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AN EXPERIMENTAL STUDY OF MASSIVE BLOWING
FrxOM A NOSETIP DURING JOVIAN ENTRY
Michael S. Holden
Calspan Corporation

SUMMARY

A research program has been conducted to examine the structure and
stability of the shock layer and the detailec distribution of heating to a
highly blowing blunt body in an environment simulating entry into the Jovian
atmosphere. The experimental studies were conducted in the 96-inch Shock
Tunnel at Calspan in 80% H2/20% He gas flow at Mach 12, Measurcments were
made at blowing rates from o<rr'7/ﬂ,., U o <0.7using CF 4 38 the principal in-
jectant; however, selected measurements were also made with N2’ CO2 and SF6
as injectants. High speed photography was used to examine the structure and
stability of the shock layer. The experimental studies demonstrated that for low
blowing rates, the heating rates in the stagnation region can be enhanced as
blowing promotes boundary layer transition. While increasing the blowing
rat: decreased the surface heating for 0.3 (ﬁv/ﬂx, Uo<U.5, further increases
in blowing rates did not significantly lower the heating levels below CH/CH = 0.1.
For injection ratios below 0.3, we did not observe significant shock layer %insta-
bility; however, for blowing rates of 0.1<7h%g¢$§0.5, high speed photography
suggests that the turbulent viscous layer above the body i highly unsteady
and a description of this flow in terms of conventional boundary layer theory
may be highly inaccurate. For injection ratios of over 0.5, the viscous layer
can become grossly unstable. For a given injection rate, shock layer stability
can be increased by increasing the molecular weight of the injectant; however,
the thermal protection decreases with increased molecular weight. It is recom-
mended that the theoretical modeling of the viscous layer for high mass
addition rates he re-examined in the light of these studies.



INTRODUCTION '

Ablative heat shields have been used successfully for many years to
achieve the thermal protection of spacecraft and missiles during re-entry
into the Earth's atmosphere. Under most practical re-entry conditions, the
mass of gas ablated into the boundary layer is a small fracticn of the mass
flow rate in the inviscid flow [i.e.,rh/,:g,u”O(0.0S)]. Unlike the conven-
tional re-entry into the Earti:'s atmosphere, the high energy entry into the
He/H2 atmosphere of Jupiter generates extremely large heatin rates in the
presence of a relatively light convective heatiiig load. Under these condi-
tions the mass addition from the surface blowing will be a significant fraction
of the unit mass flow rate in the inviscid flow. In an earlier experimental
investigation conducted at Calspan by Holdenl, high speed schlieren photography
and heat transfer measurements were made with a transpiration-cooled large
hemispherical nosetip to study the stability of the shock layer for large
blowing rates (0.03< ;iﬁzaf'O.S). These studies demonstrated that for rela-
tively low blowing rates, the structuire of the shock layer is significantly
modified by the injectant (see Figure 1) and modeling these flows using con-
ventional boundary layer theory is open to serious question. For high blowing
rates (7;7¢%°a3°> 0.3), as shown in Figure 2, the shock layer became unstable
with the flow exhibiting a pulsating oscillation similar tc that exhibited by
spiked blunt bodies. In these Calspan studies, air was used as the freestream
gas and mixtures of helium and nitrogen (were used to simulate the molecular
weight and specific heat of steam) were injected through the porous surface
of the model. Thus, a relatively light gas with a high volumetric flow rate
was used in these studies. This contrasts with the relatively heavy injectants

which must be used to simulate the Jovian entry.

The major objective of earlier studies of transpiration cooling
techniques was to evaluate how the blockage heat traasfer CH/CH varied with
the Mach number, Reynolds number and the physical and chemical Sroperties of
the freestream and injectant. The lack of definitive techniques to predict
the effectiveness of transpiration/film cooling techniques reflects the lack
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of fundamental understanding of turbulent mixing in the presence of mass in-
jection and surface roughness. There is a dearth of data at hypersonic speeds
where transpiration cooling is of considerable interest. While experimental
studies have been conducted in supersonic flow with flat platesz’3’4 and
coness’6’7’8 there has been little work on the transpiration cooling of blunt
nosetips. In a recent study by Holdenl, heat transfer and flow field studies
were performed to examine the transpiration cooling of a blunt nosetip. A
survey of the existing experimental data was made and the correlation shown in
Figure 3 was obtained. This correlstion indicates that for large blowing

rates (;Z;%E;:Z;: 20), increasec.i ', lowing does not significantly improve thermal
protection. This may well result from a decrease in the stability of the
mixing layer and an increase in the scale of turbulence with increasing blowing.
However, Holden's measurements on a spherical nosetip, showm in Figures 4 and
S, suggest that heating levels significantly lower than those found on flat
plates and cones were obtained for the higher blowing rates. These latter

/3
measurements could be correlated in the form (CH H)/C /’e Co ) éa‘&" )
However, for blowing rates of greater than 0.3, fhe flowobecame highly unstable
and violent fluctuations in the surface heating were observed.

The object of the present program was to examine the fluid mechanical
structure and stability of the boundary layer and shock layer ahead of a high-
ly blowing heat shield. Injectants with molecular weights from 44 to 120 were
used to examine the effect of the volumetric flow rate on boundary layer
structure and shock layer stability. High speed schlieren photographs werc
used to visualize the flow field. Detailed heat transfer and pressure measure-
rents were made on the surface of the porous model. The experiments were
conduct>d with an 80% H2/20% He mixture for the freestream to simulate the
anticipated environment on Jupiter.

The remaining sections of this report discuss the experimental pro-

gram, the experimental results and the conclusions. The Model Design, Instru-
mentation and Experimental Setup section discusses the model design, instrumenta-
tion and the experimental setups used. This section also describes the opera-
tional and physical modifications that were incorporated into the 96-inch



Shock Tunnel9 so that it could operate with a Hz/He environment. The Experi-
mental Results and Discussion section presents the results of the experimental
program. These results are discussed and compared with those made in earlier
studies and empirical correlations. The Conclusions section discusses the
implications of the measurements to the modeling of the shock layer flow over
highly ablating bodies, and the thermal protection of a transpiration-cooled
body with a gaseous injectant.

MODEL DESIGN, INSTRUMENTATION AND EXPERIMENTAL SETUP
Model Ar.! Instrumentation

This study employed a gaseous injection technique patterned after
that used by the Aerojet transpiration cooled nosetip (TCNT). In this design,
which employs some of the better features of both the transpiration and film
cooling techniques, the coolant is injected through a large number of slots
distributed uniformly over the hemispherical surface of the model. The slots,
from which the injectant flows at a low subsonic speed, are fed from tiny sonic
orifices machined at the base of each individual slot. These orifices are fed
from eight concentric zones in the model which are in turn fed through eight
fast-acting "Valcor'" valves from eight reservoirs mounted in a cylindrical
body at the base of the nosetip. By controlling the initial pressure in each
reservoir, the distribution of the injectant around the sphere can be specified.
In these studies, where an 80% HZXZO% He helium mixture was used as the test
medium, CF, was used as the principal injectant; however, COZ’ Nz and SF6 were
also empioyed in studies to evaluate the influence of molecular weight on the
character of the flow field. The porous nosetip, the fast acting valve assemblies
and the reservoirs are shown mounted in the 96-inch Shock Tunnel in Figure 6.
The geometry of the slots and their relative position on the nosetip are shown
in Figure 7. The 54 rows of slots are staggered in a 35° swirl extending in an
arc back to S0° from the stagnation point. The mass flow rate from the slots in each of
the eight annular zones on the model were calibrated with each of the gaseous injectants




used in the experimental studies. Miniature heat transfer gages were developed
specifically for this study so that detailed measurements could be made in

the '"bands' between the slots (see Figure 8). Figure 9 shows the positions

of the heat transfer gages in the nose and the routing of the instrumentation
through the base of the nosetip. The instrumentation has been concentrated

in a 25° segment of the nosetip and positioned in such a manner that they can
examine whether significant three-dimensional flow structures are developed

in the shock layer. Pairs of heat transfer gages were positioned in the model
so that measurements were obtained behind the center of the slot and between
the slots at the same radial location. The model was also instrumented with
pressure gages to determine the surface pressure and the pressure through the
internal porting of the models. Instrumentation locations are shown in

Figure 9. The second model used in these studies was a smooth-wall replica

of the TCNT shown in Figure 10. The model was highly instrumentad along or-
thogonal rays with thin-film heat transfer and pressure gages. The heat
transfer distributions obtained with this model at the basic run conditions
used in the experiments with nosetip blowing were used to make the measurements

obtained in these experiments nondimensional.

Experirental Facility

The experimental program was conducted in the Calspan 96-inch Shock
Tunnel. The shock tunnel has a clear advantage in producing and safely
handling the 80% Hz/zo* He environment required in these studies; howsver,
there are a number of features which present problems of significant technical
difficulty. The extremely large mass injection rates (ﬂﬁﬂq,tLap as large
as 0.7) required for this study can cause an elevation in i‘he test section
pressure which leads to flow breakdown unless the shock turnel is fired immedi-
ately after the flow through the transpiration nosetip becomes fully established.
Even though the dump tank in the 96-inch Shock Tunnel is very large, for the
largest injection rates, maintaining a test section low enough to permit a
smooth start requires that the steady flow through the tunnel must be estab-
lished within 30 milliseconds of the establishment of the steady flow of



injectant through the nodel. Since the flow of injectant had to be initiated
with the same switch used to fire the tunnel, this mandated that the tunnel
be fired rapidly with exact repetition. To achieve theseobjectives, it was necessary
to redesign the system through which the hydrogen in the double diaphragm

rig was vented to the atmosphere, so the 100,000 standard cubic feet (SCF) of
hydrogen could be removed from the tunnel in one minute. Venting hydrogen

at this rate directly to the atmosphere is clearly hazardous. We resolved
this problem by fabricating a secondary high-pressure reservoir into which

hot hydrogen from the tunnel could be dumped and then bled slowly to the
atmosphere. In this way, we achieved a repeatability of better than 25 milli-
seconds in the time between closing the switch to fire the tunnel and the
establishment of steady flow through the test section.

Considerable effort was devoted to generating test conditions that
not only simulated the fluid-dynamic environment of the Jovian atmosphere but
also provided an ample test period. The high Mach numbers required in both
the test media (80% HZ/ZO% He) and the driver gas (heated Hz) made the genera-
tion of long run times in an impulse facility inherently difficult. Our
earlier studies had suggested that the shock layer over our TCNT model was
fully established within 2.0 milliseconds from the data risc, so we decided
tc use at least 4 milliseconds of steady flow in this study. A typical wave
diagram for the driver and driven section of the shock tunnel is shown in
Figure 11. Because hydrogen has such a high sound speed, the wave trajectory
is relatively flat and the associated transit times are inherently short. To
maximize run times, we operated with a low incident-shock Mach number and we
tailored the prerun conditions to slow the contact surface after it interacts
with the bow shock (i.e., we operated in a tailored interface mode). It can
be shown that to operate under tailored conditions, the speeds of sound ahead
and behind the contact surfaces a, and aq, respectively, must be related by
the equation

AR 0.5
a3 _ ﬁ(%‘mp+ (5;1)%4 .

2, (%,-1) [; + (;’::7’ }sz]




To obtain tailoring we must control the temperature of the driver gas and the
properties of gases in the driver and driven tubes to achieve a shock Mach
number (Ms) at which the pressure behind the rsflected shock remains constant
until the expansion fan from the driver interacts with the reflected shock.
Using Eq. (1) as a guide and with further experimentation, we vere able to
obtain excellent H
pitot pressure traces shown in Figure 12. It can be seen that even operating
with hydrogen in the driver and driven tubes, test times of over 8 miili-
seconds can be obtained. With the increased accuracy of the firing sequence,
we were able to initiate the injectant flow so that it was fully established
between 10 and 18 milliseconds prior to flow establishment through the tunnel.

2/H2’ He tailoring as can be seen from the reservoir and

Since the flow of injectant was controlled by sonic orifices, its flow rate
was invariable with tunnel conditions, and we found that the shock layer flow

was fully established within 2.0 milliseconds from initiation of flow.

EXPERIMENTAL RESULTS AND DISCUSSION
Flow Visualization

The principal objective of this study was to examine how the‘
structure and stability of the hypersonic shock layer over a porous blunt
body, in an environment simulating Jovian entry, is influenced by the rate of
mass addition and the molecular weight of the injectant. In addition to the
model instrumentation, described in the previous section, we employed high
speed photography to examine the shock structure ahead of the body ard the
boundary layer/mixing layer beneath it. In most experimental studies of
blunt body flows at hypersonic speed it is difficult to visually observe the
boundary layer or mixing layer on the body because the strong entropy gradi-
ents developed across the shock layer mask the density gradients that delineate
the edge of the boundary layer. Using high speed photography to visualize
the boundary layer over a blunt body depends on correctly illuminating the
. flow and processing light beam. In this study, we employed circular cut-off
with a single pass schlieren system whose focal length was 20 feet. A Hycam
high speed camera running at 7000 frames per second was used to obtain



photographs of the flow. Photographs typical of those obtained over the non-
blowing body are shown in Figure 13, We were not able to observe a distinct
boundary layer embedded within the shock layer. However, when a relatively
cold, high-density injectant is introduced at the base of the boundary layer,
the turbulent mixing region close to the body can be seen clearly (see Figure 14).
The exposure rate on the film was sufficient to ''stop" the motion of large scale
turbulent structure.

Measurements On The Smooth And Nonblowing Mcdels

As part of the initial phase of this study, we examined flow over
the porous nonblowing nosetip (see Figure 6) and the smooth replica of this
configuration shown in Figure 10. We wished to deturmine whether the surface
roughness would trip the boundary layer and cause roughness heating augmenta-
tion. In an earlier program, measurements were made on both smooth and porous
models in air at Mach 11 for a Reynolds number of 10 x 106. We observed
boundary layer transition on the smooth configuration close to the sonic
point, as shown in Figure 15. On the porous model, transition had been tripped
by the roughness close to the stagnation region, and the roughness had ap-
parently enhanced the heating beneath the turbulent boundary layer, as can be
seen from Figure 16. The measurements made with smooth and porous models
at Mach 11 in the 80% H2/20% He gas flow at Reynolds numbers of 2 x 106 are
shown in Figures 17 and 18. Here it can be seen that the boundary layer re-
mains laminar on the smooth configuration, and the rough surface of the porous
model does not trip transition or induce higher than laminar heating rates.
Thus, when we observe heating levels on the blowing model that are higher than
those with zero mass injection, we must conclude that blowing has tripped the

boundary layer incucing turbulent heating.

Photographic Studies Of Shock And Mixing Layer
Structure And Stability

The experimental studies were conducted in a 80% H,/20% He gas flow
at a Mach number of 12, with the freestream conditions as listed in Table 1.



Table 2 lists the matrix of model configurations and injection conditions
that were used for the runs specified in Table 1. cp4 v.as used as the
principal injectant in these studies to closely match the molecular weight
ratio encountered during Jovian entry. Further studies were performed
with Nz, CO2 and SF6 as injectants to explore the effect of the molecular
weight ratio on the structure and stability of the flow field. While the
major segment of the program was conducted with a uniform distribution of
blowing around the model, the '"theoretical' blowing distribution, as shown
in Figure 19, was used to pattern the ''peaked' distribution also used in

the experimental program.

The photographs of the flow over the smooth and nonblowing porous
model shown in Figure 13 do not, as mentioned earlier, provide the viewer
with evidence of the size or condition of the boundary layer over the body.
However, we know the boundary layer to be laminar from the surface heat
transfer measurements discussed previously. The measured shock stand-off
distance is in good agreement with theoretical predictions for an 80% HZ/ZO% He
environment (see Figure 20). The first photographic evidence of the size of
structure of the boundary layer and its influence ou the shock layer occurs
for rh/,q,,,u.,,- 0.1. The photographs shown in Figure 21 indicate that the shock
stand-off distance has been increased, and the boundary layer, which is just
visible, is transitional and turbulent. Increasing the nondimensional blowing
rate to 0.3 causes significant increase in the shock stand-off distance, and
at this condition the Youndary layer/mixing layer is highly visible. Figure 22
was taken at a slightly different cut off and shows that the bow shock has been
displaced forward by 0.1 body diameters and the viscous layer now occupies one
third of the shock layer. It is clear from the photographs shown in Figures 22
and 23 that the boundary layer is turbulent in the stagnation region, and the
scale of the turbulence layer is approximately equal to the thickness of the mix-
ing layer. While the stability and shape of the bow shock does not appear to be
strongly influenced by the turbulence over the body, it is clear that a major part
of the subsonic inviscid flow in the shock layer is. When ?h/,g,q, is increased
to 0.5, the high speed photographs, shown in Figure 24, ciearly demonstrate that
both the stability and shape of the bow shock and the structure of the shock
layer are strongly influenced by the turbulent mixing layer. The shock layer



flow is not grossly unstable; however, for cp4 flows with in/,g.u. >0.3, it is
clear that a conventional boundary layer approach could not be used in a the-
oretical model of these flows.

Using the peaked injection profile prescribed in Figure 19, with a
maximum blowing rate of 0.5, we obtalned the somewhat more stable flow showr
in Figure 7S. Here, while large scale turbulent fluctuations are evident in
the boundary layer, the bow shock appears to be relatively stable. The rela-
tive stability of this latter flow encouraged us to perform the remaining
experiments for ’;’/&% = 0.7 with a peaked injection profile rather than a
uniform distribution. The latter, we believe, would cause gross flow insta-
bilities. The high speed photographs (see Figure 26) for the peaked injection
with m/ﬁ.u._. = 0,7 clearly show gross instabilities exist, with what appears
to be a circular instability mode. The aerodynamics of a nosetip exhibiting
this instability could seriously jeopardize the mission on which it is flown.
If a conical afterbody was placed behind the nosetip, on the basis of earlier
studies by Holdenlo, we would expect that such a phenomenon would cause large
and destabilizing effects on the cone stability.

Figure 20a shows the variation of shock standoff distance and the
mean thickness of the boundary layer with the mass injection rate of CF4 for
both uniform and "peaked' injection patterns. With zero mass addition, the
boundary laver is very thin and, as mentioned earlier, the shock standoff
distance is close to the theoretical "inviscid" value for a 80% HZ/ZO% He
freestream. Both the mixing layer thickness and the shock standoff distance
increase with increased blowing rate. When a blowing rate of 0.5 is obtained,
the mixing layer occupies approximately one-half the thickness of the shear
layer. These measurements demonstrate that despite the gross unsteadiness of
the mixing layer, the bow shock is effectively displaced ahead of the body by
the thickness of the mixing layer. Decreasing the molecular weight of the
injectant at a fixed value of 75»/,0_,4,, increases the volume of gas introduced
into the shock layer and the forward displacement of the bow shock. Figure 20b
shows the variation of shock and mixing layer thickness with molecular weight
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of the injectent. This figure shows that the lowest molecular weight fills
over half the shock layer thickness and is highly unsteady. When SP6 was
used as aa injectant, the flow was steadier and the mixing layer occupied
over one-third the thickness of the shock layer.

Rather than explore the effects of the molecular weight for
751/,?.,4,, = 0.:7 where the flow was grossly unstable, we chose to perform these
studies for m /9, «, = 0.5, where we believed th: Tlow was incipiently
unstable. We employed Nz’ CO2 and SP6 injectants, with a uniform injection
distribution. 1In addition, the flow for a "peaked" CO2 distribution was
examined. Comparing the high speed photographs of the flow for N,» CO2 and
SF6 injectants, shown in Figures 27, 28, and 29, respectively, with those for
CF4 in Figure 24, it can he seen that both the structure of the bow shock and
the shear layer become increasingly stable as the molecular weight of the in-
jectant increases. We helieve that this results directly from the inverse
relationship between the volume of gas injecteCc through the nosetip and its
molecular weight for a given 7}7/,0“44.,, . Clearly a much greater volume of N,
than SF, is being injected for the same value of rh[q,cg, . Again, as shown
in Figure 30 for coz. we found the flow fields over the models with the
“peaked" distribution were significantly more stable than those with uniform
blowing. It is clear from these studies that for flows with 7;)/,0‘, «,> 0.3,

any theoretical modeling must acknowledge the first order relationships be-
tween the shock structure and the structure of the turbulent mixing layer.

The interaction between the bow shock and mixing layer, combined with the high-
ly turbulent nature of the mixing layer, is a major reason for the velatively

poor thermal protection of the body by the massive amounts of injectant, and
will be described in the following section.
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Distribution Of Heating In The Presence Of Massive Blowing

The earlier studies of the transpiration cooling of flat plates and
cones and, must recently, the studies of spherical nosetips used gaseous in-
jectants whose molecular weights were significantiy smaller than that of the
freestream, because such gases make the most efficient coolants. However, it
was alsc recognized in these studies that flow instabilities can occur at
relatively low blowing rates. In the present study, we used gases which were
very heavy compared with the freestream, to obtain the correct Jovian simula-
tion, and while these transpiration-cooled flows should be intrinsically more
stable. they also might be expected to be less efficient.

The heat transfer measurements on the smooth and nonblowing models
demoanstrated, as described earlier, that the flows over both models were fully
laminar. Introducing mass into the boundary layer perpendicular to the
surface is destabilizing, particularly in the stagnation region, and for the
injection rates used in the present studies, we tripped the boundary layer for
every configuration tested. The distributions of heat transfer over the
porous model with a CF4 injectant for blowing rates of 0, 0.1, 0.3, 0.5 and
0.7 are shown in Figures 31 and 32 for uniform and 'peaked" injection pro-
files respectively. We see that for blowing rates of 0.1, the boundary layer
is tripped by injection, causing the heating rates in the stagnation region
to nearly double, while those further downstream remained at their laminar
levels. For:ﬁv/@,o@oa 0.3, turbulent flow exists over the nose-caps; however,
the heating levels remain at approximately their laminar levels over the entire
nosetip. When injection rates equal to 0.5 are used, the heat transfer to the

stagnation region of the flow is greatly reduced for both uniform and "peaked"
injection profiles (see Figures 32 and 33); uowever, further downstreanm,
transpiration cooling proved less effective. These measurements are ploicted

in nondimensional form in Figures 34 and 35, based on laminar nonblowing
heating. It is readily apparent that to achieve reductions in heating of a mag-
nitude similar to the "light gas studies,'" significantly larger nondimensional
blowing rates are required, and at these larg: blowing rates, the flows are
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again highly unstable. The measurements with the peaked distributions at the
high injection rates, shown in Figure 35, also demonstrate that it is diffi-

cult to achieve heat transfer ratios on these configurations below one tenth

of the nonblowing level irrespective of the blowing rute.

A comparison between the heat transfer distributions for the gaseous
injectants Nz, coz. CF4 and SF6 with a common blowing rate of 0.5 is shown
in Figure 36. We find that the gases with the lower molecular weight are more
effective as coolants despite the greater instability of the shock layer for
these lighter gases. The heat transfer measurements for the uniform and
peaked Co2 distributions are shown in dimensional and nondimensional form in
Figures 37 and 38. Both sets of data show a 90% reduction in heating over
the nosetip, which is in agreement with the earlier measurements. As one
might have anticipated from the earlier tests, the uniform distribution is
more effective in reducing heat transfer than the peak distribution; however,
since significantly less gas is involved in cooling the nosetip when a peaked
distribution is employed, this latter method of introducing the gas must be
considered the most efficient. Considering the unstable nature of the flows
depicted in the high speed photographs (see Figures 19 through 29) with
nhb@nctzo > 0.5, it is perhaps surprising that 90% reductions in heating can
occur., However, at the large injection rates, we are depositing a large amount
of cool gas in front of the body.

CONCLUSIONS

An experimental study has been successfully conducted to examine
the structure and stability of the shock layer and the distribution of heating
to a highly blowing blunt body in an environment simulating the fluid dynamics of
entry into the Jovian atmosphere. In this study, high speed schlieren photog-
raphy was used to examine the structure and stability of the shock layer and
heat transfer, and pressure measurements were obtained on a porous blunt nose-
. ¢ 0.7 in a 80% Hz/zot He gas flow. In these

Lo %00
studies, which were conducted in the Calspan 96-inch Shock Tunnel at Mach 12,

tip for blowing rates 0 <
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CF4 was used as the principal injectant, with Nz. 002 and SF6 used in addi-
tional selected studies. The initial studies demonstrated that it was possible
to generate an environment in the shock tunnel that simulated the fluid dynamic
aspects of the Jovian environment. Flow durations of close to 8 milliseconds
were generated in the shock tunnel. This is four times the time required to
establish flow over the highly blowing models. While heat transfer measure-

ments both on a smooth replica of the porous nosetip and on the nonblowing porous

model indicated that the flow over both these configurations was fully laminar,
we observed that for low blowing rates, the heat transfer was enhanced when
fluid injection tripped the boundary layer. For blowing rates between 0.1 and
0.5, the heat transfer to the surface decreased; however, further increases in
the blowing rate did not result in further reduction of the heating levels below
CH/CH0 = 0.1. Detailed photography indicated that for 7;7/,0”(.1-,,, less than

0.3, the shock layer remains stable, although a description of the flows for
";"//”ao“ov > 0.1 indicates that conventional boundary layer theory could be seri-
ously in error. For ”7EL%b> 0.5, the shock layer flow can become grossly
unstable, with the low molecular weight injectants exhibiting the greatest
instability. It is recommended that these measurements be used in an examina-
tion of the existing codes used to predict the flow structure and heating on
highly blowing nosetips.
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SYMBOLS

a speed of sound

CF4 carbon tetrafluoride

CH coefficient of heat transfer
CO2 carbon dioxide

H total enthalpy

He helium

H2 hydrogen

K roughness height

M Mach number

m mass addition rate per unit area of injectant
P pressure

q heat transfer rate

Re Reynolds number

S surface

SF6 sulfur hexafluoride

S/R surface distance/radius

u,v velocity

XS/D shock standoff/distance

v specific heat ratio

8/D mixing layer thickness

P density

Subscripts:

e edge conditions above the boundary layer
w conditions at the wall

co conditions in the freestream
R recovery condition

0 smooth wall conditions

16




(72 123

wissre

wmwers

Wz

(Y2, 43 weszs wiets (73, .13 wew'i ' umir's rest (r 43 i wey

owost lweore |oiers | t9mers | tsi0oel | 0RSZ Rt ot | ezt | BiezSL | Biove e | 0L ey | et [ 4, -4} (semw) ™ 1f
00 oo [ 4 4 981900 "o 20800 904900 ooroo S08C0'0 600800 OLES0'0 €iI900 18E90°0 sEe0'0 (3 1] 193900 .N!BQDQ
triest's et oy trhieoy iy wicore Ll 17 vt [ 1184 ey L /214 (v)008°E Loy ({4 Z44 wicwy |iviseer _n.li. “o
Tevs Y /24 T 1 211 ey Tz [ 4 [ 4%-4 Tz 9008 ol t'ost yoiy s’y ot Yoo .Nl!- e
ez | £ e wee - x4 [1Y 4 o siiz ”we net [ 1%~ 4 v e sz 2 ¥4 oz g} 1
wewoy | Wese et wse e wnese LIE98E weset unese ezst (et weost unsete sse eieost (st (o) “n

o
ot L 1% osun €L W L9'Te | X% | 221 L x4 et 4 443 Wt (3 1) i TEL [ _z4% L
oovL s osie [ £- 74 | 2 174 [ 279 T (4 (V3 8173 e'90L 0oLy (4] (44 ] i viee e 10,0 %
o ®est’s ®iwos ®esi's [ 7771 ¢ ] wori's s19s0's t9)e01'8 910008 9IZ00's [ 13 J) wiees L oL onose oL ohow¢ (Pl °u
[Fd - 74 ] wwoet [rd 77424 ueze ezt ot see usce (13, %1 e 11998°T ot (oeoe wemwe wmeirs ety -ﬂ.l\!- ®e
et oos't [__ [ (2} [ oo%'¢ o's (23 [__ 3} ozt ot ot ot 0 [ 41 L]
$3104 34004
" st | € £ 4 (1) ot L] s 2 ] ] 1 4 4 z ] M09
Y
SNOILIAONOD 1531

[ Tt

L %qel

(PRI,



Table 2

TEST MATRIX
TEST GAS MODEL m

RUN | % H/%H, CONFIGURATION JLoo Yoo INJECTANT MODE
1 20/80 POROUS 0.1 CFq UNIFORM
2 20/80 POROUS 0.3 CFq UNIFORM
3 20/80 POROUS 0.5 CFq UNIFORM
a 20/80 POROUS 0.5 co, UNIFORM
5 20/80 POROUS 0.5 coj PEAKED
6 20/80 POROUS 0 - -
7 20/80 POROUS 0.5 CFy PEAKED
8 20/80 POROUS 0.7 CFy PEAKED
9 20/80 POROUS 05 CFgq UNIFORM
10 20/80 POROUS 0.3 CFy, UNIFORM
1 20/80 POROUS 0.5 SFg UNIFORM
12 20/80 POROUS 0 - =
13 20/80 POROUS 05 N, UNIFORM
14 20/80 POROUS 0.3 CFy UNIFORM
15 20/80 POROUS 0 e -
16 20/80 NONPOROUS 0 - =
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Figure 1 HIGH SPEED PHOTOGRAPHIC SEQUENCE
(5000 FRAMES/SEC) SHOWING THE TURBULENT
MIXING INJECTANT WITH THE GAS IN THE
STEADY SHOCK LAYER



Figure 2 HIGH SPEED PHOTOGRAPHIC SEQUENCE
(5000 FRAMES/SEC) SHOWING THE GROSS
INSTABILITIES WHICH CAN OCCUR FOR HIGH
INJECTANT FLOW RATES
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Figure 3 SUMMARY OF BLOCKAGE HEATING FROM EARLIER STUDIES ON FLAT
PLATES AND CONES IN TURBULENT FLOW
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EARLIER MEASUREMENTS
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Figure 4 COMPARISON BETWEEN THE MEASUREMENT MADE IN TH= CURRENT STUDIES
WITH NITROGEN INJECTANT AND THE EARLIER BLOCKAGE DATA



1.0

P9
0.8 L)
it/
N
i)
X))
N
0.6 7\®
. /’ %
o
Cu/Cyy Ao // o
018 1 a
% D
0.4 b o
A° o0
ﬁ', é///v/ a
O 7 4{//// //¢ l'ni ", - ." 00
N 27 AT AR 2% -
0.2 4 \ ' Uy A4 T 777
S 77
Y1y, /,,’,,, o L
i o @
e g Ue DD
0 3 ’ Y -—M 1 !
0 8 12 16 20 24 28 32
(ov),
B=
pou.C
e-e Ho

Figure 5 COMPARISOM BETWEEN THE MEASUREMENT MADE IN THE CURRENT STUDIES
WITH HELIUM/NITROGEN MIXTURE AND THE EARLIER BLOCKAGE DATA
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b. BACK VIEW

a. FRONT VIEW

INSTRUMENTED SCANT NOSE TIP

Figure 7
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SINGLE ELEMENT

DOUBLE ELEMENT

Figure 8  TYPICAL HEAT TRANSFER GAGE INSTALLATION
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Figure 10

91789

(a)

(b)

HEMISPHERICAL MODEL FOR BLUNT BODY TRANSITION STUDIES
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Figure 11 WAVE DIAGRAM FOR TAILORED-INTERFACE SHOCK TUBE
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(a) RESERVOIR PRESSURE TRACE

(b) PITOT PRESSURE TRACE

Figure 12 PRESSURE TIME HISTORIES
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Figure 13 SCHLIEREN PHOTOGRAPHS WITH NO MASS FLOW
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Figure 15 DISTRIBUTION OF HEAT TRANSFER TO SMOOTH HEMISPHERICAL NOSETIP
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Figure 16 STREAMWISE DISTRIBUTION OF HEAT TRANSFER COEFFICIENT TO THE
NOSE TIP FOR Av,/P_ U_ =0(M_ =113, Rep = 11.1x 107)
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