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NOMENCLATURE] Ku,Kd branch points	 in	 o	 space
Km . r combination of terms defined by (?3)

A,a	 distortion amplitudes	 in	 x	 and	 y direc- jr m combination of terms	 defines' by	 (24)
tions	 of	 Fig.	 1 ku.kd wave numbers = Mu. 0 /s^ 	and

,C	 distortion amplitudes	 in	 I,J,K	 direc- McWc/0c	 respectively
p •	 tions	 of	 Fig.	 1 "o sparwise wave number = vq/h

m	 ar	 comhinaticr of terms defined by (32) L mean circumferential 	 distance along blade
o	 B	 coefficients	 in	 (58) row
ri	 b	 constant	 in a convergence producing term Y lift

^'	 of	 Ka(o) M Mach number
b i,j	 roefficients	 ie description of	 subsonic ,,,f' moment

vortical	 flow	 'n	 X19) N integral	 number of distortion transverse
c	 chore wave lengths in distance	 s t	 along	 x
d	 mean circumferential distance between Pu,PC amplitudes of	 pupa

blades.	 Fig.	 1 Pu,pr pressure perturbation non-dimensionalized
et,d^	 combination of terms defined by (48) by	 ruse

and	 (68)	 respectively p q Fourier	 ircices	 it	 (1)
f	 arbitrary fur•ction Q combination of terms used it (Nt)
h	 blade height R combination of	 terms used	 it	 (30)
z	 irtegrand of	 (54) S solidity = chord/blade q ap =
1,11 ,K	 unit orthogonal	 vectors	 in upstream dis- 11cimersionless	 c

tortion coordinate system s interblace distance along	y	 in Fig.	 1
i	 (_1)1!7 st (sin	 x)/S	 as	 in	 Fio.	 1

t time	 non-dimensionalizec by multiplying
by	 Atu/c

t ] . t 2 combina.iors of terms defined by (33)
arc	 (34)

mean velocity
*Aerospace Research Er g ireer. C.Vw amplitudes of	 u,v,M
I The velocit y ane pressure perturbations i,,1̂,r'. total,	 vs.-tidal,	 and	 acoustic	 velocity

cowrstream of the shock are the ciffererces betweer perturbaiiers non-dimensionalized
actual and wear downstream values, however they are by 4'u
non-cimensionalized	 by the upstream c4 oartities x.y,z hlade coordinates	 (Fig.	 1)	 nor-

4ru	 arc	 r 4'u	 as discussed on pg.	 574 of [2]. dimensionalizec by blade chord
xu,x t x +	 s f	 and	 x +	 s t -	 1	 reSpeCtivelV
Y1,Y2 ,Yo orthoacral cd n reirates	 in a fixed

frame upstream of cascade

o Fourier transform variable
o= combination of terms defined by (69)

^	
?	

112	 1/2
1)	 (1	 Nc)f	 .0, lM2 -	 arc	 -	 respectively

t



r^u) ,r^d)	combination of terms detined by (50)
and	 (67)	 respectively

ratio of	 specific	 heats of	 an	 ideal	 gas
1I1

k?	 kq/0 )-	 and

72	 7)117
kd + k q /eo	respectively

e t „ at , combination of	 terms defined by (41) 	 and
(56)	 respectively

e imaginary part of	 integration contour
for	 •u

63 Kronecker delta;	 . 0	 if	 i	 0 j;	 .	 1	 it
i.j

fu,fd small	 damping terms	 in	 y t,	 anti	 rd
respectively

rn combination of	 terms defined by (57)
e arbitrary variable	 illustrating perio-

dicity relation
rc t,,r d variables cefinea ty	 (43)	 and

(60) respectively
At., Ad combinations of	 terms refined by

(40)	 anti	 (55)
40) 4d) combinations of	 terms defined

tv	 (12)	 and	 (53)

u angle between upstream ano blade coor-
dinate s y stems of	 Fiq.	 I

v direction of	 transport	 of	 upstream distor-
tion with respect	 to axis of
turbomachine

Nip combination of variables defineo by (0)
density

interblace phase	 anqle aefired by	 (3)
• amp i 1 t LAX Of	 i
(P velocity potential
x stegger ang le =	 v -	 u

+ kQ)	 am Iwo + ko)	 respectively
\bu

rc,td
11/2	 112

(kd +	 /au/	
and (k0 - kQ/ed)kQ^ t . tyd

respectively
A arbitrary	 function	 in	 (13)
^• frequency . ?rp1'bIL	 in dimensional

form

W u •b'c reduced frequencies	 b•c /*, 	and
r.•c	 o	 respectively

SUBSCRIPTS:

b blade
d,u downstream and upstream of	 shock

respectively
n integer
p.q Fourier	 indices descritin q upstream

distortior
5 shock
I.7,? correspond to	 P,.,K	 and to	 x.y,z

cirectior-s	 in upstream distortion	 and	 in
blade coordinate systems of	 Fi q .	 I
respectively

SUPER SCR iPIS:

d.0 downstream and upstream of shock
respectively

•,- upper and	 lower halt	 planes of	 „	 space
implies	 both vortical	 ono	 acoustic

properties
• vector
•• unit	 vector

INIR0DUCIION

Associated with high performance axial fans aria

compressor: of aircraft engines are slender blades
with hiqh tip Mach numbers [I]. Such blade rows may
be vulnerable to distortion of the oncoming airstream
such as atmospheric gusts, wakes from upstream struts
and quide vanes, and malcistributions in air inlets
and ducts; all of which tend to force the blades into
vibratory motions. Of concern is the influence of
strong shocks, occurrinq in blade passages. When such
shocks, couple to the distortion pattern they can have
an oscillatory influence on the blase pressure dis-
tributions, forces, anti moments. The influence of
the blade row on the distortion is also of importance
since it passes on to intluence other components of
the propulsion system.

the recent linearized theory of Goldstein,
Braun, and Adamczyk [^), which analyzes unsteady flow
it supersonic cascades with strong in-passa ge shocks,
is applies to the distortion problem in the investi-
gation reporter herein. The flutter boundary condi-
tires of [?) are however replaces' rith those of the
three-dimensional distortion of Goldstein [3]. This
disturbance profile (Fiq. 1) has compenents parallel
to, and in two directions transverse to, a mean flow
velocit y 4. Relative to the cascade the mean ve-
locity. *,, is supersonic in this study. The cony
perent of 4V u parallel to the axis of the turbo-
machine is, however. subsonic. The Mach waves from
the leadir q edges of the blades then extend forwarc'
of the edge of each successive blade permittinq in-
teraction between blades through the supersonic, as
well as the subsonic. flow medic. 	 this is usually
the case of interest in advance type fins and com-
pressers.

The cascade (fin. 1) is envisioned as an °un-
roller ennulus" wh i ch trarslates with a blare veloc-
it y V b.	 Inte gral multiples of distortion wave
len g th must however equal a mean circumferential dis-
tance alonq the face of the blade row. Spenwise flow
distributions are considered at limited blade Aspect
ratios altheuuh centrifu g al and Coriolis forces are
rcalected. Within the confines of linearized theory
blade thickness, comber, are Anelf, of attack make no
cortr• ibution to the unsteady forces (Chap. 3 of
[31). Such time inoeprndent effects can therefore be
superposed on the results of this study in which the
blades take the term ;t flat parallel plate-.

Separation of the flow into two distinct (sub-
and supersonic) regions permits solution of the
potential part of the flow field in each one by
adaptation of the Wiener Hopi technique [2]. 	 In the
first region a supersonic flow extends from upstream
infinity to a cascade which extends to oownstream
infinity. In the second re g ion a subsonic flow is
quidee by parallel blade passaacs from upstream
infinity, past the trailing ed ges, and on to
downstream inttnity. The supersonic solution is
irdepenoent of downstrear influence and the subsonic
solution is kept sufficiently erbitrart to satisfy
shock tounaary conditions. Matching of solutions at
the shock interface irvolvcs inversion of a larqe
nearly diagonal matrix. This is easily done
numerically.

In the present effort the shock is assumed to be
locater an arbitrarily small v i stance inside the
leading edge of the blade so that it doesn't disturb
the supersonic flow on the upper surface in this
region.
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FORMULATION

by the splittin g theorem (chap. 5 of (3)) any
linearized description of an inviscid compressible
fluid car be decomposed into two non-interacting mo-
tions; one of which is vertical are the other acous-
tic in nature. The vertical motion is solenoidal,
an( its ,uh s ten t ial c'crivative is ( g oal to zero.
Sheer layers, for example, are vortical in nature,
ane a re an effective means of formin g floe distor-
tions. The acoustic motion, on thf other hand, is
irrotational and hec a velocity potential which sat-
isfies the corvette(, wave couatien.

Vortical Motion Upstream of Shock	 %L
The upstream flow distortion of interest herein

is vertical. Its velocity (Fi g . 1) is specifier by
the double Fourier series (cha r . 5 of [3])

v	 >	 ( I la/po ' .1dpq ) Cos (rgYl/h)

P.o

a	 -.a/pgsin u • :dpgcos u,	 (4a)

A	 .a/pocos p • .0pgsin t,,	 (4b)

and. by the solenoidal condition on 'vtt.

L	 -^ipla//cL c ps v. -	 ?inD— la COS u ' Asir u).
k e L co , v

(4c )

Since final results can he supFrposec, erly one set
of Fourier components will be carried throu gh the
analysi s ; thus the p an 	 q irr i crs will normally
be emitter from the flow variables.

Acoustic Notion Up s trfam of Shock
The trial moticr, ur	 * ; u will satisfy the

irviccie terecncy concit un r-t the hl are surface if
the normal component of the acoustic (potential) mo-
t icr set itf its

i2'rnpY, /L COS v
' K( pd ° i r (raY, /h))e 	Il)	

(u) - 
` m r	 iou(%'St•rS cot v-t)

"^	 - ?y = -^ cos IF, g z)e	 l5)

For cash set of Fourier incites the distortion ampli-
tuees are .a/p d , .d pq, arc	 f po fcr nrlren it the
three orthogonal directions ,, J. air K. As in [31
three is an inte gral numher, p, of dis.ortion wave
leroths paralicl is the face of the blare rev, whcrc
L i s a mean circumferential ristance. The spanvise
wave 1Fnoth is the huh-to-shrove disterce, h. Cividee
by Fourier ircex a. bistence arc' velocity arc non-
vimfrsioreli7eC by ble(r Chrr y arc wear upstream ve-
locity, 4i t ,	 of Fi g . 1, respectively.

Trevsformetior of (1) to hlaee cocrdinetes
(x,y,z) mrvirg with velocity Vl, relative to -f/
civrs the vcrtfcal notion a hernraic time cepFneence.
Ir th r s system

-iv, t
Z 	 a e	 u	 cos (/,'d 7)V,	 (!a)

where time ha s been non-dimensionalizeo by &,,/r
err whFrF

VIi,)	 Ale

C	 Vlu i	 = e'bu(x•st'y rot , 1	
1

i	 r

t,(u)	 (kgz)( /,:

for -c t <x-ns t <0, 0<z<h.end n=0, : 1, 2".
Cy inspection, the solution to the linearized

corvectec' wavf Foliation,

(V^ - D a lbt^) 	 = ()	 (F)

which satisfys ( F ) is of the form

-lu. t
^u	

-a cos (k oz)F	 u	 m t (x,y)	 (7)

i b t
^a = a e	 Vcnc 

(kez)cu	
(ee)

vhf rr

-a0 /a,u

aft,/ ;, Y	 (eh)

g tan (F,gz)•t,

Tht

Note that ih( z comprrrnts of both Eqs. M and (e)

	

(?b)	 irriviouelly satisfy the flew tan gency condition at
toth the hub and shroud.

are spare — rave number, k g . is couel to .o/h.	 Dretsurf, pt„ is a s sociated with the ecructic

The exprncrt in (ih) cFts thf irtfrhlece phese ?role,	 rretion. $ M isti(s the wave eeuation, and can also be
e xprf csee in the form

r = b uW * S Cot Y) • 	(3)	 _	 r4litpt	 -? F	 cry (k G Z)Pt,(x,y)	 (5a)

The x and t cfpendence in (7a) arc (kb) togethFr-
setisfy the crrr i t i rn that thF cuhstert i el rfrive-	 rhfrF

tiv(. Irvu/[it, is eoue] t p zero. The componerts ct
the cistortior amplitures in the x,y.z circctions 	 F	

/	 `	
(9D)ere rcw	 U	 l U '•% J	 U

7
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OF

The procedure for solution of • u (x,y) by use of

the Wiener-Hopt technique is given in Appendix 1.
The results for 0 < y < s are

•l,(x.Y)

r(
+ 	 + Y	 )	 + t l

k u	 a - iL`vr - Mu k u) x u	 5 ( tdar ( 
u

	

n	 - vn s /]
-is K_L l 	 k

\ 1,	 rv•	 a1 K - v • 	 dtr (u) 	 v•<f1n	 F^1[u(n)] (u n	 n )
n.

	

for x < - eu (s - y)	 (IN )

where

anV

00(x,Y)

i(r-W st)

i,,,xl	 Inch [ Il ( y - s)] - e	 u	 cosh (ruy)
` -P
	

- -- --	 V
U 

s inh	 u s

	

s	 --

(Mtku-?nu )lx	
+	

IK 
k ♦

y (u ))x

eo. `	 I—
k u	 (u)	 k 	 +	 (u)
F - an	 l u xr

n:

which satisfies the spanwise wall tangency condition
and has a ,uhctartial derivative equal to zero. 10
Satisfy periodicity let

i W (xh,s t )	 iW x
C d
	 6(y • nS) = pine e 

d 
h (Y)	 (14)

for b l ade number n . 0, • 1, •!, The solenoi-
dal condition will be invoked later, completing the
Splitting theorem re quirements for vd to he vor-
tical.

It is anticipated that a part, 'vd , of vd can
he found which is both vortical ano acoustic, as in
Lo, (5.le) of [3]. (omhinina vd with the poten-
tial flow, w t„ may then Simplify determination of
the remainino part of v t . Such a proceoure.is
used to advanta ge in	 Assotialeci with vd is
a potential jo such that vAd • ve, ano sincg

V • ^d . 0 it follows that v d jp - 0. Since vd
is vertical, jo makes ro contribution to the pressure
disirihution. Let jo take the fora of (13)

i (W x -W t )

ao	 a cos (k 7)e
d 	

ll	 f(y)	 (15)

Fnr od to satisfy Leplace's equation, f must
satisfy

- 1Wd • half , f..
	 0.	 (16)

A solution of (16) which enables j c. to satisfy
per ioriciI^ as wcII as to cancel the normal romponfrt
of ve at the blade Surfaces is,

q?(ns)	

lf	 Y S tnh t+.s	
cosh(tos) cosh [ t cl	 - ns)]

a'	 c

1lot) 	 - cosh [r d (Y - ns - S ) i
)	

(17)

where t	 ^` .71 , The subscripts 1,7,3 0,	 a
ieertifyo the 	cogpeneFts of n in the x, y, and 7
directions respectively,

111)	 Substitution of (1?), (15), and (17) into the
iucrtif)

for x > - 0u (s - Y)

where

	

e
ilO-n.)	

e i
\Ml k u'^n

l,)1St 
r_(k/Mu	 t )

O r 	 i^ 1, e ! < I -+ e 0 	 x /=z lu \•

	

n	 u	 n	 u	 n J

/r 1/i

gnu) - I i^)( 	kt 	 and	 _ /^,^ 	
i\1/i

u (^_o
B	 u \ u	

I 
of

1.

(1?)

Substitution of (10) into (R) and ( G ) determines the
velocity of the acoustic motion and the pressure in
the supersoric rroien ahead rf the shock.

Vert ical Motion DownStrPam of Shock
In this regi en l et the velocity, v d , take the

form

(Wdx-Wilt )
vd = a c p s ( k g z)e	 6(y)	 (13)

vc	 ( v t , - amt )	 vm.	 (1A)

shoes that the first term (vd -Vi ) makes no contri-
bution to the blare bouncary coneifions (since its

y component vanishes at y . 0 and s) although it
does certributt to the matching of flows at the shock
boundary. With sufficiert generality the strictly
vertical part of (18) can thus Le sufficiently des-
cribed by Fourier sine and cosine series as

4



I
Acoustic Motion Downstream of Shock

The Acousli c field nownc rtam of thr chock is
composed of two parts. An infinite "duct" solution,
to the convected verve equation, having downstream
runninq waves accounts !or shock boundary condi-
tions. A "cascedt" solution, on the other hand,
g ives the upstrcan (or ret It( ted) waves. Each solu-
tion, as well as tt, t vortical ntotion of the pree,^dinq
section, individuelly satisfies the wall tangency
connitior. The sum of the two ecoustic solutions

	

must satisfy the Kutta condition.	 In both solutions
the velocity potential, . d , ,grin takrs the torm

'tY t
a cos (kdr)e	 t,	

0(x.y)	 (^1)

my /s)

t,	 cos Otry/c)
m_1

(19)

F—

A

1S-

Vd(x,y.l) .

b I'm Cos(
nt 1

i ( Y , x- Y, t )
e cos (kgr)e	

d	 u	 i	 b2 msi
m.

-h Q tan (F.gr)

and the v;d port nt (1A) rill be induced in
wd • vir d . This procedure is close to that of [71
which utilizes a stream function for a two-dimen-

siorel vortical motion.
The s lencical condition has already been in-

vokec in id. Usino it in (19) for y r	 gives

the procedure to obtain the combined potential

tid - quct . O cd ascade is g iven in Appendix 11.
Tht results for 0 < y < s are

•d(x.y)

Y,
d

b
l.rn • ma b. m ♦ ikab l.m . 0.	 (70)

a

1 n x

1	
bne	

n

i	 kr	
alr)

t• '	 n
n=0	 `	 m•0

ri c^

^^ Knu, r 1 Ĉ  ̂  r n s ""^'

n

	

for 0 < x < 1 - s +	 (2211)

	

a	 1
cos /rat	 t L n	 lrr r	 .in [+1

	

♦ d (x.y) •	 Et	 - —	 — — • P
	 erina-c) _ e
	 n+	

JI r	 (d)	 t^n c _r • nwI	 r.

n•0

K d -a^ cosh [t (y - WC	 cos 1 - Mo ,c	 - s n ]X (an	 o	 •
	 Mo t

 m	 n	 m
k	 k

	

(C)	 d	 drr 	t '11	 i^n •Mk^x	rra	 Icosh (vs) -ens (r - Y , s )
J 	

k 
C	 Cm C C

I

	

n	 F' C! 111	 d	 d	 1 n^ • pr e

'
-s 

1	 f ^	 *^ ins ` S J
f or 1- s	 c x< 1	 ( 2 2b)•	 h k	 :	 -

l

m m,n	 ; n_n-c ♦♦ na	
1 (t(d)	

kd/

n	

1\
a

r
	r.0	 m.0

F

t•L.



a^

i,nd

	

in+	 • t	 Id)	
i( ^-a dst)

	n 	 -ir c	 c	 ccch (t
d (v - s)) - cosh (td

 v)e	 i x

• iv,y	 l	 (^ r _ ret(rr-n) -p	 n	 ^ n ) 	 r, d
k	 _k 	1

(,)
(?^ d) -	 Kd	 ^Cnsh (i

ri
s) - C0: (r - WrSt)

J
ne0	 \	 d	

d

r (	 l t

cos (1 - ^)(d t rmd) - stnm/ - roc	
(dt r (d) - ctnm/ r'Lr+\nm+Mdkd/s] 	 Id)__	 _	 `\	 J	 -- m (" )	 for ] < x.	 ( ? ?c)

r
kd	 ' (°m4M0kd xd	

`

1"n	 Pr r

where

11,

	

-lr	 1 r-	 „
In	

s
st 	 t

r
, \_ 1

m,n	 1 , Fo
r

r	 1	 MIM"

a y p d	 u	 1 u	 o	 r 2
Pued

V!	 avlc )	 t1	 av!	 av^u )

ai	 av	 .{fir	 ax	 - ay	 l2F)

K- anh 
J \'r

r	 c +	 c	 c.
K	

c
r An	 n	 tm	 P c vm

Jr-(a(r))m n

(?3 )	 arc

M^M^

8u@d

K - ( s ic)	 r t r lC, - n-st
d 1- r	 ^dm	 m

Kt (nm) r
f/s t rnlc 

- omcr l (nm + a r c	 Si r, (nm s t - 
dorr 1

(24)

t, _• !•`, arc to is the Kronecker delta.
DFttrnrn^tron gof the cFefficfents s,,; of (22) and
b 1 r (j = 1.x,3) of (19) and (;D) is Marc possihlf•
wAtn the aoritioral informoticr supplier by the
follewin q three shock relatiers.

Relations Across Shock
The 	 ow satisfies the Rankine-Hugoniot

rcletiors. Shock curvature are cisplacemert are
treAtee as perturbatiorc as in [8). The cownstream
vorticity. loraituair.al velocit y , evc pressure arc
r• clated to the upstream vorticit y , longitudinal veloc-
ity, arc, pressure by tt'e follcvino three eduationc;

•

Ic)	 Mu	 1	 +	 (u)	 1	 7 , l
	

r - 1 rh.
u l 	 ?me	 p c 	u 1 	 hu	 +—T 

r, 
pu

u	 u

(25)

r av(r}	
av ( " ) av

(u)	av(o)
3	 ]	 'qu	 ?	 1

CC	 ax - -	 ?7 --	 l27)

Thfse cquatiers differ from these of [21 b y aoditior
of ar upstream vorticity ane a sponw i se distribution
of pressure and velocity.

Mat chi ng of Solutions at Shock 8ouncar
E q uation (tF car easily be comee with (27)

to %itlr

(u)	 (d))	 ( (d)	 lu))v3	
- v 3  / = k q t=r 

(kq7) v t	 - v2
r

(28)

sircf the 7	 irperecrcc crterc only tthrough
cos (kq7).	 (ombinino (28) with (2), (19), arc
solcnoicel coreitirn (2G), and utililino orthroonal-
ity relations between sine terms. permits determina-
tirn of bl . n ore b3	 in term- of b2 n
ane known quant i t i es. ^Tp he cown c treem vortical y flof-
ity of (19) car row he expressed as

h



i (w t+w x )
uVC (x,y,z) - a cos (k g z) e 	

d

m	 1
' (k gs/m,) ` 	?isRn,(ka/rwu)`	 nom

	

+	 Ions(	
)

wd5 mn 	b?,m	 n^ exp twx 	 \ 5

X
	 b2, msin (mry/s)

-k tan (k z)	
cb

2.m 	 2sRm	 Cos \mJy^q	 C	 tmn	
mn wa exp (io,r x )	 s

nrl

(29)

where

1WllSf
Rm = woe

r	 yy

	

or	 - ( -1 ) p1 exp ( i4 s ctr t,

^c' 
x 11 + i e w u (cot u) 2

J 	 m 2	
^—

LL	 - (w as etn ^/e)

for m > 1 = 0

=0
	

for m . 0.	 (30)

Use of (?), (7), (9). (IOh), (21), (2?a), and (29)
for velocities arc pressures it shoe:. rol °:;ors (25)
giro (26) arc utilizing (377), (378). (488), (489) and
(592) ct [9) gives the fcllovir g eouatron fcr bn
in implicit form.

kg (^FY - N. - MI) 
Bi

r	 c	 Bdhiu	 r

. ^	 en kQ(?MuF1^ - Mu - Mr ) e-inr(1-st) 
r g K

r	 r	 Qtr	 M.0 m m,n
pr u

	

(1 - t )	 0 	 ne z	 h ?  ( M 2	 1 B2
toy	 to

	

Iik M	 sk

	

x COr + 0n
)e

n
)1 Q r= 1 —^	 (31)
\	 / red

where

?

a^ _ (and)) : ',I kd00 + (k d /ii lt ) 2 	(32)

i	 It
	 ni.	 cot u

	

tl - `; cot u e 
4 u 	 e ` u	 ^^_1(33)
s 

G, cot y)^
to

t 

l 

t(r-y S*+nv)
J2 w 	 i4' ^	 L	 11

t	 [	 u e	 t'	 a	 -1	 (?4)2 s	 (nr 1	 / , k?
c J	 wU	 q

Thor left side of (?1) recuces to (?.23) of [21 as
hq - O. The riqht side of (?]) however replaces
the flutter terms of [21 for this distrrtion prob-
lem. Solution of (31) for Br is by inversion of
an irfinitc matrix. Tl,e off-ciagcncl elements of
this matrix came from the second term of (31) which
represents acoustic veves reflectrr from the back err
of the cascade. These are rapicly cecayinq waves

for (rr/P s) e + (k /B,) 2 > kz . M2 wr,104 	So that.
ir prect 4e, (31) Panc be app^nxtmui pd By a nearly
dia gerzl matrix. This can be further truncated to a
reascrebiv small number of terms. Numerical results
SL,ogest that as few as ter terms alcro the- diawal
may, at times, g ive satisfactory results at values of
recucec frequencv less than one. Once the Er, are
krown the coefficient b- n in the Fourier series
ct (29) car hr otteined ^rom shock relation (26) as

n*	
-ir-0 - sf)
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Use of	 (?5) in	 (29)	 determines the subsonic

o yu t  ? vortirel	 velocity for 0 v y<	 s	 arc x > 0 whereas
rt	 v	 -

t	 A
h 	 t l[(a,)	 r

/crt	 ,, use of partial derivatives of	 (22) in	 (21)	 determines
the correspercing acoustic velocity components.	 Use

f

i

Z _--
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of (10) in (8) along with (2) ana (4) gives the

acoustic and vortical velocities for 0 < y < s and
x < 0. Pressure can be obtained by use of T9) and

-fW t
its subsonic counterpart pcc ^ a e 	 u cos (k z)
(ion - a lai)• .	 Extension of equations to other
blades and channels is simply by use of the perit^-

dicity conJition en(x + ns f , ns + y) . einr eg(x,Y)
where a can be any of the physical variables
• t„ Vu, P u , •d , Va, ana P d as in P I.

RESULTS

Variables which may be arbitrarily (independent-
ly) selected for input into the formulation for the
general case are ratio of specific heats, r, Mach
number, M u , two of the three ang les, u, v, an,' x,
cascade parameters S, h, and either phase an g le, r,
or frequency, Wu, along with aistorton parameters
L/p, q, and either amplitudes a and A or 51
and .al. Certain combinations of these parameters
give a very orderly upstream distortion (vortical)
motion which in turn, through the blade surface
boundary condition, results in an especially clean
acoustic motion upstream of the shock. Numerical
results based on such flows are relatively easy to
irterpret and should aid in the analysis of more gen-
eral cases which are within the capability of the
theory.

As it Fig. 2 let v . 0 and -v • x . wave angle
given by Sir- I (1/Mu ). Then -cot v. ou = s/s + . Let
one transverse wave length fit the distance Bus
along x and let S t	NPu s fppr integer N. Then
6^ . I/N and Mu . (1 + 1/N ) I/ l . This wave pat-
tern has a negative phase along ay . s which off-
sets the phase of the cycle alon g ex . eus, leav-
in q r . 2n(N - 1).	 Using (3) alono with d . 1/5 =
s + (J + cot2 v) it follows that .0 . 2.(N - I)S(1

cut? u)/(I - cot' u). The lowest N which clear-
ly permits a subsonic mean axial velocity has a value
of 2.	 For N . 2, c . 2*, M ir - (3/2)11 2 , and

X . -u • tan-I %/T. Selecting a solidity of 1.3
then gives wu . 20.0 (which is the passing fre-
quercy) and circumferential wave len g th Llp . d
0.769. Amplitude ratio Ala is set e qual to 0.
Amplitude ratio C/a is then equal to -4.7 ilk Q

by (4c).	 These results, along with	 -t . 7/`; and

kq . P13 will be used as the basic reference con-
cition for the numerical results hereir.

irfluerce of Distortion on Blac'es Pressure Distri-
DUT Ion
—pressure cistribution along the upper and lower
surfaces of the blades is given on Fig. 2(a) at the

basic ordered condition. The short cashed line in
the supersonic region represents a single airfoil
solution [101. Consistent with the reference cascade
conditions on Fig. 2, the input to the airfoil theory
is a transverse distortion havin g a wave length equal
to s t /2. The resultina pressure distribution is
normalizes to match that of the rascace solution at
the leading edge. The short wave length (high fre-
ouercy) of the 8essel functior solution of the air-
foil is characteristic of the ca s cade solution also.2

2Use of a reduced frequency of 20 thus permits
comparison of two mathematical solutions to the
linearized convected wave equation (6). It is
possible that (6) may nct offer a suitably accurate
description of the motion, however, at such a high
frequency. See, for example, chapter 1 of [111.

in the cascade this short wave leng th characteristic
is carried a short oistance oownstream of the shock.
The periodicity relation, •(x,y) . e- r •(x + sf,
y + s), is used in (22) to relate pressure on the
lower surface of blade 1 to the upper surface of
blade 0.

A second cascade solution (not shows,) for a

distortion with a phase angle of r/7 with respect
to that of Fig. 3(a) is obtained from

ImL 1 LI t
e u /a cos (k z)]. This has the same wavelength

characteristics and q in the supersonic re g ion agrees
with single airfoil theory. Consistent with shock
curvature and displacement, the pressure perturbation
amplitude increasea for the imaginary part, but ce-
creased for the real part of the solution across this
bouncary for the reference conditions of Fig. 3(a).

The solution for Fig. 3(b) is based on the same
set of parameters ( t or the oraeroe vortical motion)
as Fig. 3(a) except o, and therefore . 0 by (3),
are rerucPa from the basic reference conditions by a
factor of 1/8. Single airfoil theory is no longer
close to these results and has been omitted. Trends
are quite smooth and, of course, much more gradual
thar those of Fig. 3(;).

At very low ioterblaee phase an g les, < jr (0.01),
the pressure profile (not shown) across the channel
is quite uniform and the pressure amplituee in back
of the shock on the upper surface epprrectes that on
the lower surface near the leadin g edge.

Influerce of Cascade on Distortion Profile
F i g ure 4 uses the same as c re erence corai-

tiors as in Fig. 2(a). 	 Envision Fig. 4 as a view of
the x-y plane o f a blade channel. Loceteo in this
plane by use of the solid symbols are the leadir q and
trailino edges of blades 0 and I and two reference
Mach waves. Also located at various x statiors
are y distributions of the real part of the solu-
tion fer the thrre trarsverse components of velocity
in u2v2 + w	 Far upstream of the cascade
the amplitude of the acoustic motion (given by the
short cashes line) goes to zero, however the vortical
motion (long dashed line) is transported undiminished
as if frozen it the flow. 	 in the vicinit y of the
cascade the acoustic motion with its characteristic
short wave len g th, cu( to riffractior ahcut the lead-
ing edges, becomes quite prominert. Once inside the
leading edge heck wave of the nearest blade (blade 0)
the transverse component of the acoustic velocity,
wW, is noticeably large only in the vicinity of
the hla a surface. The amplitudeamplitude of the total mo-
t)on, u^ u) , away from the well is then mainly tort,
prised of the relatively long wave length vortical
motion. v 7	At x locations between the trailino
edges of blades 0 

are
	 the amplitude cf the acoustic

motion again becomes quite prominent, where riffrac-
ticr in aaain ercoun eceo to satify the Kutte conai-
tior. Eventually w d1 decreases at large x to
the asymptotic value at the last station, x . .. The
amplitude of the vortical motion continues undimin-
ishPc far eowrstream of the c6scece and is net plot-
ted at the last station.

The y distributions of wi u ) has much the
s mi nature as w^ . Although A. ono therefore
Y u , are zero, a longitudinal component of vortic-
i y velocity, vi al , arises at the shock. Beyono
this station both acoustic and vortie 1 motions have
trepcis with x much likF those of w; o) and
y; dl	Recall that part of the vortical motion,
o has been included in ♦d thus simplifying the

well bouncary condition.



the y oistribution of w{ u ) also follows
a pattern snmewhat sjmilar to w

l
7u) . ihf influence

of th	 hock on w	 is small Dut quite pronnunceo
on w d	 for the particular set of conditions of
Fig.

the z distributions of vertical and acoustic
motions are not plotted since, by (2). (8), 1 )9) and
(39), they simply vary as cos (kqz) for the trans-
verse components of velocity and es sin (k q7) for
the 5per0 se components in both subsonic anr super-
sonic regions.

Influence of hist ortion en d Ca s c aee Per ^met rrs on
Lift lend Wrvlcnt
--- Lift; anC moment, .0, were obtained by inte-
oration of the pressure eictribot i ons ever the blade
surfac=s. Moments were taken about the center of the
bladf locater at	 Ili - S t .	 Plots of the ima.ti-
nery parts of lift enC nrmfnt vtrSUC the correspond-
inq rfel parts (chap. 9 of (12]) can he used to inei-
cete the hntlufrcc of various eaccerf are distortive
p„rameters in stability studies. The crntribution of
chock movfmfnt to these :rrp.s can he obtained from
plots as on Fie. 5(a). As in [?], the shocks are
assumed to bf Attarhed to ilit lower Surfaces of thr
blades (Fig. 1) arbitrarily near their leading
e(loes•	 the ellowcd risplacemtri c , x s , nt the shock
I  on the upper hlrrt surface, however,_cau-
ses a lift YS , with amplitude equal to 00 - pu)xs
within the confines of tinee.rizro theory. Herf fit,
env tic. are the Steery prfssurf' brfrrc arc aftfr
the shock.	 This effect is inclucer in the total lift

And moment of Fi gs. 5(b) end (c). These figures ere
arbitrarily plotter at an interblade angle of 1/F
that of ihf retfrencf set of ccnritiors es in Fla.
3(b).

ihf veriebles h Ana a enter the eguetions
for velocity prientiel (th(re f rre ter liti one mom-
ent) only as a/h and thus their influence can be
exprfscro by sparwi s r wevc runthtr t o . relh. This
wevf rumher shoulc be most inllvertiel en ampliturc,
# i, end • . whe n it is grfater then k„ Arc , kr
respecI i vfIi,	 lhia trine' is illustreter in Fic. 5 by
the leroe distance betweer tick marks on lhesf curves
Af high kg•	 Incrfa;e of upstrfem distortion ampli-
tude ratio, A/A, tenr5 to incrfatf the magnituor of
Y Ann _J` At 1Arof k o while prescrvine the spi-
rAl lilr t o depenoence. Lusps and/or loops charac-
Ier+zf bcth the Y. err .V curves. The magnituce
of Ys is a sionif i cent .A r t of Y.
CONllU1 1 IN6 REMARKS

'', influence of thf third oimension in this Anal-
imerilr throu gh thr ezimulhai wevf numbfr

ko.	 to Approaches rare Ihf final faeations.
Arc the	 .rlutior reduce to much the same form as
t hos e cf thr fli,tirr erAlvsi c of (21.	 1ht mein riffer-
ences are in the bourdery rflater term, whfre blade
ocf,llation exprfs c iors of (i) erf repl , cer by flow
eistertion express ions of the present study.

Selection cf a combinatler of cescacr arc cistor-
iirn parameters for a very ercerly iritial vortical

t icr g ives in turr, through use of the blare Surface
Gvuncery corcitior, an especially orcurly acoustic mr-
tior as well. Numerical results based on su-h flocs
are relatively eAsy to irterprft and air it the analy-
s i , of more general cases which are within the capebil-
ity of the thesr,. At these special cercit ►ons the
supersonic pressure distrihutior reouces to shapes pre-
oicteo by sirule Airfoil theory. Al hick Sclieit y the
periccic petterr of the nownstreem rturnin g waves In the

subsonic region of the rascaue is quite evident in the
blare pressure distrihution. influence of the re-
flecter, or forwero rurniro, waves is mostly corfined
to within a relatively small distance of the trailinq
ec,grs or the upper surfaces but is apparent over thf
distance 1	 7s t c x c 1 - st nn the lower
surfaces.

The strong in-passage shock has a lar ge effect on
lift and momert. Numerical results show large influ-
encrs of interblade phase anolc are therefore reduced
frequency• longitudinel as will as trenSversc aistor-
tion amplitude, and azimuthal wave number on total as
well As Shock inrucce lift ern moment, this suggests
that ary one of these distortion parameters could have
consinereble influence on the forceo vibration effect
in a stabili t y analysis•

APPENDIX i

SOLU110N FOR ACOLIS11C MOTION UPSiPEAM OF SHOCK

Substitution of (7) into (6) gives

i
e i '	 ?	 • 201 kuru ax	 (a uk u - k d ) au

(36)

A solution by separation of vari • bIt's is
txp 1-i(o - Muk u)' • OUyuy]l wfere o is an

]17
arbitrary corctArt Arc r`	

(^7 - k ?	 kq/rut

Multip lvine this result t,y f(.) erp r-i(o - Muku)S+]
Arc irteeratira c ••cr a( issahlc values of 	 o	 is also
a solution of the lineer hemo gfneous Ea. (10), where
f(o) is ve. to be retcrminrc.

Next, following the procedure of i-anr and Fried-
man (41, appl y this result U each of n blades
using the local coorninate system xr, . X - nst,
,vr, . v - rs anr Specity that trim) must satisfy
tht perioricily concitidr r51

I ' (0) - Orr fc(a)
	

(37)

for n . 0, •l. *:, • .
	

A solution with Jump con-
ritiers across the r th blaoe it proper form i s then

Sgr )^.

.•i!

f	
n(o a-110-Muku )st

I	
f

-i((a-Muku)xn•eu1J yr() co)

(78)

wharf squ y . • 1 for y	 0. The branch points for
ru erf, Sft At w l^c, • It 	 wffrf	 kz • k ^A
anc f u	is a Small cerrpif,q ttrn,	 Ncw. AS if, ^2.
let a . Mufu anc itr kt	 t t,. then alone the integra-
tior cortcur o' (?8)	 lm (e - Miki,) t 

0, lm 4 ) 0.
are ItIrli((e - hi,ku)rs t	 at,ru(yn)lt	 1•	 5unrIra the

1!



equations (42) and (44) are in the form of the upwast.
ann continuity expressions of Hcf. [41. they differ
from those of 121 only by the presence of kq /ez,

i.• >
fn " end by the distortion pattern, e u u
placIHQ the flutter motion on the right side of

(47). The integrals in hoth of these equations are
in the form of inverse Fourier transforms forming a
two-part boundary value prol,lc4n which con be solved
for fp(•) by the Wiener-Hopf technique , 16J. Utiliz-
inq unilateral Fourier transforms [71 over ir„ the
ivr equations arc comhineo enr 4 then factored and de-
composed into parts which are anal tic in respective
half planes a s in Appendix 6 of [?i, have a common
region of analaticity between them, and vanish a;

The solution is completed by use of Liouvillt•'s
theorm (living

i x u I F lo

o/

t

	

f (,:a) — 	 u --- 	 (45)

u

Hrre cc is a campin g term on the distortion to en-
sure converaencr as x u .. and can he set equal to
zero upslrrem of the shock.

Thr solution for fc,(o) required that 0100)
could be focterec e< c 11 (o.0) . c*(a)/cu(o) where
cplo) one 900) ore analytic one non-zero in the
upper (Irr o > fit,( ) and lower (Im e < Moru) half
plods respectively. the factoring procedure of Ap-
peneix ( of [21 yields the rrsults

-io (• ^-lr s^/'

	

c, (e)	 r	 u	 (1a/vr^,	 (46)

and

	

ct4 1e) - e	 'u	 a=` a sin (4r^ru')

-1

	

► r	 t	 ^	 . 1
u	 • -	 u	 •	 1	 •

	

r.--	 r	 n.--	
yr

00

(47)

J(48)
i

ll^
^r1U)`^ - 

► i 	 (49)j	

eu

• M'u ^ V	 r//CU.	 150)

•	 (u) S 	 ru
V 	 In	

et	
ct

	

u	 r:

	

r(r4)	 rn.n

rontrihution of each hlaoc to the potential yields a
gcom( lric series which can be expressed in closed
form a%

01P.O. L 0 
11,1POn)

n _

-4 1C M

-

	

	 fr (o )A r^^..Y) v	u U	 On

-• 4cuMu

(39)

where

r(eu•aufuy)	 r`eu-Euruy)

A 14 1a,y) 1	 e ` 	 f \—^ icr0<y< s
	sir e - 	sin e

	

u	 u

(40)

Prie

•
e 1	 Ir - Mu k u c * • os f • fHr u s	 (41)

Appt';(-ing t'. flow tangency relation (5) to the sur-
toce rf the r . ' blade yielos

(u)	 ° * u	 1
-W 7 	 xv ' 7-,

-•icuMu

	

-1(e-K k )x	 iW x

fola)cule.0)e	 u r. u de ^ c , u u

r
U 

(42)

for i14 1 x • St > 0 and when

c u (e,0) 1 )At./x.%	 (43)

IN potential of the irrota:tonaI field prooucco up-
stream of the cascade must be continuous across
lines y . ns extrecino forvarc cf Me leecir,g edges
of the blades. Applyin g this bounoery eonoitlon to
I-P' .•t the zcrctl Mace Nrelcs

	

Mu	 -
_1(e-M k ix

T^	

fr(e)e	
a u' u ca . 0 for x u < 0.

f.. ,
u

r M
u

(44)

ll



C i `'n•hdkr) xc 
I 
v i `rust r ♦n*) - I I f rr xr > 0

(6l)

llt

i nr • 
iIrig/0cs)^ - kr, • k0

/at,]

ene

(53)

r
t

{

iquations (46) through (50) differ from those of Ref.
(?T only by the presence of k 0 in the definitions
of r u 	vnand	 .

Substitution of ( 4 5) into (39) enables determi-
nation of	 •i.(x,y) by the fnrthoe of resiOup'.. 	 The

path of integration is closed in the upper half-plane
frr x < -a t,ls - y) and in the lowfr helf-plant for
I > -O UT , - Y)•

APP INOI) II

SOLUTION FOR ACOUSii( MOTION UOWNST4EAM OF SHOCK

By (54) and (5R) the Irre upwaSh condition will hr
satisfird if

_1(o-M^ko)xo

fo,n(•)`g(o,0;e	 do • 0 for x o < 0

(59)

wherfr

An infinite "duct" sclutico to ihr convected

wave rouation for downstream running waves can be
vbtaineo by use of thr method of separat i on of
variables.	 This civrs the result

i n%
0cuct (x'Y) _ 1	 B P	 cdc n• IS .

d	 nk d(c)
F " xn

n.0

wherc

(d)rn	 "MOko	 xn

K 	
la,C) a -PAtr/^i

lye 
(o • k o/MO ) -1	(60)

A relation specifyin g zero pressure Sump across lines
extenoirQ it thf eewnstream (tirect for from f nf trail-

ing edar5 of the blad p s Is obtained by substituting

(Fl)	 t' (54) throu gh (58) iota Pd • (iwr - z/ax)
151)	 (a uc

tin 
. O^a.ca"') and utili7ing the periecicity

rc at ion. The resulting exprtssion can bf reduced tc•

_ to)
1 0 n(e)t	 d to .

(5i)

By chapter 5 of (3) the cascade potential for up-
strfam runnin g wai,fs can be exprfsseo A!

acascade (x' )	 1	 t0(a)Ae(o,y) e - I( ° • MOkc! 0 
ead	 Y e 	 ad^

^olutirr of to!. (ti°) and (Fl) a gain constitutes a
6ierfr-Hepf problen which can bf solvfd in much the
sane narrfr as in thf sup,r ,, r i ( cast, )iririn0

•^( xr(d)	 1(nrSt-r•nwi

/ I e • xn	 •r(n)

	

( `4 )	 Hfre it is a5svmfc that	 ad	 C arr be taciorec intt
the form fa(e)I•n(e) where er(e) One tp(e) art

whfre, in sli ghtly rifferent nomcnclrlure that, (33	 arelytic ant nrn-7rrc in upper jr( lnwfr hrlf planfs
rr s prctively. To perform this factorization suh-
"I"Ite 155) into (FO) are rbteir

1	
pear-td.ry	

riO^•t^rdy	
lA	 —	 (55)	 ^°	 i t l M r)a V (e.0)	 i r^ d <inh (0 0r 05)/(i • in A 0 sin ad)

r	 T1	 sin •^	 sin as

'f3)•
Mrkrs^	 °<^ ' a t.r d s/i i	(56)

The numfratrr of (1. 3) car ne factrrec b) ih,

Mrier • iresc factorization formula 1 7 3 . Faa 4U of
163 i s hclplul for applicat i on of this ihfcrtn to the

it e (° - kd 	 k J
ot /	 (5^)	 c.-rrminstor. Choose thf half plants as in Fig. 8 of

i/T but t,ilh wench pfvts of ve At • (*r • ied)

	For this lireer problrm, whfre •uptrpcsitir • applies.	
vherf	 k^ - kajtj. Then

let

fc	

r^ I

r f c•r (a)	 (58,



(o - ^0 ) 51n 
(ed`dt)e ioR/• 	 and 12 as

n
r(u) • `^^	 ds) _ Cos jr - F.k d s t ^ 1 - o/o h ^	 cosh (l ( .QY IA^.e ?r r (a) Sinh (t CO5) r} p î ^^^. • - `*)^^

L	 as o

1 - e!>nld)
(64)	 For i1	 thr path of intrgratior must be closen in

	

(1	 0/e^^ (1 - 0 /e • n ^	 the upper half plare (UHP) for ac < 0 are LHP for
/

	

1 \	 `	 i0 > 0. the path for -1^ must be Closed in UHP for
C < S t are LHP for rd > s t . Finally, the
total amplitude •c, frr 0 c y < s 15 obtained by

dne	 comtirirg a^uct with aFscarp,

(o • k d/M d )(1 - o/e^J(ioD/
♦

OCC (o) -
/e a	 Ao

> ^	 n	 n	
(6r+)

I • */Ant

n. l

♦beet

b s s tr^ . - tan l (sar /s
t\1
	sar lr(Tsac/d^),	 (G6)

err) a (?n• - r - Md k c st/ /dt.	 (67)

t? 11!7

r^ r (s	 • u?s T )	 (F8)

	e a . 
r(c) St . i ads 

(r (r)^f - k ? • k° 	 (F9)n	 n	 df	 t t	 n	 0	
a^

d	 c	 d

	

^^	 11?	 I1/?

end *r in equtl to I k e - :J O	 arc tli
0 r - kd

fur k ?c, orrater then and less then k?/0? respec-
tively. Eouetions (64) through (69) rPouQe to thosr
01 Apperci> E of (21 e! kq • 0. Sutstitution of
(62) are (55; throuctSF^ into (54) gives an inte-
gral t ypression !or a a •, age which ran bt
evaluatto by use of the resicue theorm. The inte-
orarc of (54) car br fmprtssec is	 I - 11 - 12
rhere the a eeperrence enters 11 t•

cosh (Ic
sl> - s)1r`o ofd(a) 

strh (s ues) exp (10;e

- 

(1 - e/n ) (1 - e /e - )
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