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NOMENCLATURE!

A,a distortion amplitudes in x and y direc-

tions of Fig. 1

o, 4,C distortion amplitudes in T,S.i agirec-
tions of Fig. 1

o combination of terms defined by (32)

B coefficients in (58)

b constant in @ convergence producing term
of «xg(a)

bi,j coefficients in description of subsonic
vorticel flow in {19)

C chord

d mean circumferential distance between
blaces, Fig. 1

¢, df combination of terms defined by (48)

and (68) respectively

arbitrary function

blade height

integrand of (54)

unit orthogonal vectors in upstream ois-
tO{tion coorcinate system
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The veiocity ana pressure perturbations
cownstream of the shock are the differences between
actual and mean downstream values, however they are
non-cimensiong]ized by the upstream quantities
¥, and o4«§ as discussed on pa. 574 of [2].

branch points in a space

combination of terms defined by (23)

combination of terms definec by (24)

wave numbers = Myw /az and
Mewg/Bg respectively

spanwise wave number = ng/h

mean circumferential distance along blace
row

1ift

Mach number

moment

integral number of distortion transverse
vave lengths in distance st along «x

amplitudes of py.pg

pressure perturbation non-dimensionelized
by oy ¥

Fourier incices in (1)

combiration of terms used in (10b)

combination of terms usec ir (30)

solidity = chord/blade cap =
1/cimersionless ¢

interblade distance along y in Fig. 1

(sin x)/S as in Fig. 1

time non-dimensionalizec by multiplying
by 4« ,lc

combina.ions of terms defined by (33)
ano (34)

mean velocity

amplitudes of E,V,$

totel. vurtical, and acoustic velocity
perturbavions non-dimensionalized
by ¥,

hlade coordinetes (Fig. 1) non-
dimensioni lized by blade chord

x + st and x + st - 1 respectively

orthogonal cenrcdinates in a fixed
frame upstream of cascade

Fourier transform veriable

comhination of terms defined by (69)

1/2 1/2
(Mi - l) and (l - Ni) respectively



rhu).rf¢)  combination of terms defined by (50)

and (67) respectively

Y ratio of specific heats of an ideal gas
1/2
2 2 .2 2)
Yo' (o - ku - kqllu and

1/2

(o? - kz + k:/ai) respectively

By Ag combination of terms defined by (41) ano
(56) respectively
6 imaginary part of integration contour
. for e,
¢} Kronecker delta; = 0 if i 4 j; =1 if
|
Cuseg small damping terms in y, ana y¢
respectively
nn combination of terms defined by (52)
;] arbitrary variable illustrating perio-
dicity relation
Ky K variables cefined by (43) anc
(60) respectively
Ay Ag combinations of terms defined by
(40) and (55)
WhU) af¢)  combinations of terms definec
by (12) and (53)
v anale between upstream and blade coor-
dinate systems of Fig. 1
N direction of transport of upstream distor-
tion with respect to axis of
turbomachine
vn combination of variables defined by (49)
[\ density
o interblace phase angle defined by (3)
® amplituce of ¢
? velocity potential
X stagger angle = v -
1/2 J/2
Y Yy (wi + ki) 1anc (”i + ki) respectively
/12 1/2
2 2@ ? €y a2
Yur Y4 (ku ' kqlau) R (ko B kqlad)
respectively
Q arbitrary function in (13)
w frequency = 2rp /L in dimensional
form
wy s ug reduced frequencies wc/4¥ and
wC/ g respectively
SUBSCRIPTS:
b blade
d,u downstream and upstream of shock
respectively
n integer
p.qQ Fourier indices describing upstream
distortion
S shock .-
1,2,2 correspond to Y.J,K and to x,y,2
cirections in upstream distortion and in
blade coorcinate systems of Fig. 1
recpectively
SUPERSCRIPTS:
a.u downstream and upstream of shock
respectively
+jw upper anc lower halt planes of o space
- implies both vortical ano acoustic
properties
- vector
- unit vector

INTRODUCTION

Assoviated with high performance axial fans and
compressor; of aircraft engines are slender blades
with high tip Mach numbers [1]. Such blade rows may
be vulnerable to distortion of the oncoming airstream
such as atmospheric qusts, wakes from upstream struts
and quide vanes, and maloistributions in air inlets
and ducts; all of which tend to force the blades inte
vibratory motions. Of concern is the influence of
strong shocks occurring in blade passages. When such
shocks couple to the distortion pattern they can have
an oscillatory influence on the blace pressure dis-
tributions, forces, and moments. The influence of
the blade row on the distortion is also of importance
since it passes on to influence other components of
the propulsion system.

The recent linearized theory of Goldstein,
Braun, and Acamczyk [¢], which analyzes unsteady flow
in supersonic cascades with strong in-passage shocks,
is appliec to the aistortion problem in the investi-
gation reported herein. The flutter boundary condi-
tions ot F?] are however replaced with those of the
three-dimensional distortion of Geldstein [3]. This
disturbance profile (Fig. 1) has components parallel
to, and in two adirections transverce to, a mean flow
velocity 4. Relative to the cascade the mean ve-
locity, &, is supersonic in this study. The com-
ponent of 4, parallel to the axis of the turbo-
machine is, however, subsonic., The Mach waves from
the leacing edges of the blades then extend forward
ot the edge of each successive blade permitting in-
teraction between blaces through the supersonic, as
well as the subsonic, flow media. This is usvally
the case of interest in advence type fans and com-
pressors.

The cascade (Fin. 1) is envisioned as an “un-
rolled annulus" which trarclates with a blade veloc-
ity . Integral multiples of distortion wave
lenath must however equal a mean circumferential dis-
tance along the face of the blade row. Spenwise flow
distributions are considered at limited blade aspect
ratios althouch centritugal and Coriolis forces are
realected, Within the confines ot linearized theory
blade thickness, camber, and ancle of attack make no
contribution to the unsteady forces (Chap. 3 of
[37). Such time incepencent etfects can therefore be
superposed on the results of this study in which the
blades take the torm of flat parallel platec.

Separation of the flow into two distinct (sub-
and supersonic) regions permits solution of the
potential part of the flow field in each one by
adaptation of the Wiener Hopf technique [2]. In the
first reaion a supersonic flow extends from upstream
infinity to a cascade which extends to downstream
infinity. In the second region a subsonic flow is
quided by parallel blacde passages from upstream
infinity, past the trailing edaes, and on to
cdownstream infinity. The supersonic solution is
indepencent of downstresm influence and the subsonic
solution ¢ kept sufficiently arbitrary to satisty
shock bouncdary conditions. Matching of solutions at
the shock interface involves inversicn of a large
nearly diagonal matrix. This is easily done
numerically,

In the present effort the shock is assumed to be
Tocated an arbitrarily small c¢istance inside the
leading ecae of the blade so that it doesn't disturb
the supersonic flow on the upper surface in this
region,
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FORMULATION

By the splitting theorem (chap. 5 of [2]) any
linearized deccription of an inviscid compressible
fluid can be decomposed into two non-interacting mo-
tions; one of which is vortical ancd the other acous-
tic in nature. The vortical motion is solenoidal,
anc its cubstential cerivative ic equal to zero.
Shear layerc, for example, are vortical in nature,
and are an effective meens of forming flov distor-
tions. The acoustic motion, on the other hand, is
irrotetional and has & velocity potential which sat-
istfies the convecteo wave equation.

Vortical Motion Upstream of Shock  w

The upstream flow distortion of interest herein
is vortical. Its velocity (Fig. 1) is specifiec by
the double Fourier series (char. 5 of [3])

> -~ -~
V- z [(Tary, + g cos (vavyim)

- iZqu?/L cos v
+ K(pcsin (naY,/h)]e . (1)

For each cet of Fourier indices the cdistortion ampli-
tuces ere fpgs Zpg, end fer motion in the
three orthogonel direct ions %?03. ane R. As in [3]
there i< an intearal number, p, 01 di¢.ortion wave
leraths parallel to the face of the blace row where

L i< a mean circumferential cictance. The spanwice
weve lenath s the hub-to-chrouc distence, h, cdivided
by fourier incex a. [Distance anc velecity are non-
cimer<ionalizec by blace choro énc meen upstream ve-
Tecity, &, of Fia. 1, respectively.

Trensformation of (1) to blade ceeordinates
(x,¥,2) mevirg with velocity 4y relative to #
aives the verticel motion & hermenic time cepencence.
Ir thic syctem

e t

u )
e cos (ko7)V“ (¢a)

-4
"
»

where time hac been non-dimensionalized by @ /¢
énc where

vf”’ IYE
(W) iwr()’s*’y cot )
= V. = @ : 1 .
1] 4
ylv) tan (k_z)(/e
3 ‘0
(eb)

anc spanwice wave numher, kq, i¢ €aquel to rao/h.
The expenent in (7b) <ete the interhlace phase anale,
c, At

[#)

c = oylst + s cot u). (

The x end t dependence in (za) anc (¢b) together
caticfy the concition that the cubetantie) ceriva-
tive, (J“/Lt. ic ecuel to zero. The comporents ot
the cistortior amplituces in the x,y,z cirections
are ncw

a = ~afpgsin u * #pac0s u, (4a)
A = afpgcos u * Apgsin u, (4b)

and, by the solenoidal condition on ¥,

Zin

-ftcoss (a cos w * A sin y).
o ¢

(= -ziph#/al cos v =

(4c)

Since final results can be superposecd, only one set
of Fourier components will be carried through the
anelysis: thus the p and q incices will normally
be omittec from the flow variables.

Acoustic Motion Upstream of Shock

The total motion, G, = ¥V, * %,, will satisfy the
inviecid tengency concition &t the blace surface if
the normal component of the ecoustic (potential) mo-
tion setisfiecs

9 iu,(x*s**ns cot p-t)

(u) _ v
W' ! = o= = - COS (kc7)e (5)

for =<t <« x - nst <0, Ocz<h, and n = 0, 21, 22,
*+*+. By inspection, the solution to the linearized
corvected wave eocuation,

(v - U¢10t?)g, = O (6)

which satisfys (%) is of the form

~fw. t
9, = -2 cos (k07)6 ou(x.y) (7)

Thuc

» -ihllt

Wosae cos (kcz)ﬂn (ge)
vhere

-aﬂ/ax
P - -2e /2y (&r)

ke tan (kuz)o“

Note that the 2z comperents of both Eqs. (#) and (8)
ircdividuelly saticfy the flow tangency concition at
toth the hub and <hroud.

Pressure, p,, is asseciated with the acoustic
motion, seétisties the wave eouation, and can also be
expreccec in the torm

-‘"ut
P, =-2¢€ cos (kez)Pu().y) (Ga)

vhere
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The procecure for soluticn of e,(x,y) by use of
the Wiener-Hopf technique is given in Appencix 1.
The results for 0 <y <s are

0, (xy) =

for x < -g,(s-y) (10a)

where
- *\|' _ -( * +
gu(\)n) - ('Ku(vnyd\!nn
anu
¢, (xy)
~ 'i((hwus’)
fu,x, Jcosh [y (y-s)]-e cosh (v y)
= -f T
v,sinh (vus)
= 4 (u) . (v)
“(Muku"n )’ o e‘(Muku')n )x Q"
‘ co_(("_ux) n "
s ky )hl) ! (D)
¥ ' N l"\
Nz d
for x> -8 (s - y) (10b)
vhere
. : —(u)). .+
. e“"'"') ) e‘(Muku"n )s < kM)
Q. = > 1 (11)
r (u) 7 v A0 - (4, (UT
"n 'lﬂ; en) .:“(sxnu)
) P 1/¢
W) |yee¥ L .7, (ko 2, e\¢
oot (<—) K ‘(_u‘ L a0 ("'l' ! kﬂ) '

Substitution of (10) into (8) and (G) determines the
velocity of the acoustic motion and the pressure in
the supersonic reqion ahead of the shock.

Vortical Motion Downstream of Shock
In this region Tet the velocity, vy, take the
form

V(w x-w t)

U R(y) (13)

-
Vo = 8 cos (kcz)e

UALITY

which satisfies the spanwise wall tangency condition
and has & substantial derivative equal to zero. To
satisfy periodicity let

i (x'ns’) T, X
e d Bly+ns)=em e " fity) (14)

for blade number n = 0, #1, 22, +++, The solenoi-
dal condition will be invoked later, completing the
splitting theorem requirements for Vg4 to be vor-
tical.
It is anticipated that a part, vd. cf Vg can
be found which is both vortical_ano acoustic, as in
(5.12) of [3). Combining ¥y with the poten-
tial flow, wd. may then stmplify determination of
the remaining part of vr. Such a procedure_is
used to acvantage in [#]. Associajed with V4 is
3 po%ential §¢ Such that v,d = . and sincg
v+ Vg =0 it follows that vy 0. Since Vg
is vertical, 3¢ make< no contr but\cn to the pressure
distribution. Let gy take the forin of (13)

. Flugx-u,t)
9 = @ cos (kz)e fly) (15)

For g to satisfy Laplace's equation, f must
satisty

(w; . kg)f T (16)

A sclution of (16) which enables gy to satisfy
periocicity as well as to cencel the normal component
of V¢ at the blade surfaces is,

a,(ns)

——?733_77—?7 cosh(vvs) cosh [!n(y - ns))

- cosh [vr(y -ns - s)}} (17)

where v " + k. The subscripts 1,2,3 on @
icentify the coﬁponeﬂtt of R in the x, y, and 2z
directions respectively.

Substitution of (13), (15), and (17) intc the
igentify

;r H (;C - v.,) * Ve, (18)
shovs that the first term (v - 99¢) makes no contri-
bution to the blace bouncary rort1f!ons (since its

y component vaniches at y = 0 andg s) although it
does contribute to the matching of flows at the shock
bourdary. With sufficiert generality the strictly
vorticel part of (18) cen thus be sufficiently des-
cribed by Fourier sine and cosine series as




TR

-
Vd(’.Y.?) n

F. 1
!: b, cos(mmy/s)
m= ] 1.m

i(mdl»wut) -

i ; t\?.msin(muy/s)
Me

-kqlan (qu) n§l ba‘mcos(muy/s)

2 cos (qu)o

b

(19)

and the vgy part of (18) will be incluced in

wWg = Vgg. This procecure is clese to that of [2]

which utilizes a stream function for a two-dimen-

sional vortical motion,

The sglencical condition has already been in-
8(,. Using it in (19) for Vv, aives

vokeo in
n (x-¢ o=Nn
: “\g&'_}) oL
o (x,y) = B | — - re— :
d i e 1) -i(n <*-rom)
i -
n=0 L o

Acoustic Motion Downstream of Shock

The acoustic fieTd downstream of the shock is
composed of two parts. An infinite “duct" scolution,
to the convected wave equation, having downstream
running waves accounts for shock boundary condi-
tione. A “"cascade" solution, on the other hand,
gives the upstream (or reflected) waves. Each solu-
tion, as well as the vortical motion ot the preceding
section, individually satisfies the wall tangency
condition, The sum of the two ecoustic solutions
must satisfy the Kutta condition. In both solutions
the velocity potential, g¢q, a0ain takes the form

-iwut
'd(x.y.z) = a oS (kuz)e on(x._v) (21)

The proceduvre to obtain the combined potential
0g = oJuct + gGascade ¢ given in Appendix 11.
The results for 0 <y < s are

o (x.y) =
- . -
in"x ir\-;
Bne e " d Ny
J " By k cos
Yo L (0) ¢, N :
My n n M,
n=0 m=0
for 0<x<1-s' (222)
H’ * ¢
n ‘.(n'_ ) -‘n"K
s £ |eftree)
-
y\/(.t.(c) t - -f.(¢)
cos |\l - = aufn "= shap o (0
R
d
Ms o
for 1 - ¢t < x < (z¢b)



and

- o 1(0—.1 S’) -~
) 91"" i(Pe=c) -ﬁn;s’ ‘; -x:“)) [rosh (vd(v - s)) - cosh (vdy)e ¢ Tugx
000y = 7 B e a) % T ; X e
(’n - ";) :;, (— F;) [cosh (vds) - €o¢ (« - w$ )
n=0

) S’a’jlei[ ( m‘"«*o) ]

Meew

where

ey X
5 '/rm .‘. and ¢° i< the Kronecker celta.
U}tcrn\nSt1on of the cBefficients By of (22) and
by p (J =1,7.3) of (19) and (20) is mace possible
with the accitional information cuppliec by the

tollewing three shock relations.

Relations Acrose Shock

~ The mean flow satisfies the Rankine-Hugoniot
reletione, Shock curvature anc cisplacement are
treatec as perturbatione a< in [8]. The cownstream
vorticity, lonoirtudinal velocity, enc pressure are
relatec to the upstream vorticity, lonairtudinal veloc-

ity, ano pressure by the folloving three eoquations:
e é
Mo+ ] [

(c) L (u) 11,2 y -1 "u

J B m—— + U + = W + - —

‘1 “7‘ p( l] ¢ u ! Y W ;,7 [‘“.
&Sy u

m .’-(l(d)) for 1 < x, (22c)
v
s o, - (o x5t )] - u'e
ay [p(‘ (M yt1 By pu] (y+1) ’?’?
ud
(d) (¢) (u) (u)
. _Xi_w v Al _Eg av, - vy s
ax o oay WUy \ ay i
and
, MM
i _ y -1 2) . u d
2z [po (M; M LY pu] (v + 1) -
Bufo
av;c) av;() ‘«“ av;“) avi“) )
3 | e+ “ — - —Il, (27)
2 Wy \ 2z

These equations c¢iffer from these of [¢] by addition
of an upstream vorticity anc a spanwise cdistribution
of prescure and velocity.

Matching of Solutions at Shock Boundary
tquation (Z6) can easily be combinec with (27)
to vield

u
1 ) (d) e (d
" ('«: J IR ) kg o (eg2) () - v{)

(¢8)

cince the 2 “epencerce enterc only through

cos (kqz). Combinino (28) with (7), (19), and
solenoical cordition (20), and utilizing crthogonal-
ity relations betwern sine terms, permits determina-
tion ot by p and n hvm of by

anc known uuant1t\e<. ?he cownetrean vor!\ca1 veloc-
ity of (19) can now be expressed as



- 1(u‘ut’wdx)
vc(x.y.z) = a cos (kuz)e
= 2 a1
i ]+ (kqslnh-) ; X ?iSRm(kq/vuo, cos(_"ﬂ)
wds/mw 2,m mexp (1udx) S
m=1

X i I: bz'msin (mmy/s)
me1

sb, 2sR
Mn
-k tan (k_z) E st 4 — .. cos (T
a q L M Uy exp (1u|cX) ( < )J

L m=1

(29)
where
iu\“S*
Rm H uuP
m .
>, c|m 1 - (=1)" exp (1wus ctn u)
x |1 47— w (coty) " 5 ]
"l(‘, 5 m - (u-uS ctn L'/w)
for m>1=20
=0 for m=0. (20)

vse of (2), (7), (%), (100), (21), (22a), anc (29)
for velocities anc pressures in shock rel=tions (25)
énd (26) ano utilizing (377), (378), (488), (489) and
(592) of [9] gives the following equation for By

in implicit form,

1] d

2 (a2 3 Z
kq((MuMc-M -M) 6
n

-+ tn

a_ - -
n 0 eQM‘

du

U

¢ lonlud ? ¢ o= t, =
kq(""u”c - ME - Mc) -\nn(l-s ) z

tla, - & e B K
n (§ 4 mm,n
eM, L
M ¢ A k M- x(u)
. - i [(n_w) + Wl k(] u v n 0
ea S c Q kK IM - u
¢ U u
(v) q
kM - . [ t, -t
. U u r -1 y =1 "ulL*, "¢n 1,n
k/M'xt“)U'—rM“.l-" _M})‘l" 1+ 80
U u n n

+ (] - e:) (fot v - %;3 %) [(%1)? + hg] tl alcot v
u - »

¢ u
g o [ 2R M SR
x(o oo)-1(1-en)-—°—'-)—; (31)
ne
where
s (@Y, () ? ,
2, ® (xn ) SREP P et (kdlMu) (32)
. t| i(netw s cot u
Zw A AT [ u ]
ty g cotue uoLe e =1 (33)
nm ¢
((—) - (wucot )
2w, e "[ i(r—u\us**nv) j
t,g—2e Y &t = (24)

() + -4

The left sice of (21) recuces to (2.23) of [2] as

kq - 0. The right side of (31) however replaces

the flutter terms of [2] for this distertion prob-
lem. Solution of (31) for B, i¢ by inversion of

an infinite matrix. The off-ciaaone] elements of
thic matrix ceme from the second term of (31) which
reprecents acoustic weves reflectec from the back end
of the cascace. Thece are rapicly decaying waves

for (nefe s)? + (k/8,)° >k = M?wilﬂa so that,

in practife, (31) Ban“be eppfoxinéifd By a nearly
dieqone] matrix. Thie cen be further truncated to &
regsonebly small number of terms. Numerical results
cuuoest thet ac few e¢ ten terms alone the diagonal
may, at times, aive saticfactory results at values of
recucec frequency less than one. Once the B, ére
krown the coefficient bz in the Fourier series

of (2¢) cen be obteined from shock relation (26) as

“in(1-s")  a

Use of (25) in (29) cetermines the subsonic
vortical velocity for 0 < ye ¢ anc x > 0 whereas
vse of partial cerivatives of (22) in (21) determines
the corresporaing acoustic velocity components, Use



of (10) in (8) along with (2) and (4) gives the

acoustic and vortical velocities for 0 < y < s and

x < 0. Pressure can be obtained by‘use of T9) and
~fw t

its subsonic counterpart p, =a e cos (k.2z)

(iw, - a/ax)e,. Extension §¢ equations to othfr

blages and chﬂnnels ic simpiy by use of the perio-

dicity condition en(x + nst, ns + y) = e’ g5(x,y)

where @ can be any of the physical variables

*us Vus Pus 04y Vg, ana Py as in [2].

RESULTS

Variables which may be arbitrarily (independent-
ly) selected for input into the formulation for the
general case are ratio of specific heats, y, Mach
number, M,, two of the three angles, v, v, and x,
cascade parameters S, h, and either phase angle, o,
or frequency, wy, along with distorton parameters
L/p, q, and either amplitudes a and A or o
and 4. Certain combinations of these parameters
give a very orderly upstream distortion (vortical)
motion which in turn, through the blade surface
boundary condition, results in an especially clean
acoustic motion upstream of the shock. Numerical
results based on such flows are relatively easy to
interpret anc should aid in the analysis of morc gen-
eral cases which are within the capability of the
theory.

As in F19. 2 let v =0 and -y = x = wave angle
given by sin-1 (1/M,). Then -cot y = g, = s/st. “Let
one transverse wave length fit the distance g;s
along x and let st = Npys f?r integer N. Then
gl = 1/N and M, = (1 + 1/N)1/2, This wave pat-
tern has a negative phase along ay = s which off-
setc the phase of the cycle along ax = B s, leav-
ing o = 25(N - 1). Using (3) along with d = 1/S =
s’(; + cotly) it follows that wy = 2v(N - 1)S(1 +
cot?y)/(1 - coté ). The lowest N which clear-
ly permits 2 subsonic mean axial veloi}ay hes a value
of 2. For N =2, ¢ = 27, MU = (3/2) , anc
X = -y = tan-! \/fi Selecting a soligity of 1.3
then gives wy = 20.0 (which is the passing fre-
quency) and circumferential wave lenath L/p = d =
0.769. Amplituce ratic A/a is set equal to 0.
Amplitude retio C/e 1is then equal to -4.7 i/k
by (4c). These results, along with y = 7/5 ang
kg = n/3 will be used as the basic reference con-
dition for the numerical results herein,

Influence of Dictortion on Blaces Pressure Distri-
bution

Pressure cistribution along the upper and lower
curfaces of the blades is given on Fig, 2(a) at the
basic orcerec condition, The short cashed line in
the supersonic region represents a sinale airfoil
solution [10]. Consistent with the reference cascade
conditions on Fig. 2, the input to the airfoil theory
is & transverse distortion having & wave length equal
to st/2. The resulting pressure cistribution is
normalizec to metch that of the cascace solution at
the leading edge. The short wave length (high fre-
quency) of the Bessel function solution of the air-
foil ¢ characterictic of the cascade solution also.?

2Use of a reduced frequency of 20 thus permits
comparison of two mathematical solutions to the
linearized convected wave equation (6). It is
possible that (6) mey not offer a suitably accurate
cdescription of the motion, however, 2t such a high
frequency. See, for example, chapter 1 of [11],

In the cascade this short wave length characteristic
is carried & short distance downstream of the shock.
The periodicity relation, e(x,y) = e='¢ o(x + st,

y *+s), is used in (22) to relate pressure on the
lower surface of blade 1 to the upper surface of
blade 0.

A second cascade solution (not shown) for a
distortion with a phase angle of /2 with respect
to that of Fig. 3(a) is obtained from

jo t
Imlpe Y /acos (k.z)]. This has the same wavelength
characteristics andin the supersonic region agrees
with single airfoil theory. Consistent with shock
curvature and displacement, the pressure perturbation
amplituoe increased for the imaginary part, but de-
creased for the real part of the solution across this
boundary for the reference conditions of Fig. 3(a).

The solution for Fig. 3(b) is based on the same
set of parameters (for the orderec vortical motion)
as Fig. 3(a) except o, and therefore w; by (3),
are reduced from the basic reference conditions by a
factor of 1/8. Single airfoil theory is no longer
close to these results and has been omitted. Trends
are quite smooth and, of course, much more aradual
than those of Fig. 3(a).

At very low interblade phase angles, < @ (0.01),
the precssure profile (not shown) across the channel
is quite uniform and the pressure amplitude in back
of the shock on the upper curface apprcachkes that on
the lower surface near the leadina edge.

Influence of Cascade on Distorticn Profile

Figqure 4 uses the same besic reference condi-
tions as in Fig. 2(a). Envision Fig. 4 as a view of
the x-y plane of & blade channel. Locateo in this
plare by use of the solid symbois are the leading and
trailing edaes of blades 0 and 1 and two reference
Mach waves. Alsc locatec at various x stations
are y distributions of the real part of the solu-
tion for the three trensverse components of velocity
in up = vy *+ wp. Far upstream ov the cascade
the amplitude 03 the acoustic motion (given by the
short dashec 1ine) goes to zero, however the vortical
motion (long cashed line) is transported undiminished
as if frozen in the flow. In the vicinity of the
cascecde the acoustic motion with its characteristic
short wave lenoth, cue to diffraction about the lead-
ing eages, becomes quite prominent. Once inside the
leacing edge Mach wave of the nearest blade (blade 0)
the transverse component of the acoustic velocity,
wﬁ“ . 15 noticeably large only in the vicinity of
the hlaje surface. The amplitude of the total mo-
tion, ug“ , away from the wall is then mainly com-
prised of t?e relatively long wave length vortical
motion, v3U/, At x locations between the trailing
ecoes of blaces 0 anc 1 the amplitude of the acoustic
motion again becomes quite prominent, where ciffrac-
ticr in again encoun esea to satify the Kutte conai-
tion. Eventually @) ocecreases at large x to
the asymptotic value at the last station, x = =. The
amplitude of the vortical motion continues undimin-
ishec far downstream of the céscade and is not plot-
ted at the last station,

The y cistrisutions of wa) hés much the
sI neture as w*” . Although A, and therefore

viV/, are zero, a longitudinal component of vortic-
ity velocity, v{d , arises at the shock. Beyono
this station both acoustic and vorticpl motions have
trepds with x much 1ike those of u;G and
€ C), Recall that part of the vortical motion,

¢ has been incluced in e¢ thus simplifying the
well boundary condition.
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The y oistribution of whY) also follows
a pattern comewhat a;milar to whU). The influence
of the shock on v§ is small but quite pronounced
?n us for the perticular set of conditions of

ig.

The 2z distributions of vortical and acoustic
motions are not plotted since, by (2), (8), /19) and
(39), they simply vary as cos (kqz) for the trans-
verse components of velocity and &s sin (hqz) for
the spanwise components in both subsonic anc tuper-
sonic reaions,

Influence of [istorticn and Cascace Parameters on

an ment

L » , anc moment, .4, were obtained by inte-
gration of the pressure cistributions over the blade
surfaces. Moments were taken about the center of the
blade Yocated at x = 1/z - st. Plots of the imagi-
nary parts of 1if1 anc moment versus the correspond-
ing real parts (chap. 9 of [12]) cen be used to inci-
cate the influence of various cascade ano distortion
parameters in stability studies. The contribution of
shock movement to these terms can be obtained from
plots as on Fia. 5(a). As in [2], the shocks are
assumed to be attached to the lower surfacec of the
blades (Fig. 1) arbitrarily near their leading
edoes. The allowec cisplacements, x¢, nf the shock
footprints on the upper blace surtace, however, cau-
ses a 1ift #c, with amplituce equal to (Py - Py )xe
within the con%!nes of linearized theory. Here P,
and P are the steady pressures before and after
the shock. This effect is inclucec in the total 1ift
and moment of Figs. &(b) and (c). These figures are
arbitrarily plottecd at an interblade angle of 1/8
that of the reference set of conditiors eés in Fig.
(k).

The variables h anc @ enter the equations
for velocity potentizl (therefere for 1itt and mom-
ent) only as a/h anc thus their influence can be
expreseed by sparwice wave rumber ko = va/h.  This
wave numher choulc be most influertiel on amplituces
¢, and .f when 1t is areater than k, ancd kg
respectively, This trencd is 1llustratec in Fia., & hy
the large distance between tick marks on these curves
2t high kq. Increaze of upstream cdictortion ampli-
tude ratio, A/a, tencs to increase the magnituce of
¥ eno & at leras kg while preserving the spi-
ral like ku depencdence. (usps and/or loops charac-
terize both the ¥ anc ¥ curves. The maanituce
ot # s a sionificant art of &,

CONCLUDING REMARKS

The influence of the thirc dimension ¢n this anal-
yeis i¢ primarily through the azimuthal wave number
kq. As ky, @approaches zerc the final equations
anc their solution reduce tc much the same form ac
thoce of the flutter enalysic of [21. The main ciffer-
ences are in the boundary related terme where blade
occillation exprescions of [¢] are replicec by flow
c¢ictortion expressyons of the present stuoy.

Selection ¢f a combineticn ot cascace anc ¢istor-
tion paremeters for a very orcerly 1nitial vortical
motion gives in turr, through use of the blace surface
bouncery corcition, an especially orcerly acoustic mo
tion as well, Numerical results based on such flows
are relatively eacy to interpret anc arc¢ in the analy-
siv of more gereral cases which are within the capabil-
ity of the thecry,. At the<e special concitions the
supersonic pressure dictritution recuces to shapes pre-
ogicted by sirule airtoil theory, At kich cclicity the
periccic patterr of the cownstream rurning waves in the

subsonic reqion of the cescace 1s quite evident in the
blace pressure distribution. Influence of the re-
flected, or forward running, waves is mostly corfined
to within a relatively small distance of the trailing
ecges on the upper surfaces but is apperent over the
distance 1 - 2st < x <1 - ¢t on the lower

curfaces, -

The strong in-passage shock has a large effect on
1ift and momert, Numerical resulte show large influ-
ences of interblade phase angle ano therefore reduced
frequercy, longituoinal as well as trancverse distor-
tion amplitude, and azimuthal wave number on total as
well as shock induced 1ift and moment., This cuggests
that any one of these cistortion parameters coulo have
consicderable influence on the forceo vibration effect
in a <tability analysic,

APPENDIX 1
SOLUTION FOR ACOUSTIC MOTION UPSTREAM OF SHOCK

Substitution of (7) into (6) aives

2z ¢ ? 5
) E) ; 2 @ 4.7 ?
['!u ;:7 * ::7 NRALR NS (‘uku - koi].u . Sy

(36)

A solution by ceparetion of varisbles is

exp {-1la = Mky)x * guyyy]} where o s an -
arbitrary constant anc y = (n? - k2 = k;/a: .
Multiplying this result by f(o) ex r-i(o - Myky)st)
anc intearating over acmissable velues of o 18 alse
a colution of the linear hemogeneous Ea. (10), where
fla) is ye: to be ceterminec,

Next, tollowing the procedure of lane and Fried-
man [47, apply this recult te each of n  blades
using the local coorcinate system », = x - nst,
¥p = ¥ - ns anc specify that f,(a) must satisfy
the periecicity concition [5)

fnla) = €1 £, (o) (37)

tor n =0, 2], #2, **+ ., A solution with jump con-
citiore acrose the r'h blace in proper form is then

saroy
'

®u.n "n"r) = S

-t N
~l(n-phk“)5 "(l°'"uku)'n"u‘b')r|].
» vn(a)r ¢ Ca

-t

(28)

vhere sgn y = *1 for y 2 0. The branch points for
vy ere set at #(w, * 1ey) where  of « k{ ¢ &PIQE
ENe ey, Vs @ smell cemping term, Now, 2¢ in [2],
et & = Me, anc Im k. = ¢, then along the integre-
tion corteur of (38) Im (a - Mk,) = O, Im v, > O,

anc lexp{if(a - Mky)rst ¢ suvlynl)} < 1. Summing the




contribution of each blade to the potential yields a
qeometric series which can be expressed in closed
form as

N

0, (xy) = ®uonlXne¥p)

e M,

~f(a-M Kk, )(xesh)

1 & 4
-y 1°(euu\u.y)e Oa
=tie M,
(39)
where

i(A ‘Guvu)')

sin A~
u

i(a' # )
= M
e Uu u'u

*+ T for 0O <y <s
sin 8,

e

: 1
Au(n.)) z Vit

(40)

anc

4
) ll(r-Mki"oS'
u 'Y uu

*p oy S)- (41)

u'u

Applying tie flow tangency relation (5) to the sur-
tece of the n .« “ blade yielos

k(“) _'_._t: |
i o "7
-‘thh - -
' ~1(a=M k )x o X
¥ '((u)lu(n.(‘)l‘ AL v
wtie N
Ut

(42)

s x + st 0 and where

< (a,0) & 2A /2y . (43)
U u
yel

The potertiel of the irrotational fiele produced up-
ctream of the cascade must be continuous across

linec vy =« ne extercing forwarc of the leeaing eoges
cf the blades., Applying this bouncery condition to

(38) &t the zeroth blace yielos

."I|F ~
: ! ~1{a-M K Ix, .
- Ve (a)e s Cae 0 for x <O,

-o*i¢ M
v

(44)

fquations (47) and (44) are in the form of the upwash
ana continuity expressions of Ref. [4]. They djiffer
from those of [2] only by the presence of iqll

fw

in y_ and by the distortion pattern, e “’v ’
placmg the flutter motion on the right side ct
(42). The integrals in both of these equations ere
in the form of inverse Fourier transforms forming a
two-part boundary value problem which can be solved
for fola) by the Wiener-Hopf technigue [6]. Utiliz-
ing unilateral Fourier trensforms [7) over X, the
two equations are combineo end then factored and de-
composed into parts which are analytic in respective
half planes as in Appendix B of [2], have a common
region of analaticity between them, and vanish at

=, The solution is completec by use of Liouville's

theorm giving
k
< u

fO:O) . l'u A
(. - n‘: . "0) :“(o)

Here eq is a camping term on the distortion to en-
cure convergence as X, « « and can be set equal to
zero upstream ot the shock.

The selution for f4(a) requirro that «, (a)
could be factorec e¢  «,(a,0) = «j(0)/xj(a) where
kla) end «j(a) are analytic and non-zero in the
upper (Im a > M,c,) and lTower (Im a < M;c,) half
plares respectivr% The factoring procedurc of Ap-
pencix C of [2] yﬁf\cc the results

-h € -a s}/

Y‘---

(a5)

/v;) (46)

« (a) = €
4

and

Ne-wm Ne-w
¢0
(47)
: o112
+ t £ L
ru . (.( - aus) # (48)
o  wst N 10 ) S L'Z“{
Von® T % + (rr ) - ‘:: v ¢ (48)
¢ [§ #
u u u
r(h) e ¢ M t .t
P L Lk, S - r)/(“. (50)



Equations (46) through (50) differ from those of Ref.
[2] only by the presence of kg 1in the definitions
of yy, and vp.

gubstitut?on of (45) into (39) enables determi-
nation of e,(x,y) by the methoc of residues. The
path of integration is closed in the upper half-plane
for x < -p,(s - y) and in the lower half-plane for
x> -p,(s - y).

APPENDIX 11
SOLUTION FOR ACOUSTIC MOTION DOWNSTREAM OF SHOCK
An infinite “duct" solution to the convected

wave equation for downstream running waves can be
ohtained by use of the method of separation of

variables. This gives the result
L .
inﬂld
.guct(l'y) . % 6, € c cos (ngxlgl‘ (81)
¢ _,le)
V., 'n
ne0
where
# (d) ”
& Mgkg ® 3p (5)
and
- 4 o e
xﬁ“) . 1[{n-/scs)’ - k; + k;/a:] (63)

By chapter 5 of (3] the cascade potential for up-
stream running wéves can he expressed a¢

cascade 1 Tolalaglay) ~tla*Mok )x,
L (ry) = 73 R ¢a

d

(%4)
where, n slightly crfferent nomenclature thar [3]
ia’ 17
: . ‘o"o‘r’ . Ac !(vcy
A, ¥ . ——- (5%)
¢ 7 ein 2" sin &’
¢ ¢
) 1 + + .
8, * 7 (n * Mk ? e ) $ Bv s8It (56)
s 2 s1sid
Y ] (n' - h’ﬂ ¢ k;/.:.) ”‘7.‘

For thie
let

lineer problem, where cuperpcciticr applies,

(58}

By (54) anc (58) the zero upwash condition will be
catisfied if

-1(.-040&6);0 .

da =0 for x_ <0

'o.n“)'o("o:' "

(59)

where

<y (a,C) = -’Aolb) (o ¢ klec)-l (60)
y=0

A relation specifying zero pressure jump across lines
extending in the cownstream direction from the trail-
ina edoes of the blades 1¢ obtained by substituting
(51) and (54) through (58) into Py = (fug - 2/2x)
(og“‘ + 044020 ang utilizing the periodicity
relation. The resulting expression can be reduced to

- -
“~1ar
) ‘ -
'n’n(a,r Ca

. - & ‘4
l(r""'w(‘k(‘)lr 1(rns -o*ne -
r e e - for »x, >0

(o

(61)

Solution of Eas. (59) anc (F]) acain constitutes @
Wiener-Hop! problen which can be solved in much the
came marrer as in the supersoric case yielcoing

‘(n;t’-r'nﬂ)
]l - e

1 la) o e (62)
eun ;'*(: . x‘(’):;(o)

Hére 1t 1¢ ascumec that ¢ car be tactorec into
the torm «jla)/eglo) where «i(a) anc «ila) are
arelytic anc nen=zerc in upper anc lower helf planes
respectively, To perform this factorizetion sub-
stitute (55) into (60) anc obtair

. . .
(o * hv’"e"a‘“'b) PP cirh larvcs)/(k sin 2, sin Ac)
1€3)
The numerator of (F3) cérn pe factorec by thy
Weleretrase factorization tormula [7]. FPaoe 40 of

[6] 15 helptu) for application of this theorem to the
ceneminator, (hoose the half planes &s in Fio, 8 of
[¢] but with preanch pownte ot yo at #(9o * Veg)
vhere v = ki - kg/#g.  Then
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(0 = wy) sin (odods)e1'b"

« (o) =
“ o,,lr.of{u‘,ods) - cos (, . "d*d‘F)](’ : "'3

] - alln(d)

' | (1 . ./.;) (1- ol-:n)

(64)

anc
-\, ifab/»
. (o ¢ kd/Mc) 1 - oluo 3
egla) = (o * %)
(1 B °/°;) (l - °":n) (65)
’ 1 e/)uW
n
n.]
where
b o "[:]: v~ un"(nﬂ/s')] . “c"“(’“c/":)' (66)
el (?n. - ncucs')/c;. (67)
1/2
r: ' (s’? + \is?) > (€8)
- 1/2
o (o st, et ey L2, R
o, 0l T'iF(rn)’kc .—(' ., (69)
% ¢ ¢

- 1/2 1/2
anc y, in equel to Ikﬁ - hg/lzl anc 1Ik£/05 - kgl

for k°, areater than ancd less then h7/.? respec-
tively. Equations (64) through (69) r‘ou?e to those
of Appencix € of [2] e kg « 0. Substitution of
(62) anc (55, through 582 into (54) gives an inte-
grel erpression for 0{‘* 8C€  which can be
evaluateo by use of the residue theorm. The inte-
granc of (54) cen be expressec ¢es 1 « 17 - 17

vhere the o cepencence enters 1y @«

cosh h(_o(y - s)]/[o‘,o?l:,(a) sinh (nccs) exp (h;c)]

S a e -

and 1 as

For 1; the path of integration must be closed in
the upper half plare (UHP) tor Xq < 0 and LHP for
ig > 0. The path tor 1, must be closec in UNP for
%o < st and LWP for 4 > €T, Finally, the

total umplitude' oy, for 0 <y < s fc obtained by
combining Ul with egoscace,
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Figure 1, - Orientation of upstream distortion with respect to cascade.
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Present theory: top surface
Present theory: bottom surface
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(a) Distortion and cascade at basic reference conditions of Fig-
ure 2along with S = 1.3, @, = 20.0, and kq* 3.

Figure 3. - Pressure distribution on zeroth blade.
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(b) Distortion and cascade conditions same as Figure ¥a), except that o and «, are reduced to
2n/8and 20 V8, respectively

Fiqure 3, - Concluded,
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