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SUMMARY

The following paragraphs cont#in a summary of the significant accomplishments
generated during the course of the contract effort.

. The task dealing with Foam Fabrication Studies has resulted in a
microwave foaming and curing process, using the 15 kW (GFE) micro-
wave oven, which has consistently produaced foams with uniformity
of physical properties within and between buns.

. The values of the density and ILD of the foams were found to be
directly related to the outlet temperature of the spray dryer. The
lowest values of ILD were ohtained at an outlet temperature of 56~
60°C (132.8-140°F)

| . The effort of the same task proved the feasibility of foaming poly-
imide powder precursors in an open mold and provided a method to
overcome foam collapse, a major deficiency of the free-rise foaming

t process.

' A rectangular polypropylene open mold configuration modified with a
bottom grid, corner vents and insulated with polyimide foam liners
was selected for all the experiments carried sut during the course
of this program.

i . The task dealing with Formulation and Optimization has resulted in
the selection of a blowing agent to promote a more uniform foam
rise during microwave foaming.

. The ILD values of the polyimide foams are independent of the
aliphatic diamine ratio over the range reported and no classifica-
tion into groups is attainable.

. The study of compositional ratios has resulted in an improved pre-
curscr composition made at a ratio of 0.30:0.54:0.16 moles of
heterocyclic diamine, aromatic diamine and aliphatic diamine,
respectively, per mole of BTDA.

. Three parameters have emerged from Task II as most critical in
classifying foams into groups according to ILD values. These are:
outlet temperature, concentration of the blowing agent and power
ratio.

. The effort; of Ta k 111 have resulted in the selection of optimized
foaming parameters which produced finished product with homogeneous
property distribution within and between buns.
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Processing and compositional parameters have been identified which
regulate the ILD values of the foams and provide methods to classify
the foams according to established ILD values at 2. percent
deflection. These important parameters are:

- The outlet temperature
- Concentration of the blowing agent
- Crushing techniques

During the execution of Task IV efforts, dealing with foam evalua-
tion and classification, these important parameters have been
fully evaluated to achieve foam classification.

The ILD values of polyimide foams at 25 percent deflection are di-
rectly proportional to the outlet temperature and inversely propor-
tional to the concentration of the blowing agent.

Powder precursors spray dried at an outlet temperature of 69+1°C
(156.2°F) produce foams with ILD values falling within three of the
five classes established for the program, specifically Class III,
Class IV and Class V foams by variation of the blowing agent con-
centration within clearly defined values.

Foams produced from powder precursors spray dried at the selected
outlet temperature of 68-70°C (154.4-158.0°F) possess the best
fatigue properties and homogeneity within and between buns.

Foam crushing techniques in combination with high concentration of
the blowing agent were employed to produce Class I and Class II
foams.

The process parameters and compositions employed to produce the
five classes of foams have been presented in this task.

The minimum functional and performance requirements for each of the
five classes identified have been established and final producc
specifications written.

Prototype production samples for each of the five classes were pro-
duced using the process conditions selected in this program. These
samples have been submitted to NASA-Johnson Space Center for evalu-
ation in seating applications.
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PROGRAM SCOPE AND OBJECTIVES

The principal objective of this program is to formulate, fabricate and char-
acterize polyimide foams in order to establish five classes of foams selected
in accordance with the following ILD values at 25 percent deflection.

Class il at 25% peflection

18
24
44
50-55
70-80

U s W -

Unlike conventional cellular materials, the polyimide foams under study 1in
this program combine three important attributes:

1s Inherent non-burning characteristics.
2 No detectable smoke formation.
3. No incapacitating cabin environments.

The progr:m consists of six major tasks which define the objectives and the
work content. The work plan constituting the various objectives and their
milestones is shown in Figure 1.

The fabrication techniques used in this program are those reported in previous
NASA-JSC funded programs (Refs 1, 2, and 3), and those developed through the
continual effort reported in this document. The compcsitions studied are
based on a technology previously developed by International Harvester with
efforts leading to the selection of the five groups of polyimide foams which
have been clearly identified on the basis of established ILD values, seating
comfort and durability.

The effort starts with studies of optimization of the foaming and curing
processes to yield uniformity within and between buns. This task is followed
by compositional studies directed to achieve foams with predetermined ILD
values. The task continues with optimization and characterization of the
selected candidates for final classification inte five groups and for fabri-
cation of final prototypes for submittal to NASA-JSC.

A final task dealing with Reporting and Coordination covers the effort neces-
sary to report the program status and includes a mid-term and final presenta-
tion to acquaint NASA-JSC with the progress of the program.
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The overall technical content of the program was scheduled to cover a period
of twelve months and included an additional two months for final draft pre-
paration and submittal. A five months extension of the period of performance
was requested and the extension approved by NASA-JSC. This extension was
necessary to satisfy the high demand of polyimide materials for a variety of
NASA-JSC sponsored projects.
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BACKGROUND AND PROGRAM APPROACH

International Harvester has developed the basic technology fo~ formulating
light weight, heat- and fire-resistant low smoke-generating polymers for
containment of fuel fires. This technology is based on polyimide chemistry.

A significant effort has already been devoted to optimize this technology in
three previous programs funded by NASA-JSC. In the first program (Ref. 1),
the major deficiencies of the polyimide flexible resilient foams were identi-
fied, namely fatigue strength, resistance to high humidity, and production
cost. The major emphasis of the second and third precgrams (Refs. 2 and 3)
resulted in significant improvement of foam properties as they relate to
hydrolytic stability, fatigue resistance, and cost. In addition, other types
of polyimide materials were investigated resulting in the production of
advanced hardware and products. The products included, in addition to the
flexible resilient foams, thermal acoustical insulation, floor paneling,
wall paneling and molded shapes.

The properties demonstrated by these products represent a technological
advancement in the art of polyimide development, processing and fabrication.
Additional effort has been carried out during the course of this program
to upgrade and classify the flexible material into groups for fabrication
of cushions possessing acceptable comfort properties. This work has been
directed toward refinement and selection of foaming processes using a variety
of previously developed foaming techniques and definition of property rela-
tionships to arrive at the selection and classification of polyimide foams
into five groups in accordance with predetermined ILD values. The formula-
tion and processes to produce the powder precursors and to fabricate the
foams have been those developed in NAS 9-15484 (Ref. 3) with additional work
directed to achieve foams with improved cushioning properties. Candidate
materials have been selected, characterized and five classes of flexible
foams established in accordance with predetermined ILD values at 25 percent
deflection.

FRECEDING PAGE BLANK NOT FILMED
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EXPERIMENTAL PROCEDURES

This section outlines the experimental procedures and includes selection of
raw materials (Sec. 3.1), synthesis of the liquid and powder polyimide pre-
cursors (Sec. 3.2), fabrication of the flexible fo'ms and test procedures
(sec. 3.3), and chemical reactions (Sec. 3.4).

3.1 SELECTION OF RAW MATERIALS

The raw materials used in the preparation of the precursors studied in this
program are those claimed in one or more of International Harvester's existing
patents. The diamines, dianhydrides, chemicals and additives used in this
program and their relevant physical properties are listed below.

. Benzophenone 3,3',4,4' Tetracarboxylic acid dianhydride - This pro-
duct was obtained from the Gulf 0il Co., Chemical Division. The
of f=white material was slurried in warm acetone containing four
percent dimethylformamide and dried at 120°C (248°F) to yield a
material (MP 225-226°C, 437-439.5°F) suitable for synthesis of
polyimide precursors.

. Pyromellitic Dianhydride - This product was obtained from Aldrich
Chemicals (MP 283-286°C; 541-547°F) and used without purification.

5 2,6 pDiaminopyridine - This highly purified diamine (MP 120-122°C;
248-252°F) was obtained from Wall Chemicals and used without
purification.

. Methylene dianiline - This commercial grade diamine (MP 90-92°C,
194~-197.6°F) was obtained from Allied Chemicals Co. and used with-
out purification.

. Para phenylene diamine (MP 138-143°C; 280-289°F) was purchased from
Aldrich Chemicals and used without purification.

. Meta phenylene diamine - This commercial grade diamine was obtained
from Miller-Stephenson Chemical Co. and used without purification
(MP 62=-63°C; 143.6-145.4°F).

a 1,6 Diaminohexane - This commercial grade aliphatic diamine (MP 39-

40°C, 102-104°F) was obtained from the Celanese Chemical Company
and used without purification.

rH=CEDING PAGE BLANK NOT FILMED




. Methyl Alcohol, Ethyl Alcohol, Propyl Alcohol = These commercial
grade solvents were purchased locally from Atlas Chemical Company
and used as received.

. Surfactants AS-2 and Zonyl were obtained from E.I. Dupont de
Nemours.

. L Type surfactants were purchased from Union Carbide.

. The blowing agents were purchased from Uniroyal and Stepan Chemical
Company.

. All other inorganic and organic additives were purchased from

Aldrich Chemicals.

The analysis of the major raw material by Infrared Spectroscopy, obtained by
the KBr pressed wafer method on a Beckman Model IR 8 grating infrared spec-
trophotometer, is shown:

. Benzophenone 3,3',4,4' Tetracarboxylic acid dianhydride unpurified
(Fig. 2), and purified (Fig. 3). Note the reduction of the peak
at 3500 cm~! for the free carboxylic groups and improved resolution
of the purified material.

3.2 SYNTHESIS OF THE LIQUID AND POWDER PRECURSORS

The following procedures are typical of those used to prepare the polyimide
precursors.

3.2.1 Monomeric Terpolyimide Liquid Precursors

The dianhydrides were added to 240 ml of alcohol in a one-liter, three neck
flask, equipped with thermometer, mechanical stirrer and reflux condenser.
After addition, the mixture was heated to reflux.

The mixture was then refluxed for 60 minutes to encure complete esterifica-
tion. It was then cooled to 25-35°C (77-95°F). The diamines were added
to this mixture slowly so that the reaction temperature did not exceed 65°C
{149°F). Alcohol, based on the dilution ratio required, was added at this
stage along with additives, if any.

The 55 liter reactor for the preparation of liguid precursors in large lots
is shown in Figure 4. The bench scale arrangement located in the laboratory
is shown in Figure 5.
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Figure 2. IR Spectrum of Benzophenone 3,3',4,4' Tetracarboxylic

Acid Dianhydride
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Figure 3. IR Spectrum of Benzophenone 3,3',4,4' Tetracarboxyic
Acid Dianhydride

3.2.2 Monomeric Terpolyimide Powder Precursors

The procedure used to prepare the powder precursors from the ligquid resins
is based on a spray drying process.

The liquid resin to be dried was first diluted with alcohol (30 phr) and the
feed was started into the atomizer and manually adjusted throughout the
operation te maintain the outlet temperature in the desired range. The
powder was collected in a five gallon plastic jar mounted under the cyclone
separator. A Niro Mobile Minor Spray Dryer was used in this process which
is shown in Figure 6. This unit was modified to permit use of inert gas as
a drying medium.

1
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Figure 6.

Niro Mobile Minor Spray Dryer

3.3 FLEXIBLE RESILIENT FOAMS FROM THE TERPOLYIMIDE POWDER PRECURSORS

The foams were produced by microwave foaming processes using a Gerling Moore
5 kW Batch Cavity Model 4115 (Figure 7) for small experimental foams and the
15 kW GFE unit (Figure 8) for larger size foams. Both microwave ovens operate
at a frequency of 2450 MHz.

The 15 kW GFE microwave oven was installed in the Research Pilot Plant facil-
ity shown in Figure 9. Figure 10 shows an electrically heated circulating
oven for curing the foams by thermal methods. This oven is equipped with a
moveable cart to carry large foam slabs from the microwave oven into the
thermal oven for the curing process. The two ovens are installed in series
for ease of operation.

To make a foam, the powdor precursor was laid on a sheet of Teflon coated
glass fabric and both placed in the microwave oven at room temperature.
Occasionally the powder was preheated to accelerate the foaming process.
After a period of exposure to the high frequency radiation the powder expanded
to a homogeneous cellular material which was further processed in the micro-
wave oven to achieve complete condensation reaction and curing. The curing
process was occasionally carried out by thermal methods and involved heating
the expanded mass in an electrically heated oven shown in Figure 10.

Both free-rise and constrained foaming methods were used. The free-rise

method involved microwave heating the powder precursor and permitting the
foam to expand freely which often resulted in irregular shapes.

13




Figure 7.

Gerling Moore 5 kW Microwave Oven
Modal 4115

Figure 8.

15 kW Microwave Oven (GFE)
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| Figure 10. Electrically Heated Circulating Oven




The constrained foaming method was carried out by placing the powder precur-
sor into a microwave compatible mold and allowing the foam to conform to tha
shape of the mold. A polypropylene mold, 61 x 91.5 x 40.5 cm (24 x 36 x 16
in.) is shown in Figure 11.

The fully cured foams were cut to the desired shape in a vertical band knife
shown in Figure 12 and flexibiliz2d by passing the foam slabs between two
rotating steel rollers which compressed the foam resulting in increased soft-
ness and resilience. The flexibilizer is shown in Figure 13. Samples of
finished flexible, resilient foam are shown in Figure 14.

Each foam was tested for the mocst critical properties set forth in the plan
of performance. The critical properties are briefly reviewed below.

The compression set of the foams at 50 and 90 percent compression was deter-
mined according to ASTM Designation D-3574-77, using two steel plates held
parallel to each other by clamps and the space between the plates adjusted
to the required thickness by means of spacers. This method was modified
during the execution of this program by compressing the foams at 30 and 70
percent compression respectively to compensate for the higher resistance of

polyimide foams to compressive forces.

The resistance of the foam to cyclic shear-loadings (fatigue test) was deter-
mined in accordance with ASTM Designation D-3574-77, Procedure A, with the

Figure 11. Polypropylene Mold
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Figure 12.

Figure

Femco Vertical Band Knife
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13. Foam Flexibilizer




Figure 14.

Flexibile, Resilient Foams Cut to Size

exception that examination and measurement of the foam for loss of thickness
was made at 8,000 and 20,000 cycles. The fatigue tester was constructed in
accordance with the same ASTM Designation.

Indentation load ueflection tests at 25 and 65 percent deflection were carried
out using an Instron Universal Test Machine in accordance with ASTM Designa-
tion D-3574-77.

Humidity tests were carried out in a vapor-temperature Controlled Relative
HYumidity Chamber. This is a mechanical convection controlled humidity tester
manufactured by Blue M Company. Using this chamber, fcam samples were sub-
jected to 100 percent relative humidity at a dry bulb temperature of 74°C
(165°F) for a period of seven days. Performance of the test samples was
evaluated qualitatively by embrittlament or degradation of the cellular struc-
ture and quantitacively by ball rebound resiliency method and ILD changes.

Testing for other mechanical properties was done according to the standard
methods of testing slab flexible urethane foams described in ASTM designation
D-3574-77.

The flammability characteristics of the foams were obtained by determination
of the smoke density in accordance with the NBS procedure utilizing the NBS
Smoke Density Chamber (Ref. American Instrument Co., Aminco Catalog No. 4-
5800, Intruction No. 941). The NBS Smoke Density Chamber is shown in Figure
15. The relative flammability o€ the foams was determined by measuring the
minimwn concentration of oxyager in a flowing mixture of oxygen and nitrogen
that would just support combustion of the material (LOI). The test apparatus




Figure 15.

NBS Smoke Density Chamber

for this determination was prepared in accordance with ASTM Designation D-

2863.

3.4 CHEMICAL REACTIONS

The reactions that occur during the synthesis of the liquid and powder resins
and subsequent foaming are too complex to be fully described here. The

general model is presented below:
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Briefly, the tetracarboxylic acid dianhydrides are first esterified to yield a
aiester (i) which by addition of diamines produces a monomeric liquid precur-
sor (ii). The powder monomeric precursor is a self reacting monomer which
at 149-204°C (300-400°F) produces a polyamic ester and expands into a low
density cellular structure (iii). The final condensation reaction (iv)
occurs at 260-315°C (500-600°F) where complete imidization takes place with
formation of a high molecular weight polyimide structure.

The determination of the molecular weight equivalent of the powder precursor
has been done using a diazo type titration with external indicator. Results
indicate a chain length of abuut 20-30 molecules, equivalent to a molecular
weight of approximately 10,000 to 15,000.

Infrared Spectroscopy was used to follow the proyress of the reactions of
imidization. Precursors and foams were made into powders which were then
used to make KBr wafers. These were then analyzed on a Beckman Model IR 8
grating spectrophoto.eter. The disappearance of the primary amino group
bands from 3300 cm~! to 3500 cm~! as the polymerization proceeds from precur-
sor (Figure 16) to uncured foam (Figure 17) to cured foam (Figure 18), indi-
cated that the nitrogens are reacting to form imide bonds. 1In addition, the
amide peak at 1675 em~ ! which is very strong in the precursor (Figure 16),
weaker in the uncured foam (Figure 17) and weakest in the cured foam (Figure
18) also indicates that the imide bond is being formed. The amide peak does
not totally disappear due to the presence of a ketone peak in the same region.
Finally, the presence of bands at 1785 cm", 1725 cm“, and 720 ‘cm~!
(Figures 17, 18 and 19) definitely indicates the formation of the imide
bonds. A 20 minute cure time is shown to be sufficient by comparing Figures
18 and 19 and noticing the lack of visible change despite the additional 70
minutes of curing time.
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Figure 16. IR Spectrum of 1702-1 Foam Resin (Powder Precursor)
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Figure 19. IR Spectrum of 1702-1 Foam (90 Minute Cure)
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EXPERIMENTAL RESULTS

This section describes the experimental effort carried out during the period
of performance and is divided into six major tasks to improve clarity.

The first task (4.1) covers evaluation of fabrication techniques to achieve
uniformity of foam properties followed by two major tasks (4.2 and 4.3)
covering optimization of precursor compositions and processing parameters,
respectively. The next major task (4.4) covers the study leading to the
classification of the foams into five different classes according to prede-
termined ILD values at 25 percent deflection followed by final selection
(4.5) and preparation of prototype foams for evaluation in commercial air-
craft (4.6).

4.1 TASK I - FOAM FABRICATION STUDIES

The effort of this task starts with studies leading to the development of
foaming and curing processes to obtain uniformity of physical properties
within and between buns. Uniformity is important to achieve reproducible
results during the characterizaiion and selection of the various products.

The experimental work carried out and presented in this task includes the
evalvation of microwave foaming techniques, curing methods, spray drying
temperature and effect of these process parameters on the ILD values of the
polyimide foams.

4.1.1 Foaming Techniques

A variety of foaming methods have been already evaluated during the course of
NAS9-15050. These methods included dielectric, thermal, and microwave heat-
ing. Microwave heating proved to be superior in producing homogeneous cellu-
lar structure and was selected.

The development of the terpolymer powder precursor, 1720-1, the candidate
foam precursor for the present program was carried out during the course of
NAS9-15484. 1In the same contractual effort, extensive studies were carried
out to develop optimum process parameters which were found to be adequate
for foams produced in the 5 kW microwave oven. During the course of the same
NAS9-15484 program, the scale-up of the foams derived from the 1720-1 precur-
sors was initiated using the 15 kW GFE microwave oven (Ref. 3).

PRECEDING PAGE BLANK NOT FILMED
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The foam samples produced in this oven were relatively free of visible flaws
and imperfections and possessed a homogeneous cellular structure. Foam
reticulation was recognized to be a critical imperfection and made it manda-
tory to carry out additional work. This imperfection proved to be the weak-
est part of the foam in fatigue testing and the principal cause of varia-
bility of physical properties within the bun. To overcome this deficiency,
further optimization work was continued during the extension period of the
NAS9-15484 program.

The work performed during this extension period involved studies of microwave
power output and power pulsing. The ultimate objective of this work was to
generate a parameter, kW/kg, relating microwave power (kW) to precursor
weicght (kg). To avoid reticulation, the optimum foaming conditions were
found to be in the range of 0.6 to 1.0 kW/kg.

A timer device installed during the extension of the program permitted some
preliminary evaluations of the effect of pulsing the microwave power ON and
OFF during foaming. Due to time limitations, the only pulsing cycle tested
was 60 seconds ON and 60 seconds OFF. Foams produced by this pulsing cycle
and microwave power output at 0.84 kW/kg, although not completely free of
reticulation, represented a considerable improvement in gquality and were
selected as the optimum candidate at the end of the contractual work carried
out under NAS9-15484.

The data developed during the course of that prcgjram together with the process
limitations reported above served as the starting point for this contractual
effort, NAS9-16009.

The experimental work leading to foams with uniformity within and between
buns was carried out in this current contract in accordance with the follow-
ing sequence:

. Effect of microwave power output
Effect of power pulsing

Effect of precursor drying temperature

The foaming process used to develop the test data in this task was carried
out by the free-rise technique only, using the 15 kW microwave oven (GFE).

All foams produced were characterized concurrently and in accordance with
ASTM Designation D-3574-77 as specified in Section 3. Test data were derived
for each of the following properties, indentation load deflection, compres-
sion set and density.

Effect of Microwave Power Output

This effort started with an evaluation of the ratio of the power output to
powder loading (kW/kg) at a constant power pulsing. Foams were produced in
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the 15 kW microwave oven using 10, 12.5, 15, 18, and 20 kg (22, 27.5, 33,
39.6, and 44 1bs) of powder precursors respectively at two different power
levels. These power levels were 8.4 and 15.0 kW. This covered the range of
power output to powder loading (kW/kg) ratios from 0.56 to 0.84. 1In all
cases, homogeneous cellular structure was obtained with sporadic reticulated
areas. These reticulated areas did not appear to have any geometrical rela-
tionship to the microwave cavity. The results of this study are summarized
in Table 1. Results indicate that at the same microwave power output, the
lower the power ratio (kW/kg), the higher the ILD values both at 25 and 65

1 percent deflection. Best results were obtained at a kW/kg ratio of 0.84

; using a loading of 10 kg. At this ratio, the largest possible foam that
could be produced in the 15 kW microwave oven was made using 18 kg (39.6
lbs) of powder precursor at a full power of 15 kW (kW/kg = 0.84). This foam
is shown in Figure 20. The foam is free of flaws and almost completely free
of reticulated areas.

The foaming experiments reported in Table 1 were carried out by free-rise
microwave technique, followed by curing to achieve flexibility and resiliency.
The curing processes investigated included thermal and microwave curing.
No additives or fillers were used during this experimental study. Thermal
curing was found to be effective only up to a powder loading of 5 kg (11
lbs). When larger powder precursor loading was used the foams did not cure
due to poor heat transfer through the thermally insulating polyimide mass.
Microwave curing was carried out by extending the foaming cycle for an
additional 20-40 minutes followed by a short period of thermal heating to
cure the outer uncured skin of the foam which is approximately 2.5 cm (1.0
1 in.) thick. This effort will be reported later in this same section.

Effect of Microwave Power Pulsing

This study was carried out by automatically switching the microwave power ON
’ and OFF (one pulsing cycle) for a pre-determined length of time during the

entire foaming and curing process. All foaming experiments were carried out

at different pulsing cycles but at constant kW/kg ratio to determine the

effect of power switching. The results of this study are summarized in
| Table 2.

Pulsing is a process which allows the heat generated in the foam to dissipate
| throughout the mass during the OFF cycle thus avoiding overheating. The heat
| dissipated does not produce additional foam rise since foam rise is observed
only during the ON cycle. Based on these considerations, longer OFF time
should theoretically produce lower foam rise and therefore higher foam densi-
ty. This obviously is not always the case as shown by the data of Table 2.

g

Another important effect of pulsing was a visible reduction of the foam
collapse usually experienced with the free-rise foaming techniques. Since
the synergistic influence of foam rise and foam collapse is a twin phenomenon
which occurs simultaneously during the foaming cycle, nc attempt was made in
this task to derive hard relationships between pulsing cycles and correspond-
ing ILD values. This work was carried out in Task III where the adverse
effects of foam collapse were eliminated by foaming in a mold.
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Table 1

Effect of Microwave Power Output on Polyimide Foam Properties

RESIN 1720-1 1720-1 1720-1 1720-1 1720-1
Dryer Temp. °C Inlet 100 100 100 100 100
Outlet 67-70 67-70 67-70 67-70 67-70
Surfactant AS=2 AS~-2 AS-2 AS-2 AS-2
Concentration % 0.75 0.75 0.75 0.75 0.75
Sieve Size V #25 #25 #25 #25 425
Powder Thickness, cms 1.4 11.4 1.4 11.4 11.4
in 4.5 4.5 4.5 4.5 4.5
Powder Loading, kg 10 12.5 15 18 20
lbs 22 27.5 33 39.6 44
Ratio, kW/kg 0.84 0.672 0.560 0.83 0.75
Preheat - Time (Min) - - - - -
Power (kW)
Foaming - Time (Min) 15 15 15 15 15
Power (KW) 8.4 B.4 8.4 15 15
Pulsing (ON/OFF) 60/20 60/20 60/20 60/20 60/20
Curing-Microwave
Time (Min) 40 40 40 40 40
Power (kW) 10 10 10 10 10
Pulsing (ON/OFF) 60/20 60/20 60/20 60/20 60/20
Curing-Thermal
Temp. (°F) 400-500 400-500 400-500 400-500 400-500
(°C) 204-260 204-260 204-260 204-260 204-260
Time (hrs) 1.5 1.5 1.5 1.5 1.5
Density (lbs/ft?) 1.43 1.50 1.62 1.38 1.37
(kg/m?) 22.9 24 25.0 22.1 21.9
Resiliency 55-60 55 55-60 60 60-65
ILD 25% 1Ef N 75 334 80 156 92 409 58 258 60 267
65% 1bf N 288 1281 290 1290 410 1824 1913 858 252 1121
CORRERSALON- ST a0k 35.0 18.9 40.5 41,5 43.2
508 10.4 15.9 7.9 14.4 14.1

The first three experiments reported in Table 2 were carried out at a constant
ON time of 60 seconds. To minimize local overheating and prevent fast foaming
rates which cause reticulated areas, pulsing cycles were tested with shorter
ON time to offer a way to distribute and dissipate heat more evenly during
the foaming process. When the ON time was reduced from 60 to 20 seconds,
all traces of reticulation completely disappeared and the foams possessed a
uniform cellular structure within the bun. Pulsing cycles with ON time
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Figure 20.

Terpolyimide Foam: 15 kW Microwave
Cavity at Full Power

shorter than 20 seconds were abandoned due to the excessively long foaming and
curing time. The conditions selected in these initial studies were a pulsing
cycle of 20 seconds ON and 20 seconds OFF at a kW/kg ratio of 0.84 using a
powder loading of 10.0 kg (22 1lbs). A foam produced at these conditions is
} shown in Figure 21. These pulsing conditicns were used in all subsequent
l
.
:
!
|

work carried out in Task I and Task II of this program and later selected as
the optimum pulsing cycle time.

gffect of Precursor Drying Temperature

| The major objective of this task was to develop foam uniformity within and
between buns. To achieve this goal, it became necessary to produce and use
powder precursors that were uniform in physical properties and volatile con-
tent. The quality standards set forth for powder precursors to assure J
uniform volatile ccntent will be discussed in Task II and the optimization H

of the foam properties is presented below.

The degree of expansion of polyimide precursor during microwave foaming is
dependent on the concentraticn of volatiles. The volatile content, a mixture
of methanol and water that forms during the amidization and imidization

reactions, depends on the outlet temperature of the drying process.

The process selected for converting the liguid resin to a powder precursor is
based on a spray drying technique in which the outlet temperature is the
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Table 2

Effect of Microwave Power Pulsing on Polyimide

i, W

Foam Properties

RESIN 1720-1 1720-1 1720-1 1720-1 1720-1
Dryer Temp. °C Inlet 100 100 100 100 100 }
Outlet 67-70 67-70 67-70 67-70 67-70 i
Surfactant AS-2 AS=2 AS=2 AS-2 AS-2 f
(4 Concentration % 0.75 0.75 0.75 0.75 0.75
4 Sieve Size 25 25 25 025 #25 :
Fowder Thickness, cms 11.4 1.4 11.4 11.4 11.4 '
in 4.5 4.5 4.5 4.5 4.5
Powder Loading, kg 10 10 10 10 10
1bs 22 22 22 22 22
Ratio, kW/kg 0.84 0.84 0.84 0.84 0.84
Preheat - Time (Min) - = - - -
Power (kW)
Foaming - Time (Min) 15 15 15 15 15
Power (KW) 8.4 8.4 B4 8.4 8.4
Pulsing (ON/OFF) | 60/20 60/40 60/60 20/20 10/10
Curing-Microwave
Time (Min) 40 40 40 40 40
Power (kW) 10 10 10 10 10
Pulsing (ON/OFF) | 60/20 60/40 60/60 20/20 10/10
Curing-Thermal
Temp. (°F) 400-500 400-500 400-500 400-500 400-500
(°c) 204-260 204-260 204-260 204-260 204-260
Time (hrs) 1.5 1.5 1.5 1.5 1.5
Density (1bs/ft7) 1.67 1.4 1.17 1.41 1.34
(kg/m>) 26.7 22.4 18.7 22.6 21.4
Resiliency 55-60 55-60 70 65 60-65
ILD 25% 1Ef N 75 334 58 258 53 23¢ 68 302 55 245
65% lbf N 288 1281 220 979 140 623 240 1068 207 921
COPpUSRNian i8S  atn 35.0 47.3 47.8 41.7 48,2
50% 10.4 14.4 10.5 12.3 8.5

most critical parameter. The study dealing with the effect of the outlet
temperature of che spray dryer on precursor's properties was carried out by

producing the powder precursors at four different temperature ranges of i
67-70, 64-67, 60-64, and 56-60°C (152.6~-158°F, 147.2-152.5°F, 140-147.2°F, and
132.8-140°F) respectively. The powder precursors were foamed in the 15 kW

microwave oven at a kW/kg ratio of 0.84 using a powder loading of 10.0 kg

(22 1bs) and a pulsing cycle of 20 seconds ON and 20 seconds OFF. The results

of this study are summarized ia Table 3.
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Figure 21. Polyimide Flexible, Resilient Foam Produced at
0.8 kW/kg and Pulsing Cycle of 20/20

The discussion of the effect of drying temperature on the mechanical proper-
ties of foams, with particular reference to indentation load deflection
values is presented in Subtask 4.1.4 and the effect on cellular structure of
the foams is discussed below.

The temperature of the spray dryer affects the foaming behavior of the pre-
cursors and dramatically alters the cellular homogeneity and structure of
the foams. The homogeneity within bun and betwe2n buns improves as the
outlet temperature decreases and reaches optimum conditions at the lowest
temperature studied. At an outlet temperature of 56-60°C (132.8-140°F), the
cellular homogeneity was significantly better than that obtained at higher
temperatures. More significant is the fact that foam yield increased with
a decrease of the outlet temperature reaching a maximum at 56-60°C (152.6~
158°F). Temperatures lower than 56°C (132.8°F) produced wet powder which
possessed short storage life due to caking. The foarn produced at an outlet
temperature of 56-60°C (132.8-140°C) is shown in Figure 22. During the
study it was also found that the powder yield per hour increases proportion-
ally as the temperature decreases. This relationship was later used as a
quality control standard for the production of the powder precursors.
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Effect of Drying Temperature on Polyimide

Table 3

Foam Properties

RESIN 1720-1 1720-1 1720-1 1720-1
Dryer Temp. °C Inlet 100 100 100 100
Outlet 67-70 64-67 60~64 56-60
Surfactant AS=2 AS=-2 AS-2 AS-2
|___Concentration % 0.75 0.75 0.75 0.75
Volatile Content 20.7 21.4 21.7 22.3
Sieve Size #25 #25 #25 #25
Powder Thickness, cms 1.4 1.4 1.4 11.4
in 4.5 4.5 4.5 4.5__
Powder Loading, kg 10 10 19 10
1bs 22 22 22 22
Ratio, kW/kg 0.84 0.84 0.84 0.84
Freheat - Time (Min) = s - -
Power (kW)
Foaming - Time (Min) 15 15 15 15
Power (KW) 8.4 8.4 8.4 8.4
Pulsing (ON/OFF) 20/20 20/20 20/20 20/20
Curing-Microwave
Time (Min) 40 40 40 40
Power (kW) 10 10 10 10
Pulsing (ON/OFF) 20/20 20/20 20/20 20/20
Curing~Thermal
Temp. (°F) 400-500 400-500 400-500 400-500
{*C) 204-260 204-260 204-260 204-260
Time (hrs) 1.5 1.5 1.5 1.5
Density (lbs/ft3) 1.50 1.38 1.23 1.10
(kg/m>) 24 22.1 19,7 17.6
Resiliency 65 60 65=70 70
ILD 25% 1hf N 63 280 50 222 43 191 43 191
658 1bf N 217 965 159 707 136 605 154 685
Compression Set 90% 43.9 42.7 42.3 34.9
50% 12.9 1.1 9.2 8.7
Foam Yield, BF 65 82 90 95
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Figure 22. Terpolyimide Foam: Cellular Structure Produced at an
Outlet Temperature of 56-60°C

The temperature that governs the homogeneity of the cellular structure of the
foams wis found to be exclusively the outlet temperature of the spray dryer.
This parameter affects not only the cellular structure but the physical
characteristics of the powder precursors and the mechanical properties of the
foams. The influence of the outlet temperature on the characteristics of
the powder precursors is discussed in Task III dealing with particle size
distribution. The relationship of the outlet temperature and other processing
parameters with foam properties is discussed in Section 4.1.4, where it was
recognized that foams produced at low outlet temperatures possessed poor
fatigue resistance and failed in less than 8,000 cycles.

4.1.2 Curing Techniques

In an electromagnetic field the polyimide powder precursors absorb energy at
very high rate. This energy causes a temperature increase and foaming in a
relatively short time (3-10 minutes). During this foaming step the precur-
sors undergo an amidization reaction and form a cellular structure which is
very friable because ring closure and polymerization has not occurred yet.
The ring closure reaction requires a higher level of energy. During the
ring closure complete imidization and polymerization occurs and a high molec-
ular weight polyimide cellular structure is formed which is flexible and
resilient.
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The evaluation of svitable curing methods was essential to this program
because uncured foams are fragile and large foams not easily transferred from
one area to another for further processing. This evaluation was carried out
in the following sequence:

. Curing by Thermal processes
. Cuving by Microwave processes
. Curing by Microwave-Thermal processes

Curing by Thermal Processes

Thermal methods of curing have been used almost exclusively in the industry
to fabricate polyimide compositions. The process simply involves heating
the polyimide resin in an oven at a temperature in the range of 218-315°C
.425-600°F) unti! complete imidization occurs.

The terpolyimide precursors evaluated in this subtask have been processed in
a similar way using a cure cycle of 60-90 minutes at a temperature of 250°C
(500°F). The process was found to be effective up to a powder loading of 5
kg (11 1lbs). Larger loadings produced rfoam buns that were difficult to han-
dle because of their fragility. A second more serious prodblem resulted from
the fact that these large foams did not cure completely due to the poor heat
transfer through the thermally insulating polyimide mass.

Thermal methods are still used to date to cure small foams (1 kg of precursor)

but the process has been replaced by a more advanced method for large foams
made in the 15 kW microwave oven. This process is based on microwave curing.

Curing by Microwave Prccesses

This curing method was accomplished by extending the foaming cycle in the
microwave oven thus exposing the foamed mass to additional microwave energy.
The interactions between the electromagnetic radiation and tne uncured foams
are too complex to be described here. A general model of the curing process
is believed to be as follows. The foamed uncured mass is a complex polyamic
resin possessing unreacted groups capable to interact with the microwave
field. This interaction generates thermal energy which drives the reaction
toward the imidization and compliete polymerization. Once the polyimide is
formed the material is completely transparent to the electromagnetic field
and no more energy is absorbed. At this point the foam is completely cured.

Because the outer skin [2.5-5 cm (1-2 in.)] is subjected to high heat loss

to the surrounding atmosphere, it remains completely uncured. Hence, a final
thermal curing cycle was devised as described below.
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Curing by Microwave-Thermal Pror ses

This effort started with evaluation of the effect of microwave power output
on rate of curing. The rate of microwave curing was monitored by periodi-
cally inserting a microwave transparent probe into the foam which penetrated
the uncured mass on.y. This method provided a technique to measure the
depth of cured foam. The microwave curing cycle ended when the foam had
cured to within a minimum of four inches from the outside edge. The curing
process was carried out at a pulsing cycle of 20 seconds ON and 20 seconds
OFF at various microwave power outputs which included 10, 11.7, 14, and 15
kW for a period of 30 minutes. The thermal curing in all cases was carried
out at 204-260°C (400-500°F) for 1.5 hours. The foams produced during this
effort were made by free-rise technique and possessed good homogeneous
structure and were free of reticulated areas. One problem that has consis-
tently plagued the reliable evaluation of physical properties of foams made
by free-rise techrique is the collapse and/or shrinkage of the foams during
curiry. This problem was eliminated in subsequent studies by foaming in
open molds as reported in the next subtask.

The microwave-thermal method of curing terpolyimide precursors was selected
as the best method to cure foams produced in the 15 kW microwave oven. The
process was carried out by extending the foaming cycle by approximately 30
minutes at a power output of 10-15 kW, depending on powder loading, followed
by thermal curing for 1.5 hours at 204-260°C (400-500°F) to cure the outer
2.5-5 cm (1-2 in.) layer of uncured foam. This process was optimized in a
subsequent task dealing with molding techniques.

4.1.3 Foaming by Free and Constrained Rise

The foams used in these initial studies were produced exclusively by free-
rise technique using the 15 kW GFE microwave oven. This method simply
involves heating the powder precursor in the microwave oven permitting the
foam to expand freely. The foam rise with this type of process was often
erratic and the foams assumed irregular shapes. A second problem has been
the reliable evaluation of the foams obtained by the free-rise process due
to foam collapse. Foam collapse occurred exclusively with the 1720-1 ter-
pclyimide precursors during the last part of the foaming proces continuing
through the entire curing process. The density of the collapsed foams
increased to values as high as 80 kg/m3 (5 1bs/ftd), affecting all density
related properties, such as ILD.

To overceme this deficiency, various foaming techniques were evaluated. These
techniques involved constraining the foam rise during the foaming and ~uring
processes. The constrained rise technique was carried out by placing the
powder into a shaped, microwave compatible mold and allowing the foam to
conform to the shape of the mold. With this process, collapse was signifi-
cantly reduced because the walls of the mold supported the cellular mass and
minimized shrinkage and foam collapse. 1Initial mold foaming studies were
carried out with open-ended cylindrical molds having a capacity of 113 liters
(30 gallons) and 206 liters (55 gallons) respectively. The foams made in
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these molds were of poor guality having an inner core consisting of a vertical
series of flaws which propagated toward the periphery of the foam.

Using the cylindrical molds, fully constrained foaming was also evaluated
employing a closed mold. This method produced complete mold filling, but
the foam possessed excessive striations and large flaws due to the gas en-
trapped during foaming.

Despite these deficiencies, the experiments conducted proved the feasibility
of foaming polyimide precursors in a mold and provided a method to overcome
foam collapse experienced with the free-rise method. An open rectangular
polypropylene mold was subsequently constructed because the cylindrical shape
proved of limited value in this study. The open mold configuration was
selected because it provided for the escape of the evolving gases, rather
than trapping them in the foam as it was experienced with closed molds.
This mold, having dimensions of 60 x 91.5 x 40.5 cm (24 x 36 x 16 in.) is
shown in Figure 11, Section 3. The initial experiments with this mold were
carried out in the 15 kW microwave oven at a kW/kg ratio of 1.0 using a
powder loading of 5 kg (11 1lbs) and a pulsing cycle of 20 seconds ON and 20
seconds OFF. Using these conditions, molding to a configuration was success-
fully accomplished.

The foams produced in this mold possessed a very homogeneous cellular struc-
ture and were free of flaws and reticulation for 40-50 percent of the total
volume which is approximately equivalent to 15-20 percent usable foam. Foam
collapse was negligible. Most of the flaws were found to occur in the bottom
half of the foam and were characterized by larger cavities radiating in all
directions from the center. The top 10 percent of the foam was also unusable
due to flaws. These imperfections were obviously the result of large quan-
tities of gaseous by-products which collected at the bottom of the mold and
produced large cavities as they expanded through the foaming mass. To over-
come this deficiency the mold was modified by installing a bottom grid and
corner vents. This modification reduced the number of flaws in the bottom
half of the foam but the usable foam yielcd 1id not increase.

A considerable amount of secondary thermal foaming was evident on the sides
of the foams produced in the rectangular mold. This was believed to be the
result of incomplete microwave foaming due to the cooling effect of the
polypropylene mold. To reduce the heat losses, the sides of the mold were
insulated with 2.5 cm (1 in.) thick polyimide foam liners which were fitted
in place without the use of fastener or adhesives. This medification reduced
the amount of secondary thermal foaming and increased the usable foam to
about 25 percent.

With this study the basic process for microwave foaming polyimide precursors
in a mold was established. The rectangular polypropylene open mold configura-
tion modified with a bottom grid, corner vents and insulated with polyimide
foam liners was selected for further optimization as will be reported in
Task III.
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4.1.4 Evaluation and Selection

The principal objective of this task is the identification and selection of
processing conditions and fabrication methods which yield foams with unifor-
mity in physical properties within and between bun.. Foam uniformity is
essential to arrive at a classification of the flexiple resilient foams irto
five groups of products according to established ILD values.

The data and test results reported in this task were obtained from foams
produced in the 15 kW microwave oven using free-rise techniques only, since
at this early phase of the program other more advanced foaming processes were
not yet developed.

The selection of the optimum parameters was carried out through a concurrent
study of processing variables and fabrication methods in conjunction with
characterization, testing and visual inspection. The results of this study
was the identification of process parameters which not only produced foams
with uniformity within and between buns, but also influenced the physical
properties of these same foams to aid their classification into products.
This was achieved by the identification of relationships between foam proper-
ties and processing parameters which included microwave power output, micro-
wave pulsing mettods and outlet temperature.

The data resulting from the studies of the effect of these three parameters
are presented in Tables 1, 2 and 3 respectively. Graphical representations
of these results are shown in Figure 23 for outlet temperature relationship,
in Figure 24 for microwave power output relationship and Figure 25 for micro-
wave pulsing relationship. The data reported in each of thesa2 graphs are
briefly discussed below.

As shown in Figure 23 a direct relationship exists between outlet temperature
and the values of density, ILD, and compression set. In the spray drying
process, the outlet temperature controls the range of the volatile content of
the precursors which in turn influences the foam rise and therefore foam
density. Since higher force is required to deflect or compress foams of
increasing densities, the direct relationship between ILD values and foam
densities is theoretically expected. The effect of outlet temperature on
the compression set values of the foams is less clearly undarstood, but may
be related to improved elastic properties of the foams due to the more open
cellular structure which is generally obtained {from precursors with high
volatile content. The lowest and most desirable values of ILD and compression
set were obtained at an outlet temperature of 56-60°C (132.8-140°F). Foams
derived from these precursors were foamed in the 15 kW microwave oven at a
kW/kg ratio of 0.84 using a powder loading of 10 kg (22 1lbs) and a pulsing
cycle of 20 secnnds ON and 20 seconds OFF.

Figure 24 shows the relationships between the power output expressed as kW/kg
and the most critical foam properties. As apparent from the graph, an inverse
relationship exists between the value of the kW/kg and those of the density,
compress.on set, and ILD. This was expected since higher power output pro-
duces higher foam rise and correspondingly lower fcam density and therefore
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Figure 25. Effect of Microwave Pulsing on Critical Properties of
Polyimide Flexible, Resilient Foams

lower ILD values. As in the case of the previous process parameter, the
compression set value relationship is less understood.

As was previously discussed, the value of the power output plays a major role
in controlling the uniformity of physical properties within and between
buns. The optimum value to achieve uniformity was found to be 0.84 kW/kg
using 10 kg (22 1bs) of powder precursor. This value was found to coincide
with the point at which the ILD and compression set values of the foams are
at the lowest levels, a characteristic that favors low density properties.
The foams evaluated in this subtask were produced in the 15 kW microwave
oven using a pulsing cycle of 60 seconds ON and 20 seconds OFF from powder
precursors prepared at an outlet temperature of 67-70°C (152.6-158.0°F).
This last process variable reflects the higher levels of the ILD and density
reported in Figure 24.

The effect of pulsing the microwave power on these same critical properties
is shown in Figure 25. These results are not immediately understood since
longer OFF time during foaming is known to produce lower foam rise and conse-
quently higher density and ILD values.

The mechanism of curing polyimide foams by the microwave method becomes more
complex when pulsing is used because during the OFF cycle the condensation
reaction stops. With this type of process, the microwave energy required to
compensate for the heat dissipated during the OFF cycle increases as the OFF
cycle is extended, resulting in less energy available for the condensation
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reaction. Therefore, with long OFF cycle times the foams can never achieve a
fully cured condition. This mechanism explains the lower ILD and density
values and the higher compression set loss as the OFF time increases, typical
of polyimide foams not fulliy cured.

Additional work was carried out by maintaining the ON and OFF times egual to
each other. Pulsing cycles of 10/10, 20/20, 30/30, 40/40 and 60/60 were
investigated. No significant contribution to foam properties were found
except that long OFF cycles produced undercured foams, as discussed above.
Foams produced at a pulsing cycle of 20/20 and 30/30, however, were found to
possess the most homogeneous cellular structure. At the conclusion of this
work a pulsing cycle of 20/20 was selected and used throughout the work
reported in the following tasks.

The major contribution of this study was the elimination of reticulated areas
which helped produce foams with more homogeneous properties within bun.

In accordance with the major objective of Task I, uniformity of physical
properties within bun and between buns has been attained and optimum proc-
esses and parameters selected. Foams produced in the 15 XW microwave oven
from powder precursors spray dried at an outlet temperature of 56-60°C (132.8-
140°F) using a kW/kg ratio of 0.84, a powder loading of 10 kg (22 1lbs) and a
pulsing cycle of 20 seconds ON and 20 seconds OFF followed by microwave
curing at 14 kW and a final thermal curing at 232-246°C (450-475°F), possessed
the most homogeneous cellular structure with uniformity in physical properties
witiiin and between buns, without flaws, imperfections or reticulated areas.
With these studies, the effort of Task I was completed, but the evaluation
of certain parameters, such as outlet temperature, was more succintly studied
in subsequent tasks to establish foam classification.

TASK I - Foam Fabrication Studies - Summary

The following brief review describes the major develcpments resulting from
the experimental work carried out in Task I, Foam Fabrication Studies.

1. Foams produced in the 15 kW (GFE) microwave oven from powder pre-
cursor dried at an outlet temperature of 56-60°C (132.8-140°F)
using a microwave power ratio of 0.84 kW/kg a. a loading of 10.0
kg (22 1bs) and a pulsing cycle of 20 seconds ON and 20 seconds
OFF followed by microwave curing at 14 kW and thermal curing at
232-246°C (450-475°F), have consistently shown to possess uniformity
in physical properties within and between buns, without flaws,
imperfections or reticulated areas.

2. A direct relationship was found to exist between outlet temperature
and the values of density, ILD, and compression set. The lowest
and most desirable values of ILD and compression set were obtained
at an outlet temperature of 56-60°C (132.8-140°F).

3. The cursory experiments conducted proved the feasibility of foaming
polyimide precursors in a mold and provided a method to overcome
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foam collapse, a major deficiency of free-rise technique. A basic
process for foaming polyimide precursors in a mold was established.
The rectangular polypropylene open mold configuration modified
with a bottom grid, corner vents, and insulated with polyimide foam
liners was selected for further optimization in Task III.

4.2 TASK II - FORMULATION AND OPTIMIZATION

The primary objective of this task is to develop precursor formulations and
process parameters to achieve foams with multiple density characteristics and
specific ILD values for use in seating applications.

The second objective is to establish quality control measures to aid in the
consistent production of polyimide foams to attain *“he desired levels of
comfort.

The effort of this cask will be pursued througn seven separate but complemen-
tary schemes. A discussion of the experimental studies carried out is de-
scribed below.

4.2.1 Blowing Agents

This task involves modification of the mechanism of foam formation by the
incorporation of blowing agents to produce polyimide foams with a larger
cellular structure and a wide range of comfort/hardness characteristics.

Blowing agents have been used to produce both rigid and flexible conventional
plastic foams in commercial scale. They are either solid, liquid or gaseous
substances and regardless of their physical state they function by evolution
of a gas at well defined decomposition temperatures. A liquid blowing agent
is already present in the polyimide precursor and is generated in situ within
the matrix of the polymer. This blowing agent is a mixture of water and
methanol which forms during the polymerization reaction as illustrated in
the sequence of reactions shown in Section 3. Gaseous blowing agents, such
as nitrogen, were not adaptable to polyimide foam processing since holding
the nitrogen under pressure in the polymer melt requires the use of special-
ized equipment. Only solid blowing agents were evaluated in this task.

Solid blowing agents are organic or inorganic materials that decompose under
the influence of heat to yield a gaseous component. The decomposition temper-
ature determines the usefulness of a foaming agent and governs the conditions
under which this component is to be processed.

The blowing agents tested in preliminary evaluations included Celogen TSH,
Celogen OT, Celoyen A 2130, Celogen RA, Celogen HT 550, Nitropore ATA, Nitro-
pore OBSH, Kempore 125, Expandex 5 PT, Tinuvin 320, Tinuvin P, ammonium
bicarbonate, sodium bicarbonate, sodium borate, boric acid, triphenyl phos-
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phate, disodium phosphate, dimethyl phthalate, phthalic acid, benzoic acid,
ammonium ber.zoate, and benzene sulfonyl hydrazide.

Screening of the optimum blowing agent was carried out by compounding the }
blowing agent in the powder precursor at a concentration of 1 percent based on |
polyimide solids followed by microwave foaming in the 5 kW Model 4115 cavity. }
The foams were subsequently cured in the thermal oven at a temperature of !
121-248°C (250-480°F). All foams were made from 1720-1 precursors modified
with 0.75 percent AS-2 and inspected visually to screen out the most likely
-andidates.

A large number of these additives interfered with the foaming mechanism
preventing foam rise, while others produced foams of various density and i
flexibility. The most promising candidates are reported in Table 4.

Of all the blouwing agents studied in this effort, Celogen HT 550, Expandex
5 PT and sodium bicarbonate produced flexikility as well as larger cellular
structure.

The foams made with Celogen HT 550 appeared to be better in gquality and
possessed considerably lower density than those made with the other two
candidates. The larger cellular structure obtained with this blowing agent
is illustrated in Figure 26. The foams shown were prepared from the same
precursor but the bottom foam was moditied by the addition of the blowing
agent. The larger cellular structure obtained with the use of the blowing
agent is shown magnified in Figurez 27 and 28.

Table 4

Evaluation of Blowing Agents

BLOWING AGENT DECOMPOSITION TEMP. FOAM CHARACTERISTICS TY

°F oC 1bs/ft kg/ms
Celogen TSH 220-270 104-132 Brittle cellular structure 1.7 27.2
Celogen OT 300-350 149-176 Brittle cellular structure 1.5 24.0
Triphenyl Phospha e 120-124 49-51 Rigid foam 8.6 137.6
Celogen RA 420-5090 215-260 Rigid fcam 9.1 145.6
Celogen HT 550 550~-600 287-315 Flexible, resilient foam 0.9 14.4

liomogeneous cellular structure

Nitropore ATA 250-400 121-204 Brittle cellular structure - -
Benzene Sulfonyl 212 100 Rigid foam 5.9 94.4
Hydrazide

Ammonium Benzoate kL L) 198 Rigid foam 6.1 97.6

Expandex 5 PT 464-482 240-250 Semi flexible foam homogeneous 3.1 49.6

~e)lular structure

Sodium Bicarbonate 518 270 Flexible, resilient foam 1.0 16.0
homogeneous cellular structure
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Figure 26. Terpolyimide Foams Produced With (Foam 195) and Without
Blowing Agent (Foam 98)

Figure 27. Cellular Structure of Terpolyimide Foams Produced
With Blowing Agent




Figure 28. Cellular Structure of Terpolyimide Foams Produced With
(Left) and Without (Right) Blowing Agent

Celogen HT 550 was selected as the optimum candidate for studies dealing
with the effects of blowing agent concentration on density and ILD values of
the foams. Celogen HT 550 was added in powder form and rolled in a jar mill
with the powder precursor for 1 hour for uniform distribution. All foams
were made in the 5 kW microwave oven using a power output of 2.5 kW at a
loading of 1.0 kg and subsequently cured in a thermal oven at 121-248°C
(250-480°F) for a period of 1.5 hours. Concentrations of Celogen HT 550 of
0, 0.25, 0.5, 1.0, 2.5, and 5.0% respectively were used and the foams evalu-
ated for ILD and compression set values. Results of this study are presented
in Table 5 with the foams produced shown in Figure 29 where the effect of
increasing concentration of the blowing agent on the cellular structure
from bottom (0%) to top (5.0%) is evident. As shown in this figure, the
cellular structure becomes more open with increasing concentrations of
blowing agent. The density of these foams should decrease with increasing
concentration of the blowing agent, but as shown in Table 5, the correlation
is rather poor. This is attributed to the deficiency of free-rise foaming
techniques whereby Zfoams undergo collapse during the curing cycle and pro-
duce variability within the bun thus preventing accurate determination of
properties.

A series of experiments were subsequently carried out in the 15 kW GFE micro-
wave oven to study the effect of particle size of the blowing agent on foam
properties. These experiments were performed at three different power ratios
of 1.0, 1.3 and 1.7 kW/kg respectively using a constant powder loading of
8.235 kg (18 1lbs) and a blowing agent concentration of 2.5 percent. The
results of this study are reported in Table 6.




Table 5

Celogen HT 550 - Effect of Concentration on
Properties of Terpolyimide Foams

FOAM CONC. OF DENSITY COMPRESSION SET 1LD
NO. BLOWING AGENT 1bs/ft7 kg/mJ 904 508 254 65%
. 1bf N 1bf N

24 0 n.as 14.0 34.4 11.5 20.7 92.0 84.7 374.5
21 0.25 0.65 10.4 32.5 12.2 19.8 88.0 78.4 348.7
20 0.5 0.96 15.3 36.8 11.7 38.6 171.6 118.0 524.8
22 1.0 0.66 10.5 25.7 10.1 20.5 91.1 7.1 316.2
25 2.5 0.88 14.0 34.4 11.5 20.7 92.0 84.2 374.5
19 5.0 0.59 9.4 28.9 10.4 15.0 66.7 57.0 253.5

Figure 29.
celogen HT 550 Blowing Agent - Effect
of Concentration on Cellular Structure

The data show that the particle size of the blowing agent does not have dis-
cernable effect on the compression set and ILD values of the foams produced
at the three power levels reported above, although the cell size of the foams
decreased with the particle size of the blowing agent. The foams produced
at different particle sizes are shown in Figure 30. The property which was
found to be very dependent on the blowing agent particle size was the dynamic
fatigue as shown in Figure 31, where the data points were obtained by averag-
ing results at all power levels.

43




S S r— e

T
s$°2E a.vnq s et s £'s L 4 €t s 9t e ser Lara Lt e Atz SN0 FERUNOTUL N
onTIeg
6921 1°611 e 6°L0T 241 L eot &Lt ozt 90t " ¢ 901 £ e 90t o9 . ws
L ze e vz 1ot zeze "2t §°eLE Cot »se z 9 (88 O3 rse I 1 e »oi 113 qn ‘om
€91 9 ST P z 91 &zt 68 ' 2”8 ot 8Tt (3 1 86 et st (34 “0s
0°Es L) oo L1 Ll e | & - T'oz L 1Y £t S0 [ 14 &Sy | 14 0°Le 06
305 worssesduo)
90 89°0 oL'o w'o Lo %90 €©®'o 86U S0 59°0 0%°% »o o Ll 90 (di/ear ‘Aaysusg
Ll g 6Le Laa e L e e €2 z°ss LS v Ll s LA e . ‘prenA
59 55 09 $°9 o' 5'9 0t o' _ 0's o'e 09 09 $'9 5°9 | "wqrtam
S rrxeexze | S rrxeexze | prxzexst s prxzexce| €Tempxze | PUXOCROC [CTXZOXSE [TIXOCXEE | ST WIRZOXBE | PTXREXTE PIXBEXZE | CTRBLRIC | L TRLONTE [STSRBORCL | S rUReERT( Tuy AR ybnoy
e it 99 59 PO1 9 9 19 | ve 7 13 95 13 [ N * "oy
® = v z ° e ° z 0 ol " ’ 4 0 RN ]
% sez'e by s(z°n by sece
e Y 0'pt nY Lot
by/my 071 bw/mx 71 b/ (1

saT1312doad weod uo

0SS IH u@borad jo 303334

9 °1qel

9ZTS 912T3aed JOo Azeuums

44




Figure 30. Effect of Particle Size of the Blowing Agent on

Cellular Structure of Polyimide Foams at Various
Ball Mill Hours

LOSS

THICKRESS, 2

Figure 31.

Ef fect of Ball Mill Hours on Dynamic Fatigue - % Loss
in Thickness (Average of all Powcr Levels)
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A second blowing agent parameter studied was the concentraiion of the biowing
agent and its effect on foam properties. This effort was carried out by
preparing powder precursor compositions at 0, 0.25, 0.5, 1.0, 2.5, 5.0 and
7.5 percent blowing agent. These compositions were foamed in the 15 kw
microwave oven at a power ratio of 1.0, 1.3 an? 1.7 kW/kg respectively, using
a constant powder loading of 8.235 kg (18 1bs). A particle size for the blow-~
ing agent of 100-180 micron was selected for the study. The fcams were char-
acterized for the most critical properties and results reported in Table 7.

The density and the ILD values of the foams decrease with increasing concen-
trations of the blowing agent. This is evident for power levels of 1.0 and
1.3 kWw/kg respectively but ag the power ratio is increaced to 1.7 kW/kg the
scatter of result is excessive. This is att ibuted to the collapse of the
foams caused by the excessive heat generatec within the bun at high power
levels.

The effect of the blowing agent concentration on the ILD values of the foams
is shown in Figur~ 32 where the data points were obtained by averaging
the values for all three power levels.

The major contributions of this initial study were the identification of
parameters which provided methods to vary the ILD and density of the foams
and the effect of power ratio on uniformity of celliular structure and vari-
ability of foam properties. Based on these results, Cz2logen HI' 550 was
selected as the candidate blowing agent for scale-up in the 15 ' microwave
oven. This scale-up was successfully carried cut in Task 1i. employing
the process parameters developed during the preliminary evaluation of foam
fabrication studies discussed in this task and in Task IIXI.

4.2.2 Additives and Fillers

The objective of this task involved the modification of the polymer structure
with colloidal dispersions of substances such as silica, barium sulfate and
others. The purpose of such modifications was to study the influence of
these fillers on the important mechanical and physical characteristics of
the foams such as JLD and density in order to afford new methods of obtaining
foams with different ILD values.

A total of five such fillers were studied at a concentration of 5 percent
based on polyimide solids. These included silica, calcium carbonate, clay,
alumina, and barium sulfate. The filler was mechanically blended with the
powder precursor in a jar mill. The compositions were then foamed in 5 kW
microwave oven at a power output of 2.5 kW and a loading of 1.0 kg. These
foams were subsequently cured in a thermal oven at 121-248°C (250-480°F)
for a period of 1.5 hours. All foams were tested and results presented ir
Table 8.
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Figure 32. Effect of Blowing Agent Concentration on ILD Values
of Polyimide Foams

Results of this study indicate that the incorporation of fillers into poly-
imide precursors do not produce foams with a wide spectrum of densities or
ILD characteristics as expected. This task was continued with evaluation
of conductive fillers in accordance with the plan.

The interaction of conduct:ve fillers such as carbon, graphite, and aluminum
powders with microwave energy was reported (Ref. 3) previously. The data
reported showed that these conductive fillers added to polyimide powder
precursors produce sufficient thermal energy in a microwave field to cause
foaming and curing at relatively low power outputs. This technique was
re-evaluated in this task in an attempt to achieve various levels of density
and ILD characteristics at differen concentrations of the conductive fillers.

The conductive filler evaluated was activated carbon which had previously
shown (Ref. 3) to yield the best quality foam in a one-step microwave foaming-
curing process. In the studies carried ocat during the execution of the
present program it was established that variation of the concentration of
the conductive filler produces a variation of the rate of curing without
detectable effect on the properties of the foams. Since the properties of
importance to the objective of the program were not affected, namely, density
and ILD values, the work on this task was terminated at this point.
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Table 8

Ef fect of Fillers on Properties of Terpolyimide Foams

Filler/Additive Density Compression Set I Foam Charactaristics
2% 65%
tbe/fe? | kg/m? 08 500 bt N e N
None 0.89 14.2 1.8 10.4 18.2 80.9 64.4 286.4 Flexible, resilient. homogenecus

cellular structure

Silica 0.9% 15.3 38.5 10.4 .2 94.2 80.1 356.2 Flexible, resilient, homogeneous
cellular structure

Calcium Carbonate 1.04 16.6 313.2 11.0 24.4 |108.5 85.8 381.6 Flexible, resilient, homogeneocus
cellular structure

Clay 0.82 13.1 40.3 11.2 1.3 94.5 7.8 Ml.6 Flexible, resilient, homogsneous
cellular structure

Alumina 0.97 15.5 36.2 10.7 20.4 90.7 78.1 KL RS} Flexible, resilient, homogeneous
cellular structure

Barium Sulfate 0.61 9.8 51.9 22.5 25.8 114.8 86.0 382.5 Flexible, resilient, homogeneocus
cellular structure

4.2.3 Re-Evaluation of AS-2 Surfactant

The objective of this task was the re-evaluation of the best surface active
agent developed under NAS9-15484. This re-evaluation was directed to estab-
lish relationships, if any, between surfactant concentration and foam proper-
ties such as density, ILD, and comfort index.

The first exploratory experiments were carried out in the 5 kW microwave oven
with powder precursors modified with only 0.1, 0.25, 0.5, 0.75, 1.0, and 1.5
percent AS-2, respectively. All foams were macde at a power output of 2.5
kW and a loading of 1.0 kg by free rise techniques. These foams were subse-
guently cured at 121-248.8°C (250-480°F) in a thermal oven for a period of
1.5 hours. The foams were tested and fully characterized for properties
such as density, compression set, and ILD values. The results of this study
are presented in Table 9. The compression set and ILD properties of the
foams appear to be little affected by a change of the surfactant concentra-
tion. The significance of these data is expressed by the value of the comfort
index which is defined as the ratio of the ILD value at 65 percent deflection
to that at ", percent deflection. The comfort indexes reported are in the
range of 3 to 4 and fall within the acceptable range for seating comfort.
This ratio is an empirical value only and does not take into account foam
quality. As shown in Table 9, the foams produced at an AS-2 concentration
below 0.25% possess a brittle cellular structure and are unsuitable for seat
cushion applications in spite of their low comfort index value.

The studies concerning the re-evaluation of the surfactant concentration
were continued in large scale using the 15 kW microwave oven. These studies
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Table 9

Effect of AS-2 Surfactant Concentration on Properties of
Terpolyimide Foams Produced in the 5 XW Microwave Oven

AS~2 DENSITY COMPRESSION SET Lo COMFORT

CONC. INDEX FOAM CMARACTERISTICS

. Ibs/fed kg/m} 04 508 5% 5%

1bf N 1bf N

0.1 1.05% 16.8 32.0 11.3 481 215.2 187.0 8317 31.89 Slightly brittle and non-
homogeneous structure

0.25% 0.73 1.7 29.3 10.8 ng 141.0 106.0 LRART) .34 Flexible, resilient,
homogeneous cell structure
with gsome flaws

0.50 0.68 10.8 29.0 12.6 25.3 112.5 103.0 458.1 4.07 Flexible, resilient,
homogeneous structure

0.75% 0.73 1.9 26.8 10.0 28.5 126.7 102.0 453.6 3.58 Flexible, resilient,
homogeneous structure.
Minimal collapse.

1.0 0.86 13.7 19.4 10.3 40.5 180.1 i49.0 662.7 .60 Flexible, resilient,
homogeneous structure.
Good foam. Good tactile
comfort. Some collapse.

1.5 0.85 13.6 29.4 9.5 22.8 101.4 116.4 517.7 5.1 Flexible, resilient,
homogeneous structure

were carried out with powder precursors spra- dried at an outlet temperature
of 56-60°C (132.8-140°F), modified only with 0.15, 0.25, 0.375, 0.5, 0.75,
1.0, and 1.5 percent AS-2 respectively. Foaming was carried out by free-rise
technique using a kW/kg ratio of 0.84 at a loading of 10.0 kg and a microwave
pulsing cycle of 20 seconds ON and 20 seconds OFF. These foams were microwave
cured at a power output of 10.0 kW for a period of 40-45 minutes prior to
thermal curing at 204-260°C (400-500°F) for a period of 1.5 hours. The
results of this study are presented in Table 10. The foam properties reported
in this table do not exhibit the same dependence on surfactant concentration
as the foams produced in the 5 kW microwave oven, shown previously in Table
9. This discrepancy is attributed to a higher level of foam collapse occuring
in the larger bun size produced in the 15 kW microwave cavity. This collapse
accounts for the higher foam densities and for the correspondingly higher
ILD values than those obtained in the 5 kW microwave cavity at the same
surfactant concentration. The change of the critical properties of foams
produced in the 15 kW microwave cavity illustrates the inflvence of scale-up
on the foaming process. This problem has been fully evaluated in Task III
dealing with optimization of the foaming parameters and in Task IV where the
process for the five classes of foams was defined.

The foams produced at an AS-2 concentration of between 0.5 to 1.0 percent met
the fatigue requirements and poss~ssed the best comfort index with homogeneous
cellular structure. At AS-2 concentrations lower than 0.5 percent, foam
brittleness and non-homogeneous cellular distribution with large number of
flaws were observed, as expected.




Table 10

Effect of AS-2 Concentration on Properties of Terpolyimide Foams
Produced in the 15 kW Microwave Oven

FOAM AS-2 DENSITY COMPRESSION SET L0 COMFORT
NO. CONC. INDEX FOAM CHARACTERISTICS
. 1ba/fed | kg/md 0% S08 Y
1bt N 1bf N

87 0.15 . 20.9 336 9.7 70.0 311.3 | 220.0 | 978.5 3.4 Brittle cellular structure
with some flaws

86 0.2% 0.98 15.6 36.1 8.4 319.3 174.8 125.0 |-556.0 3.8 Flexible, resilient, non-
homogeneous cellular
structure

102 0.37% 0.9¢ 15.3 36.8 10.6 42.) 188.1 139.0 618.2 3.9 Flexible, resilient,

homogeneous cellular
structure with some flaws

84 0.5 1.09 17.4 49.5 9.4 432 192.1 162.0 720.5 3.7 Flexible, resilient,
homogeneous cellular
structure

64 0.7% 1.04 16.6 35.5 9.9 52.7 234.4 184.0 818.4 3.45 Flexible, resilient,
homogeneous cellular
structure

” 1.0 1.03 16.4 31.6 9.2 45.5 202.) 154.0 684.9 3.38 Flexible, resilient,
homogeneous cellular
structure

L3} 1.5 0.88 14.0 450 11.8 38.0 169.0 129.0 5745.8 3.39 Flexible, resilient,
homogeneous cellular
structure

The effect of the AS-2 surfactant concentration on the fatigue resistance of
polyimide foams was extensively studied in NAS9-15484 (Ref. 3) for three
different candidates including the 1720-1 flexible foams. The foams were
produced at AS-2 concentrations of 0.1, 0.25, 0.5, 0.75, 1.0 and 1.5 percent.
Of all the foam candidates subjected to fatigue in NAS9-15484, only four
samples survived the 10,000 cycles requirement with a maximum loss of thick-
ness of 20 percent. These candiates belonged to the 1720-1 series and were
produced at an AS-2 concentration of 0.1, 0.25, 0.5, 0.75 percent respectively.

Because the surfactant concentration affects the most critical property of
the foam, namely fatigue resistance, it was judged important to the success
of this program to define the concentration of the AS-2 within the closest
range possible before a final composition was selected. This effort was
carried out in the last part of the present program by evaluating the fatigue
properties of large foams produced in the 15 kW GFE oven at AS-2 concentra-
tions of 0.5, 0.75 and 1.0 percent respectively and 2.5 percent blowing agent,
using the fabrication process selected for the final prototype sample ship-
ment. Summary of the data derived from this study is reported in Table 11.

The cellular structure of the foams reported in this table are very similar,
but the number of visible flaws were higher at low AS-2 concentration. This
was expected since high surfactant concentration reduces the surface tension
of the expanding bubbles and facilitates the escape of the vapor from the cell
walls uniformly.
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Table 11

Effect of AS-2 Concentration on Critical Properties of Terpolyimide
Foams Produced in the 15 kW Microwave Oven (GFE)

Blowing Density ILD (1bf) Fatigue
AS-2 Agent Thickness Loss
Concentration (%) 1b/ft3 kg(m3 25% 65% (%)
0.5 2.5 0.83 13.2 42.8| 157 186.8
0.75 2.5 0.96 15.3 51.5| 187 4.6
1.0 2.5 0.90 14.4 48.4| 178 9.4

From the data reported in Table 11 the foams produced at 0.75 and 1.0 percent
AS-2 respectively, appear to be similar in fatigue performance. The evalu-
ation of properties carried out in Task III and IV was made on foams pro-
duced at a surfactant concentration of 1.0 percent. This concentration was
changed in Task V and Task VI to 0.75 percent, because this type of foam
exhibited a slight edge in fatigue properties.

4.2.4 Reactants Ratio

This effort involves the modification of the terpolymer resin system developed
under NAS9-15484. The major objective of this task is to evaluate the effects
of compositional changes upon the physical properties of the foam products by
modifying the ratios of aromatic, heterocyclic and alipnatic diamines. These
modifications were expected to result in resin compositions which would yield
improved flexible foams and candidates with specific ILD values.

To accomplish this objective the task was divided into three subtasks listed
below:

1. Evaluaticn of reactant ratios in the 5 kW microwave oven

2. Large scale foam evaluation of reactant ratios in the 15 kW GFE
microwave oven

3. Optimization of the selected formulation made at a constant
aliphatic diamine concentration of 0.1€ mole/mole BTDA

Evaluation of Reactant Ratios in the 5 kW Microwave Oven

The work on this subtask is divided into three separate but complimentary
schenes:
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. Evaluation of polyimide precursors at constant heterocyclic <iamine
concentration

. Evaluation of polyimide precursors at constant aliphatic diamine
concentration

: Evaluation of polyimide precursors at constant aromatic diamine
concentration

The liquid resins for these studies were prepared in a 5.0 liter reactor ana
spray dried at an ontlet temperature of 56-60°C (132.8-140°F). All foam
samples were prepared in the 5 kW microwave oven at a power output of 2.5 kW
at a loading of 1.0 kg. After microwave foaming, the foams were cured ther-
mally for one hour at a temperature of 121-260°C (250-500°F). The results
obtained from the evaluation of foam properties are summarized for each of
the compositional scheme, as reported below.

Evaluation of Polyimide Precursors at Constant Heterocycli: Diamine
Concentratior.

Each foam prepared as previously described was tested for the most critical
properties, which included density, compression set and ILD values.

The results from this study are reported in Table 12. As shown, each foam
was produced at a constant concentration of the heterocyclic diamine of 0.3
mole per mole of BTDA. The test data have been plotted for each of the
critical properties against the aliphatic diamine variable and the graphs
derived are shown in Figure 33 for effect on density, Figure 34 for effect
on ILD values and Figure 35 for effect on the compression set values. Figure

Table 12

Ratio Study - Physical Properties of Polyimide Foams at
Constant Keterocyclic Diamine Concentration

INDENTATION LOAD COMPRESSION
FOAM MOLE RATIO DEFLECTION (ILD) SET FOAM
NUMBER (DAP : MDA ; DAH) DENSITY LOSS CHARACTERISTICS
N 1bf )
kg/m3 | 1bs/fe? 25v | 5% | 25 | 650 20 50
56«1 0.3:0.58;0.12 10.3 0.64 100 342 22.5 n 37.5 12.4 Homogeneous
54-1 0.3:0.56:0.14 9.0 0.56 88 an 19.8 61 26,2 15.3 Homogeneous
48-2 0.3:0.54;0.16 14.4 0.90 86 289 19.3 65 40.0 12.6 Homogeneous
50-4 0.3:0,52;0.18 15.9 0.99 ” m 17.7 70 38.3 12.2 Homogeneous
50-3 0.3:0.50;0.20 12.2 0.76 101 38 22.8 7% 39.0 11.9 Homogeneous
52-2 0.3:0.48;0.22 25.1 1.57 182 823 40.9 185 40.4 12.5 Reticulated Areas
i
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Figure 33. Effect of the Aliphatic Diamine Molar Concentration on
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Figure 34. Effect of Aliphatic Diamine Molar Concentration on ILD
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Figure 35. Effect of Aliphatic Diamine Molar Concentration on
Compression Set Value of Terpolyimide Foams

33 clearly shows that precursor compositions made at increasing aliphatic
diamine concentration produce foams with correspondingly higher density
values. This direct relationship between density and concentration of alipha-
tic diamine is more a result of a higher level of foam collapse which occurs
during curing than on the change of the molecular structure brought about by
the chain lengthening effect of the aliphatic moiety. The increase in den-
sity should produce correspondingly higher ILD values. This effect is shown
in Figure 34 where the ILD values at 65 percent deflection increase with
increasing aliphatic diamine ratio. This same effect is not apparent for
the ILD values at 25 percent deflection probably because of nonhomogeneous
density distribution of the collapsed foams.

The compression set properties of the terpolyimide foams are independent of
compositional changes as illustrated in Figure 35. This is true for compres-
sion set values at both 50 and 90 percent compression.

precursor formulation derived from this study were selected for scale-up in
this task, as discussed later.
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Evaluation of Polyimide Precursors at Constant Aliphatic Diamine
Concentration

The data derived from this compositional study are reported in Table 13 for
two compositions only, since precursors made at a heterocyclic diamine con-
centration greater than 0.32 mole per mole of BTDA did not produce usable
foams. Each foam was made at a constant aliphatic diamine concentration of
0.2 mole per mole of BTDA. Due to lack of data no relationships were derived.
The foams produced from chis study are illustrated in Figure 36.

The foaming behavior of the terpolyimde precursors is drastically altered when
the reactant ratio exceeds certain limits. Studies carried out in NAS9-~15484
(Ref. 3) have shown that a balance must be maintained between the heterocyclic
and aromatic diamines to obtain quality foams. This balance was exceeded in
the experiments carried out in tihiis task when the precursors were made at or
above a heterocyclic diamine concentration of 0.35 mole per mole of BTDA. At
a heterocyclic diamine concentration of 0.38 mole per mole of BTDA, this
ef fect is very dramatic as shown in Figure 36. No formulations were selected
from this study.

Evaluation of Polyimide Precursors at Constant Aromatic Diamine Concentration

The data obtained from this ratio study are listed in Table 14. All foams
were produced at a constant aromatic diamine concentration of 0.50 mole per
mole of BTDA. The foamg are illustrated in Figure 37 which shows the effect
of increasing concentration of the heterocyclic diamine on the foaming beha-
vior of the powder precursors.

As discussed previously, there is a range of ratios between the heterocyclic
and aromatic diamines which must be maintained to obtain usable foams. This
range can be changed if the concentration of the aliphatic diamine is decreased

Table 13

Ratio Study - Physical Properties of Polyimide Foams
at Constant Aliphatic Diamine Concentration

INDENTATION LOAD COMPRESSION
FOAM MOLE RATIO DEFLECTION (ILD) SET FOAM
NUMBER (DAP : MDA ; DAH) DENSITY LOSS CHARACTERISTICS

N 1bt )

kg/m? | lbs/fed 250 | esv | 254 654 30 50

82-3 0.32:0.48:0.20 10.9 0.68 99 360 22.3 LA 38.1 12.0 Some Reticulation
83-4 0.34:0.46;0.20 17.8 .1 157 765 35.4 172 20.2 12.7 Reticulated

84-5 0.36:0.44;0.20 - e - - - -- - - Large Holes, Very
Reticulated

85-6 0.38:).42:0.20 — - - - - -- - - Hollow Shell




A=20.,32, 0.48, 0.20

B=0.34, 0.46, 0.20

C=10.36, 0.44, 0.20

D =0.38, 0.42, 0.20

Figure 36. Ratio Study - Polyimide Foams Derived From Precursors Made
at Constant Aliphatic Diamine Concentration
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Table 14

Ratio Study - Physical Properties of Polyimide Foams
at Constant Aromatic Diamine Concentration

INDENTATION LOAD COMPRESS1ON
FORM MOLE RATIO DEFLECTION (ILD) SET FOAM
NUMBER (DAP : MDA ; DAN) DENSITY Loss CHARACTERISTICS
N 1bf )
kg/e? | 1be/fe? 250 | ese | 250 | &5 20 50
88-2 0,32:0.50;0.18 13.0 0.81 68 es 15.2 87.4 35.3 1.2 Homogeneous
89-3 0.34:0.50;0.16 10.7 0.67 45| 304 1.1 e8.3 37.8 13.9 Slightly
Reticulated
90-4 0.,36:0.50;0.14 14.3 0.89 140 729 3. 164 3a 12.4 Holes,
Reticulated
921-5 0.38:0.50;0.12 10.7 0.67 8 151 18.2 33.9 30.3 12.3 Holes,
Reticulated
NOTE: 1. Sample was reticulated over 1/2 its ~Area.

to 0.16 mole/mole of BTDA. As shown in this study, this change permits the
use of higher concentrations of the heterocyclic diamire than previously
possible.

Evaluation of the physical properties reported in Table 14 failed to yield
any firm relationships. This was probably due to the excessive amount of
reticulation found in the foams. Because of this deficiency, the foams were
neither homogeneous in cellular structure nor uniform in physical properties
within the bun, thus giving varied results depending upon where the sample was
taken.

This effort did not produce any breakthrough in polyimide technology but
helped to clarify the foaming behavior of certain terpolyimide precursors and
to more clearly identify the limits of each reactant to yield usable foams.

Large Scale Evaluation of Foams Produced From Precursors Made at Various
Reactant Ratios in the 15 kW GFE Microwave Oven

As discussed previously, polyimide precursor formulations made at constant
heterocyclic diamine concentration were selected for scale-up in this task.
These were foamed in the 15 kW GFE microwave oven at a power ratio of 0.84
kW/kg using a blowing agent concentration of 2.5 percent. The formulations
studied and the test results obtained are listed in Table 15. Examination
of the data yields no definite trends as was previously shown to be the case
for foams made in the 5 kW oven. This study again demonstrates that compo-
sitional changes have no significant effect on the foam properties. Two
important characteristics were uncovered in this study and involved foam
collapse which decreased with lower aliphatic diamine ratios and the fatigue
resistance of the foams which improved with increasing aliphatic diamine
concentration. These two features quickly became important considerations
during selection of the most p:omising reactant ratio. After considering
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A =0.32, 0.50, 0.18

B = 0.34, 0.50, 0.16

Cc=20.35, 0.50, 0.4

D= 0.38, 0.50, 0.12

Figure 37. Ratio Study - Polyimide Foams Derived From Precursors Made
at Constant Aromatic Diamine Concentration
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Table 15

Ratio Study - Physical Properties of Polyimide Foams at a Constant
Heterocvclic Diamine Concentration (15 kW Oven)

Indentation
Load Deflection (ILD) Compresslon
Set Loss
Density N 1bf n) Fatigue
Foam Luss
Number | Mole Ratlio kg/n3 | 1bs/ged | 258 | 65% | 258 65% | 90% 50% (%)
20 0.3:0.7:0.0 1.4 0.7 AL} 698 .7 157 51.6 17.6 22.5
200 0.3:0.6:0.1 10.3 0.64 12 394 25.3 B88.6 42.5 18.6 25.6
199M 0.3:0.58:0.12 13.7 0.85 144 516 32.4 116 54.1 18.5 10.1
20 0.3:0.56:0.14 1.6 0.72 157 582 35.4 mm 37.4 14 5.4
18 0.3:0.54:0.16 15.4 0.96 207 760 46.5 m 45.0 1.6 3.4
145 0.3:7.,52:0.18 18.0 .12 169 556 38.0 125 48.5 1.7 NA
146 0.3:0.50:0.20 14.8 0.92 225 651 50.6 147 43.7 10.9 NA
Note 1: NA - not available.

the problem of collapse, the data given in Table 15, and after visual obser-
vation of foaming characteristics and foam structure, the aliphatic diamine
concentration was lowered to 0.16 mole/mole BTDA and all subsequent foams
were produced from precursors made at this aliphatic diamine concentration.

Optimization of the Selected Formulation Made at a Constant Aliphatic Diamine
Concentration of 0.16 Mole per Mole of BTDA.

The objective of this subtask was to modify the selected formulation, made at
an aliphatic diamine concentratioa of 0.16 mole per mole of BTDA and to define
the optimum ratio of aromatic and heterocyclic diamine. These preliminary
experiments were carried out in the 5 kW microwave oven. The results derived
from these formulations are listed in Table 16 and the foams shown in Figure
38. Heterocyclic diamine concentrations cof less than 0.30 mole/mole BTDA
produced no detectable improvements in ILD or comrrussion set. At concentra-
tions greater than 0.30 mole/mole BTDA the foars became more reactive in the
microwave field resulting in increasing reticulation which led to collapss.
The formulati_.n selected previously, made at a ratio of 0.30:0.54:0.16, was
again found to exhibit the optimum foam properties.

In this task it was found that moderate compositional changes do little to
effect ILD or compression set, however these changes produced foam collapse
which resulted in non-uniformity of physical properties. Based upon these
findings, foams produced from precursors made at a ratic of 0.30:0.54:0.16
were {ound to possess the optimum foam properties and were selected for ail
subsequent studies including the production of the final prototype samples for
evaluation by NASEA-Johnson Space Center.

60




Table 16

Ratio Study - Physical Properties of Polyimide Foams at a Constant
Aliphatic Diamine Concertration (0.16 Mole/Mole BTDA)

1 I
£ Indentation
Load Deflection (ILD)
Compress lon
Density N 1bf Set Loss (%)
Foam
Number Mole R.tio kg/md | 1bs/ft3 | 254 | 65% 25% 65% 90% 50% Comments
5 95-5 0.26:0,58:0.16 14.0 0.87 142 442 31.6 96.2 59.7 12.7 Homogeneous
95-6 0.28:0.56:0.16 30.8 1.92 205 1076 | 45.5 239 41.6 10.8 Homogeneous
48-2 0.30:0.54:0.16 14.4 0.90 a7 293 19.3 65.1 40.0 12.6 Homogeneous
96-7 0.32:0.52:0.16 18.0 1.12 163 mm 36.3 158 39.0 1. Very Slight
Reticulation
89-3 0.34:0.50:0.16 10.8 0.67 45 307 10.17 | 68.3']| 37.8 13.9 Slight Reticulation
96-0 0.36:0.48:0.16 | 24.4 1.52 256 1035 | 56.8 230 40.7 10.5 Very Dense,
Reticulated Areas
100-9 0.38:0.46:0.16 - - - - - - - - Collapsed
100-10 0.40:0.44:0.16 - - - - - - - - Collapsed
100-11 0.42:0.42:0.16 - - -— - - - - - Collapsed
Note 1: Testing sample coatained a reticulated area.

4.2.5 Quality Standards

The objective of this task was to establish quality control measures to aid
in the consistent production of polyimide foams possessing specific ILD and
density characteristics.

The task is divided into five sections. Sections I and II deal with the
measures established to assure the quality of raw materials and liquid poly-
imide precursors respectively. Section III deals with the guality standards
07 polyimide powder precursors and additives where as Section IV deals with
the finished polyimide foams. In Section V, an attempt is made to correlate
important quality parameters to foaming behavior and foam properties.

Raw Materials

The parameter selected to establish quality control of major raw materials
used in the synthesis of liquid polyimide precursors was melting point.
Melting point determinations for the raw materials was carried out in a
6406-H Thomas-Hoover Melting Point apparatus using raw material samples taken
from the bottom, middle, and top of the shipping container.




Foam 1 - 00263005830-16

Foam 2 - 0028:0056:0016

Foam 3 - 0.32:0.52:0.16

Foam 4 - 0.34:0.5:0.16

Figure 38. Ratio Study - Polyimide Foams Derived From Precursors Made at
a Constant Aliphatic Diamine Ratio of 0.16 Mole/Mole BTDA
(Sheet 1 of 2)
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Foam 5 - 0.36:0.48:0.16

Foam 6 - 0.38:0.46:0.16

Foam 7 - 0.40:0.44:0.16

Foam 8 - 0.42:0.42:0.16

Figure 38. Ratio Study - Polyimide Foams Derived From Precursors Made at a
Constant Aliphatic Diamine Ratio of 0.16 Mole/Mole BTDA
(Sheet 2 of 2)
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The analysis of all major raw materials was carried out periodically by
Infrared Spectroscopy obtained by the KBr pressed wafer method on a Beckman
Model 1R8 infrared spectrophotometer. All liquid raw materials were analyzed
by measurement of the specific gravity and by visual inspection.

The melting point and IR spectrum of the major raw materials are reported in
Section 3.

Ligquid Polyimide Precursor

The parameter selected for the quality contrcl of the 1liquid polyimide
precursor was viscosity of liquid resin. Viscosity determinations for the
liquid resin were carried out by Zahn Viscosimeter. Since the temperature
is known to affect the viscosity of a liquid, a viscosity temperature curve
was established as shown in Figure 39.

The viscosity measured by the Zahn viscosimeter is expressed in Zahn seconds,
that is, the time required for a definite volume of liquid to flow through the
orifice in the bottom of a metal cup. In all the experiments, Zahn cup #1 was
used.

55 b=

VISCOSITY (SECONDS)
3
T

40 45 50 55
TEMPERATURE, *C

Figure 39. Viscosity-Temperature Relationship of Polyimide Liquid
Precursor
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The liquid precursors which did not meet the viscosity requirements at the
temperatures reported in the graph were rejected. In addition to viscosity
measurements, the liquid resin was checked for foaming behavior at 500°F.
In this test the foam rise and foam quality was checked against a standard.
Liquid precursors which did not meet this standard were abandoned.

Powder Precursors and Additives

The parameters selected for the control of the quality of the powder precur-
rors and additives were the particle size distribution, volatile content,
and foaming behavior. To assure consistent distribution of particle size,
standard distribution curves have been established for the powder precursor
at various spray dryer outlet temperatures. These curves are shown in Figure
40. The powder precursors were tested to meet this requirement before being
processed. The foaming process is aided by the use of a blowing agent,
Celogen HT 550, which is added and mixed with powder precursors prior to
foaming. Standard particle size distribution curves for this additive have
also been established at various ball milling hours. These curves are shown
in Figure 41.

Since the particle size of the blowing agent was found to control the cell
size of the finished foams, the distribution cuarve for each batch of ti.e blow-
ing agent was compared against the standard curve before use.
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Figure 40. Particle Size Distribution of Powder Precursors - Spray
Dryer Outlet Temperature Study (Inlet = 100°C)
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Figure 41. Standard Particle Size Distribution Curves for
Blowing Agent {Celogen HT 550)

The degree of expansion of the polyimide precursors during foaming is depen-
dent on the concentration of the volatiles. The volatile content, a mixture
of methanol and water that forms during the amidization and imidization
reactions is a function of the spra,; drying process and depends on the drying
temperature. The volatile content of the precursors was checked by heating
the powders at 287.7°C (550°F) and measuring the weight loss. The volatile
content of the precursors varies within the range of 20.0 to 20.5 percent.
Any batch that did not meet this requirement was abandoned.

Finally the foaming behavior of the precursors was checked by foaming a 100 g
batch in the 5 kW microwave oven. The foam rise and cellular structure was
compared with a standard to assure quality of the powders before foaming in
large batches.

Polyimide Foams

The parametercs selected for the quality control of polyimide foams included

density, indentation load deflection valuer at 25 and 65 percent deflection,
compression set loss values at 30, 50, 70 and 90 percent compression, and

fatigue loss at 8,000 cycles.

The quality control procedure involved obtaining representative test samples
from the large foams produced in the 15 kW microwave oven. A schematic of




large foam cut up for testing samples is shown in Figure 42. The tests were
carried out acc .rding to ASTM methods reported in Section 3, Experimental
Procedures. The results of these tests were used to define relationships
between processing parameters and foam properties and in evaluating uniformity
within and between buns. The same tests and additional quality standards were
also used to prepare final specifications for each of the five classes,
selected in the following tasks.

Correzlation of Quality Parameters to Polyimide Foam Properties

The quality of the raw materials has been found to be a major factor contri-
buting to variability of foam properties under identical processing condi-
tions. Of all the raw materials used, the dianhydrides were found to vary
from batch to batch more than any other raw materials purchased. This quality
problem was resolved by washing the dianhydrides with acetone to remove
impurities contributing to lower meltina point. The powder precursors
obtained by using raw materials meeting quality standards produced foams
which possessed uniformity of cellular structure only if the temperature of
the spray drying process was maintained constant within very close limits.
This dependancy was uncovered during this work and was attributed to the
effect of the temperature of the spray dryer on the particle size of the
powder precursors, the higher the temperatures the finer the particle size.
Larger particle sizes were found to absorb more energy in an electromagnetic
field resulting in foams with nonhomogeneous density and ILD characteristics.
The temperature of the spray dryer has also shown to control the volatile
content of the precursors and hence influences the foaming behavior.

Similarly, the particle size of the blowing agent was controlled within very
close range to assure uniformity of cellular structure. Large particle size
produces a wide variation in cell size and nonuniform density distribution
within and between foams. More importantly, the concentration of the blowing
agent was found to affect the foaming behavior of the precursors and to alter
the cellular structure of the foams.

It was during the execution of this task that two processing parameters were
found to produce changes to the density and ILD properties of the foams.
These parameters are the temperature of the spray dryer and the concentration
of the blowing agent. The development of these relationships was later used
to generate conditions to produce polyimide foams with different ILD charac-
teristics, which were further classified into five classes in accordance
with predetermined values of the ILD at 25 percent deflection.

4.2.6 Testing and Selection

This task, which was carried out concurrently with each of the subtasks
discussed above, entails evaluation of polyimide foams through the process of
iterative testing for mechanical properties such as density, compression set,
modulus, ILD, and comfort index. This subtask was planned out to screen prom-
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Figure 42. Sampling Schematic for Testing
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ising candidates and establish several classes of polyimide foams, each
meeting a specified value of ILD at 25 percent deflection.

The first step of this task was carried out by preparing the powder precursors
in a five-mole batch size followed by foaming the powders in the 5 kW Model
4115 microwave oven. The foams were then evaluated for cellular homogeneity
and structure and candidates selected for further scale-up.

In a second step these candidates were scaled-up to a twenty-mole batch size
and the powder precursors foamed in the 15 kW GFE microwave oven. Testing of
the foams started with the most critical properties which included density,
ILD at 25 and 65 percent, and compression set at 50 and 90 percent. Evalua-
tion of the fatigue strength and resistance of the foams to humid environments
was carried out with specific foams only to determine the effect of certain
compositional changes.

In most cases, testing was carried out to establish relationships between
process parameters or compositional changes and foam properties and to screen
the factors which contributed to specific levels of ILD values at 25 percent
deflection. Table 17 shows the relaticnship between outlet temperature of
the spray drying process and the properties of the powder precursors and their
respective foams.

Table 17

Testing and Selection - Interrelations of Terpolyimide
Foam Properties

POWDER POAM
OUTLET TEMP. | ‘IELD BULK MEAN Al DENSITY 1LD C.S.
°c kg/h DENSITY | PARTICLE SIZE | VOLATILE kg/m3 25% 65% 508 90%
g/cc microns 1bf N 1be¢ N
56-6C 3.36 «351 140 22.3 17.6 42.6 189.5 153.8 604.1 8.7 34.9
60-64 3.18 «316 120 21.7 19.6 43.3 192.5 136.3 606.2 9.2 42.3
67-70 2.27 «295 98 20,7 240 63.2 281.1 216.8 964.3 12.9 43.9
70-74 1.72 «280 76 19.2 25.6 99.5 442.5 442.5 1968.2 12.8 49.9

As clearly demonstrated by the data, a high outlet temperature causes a
decrease of the powder precursors yield brought about by the low feed rate
of the liquid resin required to maintain the proper heat balance in the
drying chamber. Lower feed rate produces finer liquid atumization and pre-
cursors possessing smaller particle size, low bulk density and low volatile
content. The effect of the precursor properties on the respective foams is
also clearly shown in Table 17.

The density of the foams increases as the particle size of the precursors
decreases. Higher densities produce correspondingly higher ILD values. The
effect of these process parameters on the ILD values are clearly understood




since foam deflection properties and densities are directly related, but the
effect on the compression set is less explainable.

The ILD values of all the foams tested in this phase of the program were
plotted against their respective densities and the results are shown in
Figure 43. These data were plotted without filtering results considered to
be deviating from the normal.

The data reported in Table 17 display outlet temperature conditions which
produce foams with ILD values meeting the requirements for three of the five
classes established in this program. These three classes have ILD values at
25 percent deflection of 99.5, 63.2 and 43.3 1bf respectively.

roams produced at different outlet temperatures were tested for resistance to
humid environments at 74°C (165°F) and 100 percent relative humidity for a
period of seven days. These foams were produced in a 15 kW GFE microwave
oven at a power ratio of 1.3 kW/kg and cured for 42 minutes at 15 kW followed
by thermal curing for 95 minutes at 350-475°F. Results of this test are
summarized in Table 18.

The effort carried out during the task dealing with blowing agents resulted
in the selection of Celogen HT 550 as the final candidate. The scale-up of
this additive was successfully carried out in a 15 kW GFE microwave oven as
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Figure 43, Terpolyimide Foams - Density-ILD Relationship
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described in Section 4.2.2. Results indicate a definite relationship between
concentration of blowing agent and ILD values of the polyimide foams.

Theoretically, polyimide foams possessing ILD values between the range of
21-85 1bf can be obtained by suitable selection of the concentration of the
blowing agent and power ratio between the ranges of 0 to 7.5 percent and 1.0
to 1.3 k#¥/kg respectively. In addition, this range of ILD values can be
expanded by proper choice of outlet temperature between 56-74°C. This concept
will be further elaborated in Task III by iterative permutation of three
important parameters, namely power ratio, concentration of blowing agent and
outlet temperature.

The work on additives and fillers did not produce any viable candidates for
classification.

The re-evaluation of best surface active agent, AS-2, developed under NAS9-
15484, has shown dependence beween AS-2 concentration and ILD values of toams
made in the 5 kW microwave oven. Concurrent with this study, Celogen HT 550
was selected as a blowing agent through a separate effort of Task II. When
this blowing agent was introduced into the foaming process in the 15 kW micro-
wave oven, the dependence cf AS-2 concentration on ILD values was lost due
tc the predominant effect of Eklowing agent on density and ILD values. The
effect of the concentration of blowing agent on ILD values of the terpolyimide
foams produced in an open mcld is fully described in Section 4.2.2.

The effect of compositional changes on the ILD valu's is reported in Table 19
for foams made in 5 mole batches and foamed in the 5 kW Model 4115 microwave
oven. The data show that the ILD values of the terpolyimide 1720-1 foams are
independent of the aliphatic diamine ratio over the range reported, and no
classification into groups is attainable through compositional changes. These
results confirmed the data derived from previous work (Ref. 3) which shows no
correlation between precursor compositions and the ILD values of the foams.

The ILD values shown previously in Table 18 were obtained from foams produced
in the 15 kW GFE microwave oven using the conditions established in Task I
and those in Table 19 from foams produced in the 5 kW Model 4115 microwave
oven using optimized process parameters developed in previous programs. The
operating parameters of the two microwave ovens in addition to size and
processing time are significantly different and affect the values of the ILD
and compression set of the foams. The important conclusion of this study is
the need to develop more advanced foam fabrication techniques which more
closely reflect the conditions of the 5 kW microwave oven. This study is
described in Task III in accordance with the plan.

Task II - Formulation and Optimization - Summary

The following brief review describes the major developments resulting from
the erperimental work carried out in Task II, Formulation and Optimization.




Table 19

Testing and Selection - Effect of Molar Ratio of the Aliphatic
Diamine on ILD Properties of Terpolyimide Foams

ILD

25 Percent 65 Percent

Aliphatic Diamine
Mole Patio 1bf N 1bf N

0.12 22.5 100.0 77.0 342.5
0.14 19.8 88.0 61.0 271.3
0.16 19.3 85.8 65.1 289.5
0.18 17.7 78.7 69.5 309.1
0.20 22.8 101.4 76.0 338.0

A square open mold configuration with bottom grid and corner vents
for release of vapors and polyimide insulation for improved curing
has been selected for all foaming studies.

The ILD values of polyimide foams change proportionately with
changes of the outlet temperature. Foams with ILD values of 99.5,
63.2, and 43.3 1bf were obtained at outlet temperatures of 70-74,
67-70 and 60-64°C, respectively.

A blowing agent, Celogen HT 550, was selected to produce more
uniform cellular structure. It also permits changes in ILD values
of the foams when its concentration is varied within the range of
0.25 to 7.5

percent.

Additives and fillers did not produce detectable changes in foam
properties, particularly ILD values.

Re-evaluation of the best surface active agent, AS-2, did not show
any relationship with ILD values. However, foams produced between
0.5 to 1.0 percent AS-2 have met the requirements of fatigue strength.

The data derived from the work carried out on compositional changes
show that ILU values of the polyimide foams are independent of the

aliphatic diamine ratio over the range reported and no classifica-

tion into groups is attainable.

Quality standards have b2en established for raw materials, liquid
and powder precursors, additives and polyimde foams.

At the end of Task II, three parameters were identified as most criti-
cal in classifying foams into groups according to ILD values;

these are outlet temperature, concentration of the blowing agent,

and power ratio.
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4.3 TASK III - OPTIMIZATION OF FOAMING PARAMETERS

The major objective of this task is the optimization of processing parameters
and foaming techniques to achieve foams with specific densities and multiple
levels of comfort and durability not possible through Task I and Task II.
The secondary objective of this task is to define the deficiencies, if any,
of the present foaming techniques for prototype production samples.

4.3.1 Molding Techniques

polvimide precursors are free flowing powders which evolve 19-22% volatiles
aru expand into a cellular structure when heated in a microwave cavity.

The polyimide foams discussed in Task I were produced exclusively by the free-
rise technique. This method was chosen because it offered the least resis-
tance to the escape of these volatiles. After the microwave processing, the
foams were subjected to a thermal curing cycle to achieve resiliency and
flexibility through the mechanism of a condensation polymerization reaction.
The curing temperature was in the range of 218-288°C (425-550°F) which is so
close to the glass transition temperature (285°C, 545°F) that softening of
the material occurs. The deficiency of the free-rise foaming technique
rests with the fact that the sides of the foam provide little or no support
for the foam when it is heated to the softening point. This results in foam
collapse. The effect of foam collapse is a variation of the density within
the bun which consequently affects all other critical foam properti:=s making
it difficult to achieve reliable and reproducible classification intc groups.

A solution %0 this problem has been found by foaming polyimide powder precur-
sors and allowing the foaming mass to conform to the shape of the mold.
Limited effort in this area was expended in NAS9-15484 and results of this
study were described in the final report (Ref. 3). Perforated molds produced
more homogeneous cellular structure with less flaws than closed molds, but
both tachniques were less adaptable to prot typs large scale production than
the free or vertically constrained rise techniques. It was noted that
volatiles which remain entrapped in the mold produce large flaws and imper-
fections. This deficiency was also reported in Task I or the present program
which will be the subject of the development work described next.

The work carried out in this task started with the fabrication of two large
molds having dimensions of 91.5 x 91.5 x 61 cm (36 x 36 x 24 in.) and 122 x
122 x 91 cm (48 x 48 x 36 in.) respectively. The molds were fabricated with
a 2.5 om (1 in.) deep grid installed at the bottom wiih corner vents to
allow for the escape of volatiles. The 122 x 122 x 91 cm (48 x 48 x 36 in.)
mold is shown in Figure 44. The size of the mold was such that it just
cleared the microwave door and the mode stirrer which is barely vis.ble in
Figure 45 where the same mold is shown in the 15 kW microwave oven on the
aluminum rods and polyimide insulating foam supports.

The first series of experiments was carried out in the 91.5 » 91.5 x 61 cm
(36 x 36 x 24 in.) mold at a loading of 10.0 kg and microwave gower ratio of
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Figure 44. Polypropylene Mold Modified With Bottom Grid and
Corner Vents

Figure 45. Mold Foaming Assembly in the 15 kW Microwave Oven




0.84 kW/kg. These experiments were designed to yield standard procedures
for mold foaming prior to the start of parametric studies to evaluate the
influence of processing on the cellular structure, homogeneity, uniformity,
and physical properties such as density, compression set, and ILD values.
These experiments produced process improvements and a reasonable level of
foam yield (15%) to justify the parametric study. These process improvements
are listed below.

1. Use of polyimide foam insulation liners for the sides of the mold
to prevent heat loss and reduce the amount of secondary thermal
foaming.

2. Lower support platform in the microwave cavity to prevent damage to

the foam by the mode stirrer.

3. More consistent methods of powder lay-up by using shaped forms to
control size and thickness of the powder beds to about 52 x 52 x
11.4 cm (20.5 x 20.5 x 4.5 in.).

4. Improved mechanical means of removal of the buns from the mold
using Teflon coated glass strips installed in the mold itself.

The first effort of this parar::. -~ study involved the evaluation of the
optimum loading to attain comple.c wold filling and best bun shape for maxi-
mum yield. The mold shown in Figure 44 (48 x 48 x 36 in.) was used in these
experiments and foaming carried out at a pulsing cycle of 20 seconds ON and
20 seconds OFF.

Figure 46 shows the foams obtained from powder loadings of 10, 15 and 20 kg
respectively (22, 33 and 44 1lbs) using microwave power output ratios of
0.84, 0.71 and 0.625 kW/kg respectively.

Prap—

Experiments 132M, at a loading of 10 kg (22 lbs) and to a lesser extent 133M,
at a loading of 15 kg (33 1lbs) did not produce complete mold filling, there-
fore some of the collapse characteristics of free-rise foaming were evident.
When complete mold filling was attained, the foam conformed to the shape of
the mold, and produced geometrically shaped buns almost identical to the
configuration of the mold. The same figure shows the increasing foam rise
as the powder loading is increased from 10 to 15 kg and finally to 20 kg.

P

-

s

As clearly shown in Figure 46 these foams possess a more open cellular struc-
ture characteristic of f-ms produced with the use of blowing agents. The
foams were cut to remove .he edges and integral skins from top and bottom to
show the size effect due to the incressed powder loading and the rather poor
cellular structure on the outer periphery of the foam.

Foaming tc a shaped configuration in a wld accomplished the objective of
reducing the foam collapse during curing. This is shown in Figure 47 where
the two foams are produced from the same powder precursor and at the same
foaming conditions. The foam shown in Figure 47/a), produced by free-rise
technique, shows a denser cellular structure at the base of the bun due to
foam collapse. In contrast, the foam shown in Figure 47(b) produced by mold
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Figure 46. 1720-1 Foams Produced in a Mold at Various Loadings
132M - 10 kg, 133M - 15 kg, 135M - 20 kg

foaming technique, possesses higher foam rise and no signs of collapse. The
principal advantages of foaming to a configuration in the open mold, as re-
ported in Table 20, are:

. more reqularly shaped buns

: less foam collapse

. higher rough cut yield

. more homogeneous cellular distribution

. more uniform physical properties within the buns
. more consistent physical properties between buns

Another mold having dimensions of 101.6 cm x 121.9 cm x S1.4 cm (40 x 48 x 26
in.) deep was fabricated as shown in Figure 48. This mold has an open lattice
structure which, when fitted with foam liners was expected to allow the
volatiles to escape more readily. This mold was evaluated to study the effect
of the open latti~e structure on foaming behavior of 1720-1 precursors. The
foams produced in this mold possessed more imperfections and lower rise than
those made in the conventional open box rnold used in the development studies
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Polyimide Foam Produced by Free-Rise Technique
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Figure 47(a).

Yy Constrained Technique

Figure 47(b). Polyimide Foam Produced b




Table 20

Free Rise Versus Constrained Rise; Effect on Yield and Foam Properties

FREE RISE MOLD
Foam No. 150 168M
Powder Resin 1720-1 1720-1
Spray Dryer Outlet Temp. °C 56-60 56-60
AS-2 Conc., § 1.0 1.0
Powder Coating Size, in. 15 x 20 x 4.75 20 x 21 x 4.25
cms 38.1 x 50.8 x 12,1 50.8 x 53.3 x 10.8
Powder Load, kg 10 10
1lbs 22 22
kW/kg 0.84 0.84
Bun Size, after Foaming, in. 35 x 40 x 19 32 32 % 26
cms 88.9 x 101.6 x 48.3 81.3 x 81.3 x 66.0
Bun Size, after Curing, in. 35 x 40 x 11.5 32 X 32 % 28
cms 88.9 x 101.6 x 29.2 81.3 x 81.3 x 61.0
Rough Cut Yield, BF 112 17m
Foam Characteristics Homogeneous cellular Homogeneous and uniform
structure; denser at cellular structure;
bottom due to collpase some flaws and imper-
fections at the bottom
and outer periphery
Collapse, % 39.5 7.7
Density, lbs/ft> 0.88 0.83
Compression Set, S50% 37.2 42.7
50% 1.4 14.0
ILD, 1lbf 25% 37.5 32.9
65% 139.0 111.0

reported earlier. These results were attributed to the higher heat losses
occurring in the open lattice mold during the foaming process.

On the basis of these results, the box mold was selected as the standard tool
for the development work planned in the remaining tasks of this program.

4.3.2 Foaming Parameters

The objective of this subtask is the continuing evaluation of foaming and
compositional parameters to obtain foams by open mold foaming techniques
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Figure 48. Open Lattice Polyproplene Mold

possessing homogeneous cellular structure and uniform distribution of physical
properties within and between buns for classification into five groups of
flexible, resilient polyimide foam products in accordance with specified ILD
values at 25 percent deflection. All foams in this subtask were tested using
the destructive methods described in Task II which permitted sampling the foam
from different sections (e.g., top, center, and bottom). All samples were cut
perpendicular to the rise of the foam. The testing schematic for foam cut-up
and number location was shown in Figure 42.

The foaming and compositional parameters studied in this subtask included the
effect of power ratio, concentration of the blowing agent, pulsing cycle and
microwave cure times. All foams were extensively tested concurrently with
Subtask 4.3.4, Mechanical 7Testing.

Power Ratio

In the first stage of this study the effects of power ratio on the critical
properties of foams were evaluatea. All foams in this study were produced
frcm powder precursors spray dried at an outlet temperature of 56-60°C and
modified with 2.5 percent blowing agent. Power ratios in the range of 0.3
to 1.7 kw/kg were evaluated. The results of this study are presented in
Table 21.
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Table 21

Summary of Microwave Power Output Study (kW/k¢q

Properties
Compression
Loading Power Set Loss (%) ILD, 1bf
Foam Power Ratio Densit

Number kg 1bs kw kW/kg 1bs/ft 50% 90% 25% 65%
12 15 33 4.5 0.3 1.02 1.9 43.8 28.3 119
10 15 33 6.0 0.4 0.31 16.6 54.5 25.3 86.0
9 15 33 7.5 0.5 0.91 14.1 44.8 35.4 144
8 15 33 9.0 0.6 0.83 17.5 53.3 30.4 93.6
7 15 33 10.5 0.7 0.87 16.4 51.4 32.4 126
6 15 33 12.0 0.8 0.98 11.9 50.1 35.4 144
13 15 33 13.0 0.9 0.94 12.3 38.2 30.4 105
18 14 30.8 14 1.0 0.81 15.6 48.7 27.4 81.0
17 12.72 27.98 14 1.1 0.76 14.4 47.0 27.8 79.1
16 11.66 25,65 14 1.2 0.80 12.7 47.4 28.3 83.5
15 10.8 23.76 14 1.3 0.81 12.4 46.5 32.9 101
14 10.0 22.0 14 1.4 0.87 14.2 45.9 31.3 98.7
19 9.33 20.52 14 1.5 0.78 13.0 44.9 40.5 157
20 8.75 19.25 14 1.6 0.65 13.6 48.9 32.9 121
21 8.235 18.11 14 1.7 0.65 11.8 37.3 26.2 114

The data show that the microwave power ratio does not affect the ILD values
of polyimide foams. The most significant contribution of this study was the
complete lack of reticulated areas in the foams produced between the range of
microwave power ratio of 1.0 to 1.7 kW/kg. This is believed to be the resuit
of the blowing agent used in the powder precursor which decomposed homogen-
eously at these high power levels and helped to obtain a more uniform distri-
bution of the heat during the expansion process.

Prior to the improvements of polyimide technology by incorporating a blowing
agent, reticulation was believed to be a desirable property because it
improved the compression set properties. However, it was recognized that
reticulation resulted in less durahble foams when subjected to cyclic fatigue
testing. As the power output study resulted in foams with no reticulation,
this evaluation was extended to three specific levels of power ratios,
selected tn understand the relationship between power output, concentration
of blowing agent and critical foam properties. The results of this study
are reported in the next section.
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Concentration of Blowing Agent

The effect of the concentration of blowing agent at power/°F levels of
1.0, 1.3, and 1.7 kW/kg was discussed in Task II and data presented in Table
7. These foams were produced in the 15 kW GFE microwave oven by molding
techniques using powder precursors spray dried at 56-60°C (132.8-140°F) and
modified with blowing agent concentrations of 0, 0.25, 0.5, 1.0, 2.5, 5.0
and 7.5 percent. Foams produced in this study are shown in Figure 49 and
identified from left to right for increasing power level and from bottom to
top for increasing concentration of blowing agent.

Graphical representations of the data presented in Table 7 are shown in
Figure 50 for compression set values, Figure 51 for ILD values, and Figure
52 for density.

At each power ratio level (1.0, 1.3, and 1.7 kW/kg), the ILD values of the
foams generally decrease with increasing concentration of the blowing agent.
The compression set values of the foams improve at Plowing agent concentra-
tions of 0.5 percent and higher. The density of the foams generally decreases
with increasing concentration of the blowing agent. In all cases, the foams
produced at 1.3 kW/kg appeared to have the most uniform cellular structure
and distribution of properties within and between buns. At this power level,
local overheating during foaming or collapse during curing was essentially
eliminated.

Figure 49. Effects of Power Ratio and Concentration of Blowing
Agent at 0, 0.25, 0.50, 1.0, 2.5, 5.0, 7.5 Percent
at 1.0, 1.3, 1.7 kW/kg
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Pulsing Cycles

The objective of this section involved the evaluation of microwave pulsing
cycles during foaming and curing. All foams were produced in the 15 kW GFE
microwave oven at 1.3 kW/kg from powder precursors spray dried at an outlet
temperature of 56-60°C (132.8-140°F) and modified with 2.5 percent blowing
agent. The results of this study are shown in Table 22.

Data show that pulsing cycles do not affect the ILD values of the foems and
have little effect on the compression set properties. Foams produced at a
constant OFF time of 20 seconds and increasing length of ON time show a
wider scatter of compression set values. As the length of ON time increased
the amount of reticulation and number of flaws increased. This was especially
evidenced by the poor quality of foams produced at ON times of 60 seconds
and 80 seconds. The optimum pulsing conditions were found to be 20 seconds
ON and 20 seconds OFF. This was adapted as a standard pulsing cycle and

used in all subsequent work.

Microwave Curing

This study was carried out at three specific microwave power ratios using the
following microwave curing time ranges of: 40-60 minutes at a power ratic cof
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1.0 kW/kg, 35-55 minutes at 1.3 kW/kg, and 25-45 minutes at 1.7 kW/kg.
Th2se foams were produced from 1720-1 powder precursors spray dried at an *
outlet temperature of 56-60°C (132.8-140°F) and modified with 2.5 percent
blowing agent. In all cases the fcams were produced in the 15 kW GFE micro-
wave oven at the selectea microwave power ratio, and microwave cured at 14.0 )
kW for a specified length of time. The foams were then thermally post-cured

at 350-475°F (176.6-246.0°C) for a period of one hour and 35 minutes. The
results of this study are shown in Tables 23, 24 and 25 for power ratios of

1.0, 1.3 and 1.7 kW/kg. respectively.

Figure 53 through Figure 58 are graphical representations of data obtained
from this study which are briefly discussed below.

The data show that the ILD properties within the foam do not vary with changes
of the microwave curing time within the range reported. The ILD values are
generally homogeneous with the exceptior of the bottom section which shows
higher values due to slight foam collaps:.

The compression set properties within the foarm are dependent on power ratio
and curing time and are best in the center section of the foam. The most
homogeneous compressinn set values were obtained at a power ratio of 1.3 kW/
kg and microwave curing time of 40-45 minutes. At this ratio the values of
the 90 percent compression set within the foam vary between a low of 27 and
a high of 47.7.

Additional work was subsequently carried out to better define the microwave
curing time. Foams were produced at a microwave curing time of 40, 41, 41.5,
42.0, and 42.5 minutes. Results indicated that the most homogeneous distri-
bution of critical properties is obtained at a microwave curing time of 42.0
rinutes using a foaming power ratio of 1.3 kwWw/kg.

4.3.3 Optimization of the Comfort Index of Polyimide Foams

Ccomfort index, which is an extension of ILD test, is defined as the ratio of
ILD at 65 to 25 percent deflection. The value of this ratio is a measure of
the seating comfort of the foam and should be in the range of 2.0 to 6.0 to
cover the properties of foams for all five classes.

The prime requirement of a cushion is a combination of low compression set,
good recovery and high resiliency. To obtain these properties, the foams must )
be free of closed cells. To determine the closed cell content of the foams
an Air Pycnometer (Beckman Model 930; Fig. 59) was obtained and used to
determine the effectiveness of the various methods in increasinc the open
cell content using the procedure described in ASTM D2856-30. Table 2b lists
the open cell content of two foams before and after processing and clearly
indicates that polyimide foams produced by microwave process have an open
cell structure, therefore they do not require processing to improve this
property. What processing has done to polyimide foams is to decrease the
rigidity of the foams which we had believed was caused by the rupture of the
closed cell of the foams.
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Figure 58. Effect of Microwave Curing Time at a Power Ratio of 1.7 kW/kg

on Within Bun Variability of Compression Set Loss of Polyimde
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Figure 59. Beckman Model 930 Air Pycnometer

Table 2C

Evaluation of Open Cell Content of Polyimide Foams

Open Cell Content of Poiyimide Foams (%)

As Foamed After Processing Change (%)
96.5 97.4 <1.0
x 97.0 97.0 0

Polyimide foam cell walls apper to be composed of two different structures.
The structures are: (1) An interconnective network between cells much like
the framework of a house and, (2) A thinner structure between the framework
similar to the walls in a house, called the cell lamellae. This lamellae
structure is generally discontinuous resulting in the high open cell content,
but is stiff enough to cause the rigidity apparent in polyimide foams. It
is this lamellae structure which must be broken down to increase the softness
of the foam, thus lowering the comfort index. A review of the methods used
to alter the cellular structure is presented below.

Attempts to reduce the rigidity of polyimide foams by compositional changes
of the precursors have resulted in limited success. Chemical methods to
achieve the same results have been discussed in Task II under the subtask
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dealing with blowing agents. In this last method, the evolution of gas

was expected to form a more open cellular structure, thus reducing the lam-
ellae content.

Although significant improvements were achieved, the lamellae content of the
polyimide foams produced with blowing agents was still high as evidenced by
the high rigidity of the freshly prepared buns. Mechanical methods were
then evaluated to lower the foam rigidity in order to upgrade the seating
comfort of the polyimide foams. The methods used were n2edle punching and
crushing.

Needle Punching Techrniques

This method has been used in the industry to process plastic foam materials
although its use is limited to few applications. The method is carried out
by punching the foams with sharp pointed needles to rupture the closed cell
content and increase the communication between cells.

With the method used in this task the terpolyimide foams were first flexi-
bilized and then processed with a tool fabricated with 0.2286 cm (0.090 in.)
diameter needles. Three such tools were fabricated with a needle spacing of
2.54, 1.27 and 0.635 cm (1, 0.5 and 0.25 in.) respectively on a wooden board.
The increased needle density .:as used to evaluate the effectiveness cf the
process.

The effect of needle punching on the ILD, compression set and comfort index
values of terpolyimide foams is shown in Table 27. Needle punching lowers
the values of the ILD at 25 and 65 percent deflection. This was expected
since the more open cellular structure requires less force to compress.
Needle punching however degrades the compression set properties of the ter-
polyimide foams. This effect may be due to damage of the cell connecting
network which reduces the ability of the foams to recover.

This method was abandoned due to the adverse effect on compression set and
the lack of improvement on comfort index.

Crushing Techniques

During the early development work on polyimide foams it was recognized that
pclyimide foams achieved optimum resiliency and flexibility after being flexed
or compressed. This process was originally carried out in a platen press at
room temperature starting with low deflection rates and increasing the
deflection to 90 percent of the original foam thickness. During this process
the closed cells were expected to be ruptured and a more flexible foam struc-
ture was produced.

A more efficient method was developed during the course of this contractual
effort by fabricating a flexibilizer which permits processing foam slabs as
large as 1.2 x 2.4 m (4 x 8 ft). This foam flexibilizer was showr in Section
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Table 27

Effect of Needle Punching on Terpolyimide Foams

NEEDLE ILD COMPRESSION SET |
DENSITY COMFORT
needle/in2 | 25w 65% 508 90% INDEX
1bf N 1bf N

0 48.5 215.7 219.0 974.1 12.5 | 37.8 4.5

1 34.5 153.4 164.4 731.2 12.9 | 37.5 4.8

4 33.8 150.3 167.0 742.8 15.0 | 49.6 4.9

16 28.8 128.1 149.3 664.0 22.0 | 47.0 5.1

3. It consists of two adjustable steel rolls, 30.0 cm diameter (12 in.)
which rotate at constant speed and compress the foam slab as it moves through
the colls. This process has been used to flexibilize all polyimide foams
used in cushioning applications including test samples submitted to NASA-JSC.

Using this tool the foam samples were compressed to a specific thickness for
a specified nunber of times. They were then measured for ILD at 25 and 65
percent deflection. The results of this study are listed in

Table 28 and the data obtained for 25 percent ILD are graphically presented
in Figure 60. Interestingly, the data appears to be divided into two groups
having a dividing point between 6 and 8 flexes. This break after 6 flexes
illustrates a change in the physical properties of the foam. This abrupt
change is evident in all of the properties bhut is illust:ated most dramati-
cally and consistently by the 25 percent ILD values. This change in the
physical properties of the foam indicates an irreversible rupture of the
cell lamel’ae. This process does not affect the fatigue properties of the
foams as shown in Table 29. Surprisingly the compression set loss of the
foams does not increase but improves slightly. This is most likely due to
the increased flexibility and softness imparted to the foam during the
crushing process. This soft, flexible foam offers less resistance to com-
jression and therefore is damaged less during compression set testing than a
foam which has not been crushed. The comfort index of the foam increased
slightly and was still within an acceptable range. The increase of the
comfort index is caused by a proportionately lower rate of change for the 65
percent ILD value compared to that obtained with the 25 percent ILD value.

These data indicate that the behavior of polyimide foams is much different
from that of polyurethane foams than originally expected due principally to
the much stiffer behavior at higher deflection values. At the conclusion of
this effort crushing techniques were selected to lower the ILD values and
improve the flexibility of the polyimide foams. Additional work on this
subject was carried out in a subsequent task to further define the seating
characteristics of polyimide foams and to derive suitable specifications.
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Table 28

Data Summary; Classes I and II by Flexing Processes

Number of Repetitions 4 6 8 12
Physical Percent
Property Compression
25% ILD 75 50.1 51.3 44.7 44.7
(1bf) 80 41.6 41.6 36.6 36.6
85 33.9 34.3 30.5 30.0
90 27.3 25.9 23.3 22.7
65% ILD 75 182 188 167 170
(1bf) 80 158 163 163 143
85 131 130 115 120
90 110 109 94 99
Density 75 0.88 0.93 0.90 0.92
(pcf) 80 0.94 0.99 0.96 0.99
85 1.00 1.06 1.02 1.08
90 1.13 1.21 1.17 1.26
Thickness 75 1.88 1.86 1.86 1.84
(inches) 80 1.77 1.77 1.75 1.71
85 1.65 1.63 1.63 1.57
S0 1.47 1.43 1.42 1.34

4.3.4 Particle Size Distribution

The particle size distribution of the powder precursor has been shown to
influence the homogeneity within foams, cell size and cellular structure of
polyimide foams.

To obtain foams possessing homogeneous cellular structure and uniform distri-
bution of critical properties, it was necessary to obtain powder precursors
with a uniform distribution of particle size. Large particles, possessing
higher volatile content, were found to produce reticulated areas. Finer
particles invariably produced flaws and imperfections. As these facts were
known, it became mandatory to control the particle size of powder precursor
within a limiting range. This parameter was studied by varying the particle
size distribution of the powder precursor in three different ways:

a. spray dryer processing




e

50
I \ N
4o
g 80% COMPRESSION
2
g B
3 “‘is\\\--~\‘_¥
85% COMPRESSION
0+~
. : \
l 90% COMPRESSION
20 AL | 1 | | { 1
‘4 5 b 7 8 10 " 12
# OF FLEXES
Figure 60. Effect of Crushing on ILD Values of Polyimide Foams
Table 29
Effect of Crushing on Physical Properties of Terpolyimide Foams
Crushing ILD
Schedule cOmpress,on1
Set Loss 25% 65%
) # of Fatigue Comfort
Comp. Rep. 70% 30% | Loss (%) 1bf N 1bf N Index
: 75 4 20.1 5.7 4.5 50.1 223 182 810 3.6
80 8 17.7 5.4 1.4 36.6 163 163 725 4.4
90 12 18.6 5.1 9.1 22.7 101 99 441 4.4
r.
1Compression set specifications have been modified as discussed in
Task III.




b. screening
C. grinding

The effect of the outlet temperature on the particle size distributior of the
powder precursors has been discussed previously. The particle size distribu-
tion has also been found to be dependent on the spray dryer's atomizer speed.
More specifically, the particle size is indirectly proportional to the
atomizer speed. This technique has been found to be a valuable tool in
obtaining powder precursors with homogeneous particle size distribution from
which to obtain foams with specific properties. The other methods used to
obtain homogeneous particle size distribution were screening through a sieve
and grinding through a Pulvette pulverizer. These methods were less desirable
since they produced dust and required recycling.

From the results of these studies the most homoyeneous foams were those pro-
duced at an atomizer speed of 30,000-35,000 rpm. The powder precursors were
sieved through a No. 25 sieve (710 micrometers) to remove any large size
chunks. For reproducibility in the sieving operation, a new Vibro-Energy
Separator, shown in Figure 61 was installed and used for all foaming opera-
tions.

Figure 61.

SWECO Vibro-Energy Separator
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4.3.5 Mechanical Testing

The objective of this task is to establish the properties of foams by evalu-
ation of processing parameters and technigques studied or selected through
the efforts of preceding sections, and to identify processes which affect the
ILD properties of foams. The data obtained in this task were used in subse-
quent tasks to classify foams according to establshed ILD values.

In the preceding sections, molding techniques in conjunction with foaming,
compositional changes, and processing parameters were discussed. An exhaus-
tive testing program, concurrent with those studies, wa carried out to
evaluate the <ffects of these parameters on the critical foam properties.
From the data generated, a final foaming process emerged. This process
produced polyimide foam products with uniform distribution of properties
within ani between buns. This optimized process is summarized below.

Powder precursors blended with a specific concentration of blowing agent were
foamed in a polypropylene open mold equipped with perforated 1id, corner
vents, bottom grid and polyimide insulation. The foaming was carried out

at a power ratio of 1.3 kW/kg at a constant powder loading of 8.235 kg (18
lbs) and microwave cured for 42 minutes at a power output of 14 kW. A pulsing
cycle of 20 seconds Od and 20 seconds OFF was used during the microwave
foaming and curing. The foam was then thermally postcured at 350-475°F
(176.6-246.0°C) for one hour and 35 minutes.

For test evaluation the foam was cut according to the schematic shown in
Figure 42 and the samples tested for critical properties such as density,
caompression set, ILD, and fatigue resistance. Other oroperties measured
were percent open cell and comfort index.

The efforts of the preceding tasks also resulte¢ in identification of process-
ing and compositional parameters which showed definite relationships with
ILD values. These parameters are outlet temperature, concentraticn of blow-
ing agent, and crushing.

The evaluation of the outlet temperature and concentration of blowing agent
was car: .ed out concurrently utilizing the advanced and optimized process
reported above. Powder precursors were prepared at four selected outlet tem-
perature ranges and modified with 0.25, 0.5, 1.0 and 2.5 percent blowing
agent prior to foaming. These outlet temperature ranges were 59 + 1, 64 +
1, 69 + 1, and 74 + 1°C. Results of this study are shown in Table 30 for a
temperature of 59 + 1°C, Table 31 for a temperature of 64 + 1°C, Table 32
for a temperature of 69 + 1°C, and Table 33 for a temperature of 74 + 1°C
(138.2°F, 147.2°F, 156.2°F, 165.2°F, respectively). The data shown in these
tables are graphically represented in Flgures 62 through 65. For each of
the outlet temperature ranges studied, the relationship between the conceu-
tration of the blowing cgent and the JLD values at 25 percent deflection is
shown in Figure 62. Figure 63 shows the effect of blowing agent concentra-
tion on the compression set loss at 50 percent, Figure 64 shows the effect
on density and Figure 65 on the fatigue resistance.
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Figure 62. Effect of Concentration of Blowing Agenc on the ILD Values of
Polyimide Foams Produced From Precursor:y Dried at Various
Outlet Temperatures
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| Figure 63. Effect of Concentration of Blowing Agent on the Compression Set
Loss of Polyimide Foams Produced From Precursors Dried at
Various Outlet Temperatures
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Foams produced with the advanced and optimized process at the four temperature
ranges were tested for cyclic fatigue resistance and results of this test are
shown in Figure 66. To better understand the properties of polyimide
foams, Comfort Index and percent open cell were also measured for each of the
outlet temperature ranges studied.

The comfort index or sag factor is defined as the ratio of the ILD at 65
percent and the ILD at 25 percent.

comfort Index (cr) = 85% ILD
25% ILD

A low CI value indicates that the foam will bottom out resulting in inferior
performance. A high CI value indicates a very stiff foam which would be
uncomfortable. For the best seating comfort, the CI values should be in the
range of 2.0 to 6.0. Table 34 lists the CI values for a series of foams
produced from powder resin spray dried at the four temperature ranges and
foamed with varying amounts of blowing agent.

The data show that the comfort index is slightly affected by the spray dryer
outlet temperature, the higher the temperature the higher the comfort index
with very little affect shown by the concentration of blowing agent. It can
also be concluded that the comfort index of the polyimide foams varies within
a narrow range of values with critical changes of process parameters.

Figure 66. Effect of Outlet Temperature on Fatigue Resistance of Polyimide
Foams From Top to Bottom (74 +1, 69 +1, 64 +1 and 59 +1°C)
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Table 34

Comfort Index of Polyimide Foams

Concentration of Blowing
Spray Dryer Agent (%) Average of All
Temperature Blowing Agent
(°C) 0.25 0.50 1.0 2.5 Concentrations
59 + 1 3.8 3.6 3.6 3.5 3.6
64 + 1 3.8 3.8 3.8 3.5 3.7
69 + 1 4.1 3.8 4.0 3.7 3.9
74 + 1 4.4 4.3 4.2 3.9 4.2

The open cell content of a foam was measured initially to determine the effec-
tiveness of various techniques used to obtain low ILD at 25 percent deflec-
tion. Table 35 lists the open cell content of the foams discussed in this
section which were produced at various concentrations of blowing agents from
powders spray dried at the four outlet temperatures. These data show that
the concentration of blowing agent has no clear effect on the open cell
content. The outlet temperature, however has a significant effect on the
percent open cell content. This is due to the lower volatile content of the
powder resin which the blowing agent is not able to replace. With this
study the evaluation of the open cell content by Air Pycnometer readings was
discontinued, but this property will continue to be measured as a monitor for
process controls.

Table 35

Percent Open Cell or Polyimide Foams

Concentration of Blowing Agent
Outlet (%)
Temperature

(°C) 0.25 0.50 1.0 2.5
59 + 1 98.0 97.7 97.9 97.7
64 + 1 o5 97.3 97.6 97.0
€9 + 1 96.6 97.5 98.3 97.9
74 + 1 93.3 95.3 96 .4 95.6
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Task

III - Optimization of Foaming Parameters - Summary

4.4

A polypropylene square open mold configuration with bottom grid, cocrner
vents, polyimide insulation, and perforated top has been selected as the
standard tool for all foaming operations.

Efforts of this task have resulted in the selection of the following
optimized foaming parameters:

Powder Loading = 8.235 kg (18 1bs)
Power Ratio (foaming) = 1.3 kW/kg

Curing Power = 14 kW

Microwave Curing Time = 42.0 minutes
Pulsing Cycle = 20/20

Crushing technique was selectea to obtain lower ILD values and improve
flexibility of the foams.

Efforts of this task have resulted in identification of processing and
compositional parameters which regulate the ILD values of the foams and
provide methods to achieve a classification into specific products.

These parameters are:
. Outlet temperature
. Concentration of blowing agent
. Crushing technique

Properties of polyimide foam products have been defined at these proces-
sing and compositional parameters to help the classification of foams
1iccording to established ILD values.

TASK IV - POLYIMIDE FOAMS EVALUATION AND CLASSIFICATION

The major objective of this task is to determine relationships between the

most critical properties of the foams and processing parameters and composi-
tions. The irelationships are then employed to classify the foams into pro-

ducts in accordance with the program goal.

This section is divided into three parts to improve clarity- A discussion of
the data generated is presented in the following seyuence.

1. Identification of Classes
2. Stress-Strain Relationships/Comfort Index

3. Properties Evaluation
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4.4.1 Task IV - Identification of Classes

This task is divided into three sections for clarity. These sections are:
i, Identification of achievable class ranges
ii. Identification of foams consistent with class ranges
iii. Identification of process parameters and compositions which yield

foams consistent with class ranges

Identification of Achievable Class Ranges

In Task II the dependence of foam properties as a function of the spray drier
outlet temperature and blowing agent concentration was discussed. These
data are graphically presented in Figure 67 where the average and scatter of
ILD values at 25 percent deflection are represented by circles and vertical
bars respectively. As shown in this figure, the ILD values at 25 percent
deflection are directly proportional to the outlet temperature and inversely
proportional to the concentration of blowing agent.

Superimposition of the ILD requirements of the five classes upon Figure 67
is shown in Figure 68. This figure compares the wide variability of the ILD
properties of the polyimide foams with the narrow requirements set forth in

the program proposal.

At the conclusion of this effort the following achievable ILD ranges at 25
percent deflection were established for each of the five classes. These
ranges are illustrated in Figure 69.

ILD at 25% Deflection

Class Established Goal
I 15-25 18
II 25-40 24
III 40-50 44
Iv 50-60 50-55
v 70-80 70-80

An examination of Figure 69 indicates that powder precursors spray dried at
59 + 1°C and 74 + 1°C (138.2°F and 165.2°F) produce foams falling within two
classes, while powder precursors spray dried at 64 + 1°C and 69 + 1°C (147.2°F
and 156.2°F) yield foams falling within three or more classes. Figure 69
also shows that Class I1 foams possessing an ILD value in the range of 25-40
can be obtained through variation of compositions and/or processing param—-
eters, but Class I foams possessing an ILD in the range of 15-25 are not
easily achievable through the same process or compositional changes.

This deficiency has been resolved as discussed in the following subsection.
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Identification of Foams Consistent With Class Rdnges

As discussed in the preceding sections, it was not possible tc achieve five
b classes of polyimide foams through a single process variable, specifically
P the spray drying temperature. The two most promising temperatures were 64 +
i 1 and 69 + 1°C (147.2°F and 156.2°F) which yielded three and four classes of
foams respectively. To produce Class I and Class II foams another process
modification was introduced. This process involved crushing the foams after
the final thermal cure as discussed in Task III. This process lowers the
ILD values of the foams to values meeting the requirements of Class I and
II. The results of this study are shown in Figure 70 which is obtained by
superimposing the data on Figure 69. The foams used for the crushing study
were produced from powder precursors made at an outlet temperature of 69 +
1°C (156.2°F) using a blowing agent concentration of 2.5 percent. This
; concentration was selected because it consistently produced foams with lowest
ILD values at 25 percent deflection. As reported previously, this temperature
generated more classes of foams than any other spray drying temperature
studied. The data presented in Figure 70 is summarized in Table 36 where
the conditions to achieve each class are clearly identified.

-

Identification of Process Parameters and Compositions Which Yield Foams
Consistent With Class Ranges

' A summary of all the spray drying temperatures studied and their effcts on
powder precursors and foam properties is shown in Table 37. The data
show that a temperature of 69 + 1°C (156.2°F) yields powder precursors which
produce foams possessing good fatigue properties, homogeneity within and
between buns, ard moderate compression set loss.

Examination of Table 36 and Figure 70 clearly illustrates that a spray drying

| temperature of 69 + 1°C (156.2°F) yields all five classes of polyimide foams
according to ILD values at 25 percant deflection by combinations of blowing
agent concentration and crushing technique.

From the review of all the data previously presentzd, 69 + 1°C (156.2°F) was
selected as the optimum outlet temperature condition for the production of
polyimide foams meeting the ILD requirements of all five classes in accordance
with the program goal.

The final processing parameters and compositions for each of the five classes
selected in this task are reported in Table 38.

4.4.2 Compressive Stress-Strain Relationships/Comfort Index

» The objective of this subtask was to measure and evaluate the effect of
| processing parameters on compressive stress-strain relationship. This study
! was expected to result in a clearer understanding of the physical properties

of polyimide foams leading to appropriate specifications. Investigation of
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Table 36

Summary of Process Parameters Studied to Obtain Various Classes

Class 1 I1 III v v
ILD
Range (1bf) 15 - 25 25 - 40 40 - 50 50 - 60 70 - 80
Process 59 +1 59 + 1
Parameters 1.0% BL* 0.25% BL
2.5% BL 0.50% BL
64 + 1 64 + 1
1.0% BL 0.25% BL
2.5% BL 0.50% BL
69 + 1 w9+ 1 69 + 1 69 + 1 69 + 1
2.5% BL 2.5% BL 1.0% BL 0.5% BL 0.25% BL
90% crush 80% crush
74 41 74 +1
2.5% BL 0.25% BL
0.50% BL
1.0% BL

*Bl, = Elowing Agent

these relationships were undertaken in two complimentary studies through
measurements of indentation load deflection and compression set loss values.

The indentation load deflection (ILD) test is a measure of the force required
to compress a foam sample to a designated deflection. In the present study
the foam samples were compressed from 5 to 80 percent of the origina® height
by the method described in ASTM 3574-77, Test D. Data obtained in this test
are tabulated in Table 39 for the effect of various outlet temperatures,
concentrations of blowing agent and level of foam crushing.

The compression set test done in accordance with ASTM D 3574-77, Test D
compresses foam samples to 90 and 50 percent of their initial height, main-
taining them under compression for 22 hours. After 22 hours the load is
removed and the samples are allowed to recover for 30 minutes, after which
time the heights are remeasured and the amount of loss from the initial
height is calculated. 1In this task, compressions of 90,80,70, 60, 50 and 30
percent were investigated. The foam samples were held under compression
for 22 hours following which they were removed and remeasured at intervals
of 30, 60, 90 minutes and 24 hours. A summary of this work is given in
Table 40 which shows data for coumpreesion set losses at different compression
levels and recovery periods for foams produced at various outlet tenperatures
and blowing agent concentrations. The data given in Table 39 are graphically
presented in Figures 71, 72, 73 and 75 and the data given in Table 40 graphic-
ally presented in Figure 76.
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Table 37

Properties of Foams Produced at Various Spray Dryer
Outlet Temperatures

Spray Dryer
Temperature | Fatigue Loss Relative
(*C) (%) Yield Benefits Problems
59 +1 4.1 - 15.6 High High production rate Poor fatigue
Good C.S. Poor homogeneity
Soft: foam Two classes at most
Low dust (heavy powder)
Low C.I.
64 + 1 1.6 - 8.2 Very good Good - high production rate | Two classes at most
Fair C.S. Fair homogeneity
Soft Foam Fair - poor fatigue
Moderate-low dust
69 + 1 0 - 4.5 Good Moderate C.S. Fair - poor production
Good fatigue Dusty
Three to four classes Slightly higher C.S.
Moderate low ILD
Improved homogeneity
74 +1 0.5 - 1.0 Poor Excellent fa*igue Lowest production
Very dusty
Collapses during curing
worst C.t.
High C.I.
Only one class
Poor homogeneity

Figures 71 and 72 illustrate the ILD values of foams produced using various
combinations of these parameters. At ILD deflection levels less than 50
percent the curves representing foams made at different blowing agent concen-
trations are better differentiated than the curves representing foams made
from powder precursors spray dried at various outlet temperatures. As a
result the definition of the foam classes is better achieved through variation
of blowing agent concentrations.

The effects of crushing on the ILD values are shcwn in Figure 73. A foam
with a low ILD value would be expected to maintain this low property through-
out the entire strain rznge, however, polyimide foams which have been crushed
do not exhibit this procperty. but tend to have higher stress at deflection
levels greater than 50 percent.

As shown in Figures 71, 72 and 73, polyimide foams are characterized by very
rapid increases in stress when the strain exceeds 50 percent. This is in
direct contrast to conventional polyurethane foams which do not exhibit the
same type of increase until a deflection value higher than 65 percent is
reached. This different behavior is shown in Figure 74. This difference in
properties is also reflected by the polyimide and polyurethane foams seating
properties. Polyurethane foams will commonly compress to 80 to 90 percent
cf their initial height under the generally accepted weight of 200 pounds,
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Table 38

Selection of Process Parameters and Compositions
for Various Classes

Class I II III v v

Synthesis

Resin 1720-1 1720-1 1720-1 1720-1 1720-1

Reaction Temperature (°C) 60-65 60-65 60-€5 60-65 60-65

Surfactant Concentration (%) 0.75 0.75 0.75 0.75 0.75
Spray Drying

Inlet Temperature (°C) 100 100 100 100 100

Outlet Temperature (°C) 69 +1 69 + 1 69 + 1 69 + 1 69 +_ 1

Dilution Ratio, phr 30 30 30 30 30

Microwave Foaming

Blowing Agent (%) 2.5 2.5 1.0 0.5 0.25
Powder Load (kg) 8.235 8.235 8.235 8.235 8.235
Foaming Power (kW) 10.7 10.7 10.7 10.7 10.7
Foaming Power Ratio (kW/kg) 1.3 1.3 1.3 1.3 1.3
Microwave Pulsing 20/20 20/20 20/20 20/20 20/20
Foaming Time (min.) 23 23 23 23 23
Curing Power (kWw) 14 14 14 14 14
Curing Time (mins.) 40 40 40 40 40.5

Thermal Curing

Curing Temperature (°C) 177-246 177-246 177-246 177-246 177-246
(°F) 350-475 350-475 350-475 35¢-475 350-475
Curing Time (mins.) 80 80 85 90 90
Crushing (%) 95 85 ¥ -] 75 75

whereas polyinide foams will only compress to 70 percent of their initial
height, under the same weight, as shown in Figure 75.

As shown by the data points, polyimide foams exhibit a very soft feel upon
initial contact with the stress increasing progressively as the strain in-
creases. In contrast, polyurethanes are initially quite firm maintaining a
near flat response to increasing strain up to 65 percent deflection. This
behavior is reflected by the comfort index factor of both types of foams.
The comfort index, as discussed in Task III, is defined by the ratio between
the ILD values at 25 and 65 percent deflection and indicates the relative
comfort of seating foams. Table 41 summarizes ‘ne comfort index value of
foams fitting the five classes selected. Polyimide foams meet the currently
acceptable industrial criteria of 2 to 6 for comfort index values although
Class I and II foams exhibit values in the high range of the scale.
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Table 39

Indentation Load Deflection at Specitied Deflections

r Pound Forcve at Specifled Deflectlons
Deflection Level (%) - 10 20 25 30 40 50 60 65 70 80
.
4
Outlet Temperature (°C)
(1.0% Blowing Agent)
59 + 1 12.1 23.5 37.2 4.0 50.6 | 65.3 85.0 116 142 180 364
64 + 1 1.4 |23.8 | 40.5 | 48.1 56.2 73.9 |98.7 137 m 220 450
% 69 + 1 1.6 25.3 4.0 52.6 | 61.7 82.0 10 156 196 261 597
74+ 17.4 41.2 78.9 | 96.1 15 158 218 325 422 592 1418
Concentration of
Blowing Agent, %
(69 + 1°C]
: 0.25 12.6 38.7 85.0 108 129 176 238 354 458 627 1480
0.50 15.2 30.4 50.1 59.7 68.8 | 88.6 19 166 206 274 607
1.0 1.4 23.9 40.5 | 48.1 56.2 73.9 |98.7 137 mm 220 450
’ 2.5 9.6 18.5 29.3 34.7 40.0 51.6 |67.8 93.1 | 114 148 306
l Crushing
(2.5% Blowing Agent);
(69 + 1°C]
80% for 10 times 6.3 1.6 21.8 | 26.1 30.9 | 46.6 (4.8 105 137 202 536
‘ 90% for 16 times 4.6 8.° 17.2 21.0 25.3 35.4 | 49.6 74.9 | 98.7 | 139 187

Table 40

Percent Compression Set Loss at Specified Compressions

Recovery Time 30 60 90 24 30 60 9 24 30 60 %0 24 30 60 90 24
min. | min. | min. | hrs ain. | min. I min.| hrs min. | min min. | hrs min. | min. | min. | hrs

A Compress ion 6% ¢ 1°C; 0.25% BL* 69 + 1°C; 0.5V BL 69 ¢ 1°C; 1.0% BL 69 ¢+ 1°C; 2.5V BL
Q 44.4] 4.1 ) 39.4)29.3] 49.1 | 45.7 | 43.7| 32.8] 53.9 | 50.7 | 48.3 | 38.4| 38.3| 34.6 | 32.8 | 22.8
80 23.9] 21.6 1 20,2 | 13.5]| 26.4 | 23.8 | 22.1] 14.7 ]| 32." ]| 29.6 | 27.7 | 19.0| 25.6] 22.6 | 21.0 | 13.5
70 17.0] 15.2| 4.2 8.9 18.2 | 15.9] 4.7 8.8 26..0 | 2).5 | 21.8 | 13.3 ] 22.4]| 20.' ]| 18.8 | 11,6
60 14.1 ] 12.6 ]| V1.6 7.1] 14.2 ] 12.3 | 11.) 6.7 ] 18.4 | 16.2 | 14.9 A7 | 15.5) 13.7 ] 12.5 7.%
S0 10.7 9.5 8.9 5.4 12.2 ] 10.6 9.8 5.9 14.5] 12.7 H." 7.2 12.7] 11.2] 0.4 6.1
0 6.1 5.6 5.1 3.0 7.2 6.4 5.9 1.5 7.0 6.1 5 7l 3.4 6.4 S.7 5.3 i

\

59 ¢ 1°C; 1.0% BL 64 + 1°C; 1.0N BL 69 ¢ 15C; 1 0N BL 74 ¢ 1°C; 1.0M BL
20 37.3 1 33.8| 3.7 22.9]| 48.0 | 44.0 | 41.6] 30.7 | 5.9 50.7 | 4.3 | 3B.4 | S1.9]| 4A.2 | 45.6 | 35.)
’ 80 8.3 16.2]| 14.9] 10.0] 30 8! 27.4 ] 25.5) 7.1} 32.2| 29.6 | 27.7 | 19.0] 33.6| 30.4 | 28.6 | 20.”
70 15.9 1 13.91 120 7.8] 20.4 ) '2.0] 16.2 9.7] 28.201 2.5 21.8 | 13.3| 16.7| 14.4 | 132 R.2
60 10.5 9.1 8.5 5.1] 18.6 | 16.2 ] 15.0 A.8) 8.4 16.2 | 4.9 8.7 14.7| 2.8 | 11,6 7.0
50 8.7 7.6 7.0 4.3 i2.2]10.6 9.7 5.9] 14.5] 12.7] V1.7 T7.2] V0.7 9.2 8.4 4.7
30 5.2 4.6 4.0 2.4 6.6 5.7 5.3 3.2 7.0 6.1 5.7 3.4 6.1 5.3 4.8 2.7

*BL = Blowing Agent
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Table 41

Comfort Index of Polyimide Foams

ILD
Class Comfort
ILD Class Range, lbf Index
1 15-25 5.1
II 25-40 5.3
ITL 40-50 4.0
v 50-60 3.8
\'4 70-80 4.1

The high comfort index value for polyimide foams, Classes I and II, is a
result of the greater amount of "body" characteristics of polyimide foams
which resist the "bottoming out" effect shown by polyurethane foams.

The molecular structure of polyimides is represented by a series of fused
aramatic rings resembling the structure of a honeycomb. Conventional seating
foams, have a linear long chain structure resembling coil springs. The honey-
comb type structure is more resistant to deformation than the coil spring
type structure, resulting in a greater degree of "body". This structure
characteristic of polyimide foams is the major factor in its superior fire
resistance properties. Another property affected by this honeycomb structure
is compression set loss. As discussed in this section, this honeycomb
structure resists deformation when a certain level of strain is reached.
After this maximum strain level, the structure is broken or fractured result-
ing in slow compression set recovery. This effect is shown in Figure 76
where the values of compression set loss are shown at specified compression
levels with individual lines plotted showing recovery after various lengths
of time. The data points shown in Figure 76 indicate that polyimide foams
possess the ability to recovery after release of stress over a long period
of time, the rate of recovery being considerable for the first 30 minutes
with additional recovery continuing through 60 minutes. After 60 minutes
the rate of recovery is slow, continuirg for at least 24 hours. 1In contrast
conventional polyurethane foams recover quickly due to the elastic behavior
of their coil spring type molecular structure which is also responsible for
the high flammability. This is shown in Figure 77 where the compression set
loss values for polyimide and polyurethane foams after 60 minutes recovery
are shown.

The compression set losses for the various foam classes after 60 minutes
recovery are shown in Figure 78. In summary, the compression set proper-
ties of conventional polyurethane foams are superior to those of polyimide
foams. Conventional polyurethane foams are thermoplastic material which
possess hign e.astic properties enabling them to recover from a compressed
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state more readiiy and completely. The molecular structure of polyimide
foams cannot be modified to increase their elastic properties without des-
troying the fire resistant characteristic of the material. Therefore, the
compression set properties of these toams must be acccepted within these
limitations.

The weight of a typical man (200 pounds) compresses polyimide foams between
60 and 70 percent as opposed to 80-90 percent for polyurethane foams as
shown in Figure 75. This indicates that under service conditions polyimide
foams will only be compressed to about 70 percent. Therefore, testing of
polyimide foams to compression levels greater than 70 percent, where e.cessive
force is required (see Fig. 75) is not realistic. The rate of recovery of
polyimide foams is slower than for polyurethane as shown in Figure 75, there-
fore, this parameter must also be taken into consideration in evaluating the
seating properties. Based on these considerations, the testing specifications
of pclyimide foams were modified. These modifications reflect the gross
dif ferences in molecular structure and are intended to be a reasonable and
realistic evaluation of expected in-service performance of polyimide foams.
The modifications are given in Table 42.

Table 42

Test Specifications for Seating Foams

Current Modified
Specification for Specification for
Test Polyurethane Polyimide
Compression Test 90% (<10% loss) 70% (<25% loss)
50% (< 5% loss) 30% (<10% loss)
measured after 30 min. measured after 60 min.
ILD 25% 25%
65% 65%
Static Fatigue 75% 55%
measured after 30 min. measured after 60 min.
L= =

4.4.3 VProperties Evaluation

The selection of process parameters and compositions, as presented in Table
38, was done on the basis of data derived from the evaluation of functional
properties of polyimide foams. In the selection criterion, ILD values,
fatigue resistance, comfort index, compression set properties and density
were given priority over other mechanical and physical properties of the
foams. The rational behind this preference was dictated by the fact that
polyimide foams have already shown to possess good thermal and mechanical
properties as evidenced by tests reported in previous NASA-JSC sponsored
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contractual efforts (Refs. 1, 2, and 3). The thermal and mechanical proper-
ties were evaluated in subsequent tasks for the purposes of developing final
specifications for each class of foam as it will be reported in the next
task.

4.4.4 Task IV - Polyimide Foam Evaluation and Classification - Summary

—
.

Powder precursors spray dried at an outlet temperature of 69 + 1°C
P (156.2°F) produce foams falling within three of the five clases, speci-
fically Class III, Class IV and Class V foams. This classification was
achieved by variation of the blowing agent concentration.

2. The ILD values of pclyimide fcams at 25 percent deflection are directly
proportional to the outlet temperature and inversely proportional to the
concentration of blowing agent.

3. An outlet temperature condition of 69 + 1°C (156.2°F) was selected.
Foams produced from powder precursors dried at this temperature possess
good fatigue properties, homogeneity within and between buns, and moder-
ate compre2ssion set loss.

4. Combinations of blowing agent concentration, crushing technique, and
spray drying temperature were employad to produce Class I and Class II
foams.

5. Polyimide foams exhibit a very soft feel upon initial contact with the
stress increasing progressively as the strain increases. In contrast,
polyurethanes are initially quite firm, maintaining a near flat response
to increasing scrain up to 65 percent deflection

6. Under service conditions, data indicate that polyimide foams will only
compress to 60-70 percent of their initial height as opposed to 80-90
percent for polyurethane type foam. As a result, testing specifications
for polyimide foams were modified to reflect this different behavior.

7. The process parameters and compositions used to produce all five classes
of polyimide fcams meeting the ILD requiremerts at 25 percent deflection
in accordance with the program goal have been presented.

4.5 TASK V - PRODUCTS SELECTION AND SPECIFICATIONS

The objective of this task is to select at least one class of seating foam
from each of the classitfications defined by the value of 25 percent ILD to
establish final product specifications.

To fully identify the characteristic and to establish minimum fuactional and
performance requirements for each of the classes identified in this program,

an extensive testing program was carried out for all physical, mechanical,
and thermal properties in accordance with the program scope.
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At the conclusion of this ta ~ . five foam classes were identified each

representing a product and f L specification written for the NASA-JSC
approval.

This task was carried out in three separate but complimentary subtasks as
follows:

1. Data Evaluation
2. Selection of Classes

< P8 Specifications
4.5.1 Data Evaluation

This effort started with the fabrication of three sets of foams for each of
the rive classes of polyimide foam products in accordance with process
parameters and compositions selected, and presented in Table 38. The foams
were then evaluated for the most critical properties. Brief description of
test methods of these properties follows:

Density. Densityv tests were performed in accordance with ASTM Designa-
tion D-3574-77, sections 6-12 inclusive.

Indentation Load Deflection at 25 and 65 Percent Indentation. The tests
were performed in accordance with ASTM Designation D-3574-77, sections
12-18 inclusive.

Compression Set at 30 and 70 Percent Compression. The foams were tested

in accordance with ASTM Designation D-3574-77, at 30 and 79 percent
deflection.

Dynamic Fatigue. The foams were tested in accordance with ASTM Designa-

tion D-3574-77 by roller shear at constant force, sections 76-82
inclusive.

The three sets of foams were cut up in accordance with the schematic shown
in Figure 42 to evaluate variation of prcperties within the bun.

Tables 43, 44, and 45 present the data generated from evaluation of sets No.
1, 2 and 3, respectively. These tables also show the selected process param—
eters employed. rable 46 presents the average of all data points for the
three sets.

4.5.2 Selection of Classes

The process conditions and powder compositions employed in the effort of Task
1V previously discussed have produced a method to rank polyimide foams into
five classes in accordance with ILD values at 25 percent deflection. This
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Table 46

Data Evaluation of All Five Classes

Class I b 5) & J1X Iv v
ILD, 1lbf
25% 22.1 32.9 49.8 57.8 73.3
65% 95 128 20C 239 300
Compression Set Loss (%)
30% Ted 743 7.4 75 7.0
70% 20.3 23.2 24.8 26.3 24.2
Density
kg/m3 19.5 15.2 16.7 17.9 20.5
1bs/ft3 1.22 0.95 1.04 1.12 1.28
Fatigue Resistance
Thickrless Loss (%)
8,000 cycles 5.3 5.6 2.2 3.1 0.9
20,000 cycles 3.7 21.0 16.3 19.2 1.3

same method has been used in the present task to fabricate three sets of

foams for each of the five classes. The data derived from testing these sets

have been found to be consistent with those previously developed as it was 1
shown in Tables 43, 44 and 45.

Using these baseline data a final classification of the foams into five
classes h s been successfully accomplished as shown below where the values of
the ILD of the foams at 25 percent deflection represent the average for each
of the classes. The final selected range for each of the five classes are
also presented.

ILD at 25% Deflection

Classes Program Goal Actual Results Selected Ranges
I 18 22. 15-25
II 24 32.9 25-40
111 a4 49.8 40-50 ]
v 50-55 57.8 50-60
v 70-80 73.3 70-80

With this effort the work to characterize, classify and select flexible
resilient polyimide foams into five groups of products according to pre-
established ILD values is concluded. Final product specifications are
reported in the next subtask.
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4.5.3 Specifications

The three sets produced in the preceding section were then evaluated for all
physical, mechanical and thermal properties as set forth in the proposal. The
data generated was used to establish final specifications for each of the five
classes of polyimide foam products. The final specifications are reported
in Table 47.

4.6 PRODUCTION CF PROTOTYPE SAMPLES

The end products of this contractual effort included sufficient slabs of
resilient foams for fabrication of 15 single passenger seats. The dimensions
of the slabs were 46.7 x 48 x 7.6 cm (18.5 x 18.9 x 3 in.) and 45.2 x 73.6 x
3.8 cm (17.8 x 29 x 1.5 in.). In addition a total of 600 board feet of foam
were submitted for testing the five classes of foams for physical and mechan-
ical properties.

These foams were produced using the procecs conditions selected in Task V
and met the specification requirerents established for each of the five
classes.




Table 47

specifications for All Five Classes of Polyimide Foams

) __—-————‘—Wp——————r —T—--—'- - — - —— - —_———————
Test
3 Property Method Units 1 11 1t v } v
Density ASTM D-3574 | 1bs/fe? 1.9 = 1.3 0.9 - 1.1 0.9 - 1 0.9 - 1.1 1.1 = 1.3
kq/l) 17.6 - 20.8 14.4 - 17.6 14.4 - 7.6 14.4 - 17.6 17.6 - 20.8
1LD 25% AST™ D-3574 | 1ibf 15 - 235 25 - 40 40 - 50 50 - &0 70 - 80
. N 66.7 - 111.2 ] 11,2 - 177.9 | 177.9 - 222.4| 222.4 - 266.9 | 311.4 - 355.8
65% 1bf 90 - 100 120 - 140 180 - 220 220 - 260 280 - 320
N 400 - 445 534 - 623 80Y - 979 979 - 1156 1245 - 1423
Compression Set ASTM D-13574
Loss
(60 min. Recovery) |
0% . 10 max. 10 max. 10 max. 10 max. 10 max.
708 . 25 max. 25 max. 25 max. 25 max. 25 max.
Tensile Strength ASTM D-13574 | psi 15 min. 15 min. 15 min. 15 min. 15 min.
N/md 103x103 min. | 103x103 min. | 103%109 min. | 103x103 min. | 103x103 min.
Elongation ASTM D-3574 | % !40 min. 40 man. 40 min. 40 min. 40 min
|
Tear ASTM D-3574 | lba/in. | 0.8 min. 0.8 min. 0.8 min. 0.8 min. 0.8 min.
N/m | 140 min. 140 min. 140 min. 140 min 140 min.
|
Resilience AST™ D-3574 | % . S0 min. S0 min. 1‘;0 min. 50 min S0 min.
| | ‘
Fatigue Resistance ASTM D-3574 |\ ‘rss in l |
Dynamic i thickness | |
| |
8,000 cycles ‘ 7 max. 7 max. | 7 max. |7 max. 7 max.
20,000 cycles | ‘25 max. 25 max. |25 max. 25 max. "."s max.
\ ‘ |
Static | % loss in | 1Z max. 12 max. [ 12 max. 12 max. | 12 max.
(558 compres- thickness |
sion) | [
(60 min. Rern\'rlyl‘ |
|
|
Hydrolytic 74°C, 100% % loss in |5 max. 5 max. S max. S max. S max.
Stability RH, 7 Jdays 10
Odor ND* ND ND ND ND
Oxygen index ASTM D-2863 |V 38 min. 38 min. 38 min. 38 min. I8 min.
Smoke Density NRBS 5 max. 5 max. S max. S max. 5 max.
Thermal Stability Thermogram Loss at None None None None None
204°C
(400°F) { {
- b e | ] .
*ND = not detectable
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RECOMMENDATIONS FOR FUTURE WORK

b e

At the | .esent state of development polyimide foams have been classified into
five different products, each possessing specific ILD values which have been
produced in large scale pilot plant size. These foams have been made by
microwave processing using an open mold to overcome the problems of collap-
sing experienced with free-rise techniques. The rinished foam slabs are
then cut from the large buns for fabrication of the finished seat cushions.
Two problems have been encountered utilizing this cutting technique which
are (1) high scrap rate and (2) variation of foam properties within the bun
itself. 7Ilithough the variation of properties is significantly low at the

present pilot plant stage, it is expected to increase as the process is
further scaled-up.

These problems will be overcome and the product significantly improved by
developing compositions and procesess for molding the resilient foams to
: specific sizes and shapes as required by the aircraft seat manufacturers.
The advantage of this method are low foam scrap and superior wear properties
P due to the surface skin resulting frem the molding operation. This skin is

flexible, tough and impermeable to liquids and could be considered as a
possible replacement for the standard ticking.

The same process with minor modifications of the resin composition can also
be utilized to produce light weight rigid foams of specific shapes for use as

ducting, pipes, decorative paneling, galley modules, storage compartments and
| others.

This technology once fully developed will be expanded to produce a va.iety of

iow density foam products to replace more flammable components used in air-
| craft and spacecraft applications.
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