region and a
very small thrust coefficient being assumed in that region;

(2) examine the fuselage effect on wing vortex flow;

AR AL e i

(3) examine the canard effect on wing vortex flow;

(4) compare the chordwise pressure distribution with available

data to improve the pitching moment computation.

i
)
|
!
|
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Appendix A

An Improved Lifting Pressure Expression

From reference 18, it is understood that the total lifting pressure, for
the wing with leading-edge vortex element system, is contributed by wing '
bound elements, wing streamwise vortices, leading-edge bound elements and

the streamwise vortices of the leading-edge vortex element system. Hence,

the total lifting pressure at the ith bound element of the jth strip control

station has the following expression:

AC -(Acp ). + (AC )

(a.1)
Pyt Ju 7 LI

B

where (ACp )T is the lifting pressure due to streamwise vortices; (ACp )
i1 i1

the lifting pressure due to bound «lements.

A.1 Derivation of (AC )
Py, 1

From Fig. Al, it 1is clear that the lifting pressure due to streamwise

T

vortices of wing and leading-edge vortex element are calculated along the
common edge yj of two adjoined spanwise strips. First, the force acting on

the chordwise element of length Ax of the leading-edge vortex system is:

2
Fi PV (Pj vi) Ax (A.2)
where p is the fluid density, V_ the free stream velocity, Fj the vortex
strength of the jth leading-edge vortex element, and v, the sidewash at

point 1. Thus, the force acting at the 1th point on the common edge per

unit dynamic pressure and length is:
F
where q is the dynamic pressure. Similarly, the force acting at the same

point due to the right leg of the jth strip, per unit dynamic pressure and

length, can be written as:

F
')
(EA_:) - -2 vif( ydx (A.4)
1
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where vy is the wing bound vortex density, Xy the leading-edge x-coordinate of

the trailing leg under consideration. Using the transformation,

c

x = x, + 5L (1 - Cos 0) (A.5)
the equation (i.4) can be reduced to the form:

Fr %

(m")1 - -vy gy ! ySin 6 de

e, v i-1
.1 1
N [kgl Y, Sin 6, +% vy, Sin 81] (A.6)

where cj is the local chord length of the common edge at yj. N the number of
bound elements in chordwise direction and ek = $25§§~211. The integral has
teen reduced to a finite sum through the conventional trapezoidal rule.

For the left leg of the (j+1)th strip:
F e, Vv i-1
- [

) -t
qax i N

< Yk Sin ek + 1 Yy Sin ei] (A.7)
Therefore, the force per unit dynamic pressure and per unit length at the ith

point along the jth common edge is:

F F F
T F R L
@, " G, * G, * Gy (A.8)

Thus, the lifting pressure at 1th point along the jth common edge other than
the last one has the following expression:
: fr
a0y 't 2GR Ot Yy (A.9)
When the lifting pressure is calculated at the last common edge in the span-
wise direction, the equation has the follcwing form:
FT .
ac, ' (g /gy - Yy (A.10)
hIp i
where yj+2, yj+1 and yj are the y-location of common edges. Note that

equations (A.9) and (A.10) are evaluated at all endpoints of wing bound

elements, i.e. along the common edge. Surface spline interpolation (ref. 32)

g i

is performed to obtain the lifting pressure at the control station of each

50




MR e

-
+

i - 20 aiities Vi skl

- - T TR m— TS S e——y

T e

vortex strip. Therefore, (AC ) , the lifting pressure due to streamwise
JutT

bound element of the jth

h

vortices at the 1t strip control station is obtained.

A.2 Derivation of (AC )
Py,1B

From Fig. A2, the normal force per unit length acting at the 1th bound

element of the jth strip is given by:

2
FBj . =p V, (ui Yy - vy yx) AS1
»
2
=-p VO (u1 Yy Cos ¢, = v, v, Sin vy) ij/Cos vy

= 2q (u1 - vy Tan wi) N ij

where,
\A is the bouuid vortex density,

uy and v, are the x and y components of the induced velocities,

V¥, is the sweep angle¢ of the bound element,

i

Ay, is the width of the jth strip,

3

Asi 1s the length of bound element,

Yy and y._ are the streamwise and spanwise components of the bound vortex

density.

Thus, the lifting pressure due to the ith bound element of the jth strip

is:
F
B, ¢

(ac ) =
q 8y,

pj,i . = 2(u1 -vy Tan wi) Yyq (A.11)
For a cambered wing without dihedral, additional 1lifting pressure will

be generated from the interaction of a free stream component with the stream-

wise vortex density Yy (ref. 26), as shown in Fig. A}, Adding this component

of (-2 Yy Sin a Sin ¢y) to the lifting pressure due to the wing bound element,

equation (A.1ll) is modified to:
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(ACPJ . )B - 2[(u1 -(vi Cos °y + Sin a Sin Qy ) Tan "'y]yi

where oy may be defined as the local dihedral angle, Tln-%azclay). and
may be different everywhere on a cambered wing. The correction term in
equation (A.12) is applied only to the wing bound element and leading-edge
bound element so that the local dihedral effect are included.

At positive a, normally the wing bound elements produce positive lift-
ing pressure near the leading edge; while the leading-edge bound elements
produce negative lifting pressure. Thus, the leading-edge Kutta condition
can be satisfied when the net lifting pressure is zero at the leading-
edge. In order to substract the 1lifting pressure induced by the leading-
edge bound element from that produced by the wing bounded vortex elements,

the following prodecures will be used:

(1) Extrapolate lifting pressure due to the wing bound elements in
each chordwise direction to obtain the lifting pressure at the
location of the leading-edge bound element EF. (See Fig. 3)
Using the Fourier series relation, the lifting pressure at any

chordwise locat;on.ia determined by the following equation:

N
ACp Sin 6 a, + z a, Cos 16
fm]

where Sin® is included to eliminate the known square root singularity of t
lifting pressure at the leading - and trailing-edges.
Therefore,

-1l 7
a 7 | ACp Siné d¢

[+
o]
1 N
x5 ACpk Sin 0,
k=1
2 2 XN
- — AC_ Sin8 Cosi® x —
ag= —3 §, A8C, Sin de N%Acpksmek Cosi8,

- 2k=D)m . .
ek N , k=1, N
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where N is the number of wing bound elecents in the chordwise
direction. The integrals for Fourier coefficients are re-
duced to finite sums through the mid-point trapezoidal rule.
Subtract suction pressure induced by the leading-edge bound
elements., First, the concentrated strength of the leading-
edge vortex element is converted to the vortex density. Since,
e [ ydx (A.15)
from the transformation,
c

X = x + 31 (1 - Cos 6) (A.16)
it can be obtained that

c
ry - 7% Iy Sin 6 do (A.17)
It is assumed that the concentrated vorticity due to the leading-
edge vortex system is distributed near the leading-edge only. Using
the mid-point trapezoidal rule, equation (A.l17) becomes:

7 c, Sin 6

1
ry .._2%?1_1.5_ 7 (A.18)
or,
2(N+ 1) T
Yy 7 ¢y Sin 61 (A.19)

n
where 61 -'iaif:-fyo Thus, the decrease of lifting pressure

at the leading-edge bound element of the jth strip is:

(ACP) = =2 [uJ - (v, Cos ¢y + Sin a Sin ¢y) Tan wj] (A.20)

3

Y
jdecrease £ J

e
where the subscript fe means that “j’ Vj' ¢y and wj are evaluated
at the leading-edge bound vortex element of the jth strip. Hence,
the actual lifting preczure at the location of the leading-edge

bound element of the jth strip is:
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)B + (aC + (ac ) (A.21)

1]
Pyt Pyt Tl e P lgecrease

LS

(ac ) = J(AC
Pyt [

The lifting pressures defined by equation (A.1l, at a discrete number of
points are Fourier-analyzed through equation (A.14) so that lifting pressures

at any locations can be calculated.

kg

L el oo R m ik

55

e R RS b R 8 el R e ey e e T e e e . i




T —— -

BT )

@

Appendix B

Correction to Sidewash Calculation in Discrete Vc:-tax Method

In developing the free vortex filament theory for calculating aerodynamic
characteristics of wings with edge-separated vortex flow, the position of the
concentrated vortex core is adjusted in the direction of decreasing Kutta-
Joukowsky force. The magnitude of the force, and hence the new position of the
vortex core, depands on the calculated induced velocity components on the core.
It is well known that the induced sidewash cannot be accuratelv calculated by
the discrete vortex approximation at points close to the vortex sheet. There-
fore, the vortex core location and the wing aerodynamic characteristics will
not be accurately evaluated. A method to improve the accuracy of calculating
sidewash by discrete vortex approximation will be detailed in the following

paragraphs,

B.1 A Test Case

Assume a vortex distribution with constant density (; = I) exist in a
rectangulur region, as shown in Fig. Bl. The induced velocity vector at any
point in space with position vector ﬁ. is then given by:

2 (il-i)xi

V(ﬁ)-%{f'-———-i———da
T
8
2 b/2 > >
3 aw (g =-2)-(n=-y)k
. [ f df dn  (B.1)
T e - 02+ 8% (- 48t - ]2
where
82 =1 - M
R‘Z-(g-x)z-o-ez (n-y)2+82 (t:-z)2

2
R -ReG-0T+(m-nT+@-2)
Since the vortex density w is assumed to be constant over the entire region,
equation (B.l) can be integrated (ref. 33) to give a closed-form expression

for the sidewash V as:
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82 -1 (y - y)(a - x)
Tan
T lc-ll[(l-x)r——z f" y)}'*s (c-z)T]T’.

- Tan"! (- X%SQ_ZTEIIT NEL"

Ic-zl[(a-x) + 8%y +a (¢ ~ 2)
1 (! -y) (x)

+ Tan~
|c-zl[;{+s (i-y)i-#ez c - 2% ]"
x) (y)
- Tan
lc-zl[TLBy*’s € - 2)° ]“ (8.2)

Equation (B.2) will be used to check the accuracy of approximace methods of cal-

culating the integrals in equation (B.1l).

B.2 Approximate Methods
The chordwise integration in equation (B.1) is performed exactly so that
the sidewash component becomes:

v = -2) 8 ! w(n) d n { a-x
o m-pi+-2° [(a-0t+e

2 (n-y)

X (B.3)
[xz +82 (n-n?+8? - z)z]l’

In conventional discretized approximation, equation (B.3) is reduced to:

+

+82 (- 2)%]"

SS_:__Z)__ Y A" { 8- x
k'l (nk - Y)2 + (g - 2)2 [(a - x)2 + 82 (nk - y)z
+ X }
2 (¢ - z)2]k %% + 8% (ny, - y)2 +2% (¢ - z)2]11, (B.4)

The results in equation (B.4) are equivalent to applying mid-point trapezoidal
rule to evaluating the spanwise integral in equation (B.3). However, when

(z - z) is small, the integrand in equation (B.3) contains a second-order sing-
ularity at n = y, so that equation (B.4) 1s expected to be inaccurate. To
improve equation (B.4) and yet keep the method as simple as possible, the

following consideration is applied.
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For convenienca, let

f() = 8 ~ X
[(a - 8)2 +82 (n- y)z +8% (¢ - 2)2]5
+ X (B.5)
[x2 s -l -t )"
If Ng <Y< Mgy equation (B.3) can be rewritten as:
2 M4 b/2
va i =28 [( v e gy £ dn] (B.6)
1 Niyg M- i+ -2’
The first and the last integrals can be reduced to finite sums as usual:
v a (ﬁ 2)8 [i -1 W, f (nk) Ank + \ wy f (ni) Ani
el (n -2+ -2 (- -n?
W £ (n;q) &n N e £ () &n
by AL 1;1 141 s+ I k k 5 + z] (8.7)
(Nyyq ~ V)" + (@ -2)" keitl (nk -nf+ @ - 2P
where
n
=/ i@
"N -l -a)?

S M e () f (n) - w<v> £ () dn + w(y) £ )
ny (n -2+ -2)°

wlng) £ (ng) = w (y) £ (Y)A“

41

dn

Ay

th-y2+@-z

(n, - N2+ @ - ) 1

" £ S T AR B S
; - 2 IC-ZI Ic-z[

Ny - y)2 + (5 - 2)

2

. wngy) £ (ngy) -0 (y) £ (@)

(8.8)

In equation (B.8), the first integral was evaluated by conventional trapezoidal

rule which is probably not accurate in this case. However, this is necessary

to keep the method simple so that it is easily extendable to more general

applications. A correction factor may be applied, as will be indicated later

(see equation (B.10)).
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Substituting equation (B.8) into equation (%.7) results in:

2r N £ (n) & £ (y) &
PYEIDY. I % "kz g . wiy) ;’) Ny ;
k=l (n = ¥)" + (5 - 2) (ny =¥)" + (€ - 2)
(nggy - N2+ @ - 22 e - =l

-1 M4 " Y -1"1”’]
[’ran —T;;—_-;T Tan T_C-‘:”oT (B.9)

The first tern in equation (B.9) represents exactly what would be given by

S TP T

the conventional discretized appruximation (see equation (B.4)). Therefore,

the remaining terms represent a correction C: j

& - z)Bz) (w(y) £(y) n, . w(y) £(y) ong, }
b (n -2 G-DF gy - G- D)

2 n -y n
(t - 2) w(y) f(y) 8 -1 {41 -1 1
*Te = T ){Tan “To = a7 - Tee } (B.10)

where G 1s a correction factnr menticned above and is taken to be 1.1 in the

following numerical study.

B.3 Generai Applications

Y T RITORU NS

To apply equation (B.10) to general situations involving such as leading- :

edge vortex sheet, trailing-vortex mutual interaction, etc., all geometric

Wt 2 Rt T e

quantities involved in equation (B.10) should be evaluated based on local
panel coordinate system. To illustrate this, consider two vortex segments

21 and 34 in Fig. B2 and "P" is a point on a plane normal to two diagonal

PREI.

vectors (fl and Tz) and is obtained by projecting the control point Q along

A
g Teerres

the normal vector. The vectors ¥1 and 62 can be calculated as:
Tl = (x3 - xl) T+ (y3 - yl) I + (z3 -2 (B.11)

)
'é Tz.(xa-xz)I"'(yd'}'z)?"'(za"zz)

~ =t

(B.12)
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It follows that a normal vector N may be defined as:

1 3 ¥
N = T1 X Tz - 37 % Y3=n 237 %
¥ T %2 Yo T . 24 = %2
=T [y -y, -2 - Gy 20, )
+ 7 oy - 2, - %) - (g - %)z, - 2,)]
+ R [y = 1y = 9p) - Oy = ¥ - xy)]
=N Tan JTan & (B.13)

A unit vector associated with ﬁ can be defined as:
->

-
|¥]

To determine the coordinate of "P", the distance PQ is needed. However,

-
n

(B.14)

36 is just the projection of vector 56 onto the normal vector n

Q=20 -1

= (x - xz) n, + (y - y2) ny + (z - zz) n, (B.15)

It follows that the coordinates of point P are:

X, = (x - xz)nx

Yp = (y - yz)ny

zp = (z ~ 22)nz (B.16)
To find the distances "x" and "a - x" in equation (B.10) (through f(y)),

the unit vectors :&1 and :3& are needed:

- (xl'xz)?:+(yl'}'z)j"'(zl'zz)ﬁ

Ba. = (B.17)
2 2
oy st oy -t ey -2y ]li
->
v Gy mx) T4, -y T+ (g, -2y K
Ugg © 2 3 nL (B.18)
[(x‘. - x3) + (y4 - Y:) + (za - 23) ]
Then. the "x'" distance in equation (B.10) can be replaced by:
-> -
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where

S

2p = (X5 = %)) 1+ ¥y = ¥3) T+ (z, = 2,) K (B.20)

§3p - (xp - x3) T+ (yp - y3) I + (zp - z3) k (B.21)

On the other hand, the "a - x" distance in equation (B.10) can be replaced by:

xp = b B Uy + 5,0 u (B.22)
where

'§lp - (% - x) T+ vy - ¥p) 1+ (z) - 2)) k (B.23)

§4P = (x, = %) T+ (v, = ¥p) T+ - ) k (B.24)

To determine "y - ni" and "ni+1 - y" in equation (B.10), cross products

and S, with u 4 are needed. Hence, "y - ni" will be replaced

£8  with u
°f Sap 21 3p 3

by:
-
yg = 135, x 4yl (.25)
Similarly, "ni+1 - y" will be replaced by:
—> 4
yp = 133, x 0y (B.26)
Finally, " - z" in equation (B.10) must be determined. It is simply
replaced by -PQ in equation (B.16):

g-y=- [(xp -x2+ v, - n? + (z, - 2)2 ]l‘ (B.27)

B.4 Numerical Resnlts

The locuations of control points chosen for illustration are indicated
in Fig. B3. The results are compared in Figs. B4 through B7 for M=0. Except
for the case where the control point is directly under one of the discrete
vortices (i.e. p~int B), all results with the derived correction terms '"C"
in equation (B.10) appear to be good. In applications to free vorte.-filament
program, the control points on the concentrated vortex core are chosen to be
nearly at the middle of vortex strips formed by the leading-edge free vortex

filaments.
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Appendix C

Determining Initial Core Location by Vector Analysis

After exercising Mehrotra's code (ref. 18) through two iterations aﬂd
establishing the entire leading-edge vortex element system, the centroid of
the leading-edge vortex filament system is determined from equations (81) and
(82). Therefore, the initial configuration of leading-edge vortex filament
system and its centroid are as shown in Fig. Cl.

Based on the vector analysis of the cross product, the procedures of
finding the intersection between the leading-edge vortex filament system and
its line of centroid are discussed in the following.

Note that each leading-edge vortex filament consists of a series of
short straight segments. It is desired to find the intersection point betweeu
the leading-edge vortex element system and its line of centroid on the X-Y plane.
Thus, only x and y coordinates of each segment will be considered in the cross
product analysis. Assume that §12 is a segment along the leading-edge vorcex
filament system and §3“ is a segment along the line of ceutroid. Then, §12
and §34 have an intersection if the following conditions are satisfied:

(1) Resulting vectors of §31 b §34 and §32 X gsa are in the opposite
direction.
(2) Resulting vectors of §13 X §12 and §1a X §12 are in the opposite

direction.

For example, in Fig. C2, by using tl:e right hand rule and cross product analysis,

§12

sections in Fig. C3.

and §34 have an intersection point. Similarly, §lzand §34 have no inter-
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Figure Cl.- Leading-edge vortex filament system and its line of

centroid
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Figure C3.- §12 and §3a has no intersection
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Appendix D

Corrections to Induced Velocities Due to Vortex Core

It is clear from'Appondix A that the 1ifting pressure at the wing bound
element will not be predicted accurately, if the computstion of sidewash due
to the vortex core is not treated properly. In fact, a very large sideawash
would result whenever the vortex core is too close to the wing surface. To
improve the sidewash computation due to the vortex core, and hence, the
lifting pressure and the aerodynamic characteristics, the computed sidewash

due to the vortex core will be corrected as follows.

In reference 34 ‘on page 592), Sir Horace Lamb showed that the circum-
ferential velocity around a circle with radius r due to a line vortex of

strength [ is:

2
Vg =g (1 -eT [bvey (0.1)

Later, Kutler in reference 35 defined the approximate radius as:

r, = dvt (D.2)
Thus, the tangential velocity in equation (D.1l) becomes:
2,.2
. .T -r/x
Vo " Zmy (1-e O (D.3)

In equs’ fon (D.1l) through (D.3), r is the radial distance from the center of
the concentrated line vortex, T the circulation strength, r, the approximate
core radius, v the kinematic viscosity, and t, the initial time.

From equation (D.3), after expanding the exponential term, the tangential

velocity becomes:

2,2
r -r/r T r.2
Vo * Znr Q- c) = 27r (?:) (D.4)
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The above equation is obtained from the assumption that the racio tlrc i

less than one. In the present analysis, the term of 3%; is to be regarded as
the computed sidewash without correction, and all terms in equation (D.4) are
defined as follows.

In Fig. D1, the vortex core segment §36 is on the right wing and §78 on ;
the left wing. 312 is a leading-edge vector., Point 5 is the wing bound ;
element location where the induced velocities due to vortex core segments
§3“ and §78 are to be calculated. For the right core segment 336' the
characteristic core radius L is defined as 3/4 of the perpendicular distance

from point 4 to line 312:

3,
|§ | .(D.5)
e |§n|

The numerical factor, 3/4, in equation (D.5) is an assumed empirical value.

The radial distance r of the wing bound element at puint 5 to the vortex

core segment §54 is calculated as:

- |3 | (D.6)
3:.' i

Thus, the radial distance r is the perpendicular distance from point 5 to §54

X =m——

Based on the assumption in equation (D.4), the computed induced side-~
wash v' is to be modified only when the ratio r/rc is less than one. The 1
corrected induced sidewash is:

- y' L 2
vev (rc) » ¥/r < 1.0 (D.7)

that is the location at which the induced velocity is to be computed is inside

the vortex core region.

Similarly, at the right wing bound element at point 5, the sidewash due

to the left core segment 378 is8 calculated, based on the following r. and r:
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r, in Eq.(D.

9

't " in Eq.(D.9)

"r " in Eq.(D.6)

" T, " in Eq.(D.5)

=—y

2

Left wing vortex cor

Figure D1.- Geometry of " r

Right wing vortex core

and " r
c
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‘ 3% 19 3 |3 12
re =5 Slgx gl =718, x5=| (D.8)
- |§19l ;§12|
g 78 §3a
r-|§58x————l - 3, x == (D.9)

'§78| lngI
Again, the correction of the computed sidewash will be applied only to those po-

ints inside the vortex core region, and the modified sidewash has the same

expression as that of equation (D.7). Note that the right wing vortex core
segment §3‘ and the left wing vortex core segment §78 are geometrically
similar. Therefore, in the actual computation, r, and r due to §78 are
based on the right wing vortex core segment 33“ with the bound element loca-

tion switched from point 5 on the right wing to its image point 6 on the left

|
!
i
i
|

wing.

72

i s .y e e e SRR e T i O e e O ORI Y - 1T e . e s




v
B

0 ‘ /2
Control sectioa—j I Z Vor'tex strip

Leading-edge

Bound eiement

Control point

e Trg i ling element

o ——

Figure 1.~ Simple delta wing geometry without leading-edge vortex system

73

G PR TR e M ETRT]




PN

e

l\:'

control station vortex zn:t':l.pS

an Y

Leading-edge

' Wing bound element
) ) \\\
i \ Wing control point

=1/

£

~%/2

T railing element

Figure 2.- Strake wing geometry without leading-edge and side-edge

vortex system
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Figure 3.~ A typical vortex element of leading-edge vortex system
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Figure 11.- Geometry of Flat Delta Wing
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