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An improved vortex filament-vortex core method for predicting aerodynamic

characteristics of slender -ings with edge vortex separation has been dove-

loped. Sdmi-empirical but simple methods are used to determine the initial

positions of the free sheet and vortex core. Comparison with available

data tadicates that: (1) the present method is generally accurate in pre-

dicting the lift and induced drag coefficients but the predicted pitching

moment is too positive; (2) the spanwise lifting pressure distributions

estimated by the one vortex core solution of the present method are

significantly better than the results of Mehrotra's method relative to the

pressure peak values for the flat delta; (3) the two vortex-core system

applied to the double delta and strake-wing produce overall aerodynamic

characteristics which have good agreement with data except for the pitching

moment; and (4) the computer time for the present method is About two thirds

of taut of Mehrotra's method.
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1. List of Symbols

Symbols

a	 Percentage of allowed movement of a free segment based on
the total velocity at its control point

at	 Tan a►/ Tan(900
 - A)

ai Fourier coefficients

ai Leading-edge boundary condition term

a (x 	 x)t + (Vl - y)3 i	 (z l - z)k	 m ( ft )

a (x 	 x)l + B (Y1 - Y)T + s (zl - Or	 m ( ft )

Aij
Induced downwash coefficient due to wing

b Wing span	 m ( ft )

b (x2 - x)t + (Y2 - Y)T + (z2 - z)k	 m ( ft )

b' (x2 - x)l + R(Y2 - Y)T + S(z 2 - z)li	 m ( ft )

Bik Induced downwash goefficient due to leading-edge vortex
system	 m	 ( ft-, )

c Local chord	 m ( ft )

c Mean geometric chord	 m ( ft )

c Sectional induced drag coefficient

CD
i

CD - (CD/CL.O of cambered wings) 	 Induced drag coefficient

( Drag/(q.S) )

c i Sectional lift coefficient

CL Total lift	 coefficient ( Lift/(q ,,S) )

cm Sectional pitching moment coefficient about Y-axis

Cm Total pitching moment coefficient about Y-axis based on c

( Moment/(q.S c) )

CL The initially computed lift coefficient in the core model
i

CL The reference lift coefficient based on suction analogy
s

C 
Pressure coefficient ( (P-POO)/400 )

iii



c:R 	Mot chord m ( ft )

c 	 Sectional leading-udge thrust coefficient

CT	 Total leading-edge thrust coefficient ( Thrust/(q,S) )

ctip	 Side-edge chord length m ( ft )

Fy , 
F 
	 The Joukowsky force components acting on a segment of

vortex core N ( lb )

a x	 b'	 a'

lay s 1'12 ( la'l - Ig'^ )• ^'
	 m 1
	

ft- )
i

( i -) x dt	 -1	 -1
^2	 rx'	 3	

m	 ( ft	 )
RB

k	 Unit vectors along X-, Y- and Z- axes, respectively

(x2 - xl)t + (y2 - yl ) l + (z 2 - z l)k	 m ( ft )

(x2 - xl )1 + B(Y 2 Y d + S(z 2 - z l)k m ( ft )

M	 Mach number, or number of spanwise strips plus one

MW	 Free stream Mach number

N	 Number of chordwise bound elements

Na	 N(M - 1)

N 
	 (M - 1)

n	 A unit vector normal to the wing surface

n.	 A unit vector normal to the free stream velocity vector

q Dynamic pressure,	 (pV2 /2)	 N/m2 (1b/ft2)

q Free stream dynamic pressure (pm V2 /2),Go N/m2 (lb/ft2)

r Perpendicular distance of bound element to the core segment

rc Characteristic radius of vortex core	 cm ( in.	 )

RS [(x2 - x1) 2 +	 B 2 (Y2 - Yl) 2 +	 B2(z2 - z1)2

A+y1+A	 m ( ft )

' xi + Byj + Bzk	 m ( ft )

i EI +nj + ^k 	 m ( ft )

KQ ET + Bns + BEk	 m ( ft )

iv
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v

S Reference wing area	 m ( ft 	 )

to A unit vector along the free stream velocity vector

U, v, w Induced velocity components along X-, Y-, and Z-axes,
respectively	 m/sec ( ft/sec )

vo Free stream velocity	 m/sec ( ft/sec )

tl Induced velocity vector due to lending-edge vortex system

m/sec ( ft/sec )

V Induced velocity vector due to wing	 m/sec ( ft/sec )

W1 Induced normal wash	 m/sec ( ft/sec )

x, y,	 z Wing rectangular coordinate system with positive X-axis
along axis of symmetry pointing downstream, positive Y-axis
pointing to right, and positive Z-axis pointing upward. m ( ft )

The centrold of the leading-edge vortex filament system m ( ft )

z	 (x,	 y) The ordinate of camber surface measured from X-Y plane 	 m ( ft )
c

Zmin
Minimum vertical distance of a vortex segment from the
wing plane	 m ( ft )



Greek

a

s

Y

r

&Cp

e

A

P

my

y

^z

Male of attack ( rad )

(1-H)'

Vortex density referred to freestream velocity

Concentrated vortex strength based on free stream velocity

m(ft)
Differential pressure coefficient,
(C	 - C	 )

Plower	 pupper

Chordwise ar.gular distance ( rad )

Sweep angle of wing leading-edge

Fluid density	 kg/m3 ( slugs/ft 3 )

Spanwise angular distance ( red )

Local dihedral angle, (Tan 1 -,,c,) ( rad )

Sweep angle of leading-edge vortex element or wing
bound element ( rad )

Integration variables in cartesia n system m (	 ft )

Relaxation parameter for the y coordinate of vortex core

Relaxation parameter for the y coordinate of vortex core

vi



Vii

Subscripts

1 The first endpoint of a vortex element

2 The second endpoint of a vortex element

B Bound element

cp Control point

i Chordwiss bound element number

i Spanwise strip number

k Chordwiss bound element number

i Leading-edge

to Leading-edge vortex element

L Left *.railing leg

R &a.ght trailing leg

t Trn Zing-adge

T Chordwise trailing vortices



2. Introduction

It is wt..i known that at moderate to high angles of attack, the flow

separates	 going around the leading-edge of a sharp-edged wing. The

separation produces rolled-up vortex sheets above the wing surface which

emanate from the local leading-edge. The concentrated vorticity abr,ve

the wing induces high suction pressure over a large portion of the upper

surface of the wing, resulting in a nonlinear contribution to the wing

loading. In the analysis and design of slender high speed airplanes

flying at off design conditions, a detailed knowl oRdge of the particular load-

ing on the wing surface is required to estimate aerodynamic performance

and structural loads.

There have been several different theoretical approaches in solving

the vortex flow separation problem since the early 1950'x. In general,

they can be classified as conical and non-conical flow methods.

In the first category, based on the slender wing approximation, the

solutions are obtained from a simplified governing flow equation by

neglecting the variation of longitudinal velocity. Therefore, the problem

is solved in the so-called cross-flow plane. Legendre (ref. 1) assumed

that the rolled-up vortex sheets could be replaced by a pair of concentrated

cores over the wing and inboard of the leading-edge. Two boundary

conditions were imposed such that velocities along the leading-edges

must be finite and the total force on each isolated vertex must be zero.

Later, Brown and Michael (ref. 2) used feeding cuts to connect the line

vortices and the wing leading-edges. Again, the boundary conditions require

flow on the wing surface, finite velocity at the leading-edges,

ro resultant force on the vortex-plus-cut combination. Mangler and

1
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and Smith (ref. 3). modifying the model in reference 2, assumed that

vortex sheets are shed tangentially at leading-edges and roll up as

vortices. The boundary conditions of zero pressure discontinuity aci

the separated vortex sheet and zero total force on the vortex sheet A

feed cut are imposed. Finally, Smith (ref. 4) developed the U.ldel of

segmented feeding vortex sheet by improving the numerical procedure

in reference 3. The main shortcomings of all these models described

above are limited to conical flow. The assumption of slenderness log

to a theory which is independent of Mach number. Thus. the theory

breaks down at low Mach numbers in the trailing-edge regions, becaus4

the traiiing-edge Kutta condition is not satisfied. It breaks down i

when the aspect ratio is greater than one.

In the socond category, the conical flow assumption is removed so

that the Kutta conditions are satisfied at both leading-and trailing-edges.

In the earlier stage of development, the classical lifting surface theory

was extended by including a relatively simple representation of the leading-

edge separation,. Aollay ;ref. 5) suggested a method for low aspect ratio

rectangular wings in which all the vorticity is shed from the wing side-edge

and is assumed to be along straight lines making an angle of a/2 with respect

to the wing planform. Gersten (ref. 6) and Garner and Lehridn (ref. 7)

extended Bollay's model to ;over wings of arbitrary shape. Vorticity is

aseumed to be shed from the leading-edges at an angle of a/2 to the wing

plane. The wing waa replaced by a series of lifting elements. A Multhopp-type

lifting surface method (ref. 8) was used to solve the integral equations in

reference 7.

Nangia and Hancock (ref. 9) combined the conventional lifting surface

theory with the detached flow model of Brown and Michael (ref. 2).

2



In the latter model, two concentrated cores lie above the wing, connected to

the leading-edges by feeding cuts. The trailing wake consists of 	 vortices

shed from the trailing-edge and the continuing concentrated vortices. To

determine the separated vortex strengths, their position and the wing vor-

ticity distributions, the flow tangency condition on the wing surface and the

trailing-edge Kutta condition are applied at selected collocation

points, together with the conditions of zero loading on the vortex

and cut. The leading-edge Kv ,ta condition i& automatically satisfied

by the choice of the loading function.

When the wing loading distribution is not required, Polhamus' method of

leading-edge suction analogy (ref. 10) has been found to be simple and accurate.

He assumed that the overall lift force can be estimated from the sum of

potential and vortex lift contributions. The potential lift is defined as

the lift due to potential flow about the wing with zero leading-edge suction.

Vortex lift is caused by	 large suction forces induced by	 vortices

in the separated flow, acting on the upper surface of the wing, and

is assumed to be equal to, in magnitude, the leading-edge suction force in

the attache, potential flow.

The detailed literature survey of the above flow concepts were

reviewed by Matoi (ref. 11) and Parker (ref. 12).

Since 1970, several methods have been developed by including a more

precise representation of the leading-edge separation. Two popular methods

under the second category are of the doublet-panel type (refs. 13, 14 and

15) and the free vortices (refs. 16, 17 and 18). In the method of doublet-

panel type, such as the free-vortex-sheet method of Johnson, et al. (refs.

13 and 14), the wing surface and free sheet are replaced with doublet

panels that have biquadratic strength. The free sheet, whose shape and

3
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position must be determined by the iteration, is attached ur , "* r all conditions

to a fed sheet. The fed sheet approximately represents the vortex core

affect and moves with the free sheet. The entire set of doublet utrengths

l
is determined simultaneously during the iteration process. Hoaijmakers

(ref. 15) extended the method of Johnson, at al. (raf.14) by including the

entrainment effect of rotational cores. In this model, the spiralling free

shear layer springing from the leading-edge is replaced by a free vortex sheet

which is terminated by a combination of a feeding sheet and a discrete line

i
	 vortex and sink. The strength of the sink is related to the entrainment of

the rotational core and derived from semi-empirical arguments. The combi-

,
	 nation of vortex/sink and feeding sheet sustains no resultant force and pro-

duces tke condition needed for determining the vortex core position in the

cross-flow plane. From references 13 to 15, the panel method has been shown

to predict	 accurate results	 for	 flat delta wings. However,

the computing time involved is lengthy and the methods are generally re-

stricted to simple geometries.

In the method of free vortices, Mook and Maddox (ref. 16) have used an

extension of the vortex lattice method to account for leading-edge separation.

In addition to standard vortex lattice, a series of kinked vortex lines are

assumed i:o be shed from the leading-edge. M iterative procedure is used

to determine the strength and local flow directions with appropriate boundary

condition. In the Kandil method (ref. 17), the flow is modelled in a

manner similar to that of Mook and Maddox (ref. 16), but included wing-tip

separation. In this model, the bound elements of the vortex lattices were

unswept, and the wake behind the trailing-edge and tip vortex elements

were force free. The quaii-vortex-lattice potential flow method of Lan

(ref. 19) has been extended by Mehrotra (ref. 18) to include vortex flow

effects. This is done by modelling with discrete trailing vortex filaments
i

emanating from the leading-edges. The leading-edge Kutta condition is exactly

4



satisfied and partial span vortex separation is allowed. The results of Meh-

rotra's model (ref. 18) indicate that the predicted spanwise pressure distri-

bution is more diffused than the experimental data show. This is because the

effect of a concentrated vortex core in the real flow is not well represented

by a number of free vortices. From the published results, it is clear that

none of the existing free-vortex methodu is capable of predicting accurately

the lifting pressure distribution over the wing surface within a reasonable

amount of computer time.

The main objectives of this investigation are : (1) to reduce the computer

time through the use of a pair of concentrated vortex cores above the wing sur-

face, which should also improve the pressure prediction of Mehrotra's mode

(ref. 18); (2) to allow the effect of side-edge vortex separation; and (3) to

extend the method of reference 18 to more realistic geometries. Configurations,

which are applicable to real airplane geometries include features such as

camber, strakes and leading-edge vortex flaps. All these configurations will

be treated in this report.

In the following, the aforementioned improvement will be described. First,

the leading-edge vortex system is superimposed on the regular quasi-vortex-

lattice grid by using segmented vortex filaments, as shown in reference 18.

Second, the side-edge vortex system is obtained by extending all the bound

elements to the tip chord in the last vortex strip. Third, the leading-edge

diffused vortex elements, in reference 18, are allowed to merge into a con-

centrated core after two iterations.

5



1	 3. Description of Theoretical Formulation

Mehrotra's method (ref. 18) is a diffused vortex-filament model of the

vortex core but serves as a basis for the present method. in thu present

analysis,. the basic assumptions are: (1) tho wing is represented by a bound

vortex sheet across which thexe exists a pressure difference; (2) the sep-

arated flow along 1o.iding•-edges is represented by force free leading-edge

vortex elements which ,feed vorticity into a concentrated core. In the present

method, the Quasi-Vortex-Lattice method (QVLM) (ref. 19) is used to simplify

the induced velocity expressions due to the wing bound vortex sheet.

During the iteration process, the following boundary conditions are

imposed: (1) the wing syrface must be impermeable; (2) Kutta conditions are

imposed along the leading- and trailing-edges of the wing; (3) in the diffused

vortex-filament model, the force free condition is applied on the leading-edge

vortex filaments and trailing wake elements; and (4) in the core model, the

force free condition is applied on the free vortex elements, concentrated

core and trailing wake elements.

This is a non-linear problem because the strength of the wing bound vor-

tices and free element vortices,	 the locations of the leading-edge free

vortex elements, and the concentrated core are unknown.

3.1 MRthematical Model of the Wing

The wing lies in the x-y plane and the x-axis is taken to be streamwise

along the wing center line. The origin of the right-handed rectangular coor 

dinate system is assumed to be at the moment reference point of the wing.

3.1.1 Wing Bound Element and Trailing Vortices

According to the QVLM, the semi-circle method is used to determine the

control station locations and the vortex strips in the spanwise direction, and

the wing control points and bound elements in the chordwise direction. The

6



locations of bound- and trailing -vortex elements are as shown in Fig. 1. The

x-location of bound elements is given b;,

xi • xi + 2 (1 - cos (21— 2N )), i 1, ---N	 (1)

where x  is the leading-edge x-coordinate, c is the local chord and N is

the number of bound elements in the chordwise direction. The spanwise lo-

cations of trailing vortices are given by

yj - b (1 - cos (-2̂ '^)). 	 (2)

where b is the wing span and M is the number of legs of trailing vorticity,

witch is one higher than the number of spanwise vortex strips. The locations

of control points are given by
c

X	 xR + 2 (1 - cos (N )), k - 0, 1 0 ---N	 (3)cp
k	 ^

Ycp • 4 (1 - cos (M )), j	 1, ---(M - 1)	 (4)

3
where xi  and c are the leading-edge x-coordinate and local chord at ycp

j
respectively.

For the strake-wing configuration, there are two sections in the span-

wise direction. Each spanwise section is divided into vortex strips by the

semi-circle method. The edges of the vortex strips in each section are ob-

tained through the following relation

b

Y^ Y' k-1 + 2k (1 - cos ( 2Mk )).	 1, ---Mk	 (5)

and y control points are given by

Yc	 Yk-1 + 2•	
i(1 - cos ( rr )), i - 1, ---Mk-1

thwhere b is the width of the k spanwise
k
se section and Mk is the number of

se strips plus one in k th section (see Fig. 2).

1

(6)



yk-1 are defined as

Y0-0

and

Yl ' bl

3.2 Model of Free Vortex Element System

3.21 Leading-Edge Vortex System Geometry

The leading-edge vortex system is superimposed on the regular quasi-

vortex-lattice grid. A typical leading-edge vortex element is shown by

points A through J in Fig.3. These points are connected by a series of

short straight segments. A typical set of initial locations for these

segments is indicated with dashed lines and the locations after two iterations

are given by solid lines.

The segments of the vortex element have the following characteristics:

(1) Initially, points A through E lie along a wing trailing vortex

filament with point A being one root chord away from the

trailing-edge (point D) in the downstream direction, and the line

segments between A and D are parallel to the axis of symmetry. The

segments B-C and C-D are 0.1 cR long. The length of each line segment

between A and B remains unchanged as the solution progresses. Segment

B-C is allowed to move only in the vertical direction, whereas segment

C-D is fixed in the wing plane because of the trailing-edge Kutta

condition. Segment D- E is also fixed in the wing plane.

(2) Points E. F, G and H lie in the wing plane. The location of segment E-F

is zhead of the wing first bound element and is givers by

8

..... ._^..y.:.:.^^. ...W. ter:.: :..r 	_.._^_.^as. _.3iu':::ve. .,.^:e,co:c^.^o.:ra.u^c;r'f..^;^°^^	 ...r^=̂ , _"="^ ."^°"̂ •̂, 	 «.-;..:.:^+e r...._ ^	 ,.	 .:^	 ..



E - 2 + CE n
E	 I ( 1-cos (	 N+ ) )

x	 x
F	 iF + 2 (1 - cos ( (N+I) )	 (8)

The segments F-G and G-H are of the same length and point G lies on the leading-

edge. These segments are fixed in the wing plane to satisfy the leading-edge Kutta

condition.

(3) The initial loca t ion of point T is a function of a and is given by

(ref. 18)

I ' x F	 (9)

yI . yF	(10)

z  a 0.1 cR Tan (22.5 - 0.5 a), for a .	 150	(11)

or

z  0 0.1 cR Tan a, for a > 150	(12)

Where cR is the root chord and a is the angle of attack. Initially point

J is one rood: chord away from the trailing-edge. The line connecting

I and J may be divided into segments of equal length which lie in a

plane parallel to the x -z plane. The initial height of these segments is

approximately 0.1 cR above the wing plane. In the final converged location,

all segments between point H and J (free vortex elements, concentrated core

and trailing wake elements) are aligned in the local velocity direction at

their mid-points to satisfy the force free condition.

(4) The semi-infinite segments from point A to infinity and J to infinity are

straight and are parallel to the undisturbed free stream direction. Since

the far wake of the leading-edge vortex element has very little effect

on the wing aerodynamic characteristics, the far wake is assumed to be semi-

infinite and parallel to the free stream.

(7)
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3.2.2 Side Edge Vortex System Geometry

To establish the side-edge vortex system as shown in Fig. 4, the leading-

edge vortex element and wing bound element of the last vortex strip is modified

as follows:

(1) Extend the leading-edge bound element to the side-edge (point D). Points
i

D, E, F, G and H lie in the wing plane. The segments F G, G H, 

H- 

I and

I through J are given in the same manner as in the preceding section. The

!(
	 extended leading-edges bound element consists of segments D-E and E-F.

I	 The location of each point is given by
I

xD
• x	 +	 ( 1 - Cos (	 N +l) ) )	 (13)

RTip

xF 	xi + 2F (1 - Cos (2 
(N+1)) )	

(14)

^	 F

xE 2 
(xD + Y

(15)

(2) The initial location of each vortex segment along the trailing leg of

the extended leading-edge bound element, point A through D, is given by

xj+l -
 
xi + Ay cos 2
	

(16)

yj+l • yTip	
(17)

zJ+l- z j + Ay sin 2	
(18)

where

Ay - 0.95 x (width of the last vortex strip).

(3) Extend the regular wing bound element to the side-edge. (Points P, Q, R,

S). Points P, Q, R and S lie in the wing plane and at the side -edge. The

location of each point is given by

xi - x^	 + "Tip (1 - cos ( 2i2N̂ r)) , i - 1, ---N	 (19)
Tip

yi - yTip	
(20)

10



where x 
Tip 

is the leading-edge x coordinate at the side-edge of the wing;

cTip the side-edge local chord length.

(4) Initially, all the segments between points D and A, P and T, Q and V, etc.

lie in a plane parallel to x-z plane at the wing side-edge. Points A, T,

U, V and W are one root chord away from the trailing-edge. The initial

side-edge vortex segment along points P through T (or Q through U, etc.)

is given by,

xi+1 x
i + Ax cos 2	 (21)

yi+1 a yTip	
(22)

zi+1 " z i + 6x sin 2	 (23)

where Ax is assumed to be half length of the side -edge chord.

(5) The semi-infinite segments from points A, J, T, U, etc. to infinity are

straight and are parallel to the undisturbed free stream.

11
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3.3 Induced Velocity Computation

3.3.1 Indu-ed Velocity Due to Wing

In the quasi-vortex-lattice method (ref. 19), to satisfy wing boundary con-

dition, the continuous vortex distribution over the wing is replaced by a quasi-

continuous one, being continuous chordwise but stepwise constant in the spanwise

direction. Thus, the wing surface can be divided into a number of vortex

strips with the associated trailing vortices (Fig. 1). In any strip, consider

a vortex element y dx with an arbitrary direction I (Fig. 5). The induced
velocity due to all bound elements in the i th strip is given by (ref. 19)

2	 x
.t'dx ' (24)

V	 ()	 s f t Y (x ^) 
a x	 ( b	 _ a -)

it 	Ott x R 	 (a, x ^) 2	 Ib r) 	Ian)

and due to the associated trailing vortices by

Vi^ () - s 2 jXt Y (x ') ( f - (Ii - 1) x dl dx )

4 tr x	 x	 3
R	 Rg	 (25)

The transformation, x' • x  + c (y) (1-core ) /2, reduce equations ( 24) and

(25) to

Vi (R)	
Racy) fT1 (9) Y (9) Sin a de	 (26)

1

and

V	 (R)	
0 2c( ) 1'tt ^2 ( e) Y (e ) Sine d 9	 (27)

1
2	

8 n	 o

where

• ae	 b_ - aX	 ',
4.^ 1 (m)	

(a' xj, 1 2 ( 
fib , I
	 (a' I	

)

^ 2 (m)	
(Ri 3 hx 	d'R

Rs

and c (y) = Yt - x R . a, b, etc. are defined in the List of Symbols.

12



The total induced velocity due to the 
ith 

strip of vortex distribution

is given by

2	 ^

$ i ()	 c, ') 	 1 ^l (e) Y (e) Sine de

+S28n ) Ir ? ( e ) y ( 0 ) Sin 0 de
0

Barc	 fr & ( 9) Y( e) Sine de	 (28)

Where the first term is due to bound element, second due to left leg of trailing

element and third due to the right leg of trailing elements. The above integrals

are reduced to finite sums through the mid-point trapezoidal rule (ref. 19):

^i (1) - B28N )	
E	 (^l + ^2 - ^2 ) Yk Sin ek
k-1	 k	 k	 k	 (29)

where 0  - (2k - 1) n/2N and locations of bound elements are given by

x 1 k - x1 1 + c 1 Ek	 (30)

x 2 k	 x12 + c2Ek	 (31)

Ek a Ig (1 - Cos ( 
2k2N 1	

n)). k - 1, - - - N	 (32)

and

x1
1 - 

the leading-edge x -coordinate at y 1 (left leg)

x1
2 - 

the leading-edge x-cordinate at y2 (right leg)

c l - chord length at y 

c2 - chord length at y2

The location of control points and trailing vortices are described in equations

(1) through (6).

Thus, the induced volocity due to all vortex strips of the wing can be

written as

M-1
^ (1) ' E Vi (1)

i-1 (33)

13
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3.3.2 Induced Velocity Due to Free Vortex Element System

The leading-edg: free vortex system consists of M - 1 distinct vortex

elements. Each element may have different number of small vortex segments.

Assume that the i th set has L small segments. The induced velocity at a given

point (x,y,z) due to j th segment of ith element is given by ( ref. 19)

Uij (U) ^ 
i + x	 2( e' - a'	

.^
)	

'	
(34)

I* x .'	 ^ b )	 1a

where

U x I+ y I+ z k

a ` (x j -x) a + (Y j - Y) I + ( z j - z) k

b - (x j +l- x) + (yj+1- Y) I + (zj+l- z) k

(xj+l - xj )	 + (Yj+l- 1) 1 + (zj+l- z j ) a
a' Q (xj - x)	 + 0 (Yj-Y)I+s(zj- z)k

b 
I M 

(x j+l
 - x) a+ a (Y j+l- Y) J + B (z j+l - z) rC

I' 
a (xj+l - xj ) I + 9 (Yj+l - Yj )7 + B (zj+l - zj ) k

Pi - leading-edge bound vortex strength of i th strip.
The subscripts j and j + 1 correspond to the end point of j th segment. The

induced velocity due to ith element can be written as

Ui (U) `I_— U ij ()	 (35)
j -1

Therefore, the induced velocity due to the entire leading -edge free vortex

elements is

U ()	 Ui ()	 (36)

3.4 Formulations of Wing Boundary Condition

The bound elements and the corresponding control points of the wing

1
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surface are numbered from the leading-edge to the trailing-edge and from

the root to the side-edge. The flow tangency condition can be written as

dzCosa ( dx ) i - Sina	
Na

a

^AijI 
(Yj) + I Bik, {rk)	 4—

N
atk + Cosa 

(dx
dz

 )
k - Sin a	 b	

(37)

where Na is the total number of wing bound elements; N  the number of

leading-edge vortex elements; Aij the induced downwash at the i th control print

of wing due to a unit horsehoe vortex density at j; Bik the induced downwash at

the ith control point due to the kth leading-edge vortex element of unit

strength; y  the vortex density of the j th bout ►d element; rIf the strength of

the kth leading-edge vortex element; (dz/dx) i the camber slope at the ith

control point and a the angle of attack. According to equations (52) and (53)

of reference 19, the leading-edge thrust coefficient is related to the normal-

wash on the leading-edge by the following equation

aRk • (induced normalwaeb - Cos a (dx)k + Sin a)l at k.e.	 (38)

which leads to the last expression on the right hand side of equation (37). In

the expression, 
aRk 

is defined as (ref. 19)

2 ct Corgi n

aRk N Tan 
A^F ( k 

n 1- Mm Cos A
where

N • number of chordwise bounded vortex elements

A • leading-edge sweep angle

MW free stream Mach number

B
Fj _ M?

• sectional leading-edge thrust coefficient of the k th strip
Ct
k

'or complete leading-edge separation cases, the sectional leading-edge suction

15



is adro and so is at k'

3.5 Force Free Condition

The vortex segments of each free element above the wing surface and the

trailing wake are to be aligned in the direction of local velocity vector cal-

culated at their mid-points. Consider the i th segment of a vortex element.

The coordinates of its end points are given by (xi , yi , z i ) and (x i+1 0 yi+1'

z i+l ). Assume that the induced velocity at the mid-point of this segment at

a given iteration is given by (ul + %4 + wk). In the following sections, the

formulations of force free condition will be derived in the diffused vortex

filament and core models respectively.

3.5.1 Formulation of Force Free Condition of Free Vortex Elements in The

Diffused Vortex Filament Model

For the i th segment, the new location of the (i+l) th end point can be ob-

tained by aligning the segment in the direction of local velocity vector.

That is

xi+1 ' x i + 0 as	 (40)

yi+1 yi + U As	 (41)

Z i+1 	 Z i + U as	 (42)

where

U - (u 2 + v2 + w2)4

As - l (xi+1 xi )2 + (yi+l - yi)2 + (Z i+l - '1)2)
Before equations (40) - (42) are used, the following points should be considered:

(1) The length of each segment is to be preserved.

(2) The free vortex segments above the wing should not come too close to

the wing surface to avoid numerical difficulty in the present inviscid

theory.

(3) The adjustment of the location of each segment to satisfy the force

free condition should be such that it does not result in numerical

r

16



fluctuations.

Based can the above considerations, equations (40) to (42) will be modified as

follows:

Consider the same ith segment. If this segment moves "a" percent only

according to the velocity computed at its mid-point, the equations (40)to (42)

can be modified to be

Ay' =& 
U 

as + (I- a)(yi+1 - yi) (43)

Az' - a 
U 

as + ( 1 -
a)(z i+1 - 

z i ) (44)

ax' - 168 2 - (ay') 2 - (Az') 2, (45)

It follows that

xi+l - xi + Ax'
(46)

yi+i - yi + 
ay' (47)

z i+l - z i + Az' (48)

The free elements of the leading-edge vortex system have been restricted not to

come any closer than a minimum specified height to the wing >surface, which is

Riven empirically by Mehrotra (ref. 18) as follows

z
min - 0.1 c  Tan (22.5 - 0.5m) 	 , for a < 150	(49)

zmin - 0.1 c 
R 
Tan a	 , for a > 150	(50)

If zi+1 is less than 
zmin, 

it is then set z i+l equal to zmin and Az' is re-

calculated by using

Az' - z
min	

z 1	(51)

This restriction is needed because whenever the free elements are close to the

wing surface, they induce large velocities on the wing and vice versa, which

makes the locations of free elements fluctuate. In the real flow, at small

angles of attack, the leading-edge vortex system is weak and diffused. The

effect of the free vortices is artificially reduced by increasing zmin as the

angle of attack is decreased below 15 degrees. Note that equations (43) through

(48) described above are mainly used to (1) establish the leading-edge vortex

filament system in the first two iterations; and (2) find the new position of

17
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trailing wake elements and side -edge vertex system in the entire iteration

Iprocess.

3.5.2 Formulation of Force Free Condition of Free Sheet Vortex Element in The

Core Hodel

For the 
ith segment along a free vortex element between the leading-edge

and concentrated core, the initial slopes are determined by the total in-

duced velocities at the mid-point of this segment

(^) - vv
Ax	 u

Az '	 w	 (53)
(7x )	 u

The new slopes of the 
ith segment of a free vortex element are given by:

(
AY

	 (6y ) + (1 - d* ) (
AX

)	 (54)
Ax	 Ax	 Ax

(Az ) * - d* (Az ) + (1 - d*)(AZ)
Ax	 Ax	 Ax

Similar to the parameter "a" in equations (43) and (44) of section 3.5.1, the

*
relaxation parameter of free sheet,d, is used in equations (54) and (55) in

the core model, to avoid any rapid variation of free sheet shape and divergence of

the iteration procedure. The initial value of d 
*

is 0.5. During the itera-

tion process, when the rate of change of the total free sheet vortex element

force is less than five percent, d * is set to 0.95.

Since the length of each segment is conserved, therefore,

As - Ax 11 + (Ax) 2 + (T)2 
J	

(56)

Hence

(Ax)* -	
As

	

L1 + (^ 

*2 	 Az

 + 

(Ax)* 

J
It follows that

( AY) * - (Ax)* tax) *

(Az)* - 

(Ax) * (pax)*

(52)

(55)

(57)

(58)

(59)

18
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Thus, the new location of the (i+l) th end

xi+l = xi + (Ax)

yi+l = yi + (Ay)

Zi+l ' ri + (42)

3.5.3 Formulation of Force Free Condition of Vortex Core in The Core Model

During each iteration, the Joukowsky force acting on each segment of the

core is computed. Let

= V x

(61 + vj + wk) x (CxI +fyI + r2k)
Then

	

. u _ rZ u - (Tx-)
	 (64)

7- 
ux	 x

	

F  . 
r 
y _ v	 (AY) _ v	 (65)

P u t	 u	 Ax	 ux	 x

If the new position of the core is such that F 	 0 and FZ 0, then

(A )^ - (u)^0 	 (67)
Ax

Assume that

(^)	 (u)^

(u )	 ()u,

Combining equations (64), (65) and (66), (67) yields the following equations

for the i th segment:

(ox)i . A i - (rFu) i 	(68)
x

( p	 ( X- ) i +(-rri)	 (69)
x i

The new slopes of the i th segment of the concentrated core are taken to be:

(AX) i = 1 1 - a y)(Ax) i + aZ (Ax ) i 	(70)

(TR)i (1 - Y (-X) i + ay (X) i 	(71)

y and X y are relaxation parameters and are discussed in Section 3.8.

,9



ICombining equations (68) through ( 71) results in:

t	
(^ )* - (Q )	 a Y ( rFu)^	 (70)

(	 1	 1	 x i
F

(0x)* (px) + a z(^)	 (71)

i	 i	 x i

During the iteration process, when the rate of change of the vortex core force

is less than five percent, the relaxation parameters a y and az of each core seg-

went will be further reduced by multiplying the factor 0.1. Thus, the move-

ments of core segment will not cause excessive fluctuation in the aerodynamic

characteristics.

Since the segment length is cmiserved, it follows that

As - Ax I1 + (ax)2 + (nx)2 	
(74)

(Ax) * -	 As	 (75)

[1 +	 )* + (
Qx)*

Hence,

(AY)* - Ox
)* 

(ox)*	
(76)

i

(Az)* - (Ax)* (Ax)*

	
(77)

i

Thus, the new position of (i+l ) th end point of the concentrated core are found

as follows

x
i+1 M x

i + (Ax)*	
(78)

Yi+l - Yi + (

Ay)*	
(79)

zi+l - z  + 
(Az) *	(80)

In the present analysis, the effect of the secondary vortices has not been in-

cluded.

3.6 Centroid of the Leading-Edge Vortex Filament System

After establishing the leading -edge vortex filament system based on exer-

cising Mehrotra ' s code (ref. 18) through two iterations, the centroid of that

diffused vortex element system can be found as follows (ref. 20):

20



Consider a series of cross flow planes, proceeding from the wing apex

toward the trailing-edge. The centroids of the vortex filaments penetrating

these planes are given by,

n 

	

Y	
ill ri yij	 (81)

	

j	
nj 

rcj

i ^ i.l ri z ij 	 (82)
	j 	 raj

where,

yj, 
z  

are the centroid pare ition in the jch plane,

yij , zij are the intersection position of the i th vortex filament with the

jth plane,

r  is the circulation around the i th vortex filament,

rcj is the concentrated line vortex strength at the j th plane,

n  is the number of vortex filaments penetrating the j th plane.

3.7 Modification of Z-Coordinates of the Initial Concentrated Core

In order to have better starting solution so that the number of iterations

and computer time can be reduced, the initial z-coordinates of the concentrated

cqre from Section 3 . 6 are modified to take the experimental values summarized

by Smith (ref. 4):

z • 0.154a' + 0.1
v

z 0 0.1333a' + 0.158
v

z = 0.13a' + 0.132
v

where

a' . Tan a/Tan e

e - 900 - n

a' < 1.2

1.2 < a' < 2.2	 (83)

a' > 2.2

z  is the nondimensional z-coordinate of the concentrated core, referring to

the local semi-span; A the leading-edge sweep angle; and a the angle of attack.

Equation (83) will be used only in the simple wing configuration.

21
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The initial configuration on the core model. on the right half of the

wing, is shown in Figs. 6A through 6C. The top view of the initial free sheet

and the modified y-coordinate of the core location are shown on the x-y plane

in Fig. 6A. The initial modified y-coordinate of the core location is such that

it is at least at a location equal to 60 percent of the local semi-span of the

wing (see references 4 and 22). The rear view of the detailed free sheet shape

and its relative vortex core location above the wing surface are shown on the

y-z plane in Fig. 68. The side view of the free sheet and the modified z-coor-

dinate of the core location are shown on the x- z plane in Fig. 6C. Note that

the initial modified z-coordinate of the core location is based on equation (83).

3.8 Formulation of Relaxation Parameters in the Core Model

In the first two iterations of the core model, the core is forced to

move either in the y or z direction. The direction depends on the sign and

the difference between the i.nitial3y computed lift coefficient and the reference

lift coefficient based on the suction analogy (references 26 and 27). From

the numerical experimentation, the relaxation parameters X  and a z , in equa-

tions (70) through (73), are taken as follows:

First iteration

If the initially computed lift coefficient is smaller than the reference

lift coefficient based on the suction analogy, the core will move down and

the corresponding reltEation Cpayameter is
Ls - Li

a zl	 -1.5 (C
L Tan a)	

(84

s
If the initially computed lift coefficient is greater than the reference

lift coefficient, the core will move out and the relaxation parameter is

(CL - CL ) Sin a

A 0 -2.0	
i	 s

yl

where CL is the reference lift coefficient, and CL is the initially computed
s	 i

lift coefficient. The initial set of a
yl	 zl

and a	 are designed so that the

CL
s

(85)
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movement of core segments is proportional to the difference in CL
i 
and C

Ls 
.

Also, the higher the angle of attack, the larger the value of Ay 
1 
or the lower

the value of Az is used. It was determined from numerical experimentation that
1

the initial core needs larger move -down movement in the z direction than the

move-out movement in the y direction.

Second iteration

If the initial movement of the concentrated core is in the z direction, the

y-coordinates of the core will be adjusted next in the second iteration. The

computed lift coefficient after the initial adjustment of the concentrated core

is denoted by CL . The core will be caused to move out if CL is greater than

CL and to move in if CL is less than CL	The corresponding relaxation pars-
e	 s

meter is:

(CL - CL ) Sin a

Y2	 CL

	 (86)

8

On the other hand, if the initial movement of the concentrated core is in

the y direction, the z -coordinate of the core will be adjusted in the second

iteration. The core will move down if C L is less than CL and move up if CL
s

is greater than CL . The corresponding relaxation parameter is:
s 

(CL - CL )
s

A z 2 - 0.75 C
L Tan a)
s

The relaxation parameters A
Y2	 Z2

and A have the same form as the initial set ex-

cept the magnitude is reduced by half. Special conditions are imposed for all

configurations when the angle of attack is below 20 degrees. They are	 (1)

the magnitude of A z in equation (84) is to be reduced by half; and (2) for the
1

angle of attack below 10 degrees, the angle of attack in equations (84) and (87)

Is set to 10 degrees to avoid the singularity in a in computing A and A
zl	

z2.

Therefore, the movement of the core in the first two iterations for angles of

attack below 20 degrees will not cause a large fluctuation in the aerodynamic

characteristics.

(87)

^a
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The relaxation parameters A y and 
X  

of each segment of the core are to be

used from the third iteration on, based on the force gradients of core segments

before and after the adjustment of the free sheet vortex elements. Thus, the

relaxation parameters to the ith segment of the core are:

ay	 Cy (F---^)	 ^ Cy I- REF	 (88)
i	 i	 yl	 i	 i

^z ' Cz 
(Fz22 zl )	

ICz I- EF	 (89)
i	 i	 zl	 i	 i

In the above, Fy1 , Fzl , Fy2 and Fz2 are the segment forces of the core before

and after the adjustment of the free sheet vortex elements, and EF is the

algebraic sum of segment forces acting on the core after adjustment of free sheet

vortex elements. The.6ign of C
yi 

and C 
z  

ire kiete rm:ned so as to reduce the

total force acting on the free sheet vortex elements.

In the care model, the locations of free sheet vortex elements and concPn-

trated core have a very sensitive effect on wing loading. To avoid the di, r-

ergence of the iteration procedure: (1) the restrictions are imposed on the

movement of free sheet vortex elements and concentrated core as discussed in

sections 3.5.2 and 3.5.3; (2) the end point of the first core segment near

apex will remain fixed from the third iteration; and (3) the z-coordinates of

concentrated core are not allowed to be below 
zmin 

given by equations (40 and (50).
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3.9 Aerodynamic Characteristics

7n reference 26, the more accurate expressions to calculate the overall
aZ

aerodynamic characteristics are derived by Lan for the cambered wing. Both ax c
az

and ay are included in the computation.

Assume that the wing surface (Fig. 7) can be described by:

Z ' z c (x,Y)
	

(90)

where z c (x,y) is the ordinate cf camber surface measured from the x-y plane.

Introduce a function f such that:

f a z - z c (x,y)	 (91)

Therefore, a unit normal vector on the wing surface can be define.i do:

	

aZ	 az
c   - C # + k

n	
Vf	 ax
	

ay	 (92)
I ^fl	 azc 2	 azc 2

Cl+(axt) +(ay)

The unit vectors nm and t,, are related with n (Fig. 8) in the following expressions:

nm . -Sin a t + Coe at	 (93)

tm . Cos a t + Sin at	 (94)

Ti:: computed lifting pressure AC  (see Appendix A) is acting normal to the local

camber surface, i.e., in the n direction. Then, this pressure force can be de-

composed into nm and tm directions to determine the lift and drag components,

respectively. Hence, the component in the lift direction is:
az	 az	 az 2

n•n. s(axc Sin a + Cos a)/ C1 + (Sx, 2) + ( ayc ) 	 (95)

the component in the drag direction is:
az c	azc 2	 azc 2

n •t. a (- aX Cos a+ Sin a)i 11 + ( ax ) + ( ay )
To find the pitching moment about y axis, the component of (fix I + Az k) x n

is needed, where Ax and Az are the moment arms of the pressure elements refer-

enced to the coordinate system. In the present analysis, Az is assumed to be

zero. Hence, the corresponding 1-component of (Ax x n) is:

	

azc 2	 azc 2
-Ax/ Cl +( ax ) + ( ay)	 (97)
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3.9.1 Sectional Aerodynamic Characteristics

To find the sectional characteristics, it is assumed that the wing vor-

tices are situated along the cambered surface. Since the resulting lifting

pressure is acting normal to the local camber surface, the sectional lift,

induced drag and pitching moment coefficients can be determined by combining

the lifting pressure 
AC  

and equations (95) to (97) through the local chord

integration. Hence, the Recrional lift, induced drag and pitching moment co-

efficients at the j th strip have the following expression:
1	 azc	 az 2	 az 

2c 	j ACp ( ax Sin a + Cos a)/ ^1 + (ax
c
 ) + (3yc ) , dx

Rj

a2	 aZ	 az
+ ct I(axc) Stn a + Coe ;e ^C1 + (3xc ) 2 

+ (Ty—
c)	 (98)

j	 j	 j 	 j e
1 rx

t	azc	 azc 2	 az 2

cd
j 	

cjJ j ACp ( ax Cos a + Sin a)/ [1 + ( 3x) + (ay
c
 ) , dx

xR

j

	

azc	 azc	 azc
ct	 ( 3x) Cos a + Sin a]R / C1 + (3x) 2 + (a ) 2	 (99)

e	 j	 y j Re

x	 az	 3z

mj • - jJx t  Ac	 1
p.(Ax)/1 + ( axc ) 2 + ( ayc ) 21 dx	 (loo)

Rj	 J

where the c  terms in equations (98) and (99) are the leading-edge suction
j

effect; x  and x  the leading-and trailing-edges x-coordinates of the chord

passing through the control station of the j th strip: 'c the mean geometric chord,

t:

j
the local chord length. The subscript R e , in equations (98) and ( 99), means

3z	 az

(axc) and ( ayc ) j are evaluated at the leading-edge of the j t ' strip. Using
j

this transformation,
c

x a x R +2 (1-Cos 6)j
equation (98) can be rEduced to:

	

n	 azc	 ;zc 2	
c 2cR • r AC  Sin a ( ax Sin a + Cos a) 11 + ( 3x ) + ( ay )	 de

j	 o
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NX

zc	 azc
	

ay
2
	3Z c ) 2 ],2 ,i+ c 	 ) Sin a + Cos a  	 1 + ( ax) + ( )

j j 	 ^	 j•

29	 ff	
N+1	 az	 az

	
32c

N+1	 4Cp I( 
3z

31n a + Cos a] Sin ek/C1 + (
axc)2 

+ (ay)21

	

k-1	 k	 k	 k	 k J

a z	 az	 U ►^

+ c  1(TX
_c Sin a + Cos all I+ (axc)2 + (a 

jc)2JA(101)

	

jj	 s	 j	 y	 s

and

92k - On	
k-1, --- (N + 1)k a 2(N+1)

where the mid-point trapezoidal rule has been used to reduce the integral int.o

a finite sum (ref. 19). Similarly, the sectional induced drag and pitching

moment coefficients for the j th strip are given by:

c	 n	 N+1 QC	 azc	 azc 2
?^(—) Cos a + Sin a Sin e / r1 + ( xd j 2 N+--71 ^ Pk	 ax k 	

I	 k L	 ax k

+ ( ayc )21 _ ct ^- (
ate) Cos a + Sin al i / C 1 + (aXC ) 2 +

k	 j	 j	 e`	 j

a z	 ►^

	

( c ) 2 ,	 (102)ay
j te

	

N+1	 c	 as
C = _	 n	 AC r xt + 2 (1-Cos ek )1 Sineklrl+( axc ) k +

mj 	 2Z(N + 1) k-1 Pk L j	 J	 L

( ayc ) 2 ,4	 (103)
k

According to equations (52) and (53) of reference 19, the sectional

leading-edge thrust coefficient is given by:

c	 n(1 - M2	
2

Cost 
A)^ [WI -(Cos a (dx) j - Sin a)^

(104)
t j 	 2N2 Cos A (1 - M? + Tan  A)

where M. is the free stream Mach number; A the sweep angle of the leading-edge;

wj and (dz ) are the induced normalwash and slope of the wing surface at the
j

leading-edge. For sharp-edged wings, c  is assumed zero.
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3.9.2 Overall Aerodynamic Characteristics

The total induced drat, lift, pitching moment and leading-edge thrust
s

coefficients of the wing are determined by spanwise integration of the sectional

characteristics. Again, the integration is first transformed to an angular

t coordinate (0 < ® <w), and then reduced to finite sum by the conventional

trapezoidal rule (ref. 19). Therefore, the total lift coefficient has the

following expression,

CL • 5r f  b/2 c IC dy	 (lOS)

where b is the wing span and G the wing area. By the transformation:

Y - b (1 - Cos m)	 (106)

equation (105) can be reduced to:

n
CL 
•rI
c R cSin m 0
o 

bff 
M-1

2SM Y 
C.1 

ci Sin le i 	(107)

and

mi M	
,	 1.1,--- (M-1)

where M-1 is the total number of spanwise strips.

Similarly, the induced drag, pitching moment and leading-edge thrust

coefficients are given by:

CO
a

-1
btr	 MM-

L cd
ci Sin 0 i (108)

i
2SM	

i-1	 1

Cm 
Y byr	

M-1

cm	
ci Sin 0 1 (109)

2SM
i-1	 i
M-1

CT v
bbw	 ^ ct	 c i Sin m i (110)

i• 1	 i

3.10 Summary of Solution Procedures

In the diffused vortex filament model of Mehrotra (ref. 18), the basic

unknowns of the problem are the bound vortex density on the wing, the strengths

and locations of the elements of the leading -edge vortex system and the
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trailing wake. The problem is solved in the following iterative manner:

(a) prescribe the vortex-lattice for the wing surface, and the

initial locations of the leading-edge and side-edge free

elements over the wing and in the wake.

(b) By satisfying the wing boundary condition, equation (37), ob-

tain the bound vortex density of the wing and the strengths of

free elements.

(c) Calculate the aerodynamic characteristics and loads.

(d) Adjust the free elements of the leadLig- and side-edges vortex

system and the trailing wake in the local velocity vector dir-

ection.

(e) Repeat steps (b) through (d) for two iterations.

After two iterations in Mehrotra's diffused vortex filament model, the

present model with the leading-edge vortex core is then introduced (See Fig. 9).

In the care model, the basic unknowns of the problem are the bound vortex

density on the wing, the strengths and locations of the free sheet vortex

elements, the concentrated core and the trailing wake. The problem is still

solved in the iterative manner:

(f) Find the centroid of the established leading-edge vortex

filament system, equations (81) and (82), from step (e).

(g) Allow the leading-edge vortex elements to merge and feed

vorticity into the concentrated core through connecting

segments.

(h) From the numerical experimentation, the z-coordinate of the

initial core is modified by equation (83), and the y-coordinate

of the initial core is adjusted so that the initial core

location is at least 60 percent of the local semi-span

of the wing to have a better starting solution.
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(1) By satisfying the wing boundary condition, equation (37),

the initial bound vortex density of the wing and the

strength of free vortex elements are obtained.

(j) In the fist two iterations of core model, the core is

forced to move either in the y or z direction. r.,i dir-

action depends upon the sign and the difference between

the initially computed lift coefficient and the reference

lift coefficient based on the suction analogy. The relax-

ation parameters A y and A z are based on equations (84)

through (87).

(k) From the third iteration of the core model, the movement of

the core is based on the relaxation parameters for each seg-

ment of the core, equations (88) and (89). These are used

to keep the core moving in a direction for which the total

algebraic sum of the forces acting on the free sheet is to

be decreased.

(1) Based on step (k), the orientation of the leading-edge free

elements of the free vortex sheet, side-edge vortices, the

concentrated czre and the trailing wake are adjusted in the

local velocity vector dirot.L::inn,

(m) By satisfying the wing boundary condition, equation (37),

:',e bound vortex density of the wing and the strength of

free elements are obtained.

(n) Calculate all the aerodynamic characteristics and loads.

(o) Calculate the force acting on all free elements of the free

vortex sheet over the wing surface and the concentrated core.

(p) Repeat steps (j) through (o) until a converged solution is

obtained.
n
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The converged positions and orientations for the free sheet vortex

elements, side-edge vortex elements, and the concentrated cure are assumed

to have occurred when the sum of the magnitc.ie of the total force acting on

the core and free sheet has reached a local minimum value in the iteration

cycle.

Numerical results to date indicate that when the angle of attack is

decreased below 20 degrees, the present method has difficulty in generating

8 satisfactory starting solution. The main reason is the poor initial shape

of the free vortex sheet from 	 Mehrotra's model. Thus, with the core model

metl;od, the starting solution for wings at angles of attack lass than 20 de-

grees is taken to be the initial shape for 20 degrees angle of attack.
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I	 4. Numerical Results and Discussions

This section presents numerical characteristics of and predictions by the

present method. These predictions are compared with results from the methods

of Mahrotra (ref. 18), Johnson, at al. (refs. 13 and 14) (called Free Vortex

Sheet (FVS)), Lan (ref. 26), Lamar (ref. 27) (called Vortex-lattice Method bas-

ad on Suction Analogy (VLM-SA)) and with data. Numerical characteristics

and results of the present method will be presented and discussed next.

4.1 Numerical Characteristics

The numerical results predicted by the present method have the following

numerical characteristics:

(a) Convergence Characteristics

In the present method, 	 numerical convergence can be expected during

the iteration process if certain restrictions are imposed on the movements

of the free shcet and vortex core 	 (see sections 3.5 and 3.8).
Y

(b) Initial Vortex Shape

For the angle of attack below 20 degrees, the starting solution is

taken to be the initial vortex shape from the 20 degrees angle of attack
i

solution.

(c) Spanwise Strips

In reference 18, Mehrotra made a parametric study to find a relation

between the aspect ratio and the number of spanwise strips which should be

used to represent the lifting pressure on delta wings in order to obtain

reasonably accurate aerodynamic results. The relation just mentioned is re-

produced and displayed graphically in Fig. 10. From this figure eight

vortex strips over the wing semi-span are seen to be needed for simple

deltas in the aspect ratio range from 1.0 to 1.75. Because of this study

and because of the strake-wing and double delta configurations to be treated
i

here being also of low aspect ratio, the same number was used initially.
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Due to the leading-edge kink these configurations had to be represented 1

two spanwisa regions per semi-span. Experience with the QVLM of Lan's

(raf. 19) has shown that for two spanwisa region solutions, it is better

to have a different number of spanwisa strips in each region. The final

choice of spanwisa strips used here is four for the strake region and five

for the wing region.

(d) Chordwiss Vortex Elements

All results to be presented have been calculated by using six chordwise

vortex elements for all configurations.

(e) Reference Lift Coefficient

The reference lift coefficient discussed previously (see section 3.8)

for use in adjusting the core movement is based on the suction analogy as

implemented by Lan (ref. 26).

(f) Complete Leading-Edge Separation

In this study, only wings having complete leading-edge separation will

be considered.

4.2 Numerical Results

This section presents numerical results by the present method based

on the preceding ideas. These results are compared with	 other methods

and data for certain test configurations which are shown in Figs. 11 to 15.

Note that they consist of a flat delta wing (Fig. 11), a conical cambered

delta wing (Fig. 12), a delta wing with leading-edge vortex flap (Fig. 13),

a double delta wing (Fig. 14) and a strake wing (Fig. 15). The one vortex

core system is used for the delta wings while the two vortex-core system is

• ^^d for the others.

Overall Forces and Moments

The overall aerodynamic characteristics are presented in Figs. 16 to 20.

33



All theoretical curves for the results generated are graphed by fairing

through those at the a's given in the following table.

Method Solution a's

Present method

Flat delta wing 50, 100 , 20.4°, 30.7°

Conical cambered delta 50, 100 , 20.4°, 30.7°

Delta wing with LEVF 50, 100 , 200 , 240

Double delta wing 5°, 100 , 200 , 280

Straka Wing 5°, 100 , 21.60 , 27.70

Mehrotra 50, 100 , 150 , 200 , 250 , 300

Lan All a's

VLM-SA All a's

FVS 10°, 150 , 20°, 25°, 300

Delta Wing

(a) Planar

The results for the flat delta wing are shown in Fig. 16. It is seen

that CL and CD can be accurately predicted by the present method as well as
i

by the other methods. However, the present method predicts the C m to be

more positive (i.e. more nose up) at high angles of attack, whereas the

methods of VLM-SA and Lan predict more nose down pitching moment. This

nose up moment of the present method could be due to the estimated peak

load being too forward. Mehrotra's results have good agreement with data

(ref. 22) even though he used a diffused vortex model.

(b) Conical camber

The results for a conical cambered delta wing are presented in Fig. 17.
3

The CL results from Lan's method have the best agreement with data. The CL

results are underpredicted by the present method at lower angles of attack
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and by the VLM-SA at higher angles of attack. FVS results (ref. 30) are

generally low. The CD results of Fig. 17(b) show that the FVS method is
i

best at angles of attack below 20 degrees and the present method is beet

for angles of attack above 20 degrees. The other methods all predict

values of CD which are too low over the angle of attack range. Similar
i

to the case for the flat delta, the present method predicts a pitch up

tendency for the cambered wing.

(c) Leading-edge vortex flap

Recently, there has been much interest in applying the leading-edge

vortex flap to increase the lift-drag ratio under maneuvering conditions.

Some low speed results for a 740-delta wing have been reported in reference 29.

The geometry of the planform is shown in Fig. 13 and it was modeled theore-

tically with its undeflected trailing-edge flap omitted for simplicity. The

results are presented in Fig. 18 where the CL , CD
i 
and Cm have been based

on the total planform area excluding the leading-edge flap. It is seen

that the predicted results by the methods of Lan and VLM-SA agree well wi:h

data. The CL and CD results estimated by the presented method slightly
i

exceed the values of the data at moderate angles of attack. The Cm re-

cults show the present method to have a more nose vo moment than the data

for jangles of attack above 12 degrees.

Having compared the results in the one vortex-core system, it is of

interest to see the aerodynamic characteristics in the two vortex-core system.

Double Delta Wing

For the double delta wing (ref. 28), the comparison is made in Fig. 19.

The results show that the CL and CD are well predicted by the present
i

d and the methods of Lan and VLM-SA.

nt method predicts the Cm results better than others.
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Strake Wing

From reference 28, it is understood that the aerodynamic advantage of

stroke-wing planforms are (1) the transonic maneuvering capability, and

(2) the utilization of vortex lift. For the strake-wing configuration of

Fig. 15 (ref. 31), the results are presented in Fig. 20. It is seen that

the CL predicted by the present method has good agreement with data whereas

the method of Lan overpredicts the data in the high angle of attack region.

The experimental data in Fig. 20(b) shows tha',, the pitching moments become

more positive as the angle of attack is increased. This could be due to the

wing vortex breakdown on the main wing. From the geometry of strake wing in

Fig. 15, it can be seen that the wing area is much larger than the strake.

As shown in the data in Fig. 20(a), the C L values start to decrease at about

14 degrees of angle of attack, signifying the start of the wing vortex

bursting.

Lifting Pressure Distribution

Figs. 21 through 29 show the spanwise pressure distributions for different

planforms at specified angles of attack and for constant x-locations. The

results are discussed below.

Delta Wing

(a) Planar

For the flat delta wing, the spanwise pressure distributions are cal-

culated at angle:, of attack equal to 10.2°, 20.4
0
 and 30.70 , and compared

with data at the two x-locations, x/c R - 0.5333 and 0.9333 in Figs. 21 to 23.

In general, the pressure peak obtained by using Mehrotra's method is lower

than the data near midchord, higher near the trailing-edge and is shifted

toward the root chord. One objective in the present method is to improve

the pressure distribution of Mehrotra's method, so as to allow for the occur-

rence	 of a sharper pressure peak. The predicted pressure distributions
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of the present method more closely resemble the data than do those of Meh-

rotra. At the low angle of attack (a a 10.20), the present method predicts

a pressure peak that is inboard of the data at midchord and is lower near the

trailing-edge. This may be due to the free sheet being too large, since its

initial shape and core location is taken from the 20-degree solution and the

size of free sheet will not shrink in the iteration process. Thus, the in-

board pressure distribution are higher than those measured.

(b) Conical camber

The results of the estimated spanwise pressure distribution for the con-

ical cambered delta are presented in Figs. 24 through 26, and are compared

with data (ref. 22) and the FVS solution (ref. 30). Again, the presented

results are at the angles.of attack equal to 10.2 0 , 20.40 and 30.70 and

comparisons are made at two x-locations, x/c R a 0.67 and 0.935. At low and

moderate angles of attack, the present method predicts values of the pressure

peak which are lower than data, whereas the FVS solution predicts higher peaks.

At high angles of attack the spanwise pressure distribution predicted by

the present method has better agreement with data than does the FVS solution.

There are two pressure peaks near the trailing-edge at all angles of attack.

The inboard peak is expected and is typical for flat delta configurations.

However, the reason for the outboard peak is not conclusively known. Some

possible reasons for its occurrence are as follows: (1) the wing vortex

distribution is not located on the highly cambered surface; instead, it is

on a flat surface; (2) the large spanwise camber slope term (8z/8y w -1.4402)

near leading-edge is not included in the boundary condition; (3) eight span-

wise strips may not be sufficient to resolve the lifting press fires in the tip

region of this conically cambered wing.

(c) Leading-edge vortex flaps

Spanwise pressure d;?.stributions predicted by the present method at 24-de-
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gree angle of attack and two x-locations, x/cR - 0.5197 and 0.8937, are pre-

sented in Fig. 27 for a 740-delta wing with leading-edge vortex flap. Since

there are no data or other theoretical results available, only the present

theoretical results are presented on each figure.	 Fig. 27(a) shows that

the pressure peak is at about 60 percent of the local semispan and that

matches the vortex core location. Near the trailing-edge the interaction

of the vortex core and leading-edge vortex flap produces large lifting

pressure in the vortex flap region as seen in Fig. 27(b).

Double Delta Wing

From Fig. 28, the spanwise pressure distribution at 20-degree angle of

attack at two x-locations, x/cR - 0.5686 and 0.8099 are presented. In

Fig. 28(a), the results near middle root chord indicate that there are two

pressure peaks present. The lower pressure peak is behind the highly

swept inboard region with the higher pressure peak being on the outboard

wing region. The two vortex cores induce large sidewash in the tip region

which result in a large pressure peak there. Fig. 28(b) shows the lifting

pressures near the trailing-edge and from Lhis figure it is seen that another

pressure peak has been produced. This outboard peak ntay be due to the large

sidewash induced near the tip due to the interacting inboard-located vortex

cores. The exact reasons for this require additional investigation.

Strake Wing

From Fig.29, the spanwise pressure distribution at an angle of attack of

12 degrees at three constant chord stations, x/c . 0.4,0.7 and 0.9, are

presenter . In Fig.29(a), the results near the kink region show that the lifting

pressure are mainly from strake vortex. In Figs.29(a) to 29(c), the predicted

pressure distributions are generally higher than experimental values. the

large pressure peak near the tip region of each figure is mainly due to the
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effect of side-edge vortex system. Nenr.• the trailing edge the flow field is

dominaed by the wing with most of the predicted lifting pressure being on

the wing. It should be noted that at an angle of attack of about 14 0 , the

wing vortex breakdown may have occurred (ref. 37). The effect of vortex

breakdown is not modelled in the present method.

For a slander delta wing, a typical computer CPU time by the present

method is 3230 seconds in 7 iterations with CDC Cyber 175 at Langley Research

Center. This is to be compared with 4540 seconds in 10 iterations by Mehrotra's

model. For the double delta wing analyzed in this report, the CPU time is

5620 seconds in 8 iterations as compared with 22,450 seconds in 8 iterations

by the Boeing code (Ref.14). If the first two iterations in Mehrotra's model

can be by-passed by directly assuming a reasonable initial configuration, the

saving in CPU time is about 1200 seconds for simple delta configurations.

4.3 Mean Square Error Computation.

To check the accuracy of the results predicted by the present and other

theoretical methods, the so-called mean square error (MSE) will be used.

Mean square error is defined as:

MSE a C(^(di - di)2)/K i1/2	 (111)

where d i is the i th experimental data value, K the total number of data points,

and di the interpolated theoretical results at the location of data point di.

Thus, the typical results of mean square error of each theoretical method to the

overall lift coefficient and lifting pressure distributions are as shown in the

following:

MSE for Overall Lift Coefficient

(a) a flat delta wing (Fig. 16(a))

Present Theory	 0.0209

Lan's Method	 0.0172

VLM-SA	 0.0045

Mehrotra ' s Method	 0.0242
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(b) a conically cambered wing (Fig. 17(a))

Present Theory	 0.0407

Lan's Method	 0.0237

VLM-SA	 0.0423

FVS Method	 0.0470

(c) a delta wing with L. E. vortex flap (Fig. 18(a))

Present Theory	 0.0405

F:

Lan's Method	 0.0378

VLM-SA	 0.0628
`	 s

(d) a double delta wing (Fig. 19 (a))

Present Theory	 0.0351

Lan's Method	 0.0330

`	 VLM-SA	 0.0534

E	 (e) a strake-wing configuration (Fig.20(a))

i
Present Theory	 0.0724

Lan's Method	 0.1197
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MSE for Lifting Pressure Distribution

x/c
Configuration R a, deg. Present Method Mehrotra

Flat Delta, Fig. 2 t(s) 0.5333 10.2 0.1694 0.1198

to
Fig. 21(b) 0.9333 10.2 0.1391 0.1539

of Fig. 22(a) 0.5333 20.4 0.2642 0.3804

of Fig. 22(b) 0.9333 20.4 0.1060 0.1906

to
Fig. 23(a) 0.5333 30.7 0.5011 0.7773

to	 to Fig. 23(b) 0.9333 30.7 0.1496 0.4111

Configuration x
/cR a, deg. Present Method FVS Method

Delta with Conical
Camber, Fig. 24(a) 0.67 10.2 0.1540 0.1744

is 24(b) 0.935 10.2 0.1470 0.2163

it 25(a) 0.67 20.4 0.3146 0.3027

of 25(b) 0.935 20.4 0.1690 0.1358

of 26(a) 0.67 30.7 0.5090 0.4868

ft 26(b) 0.935 30.7 0.1491 0.3139

For the flat delta wing, the mean square errors for the lifting

pressure indicate that the present theory is better than Mehrotra's model.

For a delta wing with the conical camber, the present results are also good.

However, the lower values of MSE of present results partially may be due

to the appearance of an unexpected pressure peak near the tip region.

41



S. Concluding Remarks

A free sheet-vortex core model to predict pressure loadings and

overall aerodynamic characteristics of low aspect-ratio wings with edge

vortex separation has been developed, by incorporating a vortex core in

the free sheet of Mahrotra's method. In the present method, Mehrotra's

model is used in the first two iterations to establish the vortex fila-

ment system. Based on Smith's empirical results, the initial vortex

core location is adjusted to improve the starting solution. Introduc-

tion of a vortex core in the flow model increases the numerical diffi-

culty to obtain a converged solution. The problem is solved by using

different sets of relaxation parameters for and by imposing certain

restrictions on movements of the free sheet and the vortex core. For

low to moderate angles of attack ( a < 20° ), the starting solution is

taken to be the initial shape of the 20-degree angle of attack solution.

Comparison with available data indicates that: (1) the present

method is generally accurate in predicting the lift and induced drag coeff-

icients but the predicted pitching moment is too positive; (2) the

spanwise lifting pressure distributions estimated by the one vortex core

solution of the present method are significantly better than the results

of Mehrotra's method relative to the pressure peak values for the flat

delta; (3) the two vortex-core system applied to the double delta and

strake-wing produces overall aerodynamic characteristics which have good

agreement with data except for the pitching moment; (4) the computer

time for the present method is about two thirds of that of Mehrotra's

method for a delta wing and one quarter of that of FVS method for a

double delta wing configuration.

In view of the improvements embodied in the present method and

possible further refinement, it would be of interest to:
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(1) model the fuselage portion as a potential flow region, with

the assumption of attached flow in the fuselage region and a

very small thrust coefficient being assumed in that region;

(2) examine the fuselage effect on wing vortex flow;

(3) examine the canard effect on wing vortex flow;

(4) compare the chordwise pressure distribution with available

data to improve the pitching moment computation.
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4

length, can be written as:

(qAx) °' -2 v (A.4)

Appendix A

An Improved Lifting Pressure Expression

From reference 18, it is understood that the total lifting pressure, for

the wing with leading-edge vortex element system, is contributed by wing

bound elements, wing streamwise vortices, leading-edge bound elements and

the streamwise vortices of the leading-edge vortex element system. Hence,

the total lifting pressure at the i th bound element of the j th strip control

station has the following expression:

(A.1)AC	 (AC	 ) + (AC	 )

pj.i	 p	 p^,i B

where (ACp 	) T isj,i
r

the lifting pressu

A.1 Derivation of

From Fig. Al,

the lifting pressure due to streamwise vortices; (AC 	 )B
pj ,i

re due to bound olements.

(AC	 )pj'i T

it is clear that the lifting pressure due to streamwise

vortices of wing and leading-edge vortex element are calculated along the

common edge yj of two adjoined spanwise strips. First, the force acting on

the chordwise element of length Ax of the leading -edge vortex system is:

Fi 	P V2 (rj vi ) Ax	 (A.2)

where P is the fluid density, V. the free stream velocity, r  the vortex

strength of the j th leading-edge vortex element, and v i the sidewash at

point i. Thus, the force acting at the i th point on the common edge per

unit dynamic pressure and length is:

(qF ) • 2 
r j `^ii	 (A.3)

where q is the dynamic pressure. Similarly, the force acting at the same

point due to the right leg of the j th strip, per unit dynamic pressure and

i
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where y is the wing bound vortex density. x  the leading-edge x-coordinate of

I

the trailing leg under consideration. Using the transformation.
c

x=x R +2 (1 -Cos 0)

the equation (it.4) can be reduced to the fo•.m:

(FR 	 -v i cj I a  ySin 0 d0qAx
0

nc v

I

i-1
^- N	 YkSin6k + ^yiSinOil

 .	 •I

(A.5)

(A.6)

where c  is the local chord length of the common edge at yj , N the number of

bound elementsin chordwise direction and 0 k •	
ZN 

l n . The integral has

teen reduced to a finite sum through the conventional trapezoidal rule.

For the left leg of the (j+l) th strip:

A

we vi is-1

q^x)	— N — [ L yk Sin 	0k + y i Sin 0 i,	 (A.7)
i	 k•1

th
Therefore, the force per unit dynamic pressure and per unit length at the i

point along the j th common edge is:

( FT

qAx)	(gAx)i + (gAx ) i + (gAx)i
i

(A. 8)

Thus, the lifting pressure at i th point along the j th common edge other than

the last one has the following expression:

F

(ACp
,i T
V . 2 (FT ) / (y

i	
j+2 - Y j )

j 

(A.9)

When the lifting pressure is calculated at the last common edge in the span-

wise direction, the equation has the following form:

F
(ACp	 )' 	 (qT / (Y j+1 - y j )	 (A.10)

j ,i	 i

where Yj+2' Yj+l and y  are the y-location of common edges. Note that

equations (A.9) and (A.10) are evaluated at all endpoints of wing bound

elements, i.e. along the common edge. Surface spline interpolation (ref. 32)

is performed to obtain the lifting pressure at the control station of each
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vortex strip. Therefore, (AC	 ) , the lifting pressure due to streamwise
pj,i T

vortices at the i th bound element of the 
jth 

strip control station is obtained.

A.2 Derivation of (ACp	)j, i s
From Fig. A2, the normal force per unit length acting at the i th bound

element of the 
jth 

strip is given by:

F$ 	- p V2 (u i Yy - v i Yx) AS

M p V2 (u i Y 1 Cos ^i - v i Yi Sin 4 1 ) Ayj/Cos

- 2 q (u i - vi Tan ^ i ) Yi Ayj

where,

Y i is the bound vortex density,

u  and vi are the x and y components of the induced velocities,

^ i is the sweep angle of the bound element,

Ay  is the width of the j th strip,

As  is the length of bound element,

Yx and 
y  

are the streamwise and spanwise components of the bound vortex

density.

Thus, the lifting pressure due to the i th bound element of the j th strip

is:

FB

(ACpj,i) 8 	
- j i . 2(ui - v i Tan ^ i) Y i 	(A. 11)

For a cambered wing without dihedral, additional lifting pressure will

be generated from the interaction of a free stream component with the stream-

wise vortex density 
y  

(ref. 26), as shown in Fig. A -1. Adding this component

of (-2 
y  

Sin a Sin ^ y ) to the lifting pressure due to the wing bound element,

equation (A.11) is modified to:

F
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(Acp
j • i 8	 J

)	 - 2[(ui - (vi Cos my + Sin a Sin my ) Tan *Y] Y 	 (A. 12)

where my may be defined as the local dihedral angle, 	 Tan-1(3zc /8y), and

may be different everywhere on a cambered wine. The correction term in

equation (A.12) is applied only to the wing bound element and leading-edge

bound element so that the local dihedral effect are included.

At positive a, normally the wing bound elements produce positive lift-

ing pressure near the leading edge; while the leading-edge bound elements

produce negative lifting pressure. Thus, the leading-edge Kutta condition

can be satisfied when the net lifting pressure is zero at the leading-

edge. In order to substract the lifting pressure induced by the leading-

edge bound element from that produced by the wing bounded vortex elements,

the following prodecures will be used:

(1) Extrapolate lifting pressure due to the wing bound elements in

each chordwise direction to obtain the lifting pressure at the

location of the leading-edge bound element EF. (See Fig. 3)

Using the Fourier series relation, the lifting pressure at any

chordwise location is determined by the following equation:

ACp Sin 6 - ao + N ai Cos to	 (A.13)

R-1

where Sin6 Is included to eliminate the known square root singularity of the

lifting pressure at the leading - and trailing-edges.

Therefore,

1	 n
so	

n J
0

1 YN
k-1

ACp Sin6 d6

&Cp Sin 6k
k

2 N
ai- n to AC  Sin6 CostO d6 = N	 AC  Sin6k Costek

k-1	 k

6k - 
(2k2N)n	 k-1, ---N

(A. 14)
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where N is the number of wing bound elements in the chord

direction. The integrals for Fourier coefficients are re

duced to finite sums through the mid-point trapezoidal ru

(2) Subtract suction pressure induced by the leading-edge bouna

elements. First, the concentrated strength of the leading-

edge vortex element is converted to the vortex density. Since,

r = t Y dx	 (A.15)

from the transformation,

X - xt + ;1 (1 - Cos 9)	 (A. 16)

it can be obtained that

r j - 
? 

ly Sin 8 de	 (A.17)

It is assumed that the concentrated vorticity due to the leading-

edge vortex system is distributed near the leading -edge only. Using

the mid-point trapezoidal rule, equation (A.17) becomes:

n c Sin el

rj '	 2	 Yj	
(A.18)

(N + 1 

or,

2(N + 1) rj
Yj a n cj Sin 9 1	 (A. 19)

where e1 	 2(N^+
 1)' Thus, the decrease of lifting pressure

at the leading-edge bound element of the j th strip is:

(AC
P )
	 -2 [uj

	 j
- (v Cos 

Y	
Y

+ Sin a Sin m ) Tan j

	 j

	

J 
Y	 (A.20)

jdecrease	 to 
r	 a

where the subscript to means that u j , vj , 0y and +yj are evaluated

at the leading-edge bound vortex element of the j th strip. Hence,

`	 a	 the actual lifting pre y-cure at the location of the leading-edge

bound element of the j th strip is:

s-
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p 	
[(AC

Pj.i 
8	

pj.i T to	 p Jdecrease

The lifting pressures defined by equation (A.1) at a discrete number of

points are Fourier-analyzed through equation (A.14) so that lifting pressures

at any locations can be calculated.
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Appendix B

I

Correction to Sidewash Calculation in Discrete Vc tex Method

In developing the free vortex filament theory for calculating aerodynamic

characteristics of wings with edge -separated vortex flow, the position of the

concentrated vortex core is adjusted in the direction of decreasing Kutta-

Joukowsky force. The magnitude of the force, and hence the new position of the

vortex core, depends on the calculated induced velocity components on the core.

It is well known that the induced sidewash cannot be accurately calculated by

the discrete vortex approximation at points close to the vortex sheet. There-

fore, the vortex core location and the wing aerodynamic characteristics will

not be accurately evaluated. A method to improve the accuracy of calculating

sidewash by discrete vortex approximation will be detailed in the following,

paragraphs.

B.1 A Test Case

Assume a vortex distribution with constant density (w a w t) exist in a

rectangular region, as shown in Fig. B1. The induced velocity vector at any

point in space with position vector 1, is then given by:

2	 (^ - ^) X w
^(I) - " 1	 1 

I
d a

Rs

82 b/2a w 0- z)i - (n - Y)k	
d do	 (B. 1)4n o o [(& - x) 2 + 02 (n - Y) + a 2 	 2)213/2

where

S2 ^1-M2

Ra	 (^ - x)2 + 82 (n - Y)2 + 
S2 (^ _ z)2

1 -I- (-x)T+(n-Y)T +(C -z)2

Since the vortex density w is assumed to be constant over the entire region,

equation (B.1) can be integrated (ref. 33) to give a closed-form expression

for the sidewash V as:
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V w8 2

	

	-1	 (r - Y) (a - x)
Tan

(C-21^(a-x) +B2 (b,_ Y) +8 (C	 2)

- Tan-1	 a - x

IC - zI [(a - x) + 
02 y 2 + 82 (C - Z)

(I - Y) (x)
+ Tan

I C-21[x +B (1—y) +S (C	 Z)'

- Tan 1	 (-x) (Y)

1 C - 2 11 x + 02 y2 + 62 (C - Z) 2^	 (B.2)

f
Equation (B.2) will be used to check the accuracy of approximate methods of cal-

culating the integrals in equation (B.1).

B.2 Approximate Methods

The chordwise integration in equation (B.1) is performed exactly so that

the sidewash component becomes:

v	 z 
g 2 	f b/2	 w(n) d o	 a- x

'r 	 o	 (n - Y) 2 + (C - z) 2 	
C
(a - x) 2 + 82 (n - Y)2

+	 x	 (R.3)

+ a2 ({ - x)2	 Ix2 + 8 2 (n - Y) 2 + 02 (C - Z)2

In conventional discretized approximation, equation (B.3) is reduced to:

v	 (C - z) 92 E	
wk An 	 a - x

4n	 k-1 (nk - y) 2 + (C - z)	 [(a - x) + 82 (n k - y)

+2	 ^2	 2	 2	 2	 2	 _	 2 4,	 (B.4)

The results in equation (B.4) are equivalent to applying mid-point t rapezoidal

rule to evaluating the spanwise integral in equation (B.3). However, when

(C - z) is small, the integrald in equation (B.3) contains a second-order sing-

ularity at n - y, so that equation (B.4) is expected to be inaccurate. To

improve equation (B.4) and yet keep the method as simple as possible. the

following consideration is applied.
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For convenience, let

f(n)s	
a - x

T(a -x)' +S2
 (n-Y) 2

+52
 (C-Z)2^

+ —	 x	 (B.5)
Ix + B (n - Y) 2 + B2 (C - Z)

if n
i
 < Y < ni+t' equation (B.3) can be rewritten as:

n

v -	
- z s2 C( ^ni+^ i+1

+
 !b/2) w (n) f(n)	

_	
22 do

l
l	 (8.6)

Or	 L	 i	 n	 (n Y) 

2 

+ (C	 z)	 Ji+1

The first and the last integrals can be reduced to finite sums as usual:

v ,^	 - z) S
2 i£1

[

wk f ( nk) dnk + 
4 

wi f (ni ) Ani

24n k.i (n	 _
N Y ) 2 + (C - Z) 2 	 (n	 - 

Y)2 + (C _ Z)
i

wi+1 f (ni+1) ^ni+1	 N	 wk f (nk) ink

+^	
+ E	 2+L1 (8.7)

2
("i+1 - Y) + (C - z)

2 kk-1-1-1 ( nk - Y) 
2 

+ (C - Z)

where

E fn 	 W f- W-do

ni 	 (n - y)2 + (C _ Z)2

fni+l w (n) f (n) — w(Y) f (Y) do + 
w (Y) f (Y) ni+l	 do

ni	 (n - Y) 2 + (C - Z)2	 41 
(n - Y) 2 + (C - Z.

w(ni) f (ni ) - w (Y) f (Y)otj + 
4 w(ni+l) f 

(ni+l) - w (Y) f (Y)An

( ni - y) 2 + (C - 
Z) 2 	 1	

(ni+i - Y)2 + (C - z)2	
i+l

1

IT

	 n	 - y 	 n -Y
+ w t- z i	 ani ;

+l 
z - Tani 

4- Z
(B.8)

In equation (B.8), the first integral was evaluated by conventional trapezoidal

rule which is probably not accurate in this case. However, this is necessary

to keep the method simple so that it is easily extendable to more general

applications. A correction factor may be applied, as will be indicated later

(see equation (B.10)).
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Substituting equation (B.8) into equation (M) re.jults in:

v 9 - z 82 E wk f- (nk) dnk -

	

W(Y) -f(Y) An, -

4n	 Lk-1 (n	

k)

	

Y) 2 + (G	 z) 2	(ni	 Y) 2	(G	
z)2

W (Y) f (Y) dni+1	 w	
f82

_	 + ._.
(n	 y)2+( C -Z)2 	 (f)
i+1

-1 ni+1 y	 -1 ni y
Tan 74-

m-
- z -Tan	 {- z

The first tens in equation (B.9) represents exactly what would be given by

(B.9)

the conventional discretized approximation (see equation (B.4)). Therefore,

the remaining terms represent a correction C:

C _ G ( 4- 	 z B2 ) )( w(
y) f (Y) an 	 + w(Y) f(Y) Ani+i

2
	 1 

(n - Y)2 + (^ - z)2 	 (n	 - Y)2 + (4 - z)2
i	 i+1

^	
2	

" '+'
 -Y	 n - y

+	

_

; - z ( 
(^) 

4f (y) s )IT.- '  ' +- z - Tan-1 ^ i- z	 (B.10)

where G is a correction factor menticned above and is taken to be 1.1 in the

following numerical study.

B.3 General. Applications

To apply equation (B.10) to general situations involving such as leading-

edge vortex sheet, trailing-vortex mutual interaction, etc., all geometric

quantities involved in equation (B.10) should be evaluated based on local

panel coordinate system. To illustrate this, consider two vortex segments

21 and 34 in Fig. B2 and "P" is a point on a plane normal to two diagonal
t
'	 vectors 6 and I2) and is obtained by projecting the control point Q along

w	 -►
F	 the normal vector. The vectors Il and T2 can be calculated as:

1 - (x3 - xl)	 + (y3 - yl	 + (z 3 - z l) k	 (B.11)

2 - 
(x4 - x2 ) 1 4, (Y4 - Y 2 ) ]

t  
+ ( z 4 - z2) k	 (B.12)
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It follows that a normal vector N may be defined as:

T	 I	 k
N^II x12 ^	 x3-x1	

Y3-yl	
z3-z1

x4 -x2 	Y4-,.	 z4-z2

1 [(Y 3 - Yl )(z4 - z 2 ) - ( z 3 - zl )(Y4 - Y21

+	 [( z 3 - a 1 )(x4 - x2 ) - 
(x3 - x

l )( z4 - z2)]

+ k [(x3 - x1 ) (Y4 - Y2 ) - (Y 3 - Yl ) (x4 - x2)]

N  I + N  I + NZ k	 (B.13)

A unit vector associated with ^ can be defined as:
-►

n - II	 (B.14)

To determine the coordinate of "P", the distance PQ is needed. HowevEr,

PQ is just the projection of vector 2Q onto the normal vector n

P-Q I • n

(x - x 2 ) nx + (Y - y 2 ) n  + (z - z 2) nz 	(B.15)

It follows that the coordinates of point P are:

xp M (x - x2)nx

yp . (y - Y2)nY

z p M (z - z 2 )nz (B.16)

fo find the distances "x" and "a - x" in equation (B.10) (through f(y)),

the unit vectors u21 and u34 
are needed:

(x1 - x2 ) 1 + (yl - Y2 )	 + (zl - z2)u

21	
INN - x2 ) 2 + (yl - y2 ) 2 + (z1 - z2)2]^

(B.17)

-► 	 (x4- x3)1 +(y4- Y3)^+(z4-z3)k
u34

. (8.18)

[(x4 - x3 )	 + (Y4 - Y3 )	 + (z4 - z3)	 1

Then. the "x" distance in equation (B.10) can be replaced by:

xR w ^ ('2p * u21 + 13p . u34)
(B. 19)
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where

2p	 (xp

S3p (xp

On the other hand, th,

xi	 (lip
where

x2) I + (Yp - y2 )	 + (zp - z 2 ) k	 (B.20)

x3) + (Yp - y3 )	 + (zp - z 3) k	 (B.21)

M it - x" distance in equation (B.10) can be replaced by:

4.
u21 + 3'

4p • u34 )	 (B.22)

Slp - (xl - x p ) I + (yl - y p ) 	+ (zl - z p ) k	 (B.23)

14p - (x4 - xp )	 + (y4 - yp )	 + (z4 - z p ) k	 (B.24)

To determine "y - n i " and "n i+l - 
y" in equation (B.10), cross products

ofS^7p with u21 and S3p with u34 are needed. Hence, "y - n i" will be replaced

by:

YR - 1 12p x u211	
(B.25)

Similarly, "ni+1 - y" will be replaced by:

yR . I13p x''341	
(B.26)

Finally, % - z" in equation (B.10) must be determined. It is simply

replaced by -P'Q in equation (B.16):

^ -y--r(xp-x)2+ (yp -y) 2 + (zp -z) 2 1	 (B.27)

B.4 Numerical Results

The locations of control points chosen for illustration are indicated

in Fig. B3. The results are compared in Figs. B4 through B7 for M-0. Except

for the case where the control point is directly under one of the discrete

vortices ( i.e. point B), all results with the derived correction terms "C"

in equation (B.10) appear to be good. In applications to free vortr_..-filament

program, the control points on the concentrated vortex core are chosen to be

nearly at the middle of vortex strips formed by the leading -edge free vortex

filaments.
i
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Appendix C

Determining Initial Core Location by Vector Analysis

t

After exercising Mehrotra's code (ref. 18) through two iterations and

establishing the entire leading-edge vortex element system, the centroid of

the leading-edge vortex filament system is determined from equations (81) and
k

(82). Therefore, the initial configuration of leading-edge vortex filament

system and its centroid are as shown in Fig. Cl.

Based on the vector analysis of the cross product, the procedures of

finding the intersection between the leading-edge vortex filament system and

its line of centroid are discussed in the following.

Note that each leading-edge vortex filament consists of a series of

short straight segments. It is desired to find the intersection point betweeta

the leading-edge vortex element system and its line of centroid on the X-Y plane.

Thus, only x and y coordinates of each segment will be considered in the cross

product analysis. Assume that S 12 is a segment along the leading-edge vorLex

filament system and 134 is a segment along the line of centroid. Then, 112

and 934 have an intersection if the following conditions are satisfied:

(1) Resulting vectors of S3 1 x S34 and S32 x 
r34 

are in the opposite

direction.

(2) Resulting vectors of S13 x 112 and 114 x 11 , are in the opposite

direction.

For example, in Fig. C2, by using t ! -e right hand rule and cross product analysis,

112 and 
S34 have an intersection point. Similarly, .11 12134 have no inter-

sections in Fig. C3.
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Appendix: D

Corrections to Induced Velocities Due to Vortex Core

It is clear from Appendix A that the lifting pressure at the wine bound

element will not be predicted accurately, if,the computation of sidewash due

to the vortex core is not treated properly. In fact, a very large sidewash

would result whenever the vortex core is too close to the wine surface. To

improve the sidewash computation due to the vortex core, and hence, the

lifting pressure and the aerodynamic characteristics, the computed sidewash

due to the vortex core will be corrected as follows.

In reference 34 on page 592), Sir Horace Lamb showed that the circum-

ferential velocity around a circle with radius r due to a line vortex of

strength C Is:

2

vA	
2nr (1 - e r /4vt)
	

(D. 1)

Later, Kutler in reference 35 defined the approximate radius as:

rc . 4vto	(D.2)

Thus, the tangential velocity in equation (D.1) becomes:

2 r2

ve - 2nr (1 - e
-r /.c)	 (D.3)

In equr<,ion (D.1) through (D.3), r is the radial distance from the center of

the concentrated line vortex, T the circulation strength, r  the approximate

core radius, v the kinematic viscosity, and t o the initial time.

From equation (D.3), after expanding the exponential term, the tangential

rY

velocity becomias :

2 2
v 	 2nr (1 - e

-r /rc)	
2nr (rr)2

c
(D.4)
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t

r

c	 The above equation is obtained from the assumption that the ratio Or c  i•

less than one. In the present analysis, the term of 
^r 

is to be regarded as

the computed sidewash without correction, and all terms in equation (D.4) are

i	 defined as follows.
i

In Fig. D1, the vortex core segment 34 is on the right wing and 78 on	 a

the left wing . 12 is a leading-edge vector. Point 5 is the wing bound

element location where the induced velocities due to vortex core segments

X34 and 178 are to be calculated. For the right core segment 134 , the

characteristic core radius rc is defined as 3/4 of the perpendicular distance

from point 4 to line 112:
I

	

rc • 4 1114 x 112
	

.(D.5)

i	 ^ 121

The numerical factor, 3 /4, in equation (D.5) is an assumed empirical value.

The radial distance r of the wing bound element at point 5 to the vortex

core segment 134 is calculated as:

1154 x X34

34 1 
1

(D.6)

Thus, the radial distance r is the perpendicular distance from point 5 to T34.

Based on the assumption in equatiun (D.4), the computed induced side-

wash v' is to be modified only when the rat io r/rc is less than one. The

corrected induced sidewash is:

V a v' (rr) 2	 r/rc < 1.0
	

(D.7)

c

that is the location at which the induced velocity is to be computed is inside

the vortex core region.

Similarly, at the right wing bound element at point 5, the sidewash due

to the left core segment 
a78 

is calculated, based on the following r  and r:
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Figure Dl.- Geometry of " r " and " r  "
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rc " 4 
I '18 x 11191 1 	 Z	 14 x 't12)	 (D.8)

19	 12

t

r a 
It 
58x 

x-78 ( 

0 1 164 x 
-34	

(D.9)

11781	
it 

34 1

Again, the correction of the computed sidewash will be applied only to those po-

into inside the vortex core region, and the modified sidewash has the same

expression as Lhat of equation (D.7). Note that the right wing vortex core

segment 
134 and the left wing vortex core segment 178 

are geometrically

similar. Therefore, in the actual computation, r  and r due to 
178 

are

based on the right wing vortex core segment 
134 with the bound element loca-

tion switched from point S on the right wing to its image point 6 on the left

wing.
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