NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Interaction of Upstream Flow Distortions With High Mach Number Cascades

Gerald W. Englert
Lewis Research Center
Cleveland, Ohio

INTERACTION OF UPSTREAM FLOW DISTORTIONS WITH HIGH MACH NUMBER CASCADES

by Gerald W. Englert*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

NOMENCLATURE

A, a
Distortion amplitudes in x and y directions of Fig. 1

\(\xi, \eta, \zeta \)
Distortion amplitudes in \(\xi, \eta, \zeta \) directions of Fig. 1

\(a_i \)
Combination of terms defined by (22)

B
Coefficients in (58)

b
Constant in a convergence producing term of \(\xi^2 \)

b_{1j}
Coefficients in description of subsonic vortical flow in (19)

c
Chord

d
Mean circumferential distance between blades, Fig. 1

c_{1}, c_{2}
Combination of terms defined by (48) and (68) respectively

f
Arbitrary function

h
Blade height

I
Integrand of (54)

J, K
Unit orthogonal vectors in upstream distortion coordinate system

I
(-1)^{1/2}

K_{U}, K_{D}
Branch points in a space

K_{mn}
Combination of terms defined by (23)

K_{U}, K_{D}
Combination of terms defined by (24)

K_{mn}
Wave numbers = \(\frac{M_{U}}{\gamma c} \) and \(\frac{M_{D}}{\gamma c} \) respectively

L
Spanwise wave number = \(\omega / h \)

L
Mean circumferential distance along blade row

L
Lift

L
Mach number

N
Integral number of distortion transverse wave lengths in distance \(s^* \) along x

P_{U}, P_{C}
Amplitudes of \(P_{U}, P_{C} \)

P_{U}, P_{C}
Pressure perturbation non-dimensionalized by \(P_{U}/c \)

P_{U}, P_{C}
Fourier indices in (1)

Q
Combination of terms used in (10c)

Q
Combination of terms used in (30)

S
Solidity = chord/blade gap = \(\frac{1}{c} \)

S
Mean circumferential distance along \(y \) in Fig. 1, \((\sin x)/S \) as in Fig. 1

T
Time non-dimensionalized by multiplying by \(\frac{c}{u} \)

I, I
Combinations of terms defined by (33) and (56)

U, V, W
Mean velocity

U, V, W
Amplitudes of \(U, V, W \)

U, V, W
Total, vertical, and acoustic velocity perturbations non-dimensionalized by \(\frac{c}{u} \)

x, y, z
Blade coordinates (Fig. 1) non-dimensionalized by blade chord

x, y
\(x + s^* \) and \(x + s^* - 1 \) respectively

y, y, y
Orthogonal coordinates in a fixed frame upstream of cascade

a
Combination of terms defined by (69)

a
Combination of terms defined by (69)

(1 - \(\rho^2 \))^{1/2}
Respectively

\(\rho^2 \)
Respectively

\(\rho^2 \)
Respectively
 Associated with high performance axial fans and compressors, of aircraft engines are slender blades with high tip Mach numbers [1]. Such blade rows may be vulnerable to distortion of the oncoming airstream such as atmospheric gusts, wakes from upstream struts and guide vanes, and maldistributions in air inlets and ducts; all of which tend to force the blades into vibratory motions. Of concern is the influence of strong shocks occurring in blade passages. When such shocks couple to the distortion pattern they can have an oscillatory influence on the blade pressure distributions, forces, and moments. The influence of the blade row on the distortion is also of importance since it passes on to influence other components of the propulsion system.

The recent linearized theory of Goldstein, Braun, and Anamczyk [2], which analyzes unsteady flow in supersonic cascades with strong in-passage shocks, is applied to the distortion problem in the investigation reported herein. The flutter boundary conditions of [2] are however replaced with those of the three-dimensional distortion of Goldstein [3]. This disturbance profile (Fig. 1) has components parallel to, and in two directions transverse to, a mean flow velocity \(\mathbf{u} \). Relative to the cascade the mean velocity, \(\mathbf{u}_0 \), is supersonic in this study. The component of \(\mathbf{u}_0 \) parallel to the axis of the turbomachine is, however, subsonic. The Mach waves from the leading edges of the blades then extend forward of the edge of each successive blade permitting interaction between blades through the supersonic, as well as the subsonic, flow media. This is usually the case of interest in advance type fans and compressors.

The cascade (Fig. 1) is envisioned as a “unrolled annulus” which translates with a blade velocity \(\mathbf{u}_b \). Integral multiples of distortion wave length must however equal a mean circumferential distance along the face of the blade row. Spanwise flow distributions are considered at limited blade aspect ratios although centrifugal and Coriolis forces are neglected. Within the confines of linearized theory blade thickness, camber, and angle of attack make no contribution to the unsteady forces (Chap. 3 of [3]). Such time independent effects can therefore be superposed on the results of this study in which the blades take the form of flat parallel plates.

Separation of the flow into two distinct (sub- and supersonic) regions permits solution of the potential part of the flow field in each one by adaptation of the Wiener Hopf technique [2]. In the first region a supersonic flow extends from upstream infinity to a cascade which extends to downstream infinity. In the second region a subsonic flow is guided by parallel blade passages from upstream infinity, past the leading edges, and on to downstream infinity. The supersonic solution is independent of downstream influence and the subsonic solution is kept sufficiently arbitrary to satisfy shock boundary conditions. Matching of solutions at the shock interface involves inversion of a large nearly diagonal matrix. This is easily done numerically.

In the present effort the shock is assumed to be located an arbitrarily small distance inside the leading edge of the blade so that it doesn't disturb the supersonic flow on the upper surface in this region.
FORMULATION

By the splitting theorem (chap. 5 of [3]) any linearized description of an inviscid compressible fluid can be decomposed into two non-interacting motions: one of which is vertical and the other acoustic in nature. The vertical motion is solenoidal, and its substantial derivative is equal to zero. Shear layers, for example, are vertical in nature, and are an effective means of forming flow distortions. The acoustic motion, on the other hand, is irrotational and has a velocity potential which satisfies the convected wave equation.

Vertical Motion Upstream of Shock

The upstream flow distortion of interest herein is vertical. Its velocity (Fig. 1) is specified by the double Fourier series (chap. 5 of [3])

\[\vec{v} = \sum_{p,q} \left(\vec{\omega}_{pq} \cos (\omega_0 y/h) + \vec{\omega}_{pq} \sin (\omega_0 y/h) \right) \cos (\omega_0 z/h) \cos \nu e^{i \omega_0 y/L \cos \nu} \]

For each set of Fourier indices the distortion amplitudes are \(\vec{\omega}_{pq} \), \(\vec{\omega}_{pq} \), and \(\vec{\omega}_{pq} \) for motion in the three orthogonal directions \(x \), \(y \), and \(z \). As in [3] there is an integral number, \(p \), of distortion wave lengths parallel to the face of the blade row where \(L \) is a mean circumferential distance. The spanwise wave length is the hub-to-shroud distance, \(h \), divided by Fourier index \(q \). Distance and velocity are non-dimensionalized by blade chord \(c \). The vertical motion a harmonic time dependence. In this system

\[\vec{v}_U = a e^{-i \omega_0 t} \cos (k_0 z) \phi_U \]

where time has been non-dimensionalized by \(\omega_0/c \) and where

\[\phi_U = \begin{bmatrix} \phi_U(x) \\ \phi_U(y) \\ \phi_U(z) \end{bmatrix} = e^{i \omega_0 (x+y \cos \nu) \tan (k_0 z)/\rho_0} \begin{bmatrix} 1 \\ \tan (k_0 z)/\rho_0 \end{bmatrix} \]

and spanwise wave number, \(k_0 \), is equal to \(*\omega_0/h \). The exponent in (2b) sets the interblade phase angle, \(\nu \), as

\[\nu = \omega_0 (x+y \cos \nu) \tan (k_0 z)/\rho_0. \]

The \(x \) and \(y \) dependence in (2a) and (2b) together satisfy the condition that the substantial derivative, \(\phi_U/\omega_0 t \), is equal to zero. The components of the distortion amplitudes in the \(x \), \(y \), \(z \) directions are new

\[a = -\omega_{pq} \sin \nu + \omega_{pq} \cos \nu, \]
\[A = \omega_{pq} \cos \nu - \omega_{pq} \sin \nu, \]
\[C = -2i \rho_0 \omega_0/\rho L \cos \nu = -2i \rho_0 \omega_0/\rho L (\cos \nu + A \sin \nu). \]

Since final results can have superposed, only one set of Fourier components will be carried through the analysis; thus the \(p \) and \(q \) indices will normally be omitted from the flow variables.

Acoustic Motion Upstream of Shock

The total motion, \(\vec{v} = \vec{v}_U + \vec{v}_U \), will satisfy the irrotational tangency condition at the blade surface if the normal component of the acoustic (potential) motion satisfies

\[\phi_u (u) = \frac{\partial u}{\partial y} = -\lambda \cos (k_0 z) e^{i \omega_0 (x+y \cos \nu) \tan (k_0 z)/\rho_0} \]

where time has been non-dimensionalized by \(\omega_0/c \) and where

\[\phi_U = a e^{-i \omega_0 t} \cos (k_0 z) \phi_U(x,y) \]

The \(x \) and \(t \) dependence in (5a) and (6b) together satisfy the condition that the substantial derivative, \(\phi_U/\omega_0 t \), is equal to zero. The components of the distortion amplitudes in the \(x \), \(y \), \(z \) directions are new

\[a = -\omega_{pq} \sin \nu + \omega_{pq} \cos \nu, \]
\[A = \omega_{pq} \cos \nu - \omega_{pq} \sin \nu, \]
\[C = -2i \rho_0 \omega_0/\rho L \cos \nu = -2i \rho_0 \omega_0/\rho L (\cos \nu + A \sin \nu). \]

The pressure, \(p_U \), is associated with the acoustic motion, satisfies the wave equation, and can also be expressed in the form

\[p_U = -z e^{-i \omega_0 t} \cos (k_0 z) \phi_U(x,y) \]

where

\[\phi_U = \left(\frac{i \omega_0 \lambda}{i \rho_0} \right) \phi_U. \]
The procedure for solution of \(u(x, y) \) by use of the Wiener-Hopf technique is given in Appendix 1. The results for \(0 \leq y \leq s \) are

\[
\psi_n(x, y) = -i \sum_{m=-\infty}^{\infty} \left[\frac{\partial}{\partial u_n} \left(\frac{1}{\partial_0 u_n} \right) \right]_n e^{-i(k_n x - \omega_n u_n) s} + \frac{1}{2} \left[\frac{\partial}{\partial u_n} \left(\frac{1}{\partial_0 u_n} \right) \right]_n e^{-i(k_n x - \omega_n u_n) s} + \frac{1}{2} \left[\frac{\partial}{\partial u_n} \left(\frac{1}{\partial_0 u_n} \right) \right]_n e^{-i(k_n x - \omega_n u_n) s}
\]

for \(x \leq -\theta_y(s - y) \) (10a)

where

\[
\psi_n(x, y) = \sum_{n=-\infty}^{\infty} e^{i(k_n x - \omega_n u_n) s}
\]

and

\[
\psi_n(x, y) = \sum_{n=-\infty}^{\infty} e^{i(k_n x - \omega_n u_n) s}
\]

which satisfies the spanwise wall tangency condition and has a substantial derivative equal to zero. To satisfy periodicity let

\[
\hat{\omega}_d(x+ns) = e^{i\omega_d x} \hat{\Delta}(y) = e^{i\omega_d x} \hat{\Delta}(y)
\]

for blade number \(n = 0, \pm 1, \pm 2, \ldots \). The solenoidal condition will be invoked later, completing the splitting theorem requirements for \(\hat{\omega}_d \) to be vertical.

It is anticipated that a part, \(\hat{\omega}_d \), of \(\hat{\omega}_d \) can be found which is both vortical and acoustic, as in Eq. (5.12) of [3]. Combining \(\hat{\omega}_d \) with the potential flow, \(\hat{\omega}_d \), may then simplify determination of the remaining part of \(\hat{\omega}_d \). Such a procedure is used to advantage in [2]. Associated with \(\hat{\omega}_d \) is a potential \(\hat{\omega}_d \) such that \(\hat{\omega}_d = \hat{\omega}_d \), and since \(\hat{\omega}_d = 0 \) it follows that \(\hat{\omega}_d = 0 \). Since \(\hat{\omega}_d \) is vertical, \(\hat{\omega}_d \) makes no contribution to the pressure distribution. Let \(\hat{\omega}_d \) take the form

\[
\hat{\omega}_d = \cos(k_0 x) e^{-i\omega_d x} \hat{a}(y)
\]

for \(\omega_d \) to satisfy Laplace's equation, \(f \) must satisfy

\[
-(\omega_d^2 + k_0^2) f + f'' = 0.
\]

A solution of (16) which enables \(\hat{\omega}_d \) to satisfy periodicity as well as to cancel the normal component of \(\hat{\omega}_d \) at the blade surfaces is

\[
f = \cosh(y) \cosh(\hat{\omega}_d(y - ns)) - \cosh(\hat{\omega}_d(y - ns - s))
\]

where \(\hat{\omega}_d = \sqrt{\omega_d^2 + k_0^2} \). The subscripts 1, 2, 3 on \(\hat{\omega}_d \) identify the components of \(\hat{\omega}_d \) in the \(x \), \(y \), and \(z \) directions respectively.

Substitution of (12), (15), and (17) into the identify

\[
\hat{\omega}_d = (\hat{\omega}_d - \hat{\omega}_d) + \hat{\omega}_d
\]

shows that the first term \(\hat{\omega}_d - \hat{\omega}_d \) makes no contribution to the blade boundary conditions (since its \(y \) component vanishes at \(y = 0 \) and \(s \)) although it does contribute to the matching of flows at the shock boundary. With sufficient generality the strictly vertical part of (18) can thus be sufficiently described by Fourier sine and cosine series as
Acoustic Motion Downstream of Shock

The acoustic field downstream of the shock is composed of two parts. An infinite "duct" solution, to the convected wave equation, having downstream running waves accounts for shock boundary conditions. A "cascade" solution, on the other hand, gives the upstream (or reflected) waves. Each solution, as well as the vortical motion of the preceding section, individually satisfies the wall tangency condition. The sum of the two acoustic solutions must satisfy the Kutta condition. In both solutions the velocity potential, \(\Phi_d \), again takes the form

\[
\Phi_d(x,y,z) = a \cos (k_d x) e^{-iw_d t} \Phi_d(x,y)
\]

(21)

The procedure to obtain the combined potential \(\Phi = \Phi_d + \Phi_c \) is given in Appendix II. The results for \(0 < y < s \) are

\[
\Phi_c(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{e^{i\gamma_n^+} \gamma_n^{-\alpha-\beta^n} \cos \frac{n \pi y}{s}}{\pi} \sum_{m=0}^{\infty} \frac{e^{i\gamma_m^+} \gamma_m^{-\alpha-\beta^m} \cos \frac{m \pi y}{s}}{\pi}
\]

for \(0 < x < 1 - s^* \)

(22a)

\[
x \left\{ \frac{e^{i\gamma_n^+} \gamma_n^{-\alpha-\beta^n} \cos \frac{n \pi (y-s)}{s}}{\pi} \frac{e^{i\gamma_m^+} \gamma_m^{-\alpha-\beta^m} \cos \frac{m \pi (y-s)}{s}}{\pi} \right\}
\]

\[
\sum_{m=0}^{\infty} \frac{1}{n!} \frac{e^{i\gamma_n^+} \gamma_n^{-\alpha-\beta^n} \cos \frac{n \pi y}{s}}{\pi} \sum_{m=0}^{\infty} \frac{e^{i\gamma_m^+} \gamma_m^{-\alpha-\beta^m} \cos \frac{m \pi y}{s}}{\pi}
\]

for \(0 < x < 1 - s^* \)

(22b)

\[
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{e^{i\gamma_n^+} \gamma_n^{-\alpha-\beta^n} \cos \frac{n \pi y}{s}}{\pi} \frac{e^{i\gamma_m^+} \gamma_m^{-\alpha-\beta^m} \cos \frac{m \pi y}{s}}{\pi}
\]

for \(1 - s^* < x < 1 \)
\[\phi_c(x, y) = \frac{1}{2} \sum_{n=0}^{\infty} e_n \left[e_{lm-n} - e^{-im\pi} \right] \int_{c^+} e^r \left(\gamma_{\theta} - \gamma_s \right) e^{-im\pi y} \left[\cosh \left(\frac{\gamma_{\theta}(y - s)}{\gamma_s} \right) - \cosh \left(\frac{\gamma_s y}{\gamma_s} \right) \right] e^{-im\pi x} \]

\[= \sum_{n=-\infty}^{\infty} \cos \left[\frac{\gamma_s}{\gamma_{\theta}} (n + 1) \right] \left(\gamma_{\theta} - \gamma_s \right) e^{-im\pi y} \left[\cosh \left(\frac{\gamma_{\theta}(y - s)}{\gamma_s} \right) - \cosh \left(\frac{\gamma_s y}{\gamma_s} \right) \right] e^{-im\pi x} \]

for \(1 < x \). (22c)

where

\[k_{m,n} = \frac{e_n}{2 (1 + \epsilon_r)} \left[e_{lm-n} - e^{-im\pi} \right] \left[e_{lm+n} - e^{-im\pi} \right] \]

\[x_m^{-1}(c) = \frac{-e_n}{2 \epsilon_r} \left[e_{lm-n} - e^{-im\pi} \right] \left[e_{lm+n} - e^{-im\pi} \right] \]

\[\nabla \mathbf{u} = \nabla \mathbf{w} \times \mathbf{n}, \quad \mathbf{w} = \mathbf{n} \times \mathbf{u} \]

\[\psi = \sqrt{\psi^2 + \epsilon^2}, \quad \delta = \text{the Kronecker delta.} \]

The mean flow satisfies the Rankine-Hugoniot relations. Shock curvature and displacement are treated as perturbations as in [8]. The downstream vorticity, longitudinal velocity, and pressure are related to the upstream vorticity, longitudinal velocity, and pressure by the following three shock relations.

Relations Across Shock

The mean flow satisfies the Rankine-Hugoniot relations. Shock curvature and displacement are treated as perturbations as in [8]. The downstream vorticity, longitudinal velocity, and pressure are related to the upstream vorticity, longitudinal velocity, and pressure by the following three equations:

\[u_1^{(c)} = \frac{\epsilon_r^2}{2 \epsilon_r^2} \mathbf{u}_c + u_1^{(u)} + \frac{1}{2} \left[\frac{\epsilon_r^2}{\epsilon_r^2} - \frac{\epsilon_r^2}{\epsilon_r^2} \right] u_1^{(u)} \]

\[\frac{\partial}{\partial x} \left(\nabla \mathbf{u} \times \mathbf{n} \right) = \delta_{c} \left(\nabla \mathbf{v} \times \mathbf{n} \right) \]

\[\frac{\partial}{\partial x} \left(\nabla \mathbf{u} \times \mathbf{n} \right) = \delta_{c} \left(\nabla \mathbf{v} \times \mathbf{n} \right) \]

These equations differ from those of [2] by addition of an upstream vorticity and a spanwise distribution of pressure and velocity.

Matching of Solutions at Shock Boundary

Equation (26) can be easily combined with (27) to yield

\[\frac{\partial}{\partial x} \left(\nabla \mathbf{u} \times \mathbf{n} \right) = \delta_{c} \left(\nabla \mathbf{v} \times \mathbf{n} \right) \]

since the \(z \) dependence enters only through \(\cos (\pi z) \). Applying (26) with (2), (19), and solenoidal condition (28), and utilizing orthogonality relations between sine terms, permits determination of the downstream vorticity, longitudinal velocity, and pressure.

\[\frac{\partial}{\partial x} \left(\nabla \mathbf{u} \times \mathbf{n} \right) = \delta_{c} \left(\nabla \mathbf{v} \times \mathbf{n} \right) \]

since the \(z \) dependence enters only through \(\cos (\pi z) \). Combining (28) with (2), (19), and solenoidal condition (26), and utilizing orthogonality relations between sine terms, permits determination of \(b_{1,n} \) and \(b_{2,n} \) in terms of \(b_{1,n} \) and known quantities. Therefore, the downstream vorticity, longitudinal velocity, and pressure can now be expressed as
\[\vec{v}_c(x,y,z) = a \cos \left(k \frac{x}{d} \right) e^{i(\omega_t t + \omega_0 x)} \]

\[- \sum_{m=1}^{\infty} \left[\frac{1 + (k_s/m)^2}{m \omega_s/m} b_{z,m} e^{2 \pi s \left(k - i \omega_0 \right) m \exp(1) \cos \left(\frac{m \pi}{s} \right)} \right] \]

\[x \sum_{m=1}^{\infty} b_{z,m} \sin(\pi m y/s) \]

\[-k_0 \tan \left(k_0 z \right) \sum_{m=1}^{\infty} \left[\frac{sb_{z,m}}{m \omega_c \exp(1) \cos \left(\frac{m \pi}{s} \right)} \right] \]

(29)

where

\[R_m = \omega_c e^{i \omega_0 t} \]

\[\left[1 + i \frac{\omega_c}{\omega_c - O} \cot(\omega_c t) \right] \frac{1}{m^2 - \left(\omega_c \cot(\omega_c t) \right)^2} \]

\[= 0 \quad \text{for} \quad m > 1 \]

\[= \frac{1}{s} \quad \text{for} \quad m = 0. \quad (30) \]

Use of (2), (7), (9), (10b), (21), (22a), and (29) for velocities and pressures in shock relations (25) and (26) and utilizing (377), (378), (488), (489) and (592) of [9] gives the following equation for \(R_m \) in implicit form.

\[a_n = \left(\frac{1}{s} \right) \frac{2 \omega_c}{s} \cot(\omega_c t) \]

\[t_1 = \frac{2 \omega_c}{s} \omega_c \cot(\omega_c t) \]

\[t_2 = \frac{2 \omega_c}{s} \omega_c \cot(\omega_c t) \]

(33)

The left side of (31) reduces to (33) of [2] as \(\eta q = 0 \). The right side of (31) however replaces the flutter terms of [2] for this distortion problem. Solution of (31) for \(B_n \) is by inversion of an infinite matrix. The off-diagonal elements of this matrix came from the second term of (31) which represents acoustic waves reflected from the back end of the cascade. These are rapidly decaying waves for \((m^2 \beta_s) / s^2 + (b_k/e) > k_0^2 M_2^2 e^t / \beta_s \) so that, in practice, (31) can be approximated by a nearly diagonal matrix. This can be further truncated to a reasonably small number of terms. Numerical results suggest that as few as ten terms along the diagonal are, at times, give satisfactory results at values of reduced frequency less than one. Once the \(B_n \), are known the coefficient \(b_{z,m} \) in the Fourier series of (29) can be obtained from shock relation (26) as

\[B_{n,m} = \frac{n}{s} \omega_c \sum_{m=0}^{\infty} B_{m,m,n} \]

\[\left\{ \frac{1}{s} \left(\frac{n^2 \beta_s}{s^2} + \frac{b_k}{e} \right) \left(\frac{n^2 \beta_s}{s^2} + \frac{b_k}{e} \right) \right\} \]

\[\left(\frac{n+1}{s} \right) \left(\frac{n^2 \beta_s}{s^2} + \frac{b_k}{e} \right) \left(\frac{n^2 \beta_s}{s^2} + \frac{b_k}{e} \right) \]

\[\left(\frac{n+1}{s} \right) \left(\frac{n^2 \beta_s}{s^2} + \frac{b_k}{e} \right) \]

(35)

Use of (35) in (29) determines the subsonic vertical velocity for \(0 < \gamma < 1 \) and \(\gamma > 0 \) whereas use of partial derivatives of (22) in (21) determines the corresponding acoustic velocity components. Use
of (10) in (8) along with (2) and (4) gives the acoustic and vortical velocities for \(0 < y < s \) and \(x = 0 \). Pressure can be obtained by use of (9) and its subsonic counterpart \(p = \frac{\gamma}{\gamma - 1} \frac{1}{4} \rho U^2 \cos (kz) \) \(\left(w_0 - \frac{\gamma}{\gamma - 1} \rho U\right) \). Extension of equations to other blades and channels is simply by use of the periodicity condition \(\phi(x + \pi) = e^{i\pi} \phi(x) \) where \(\phi \) can be any of the physical variables \(\rho, U, P, q, \) and \(\phi \), along with distortion parameters \(L/p, q, \) and either amplitudes \(a \) and \(A \) or \(\phi \) and \(\phi \). Certain combinations of these parameters give a very orderly upstream distortion (vortical) motion which in turn, through the blade surface boundary condition, results in an especially clean acoustic motion upstream of the shock. Numerical results based on such flows are relatively easy to interpret and should aid in the analysis of more general cases which are within the capability of the theory.

As in Fig. 2 let \(v = 0 \) and \(-v = \chi \) wave angle given by \(\sin^{-1} \left(\frac{1}{p} \right) \). Then \(-\cot v = \phi = \frac{s}{s'} \). Let one transverse wave length fit the distance \(\phi s \) along \(x \) and let \(s' = N_0 \phi s \) for integer \(N \). Then \(\phi_1 = \frac{1}{N} \) and \(\phi_0 = \left(1 + \frac{1}{N} \right) \). This wave pattern has a negative phase along \(\phi \), which offsets the phase of the cycle along \(\phi \), leaving \(\phi = 2\pi \). Using (3) along with \(d = 1/5 = s' \left(1 + \cot \phi \right) \), it follows that \(\omega = 2\pi \left(N - 1/2 \right) \left(1 + \cot (\phi) \frac{1}{N} \right) (1 - \cot \phi) \). The lowest \(N \) which clearly permits a subsonic mean axial velocity has a value of 2. For \(N = 2 \), \(\phi = \frac{1}{N} \), \(\phi_0 = \frac{3}{2} \), and \(\phi_0 \) will be used as the basic reference condition for the numerical results herein.

Influence of Distortion on Blades Pressure Distribution

Pressure distribution along the upper and lower surfaces of the blades is given on Fig. 2(a) at the basic ordered condition. The shock, as discussed in the previous section, is a single airfoil solution [10]. Consistent with the reference cascade conditions on Fig. 2, the input to the airfoil theory is a transverse distortion having a wave length equal to \(s' \). The resulting pressure distribution is normalized to match that of the cascade solution at the leading edge. The short wave length (high frequency) of the Bessel function solution of the airfoil is characteristic of the cascade solution also.2

2Use of a reduced frequency of 20 thus permits comparison of two mathematical solutions to the linearized convected wave equation (6). It is possible that (6) may not offer a suitably accurate description of the motion, however, at such a high frequency. See, for example, chapter 1 of [11].

In the cascade this short wave length characteristic is carried a short distance downstream of the shock. The periodicity relation \(\phi(x + \pi) = e^{i\pi} \phi(x) \) is used in (22) to relate pressure on the lower surface of blade 1 to the upper surface of blade 0.

A second cascade solution (not shown) for a distortion with a phase angle of \(\pi/2 \) with respect to that of Fig. 2(a) obtained from \(\left[1 + \frac{1}{i s} \right] \cos \left(k \phi \right) \). This has the same wavelength characteristics and in the supersonic region agrees with single airfoil theory. Consistent with shock curvature and displacement, the pressure perturbation amplitude increased for the imaginary part, but decreased for the real part of the solution across this boundary for the reference conditions of Fig. 3(a).

The solution for Fig. 3(b) is based on the same set of parameters (for the ordered vertical motion) as Fig. 3(a) except \(\phi \), and therefore \(\phi_0 \) by (3), are reduced from the basic reference conditions by a factor of 1/8. Single airfoil theory is no longer close to these results and has been omitted. Trends are quite smooth and, of course, much more gradual than those of Fig. 3(b). At very low interblade phase angles, \(\phi \), the pressure profile (not shown) across the channel is quite uniform and the pressure amplitude in back of the shock on the upper surface approaches that on the lower surface near the leading edge.

Influence of Cascade on Distortion Profile

Figure 4 uses the same basic reference conditions as in Fig. 3(a). Envision Fig. 4 as a view of the \(x-y \) plane of a blade channel. Located in this plane by use of the solid symbols are the leading and trailing edges of blades 0 and 1 and two reference Mach waves. Also located at various \(x \) stations are \(y \) distributions of the real part of the solution for the three transverse components of velocity in \(u_0 = u_0 + u_0 \). Far upstream of the cascade the amplitude of the acoustic motion (given by the short dashed line) goes to zero, however the vortical motion (long dashed line) is transported unimminished as if frozen in the flow. In the vicinity of the cascade the acoustic motion with its characteristic short wave length, due to diffraction about the leading edges, becomes quite prominent. Once inside the leading edge Mach wave of the nearest blade (blade 0) the transverse component of the acoustic velocity, \(w_0 \), is noticeably large in the vicinity of the blade surface. The amplitude of the total motion, \(w_0 \), away from the wall is then mainly comprised of the relatively long wave length vortical motion, \(w_0 \). At \(x \) locations between the trailing edges of blades 0 and 1 the amplitude of the acoustic motion again becomes quite prominent, where diffraction in again encountered to satisfy the Kutte condition. Eventually \(w_0 \) decreases at large \(x \) to the asymptotic value at the last station, \(x = \infty \). The amplitude of the vortical motion continues undiminished for downstream of the cascade and is not plotted at the last station.

The \(y \) distributions of \(w_0 \) has much the same nature as \(w_0 \). Although \(A \) and therefore \(\phi \), are zero, a longitudinal component of vorticity velocity, \(w_0 \), arises at the shock. Beyond this station both acoustic and vortical motions have trends with \(x \) much like those of \(w_0 \) and \(w_0 \). Recall that part of the vortical motion, \(\phi \), has been included in \(\phi \) thus simplifying the wall boundary condition.
The y distribution of $w(y)$ also follows a pattern somewhat similar to $w(y)$. The influence of the shock on $v(y)$ is small but quite pronounced on $w(y)$ for the particular set of conditions of Fig. 1.

The z distributions of vortical and acoustic motions are not plotted since, by (2), (8), (19) and (39), they simply vary as $\cos (k_y y)$ for the transverse components of velocity and $\sin (k_y y)$ for the spanwise components in both subsonic and supersonic regions.

Influence of Distortion and Cascade Parameters on Lift and Moment

Lift, \mathcal{L}, and moment, \mathcal{M}, were obtained by integration of the pressure distributions over the blade surfaces. Moments were taken about the center of the blade located at $x = 1/2 - s^2$. Plots of the imaginary parts of lift and moment versus the corresponding real parts (chap. 9 of [12]) can be used to indicate the influence of various cascade and distortion parameters in stability studies. The contribution of shock movement to these terms can be obtained from plots as on Fig. 5(a). As in [2], the shocks are assumed to be attached to the lower surfaces of the blades (Fig. 1) arbitrarily near their leading edges. The allowed displacements, x_g, of the shock footprints on the upper blade surface, however, causes a lift \mathcal{L}_S, with amplitude equal to $(\rho_0 - \rho_u) x_g$ within the confines of linearized theory. Here ρ_0 and ρ_u are the steady pressures before and after the shock. This effect is included in the total lift and moment of Figs. 5(b) and (c). These figures are arbitrarily plotted at an interblade angle of 1/8 that of the reference set of conditions as in Fig. 3(b).

The variables v and g enter the equations for velocity potential (therefore for lift and moment) only as v/γ and thus their influence can be expressed by spanwise wave number $k_y = v/\gamma(h)$. This wave number should be most influential on amplitudes Φ_u and Φ_v when it is greater than k_u and k_p, respectively. This trend is illustrated in Fig. 5 by the large distance between tick marks on these curves at high k_y. Increase of upstream distortion amplitude ratio A_i, tends to increase the magnitude of \mathcal{L}_S and \mathcal{M}_S at large k_y while preserving the spiral like \mathcal{L}_S dependence. Cusp and/or loops characterize both the \mathcal{L}_S and \mathcal{M}_S curves. The magnitude of \mathcal{L}_S is a significant part of \mathcal{L}.

CONCLUDING REMARKS

The influence of the third dimension on this analysis is primarily through the azimuthal wave number k_y. As k_y approaches zero the final equations and their solution reduce to much the same form as those of the flutter analysis of [2]. The main differences are in the boundary related terms where blade oscillation expressions of [2] are replaced by flow distortion expressions of the present study.

Selection of a combination of cascade and distortion parameters for a very orderly initial vortical motion gives in turn, through use of the blade surface boundary condition, an especially orderly acoustic motion as well. Numerical results based on such flows are relatively easy to interpret and aid in the analysis of more general cases which are within the capability of the theory. At these special conditions the supersonic region of the cascade is quite evident in the blade pressure distribution. Influence of the reflected, or forward running, waves is mostly confined to within a relatively small distance of the trailing edges on the upper surfaces but is apparent over the distance $1 - 2s < x < 1 - s^2$ on the lower surfaces.

The strong in-passage shock has a large effect on lift and moment. Numerical results show large influence of interblade phase angle and therefore the influence of the shock on lift and moment, the results indicates that any one of these distortion parameters could have considerable influence on the forced vibration effect in a stability analysis.

APPENDIX I

SOLUTION FOR ACOUSTIC MOTION UPSTREAM OF SHOCK

Substitution of (7) into (6) gives

$$\left(-\frac{\gamma_x}{\gamma_y} \right)^2 + \left(\frac{\gamma_x}{\gamma_y} \right)^2 + \left(\gamma_x \right)^2 \left(\gamma_y \right)^2 \left(\frac{\gamma_x}{\gamma_y} \right)^2 = 0$$

(36)

A solution by separation of variables is

$$\exp \{ -[a - (\text{M} - \text{M}_u)]x \} \gamma_x$$

and integrating over admissible values of α is also a solution of the linear homogeneous Eq. (10), where γ_x is yet to be determined.

Next, following the procedure of Lane and Friedman [4], apply this result to each of n blades using the local coordinate system $Y_n = x - n s^2$, $Y_n = y - n s$ and specify that $f_n(a)$ must satisfy the periodicity condition (5)

$$f_n(a) = \gamma_n f_n(a)$$

(37)

for $n = 0, 1, 2, \ldots$. A solution with jump conditions across the n^{th} blade in proper form is then

$$\int_{(n-1)ls}^{nls} f_n(a) e^{-i(a - M) s^2} e^{-i[(a - M) s^2 + \Phi_y Y_n]} dx$$

(38)

where $\text{sgn} y = \pm 1$ for $y \geq 0$. The branch points for y_n are set at $\pm 1i(n - 1)s^2$ where $\Phi_y = k_x + k_y s^2$ and $\gamma = e^{i(n - 1)ls}$ is a small coupling term. Note, as in [2],

$$\gamma = M_x n s^2 \gamma + 1m k_n s^2$$

then along the integration contour of (38) $\gamma = (a - M) s^2 = 0, 1m s^2 > 0$, and $|\exp i[(a - M) s^2 + \Phi_y Y_n]| < 1$. Summing the
The contribution of each blade to the potential yields a geometric series which can be expressed in closed form as

$$
\psi_u(x,y) = \sum_{n=-\infty}^{\infty} \psi_{u,n}(x,y)
$$

for

$$
\int_{-1}^{1} e^{-i a k_x u} u e^{-i(a-M k_x u)x} dx = \frac{1}{2\pi} \int_{-1}^{1} e^{-i a k_x u} e^{-i(a-M k_x u)x} dx
$$

where

$$
\alpha_k \approx \frac{1}{2\pi} \left(\frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} + \frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} \right)
$$

for $0 \leq y \leq 1$.

Equations (42) and (44) are in the form of the upwash and continuity expressions of Ref. [4]. They differ from those of [2] only by the presence of $\frac{E_\theta}{E_\theta}$ in γ and by the distortion pattern, e, placing the flutter motion on the right side of (42). The integrals in both of these equations are in the form of inverse Fourier transforms forming a two-part boundary value problem which can be solved for $f_0(a)$ by the Wiener-Hopf technique [6]. Utilizing unilateral Fourier transforms [7] over γ, the two equations are combined and then factored and decomposed into parts which are analytic in respective half planes as in Appendix B of [2], have a common region of analyticity between them, and vanish as $\gamma \to \infty$.

The solution is completed by use of Liouville's theorem giving

$$
f_0'(a) = \frac{1}{2\pi} \int_{-1}^{1} e^{-i a k_x u} \left(\frac{k_u}{k_u^*} - i \gamma \right) \gamma \gamma u_0
$$

Here γ_u is a damping term on the distortion to ensure convergence as $\gamma_u \to \infty$ and can be set equal to zero upstream of the shock.

The solution for $f_0(a)$ required that $\kappa_1(a)$ could be factored as $\kappa_1(a,0) = \kappa_2(a)\kappa_3(a)$ where $\kappa_2(a)$ and $\kappa_3(a)$ are analytic and non-zero in the upper ($\Im a > \kappa_1$) and lower ($\Im a < \kappa_1$) half planes respectively. The factoring procedure of Appendix C of [2] yields the results

$$
\kappa_2(a) = e^{-\frac{\gamma_u}{2}} \prod_{n=1}^{\infty} \left(1 - a/\gamma_n^* \right)
$$

and

$$
\kappa_3(a) = e^{-\frac{\gamma_u}{2}} \prod_{n=1}^{\infty} \left(1 - a/\gamma_n^* \right)
$$

The potential of the irrotational field produced upstream of the cascade must be continuous across lines $y = \pm n s$, extending forward of the leading edges of the blades. Applying this boundary condition to (38) at the zeroth blade yields

$$
\int_{-1}^{1} e^{-i a k_x u} u e^{-i(a-M k_x u)x} dx = 0 \quad \text{for} \quad x < 0.
$$

The potential of each blade to the potential yields a geometric series which can be expressed in closed form as

$$
\psi_u(x,y) = \sum_{n=-\infty}^{\infty} \psi_{u,n}(x,y)
$$

for

$$
\int_{-1}^{1} e^{-i a k_x u} u e^{-i(a-M k_x u)x} dx = \frac{1}{2\pi} \int_{-1}^{1} e^{-i a k_x u} e^{-i(a-M k_x u)x} dx
$$

where

$$
\alpha_k \approx \frac{1}{2\pi} \left(\frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} + \frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} \right)
$$

for $0 \leq y \leq 1$.

Equations (42) and (44) are in the form of the upwash and continuity expressions of Ref. [4]. They differ from those of [2] only by the presence of $\frac{E_\theta}{E_\theta}$ in γ and by the distortion pattern, e, placing the flutter motion on the right side of (42). The integrals in both of these equations are in the form of inverse Fourier transforms forming a two-part boundary value problem which can be solved for $f_0(a)$ by the Wiener-Hopf technique [6]. Utilizing unilateral Fourier transforms [7] over γ, the two equations are combined and then factored and decomposed into parts which are analytic in respective half planes as in Appendix B of [2], have a common region of analyticity between them, and vanish as $\gamma \to \infty$.

The solution is completed by use of Liouville's theorem giving

$$
f_0'(a) = \frac{1}{2\pi} \int_{-1}^{1} e^{-i a k_x u} \left(\frac{k_u}{k_u^*} - i \gamma \right) \gamma \gamma u_0
$$

Here γ_u is a damping term on the distortion to ensure convergence as $\gamma_u \to \infty$ and can be set equal to zero upstream of the shock.

The solution for $f_0(a)$ required that $\kappa_1(a)$ could be factored as $\kappa_1(a,0) = \kappa_2(a)\kappa_3(a)$ where $\kappa_2(a)$ and $\kappa_3(a)$ are analytic and non-zero in the upper ($\Im a > \kappa_1$) and lower ($\Im a < \kappa_1$) half planes respectively. The factoring procedure of Appendix C of [2] yields the results

$$
\kappa_2(a) = e^{-\frac{\gamma_u}{2}} \prod_{n=1}^{\infty} \left(1 - a/\gamma_n^* \right)
$$

and

$$
\kappa_3(a) = e^{-\frac{\gamma_u}{2}} \prod_{n=1}^{\infty} \left(1 - a/\gamma_n^* \right)
$$

The potential of the irrotational field produced upstream of the cascade must be continuous across lines $y = \pm n s$, extending forward of the leading edges of the blades. Applying this boundary condition to (38) at the zeroth blade yields

$$
\int_{-1}^{1} e^{-i a k_x u} u e^{-i(a-M k_x u)x} dx = 0 \quad \text{for} \quad x < 0.
$$

The potential of each blade to the potential yields a geometric series which can be expressed in closed form as

$$
\psi_u(x,y) = \sum_{n=-\infty}^{\infty} \psi_{u,n}(x,y)
$$

for

$$
\int_{-1}^{1} e^{-i a k_x u} u e^{-i(a-M k_x u)x} dx = \frac{1}{2\pi} \int_{-1}^{1} e^{-i a k_x u} e^{-i(a-M k_x u)x} dx
$$

where

$$
\alpha_k \approx \frac{1}{2\pi} \left(\frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} + \frac{e^{\frac{-\pi}{2} k_x u}}{\sin \alpha_u} \right)
$$

for $0 \leq y \leq 1$.
Equations (46) through (50) differ from those of Ref. [2] only by the presence of \(k_0 \) in the definitions of \(v_y \) and \(v_\phi \).

Substitution of (45) into (39) enables determination of \(\tilde{w}_i(x,y) \) by the method of residues. The path of integration is closed in the upper half-plane for \(x < -\beta_0(s-y) \) and in the lower half-plane for \(x > -\beta_0(s-y) \).

APPENDIX II

SOLUTION FOR ACOUSTIC MOTION DOWNSTREAM OF SHOCK

An infinite "duct" solution to the convected wave equation for downstream running waves can be obtained by use of the method of separation of variables. This gives the result

\[
\phi_{\text{duct}}(x,y) = \frac{1}{2} \sum_{n=0}^{\infty} B_n \frac{1}{k_n c_k} \cos(n\pi y/s),
\]

where

\[
\nu = -k c_k \sqrt{\nu(0)},
\]

and

\[
\nu(0) = \sqrt{\left[(n+\beta_0 s)^2 - k^2_c + k^2_c k^2_0 \right]}.
\]

By Chapter 5 of [3] the cascade potential for upstream running waves can be expressed as

\[
\phi_{\text{cas}}(x,y) = \frac{1}{2} \int_{-\infty}^{\infty} f_{0,n}(a) \delta_{\text{inst}}(a,y,
\]

where, in slightly different nomenclature than [3]

\[
\frac{1}{2} \left[\frac{1}{\sin \gamma_c} - \frac{1}{\sin \gamma_0} \right]
\]

\[
\frac{1}{2} \left[\frac{1}{\sin \gamma_c} - \frac{1}{\sin \gamma_0} \right]
\]

\[
\frac{1}{2} \left[\frac{1}{\sin \gamma_c} - \frac{1}{\sin \gamma_0} \right]
\]

For this linear problem, where superposition applies, let

\[
f_{0,n}(a) = \frac{1}{2} \sum_{n=0}^{\infty} B_n \delta_{\text{inst}}(a,n)
\]

By (54) and (58) the zero upwash condition will be satisfied if

\[
\int_{-\infty}^{\infty} f_{0,n}(a) \delta_{\text{inst}}(a,0) e^{-i(a-M_0 k_0)\sigma} da = 0 \text{ for } \sigma < 0
\]

where

\[
\delta_{\text{inst}}(a,0) = -2A_0/\pi
\]

A relation specifying zero pressure jump across lines extending in the downstream direction from the trailing edges of the blades is obtained by substituting (51) and (54) through (58) into \(P_d = (\log - \beta_0 s) \) (\(\phi_{\text{duct}} = \phi_{\text{cas}} \)) and utilizing the periodicity relation. The resulting expression can be reduced to

\[
\int_{-\infty}^{\infty} f_{0,n}(a) e^{-i(a-M_0 k_0)\sigma} da =
\]

\[
e^{-i(a+\beta_0 s)\sigma} e^{-i(a-M_0 k_0)\sigma} \left[1 - e^{i(a+\beta_0 s)\sigma} - 1 \right] \text{ for } \sigma > 0
\]

Solution of Eqs. (59) and (61) again constitutes a Wiener-Hopf problem which can be solved in much the same manner as in the supersonic case yielding

\[
f_{0,n}(a) = \frac{\bar{k}_c(\nu(0))}{\bar{k}_c(\nu(0))} \left[1 - e^{i(a+\beta_0 s)\sigma} \right]
\]

Here it is assumed that \(\bar{k}_c \) can be factored into the form \(\bar{k}_c(\nu) \), where \(\bar{k}_c(\nu) \) and \(\nu(0) \) are analytic and non-zero in upper and lower half planes respectively. To perform this factorization substitute (55) into (60) and obtain

\[
\nu(0) = \frac{1}{2} \left[\frac{1}{\sin \gamma_c} - \frac{1}{\sin \gamma_0} \right]
\]

The numerator of (F3) can be factored by the Weierstrass factorization formula [7]. Page 40 of [6] is helpful for application of this theorem to the denominator. Choose the half planes as in Fig. 8 of [2] but with branch points of \(\nu_c \) at \(\nu(0) \) and \(\nu_c(0) \) where \(\nu(0) = k^2_c - k^2_c/\nu_0 \). Then

\[
\nu(0) = \frac{1}{2} \left[\frac{1}{\sin \gamma_c} - \frac{1}{\sin \gamma_0} \right]
\]
\[e_c^{*}(a) = \frac{(a - e_c) \sin (\rho_c a \gamma) e^{ia b/x}}{\rho_c c^{*}(\rho_c a \gamma) - \cos \left(\left(e - \frac{\rho_c a \gamma}{\rho_c a \gamma}\right)(1 - a/e_c) \right)} \]

\[\times \prod_{n=1}^{x} \frac{1 - a^n (1 - e_1^n)}{(1 - a^n(1 - e_1^n)(1 - a^{*}_n)} \quad (64) \]

and

\[e_c^{*}(a) = \frac{(a + k_c e_c)(1 - a/e_c) e^{ib/x}}{\rho_c(\rho_c + e_c)} \]

\[\times \prod_{n=1}^{x} \frac{(1 - e_1^n)(1 - e_1^{*}n)}{1 + a^n(1 - e_1^n)} \quad (65) \]

where

\[h = s \left[\frac{1}{2} + \tan^{-1} \left(\frac{\rho_c a \gamma}{\rho_c a \gamma} \right) \right] + \rho_c^{-1} \ln \left(\frac{\rho_c a \gamma}{\rho_c a \gamma} \right) \]

\[\tau_n^{*}(c) = \left(7n + e - M_c S_c^{*} \right) / c^{*} \]

\[c^{*} = \left(s^2 + \lambda^2 + \lambda^2 s^2 \right)^{1/2} \]

\[\Lambda_n = \tau_n^{*}(c) c^{*} = \Lambda_n^{(c)} \left(c^{(1)}(c) - \frac{k_c^2}{\rho_c} + \frac{k_c^2}{\rho_c} \right) \quad (69) \]

and \(\rho_c \) in equal to \[k_c^2 - \frac{k_c^2}{\rho_c} \] for \(k_c^2 \) greater than and less than \[k_c^2/\rho_c \] respectively. Equations (64) through (69) reduce to those of Appendix E of [27] \(\rho_c f = 0 \). Substitution of \(\Lambda_n \) and \(\Lambda_n^{(c)} \) through (68) into (64) gives an integral expression for \(e_c^{*} \) which can be evaluated by use of the residue theorem. The integrals of (64) can be expressed as \(\Lambda_1 = \frac{1}{2} \) and \(\Lambda_2 = \frac{1}{2} \) where the \(\rho_c \) dependence enters \(\Lambda_1 \) as

\[\cos \left(\rho_c a \gamma \right) \left[\frac{e_c^{*} e_c^{*}(a) \sin (\rho_c a \gamma) \exp \left(i a \gamma^2 \right)}{\rho_c c^{*}(\rho_c a \gamma) - \cos \left(\left(e - \frac{\rho_c a \gamma}{\rho_c a \gamma}\right)(1 - a/e_c) \right)} \right] \]

\[\times \prod_{n=1}^{x} \frac{1 - a^n (1 - e_1^n)}{(1 - a^n(1 - e_1^n)(1 - a^{*}_n)} \quad (64) \]

For \(\Lambda_1 \) the path of integration must be closed in the upper half plane (UHP) for \(\rho_c S_c < 0 \) and LHP for \(\rho_c S_c > 0 \). The path for \(\Lambda_2 \) must be closed in UHP for \(\rho_c S_c < 0 \) and LHP for \(\rho_c S_c > 0 \). Finally, the total amplitude \(e_c^{*} \), for \(0 < y < s \), is obtained by combining \(e_c^{*} \) with \(e_c^{*} \).

REFERENCES

Figure 1. - Orientation of upstream distortion with respect to cascade.
Figure 2. - Select distortion (vortical) pattern of v_2 entering blade channels for use as a reference condition: $N = 2$, $n = 2\pi$, $M_u = (3/2)^{1/2}$, $X = -u \cdot \tan^{-1}(2)^{1/2}$, and $A = 0$.
(a) Distortion and cascade at basic reference conditions of Figure 2 along with $S = 1.3$, $\omega_d = 20.0$, and $\Delta q = \pi/3$.

Figure 3 - Pressure distribution on zeroth blade.

(b) Distortion and cascade conditions same as Figure 3a), except that ω and ω_d are reduced to $2\pi/8$ and 20.08, respectively.

Figure 3 - Concluded.
Figure 4. - Channel-wise distribution of y components of velocity at various longitudinal locations along blade. Distortion and cascade conditions same as in Figure 3.
(b) Downstream of shock.

Figure 4. - Concluded.
Figure 5. - Influence of azimuthal wave number, k, and distortion amplitude ratio, A/a, on lift and moment.
Figure 5. - Concluded.

\[
\left[(z^b)^* \cos \eta \eta a \phi \right] w_1
\]

Re \left[\Re(w) \right] = \cos (q \phi)

(c) Moment, \(M \).

Figure 5. - Continued.

\[
\left[(z^b)^* \cos \eta \eta a \phi \right] w_1
\]

Re \left[\Re(w) \right] = \cos (q \phi)

(b) Total lift, \(y \).