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Preface

The theory of thermoelasticity examines the interactions between

the deformation of elastic media and the thermal field. The beginnings

of this theory are found in the works of Duhamel and Neumann who con-

sidered the equations of the linear theory in the case of homogeneous

and isotropic media. The reasoning from the thermodynamic viewpoint

of these equations way carried out by Biot, after Voigt, Jeffreys,

Lessen and Duke made various attempts in these directions.

The theory of thermoelasticity has advanced considerably through

the recent years. The large number of investigators and their studies

which present interest both from the viewpoint of their technique and

the theoretical importance of the problems which Pre considered illus-

trate these facts. Among the monographs devoted to the subject of

thermoelasticity we want to mention those written by Melan and Parkus,

Boley and Weiner, Nowacki, Kovalenko, Grindei, Parkus, Carlson.

In this book the fundamental problems of the theory of thermo-

elasticity are presented. The book also contains recent results which

are not included in other t r e a t i s e s. Of course it was not possible

to present all aspects of this theory and it was not even attempted.

The goal of the book isto present to the reader the basis of thermo-

elasticity and some of the remarkable results achieved in this field.

The presented questions refer to media with a generalized anisotropy

or to isotropy media. In order to maintain the unity of the exposition

the generalized theories of thermoelasticity were not considered. Both

the thermomechanical sense of the problem and t he mathematical formu-

lation and resolutions were emphasized in this work.

Without being exhaustive, the bibliography contains,in addition

to the papers cited in the text, also studies which give a broader

picture of the literature and the investigations of the theory of

thermoelasticity.

The Author
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THE THEORY OF THERMOELASTICITY

Dorin Iesan

Chapter 1. DEFORMATION OF THE CONTINOUS MEDIUM

1. Description of the Deformation

A continuous body or a continuous medium occupies a domain Zj*
in space. This description does not correspond exactly to the

physical concept of material bodies. It is a well known case that

at the molecular scale matter has a complex structure ar,d does not

occupy a domain in the sense of the mathematical meaning of this

word. In spite of this,the phenomena studied within the framework

of the mechanics of continuous media describe quite well from the

practical viewpoint the behavior of real media. A continuous medium

is thud a mathematical model representing an idealization of the

real medium.

Let us consider a continuous medium which at the moment t; s 0

occupies the domain B of the boundary 8B. The closing of B will be

indicated by S.

Let OX K (K = 1,2,3,) be a system of rectangular Cartesian coordinates,

X  the coordinates of a generic material point M, from the B domain,

and R the position vector of point M with respect to the system of

coordinates under consideration.

Let us assume that the medium is deformed in such a way that at

the moment t it occupies the domain X of the 04boundary, while point

M reaches into M*. We will refer the medium which occupies the domain

M to another system of rectangular Cartesian coordinates, fixed ox 

(i = 1 9 2 9 3). Let x i be the coordinates of point M* fixed with respect

to the reference ox ' while r is the position vector of M* with respect

to this reference (Fig. 1).

*Numbers in the margin indicate pagination in the foreign text. 	
l
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Biunivoca7 and bicontinuous correspondence is estPblished

between B and ;d in which the point M front B and the point MO from

4 correspond to each other.

The deformation of the medium is defined by the relation

.1'1 '• • Xf 1 At 1)1	
(1.1)

which in view of what hei been ztated above may be resolved with

respect to X 

(1.2)

Here and subsequently if not stated otherwise the indices will assume

the values (1,20). Occasional ly the system of coordinates (Y. 
It 

X29

X 3 ) will be indicated by X, and	 (x l , x 2 , x 3 ) by x.

If the coordinates X  are fixed,the functions (1.1) determine

the trajectory of the material point which at moment t a 0 would have

the coordinates X K ; if t is fixed, the functions (1.1) describe the

transformation which takes the domain B into the domain .d.

Let (0, t 0 ) be a fixed time interval where t 0 >0 may be infinity.

In the following if not indicated otherwise we will assume. that B is

a region regulated in the sense of Kellog (2321.

The functions (1.1) defined by B X (0, t 0 ) describe the	 /10

movement of the continuous medium under consideration. If not

stated otherwise we will assume that these functions are of the

G 2 class.

Obviously from the above it follows that the functional determinate

a•,
J	

a	
,

OXX

Is other than 0.

The X  coordinates are called material coordinates and x i coordinates

are called spatial coordinates.

(1.3)



Let us indicate some of the designations and notations which

the reader might encounter in the text. We state that a function f

is continuous on portions on B if' there is a subdivis! .on of B1, 1320

...,Bn ,f B in such a way that for each B I (, w 1,2, ... O n) the res-

triction of f on B  is limited on 8, and continuous on 8 J -D, thereby

D is a finite submagnitude (eventually empty) of B J . Let S1 and S2

be parts of aB so that S1 u S, —8D, S^ n 8, .0.	 We say that
function g is .regulated on th he portions on S  (a s 1 9 2) if g is

continuous on the portions of S  and every regulated point from Sa

Is a point of continuity for the function of g. A point NeOB

is called regulated if the normal at 81i is continuous in X.

Let g and A be regulated functions on the portions on a8. We

will white ps • g on aB if g(X) n A(X) in any regulated point XeOB.

Let f be a function of X and t defined on B x (O,t 0 ) and M and N be

nonnegative numbers. We say that f is from the class C M ' N if the

functions

,97 01 a	 am	
( 

0-f ,, m e (0, 1,..., art, n e (0, 1,... N},
a cra cQ ... a c,^ it

m + n C. max (3r, N),

exist and are continuous on B x (O,t0).

We say that f is of the C M•N class on B x [O,t 0 ) if f is of the

class CM0N on B x [O,t 0 ) and for every	 its e(o,1, ... Iif),

►,e (0, 1,..., N},	 072 )	 may be extended continuously to	 x [O,t0

The class of the functions C N ' N is indicated by CN.

We will say that the function g is regulated on portions on

S  x [0,t 0 ) if g is continuous on the portions on S  x [O,t 0 ) and

for every to [0 , to)	 i,s regulated on portions on Ga.

2. Displacement Vector. Deformation Tensors

We will designate by E K the versors of the axes OXK and by ti

3

.



the versors of the axes ox i . Obviously we have

	

Ex E, ss aAl ► 	 el ei — alit	 (2.1)

where 
6 
K and d i, represent Kronecker's symbol.

If we take into account the notations introduced in paragraph

1, we can write

	

It = X nEx,	 r — x101•

(2.2)

Let b - 6o and u - Phi*. The vector u is called the displacement /11

vector. We have

u = r — It }- b.
	 (2.3)

We are introducing the

constanta

Six = e,Ex.	 (2.4)

These represent the

X,	 directive cosines of the

ox  axes with respect to
Figure 1	 the reference OX 

K' 
Tf these

two coordinate systems coincide then 6 1K coincides with Kronecker's

syrnbcl.

Let it be

	

u ^ u,e, = UnEx,	 b = b1e1 = BxEx.	 ( 2.5)

From (2.3)-(2.5) we derive

	

d1x lx + 61 ,	 Ux = a.x xl — Yx + BK.
	 (2.6)

If these two coordinate systems coincide then we can write

ul 	 x l- X.J. etc.

4



Thus knowledge of the components of the displacement factor

is equivalent t o knowledge of the functions (1.1) or (1.2) which

describe the deformation.

Thus the vector u of the class C 2 onB x (O,t 0 ) class describes the

moverent o f t he cortlnuolls moMur.

Let us consider the two positions of the medium: in the B domain

and in the ;j domain. If we take the differentials dR and dr, we have

dlt = E„d.Yx,	 !r — a, K e,d.l'	 (2-7)

or
d It = X.Y. jExd xJ, 	dr = e,d x,,

(2.8)

where we note

aXl%	
a—=	 (2.9)

day	 d.l`,;

By the agency of the relations (1.1) and (1.2) any function f

of the variables x i , t, is similarly a function of the variable

XK , t and inversely. In general we will use the following notations

Od1 M, f.j	
ax,'	 (2.10)

The magnitudes x i K and XK i are called deformation gradients.
s	 a

We have

a'i.XXN.i = 8 09	 XX.,x,,a = 8KL- 	 (2.11)

If we introduce notations
(2.12)

Ca = X4.0d,	 e, = XK.,E,,,

from (2.7) and (2.8) it results that

	

d1t = e,dx,,	 dr = Cxd Xs.	 (2.13)

112

5
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Let us designate by dS and do the magnitudes of the vectors

dR and dr respectively.	 From (2.7), (2.d),	 (2.12) 0 (2.13) we obtain

7«

d63 — (M)r 	 dXKd XR , d. s = (dr)l .- CKLd YKdX L+ (2.14)

or

dS2	 c, )dx/dx) , de' — dxldxf,
(2.15)

where
r,	 CKL — CKC& — xf.K X1.Li Cif 0° cie9	 "M ',K,4'VK.1• (2.16 )

The quantities c ii , CKL are components of some second order

symmetrical and positively defined tensors called Cauchy's deformation

tensor and Green's deformation tonsor, respectively.

In view of (2.14; .,,nd (2.15) we can write

(la g — dS:l = '-2EK9.i1 X Ad 1L = 2eu dx, dx9,
(2.17)

where

w "KL .= CAr. — 8&Lt 2ef) = 8f ) 	C(9•	 (2.18)

The Magnitudes 1 7. KL9 e jJ are the zomponents of certain symmetrical

tensors called lagrangian deformation tensors and eulerian deformation

tensors respectively.

The deformation tensors thus introduced may be expressed by

means of the components of the displacement vector. Thus if we take

into account the relation

CK = 1'.K = WK + u .K = Ex + 
Uv.KEjf,	 (2.19)

4.
,
 = B.i = r,f — u,, = Pf — 1f,.f@.,

we obtain

CAL = $AL + UNA + UL.K + UM AU31.0	
(2.20)

el) = all — Vt.) — 141 1 + 9fi,1fa9•

6
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From (2.18) and (2.20) it follows that

2F:xt a UK.,. + rfl,K .j^_

2r„ — ug., N t1/., —

(2.21)

The ,elations ( 2.20) and (2.21) are called deformation dis-

placement relations or geometric equations. In some cases their

displacement vector may be assumed to have the form of u —9d',

where c is a parameter the powers equal or higher than two of which

may be neglected and IL I is a vector which does not depend on e. Thus

the linear theory of deformation of the theory of small deformations

is obtained. In this theory a single system of coordinates will be

used and we will indicate the components of the displacement factor

with respect to the system by u i . Thus we have xi M Xi + ui . However

we should observe the fact that within the limitations of the theory

the partial derivatives of the components of the displacement factor

with respect to the spatial coordinates coincide with the partial

derivatives with respect to the corresponding material coordinates.

Thus

8u,	 0141 Ox, _ alit
	 =a }- 

	
s 0146 +0(0) g.aan.d.

ax, l

	

ax,	 axe

It follows from (2.21) that in the linear theory of the deformation

the lagrangian and eulerian deformation tensors coincide.	 In this

case we will note that components of the deformation tensor by cij.

We have

	

2zj) = 46, ,, + ib,,,.	

(2.22)

In the linear theory of deformation the coordinates of point M

are usually indicated by x i , the coordinates of point M* being

obviously x i + ui.

The relations ( 2.22) represent the relations of the defo emation-

displacement called the geometric equations in the linear theory of

deformation.
7



3. Conditions of Compatibility

I.	 The two positions of the continuous medium under consideration

8 and I are placed in t.nr , e a dimensional euclidian space. Rolations

(1.1) will be considered as defining the transformation of coordinates

from the Cartesian rectangular coordinates x i +*i the random curved

coordinates XK . The magnitudes CKL are components cf the metric

tensor in the curvilinear coordinate system X K . If we have been

given the components C KL will wt be able to find the transformation

x	 x(X)? Let us note by 11fixy	 the Riemann-Christoffel tensor

formed with the tensor CKL

	

^t"qua n• 1 ^0^ v.eu -4-	 +	 ( 3.1)

+- C j"([f At, 8) [KY, R] — [LN, 19 ] [KMt R]),)

where

[h L, M = •^ (CKII.L { CLUX —(7RL,u)•
(3.2)

This case in known (see for example Haimovici [1681)

Theorem 1.1. Tn view of the feet that the functions CKL of the

class C 2 which verified the conditions rMMy^U,

are given In B and are coefficients of a positively defined form	 /14

there exist in the neighborhood a of a given point from A,

system of curvilinear coordinates X in which these functions are

1ponents of the metric tensor.

The same problem may be posed for the tensor c ij . In other words

we assume that we have been given the symmetrical and positively

Fined tensors c i, and CKL , in order to be able to consider these

isors as metric tensors it is necessary that

	

RQM.V = 0,	 = 0.

(3.3)



tit.) c tit 
.1 

wi1•

U:

It is a known fact that in the three dimensional space the

Riemann-Christoffel tensor has only six components which do not

annul themselves identically. Thus from (3-3) we will obtain six

conditions of compatibility for CKL and six conditions of compatibility

for cij -

In view of the relations (2.18) these conditions cf compatiblity

may be expressed by means of the tensors EKL and e ij -

In the case of the linear theory the conditions of compatibility

become
Cif.tI + t rr.0 — tax — t )0,4 1: = 0.

(3.4)

We will demonstrate

Theorem 3.2. The deformation tensor 
eij 

of the class C ` on B

satisfies the conditions of compatibility (3.4). If B is a simple

connected domain and 
eij 

is a symmetrical tensor of the class C 2 on

B which satisfies the conditions of compatibility (3. 11) then there

exist functions u  of the class C 3 on b which satisfy the equations

(2.22),

The "i,rst part of the theorem is obtained easily in view of

the deformation displacement relations (2.22). In order to demonstrate

the second part of the theorem let us consider the system

k.

ut., + ul.j = 2tu9	
(3.5)

where eii are given functions which satisfy (3.4),if we note

Vt.) -- V-).$ = 2 wool	
(3.6)

we have from (3.5) and (3.6)



The conditions of integrability of the systems (3.7)

e o.t + wl).t =- C ol.) + (o.t.l•

these relations may be put under the form of

e ll's	 904.1 A Idll.t — ('4ki -' 0.

By the permutation of the indices we obtain

e)a.1 — C 11.t -1 10 0,1	 W)1.1 .: (1/

e al.) — C im + wtl.) '-- ws).1 Y 0.

If we add member for member relations (3.9) and (3.1(

subtract from the result (3.11) we derive

1.111.1 = Cls.l —C al.l- 	(3.12)

We obtain a aystem of equations in unknowns w ij . The

conditions of integrability for the system are

Coca) 1- Call/ — 6 11.11k — e181,U — 0,

these conditions are identical with those in (3.4). In view of the

fact that these conditions are assumed to be fulfilled it follows that

the system (3.12) determines the functions wij . Let x 0 be a fixed

point from B. mhen for every r  B, we have

wll = K. d ^t ^-wi1.

'	 (3.13)

the integral from (3.13) is independent of the Oaths in P from x 0 to

x.

It may be noted that if we take wij _ -w, i the% the antisymmetry

of the magnitudes w ij is preserved. If the functions w ij are

determined then the system (3.7) for which the conditions of

10
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integrability are fulfilled al'cws usto determine the displacement

vector. We obtain

	

i8se(911 + WI OZI 1- U04,
	 (3.14)

where ui are the values of the functions u i in the point xO.

If we note

IJIJ	 i, ( 91R,1 — 9 1R•1) ^l ^RI 8•	 (3-15)

then it follows from (3.13) and (3.14) that

(3.16)
u/ ==	 ( C O, }- w+) li E1 1- wi( 1 — xi) -F- ui

The above integrals are independent of the paths in B from x 

to x. The thus defined functions u  represent the components of a

displacement vector corresponding to the deformation tensor fii.

The relations (3.16) indicate that the displacement vector is

determined as far as a rigid dis placement, as it was anticipated.

The six distinct conditions of integrability from (3.4) are

(3.17)

911

(3.18)

a;

11

'Il.n 4- 9 11.11	 3 EI1.ur ( i 0 it not added)

9e..11 + 9 11. 06 = E 18.14 + 9a.18 • 	 (i # j # s 0 it	 not added) .

The vector w the components of which are given by

I
c ' l l =^ ^ P//RIJR11

r

is called the rotation vector.



We used e i, k for designating the symbol of permutation which, 116

as is known. is defined in the following manner

1, if the values of 3,,J,k, form an even permutation

e ijk	 -18 if the values of k,a,k, form an odd permutation

0 9 if at '.east 2 indices are equal

(3.19)

Obviously we have

w - I- rut, u.	
(3.20)

It may be easily seen that the relations (3.4) may be written

in the form of

(3.21)

Similarly on the basis of the fact that

k{

the relation (3.12) obtains the form of

W l/.r — Ofir t'..m t k,,m-

(3.22)

(3.23)

If we keep in mind (3.23) and relations

^,,	 r,

from (3.14) we obtain another form for the components of the dis-

placement vector

ui -f (x, —40 ) w,i l
	
( CO A- fOT Cr,m( x) — E/) E k,.m j d EL--	 (3.24)

r,

Similarly, from (3.23) we can derive

1 -7
^LL '
	 (3.25)

W IJ — W ,	 ^ f11rPr,m E k..m^ I yk.
NO

12



In case of a multiple -connected domain the . problem may be studied

by carrying out suitable sections with the help of which a simply

connected domain is obtained.

At the margins of the sections, the components of the displacement

vector will have in general different values, be it ui , ui+ depending

how the x tends to go toward a point on the section from one part or

from the other part of the vector. If the displacements are continuous

the following supplementary conditions must be fulfilled on the sections

ui	 ui. In the contrary case certain discontinuities will arpear in

the body; the functions	 u  will not return to the same values after /17

going aroun.: any closed contour.

Let us assume that the domain B is (M + 1) connected. The

functions u  and w ij determined by (3.24) and (3.25) may have many

forms. In order to ensure the uniformity of these functions it is

necessary and sufficient that

S

L ^FII }- 

•

` ^'rrm^lr.u+ 1 ^ tik =_ (fi t 	 ^11 _ ^ / ^^^... O hl )f

G^

(3.26)

where L  are simple closed curves from B. each of which surrounds one

and only one of the cavities.

Conditions (3.26) may be written in the following equivalent form

(3.27)
I E ll —0*11r f rom 4JE1•a .ml dE,	 09

L^

1'(rus'lr.mlIik'=^1^
JL^	 4

t

4. The Invariants of the Deformation Tensors 	 r

Let us consider in the three dimensional euclidian space a second

13



order symmetrical tensor a ij . As is known the coefficients of the

polynomial in A

! (r, J	).3 .1. I,(cr) ?.= — l.z(a) ). + I3(a),

(4.1)

are invariant at their reference transformation. Similarly any

invariant of the matrix (aid ) is a function of the invariants I1(a).

From (4.1) we obtain

,j

(4.2)
I 1(a) = fill, I (I	 1 Gru a» — n„ a,.), 1 3(a) =- 1 a^^1

r

Often in place of the invariant Ir (a) other invariant expressions

are used. Magnitudes I r (a) are called principal invariants of the

tensor ail . For the deformation tensors 
CKL' FKL' ci.i' and e i1 we

will indicate the respective principal invariants by I I (C), Ii(R),

I I (c) and II(e).

In view of the relations (2.18) it follows that

I I(C) -3 l '.:1,(l;), I t( c ) ;- 3 -211(c).

+ al,(H;)	 11.(11"),	
(4.3)

1:,(C)=l+21,(E) I •11 - ,( E)-i 81.,(E), tale'). 1—:tt,(v) 1 1/ el f')	 ^Is(P).

Let us note the fact that because

/ 3( C)	 I r'f.,.1 = 1.1,1.h F,,	
(4.4)

it follows from (1.3) than
	

/18

13(0)=./,.	
(4-5)

14
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I

Similarly we obtain

	

	 {

Ia(o) = 9'+
(4.6)

where

j — IXxjI-
(4.7)

Obviously

jJ = 1,

so that
13(c) 16(c) = 	 (4.9)

5 . The Transformation of the Surface and Volume Elements

Let us consider the vectors dR, = E,dX I, dA$ = E2dXg, d11 3 = E3dX3

which after deformation become dr, = C,dX,, dr2 = C•,,dX., d% = C3dX3

respectively. Let dA 3 indicate the surface of the rectangle determined

by the vectors dR 1 and dR 2 while do  is the surface of the parallelogram

determined by the vectors dr 1 and dr2 . We thus have

d03 = C,xC2dA 3 = eukX1.jXJ.2ekdA3.	
(5.1)

The relation (5.1) may be written in the form of

da3 = JX3. jejdA3f

because

J = I xg, I = e,lkxt. XJ.2xk.3•

In the same way we obtain

dal = JX I,je,dA„ dal = JX2,,e^dA 21

where the meaning of the new notation is obvious.

(5.2)

(5.3)

15



k
If we note	

de — do, + dos + doa,	
(5.4)

we have

do — JXK.fdAxe,. 	 (5.5)

Setting da u daie i , it results

day — JXK,jdAx,	

(5.6)

these re::ations will be useful in the following,

The volume determined by the vectors dr i , dr22 dr3 is given by

(IV  = do„C,q I .C, ="X3,1 ej (I A 3XJ,, e) (I X, = Jill" 	
(5-7)

where dV is the volume of the parallelepiped determined by tYe

vectors dR l , dR2 , dR3.

If we keep in mind (4.3), (4.5) we can write

dv = JdV = I 3(0)dV = 1+ 2I1(E) + 91 2(1)) + SIAE dV•	 (5.8)

In the case of the linear theory we obtain

	

dv = + 1 1(c) = 1 + EN,	 (5-9)

dV

or

dv —dV = IA01
41V	 (5.10)

this relation expresses the fact that in the linear theory, Il(E)

represents the variation of the volume per nondeformed unit volume.

1

16
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6. Velocity and Acceleration

Through the intermediary of relations (1.1) and (1.2) any

quantity f which is a function of the variables x i ,t is also a

function of the variables X.K ,t and vice versa. We will indicate the

dependence of f on a certain system of variables by writing f(x,t)

or f(X,t). Let the function f be of the class C 1 on B x ( O t t 0).

The differential of function f with respect to time, maintainirf;

coordinate X  constant is called the material differential of the

function f and will be indicated by df/dt or by f.

If f = f(X,t), then we have

Of
of  (6.1)

If f = f(x,t), we obtain in view of (1.1)

_ 8f	 8f 8x,
f	

M + ox, at

	
(6.2)

Obviously the concept of material differential may be considered

also in connection with vector or tensor quantities.

The velocity vector is defined by

	

V = r•	 (6.3)

If we observe

	

v =v, ", +	 (6.4)

then

J

8x,	
(6.5)

ac

17
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The velocity vector may be expressed with the help of the

displacement vector. From (6.3) and (2.3) we have

V — iu,
(6.6)

and if we take into account notations (2.5)we can write

	

vl — i'l .	(6.7)

Setting	 /21

we obtain

aUK	
(6.9)

^^" s at

Tn view of (6.5), the material derivative of the function f(x,t)

may also be written in the following manner

f =..vl + P,4 v,.	 (6.10)

The acceleration vector is defined by

	

a =,^	 (6.11)

We can write

u_ a 1' AX, 0 E _ a$ 11 K 1, 1) is	 (6.12)
at	 " _
	

ati,

Similarly if a = aie i and v i = vi (x,t), we have



''-du = ri.1 + r1,,.

where

t

7. Several Important Material Differentials

(a) The material differential of the deformation gradient.

We will show that the following relations take place.

ti: (` I. K) — Vt. I X /. K + 	
d 

( Xii 1) ^ — v1, 1 Xx. r	 (7.1)lit

In view of the fact that in the operation of material differentiation

the X  coordinates are kept fixed, we can write

i.K1 -
d	 tl.r1

s	 -^	 = tit J ^f.Kf
-dt	 ax,;	 i;t )

which proves the first formula from (7.1).

Carrying out now the material differential of the relation

(2.11) 1 we obtain

d 
( x1. 111) ')- X8, at - 11 Vat, = 0,

(it	 (It

whence, on the basis of (7.1) 1 , (7.2) 2 can be easily obtained.

If we consider dJ ,j = r#,rd.l',,, from (7.1) we can derive
	

/22

	

.I	 (7.2)
lit

($) The material differential of the square of an element of

arc. We will i-,how that

•(d - 
(11u ;')	 2d, 1 dxj dxlt



t
G'	

In view of (7.2) it follows

	

-d` (dos) — à- (da-j ) d.r, ^e ^3v^, play d.r^	 (r,. i r^,,) dry d x^^

which demonstrates the relation (7.3)

(Y) The material differential of the volume element. Let us

show that

d
dt	

(7.5)

In view of the fact ghat	 dv =J411,"	 we have

tit	 (It	 d,r^, A	 ^I ►

J.l'K,^t'r,^^1.r ^^l' 	 v^,^JdV,

which demonstrates relation (7.5). Here we use the fact that

Ox" x

and also the relation (7.1) 1 . Let us remember the fact that

J-==111)(,1.	 (7.6)

(6) The material differential of a volume integral. Let

P(t) be a random regular domain from the continuous medium considered

t time t followed in its movement. Let us assume that this domain

omes from the domain y = 0(0),

The following integral is considered

F =- j 

9

	 (7.7)



t
in which the domain P and the function f assumed to be of the

class C1 are dependent on the time.

Let us demonstrate that 	 /23

1' =5,U + fv,.,) (IV. 	 (7,8)

For this reason let us transform first of all the considered

integral into an integral extended to P

f(.r•, t) dv ^. S f(s(X, t) t t) 3 d V.	 (7-9)
P

Obviously we have

` d (f3) d i'.
7P dt

(7.10)

Coming back to the spatial variables and taking into account

(7.6) we obtain

	

a- (a^') Div	 (f + fv,,,) dv,
.^ 3^ tit

which was to be demonstrated. The relation (7.8) may also be written

in the form of

arU`'^) ^^ ,l u =	 f do {- fv^ n, ila,	 (7 .11)
I f

	

^	 ^ ^ d t	 Sd®

where 0-0 is the boundary of 9.

8. The Deformation Velocity Tensor. The Spin Tensor

{gi

d

The deformation velocity tensor d ij and the spin tensor wij are

defined by their relations

	

2wu	 v,., -- v,.,•	
(8.2)

21
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t These tensors represent the symmetrical and the antisymmetrical

part,respectively,of the tensor v. The vector w with the component

too	 Nor	 Not 'Va. it

r
(8.3)

is called rotation velocity. We have

W — -^ trot, V.
	 (8.4)

Let us establish certain relations between the material

differentials of the deformation tensors and the deformation

velocity.	 We will assume that E %K,..- - Ex, (•1', t), cq — /'u ( x, t)•

We will show that the following relations are involved

iKJ 	 1/1) l',, K J'1.1.,	 ( 	 . 5 )

I+rl = 1,11 "' Pt l t'r,l '" p rt t '1t,1 •
	(8.6)

In view of (2.16), (2.18) 9 (7.1), we can write

G KJ.	 CKI. `^ 
1l t 

( J'l, K 1'1, J.)	 t•1. 1 J'J. K •J '1, L + Tt . 1 X1, L ^'^, A

=_ ( Vi.) " t' 0J. 4) 1'1. K •J'J, L,

which demonstrates (8.5). ]..order to establish (8.6), we will use

(7.1) 9 (8.5) and the relation

Thus we are able to write

121:t XR,1 -V L, 	 ]'IKL_Il (-`• K. 1 ) -V L,1	 /;x1, XK . 1 1' (.0 J.,1^-
^lG	 d 

=- dq — F:K ,, r M , J .1 K,m .l' J„1 — 1•.KL 1'M.) XI..,,, X N . 1 =_

= dj — enj vm,i — ems ro.I

[
22
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From (8.6) results the fact that in the 11hear theory we have

it) — dt).	 (8.7)

9. Objective Tensors

The magnitudes which are independent of the movement of the

person who observes them are called objective ones. Thus the

distance between two points is objective. The velocity of a

material point is not an objective magnitude.

Two movements of the continuous medium described by the functions

x i (X,t) And xi(X,t') respectively are called objectively equivalent

if

a-'( X, (') = Qv( t ) xj(-V , t ) -f-- b i( t ), t' _= t — if	

(9.1)

where a is a constant, b  represents a translation and Q ij satisfies

the relations

Qu Qik _ (b Qks `= a,k, I Qi) I - 1
	

(9.2)

Thus two obJectively equivalent movements differ only by the

benchmark and the reference time. The two movements could be made

to coincide by superimposing a rigid movement and by changing their /25

origin of time. If in case of such a transformation the components of

a vector A i (X,t) are changed according to the law

A lf( .1', t ') = Q,,( t ) A , ( X, t),	 (9.3)

then this vector is called an objective one.

The tensor A ij(X,t')is called objective if

Aif(X , 0 = Q,r( t ) Q1.( t ) An (X, t).	 (9.4)

23
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r

In view of ( 9.1) we are able to write

(14	 j,

.I r'	
Qa x, + ^d a X) + V1,

whence

+
(9.5)

r-

This relation indicates if the velocity vector is not

objective.

Let us examine the tensors d ii and w
J
,. From (9.5) we obtain

vd,.,- 
0,r),

^ (l1 Z^r,r 
1^-	

+Q1r ^d1

Because
of,--- _. Qrr,
a.,;

we are able to write

l',.,	 - Qrr Q,r 11r, r i rile Q,r'	 (9. 6 )

If we derive (9.2) in relation to time we have

(A.	 ()•	 (9.7)

From (9.6) and (9,7) we obtain

(9.8)

a relation which expresses the fact that the deformation velocity

tensor is objective.

24



pdv = pod V.
s	 r (10.2)

From ( 10.2) follows the relation

Po = J P ►

Similarly from (9.6) and (9.7) we can derive

	

sv„ _ tAr td,. ?('.. r Oit td► .•	 (9-9)

Consequently the spin tensor is not an objective tensor.

10. The Principle of the Conservation of Mass. The Equation of /26

Continuity

The fundamental principles of the mechanics and thermodynamics

of continuous media are: the principle of the conservation of mass,

the principle of the pulse, the principle of the kinetic moment,

the principle of energy and the principle of entropy.

Let us start with the study of the principle of the conservation

of mass. Let us assume that we are given a stric ,".*ly positive

function p, of the C 1 class on B X ( O,t O ) and continuous

on	 P x [4, to) called mass density; the mass of any given portion
0' from the continuous medium ^R is,given by

	

111(9) = S P dv.
	 (10.1)

The principle of the conservation of mass states that the mass

is conserved, in other words Vie mass of any portion from B is the

same as the mass of the same portion after deformation. Let P be

the domain from B which by deformation becomes the domain Y from R.

If we designate the density of the continuous medium at the

	

'

	

	 initial moment by p0othen the principle 	 of the conservation of mass

may be expressed in the form of



which is called the continuity equation. If the motion is known,

the relation (10.3) determines the density p. The function p 0 is

prescribed. In view of the fact that p 0 does not depend on time

we obtain from (10.3)

Jp+ii- 0.

If we consider (7.6),it follows

P -+- pv4, , = 0.	
(10.4)

This is another form of the continuity equation. It may be

expressed also in the following manner.

at	 (10.5)

From (10.3), on the basis of the relations (4.3) and (4.5)

It follows that we have in the linear theory

p — Pu( l — elf).	 (10.6)

In ending this paragraph we will consider the material

derivative of an integral of the form of (7.7), in which 1 = P^

In consideration of (7.8) we derive

ilt S^ P? (lip = U ^, (PT) F pTV , , ,l(IV -^ ^ [P AP + T(P F- Pv4 . j)jdV.
1J	 r

if we consider (10.4), we obtain the important formula 	 /^7

d `	 du _ `
	 d?- IV.	 (10- 7)

(it JP P
	

J,. P ilt 

IT
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11. The Principle of the Impulse. The Principle of the Kinetic

Moment

In Paragraph 2 we have seen that a motion of the considered

medium is defined by a displacement vector u of the class C 2 on

.8 x (00 to).

A motion is called allowable if	 °+ U.K, U.K,	 are

continuous on R x [o,10).

Given an allowable motion and a portion L? of the body under

consideration at the moment t,then the vector

I(.'?) =	 piu(l y ,	 (11.1)
O

is by definition the impulse of the portion & at the moment t.

The kinetic moment (with respect to point o) of the portion 0

at the moment 't is, by definition, the vector

IIo(y ) = pr x u dv.	 (11.2)
s

A system of forces associated with the body in motion is

defined as follows:

(a) For any given time t, there is given a vector t(x, ti)+ ' a g'

This vector is called the specific mass force; it represents the

force p e r unit mass exerted on the point x at the moment t by

bodies external with respect to A• The vector P.(Y)

is defined by

F. (Y) = 
)

pt (it',
a

and is called the resultant of the mass forces exerted on the

portion 0 at the moment t.
y

27



(B) For any moment t and for any unitary vector n there is
given a vector	 t(„ ►(x, t), X  fit.	 If y is a regular and oriented
surface from	 , with a normal unitary vector n, then t tM,)) (X, t)
is the force per unit surface in x and at the moment t, exerted by

the portion of the body located on that part of 3 toward which n

is directed on t  a portion from a located at the other part.
The vector t(„) (x, t )	 is called the tension vector.

The resultant of the surface force exerted on the portion of

9 from a is defined by

F,(L')	
J 

t(„cjru (.r, t) (10,
Jr

where 06f is the boundary of the domain y , and n is the versor

of the normal exterior at 8Y•

If xC- 0.0,	 and n_ is the versor of the normal external . 	 128
to am in x, then t (-) (x, t)	 is the specific force of the surface
in (x,t).

(y) The resultant of the forces exerted on the portion of

from -4 is defined by

(11.3)
F(^) = S pt dv +	 t („) (Ia.

(6)  The vector _t (n) is continuous on	 P x [0 1 to)	 and of

the class C l ' O on n x (0, to),	 and f is a continuous vector on

[0, to).

By definition the resultant moment (with respect to point o)

;he forces which act on a portion 9 from q is

MO(9) = pr x t dv + r x t t„) da.
	 (11.4)

^	 Jv



K

• By analogy with the mass force and thetension vector the

concepts of mass moment and surface moment may be introduced.

A continuous medium in which mass moments and surface moments are

present is called a polar continuous medium. We will assume in that

follows that the medium under consideration is nonpolar.

The principle of the impulse states that for any portion

from A and any t the following equation occurs

i(Y) = fl lfl.	 (11.5)

The principle of the kinetic moment states that for any

portion 01 from -4 and any t the following relation takes place

	

110(g) = NO(OP)•
	 (11.6)

The ordered aggregate	 (li t t,l ) , t),	 where u is an allowable motion

and f, *^ n) is a system of forces is called a dynamic process if, for
any portion Y	 from as and for any t,the relations (11.5) and (11.6)

are satisfied.

In view of (10.7), (11.1)-(11.4), relations (11.5) and (11.6)

are written in the following form

	

5 
A(11,

=i^
 dv+ ^ 	 da,	 (11.7)

^	 vs

pr x 0 dv = ` s pr x t dv }- S r x 1 (,,) da.	 (11.8)J	 J^

In Paragraphs 12 and 13 we will present the local consequences

of the principle of the impulse and the principle of the kinetic

moment.

29



A,	 A.

Figure 2

12. The Tension Tensor

Theorem 12.1. If [uA. t1 is a dynamic process then for any

given unitary vector n we have

(12.1)

Demonstration ( Gurtin [1631). In view of the fact that the	 /?9

domain occupied by a body is limited, in view of the properties of

P, u and f , it follows that the function

NO _ pup I PO — u) i,
a ED

Is finite on MO.	 From (11.7) we derive that

^as	 I	 (12.2 )

on f O,t (,), where V( 9 ) is the volume of R.

A,
Let us consider a point

As	
xoE a and unit vector m. We

will apply (12.2) foio the case when

i? is a parallelepiped, y„ with

a center x 0 (figure 2),

having faces A 1 A 2 A 3 
A 4 and ANNA4 normal to m. We will assume that

these faces are squares with a side E and will designate them by

30
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a  and aE , respectively. We will assume similarly that the

AlAl is equal to e 2 . Let us designate with w e the reunion of the

parallel faces with m.

We have

00P• = Q, U o; U a)"

(12.3)

ar, d

V(I?s) — Or 0( 0.) _ Cdr V (we) _ 4c',	 (12.4)

where for every surface a,.+af(Q) designates the surface of a. From

(12.2), (12.4), we derive

(12.5)

Iei J,,,	 when e-P-0.

In view of the fact that t (p) is continuous on I for any

fixed unit vector p, it follows from (12.4)

(12.6)
lit•.) Flu -► 1^ tm^(^or 1 )r ' 1 S 1^„)^la-sU

C2 o,	 ^1 ms	 when e-+0.

Keeping (12.3), (12.5), (12.6) in mind we obtain

If”) (tor 1 ) + 1t-M) (xor 1 ) = O"

this relation proves the theorem inasmuch as m and x 0 are arbitrary.

The vector t (n) (x,t) is designated by t(x,t;n). We will

designate the components of vector t (n) by t i (x,t;n) or ti.

Theorem 12.2 If lu , 1 (0, 1 1 is a dynamic process, then there
is a tensor t ij of class C1,0 on B x (O,t 0 ) which is continuous on

B x [O,t 0 ) so that for every unit vector n we have

11 = 8), nj,	
(12-7)

31
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where n  are components of the vector n.

to,	 Proof. Let us assume that the portion
a	

®,including its limit is internal with

Aa	 respect to the domain and has the shape
A

A	 e,	 of a tetrahedron AA 1A 2 A 3 (fig. 3) in which
° 	 the vectors AA have vectors e i respectively

as the right versors. Let x i be the coordi-
Figure 3	 nates of point A. and n the visor of the

external normal with respect to the plane A 1 A 2A 3 . The tension vector
which acts on the surface element with an external normal e  is t(ei).

To simplify the description we will designate this vector by tI.

Obviously vectors t i depend only on the point and time.

Let a be the face of the tetrahedron with the external unit normal

n and a  the face of the tertrahedron normal to e i . Obviously the
external unit normal at the face a  is -e I' The tension vector which
acts on this face will be -t,,.

The principle of the impulse In the form of (11.7) applied to

the tetrahedron under consideration becomes

S
gn—f)(IV = 

J^

^t;,, ) da —^	 —^ t^da —^ 13da.	 (12.8)
•9 

If we designate

t(^) = Is ef, t o = t1)eit

(11'.9)

the relation (12.8) will be written as

S
P(a, —ft ) d2, _	 (Ia — ^. ,t i, ti a	 1st (ta — ` t 3, (Ia.	 (12.10)

a

In view of the fact that t (p) is continuous for any fixed unit
vector p, we derive from (12.10)

P

P( a l — f^) ^+ 1 (^) = t^ s^/(a) — t 11 .ctP( a,) — t', s^(a:1 _ t^, ^( a31,	 (12.11)
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4 where [ga, f,)1'represents the

in a given point M  inside th

of the function t i in a point

the value of the function t,i

value of the function P(a, — f,)
e

e tetrahedron,t i represents the value
•

Ni of the face a and t, i represents

in a given point F.
Ji of the face aJ.

Let h be the height of the tetrahedron derived from A. We have /31

s- hil(a), a3(a,) = t,,.a/(a),	 (12.12)

where n n niei.

From (12.11) we obtain

LP(a, —A)P -.= to —tt n).
(12.13)

It' in (12.1;) we snake h tend toward zero, we derive

i,(x , t; n ) = ti, ( X, t) n Ax ),	 (12.14)

which demonstrates (12.7).	 P

It sho-ild be noted that the formula (12.14) is true also when

n = t ei.

The fact that the functions t ij are of the class C 1,0 on B x(O,t0)

and continuous on 9 x [O,t 0 ) results from the fact that ti(x,t;n)

has these properties regardless what n would be.

The relation (12.14) may also be written in the form of

Im = e, n,.	 (12.15)

This relation expresses the dependence of the tension vector

L(n) on the vector n; it is known under the name of Cauchy's formula.
The tensor t ii is called Cauchy's tension tensor.

13. The Equations of Motion

Theorem 13.1 (Cauchy-Poisson Theorem). Let u be an admissible

33
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(13.6)` ( pii, — pfd -- t it, J) dv ° 0,

Relations (13.3) and (13.4) may thus be written in the following

ner

motion and f,t 
(n) 

a system of forces. Then	 is a dynamic
process if and only if the following conditions are fulfilled.

(i) There is a tension tensor t i, s u c h t h a t	 tI(x,t;n)
is represented in the form (12.7) and this tensor is symmetrical,

If) = ho	 (13.1)

(ii) u i , t i , and fi satisfy the equation

#)14 + Pff . Pii,.	 (13.2)

Proof. If [u, 1(.),1J	 is a dynamic process, 'then according
to theorem 12.2 there is a tension tensor t, j such that (12.7) takes

place. Let us show that the relations (13.1) and (13.2) occur. We

will write the principle of the impulse and the principle of the

kinetic moment in the form of

pii, (IV =	 pf, (Qv +	 to da,
s	 .	 000 (13.3)

5
 peu, x) ii t (I v =	 peu t x i f t d v +	 x) I t da,	 (13.4)
,t	 ^

where e i'k is the permutation symbol defined by (3.19).

In view of the fact that the relations (12.7) take place, 	 /32

applying the divergence theorem, we have

J̀ t, da ^ 10,1 do, 
S',fflefik  x) 11, da = ( eUr Xj t.t,. + Out tit) dv.

(13.5)
ar	 ,r 

t



i
[run x i ( A  — Ph -- ta.') -- rok tjt ] dv — 0.	 (13 -7)

In view of the fact that the functions under the integral sign

are continuous and the domain W is arbitrary, equations (13.2)

result from (13.6). These equations are called equations of motion

of the continuous medium under consideration.

On the basis of equations (13.2), the relation (13.7) implies

e ijkt, k n 00

that is, relations (13.1).

In the opposite case, if we presuppose that (i), (ii) take place

and that the aggregate [u,t (n) , f] is given, where u is the admissible

motion, t (n) ,f is a system of forces comprising a dynamic process.

From the fact that relations (13.2) take place, we obtain

(13.6) as the result. Because tensor t i, exists so that (12.7)

takes place, (13.5) results. From (13.6) and (13.5) we obtain

^.
 P( li , —fl ) (IV ^ L t, da,
^ 

that is,the principle of the impulse.

In view of the fact that relations (13.1) and (13.2) take place,

relation (13.7) is true. In view of (13.5) 2 we derive from (13.7)

the form (13.4) of the principle of the kinetic moment.

From equations ( 13.2) and the continiuty of P, i^i t ft on Fs x [4), to)

it results that 
tji,i 

are continuous functions on 11 x Lo, W.

From the above it results that the tension tensor t ij has the following
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properties.

1) t 	 symmetrical and ofthe class of C190 on B x(O,tO),

2) t i J and 
t iJ I 

J are continuous on It x [u, Io).

A tensor with these properties is an admissible tension tensor.

In view of theorem 13.1 it results that the specification of

a dynamic process is equivalent with the specification of the ordered

magnitude	 where

(a) U  is an admissible movement,
(B) t 	 an admissible tension tensor,

(-Y) f i are continuous functions on It x [u, to),

(d) ui , t i,, f  satisfy the equations of motion

Thus, a d;,namic process is an ordered array of functions
	 /U

u i ,t i,, f  with properties (a) -- (6).

14. The Piola-Kirchhoff Tension Tensors

As has been stated before the tension vector is associated with

a material surface Y from I and is measured on the unit area

of this surface. However, the area of the deformed surface is not

known and therefore it is neceseary to introduce a tension vector

to act on ./ which is to be measured on the unit area of the surface
yol where Ye is the surface from B which by deformation becomes the

surface .V frrm dl.

Let P be the domain from B which is transformed by deformation

into the domain e from X . The relation (11.7) may also be written

in the following manner

r
pofidt' = S

r 	
Npot dl' + 

i0p 
T,,dA 9	 (14 1)

where T (N) is the tension that acts on 8Y q nd is measured on the unit
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area of the 8P su:Pface. Let N e NKEK be the versor of the normal

exterior to OP. Proceeding as in Paragraph 12, from (14.1)

we obtain a relation analogous with (12.15)

T (w) = Tx Nx,
(14.2)

where TK represent the tension vector associated with a surface

from 0, corresponding to the plane of the external normal E K from B.

Let dA be the oriented element of area from B with an external unit

normal N which, by deformation, becomes the element da with an

external unit normal n..

We have

I(„) do = T(N) dA, I,ro,da = T,,.V dA,	
(14.3)

(la, = ii, de, dA K = N„ dA, i t da, = TXdA,,,

where we used (12.15) and (12.2).

In view of th y: relations (5.6), from (14.3) it follows

T,; = fIX K.jIi•	 (14.4)

From (14.4) we obtain

X,,uT,;.	 (14.5)

We will note

TA = TA , ei.	 (14.6)

TKi is called the Piola-Kirchhoff tensor of the first kind.
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From (12.9), (14.4), (14.5) it follows

Tio	 rL, N, ► 11/ ► 	
(14-7)

and thus

(14.8)

The Piola-Kirchhoff tensor of the second kind, T KL is defined	 /3^a

by

TM = x1,L TsL ,	 (14.9)

From (14.8) and (14.9) we derive

fu = J a'1, N x). L TKL ► 	 (14.10)

and thus

"SL =^I ^N,1 ^L.1 ^Ij.	
(14. 11 )

In view of the symmetry of the tensor t ij it follows

J•1. N TN3 = .r,. N 7 'N11	 I'NL = TLN•	
(14.12)

Let us express the equation of motion (13.2), with the help

of the tensions TKi or TKL . We will use the fact that

(1_ J./,N
) 

= u ► 	 (14-13)
l I	 ,l

these relations may be easily verified.
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(14.16)

t

	

	
From (13.2) 9 (14.8) and (14.13) we can derive the following

form of the equations of motion

7.Ki, N + Pofd = Po ij p	( 14.14)

which can be easily derived also from (14.1). Obviously, the

equation (14.14) may also be written in the following way

( TKL .ri, L),K	 Poft = Po ii,	 (14-15)

In the linear theory of deformation the tensions are of the

same order of magnitude and displacement. In this case we followed

the convention of using a single system of coordinates and have

shown that from (2.6), (4.3), (4.5) it follows

In view of (14.7), (14.10), (14.16) it follows that in the
linear theory the tensors tij, TKi' TKL coincide.

T, ) = If).	

(14.17)

15. The Principle of Energy

Let us associate with each dynamic process an internal energy

p e r	 unit mass e(x,t); the internal energy of the portion

from the body at the moment t being defined by

(15.1)
E(Y) =) F r (I"-
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By definition the kinetic energy of a continuous medium which

occupies the domain ip at the moment t is

h (^) = 1 ^
.O:. 

(15.2)

The power of the applied forces of the portion 4' from 4
is defined by

1V(9o) _= S p[ u (I
VS 

i ( „) it Ala.a.
as (15.3)

In continuation we will study the principle of energy in

the case in which two forms of energy are present, mechanical energy

and thermal energy. In the following the thermomechanical behavior

of a continuous medium will be our subject.

A system of heat sources associated with a body in motion is

defined by the following:

(a) For any t there is a function )• (.e, t), .r E M	 given. This
function is called the output of the heat sources per unit mass.

If " is a portion of the body 	 s , then the integral

Q100 ) -- S pr dv,
r

represents the amount of heat transmitted in ^P by radiation per

unit time.

(S) For every t and for any unitary vector n there is given a
function	 h,,q(i., t),	 If Y is an oriented and regulated surface
from m with a unitary normal n, then h(n(x))(x,t) represents the amount of

heat per unit area of the surface Y and within the unit of time in x and at the
moment t, which passes from the portion of the body located in the

3	
part of y toward which n is directed towards the portion from

placed at the ether part. This function is called the heat flux.

The integral

f^lxh) = S h ( „) Ala,
a
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represents the amount of heat that enters by the border of the

portion O',by conduction in a unit of time.

(y) The amount of heat that enters in a unit time into

the portion 1-0 is

	

QW)=S p,•41V J-S h(.) da.	 (15.4)

(d) The function h (n) is continuous on	 It x [o, to)	 and is

of the class C 1 ' 0 on B x (O,t 0 ) and the function r is continuous

on	 h x [0 , to).

Let us associate with each dynamic process and entropy per unit

mass f'O" t); the entropy t of the portion	 of the body at the

moment t being; defined by

	

P 09) = ^ P"' (IV.	 (15.5)

Finally let us introduce a function T(x,t) > 0, called absolute

temperature.

The principle of energy (or the first law of thermodynamics)

states that for every portion Y 	 from a and for every t the

following relation applies

k (.,?) + E (9) = W (.9) + Q (f)•	 (15.6)

In view of (10.7), (15.1)-(15.4), the relation (15.6) takes

the shape of

(15.7)

#
	

#
	

0
pu, f, dv+ pedv = pfiit, d  + J

'AV  

r, ic, da +F P 	
i6tv

pr dv + h(s) da.
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The ordered set	 [u, T, e, I,. ), r„ h,. ), t, rJ,	 in which
(i) u is an admissible motion,

(11) t (n) , f is a system of forces,

(iii) h(n) ,r is a system of heat sources,

(iv) T is a positive function of the class C 2 ' 1 on B x(O,t0)
being continuous together with + and T K on F x [0110),

(v) a is a function of class C 1 on B x (O t t 0 ) and continuous

together with a on ft x [0, to),
(vi) n is a function of class C 1 on B x (O t t 0 ) and continuous

together with r, on B x 10, to),

form a thermodynamic process if the principl6 of the impulse, the

principle of the kinetic moment and the principle of energy are

satisfied.

The conditions of regularity imposed on the functions which

characterize the thermodynamic process are somewhat more restrictive

than those necessary in this chapter.

In view of the definition of the dynamic process it follows

that 9- = [u, T,	 l w, It o,), t, r)	 is a thermodynamic process if
1) N, 1 ("), 0	 is a dynamic process,
2) h ( „ ) , r is a system of heat sources,
3) T, e, n have the properties indicated in (iv)-(vi),

4) JV' satisfies the principle of energy.

Theorem 15.1.	 If [uA„0 1	 is a dynamic process then the
first law of thermodynamics may be written in the following form

5
 pe (III =- 

y 
^l, ) dv+t 	 prdv+^ h („ ) da,	 (15,8)

^	 s	 a^

where dij is the tensor of the velocity of deformation.

Proof. If [it, it.), f l is a dynamic process then according to '..he
theorem 12.2, the relations (12.7) take place. In this case the

second term of the right member of the relation (15.7) may be written
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in the following form

	

hupda =^ Ippvpupda =^ (4^vpl.pdn =
	

(Ill.) v, + lit Vt. i) dv.

dr	 dJ	 O	 ip

In view of this fact the relation (15.7) becomes

Sr  
vp(pit • - Pff --Gp.))dV+( 

P 
pi fill =:i 

r 
Ill Vt. j41V+	

(15.9)

-y-	 pr dv + 
L h

(A) da.

^ 

On the basis of the theorem 13.1, u i , t ij , fi satisfy the

equations (13.2) and therefore (15.9) is reduced to

pidv —
1 

tit v,, p(IV +i Pr (IV +l h(.)da. (15.10)

s	 i	 v	 ai

If we take into account (13.1), relation (15.10) will take

the shape of (15.8),

16. The Heat Flux Vector. The Energy Equation

Theorem 16.1.	 If [u,T,e,t(n),n,h(n),f.rl is a thermodvnamic

process, then for every given unit vector n we have

h („► _ — h(-„).	
(16.1)

The demonstration of this theorem is similar to the

demonstration of theorem 12.1. However this time relation. (15.3)

is applied for the paralleleliped P e , used to prove theorem 12.1.

Theorem 16.2.	 If rj,T,e,t(n),n,h(n),f,r) 	 is a thermodynamic process

then there is 1 0a vector g of the class C'on B X (O,t 0 ) and continuous

on B X	 CO,to) such	 that for every unit vector n the following relation

takes place.
h(,.) = 9p pill

(16.2)

where q	 aru eumponents of vector g.	 The vector g is called the
heat flux vector.

W

i '.....:...^...	 `:. a.	 ........,	 ... _t	 -	 .,	 .	 _ ..	 ae..,:u:....a,...,e.e ......_..... ,........ 	 wta ..	 ...........	 Ry"'_.""	 v:li:b:':awLC.ziJiiYat::iaL....:'
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The theorem is proven the same way as theorem 12.2. 	 In this

case the relation	 (15.8) of the tetrahedron used for proving

theorem 12.2 is applied.	 With respect to the meaning of the components

of vector g let us mention that the heat flux that enters a

tetrahedron through the face o f is -q I*

Theorem 16.3. Let [u,T,e,t( n),n,h(n),f,rl exist with properties

given in (i)--(vi) respectively from Paragraph 15. Then [u,T,e,t(n)n,

h (n) ,f,rl is a thermodynamic process if, and only if

(a) [u,t (n) ,f] is a dynamic process,

(0) there is a heat flux vector g so that h (n) is represented in

the form of (16.2),

(Y) the relation (the energy equation) takes place

PE = to fit) 1- q, , , + pr.	 (16.3)

Proof. If the considered set is a thermodynamic process then

[u,t; n) ,f] is a dynamic process. Similarly, according to theorem

16.2, there is a heat flux vector g such that (16.2) takes place_ 	 /38
Let us show that relation (16.3) is satisfied. In view of (16.2),

the relation (15.8) may be written in the form of

^:O

	 (16.4)

In view of the fact that the'function below the integral sign

is con`inuous and the domain of Y is arbitrary, (16.3) results from

(16.U)

In a reciprocal manner let us assume that (a)--(Y) take place

and let us show that the set	 [u, T, E, , t (A) , r„ h ( n ) , t, r I	 with the

properties (i) -- (vi) of Paragraph 15 is a thermodynamic process.

From the fact that (S) and (Y) occur, (15.8) follows. Taking
t	

into account (a) it follows that the relations (13.1) and (13.2) take

place. Therefore, we can write (15.8) in the form of (15.10) and

from this we can derive (15.9). Afterwards, (15.7) is derived.
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From equation 16.	 it follows that	 sq	 (	 3)	 qi^i i a continuous

function on 9x[O,t O ).	 From the above it Vollows that the heat
flux vector has the following properties

(i) qi is of the class C 1 ' 0 on IN x (O,t0),

(ii) qi and q i i are continuous on 9 x[O,t0).

A vector having the properties (i), (ii) will be called an

admissible heat flux vector.

From the statement made in Paragraph 13 concerning the thermo-

dynamic processes and theorem 16.3,it follows that the specification

of a thermodynamic process is equivalent with the specification of

the ordered magnitude [u,, T, e,t ij ,n,g i ,fi ,:^] whereby

1) [ui ,t ij ,fi ] is a dynamic process,

2) q i are components of an admissible heat flux vector,

3) T,e,n are position and time functions with properties mentioned

in Paragraph 15,

4) r is a continuous function on $ x [O,tO),

5) the local equation of energy	 ('16.3) is satisfied.

Thus the thermodynamic process is an ordered set of Functions

[u i ,T,e,t ij ,n,g i ,f i ,r] with the properties given in 1)--5).

As in Paragraph 14 we will introduce the concept of heat flux

referred to the area of a nondeformed body. We must consider

the function H (H) ,QK so that

h ( .^(hs = q, n, (In = q, d(t, = 11 (N) (IA = ( OK "K (IA = QK(1AK.	
(16.5)

The relations(16.5) are similar to the relations (14.3). We

used here some of the designations fr3m Paragraph 14.

The vector Q of the component Q, K is called the heat flux vector

referred to the area of a nondeformed body.

In view of relations (5.6), it follows from (16.5)

Q'K

(16.6)
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1
From this we derive

1
M — J "".x	 (16.7)

If we keep in mind (14.13) we can write

9i.	 Qs, X,
(16.8)

and thus equation (16.3) will take the form of

J Pei = Jtu du i- Qx, x 4- J pr.	 (16.9)

Using the relations (8.5), (10.3) and (14.10), the

energy equation may be written in the following way

po i = fxr. Bpi . i- I& x + po r•
	 (16.10)

In the linear theory the displacement vector u and the heat

flux vector g are of the form of u . cu', g - cq l where c is a

parameter whose powers equal to or higher than 2 are negligible

and u' and g' are vectors which do not depend on c. In view

of (14.16), it follows from (16.6) that, in the linear theory,

we have

q,=Q'•
(16.11)

17. Statements abou t the Principles Introduced

Green and Rivlin [1437 have shown that the principle of the

conservation of mass, the principle of the impulse and the principle

of k I net i c momentum may be derived from the law of the conservation

of energy using the conditions of invariance and the superpositinn of
a rigid motion. Let us present this fact. If we consider (15.1),

(15.2), applying the formula (7.8), the principle of energy . (15.6) ma ,; be

written in the form of
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im [' (r,6, •r i) P 4 (-1 r, n, + 0 (P 1- Pn^.i)^^in
2

.	 P(j, r, I r) dr {- S (tj n, + h 4. ) ) Ala.	 (17.1)
dip

We n o l o n g e r u se the formula (10.7) because o +e assumes
the principle of conservation of mass.

Let us assume that a considered medium reached a given state

at the moment t by means of a certain motion. We will consider

another motion which is obtained from the given motion by the

superposition of a translation motion with constant speed. The

functions p,e,t i ,f i ,h (n) remain unchanged by the superposition

of this rigid motion. The components of the velocity vector are,

however, changed into v i + ai , where a i are arbitrary constants.

The equation (17.1) is true regardless what the velocity vector is,

and when vi is replaced by vi + a,.

Thus we have

	

r	 1
«,11'i 1 c IF r	 +^ It+ i } a, ► ' -{ el (Pt Pf',.^) ,lu	 (17-2)

	

3 	 J

' S (fdr, I xJ , r) Pdr {-^ [ t , ( Ili I• a,) f h(a)1 da.

From (17.1) and (17.2) we obtain
	

/4o

k

I^' 
P4, —	 — rd p t- pr,.	(IV I- S

Js 
dala, —

 
(17.3)

— 
a

a, a,	 PI'S.,) dr = nr2

lation is true regardless of the constant a i . The integrals

7.3) are independent of a i . If we replace a  by Sai, where

arbitary scalar quantity, it can be easily derived that

47



(17.3) implies the relations

• 
( A +Pr,.I) (IV —0,	 (17.4)

ip I PY, — r') — ro(P + PrI.,)1dr _f ( toda — 0.	 (17.5)
d•

Obviously (17.4) represents the principle of the conservation

of mass. Now in view of (10.4), the relation (17.5) becomes

i
1 41VPu  	 — Pf, dr I L t, (Ia,

r 	 •

which represents the principle of impulse.

In view of (10.4), (12.7), (13.2), relation (17.1) becomes

ip
Pi (IV =	 ( Pr ) tnT'j. j ) dr }-	 (I a.
 or

(17.6)

Let us consider a movement of the medium which differs from

the movement given by the superposition of a ri gid motion with a

constant angular velocity, as the body has the same

at the moment t. The functions P, e, r,-k J ,, h (n) re

by the superposition of the above-mentioned motion.

(17.6) is true also when v i j is replaced by v i'i +

is an antisymmetric constant and arbitrary tensor.

spatial orientation

main unchanged

The relation

Stiff , where 9 i

Thus we have

Pi (IV —i [Pr j - t), (rj.j - t Q, ) )] (Ir ; ` h (. ) (In.
!	 r	 a! (17.7)

48



From (17.6) and (17.7) it follows that

Jnu $n do = 
0,

from which we obtain (13.1). On the basis of theorem 13.1, the

principle o f kinetic	 momentum can be derived.

18. The Principle of Entropy
	 Al

The thermodynamic processes are subject to the action of the

second law of thermodynamics known also under the name of the principle

of entropy. This principle states that for any thermodynamic process

the inequality

(18.1)
:i ` pr, (Ir —	 p1 if 1,	 l#(°) (In ^ 09
III J Of	 ^;P if

	
— iip T

must be satisfied regardless what the portion 	 from	 would be

at any moment t.

The inequality (18.1) is known under the name of the Clausius-

Duhem inequality.

If we consider the relations (10.7) and (16.2), the inequality

(18.1) may be written in the form of

prT _ ( 9T ).4J do > 0.
s

his inequality is equivalent to the inequality

(18.2)
pit

represents the local form of the Clausius-Duhem inequality.
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If we consider (10.3), (16.7) and (16.8), the inequality (18.2)

assumes the form of

Po T ` Po r 
_ 

Qr. a f • -T 	 >Qa I,A 	 11. (18.3)

Often, instead of function a the function of free energy 0 is

introduced, defined by,

+==P --7'-q.	
(18.4)

is introduced.

The equation of energy takes the form of

PO4 1• !'v) I T) - 7'Kl. kst, ! QN.0 f- Pu r.
	

(18.5)

If we replace the expression p 
0 
r + QK K from (18.5) in the

inequality (18.3), we obtain

118.6)

In the following instead of the function e, we will use the

function * introduced by (18.4). In view of the definition of the

thermodynamic process, it can easily be seen that the free energy

has the properties from (v) Paragraph 15. Obviously a thermodynamic

process is described by the ordered set [ui,T9$jti,9n,gi,fi,r].
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Chapter III. THE EQUATIONS OF THERMOELASTICITY 	 /42

19. Constituent Equation:,

Two bodies of the same form and mass may behave differently

when they are subjected to the same strains. In that case, we

say that the two bodies are made of different materials.

The principles studied in Chapter TI are applicable for any

continuous medium regardless of its internal constitution. There-

fore certain relations are needed to define the various classes of

continuous media corresponding their different behavior. These

relations are called constitutive relations or constitutive equations.

In any case, it can easily be seen that the equations derived until

now are not sufficient to characterize the unknowns.

In order to illustrate a certain behavior which .haracterizes

one class of continuous media, a mathematical model was developed.

Thus, various types of ideal continuous media are introduced:

elastic, fluid, viscoelastic media, etc.

A continuous medium is called elastic if

A

(•l, t) = ^[xr,, ►r(•^r t ), T( X, t ), T,.w(X, t), 1'1,

A
TKL(-l', t) = TEL [Xi,a,( X , t ), T( X, t ), T,x(X, t,) tl,

A

tax( X, t) 	 Q.:[^,,er( i , t ), T(X, (), T.N(.l, t ), A I,	 (19 .1)
A

Y(-^", t) = ri[ r 'r,nr(X, t ), T( X, t), T,x(.\', t ), l).

The relations (19.1) are the constitutive equations of the

elastic medium. Let us assume that the functions Ay'T A AnL, Qti, r,
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µ
F

are of the class G1 on the domain	 of the elements of the form of

(x i K,T,T LOX), where	 Ix"SI rt u, '! °•0	 and	 X'- it.

The constitutive equations represent a restriction imposed on

a thermodynamic process. A thermodynamic process it which relations

(19.1) take place is called an admissible thermodynamic process.

The constitutive relations which define a material must follow

certain principles (Noll [3111, Truesdell and Noll [4211, Uringen

[1071, Jaunzemis [2201, Misicu [4^401, Truesdell [4221), For the

equations (10.1), these pr1nelples are reduced to: the principle

of objectivity and the principle of material invariants.

The principle of objectivity states that the cons'tutive equations

must be independent of the observer. In view of what has been said

In Paragraph q , it follows that this principle may also be formulated

in the following manner: the constitutive equations must be the

same in any two objectively equivalent motions.

Let x' and x be two objectively equivalent motions and

F + [x iOK 1, ( - [Qij 1, where the functions Q ij satisfy 0.2).

The restriction imposed by the principle of objectivity on

the constitutive equations consist of the fact that these equations

must satisfy the relations

A

W(
F, , 

T, 7',K, X)	 71, 7 1,1, A 1,

I'nrlF', 7', T,.., X)	 TKIM', T. 7',v, X),
A	 .

4Ph( ', T , 7', .• , A)	 QA(Qk', T ' 7 ',v ► A),

(F', T, 7'.x, .1 ) 	 q t1 F' ► r, 7',v ► x),

(19.2)

for any specific orthogonal matrix Q.
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Pi
Use of the whole orthogonalg^oup to describe the objectivity

could eliminate, in aome cases,essential prLperties of the materials

(Rivlin [3511, Eringen [1071, Careen and Adkins [1411), and therefore

we considered specific orthogonal transformations.

In view of the fact that the functions vp,T KLP QK$ n are

subject to the same type of conditions, we will study only the

function W. The problem is to find out how W should depend on F

so that the relation (19 .2) 1 is satisfied regardless of the specific

orthogonal transformation 01. We will use the following theorem.

Theorem of polar decompostion. Any nonsingular matrix A may

be written in the form

A • RM s NR,

where R is an orthogonal matrix and M and N are symmetric and positively

defined matrice,-. The matrices M, N and R are uniquely determined.

We recommend the work of Fricksen [1061 to prove the theorem.

In view of the fact that matrix F is nonsingular, according to

the above theory, we may write

F	 RU,
(19.3)

where U is a symmetrical and positively defined matrix and R it
an orthogonal matrix.

The relations (19.2) may be satisfied regardless of the

orthogonal matrix Q. We will designate by A* the transposed matrix A.

Let us choose Q s R*. In this case the first relation from (19.2)

E	
is written as

 w	
(19.4)
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QK = OK( F.,rv, T, TL, X ), (19.7)

In view of the fact that R is a specific orthogonal matrix (determined

as F> 4), we have ROF = U. and thus ( 19.4) becomes

(19.5)

From ( 19.3) we obtain
	

/44

PO P= UR*,dU = U2.	
(19.6)

Keeping in mind the definition of matrix F and the relations

(2.16), (2.18), we have

U = [xi r, , 1, = [ CKLI = [214IKL '+' SKL I.

If follows that 0 depends on F by means of the components of the

deformation tensor E MN . The same result applies also for TKL'QM'"'

We will write

= ^(EjjlN, T, T,K, X )f

TKL = TKL(FAIN, T, T.st `),

It can easily be seer that the functions (19.7) satisfy the conditions

(19.2) regardless of the orthogonal matrix Q. There thus follows

Theorem 19.1. The constitutive equations (19.1) satisfy the

principle of objectivity if and only if they can be written in the

form (19.7)

There are continuous media which present certain symmetries as

far as their physical properties are concerned. Thus, for certain

,,:.^	 ..:.s.^ ae.: 	":..:.	 . ^.....	 ^	 ey.'nwe.•rsvr r v... ,., .: ^...:..f .. . .^,y_..,:., ... _:^ _ ,_	 ^.....	 . y;	 `^,	 +, . a ^ a,c	 _. ,. ,.. .^...^ _ .. _...	 ...	 ....	 ^	 .__....	 ^ .s.	 ,..., ...... ._ .. .^	 3:-..
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materials  their physical properties are the same when (X 1 , X20X3)

are changed into (X 1 , X20 -X 3 ). Obviously it is possible to imagine

more general transformations of the material coordinates which do not

modify the physical properties of the material. We will designate

with (S) the subgroup of orthogonal transformations of the

material coordinates which characterize the symmetry properties of a

continuous medium.

The principle of the material invariants is applied in the case

when such symmetry properties exist. This principle may be stated in

the following manner: the constitutive equations of a material must

be invariant with respect to the group of transformations {S) which

characterize the symmetry properties of the material.

According to this principle the constitutive equations must be

Invariant at any transformation of the form of

(19.8)

X' K . SKLXI's

SMLSMK	 SKMSLM 
t 

6KL'

from {S).

If the group {S) coincides with the group of specific orthogonal

transformations, the material is called hemitropic.

If {S )coincides with a whole group of orthogonal transformations,

then the material under consideration is calle isotropic. Media which

are not isotropic are called anisotropic.

If the functionals (19.1) do not depend explicitly on X, the 	 /45

corresponding medium is caller: homogeneous; in the contrary case it

is called inhomogeneous.

Sometimes the internal constitution of the material or the method

of treatment restricts the class of deformation to which the material

In question may be subjected. Thus, incompressible media represent an

example of materials which cannot be arbitrarily deformed. As is

ne

A

55



well known, a body is incompressible if, during any kind of deformation,

its density remains unchanged; p s pO (X). The possilbe deformations

of these media are those which r::spect the conditions of incompressibility.

In view of (4.5) cnd (10.3) it follows that incompressible materials

may be characterized by the condition

130 7) = I On. I =1 2Ext,+ant, I - 1.

(19.9)

Thus, incompressibility implies a connection between the

components of the deformation tensor.

It is possible to imagine continuous media which have been

subjected to certain restrictions by the fabrication process, limiting

the class of the possible deformations. Thus, a body which is re-

inforced by a system of fine and inextensible wires, parallel with a

certain direction, will be considered inextensible In that direction.

These typeB of restriction imposed on the deformation tensor are

called connections.

In the following, except when stated otherwise (when we will

consider the condition (19.9)), we will assume that we do not have

connections. They have been studied in various works: Green and

Adkins [141], Green, Naghdi and Trapp [145],Trapp [4191, Gurtin and

Guidugli [164], etc.

20. The Consequences of the Laws of Thermodynamics

Theorem 20.1. An admissible thermodynamic process satisfies

the inequality (18.6) if and only if

(i) the functions W, T KL , n are independent of the materill

gradient of temperature

= Yl h%^rx, T, X), Tyr.	 T, 1 ), 1 = X1( E.11N, T , X),	 ( 20.1)
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(it) the functions tKL 
and n are determined by the function 0 by

1. ( 0^ 1- a^ ) ,	
(20.2)

(20.3)

(iii) the functions	 QK satisfy the inequality

	

F,K T,K > 0.	
(20. 4 )

Proof. In view of (19.7) it follows that an admissible
	

A 6

thermodynamic process is compatible with the inequality (18.6)

if and only if

P0(dH^^, } dH: A/ — l'^i.^
	 .	 po(i1^, ►- n) Z' —

(20.5)

— Po d T, 
N  

7 OV i 7 1 K T.K > 0,

on 9• We assumed that both ELK and EKL enter into ^.

(20.5) indicates the sufficiency of the conditions (i) -- (iii).

In this paragraph we will sometimes use the designations

G = T, KEK : GKEK.

In order to prove that these conditions are necessary we will first

establish

LEMMA 20.1. If	 (F•, T• , Cl*, 1• ) c .9, t• t (0, (o),	 are matrix A.
a scalar quantity T and a vector a exist in a thermodynamic process

so that
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r

F(-1 +, t+ ) = P*, T( .l' + , t+ ) = T+, G(1 +, t+ ) = G+

P(X*, t+) = :t, T(a+, t+) _ -, G(.l' + , t+ ) — e.

Proof. There is an open sphere x c B with the center

in X* and an open interval 	 9 --(0,to)	 which contains t* so

that

det i20̀ + + (t — (o ) A 1 f 0,

T+ + T(t — t+ ) + [G+ + ( t — t+ )a 1(B — R+ ) > 0,

for any	
' t) e x 9',	 where	 R —a s = (a K — YI)EK.	 Let r

and T be defined by IV, x.r	 by

as = [F+i + (t — t+) 
A u. ] ( -V c — -Y2 ),

T = T+ + '(t — (+) + [G+ -}- (t — t+ ) a ) (R —!t+).

It can be easily seen that the corresponding admissible thermodynamic

process has all the required properties.

Let us prove now the necessity o f 	 conditions (i) -- (iii).

If we apply the inequality (20.5) to the process constructed by

lemma 20.1, in X = X*, t = t*, we have

1	 j`^	 8y _ 1	 1'	 a
	J

J	 J	 •
—	 Po 

i^1%K,	 aF:^K — TK ►. DKi. — Po (07'

6`	 '~ PO 

(2^
 a T.). n

H
 f T « 

^Af)'* > 01 (20.6)

where by [ ]* we noted the value of the function from the parentheses /47

in F*,T*,G*,X*. Similarly we use the notation

21) = A T A — 1, n = [ l)K^ ), = [ SKCI, a = nvEv, Cl • = G*EK.
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In view of the fact that in (20.6) Fe,Te,a#K 9X e ,t e ,DKL , T and a  are

arbitrary, (20.1) - (20.4) may be derived from these.

This result is due to thet investigations carried out by

Green and Adkins [141], Trueeiell and Toupin [4201, Coleman and

Noll [63], Coleman and Mizel [65].

Theorem 20 . 2. In an admissible thermodynamic process the

equation of the energy becomes

Po T = QK.K + Por.	 (20.7)

Proof. It was shown that the equation of the energy may be

written in the form of (13.5). In view of theorem 20.1 we obtain

(20.8)

(20.7) follows from (20.8) and (18.5).

Theorem 20.3. If the temperature gradient is annulled, then the

vector of the heat flux is zero, i.e.,

F^K(EUN, 7, (), - ) = 0.	
(20.9)

Proof. In view of (20.4) it follows that the function

fl Er) _ ^KQK(FMN, T, k•., X),

where EMN , T and X are set and f(0) 	 0 is also non-negative. Therefore,

f has a minimum equal to zero in 	 0. Therefore

^f	 r 
L 

0^'
Ox E K 1 -	 .',

() h 	a SK

(20.9) follows from this.
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This result was determined by Pipkin and Rivlin [342] (see

also Coleman and Noll [63], Coleman and Mizel [657). It should be

noted that from the relations

aV	 aY	 ^N%.uN	 1s	 -- -	 ^ 	 — BUN),(^d'r x	 (^^';AIN	 1^ 1 'r,K	 '

'401 AJN
P", N aNK + X1, Namoo,u	 ^^rl, x	 .,

we can deduce
	

/48

A

19r1,K	 ^^	 a^;„x	 a^^x^
	 (20.10)

a

In view of (14.9) and (20.2) it follows that the Piola-

Kirchhoff tensor of the first kind has the form of

A

aV
Kr = Po

drr,x
(20.11)

From (2.6) we have

sl. x = u,. x + six-
	 (20.12)

Therefore

A

Txl = Po	 —
aul, x

(20.13)

If we introduce the notation

Po^ == (20.14)



then it follows from ( 14.9) and ( 20.2) that

TKj = 1 .r,, L W
K
°- -^- e-	1 (a#. , + a,L) 

_ao + ^a"a

2	 1, aP:LB / 2	 ^aiBL aRLX / 	 (20-15)

The function a represents the free energy per unit of initial

volume.

From (20.13) we obtain

a7i
	 (20.16)

We shall write similarly

II,,	
„	 (20.17)

YA( 4̂MN, T, T,L, X) = VA( u t ,M, T, r•N, '^ )•

Obviously, the internal energy has the form

t = E(EMN1 f)•	
(20.18)

The function

T) ^ec•+ ( F.NC, 	 = or ,	 (20.19)

is called specific mass heat. In view of (18.4) and (20.3), we

obtain

	

d"
	

(20.20)
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21. Nonlinear Equations of Thermoelasticity
	

/49

In the theory of thermoelasticity a lagrangian description of

the deformation is used. The problem of the thermoelastic deformation

of the medium under , consideration consists in the determination of

the functions

	

x, — .rj(•V x, 8 ), T — T(Xx, 1 ),	 (21.1)

which amounts to the determination of the components of the displacement

vector u and of the temperature T as functions of X  and t.

From the facts established in the previous paragraphs it follows

that the fundamental equations of the theory of thermoelasticity are

- equations of motion

Txi,x t. Pofi	 poi,	 ( 21.2 )

- equation of energy

Po T, — YL,1, = Por•
(?.1.3)

- the constitutive equations

= Q(^%w/., T, A),	 (21.4)
Txj 81L) ( 

JE6L	 aE'LA

1 aQ

PO T

- geometric equations

2EKL = ^^K./. J - ITI..x + l^.,l.Kl^.1/.Lf 11 j	axfnx.	 (21.5)

62



In the above relations	 ;(Rus, T, X)	 and gx(Ruxt T, TX9 X)

are prescribed functions which are compatible with the principles

formulated in the previous paragrapha,which characterize the thermo-

mechanical properties of the material under consideration. The

functions PO(X),fi(X,t),r(X,t) are given functions which satisfy

the conditions of regularity from Paragraphs 9, 11, and 15.

If we substitute (21.5) in (21.4) and substitute the expressions

obtained in (21.2) and (21.3), we obtain four equations for the

components of the vector u and the function T.

Later on we will present other forms of the fundamental equations.

If we consider the results given in Paragraph 20, the equations

(21.2) -- (21.5) are substituted by

- equations of motion

	

Txd.x t Foft =- Foii„	 (21.6)

—equations of energy

	

Fo 7"^ -- X11..1, _• For,	 (21-7)

- constitutive equations

(21.8)

^ ► u ,,	 ' ' — Fo 67,
A

^1x = Qnl si r. r., T,

Be replacing the relations (21.8) in (21.6) and (21.7), we

obtain four equations for the unknowns u i and T.
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Initial conditions and gonditions at the boundary of the body

under consideration are also added to the fundamental equations

(21.2) -- (21.5) (or (21.6) -- (21.8)). The initial conditions

have the following shape.

u(X, 0) .:- u(S1, u(.1', 0) — t,(.l), VAX , 0) — rs(X ), .\ E f!,	

(21.9)

where a, b, n o are prescribed continuous functions for 11.

The boundary conditions consist of mechanical and thermal

conditions. The mechanical conditions are those known from the

theory of elasticity where t at the boundary , the disr, 'Lacement vector

or the tension vector is prescribed.

The thermal boundary conditions which appear moat often are:

(i) the temperature at the boundary is prescribed, (ii) the heat

flux is prescribed at the boundary, ( iii; the convection condition.

Mixed type mechanical and thermal conditions may also be

considered. Thus, we will consider frequently the mixed problem

characterized by the conditions

n = its 1) , ' !: ► X [0 , lo), Tx Vi = P* lie !:. X [0, to),	 (21.10)

T	 O ► u- 1: 3 ;: (1 ► , lo), I f K -' K 
t_ 1/* 1"" 1:1 X [I ► , lo),

where E s (s - 1,2,3,4) are part of the boundary 88 so that :: ► u^=.-

while u*, P*, 0, H* are prescribed.The components if vector u* are continuous

on E 1 x [O t t o ), the components of vector P* are regular functions on

portions on ,- x [O t t o ) and are continuous with respect to t, 0 is

a continuous function on E 3 x [O t t o ) and H* is a regulated function

on portions on E l x [O t t o ) and continuous with respect to t.

The convection condition assumes the forr. of

(21.11)
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t

	

	
where T  is the temperature of the surrounding medium and h(; 0)

is the heat transfer coefficient. The functions T  and h dre

prescribed.

If the solution of the thermoelasticity problem is determined,

the density p is obtained from (10.3)

In the study oi thermoelasticity problems it is generally

assumed that the reference ox  coincides with the reference OX K*

The components of the displacement vector, the lagrangian deformation

tensor, the Piola-Kirchhoff tensor of the first kind, the rat flux

vector measured per unit area from the nondeformed body, with

respect to the reference under consideration, will be desigrated by

ui (Xj ,t), Eij(Xs,:l, Tii(Xs,t)' Q i (Xs ,t), respectively. In view	 /51

of the fact that only the variables X s and t are used, only partial

derivatives with respect to these variables will appear, and we will

indicate now by f  the derivative of the function f with respect to

Xi . The fundamental equations assume the form of

-equations of motion

TA f + Pof r = Pok,	 (21.12)

- equation of energy

po T -^ — Q,, i = por,	 (21 -13)

- the constitutive equations

1	 05	 05	
(21.14)

T

	 ^P0aT

Qj _ Q,(F., T, T,i, X.),
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- the geometric equations

	

► 1;',, .:_ u^., } ^J J , }- u,, w..,•	 ( 21.151

The constitutive equations written in the form of (21.8)

become

i) e	 1	 it a	 •
To,  -	

rllr,, , ' ri	 Pa (IT , Qr	 /r+rI JJ J. r. T, T.., 1,).	 (21.16)

22. Isotropic Media. Incompresible Media

The continuous isotropic media were defined in Paragraph 19.

A thermoelas,'c medium is isotropic if the functions a and Q 

depend similarly on EMN and T OL , regardless of their orthogonal

transformations (19.8). In view of (20.1), (20.14) it results that

the a is an invariant of the deformation tensor E MN and therefore

jxl !'% ), 13(1:1,
	 (22.1)

It is shown that for isotropic media the functions Q  are expressed

in the form of

	

"	 (22 2)(s+rr .-_ ('^,^rrr. I 'C .. l%xr, 1- s3N•re.^rh"ar.)l.t,

where 'Bi are functions of the variables	 /52

IJ( E); T.x T,n ; TX T.c Exc; TXT.L& .%IEaix; T; 1'V.	 (22.3)

This result was established by Pipkin and Rivlin [3 4 2] for the

case when QK depends polynomially on its variables. Green and Adkins

[141], Koh and Eringen [237] extended the results for hemitropic media,

and Truesdell and Noll [421] to the case when Q  are general functions

of FMN ,T L ,T,X with the regularity properties given in Paragraph 19.
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Often instead of the invariant I I (E), the invariants J  defined

as follows

31 = 100 = Ecc, 3s = 121(E) -- 21,(E) = Ext BKL,	 (22.4)

33 = 1 + 211( 1%) + 41$( E) + $13( E) = 13(C) = I axa + 2Exc I

are considered.

In order to obtain the form of the tension tensor in the case

of isotropic media we will consider the relations

a'l ! — 8x^o 
aJs 

= 2EKC, 
a.13 

= 2-1,01a",	 (22-5)
al:Ki	 JE cj,	 ak KL

^{	 F

x°.

where

(22.6)

In deriving the last relation from (22.5), we kept in mind that

for she algebraic complement A KN of the element C KN, from the determinant

1 3 (C) = J 3 we hP.ve the relations

3

CNN A NL = J3 8KLn A KN = 
8J

OJ

Therefore

CXNCN-) = SKL1

it follows that

C t'^_ 
1 8.I3 ' -- 3 

_2 
a 3 

=2 AL'
J3 ael"j, 5AK1,	 BCK1

1

From (21.4), (22.1), (22.5), we obtain
i
I

TKi	 ,1, 4 su.) a; SKa + 
2 a 1Q

a EKE -1 2J3 -a^7 f'^;i ► 1 .
(22-7)
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Let us consider the case of the incompressible media-. Now

the relation (20.5) takes place only for those deformations which

satisfy the condition (19.9). If we consider (22.5), (22.6), it

follows from (19.9)

OKl ) PX4 = O •	 (22.8)

In this case, (20.5) and (22.8) imply

i 	 aQ ►Tst = p^iO - f---^t	 (22.9)
2 

(2-1—T
 aExr,	 6111,,K

where p is a lagrangian parameter. The relations (22.9) substitute

the relations (20.2) which were established for an anisotropic

medium in the absence of connections.

If the elastic medium under consideration is isotropic and

incompressible, then we have

;i = Q (.7► , J. ► T, X),

and the relations (22.9) become

TKL = TC 11 + 
61'e 

SKt. + 2 
ao 

E'KL-
19.11	 61-12

(22.10)

(22.11)

Here p(X,t) is an unknown function which must t,i determined,

This time equation (19.9) is to be added to the equations considered

until now.

In case of isotropic and incompressible media, the relations

(22.7) are substituted by

(22.12)
TK, = Ot. L + s,t) J SKI.	 2 1942 

EKL -4- POWL ^1
1
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From (14.10), (19 .9) 9 (22.6) and (22.11) it also results

^u = Tau + xf, x X). a ( J axa + 2 a J Ex.) .	 (22.13)

Obviously, in this case 1 3 does not appear among the variables

on which functions wo depend.

23. The Equations of the Linear Theory of Thermoelasticity

In the following we will designate by a the temperature

variation of the medium with respect to the absolute temperature

TO of the reference state.

We have thus

	

7' = 7 10 + 0 .	 (23.1)

The concept of the linear theory of deformation was introduced

in Paragraph 2. The linear theory of thermoelasticity is characterized

	

by the fact that each of the functions 	 ui, e, t ij , qi , n are of the

form of e^ when3by a is a parameter whose powers greater then or equal to

two are neglibible, and mdoes no„ depend on e. As it was agreed, in

this case we will use a single system of coordinates and will designate

with x  the material coordinates. Let us recall that in the linear

theory the relations (2.22), (14.17), (16.11) take place. We are

designating the tension tensor by t ij and the components of the flux

vector by qi.

In the linear theory the free energy developed according to 	 /54

e ij and a is also considered (see also Paragraph 53) up to the

second order terms, and it is assumed that

	

! ,	 I aO2
	

(23.2)
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where 
c 0' c l' c ij' C

ijkl' Sij are characteristic coefficients of the

medium under consideration having the rroperties

In view of the fact that in the linear theory the tension

tensor of Cauchy and the Piola-Kirchhoff tension tensors coincide,

we have, according to (20.2) and (20.14)

	

a e,,	 u e,, 1

C1 77	 2

As a general rule, the following assumptions are made in the

linear theory of thermoelasticity:

(a) when 
c
ii = 0 and 0 = 0 we have t ij = 0,

(S) the absolute temperature T O is constant.

Without restricting the general application, we will assume

that when e ij = 0 and e = 0 we have v = 0 and n = 0. The state of

the medium in which we have e ij - 0, e = 0, t ij = 0, a = 0, n = 0,

8 i = 0 is called the natural state. From the above assumptions
a

it follows that c ij = c 0 = C  = 0 so that the free energy takes the

form

1
Q =	 Cl,tleorks — ^^,_^,^ —	 nea •

	

r	 2	 ( 23.4 )

The relations (23.3) become

i„ : Cl, ►.l g .l — P 1, 8 ,	 (23-5)

P0'4 . Pl/¢„ + rt9.
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If we consider	 the theorem 20.3 and (16.11) it follows

(23.6)

From (20.4) and (23.6) we obtain

(23.7)

The quantities kij are components of a tensor called the

thermal conductivity tensor.

In view of (23.1) and (23.5), (21.13) becomes in the linear

theory

Po To y) — 4r. j = Por.	 (23-8)

In conclusion, the equations of the linear theory of thermo-

elasticity are
- equations of motion

t,+., + Po,fj = Pou r,	 (23.9)

- equations of energy

Po Toil — 9i. i = Po ►',	 (23-10)

constitutive equations

t,^ = 'C mea —Pole, (23.11)

Poi = Po l e ,) + a 9,

rh

geometric equations

`'	 — u ^,, +	 (23.12)
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In the above equations p0, Cijkl , Sid, a, ki, characterize

the properties of the medium under consideration. For inhomogeneous

media these quantities are functions of xr . In the case of homogeneous

media they are constant.

The coefficients Cijkl and 0 
i satisfy the symmetry properties

C„ka = rwu = Vp.), Pu = Pid.	 (23-12)

In connection with the thermal conductivity tensor, there is no

reason to consider it symmetrical (Truesdell [4231) as it is used

in general. It is noted however that if this tensor is not symmetrical

then the antisymmetric part does not contribute to the equation of

energy (23.10). With respect to this question let us mention the

works of Lessen [258], Lay and Gurtin [79]. Muller [299] and Green

and Lindsay [146] built a theory of thermoelasticity with a symmetrical

conductivity tensor (see also Boschi and Iesan [361).

If we consider. (20.20) and (23.5), we can conclude that in

this case

C* = -1 Ton,
Po

represents the specific heat of mass corresponding to the state of

deformation in which cij = 0, 6 = 0. We will designate by c the

specific heat per volume

,• . - Puri: _- T"a.

(23.14)

It should be noted that the functions Cjjkl, 
s i,j , kid , p 0 , a	 X56

(or c) depend in general on the reference temperature T O but do not

depend on temperature e. The dependence of 0 will be incompatible

with the linearization process.

If we consider (22.1) and (23.4) it follows that in the linear

theory of isotropic media the function a is expressed as
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(23.15)

where J 1 = E ii , J 2 • E ij e ij , and X. u, S, and a are characteristics
of the material. Similarly we have

q j =1 u,;,	 (23.A)

where k > 0.

In this case we obtain

iy = at„d^^ ! 21AtI) — ;:03ij,	 (23.17)

Po ol	 e,, F a().

The coefficients a and u are called Lamb coefficients. If

u	 0 and 3A + 2u # 0, the relations (23.17) 1 may be written

differently

]	 _	 Mr, 8 9, 	+OCOSI	
(23.18)

to	 21L ^a	 2µ(3), J- 2µ)	
,

where

(K= -- ^
;1), + 21A'	 (23-19)

is called the coefficient of thermal expansion.

Introducing the designations

F1 = E< (3X + 'lµ)	 —	 ),
(23.20)

the equations (23.18) take the form of

v	

V
	

(23.21)
P"

l,^	 , I ►.Su I aQB,^.
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	 The coefficients E and v are known under the name of

Young's modulus and Poisson's coefficient, respectively.

Thus the equations of the linear theory of thermoelasticity 	 //7

for isotropic media are

(23.22)

ht. I + Pof i = Pefitt

Po TA — 44, t = PO O

t t, = at„at, + 2µct, — post),

Port= (%tn+Of

4t = k 0.t,

22 t j _ 111.1 + III t.

These equations were postulated by Duhamel [911 and Neumann

[305]. Providing a basis for them on the basis of thermodynamic
principles was started with the works of Voigt [4321, Lessen and
Duke [2571, Biot [201, and Lessen [260].

For the sake of simplicity, an agreement has been reached in

the linear theory of thermoelasti-, ity, to designate the density

of the medium in the nondeformed state by p. The density of the

medium in the deformed state will be p(1 + e ii ). Similarly we will

use the specific force per initial unit volume, components of which

are

.A, = Pofl,
(23.23)

and the flow of heat sources for initial unit volume

1.0 = P0 1'• 	 (23.24)

Often, in place of f 0 and r0 , we will use the designations fl

and r, respectively, with suitable mentions.
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(24.1)

24. Curvilinear Coordinates

In the study of many problems of the mechanics of continuous

media it is useful to employ curvilinear coordinates. We will derive

here the equations of the theory of thermoelasticity in arbitrary

curvilinear coordinates in the manner presented in the monographs of

Green and Zerna 1139] and Green and Adkins [1411. The results will
be used also in other paragraphs of this work.

Let us assume that both the deformed and the nondeformed

media are referred to the same system of rectangular cartesian

coordinates.

The position vector of a generic point M from B is

where a  are versors of the coordinate axes. Let us assume that at

	

the time t the pcint M reaches in At* calf	
and the position vector

of point M* is

r -= .+'set.
	 (24.2)

The deplacement vector may also be written in the following
	

/58

mannE. .

	

U = ( r, — X,) ato	

(24.3)

The deformation of the medium is described by the functions

x i a x i ( Xr , t). If we introduce a system of arbitrary curvilinear

coordinates 
0  by

-Yj = - j' t( O', 02 , 03),
	 (24.4)
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it follows that the deformation will be described by the relations

f,—Ae,, fit, 
0,, t).	 (24.5)

i

Consequently we have

11 = It(8l , 0 9, 0 3 ), r — r(03 , 0 2, 0 3, t), u _ o(Olr 82, 03, t).
	 (24.6)

'R

Let us introduce the fundamental vectors g i , gi and the metric

tensors gi,, 9 i into the nondeformed body corresponding to the

coordinates 81

(24.7)

00' JO! .

ax, dx,

Similarly we introduce the fundamental vectors G_i , Gi and

the metric tensors G ii , G ij in the de formed body

(24.8

d,,, ox,

The following relations take place

gIrg., _ a, , (11%,, = ai, 9^ = !)"!in 1^' _ (;'"(i,.	 (24.9)

We will designate

g = I g.,I, G'	 (24.10)

s
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If we consider (2.14), (24.7), (24.8) we can write

41.42 " 9,0101d0" dM2 === R„dll'dU^.	 ( 24.11)

In this case we have

41.92 — d S2 := '21YO14 0'41 0' ►
	

(24.12)

where

'Y') `-' all —!ti, (24.13)

is the deformation tensor.

The displacement vector may be expressed in the forms

It = ?( ,fit -- t ► ,!I' _--: / r 'Gi — 1"C'.	 (24 .14 )

If we designate by a comma the derivative with respect to ®J,

we can write

G, = r,, -= 11,, i it ., _= 01 i it,,,	 (24.1 5 )

so that from (24.7), (24.8), (24.13) we can conclude

2Y„	 i lbu.i I 11,01,1 
(24.16)

R
i

We will designate by a vertical line the covariant derivative

with respect to 8 using the metric tensors gi ,j, 9 i and by two

vertical lines the covariant derivative with respect to 	 using

the metric tensors G ib , G' J . We have

a„!I'. ^ ► .,	 1 7 • .	 (24-17)

11•.^ == 1,^•!I' = I^+^lLr 1 ^^,^ =- 1'ur^^^ = 1 i^a^rr
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where Pi, s , Ti,, and r i , a , ri, are Christoffel l e symbols correspond:

to the metric tensors 
gi, 

and (3 i,, respectively. Thus, 
2r ire a grs i

+ %i,r - gins etc.

The relations (24.16) become

-Y.)	 1 1 ,, i- .Ill 
r I fly , ill, I	 - ( T , , j (/,	 -^ U r X 17 , 1 .

If 0 1 coincides with the coordinate X i , then 
yi, 

coincides

with Ei, ,

(24.1!

(10, O f 	1 ( il p, 1. d11,	 d11,A [/ll )

	

(24.19)

Let us consider the mixed tensors

f	 ,i.	 1	 i,	 a	 w^ _.	 i,	 1	 „	 (24.20)
YI = {. Y.l	 (il (,.^ — a ll, YI = (,' Y•l	 ^^ l a l — (1	 ).

r

We will take as direct invariants of the tensor yi the coefficients

of the powers of u from the development of the determinant

2
Yi i (!^ f ► ) a i i = I 

ll 
	 Ilai	

:13 ! ^ 111 s .^	 2: 	}- 13.	
(24.21)

We obtain

., -T rY, = D'",,,,

1 2 = 3 + 4Y: + 2(y' y: — Y:Y:),

/6o

(24.22)

j'.

	

	 Let us consider as the direct invariants of the tensor y*{ the

coefficients of the powers of V from the development of the
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determinant

(t++1)aj- 2y*j'I=Ia'.gj + gaiI =µ3+J,µ'+J,µ +J3. (24.23)

It follows

(24.24)

J3 = 3 — 4y*;+ 2(y*:Y*: — y*;y;).

J3 = 18 j —2Y*i I = I Q''ga I = g .
li

In view of (24.21) and (24.23) we can establish the following

relations between the invariants I  and J r .

J,= 12 , J2= 1, 
f 

J3= 1 .	 (24.25)
13 	 13	 13

From (24.25) we obtain

12 = 13.1 3 = I30°'g.,.
(24.26)

If we take into account (24.22) we can derive the following

form for I2

12 = t (1i — 9"Y"G..a,O).	 (24.27)

I,et us consider a point P fror g1 and the curves of coordinates

which pass through P. Let P i (i = 1,2,3) be points situated on

the curves ® i, respectivelyS so that 1 p z Gid01, Pj z 6 2d 02, Pp3 z G3c103,
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Let us consider the curvilinear tetrahedron having angles

PF11 F 2 P 3 , P 3 P1 , P 1 P 2 . Let n_ be the versor of the normal exterior

with respect to the surface P1 P 2 P 3 . i,et us designate by	 'dS, the

areas of the ® i -constant: surfaces. They can be representedyvectorially

In the following way

(h, = V 	 list.

The area of the surface 1';"21'3 will be designated by l dS. In view of the /61
fact that the surface y, pz p, is vectorially equivalent to !_ list,

we have
u^iR = 3 fi' d.4 ,

If we set

	

	
(24.28)

n

It follows from (24.28)

(24.29)

Proceeding as to Paragraph 12 we obtain

IdB ; t,d9,,
(24.30)

where -t i are tension vectors associated with the surfaces 61=constant

and t = t (n) . From (24.29) and (24.30) it follows

1, = I,u, Vdii ,	 (24.31)

this relation represents Cauchy's formula in curvilinear coordinates.

'raking (24.31) in account we can write

t, vio = t"c, = T;c,,	 (24.32)

where T ij is the contravariant tension tensor and TI is the mixed

tension tensor. The covariant tension tensor is

80
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From (24.31) and (24.32) we obtain

1	
(24-33)

va

in which

Tj	 I	 YO-r')G'.	 (24.34)

The tension vectors t 
i 

may be written also in the form

Sup 
G,	

(24-35)

where	 are versors of the G vectors, and
=j

Sill)	 V^
Vjl 

Til .	 (24-36)(its

The quantities S 
(ij) 

are called physical components of the	 162 1

tension tensor.

If wetake into account the theorem of divergence, we have

1(la= J 1'9??'da=W. T
i. j (I v,	 (24-37)

dy

so that from (13.3) it follows

TI. , I- P V(; f ^- P Vall.
	 (24.38)

The equation (24.38) is the vectorial form of the equations
of motion in curvilinear coordinates.

It follows from the principle of the kinetic momentum

Pp"

(24-39)

If re consider (24.34) and (24.38) the equaticns of motion

81
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may also be written in the following way.

where

T" 6 I RI' • Pa"	 (24.4C)

(24.41)

It should be noted that the tension which acts on the surface

element S i is TidBj dek . This follows easily on the basis of the

fact that dS^ = V661 " (10410 k. Let us introduce the tension vectors
— by

T,(101(I011 ; 101 Vfi0 i10)( i 01.

The vector ti acts on the surface gi = constant from it and

is measured on the unit area of the corresponding surface from the

nondeformed body.

We will write

1° VJ!l" = T, = V9s'IG.	
(24.42)

From (24.22), (24.34) and (24.42) it follows

Y^/ = Ttj V I ll.
	 (24.43)

If	 is the oriented surface from B, with a normal unit exterior

N_, which by deformation becomes the surface Y from M with a normal

unit	 exterior n, then the tension vector t o which a r ts on

end is measured on the unit surface of S, is given by

1" •	 w,Y^^^/,	 N,v^1^1 ^ /•MIT I 	 (24.44)
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where

N = N d9I = N'g,,

Obviously we have

The relations (24.34) and (2h.42) may also be written in the
following form

Tj = VG n' 19 j _ rO a1191,

—I

(24.45)

(24.46)

(24.47)

where

7t	 It' 
•,	 (24.48)

The quantities nij and a ij are not symmetrical. From (24.34) and
(24.42) we obtain

W"III = -'j1: j , o"g ) -- x"(;"	 (24.49)

and therefore the following relations take place

7 0 ►9,Gi _ 7t'•9.(;`, 
af.grGJ = ai.g,G, 	 (24-50)

From (24.38), (24.41) and (24.47) another form of the equations of
motion is derived

(24.51)

In the same way as in the derivation of relation (24.31), we
obtain from (15.8)

h(A) = h,n, V66
	

(24.52)
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6iwhere -h	 is the flux through the surface	 constant.i
Let us designate

ai
q	 h 

V^^^ , (24 

.53)

The heat flux vector is

and thus
3

(24.55)

I

i
Repeating the procedure used in the study of the tension,

the heat flux H (N) per unit area of the ncndeformed body is

k
C

introduced and we have

i

Vihlyg

z

(24.56)

where the meaning of the new magnitudes is obvious. 	 The heat
3

flux vector per unit surface of &e nondefor.med body, Q, is

Q _, 4'4 1 ' = Q'!I', (24-57)

where

/64

' Q'= lip rhW (24.58)

Therefore,	 hot V-gg" = h,V^Ci(7"	 yields

Q' (24.59)

Similarly we derive

Q` Ir = V199'^^^•
(24.60)
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The surface integrals from (15.7) are thus transformed

(24.61)

i
tvda = Tryrrr^Ia a 1

Va	
S ^G 

(Tr. ry +Trv,t ) dv,
u!	 O:!	 y

S
1+4. ► da, = iq'11 1 da = qrII, (Iv.

Op	py

If we consider the relaticns (24.38), (24.39), (24.61) and also

the fact that

Yr^ = 1 Rr^ = 1 (G,G^ + GAR O = 1 ^G r v,i + Gv,r),

we obtain from (15.7) the following form of the energy equation

P e = T' Iljj ; gr j1r -4 pr.
	 (24.62)

The relation (24.62) may be written, also, in the following way

Po e == sljY'j + Q r ir + Poi',	 (24.63)

on the basis of relation-s (24.43), (24.60).

The Clausius-Duhem 'nequality (18.3) is written as

Po r^''Q _' por' — !,l' ^r + -71 !j' 7' ^, > 0.	 ( 2 4.64)     

.prom (18.4), (24.63) and (24.64) we obtain

8	 rTr>0.
— Ps('G'r -+- 0 -}- "Yu + 

T 
^	 (24.65)

If we consider (20.14), the constitutive equations take the

followin; 7orm

sip _ 1 	 d(-	 1 ae	 (24.66)( . o -f;_ + 	 1 j	 _
 ^)yrl 	 Po a 7'

W

85



In view of relations (24.43) and (24.48) it follows that
	 /65

1	 ae	 a-	 (24.67)

	

TI)t = ---- r	 +#-	 r

	

2 V13 t aYu	 aYn

aQ
all	

01111i
	 Till Vr,.

The energy equation (21.3) is written

	

Po T1 --• Q, 14 = per.	 (24.68)

In the case of homogeneous and isotropic media we have

	

° = ;('1' I:, 13, T),	 (24.69)

where I  are given by (24.22).

From (24.13), (24.10), (24.22) and (24.27) it follows that

(24.70)
all	 2 i^ ar2 -^ 'w"If' ' gi'g"	 a) G..r 

81
^ = 21 30"•9'

^^Yu 	
Y41

In view of relations (24.67), (24.69) and (24.70) we obtain

10 _ Q)glj + 4' ]JIJ + pa'j,	
(24.71)

where

(24.72)
2 a	 2 do	 2 j as

	

^h 
= V 1: -

al	 ^ _ 
-V 1 of , 

p = V ^ at .,'
3-	 3	 2

11 0 = 1,g" — 991'6,. = 1 evinef•^^..^n.e

9
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t
In the cease of incompressible media, p is an unknown function.

The constitutive relations for the heat flux component (22.2)

become

(24.73)

l'Rl ai + '^sYi A-	 T11,

where
	 ,

OW

and <<, are functions of the invariants I r , I 4 - Tj iTj i , 1 5 - TjiTjiyi,

I 6 . TI iT{ j ysy i, T. Similarly the following representation may be

established [141].

(1'	 l'e'i hi f '^eYi l '^3Y^+Yi 1 7Y',
	 (24-74)

where
	

/66

7'il' =: (i t, 	 =; Wr ae,

and C'
	

are functions of the invariant I„ T,!j T11 1 9 Tjj ' TII,Yi, TII'TIhY.'Yi, T.

In the linear theory, the constitutive equations in curved

coordinates are

Yr, — 08, poi = buY,j + a 9, 4' = Ru e,^•	 (24-75)

In the case of isotropic media, these equations become
I

21LY" — P ©9", po •, = aY: + e-0, It = k9'' 0j.
	 (24 .76)
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(24-77)

It is obvious that in (24.75) and (24.76) 
yi, 

is expressed as

follows with the help of the components of the displacement vector

i

and Y, _ 9 + 'Y•,+ Y+' = 9jOY.°.

In view of the fact that in the linear theory the tensors

Tij, 
nij' a

iJ , s ij coincide, the equations of motion may be written

in the form

-jil) + 90fS = Poa► .
	 (24-78)

In view of the fact that In this case Q  = q i , the equation

of energy tecomes

poToij — R' I+ = por•
	 (24.79)

In general, the physical components of the vectors and tensors

which appear in the above equations are used to study concrete

problems.

For illustration, let us consider the equations of the linear

theory of thermoelasticity for homogeneous and isotropic media in

cylindrical coordinates. Let the cylindrical coordinates (r,m, z)

exist s u c h	 t h a t	 X1= r cosh , X2 = rsin^, X3 = z. In order

to avoid any confusion, let us agree that in this case the flow

rate of the heat sources per unit mass is indicated by r'. From

(24.7), (24.9) 9 (24.17) it follows that

911 -= 933 = 1 + 922 = r2 + 9" = 933 = 1 + 922 = -1	 +-, 91,=9')= OY96
r-

(24.80)„
g = r-, !1' _ 1119 11 3 = 9,	

1
^" _ 	 Sl:, i'^2s = 1 ^2is = r+ f221

1 ^_ - - rf rl: = 1121 =
r
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while the other symbols of Christoffel are zero. Let us designate

	

C, u 01, e, = 
1

-11:, to . a 93,	 (24.81)
r

U = 11tU^ =  	 'ire, + 1lse® -F 11,r..

In (24.81), ur , u0 , uz are the physical components of the displacement //

vector. If follows that	 11

9!l = 9!, a 9l,, U2 == 1 Ug _ i qdgf U, 3 a U3a Us.	 ( 24.82)I

 r

The contravariant component of the acceleration vector may

also be written

	

at = ., a3 = 1 o, 0	 dl..
(24.83)

Taking into account (24.17), (24.77) and (24.80) we conclude

a«, a ►!, a11x 011,

Y11 = ()I'" = -a;• , Y:: _ - J — + r1y = r a -I- ril.,

0113 all, t a ail_ 2
Y33 — , Y1. -

al.
— r

1	 011,
Y13 = ;r +

0 1!a_ ^

Oz Or

(24.84)

The physicsl components of the tensor y ij ao expressed as

e„ '. 1Yu, = aa =	 Y:z, Fn = Y331	 (2 4.8 5 )
r-

_	 1	 ^

Y339 Eh -= Y13f
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and, therefore, we obtain the following relations between the

physical components of the deformation tensor and the physical

components ;;f the displacement vector

al,,_	 r a„	 1	 a"'
j. 1jr

` 
9	 u.-

1( 1 di,, 1 00 _ 1	 t r au^	 1 (7u. }
:.'	 r tl-r	 dr	 r	 d.	 r u^

1
 ( Ja' 

1 0u, 1 ,
dx	 or )

If we consider (24.80) it follows that the expressions
	 L68

+ NOT" + ! it Tt.'

become

0 ru a 712 aTls 1	 T„ — r?.22
Or 8q) N

n
F2	

aT	 + 2aT ! a3+ a^
_}-	 -12,

or 004? " r

aTl^ T-2 aT 33 + 1 -.13.E.3	 +

Or a R
+

az r

The physical components of the tension tensor •r ij are

	

Qn — at 1 Q'• s r2.:22, OCR= T33	̂
(24-87)

a,^ = rT12, al' = rT23, are = .13^

and '• hus we are able to write

a. + r 0?

E2

	
ca"—am^^.

_ 1 aa, 

+ 

1 as o	 Lao,_	 2	 1	 (24.88)
E —

r( Or	 r	 r

dr- +	 +
r aao'. 

+ vd^tE 3 
a	 r O'S.
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a

If we indicate by fr, 
f
	 fz the physical components of the

mass forces, then

1
fl — to JO

y
 p J., fol = f.,

and from (24.78), (24.83), (24.88) the following form of the equations

of motion follows

	

a Q„	 1 a oo	 ae„	 1	 azur
a► + r ^a + + —Nz + r (°" — 0") + Pof• — Po ._0`2

(24.89)

	

a o„	 a^ft Laos	 arty
Or + 

1
r a	 dz + r Qro + Pofi = Po all

	

ac„	 1 daps I de„ 4 
1 16'. + Pof. — Pe 02U' .

	

dr	 r J9	 dz	 r	 dl"

In view of (24.76), (24.77), (24 .80) and (24.82) the following 169

relations result

q=q'9j=k0j9 I = k grad d = k(^0 er + 1 00-c,+ 0-s,),	 (24.90)

	

Yi = u'!, = div n = 
^D
	 r Or 

(ru,) -}- 
r a' f-	 ,Oz

q'ii = div q = k div grad O:k00=k 
r
1 49
 ar ( r ar0 ) + r a'0 + az

which permit to write immediately the other equations of the linear

theory of thermoelasticity of homogeneous and isotropic media.

Let--s consider now the spherical coordinates (R,©,^) in such

a way that Xt s R sin	 cos	 X2	 R sin d sin	 X3	 R cos s.

In this case we obtain the following relations between the

di:formations and displacements

i
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amcan '^ »A 
f 9#9 " _l _^ + 1 uef

OR	 R J? R

1	 au4,1	 etg Ip
R Kin 4 any 

+R a„ ..^. 	
R 

1199

1	 1 au '6 + 	1	 auo 
t

2 ( R a, _ R 
u^ 

^ RWn op a^ 1'	 (24.91)
1	 1 _ duo _ 1	 811,

`^^	 2 C R Kin 4	 u* + a  , f

1 1 au„	 1	 out
cep	

F ke — 
-
R 

fl ip }- 
OR .

The meaning of the designations used is obvious. The equations of

motion may be written in the form

a c^R	1	 a cK ,y

	

+
I a vj^* +	 (24.92)

ax ' R Kin	 a^	 p Op

1	
3

}- R (2 exx - - Q.. — 20 + ang ct9 (P) + Peril — Po Sts f' 

a e„^	 1	 a 0	 1 a Q.. 
+JR + R Kin (p a+ + R a? 

I .	 a°u .

	

+ (l^ 
[3ano

	 Qy^,) (' tg 4PJ + Porgy a Po 
±,lU 

f

	

a e^, y ._t._._ eyy	 1 a any 
+ 1 (3 ajj, - - 2 *,.4 ctg (p ) 4- Poh, — Po 

a$u

OR	 R rain 1p ifs	 R	 at



y

r	Similarly, we have	 /70

ry=k	 4=kI,ORell+ 
R 

ali	
R ink a^ 	 (24.93)

div n = ^—	 (R21(n) +	 1	 a (Kin ip u Id +	 1	 auyr

	

m OR	 R Kin (P clip	 R Kin p d^

DO = div grad 0 = Ra OR
 (Ri-LO-)  +

i	 a	 ae	 i	 _are
(sing+7 a l 	 a? ' R2 yin= pads

t
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Chapter IV LINFAR THEORY OF DYNAMIC THERMOELASTICITY

25. Fundament&] equations. Statement of the Problems

This chapter is devoted to the dynamic theory of linear

thermoelasticity. The fundamental equations of this theory are

- the equations of motion

(25.1)

- the equations of energy

P To •^ — 9#.f = ►► 	
(25.2)

- the constitutive equations

to = Cute Eu — o„ 0.

P') ° Pip ef)+a0.	 (25.3)

9j=ku0.J ►

- the geometric equations

2E11 = 11JJ +- lim-	 (24.4)

In the above relations in order to differentiate them from

the notation from Paragraph 23, f  represents the components of the

specific volume forces, p is the density of the medium in the non-

deformed state and r represents the flow rate of the heat sources

per unit initial volume.

The coefficients Cijkl and 0 i have the following symmetry
properties

(25.5)

CijAl = CAlij = ' ri^iAl^ a^) = t'J/•

j
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Similarly the following relation takes place

k,, 0.0 0.1>0.	 (25.6)

To the equations (25.1) -- (25.4) the initial conditions

Udx, o) = a,(x), ii&, 0) — Qx), v1(x, 0) — v1o(x), x e D
(25.7)

are added with the boundary conditions which, in case of a mixed	 /72
problem, are

at on 2: , x [o, 10, t, a l, ) i,, = 1, on L, x [o, to), (25-8)

O = (i on 2:3 x [0, 10l, q a 4, t,, = 71 on L4 x (o, lo).

In the preceding relation, a i , b it not ui , t i , e, q are Prescribed
functions, and Er (r - 1, 2, 3, 4) are parts of 8B. with
2. 1 U L+ 3 == Z3 UZ,= aR, Eln2:2=E3nZ.=0.

It is assumed that the functions 	 pu, k,i, p, a,

which characterize the properties of the medium are given. We will

assume that 
Cijkl' Sii' kid , are of the C 1 on B class and that they

satisfy the relations (25.5), (25.6), and p and a are continuous

on E. p being strictly positive.

The preceding considerations refer to the thermoelastic properties

of the medium. As far as the other prescribed functions (loads) are

ncerned we will assume that

(a) f  and r are continuous on B x [ O t t 0),

(8) ai , b it no are continuous on B,

(y) di are continuous on E  x [O,t0),

(6) t i are regulated on sections on E 2 x [O,t 0 ) and are

ntinuous with respect to t,

(e) 0 is continuous on E 3 x [O,t0),

(0 q is regulated on sections on E 4 x [O,t 0 ) and is continuous
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with respect to t.

The expression admissible process is intended to mean an

ordered set of functions 11 = {el„ t.., 4s, 0, vi, 9,} with the

following properties (Carlson [461)

(1) u  are of the class of C 2 on B x[O,t0),

(ii) u l , u i , ui , 'i'j, ui,i are continuous on B x [O t t 0)9

(iii) a ij are components of a symmetric continuous tensor on

B x [O t t 0),

(iv) tij 
are components of a symmetric tensor of the class C 1 ' 0 on

B x(Ost0)I

(v) tij 
and 

tij,j 
are continuous on B x[O,t0),

(vi) 0 is of the class C 2 ' 1 on B x (O t t O),

(vii) 0, 0 it 6 are continuous on R x [0 ,,t 0),

(viii) n is of the class C O ' 1 on B x (O t t 0).,

(ix) n, t are continuous on F x [O,t0),

(x) qi are of the class C 1 ' 0 on B x(O,t0),

(xi) q  and q i
 i are continuous on Fi x[O,t0).

If we define the addition of the admissible processes and

the multiplication of a process with a scalar magnitude respectively

by

II -}	 il' _' {^^^ -{- u^, ..., q . {• qe}, all -- {)a^,, ..., ^q,'r,

then the set of the admissible processes is a linear space.

We call the solution of a mixed problem an admissible process

which satisfies the equations (25.1) -- (25.4) and conditions (25.7)

and (25.8).

We call an admissible field of displacement temperature the

ordered set of functions U = (u l , u 2 , u 39 0) in which u  satisfy

the conditions (i) and (ii), and 0 satisfies conditions (vi) 	 /73

and (vii). With the prQvious definitions the set of the admissible

displacement temperature field is a linear space.

MPPW

1
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Obviously, the boundary conditions (25.8) suggest also other

types of problems depending whetter one or several of the parts of

E  are empty. Similarly, other kinds of boundary conditions may be

considered, such as those corresponding to certain special problems

(see, for example. Nowacki [315], Boley and Weiner [231).

26. Characterization of a Mixed Problem with the Help of

Displacement and Temperature

The problem of thermoelastic deformation of a continuous medium

involves the determination of the components of the displacement

vector and of temperature. The equations (25.1) -- (25.4) and the

conditions (25.7), (25.8) may be formulated with the help of the

unknowns u i (x,t) and e(x,t).

Thus, in view of relations (25.4), (25.5) we can write the

constitutive equations in the following form

G) == C'gAi 1hr ' l — Pi, fl,	 ( 26.1)

P v7 = Pli II Ij + 40+

Substituting the previous expressions of functions t ij , n and

q  in the equations (25.1), (25.2) we obtain the equations

	

( CI)II 141" Ai — (Pil 0) ' 1 - P 'f$ = — ,fir
	

(26.2)

	( ku 0,1).t — To Pj) hij — c0 = — r,	
(26.3%

where in the place of T O a we set the specific heat c, on the

basis of relation (23.14).

6

97



The initial conditions may be written in the following form

tt,(x, 0) = a„ '#,(x, 0) — 6„ O(x, 0) = Oo, X a Fi,	 (26.4)

where

a0o -: p ro — pit atj.

In view of (26.1), the boundary conditions (25.8) become

ti t = ri j on i,', x [o , to), ( Cuu tie,, — po 0 ) it) — it on Erx [R, tor	 (26-5)

0 .= F, on 1, x [0, to), k„ 0, 1 it, = y on E, x [0 , to)•

Thus, the mixed problem of thermoe last icity is characterized with

the help of the displacement and	 temperature.

When the equations of thermoelasticity are expressed with the /74

help of the components u  of the displacement vector and tfie

temperature change 0, we shall call a solution of the mixed problem

an admissible f:!eld of temperature displacement which satisfies

the equations (26.2), (26.5) and the conditions (26.4), (26.5).

The connection between this definition and that given in

Paragraph 25 is obvious.

In the case of homogeneous media, the equat-4 ons (26.2), (26.'3)

are written as

t'

Cum tt w,u — Pq O.i -- pii, __ — f„
(26.6)

ku	 ,^O ,,i — TO Poo i,, — r0 _, ^ r.

If the continuous medium under consideration is homogeneous

id isotropic, it takes the following form in view of (23.22)



equations (26.2), (26.3)

µ91 t.1/ + ( X + µ) 91 r. F1 — P 0, i —. PUI , — is	 (26-7)

k0,i, — To Ott, — Qty _ — r.

Tn the study of certain materials it was noted that the second

term of equation '26.3) may be neglected, as the results thus

obtained agree with the corresponding experiment. In this case

the equation (26.3) is written as
(26.8)

and the problem is considerably simp l ified. Tndeed ; the equation

(26.6), the initial condition for 6 and the boundary conditions

corresponding to the function 6 represent a problem which can be

separately studied. After determining the function e, the problem

is reduced to the study of the equations (2.6.2) with the initial

conditions and with the boundary conditions corresponding to the

u  functions. This problem is a problem of elasticity in which

the components of the specific volume force are

f• — (P., 0).;,

and the tension prescribed on the surface E 2 is the components

i^+P',011,

The theory of thermoelasticity in which,instead of equation

6.3),the equation (26.6) is considered, is called the uncoupled

eory of thermoelasticity. The designation of coupled thermoelasticity

fers to the general theory described by equations (26.2), (26.3),

uations which cannot be studied separately.

The equations of the coupled thermoelasticity describe the

teraction between the thermal field and deformation. In the uncoupled

eory the function a is zero if r,6 01 e and q are zero. In the case of
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the coupled thermoelasticity this does not occur: there is a

temperature variation due to mechanical deformation.	 This

temperature variation causes in turn a deformation of the medium.

The coupling effect will be shown with the help of examples

given in Paragraphs 34, 35, and 37.

In certain phenomena the inertial terms are negligible and 	 /75

the equation (25.1) is rep?aced by

1,1.j ; .f• :^ il. 	
(26.9)

In this case we obtain the quasistatistical theory of

the r.noelasticity. Thus the fundamental equations of this theory

are (26.4),(25.2) -- (25.4). In the following we will consider

neither the uncoupled nor the quasistatistical theory. They have

been studied in various treatises (for example by Parkus 13341,

Roley and Weiner [231, Nowacki [3151).

27. Another Formulation of the Problem

In this riaragraph we will present another formulation of the

problem of coupled thermoelasticity, in which the initial conditions

are incorporated in the fundamental equations. The importance of

this formulation wtll become obvious in the following paragraphs.

It was given by Iesan(,1861 and it represents the generalization of

a result from the theory of elastodynamics established by Ignaczak

[2071•

Let u, v be definite functions of E x [O,t 0 ), which are

continuous wits re8pect to time on [O,t 0 ), for any

We will designate by u * v the product of convolution of

functions u, and v

0
	

(27.1)
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'.n the following we will use the fo-1,lowing properties of tt:e

product of convolution

tt•r =v . u, it•(n•IV) = ( it •r) • tV	 u • u•IV,	
(27.2)

u•(o	 W)==u•v +u•IV,

U. r= 0 , implies u a 0 or v	 0

Theorem 27.1. The functions u  t ij , n satisfy the equations

(25.1) 9 X25.2) and the initial conditions (25.7) if and only if

(27.3)
g • ttt 1 + F, = pity,

1

n

where

,tit) MM t, t(t ► ci r,

I
P, = g • fi 4 P(tb, .{- aj), 1V =_ -7,u 	 P1o•i • r; ,.^.. 

(27.4)

(27.5)

(27.6)

/76Proof. First of all let us observe the fact that

r

g • tl, _ (t — T) tl,(r, T) (IT _ 1t,( )', t) — tit, (,r, 0) — u,(x, 0),
0

'
I • 

_ i 
r(x, T) d T = r^(x, t) — r^(x, 0).

0

(27.7)

If the functions u i , t ij , n satisfy the equations (25.1),

(25.2) and the conditions (25.7), we can write
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-1

g " Un:	 ft) = Pq • tie = p( tb — fbr — al),

®1 • q

4,4 i- To * r : p(r, -- v19) ►

from which result the equations (27.3), (27.4) in which the notations

of (27.6) were kept in mind.

Inversely, if u i , t ij , n satisfy the equations (27.3) and

(27.4) then, taking into account (27.6) ; (27.7), we can write

q • ^r^. + g • fi + p0b, + ar) = P(g • fir -}-tiro (xr 0) + 91 r(xr 0)]r

1 -1 * q,,r +- 1 l * r -f P v)o = P( I • o+ rl(;cr, 0)].
To	 To

(27.8)

(27.9)

If in these relations we make t e 0, we obtain

ar = Tl r( x ► 0)r 7js = V7( xr 0)•

Derivin& with respect to time, the relation (27.8) and then making

t - 0, we conclude

,irr(xr 0) = be.

On the basis of these results, the relations (27.8) and (27.9)

are reduced to

g * ( iu,s -1- fr — P"i) — 0;

To l * ( gr,r + r— plot)=0.
0
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In view of the last of the properties of (27.2) of the product

of convolution, it results that the functions u i , t i,, end q satisfy

the equations (25.1)(25.2).

An irmeaiate consequence of the previous theorem is

Theorem 27.2. An admissible process P is the solution of the

mixed problem if and only if it satisfies the equations (27.3), (27.4),

(25.3), (25 .4) and the boundary condd ,.;ions (25.8).

If we substitute the components of the displacement vector
	

/77

from (27.3) in the compatibility equations (3.21) and in equation

(26.3) we can obtain an expression of the theories of the equations

of thermoelasticity with the help of "he components of the tension

tensor and of the temperature variation (Iesan [1861).

28. The Theorem ^` Uniqueness

We will present the theorem of uniqueness of the solution of

the problem of	 coupled	 thermoelasticity. In the case of isotropic

media, this theorem was established by Weiner [Wl . The theorem

was extended to the case of anisotropic media by Icnescu-Cazimir

[217]., [218].

Theorem 28.1, If 
Cijkl 

is a positive semidefined tensor and

a is a strictly positive Function, then the mixed problem has at

least one solution.

Proof. Let us recall that we assumed already the fact that

p and T O are strictly positive and k ij is a positive semidefined

tensor (see (25.6)). Obviously, if a is strictly positive, then

the specific heat c is strictly positive and reciprocal.

Keeping in mind (25.3),we have

to Eu 	 061111 e r! eU — p oppu Kit

p0,i,=p li i ll ©+ab6,

i
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whence it results that

to iu -+- P0r1 — Cons cu i t , -+- a0 b =, I at (oil&, top s.^ + ae!).	
(28.1)

On the other hand in view of (25.2) and (25.4) we can write

	

If) au + p0i	 to vs.I,+ T Olr + q1.4)
0 	

^
	 (28.2)

(tit vs).i — t11.1 vs +	 ( 094).1 — To gs 0.j -+-	 or0,

0

where vi = ui.

Using (28.2),the formula of divergence and equations (25.1),

we obtain

ltu esl + P O ) slv = ` (to vo + —1 g01(lss F
u	 uu`	 To	

(28-3)

{ Ju lj, v, 
+ ^T r01 (Io — 

iB Pi'j v, (IV — T J 
gi 0 ,i dv.

o /o

If we note

U(t) = -^ ^
11

( P il o ids + Curs 6u E ts -+- 01 2 ) dv,	
(28.4)

It follows from (28.1) -- (28.3), (25.6)

	

U— ^ ( t^^'s f 1	 da—gO) S (jo r	 1
vu	 To 1	 u l` ' ^- ^— rOl dv	

(28.5)
=

o I

1
— — — - q, 0, ; t11+ G 0.

To u

/78

Le.- us assume that the problem under consideration would have
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two solutions. Keeping in mind the linearity of the problem, the

difference I1 • —(w;, c,•„ t„, 0*, 11•9 qt)	 of the two
solutions is the solution of the mixed problem,in which

J,	 r 0, a t 	b, o, ro- 0 (then 0.—o),

01^=b^n.

For It* the relation (28.5) implies

0" G 01 t E [01 to),	 (28-7)

where U * is the function U corresponding to the process of R*.

It follows from ( 28.7) that U * is decreasing

U* (t)C U* (o), t e [0, to ).	 (28.8)

Keeping in mind ( 28.4) and the initial conditions, it follows

that

U* (0) = 0.
(28.9)

from ( 28.8) and (28.9)Because of	 p> 0, a> 0 9 Cmrt 6,l 8ki >0,

we obtain

U• (t) = 0, t e (0, to).

In view of (28 . 4) and ( 28.10) it follows

di a 0 and 0 * = 0 on '5 x [O,tO).

(28.10)
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29. The Theorem of Reciprocity

In the dynamic theory of linear elasticity, the theorem of

106

In view of the fact that the initial momentum u* annuls itself,

we have

ui	 09 O f . 0 on	 x [O,t0 )9
and thus, H*	 {0,0,0, ... ,0}. This implies,thus, the uniqueness

of the solution of the problem under consideration.

Theorams of uniqueness in which the assumption that Cijkl is

a positive semi-defined tensor is renounced have been advanced by

Brun [41 1 , Knops end Payne [235], Levine [261]. In reference [235]

the continuous dependence of the solution of the intial data is

establish, ?d.

The problem of uniqueness was studied (see Paragraph 32) also /79
by Dafermos [73], who established also the theorems of existence

and of asymptotic stability.

The theorem presented here of uniqueness may also be extended

to other types of boundary conditions. Thus,it can easily be seen

that it remains true for boundary conditio3is which imply

it u; = 0, q* 0* = 0 on 0 B x [o, to).

Similarly, the theorem is applied to the unbounded domains if the

conditions of behavior at infinity are imposed

lim q  = lim t i u i = 0.

In this case, the relation (28.5) of a, sphere with a (suitably

chosen) radius R is applied. If R tends toward infinity, the surface

integrals from (28.5) are annulled according to the above conditions,

and the theorem of uniqueness is then proven similarly as for

finite domains (see Ionescu-Cazimir [2181).



reciprocity was established by G raffi [136,1371. The result,

obtained with the help of a Laplace transform, was extended to the

case of coupled thermoelasticity of Ionescu-Cazimir [215, 2161.

In another Bork, Craffi [138] derived a reciprocity theorem in the

linear theory of elastodynamics without using Laplace transforms.

The same result was obtained later by Wheeler [4421. However, this

theorem yields a relation of reciprocity which jmplies both the

displacement vector and the velocity vector. Let us mention also

a result established by Wheeler and Sternberg [4 1111 which is based
on the assumption that the initial conditions are homogeneous.

Iesan developed a method for establishing the reciprocity

theorems without using Laplace transforms whereby reciprocity relations

which contain ()nl,y the displacement vector components and loads [1871
are obtained. This lust fact is important in deriving: the variational

theorems (see Paragraph 31). The method was applied in various linear

theories of the mechanics of continuous media (for exa -le, Hoschi

and Mainardi [371, Iesan [1441, (2011). We will present two theorems 	 I

of reciprocity derived in [1877, [2011.

I,et us consider an p lastic medium subjected to two systems
of loads

'ial	 /^'al^ i.tal^ fl^al^ ^'al ' (Ital y ^Ital' (1'
ah I/fall 

Y, âl ff ^ a '- t, 2).11
	 (x'9.1 )

Let	 ilia'	 ;u';'',..., qP`	 he the solution of the problem of
thermoelastici'..y corresponding to the system of loads L(01^.

t

We will use the following notatic.-is

Ps"',- ^/ • fi" I P( M." , I a!"' l f ; ,1 
-to ►► 1,	 (29-11)

II' ta t	 ^^ 1	 ^.ta	 I	
P ru 

1, q(a) .	
q^' ► ► tlu

where the functions 1 and g are given by (27.5).

Theorem 2(i.1. If' the conductivity tensor is symmetric and	 /1130

l ;:7i7
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t
11(l) and R (2) are solutions correspondin g to the loading sys',vms

of L (1) and L (2) , respectively, then the following reciprocity relations

occur

in	
1 i1 ) • 0^^ ► J1I ► , }`• tto

 

(29.3)
— 1+ 1 . ^m • H^i^ J +I^t =- i

n
(F	 • u;'' .. Y • IV(2) • 0 ► " 1 (IV}-

70 

+
 i

!, • pal) • sp , -- 1 1 • q«^ • 0^ t ► J ^i,t'
dH	 7,0

Proof. On the basis of relations (25.5), ( 27.2) we derive from

(25.3) that

Au 01 "I • E „'	 (t,)" } fi ll 011 ► 1 • t.;'+
(29.4)

c u' — Pr 1 • 0(')	 ((i i! c i' — pr,M 1 • 00).

Adding these relations we obtain

l^^► • c+^ ► — p^^^ ► • 0j 71	 f;; ► • c,^' — prOl^ ► • Ot^ ► 	 (t `} • 5 )

if we Introduce the notation:

^aH v S9 •	 py,1a1 • Ofp ► J tl ra t 	 n
it	

(^_^.h)

it follows from (29.5) that

112 = 
I21.

In view of relations (25.3), (25.4), (27.3), (27.4) and

using the theorem of divergence we can write

(29.7)
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—

too	 1 9 • [ fil l • Ui!) — l TI • g^!; _} IVA-)1 • Ofol (IV r^
l O	 1	 (29.8)

^oN g • L 
IS•^ 0 111.6) —	 1 • 9141) • OW da -}

L To	 J

f-	 [F^" • ^^^ (— 9	 01111)a dv I 1	 9.1 • k,, OW . j • OW .) dv-
N	 7,0 it)

pull) • a;p ' dr.
B

If we keep in mind the properties of the product of convolution, /81

from (2Q.7) and (29.8) the reciprocity relation (29.3) follows.

In the case when the initial data are zero, we have

F^+ _ ^) • fl ^t	 ll^^^^ _ r 1 • I i° ► t
	

(29.9)
0

and the relation (29.3) becomes

•^ ` rf+'^• ►t1' ► --1.1•ri0•0(7)1dr }-	 I ►;'.14;='—
JN l	 To	 J	

all

— I I • qM • 0(2)1 da — 
S It[ f   • fit

 '' —
To J

I 1 • rM • 00 ) 1Qr	 rt;' • if^'^ — , 
0 

I • q+= ► • 0( l^ 1Qa1 -- 0.
Tip	 JO	 ^	 J

In view of the last property of (27.2) of the product of

convolution, it follows that

[Al I • it';'' — ^ 1 • r l ► ' • 0 12) 1 d 	 } `	 rte'' Al it is —	 }
r+	 /	 J	 (29.10)

— I I • q0 ) • 0'!) 
J 

(la	
^N ki

Y) •11ilr—

o 	 J 

—

 -^
^ P • r^^' . (1^'> J ^It^	

^
,n (t';' • 14" — 

1 I • V) • Ool
J 

lla.
o J 	 L	 ToJ
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(29.13)
p-r(a) = a e(=)

In this case the relations analogous to relations (29.4) are

+Pqo(')]	 [c,'+P„0(2))•E^^',

[Pu s i;' — pr (1) ) • 0( 2) _ — pr (2) • 0(1) .	 (29 .14 )

10

In view of the fact that in this ease we have

#t, .— 1 • 44,	 (29.11)

the relation (29.10) may be written in the following form

IN C^
^^^ • ^i;''	 1111• 

(J'a ^
dC	

S	
rli^l • 11^=)

• ^o	 ne

— 

1
911)• 012 ► ^da 

..f^

.^ •'^''._	 (29.12)

TO

To	 J	 cur L	 1'0

Relation (29.12) was derived by Ionescu-Cazimir [215], however, by

using, the Laplace transforms.

Next, we will derive a reciprocity relation,

assuming that n (1) corresponds to a problem of coupled thermo-

elasticity, P (l) with loads of L (1) , and H (2) corresponds to a

problem of uncoL;pled thermoelasticity, P (2) ., with loads of L(2).

In view of what has been stated in Paragraph 26, it follows that

we have

ti
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Adding th6se relations we obtain
e

AV • c'1j) — p^it^ • OM= t+i • tU' — pr t ^ ► • 00)— (iu 00) •iii'. (29.15)

	

I^

By proceeding in the same way as in theorem 29.1, there follows

from (29.15)

Theorem 29.2. If an elastic medium with a symmetric conductivity

tensor is subjected to two systems of loads L (a) (a = 1,2) then
between the solutions H (a) corresponding to the problems P (a) (a - 1,2)
the following reciprocity relation prevails

Jo 
CH'; t ' • tt;	 -	 • Il'M • 0(=)) (it' {•	 g • rt;'' • v^'t —

^,rl

710 I • q( ' ) • 0( t) l jda 
= in f 1"j", 

• 111it) —

(29.16)

Jn	 L

— - I– 1 • q( z> • 
0(1)^ tltt —

 in P,,9 • 	 • e12) 41t770

In the case in which the initial data are zero, relation (29.16)

is reduced to

7H 
^.fl	

.11'^ • Ifj"' —	 ,1 • 1)'

2) J 
tlr+ I- `	

C 
lot 1r «.,tlCr1_

r)	 J	 -1^^	 1

^
,- 1 « (1(') « 0' 2) 1 tltt= ( Ifi`r • .tt^1i -- 	 L l «,(=) • 0 0 ► l 41V {
o	 J	 . u l	 'l'„	 J

(29.17)
 
To
^o I • q(!) • 60) 41a

!Jrr L	 ,,JJ	 u

11?.



80' -- ;) S(1) $ i^, r' _= 0, 'r ; -- 0, q :_ 0, ^,	 6, = r,0 = 0,	 (30.2)
fr =

•1

l
v

If we consider (29.11) the previous relation will assume the 	 /83

form of

J'j 
r !1n • ti^' r — To rin • :^ 1 tiv ' } 

^de 
f tt u • ^ trr —

— ^— q(I).• OR ) lift -: r r f^^r ..tt^^r _ ^	 142 ► • 0c1 ) tit)}
ro 	 II	 Jrr l	 TO	 I	 (29.18)

+
rr+' r • tt, r —	 q(sr * 011)  I tir< —	 ^ t ^ I^^t^	 f tltdx	 7'0	

j	 . tr

The relation (29.18) was derivel by Ionescu-Cazimir [2151, using

Laplace transforms.

30. Applications of the Reciprocity Theorem

In order to simplify the exposition, we will consider the case

in which the initial conditions are homogeneous and E 1 = E 3 = 0.

Let us assume that the elastic medium under consideration is

acted upon by the following system of loads.

s	 s r s r -- u i t 	ori 	 O u	 ( 30.1)

where d represents the Dirac distribution. From the mechanical

viewpoint the situation corresponds to a force concentrated in paint

& directed according to axis Ox l , of unit magnitude and applied

in the form of a shock at the initial moment (see for example, Courant

[661, Sneddon 13711, Kees and Teodorescu [2311, Teodorescu [4111),

while the other loads are zero. We will designate by 1 71,11 (.r, ti, t), U"'(a, ^; t)
the displacements and the temperature corresponding to the system

of loads of (30.1).

In general, if



the solutions corresponding to the system of loads will be

designated by	 C, t), n' , ► ( a. , E. t1 I j	 I, 1-1 1 a).

The load systems

f, = 0, r = a(x — E) a (t), t, _. F  •--. 0, u, ... b i = 710 = 0+
(30.3)

correspond to a heat source concentrated in point &, , of unit

magnitude and applied in the form of a shock at the initial moment.

We will indicate by U1(4)(x,E,t), 0(4)(x,f,,t) the displacements

and the temperature corresponding to the system of loads (30.3)

The above load systems and the solutions which correspond to

them do not lie within the framework of the assumptions from

Paragraph 25. However, they are very important and the interpretation

and mathematical handling follows the path know;, from the theory

of elasticity (see for example, Sneddon[371], Curtin [1631, Kecs and

Teodorescu [ 231 ]) .	 The funct ions	 V ." 10', ti, t), Oz" (r, r4, 0 (.r --• I, 2, :1, -1)

constitute Green fun ^ tions corresponding to the domain under

consideration.

Let us apply the relation of reciprocity ( 29.1.0) to the system /P14

for loads L x { f,, ►•, i,, y, aj = 6► = vo  0)q	 to which correspond the

displacement u i and the temperature 9 and for the system of loads

(30.1). In view of the fact that

t

s • f = f,	 (30.4)

from (29.10) we obtain

t► t l^,t) —`^(ft • U" t) —_'_ 1• ►'•Ott1Jdr }
J l	 0	 1

t ^de [ t • 
Ui ti — ^^ • 9 •	

I
da.

(30.5)
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Similarly, using the same relation, but under the form of (29.12),

to the system L and to the system (30.3) we derive

OM 1)	 TO
Sg 	 T'o	 11

(30.6)

►tr	 To

From the above follows

Theorem 30.1. If the conductivity tensor is symmetric, then

the displacement u  and the temperature a corresponding to the system

of loads L = If,, r, f,, q, at =- be =r ro	 0)

are -expressed by means of the Green functions corresponding

to the domain under consideration by the relations

w

U
	 To
	 J

+
 S^o L t • 

U'r — _ to ( • Q • W) da, (x = 1 , 2 , 3 , 4),
`	 1

(30.7)

where 0i . ui, -T004 = 1*0.

Let us designate by 1',(x, E, (), °I'(x, E, 0 the displacement
and the temperature from the problem of uncoupled thermoelasticity,

respectively, corresponding to the system of loads (30.3). If we

apply the relation of reciprocity (29.18) to this problem of

uncoupled thermoelasticity, and to the problem of thermoelasticity

coupled with a system of loads L = {f., r, r,, q', a, =- be = ro = 0),

we obtain

0 (Z' 1) _ — To
Jv 

[ft • ^', — I- r • g '1 dv —
o	 J

	

—To 
J 

r	 1`, -- t-- q' • _'1 da — ToJ P e i ^'^.^ • Odv.

	

JU1	 To	 JJ	 e

(30.8)
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Let	 "I!'(j', to 1 ), 9"'( x, ti `) (J- 1. 9 2, 3)

be the solutions of the problems of uncoupled thermoelasticity

corresponding to the loads ( 30.2). Applying the relation of 	 /85

reciprocity (29.17) to the problem of coupled thermoelasticity

corresponding to the system of loads h = (Jc, *, 1j, 9, at — b, _= r10 z o),
and the problem of uncoupled thermoelasticity corresponding to the

system of loads ( 30.2) we obtain

9Y to t) 
= Sa 

if, • I';' — 
T
- 1• r • ,Tu, l du +

°	 J
1

	(30.9)

{ S^e 1 1 ^ • ^•^^^ —
	 • q • ^'^' I do +1e ^.• 1':: • Qdc.
To 

Consequently, if we determine the function 0 as a solution o

the integral equation (30.8) and substitute it in (30.9) we obtain

the component of the displacement vector. Thus, we have

Theorem 30.2. The problem of coupled "hermoelasticity

corresponding to the system of loads L = (f,, r, i,, y', a, = u,	 o)

is reduced to the resolution of the problem of uncoupled thermo-

elasticity corresponding to the system of loads (30.3) relative

to the same medium, and to the integration of the equation (30.9).

mhese theorems may be useful to resolve certain concrete

problems [128], [216]. They have been derived with the help of

Laplace transforms of Ionescu-Cazimir [216] and later extended to

other theories of thermoelasticity (see, for example, [194], 11951).

From theorem 30.1 the following relations follow

UV ' M r,, 1)  = U;" ( r" too, W, M Y 0 _ —TO 0 )", On' too,

0'4 ' (;, Y, f ) = 0"' (-,r,, to t ), ( T,! = 1, 2, 3).	
(30.10)
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31. Variational Theorems

In reference [158] Qurtin presented the variational theorems

'	 which characterize completely the solution of a mixed problem from
^a

the linear theory of elastodynamics. In the theory of coupled

thermoelasticity, this type of theorems was derived by Iesan [185],

;1871 ; [2011. A general method for deriving variational theorems in

the case of linear theories of the dynamics of continuous media was

presented in [201].

In the following we will consider the equations of coupled

thermoelasticity for nonhomogeneous and anisotropic media with

asymmetrical conductivity tensor.

If we consider the relations (26.1), then the equations (27.3)

and (27.4) may be written in the following manner

!J • MIA1 11.9,1 — i%u 0). j i- P, = pflrt
(31.1)

^U '11 j.r i a0	 - Îu . ( • ( kil O.j).r }- 11'.

Let us introduce the vectors

U = ('1119 91 29 11 91 O ) r

and the operators
	

/86

:1, U == — a' ( (%rnr 11 1.1 — {%u 0 ).) -1 pill,

	 (31.2)

L u

Keeping in mind (27.2) it follows that equations (3'..1) are

equivalent with the system
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Au - F
	

(31.3)

whe.-e AU - (A1U,...,A4U).

From this follows an immediate consequential of theorem 27.2.

mheorem 31.1. An admissible displacement-temperature field

U - (u i ,8) is a solution of the mixed problem if and only if it'

satisfies the equation (31.3) and the boundary conditions ( 26.5).

Let us consider the tension operators and the flux

it (11) _ (("),, + 1 ► ,1 — Pei 0 ) I'll	 ( 31.4 )
? ( U )	1cu O.) it,-

We shall note

(31.5)

u

If we take into account (31.3) and (31.5), then the reciprocity

relation	 (29.3) may be written in the following form

S
(v.Arr — r7.AV)dv _

J 
,,.(rJ.Xv—V.9-c")()a,	 (g1.6)e	 .e

i

where

U	 (tt^t1^ 4l :t ► ^ 1fM^ 011, ), ,	 ,s,	 t3,	 ^We
1 11 t f tt2 t 11	 ).

In the case when the boundary conditions are homogeneous, i

the relation (31.6) will take the form

(V G AU) = (U d AV),
031.7)

1t
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Y

y
S

where by fO 9 we designate the scalar product in convolution
(Hlavacek [1783) defined by

!09 ^ 11f * Ydr.	 (^:.d)

The relation (31.7) expresses the fact that to this case

the linear operator A is symmetric in convolution. Let us consider

the functional

.f(11) s (AV lx I')  2 (11 x, P)
(31.9)

It is a known fact that (11lavacek [1781) if operator A is 	 /P7

symmetric in convolution on its domain of definition D A , then

	

&F(1 7 ) -^ o,	 (31 10)

If and only if	 VC1), satisfies the equation (31.3).

It follows from (29.8) and (26.1), under the assumption

that the boundary conditions are homogeneous, that

(:1 U 	 U) =
 iB 

+ ( Ceti u i.) • at,. , I — 2Pfj wbj • 0 —	
( 31- 11)

^n	 To to

Therefore, the following takes place

Theorem 31.2. Let jr be the set of admissible displacement-

temperature fields which satisfy the conditions (26.5) in a homo-

geneous form. For	 E [0 , fo)	 we define the functional A,( }

on •-C by
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A,(('}	
s 

• ( c uu olds •	 — =ftuth,r • 0 —n 0 • 0)jIV

(31.12)+	 Plo t •It , 11V — — - jy •I•/-'aO.f00.)'IV	 2
i
ll(^',• it, --d	 To a

for any V a X. Then

Me( r) --= 0 (o < I < 1o),	 (31-13)

if and only if U is a solution of the mixed problem.

This may be proven directly without using the result (31.9),

(31.10). For this the following notation is considered

where

(31.14)

( a )	 11 !- ) ,Cx	 Oor any scalar X.

As Is known, we have
SA, (c'} = 0,

if 6-At (U) exists and is equal to zero for any U which satisfies

the condition (a). Using this fact and also a generalization of

the fundamental lemma from the calculus of variations (Curtin [1631)

results in the derived statement.

If we keep in mind that the following conditions

^^ ( ► ')	 ^^ on	 x [0 , to), 4 ( ► T ) — y on 1,x [o , 1o),

are natural conditions (Mihlin [2891) this means that it is sufficient
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ls;	

t

k

displacement-temperatureas in theorem 31.2 that the admissible  

field satisfy only the conditions 
►► ,	 4 ► on.1 t	 I^ ► + 10, 1 ► 	 ^^ on 1: 3 [o, t„),

and the other conditions will be satisfied.

Let us consider now the case of conditions at a nonhomogeneous 	 /88

bol+ndary. Let Tw 4 i ,T } be an admissible displacement-temperature

field which satisfies the conditions ( 26.5). If we introduce the vector

W by the relation v:	 U -4', then W satisfies the equation

AW a F - AY► ,	 (31.15)

and the conditions ( 26.5) in homogeneous form. In this case we

are led to the functional

a ( Iv) = (A 11' QQ n • ) —'2(1V Q (11' — A `f')),

which may be written in the form

	

a(1! --4') =(At'O r) j- ( A 11' 0* U) -(Arp 1►r; -	 (31.16)

- 2 (17 (S) 	 ;- 2 ( %P (; P)--(. ► T(DT).

From (31.6), (29.8), (26.5) we have

(A	 n h) — (A if Q + l') — 	 g • & ► * [1 ► (1 1 ) -- 1, ( T)] (1a +

+	 9	 lit) •'tda-1-J g•1► +l•[q(U)—q(40)]da—E.	 To E,

—
7'o

SEg*l•(--O)*q'da,
(31.17)

(A U 0 U) = S 9 * Mot 11i.f * Il k ., — 2P(j v j.j * 0 --n

—4 0 • 0) dr + in pit,	 — i 
Jr^ 

g • l • ku O.t 0 ,1 dvpit 
0

— SE+ g 0 ii *t ► (U)da—^ q*tld•l+da-} 
_.^ g•l•

y•q (U) da+E,	 0 ..'

To E.
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11•u,•I',lla

If we keep in mind the relations (31.17) and chive up the non-

essential terms, then the functional (31.16) its replaced by

"I I ul ^ i 
N

—"0 • 0) (In I.	 poll • il l flit
lr

-	 t l^'^ • u^ -- ,ry • il' • 11) l l l^
n

I	 y • 10 0 Z/lla.

(31.18)

Thu g , we have

Theorem 31 .3. Let f'

temperature fields which

0 a A on F. 3 x [o,t0).For
Oil	 y'	 through (31.18)

/8Q

be the set of admissible displacement-

satisfy the conditions u i ! u 1 on F l x [o,to),
t E (^► , r„)	 we define the functional 'alt')

regardless of V E J'•	 'hen

A^ut, t U 1 . u, to e r g r„),

If and only if U is a solution of the mixed problem.

Now we will present a variational theorem (lesan [1861), in which

the admissI ble processes are not assumed to satisfy some equations or

conditions of the problem. The theorem characterizes completely

the solution of a mixed problem of coupled thermoelast.1city. We

will use the following: notation

I

TO
	

(31.10)

The relations (11 9.3) 3 maV also be v,ritten in the form

(31.20)
110
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or, equivalently

4i

a

(31.21)

where the significance of the quantities a ij is obvious.

Theorem 31.4. Let jr be a set of admissible processes. nor

t fn , t„)	 we define the functional	 9#1 •) on J by

1,(111	
J111 I f",14r,Q •cu • -1i + pis, *li d -}

f'	 !! • (P^J	 ^,^c,i)•(Pri	 ^roc^^) ')' ^1^u^,1!!.l •x,ox^l

	

a	
JJ

+"111,)•it, f e1.0011'^	 -f S^ q•t,•iyla +

+	 I	 y 01. 0 • q Flu	
3: !! ft^	 ti) • 11'd (I ^.710

} 7^ (^ 941.(0 _.. p)•y^le,
o J-.

(31.22)

regardless of	 II	 { u ,, f ”, i, ,, 0 , '1 , 9)) , 1'•	 Then

mm = o , (o G t < to), (31.23)

If and only if A is a solution of the mixed problem.

Proof . Let 11, 11' c: ,1,	 therefore, 11 + XW k J,
for any scalar X. If we take (31.1'1) into account we obtain
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Sn, {Il}
is Ig o ^^urt trt — 1

a

t, t l • 6 i, + 
g+ 

1 (p'1-- Auto)) — 0 • Pry' —
lJ	 R	 J

_ (g•tu.) -(- 1''( — p il l) •ud -}-g•l• (To a,Js1

+9+1	
J

1 
(%.)+lei.O— C.) * It) -9+(PV) — l•s,,t— IV) •0' 1dv--

9+(u t — Fi t ) 0t;da + 
J 

g+(t,— it) +it: da —

1
—T- s g.l•(q— q)•0'da+	 g•l.(0— p)•s^n.da.TO	 t:,

_s

(31.24)

If R is a solution of the mixed problem, then, using theorem

27.2, it follows that

Sn'-91(H) — 0, t E [0, to)	
(31.25)

Tor any nE J and thus we have (31.23).

In a reciprocal way, let us assume that (31.25) occurs. Let

TT' = {ui, 0 9 ...,0), where ui is annulled on 2R. It follows from

(31 .24) and (31.25) that

` (g • t, t,) + Pi — pu,). uidv = 0,	 t e [0, to).	 (31 .26)
d

Using a generalization of the fundamental lema from the

calculus of variations (Gurtin [1631), from (31.26) we obtain

j__	
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Similarly it is shown that F satisfies the equations (27.3),

(27.4), (25.3), U5.4) and the boundary conditions (2 r).8). On the

basis of theorem 217.2, it follows that 11 is a solution of the mixed
problem.

Other variational theorems in the theory of coupled thermo-

elasticit,y may be found in the works of Riot [201, Iesan [1801,

Nickell and Sackman 13071, Rafalski [3481, Carlson [461. The
importance of the variational theorems presented here was

indicated by Nickell and Sackman C308], and Fenthien, Gurtin
and Ralston [19 '1 who pointed out the potential applications of
these theorems.

32. Theorems of Existence

The existence of solutions of problems of thermoelasticity

was studied in various papers, among which those written by

Dafermos [731, Duvaut and Lions [93], Kupradze (248], etc., could
be mentioned.

Tn this paragraph we will present some of the results derived

by Dafermos 1731, with reference to the mixed problem of thermo-
elasticit,y formulated in Paragraph 20. Without restricting the

generality, we will consider the conditions (20.5) in homogeneous

form, indicating* this fact by (26.5) 0 . We assume that none of the

parts F r (r - 1,2,3,4) of the boundary are empty.

We will consider the mixed problem In the formulation riven

in Paragraph 20, assuming that F is an open set, limited, connected

and self-regulated in the sense of Fichera [111]. In order to demonstrate

the existence of a solution, a method given by Vishilc (see [4311)

Is used. First we will present some preparatory questions.

Let Cm (fi) be a set of scalar functions of the class of Cm on R.
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1
For	 4P C- enfi1	 we define the norm

II ^ Ilc«^„1 a ^	 ^	 ms^x 19^,r, , . t^ I

We designate by C_n1 (B) the set of vector fields, the components

of which are from Cm(B). We define the norm of 	 ,, cC"(P)	 by

II ^' Il, m ^^,Tj 11 1'( Ilc..,-,,.

Let Wm (B) be the Hilbert space obtained by completing the set

of Cm(b) In the norm of 11 • 11wm (Bi induced by the scalar product

YJ

We will designate by Wm (B) the Hilbert space obtained by

	

completing the set of Cm (B) in the norm of II -IIw.w)	 induced by
the scalar product

(V, W1Wen11r1 a L 1/ ► t411r, nd lr l	 c^.I	 f^l.i,.. ^i 10j ,11 1,

r ^	 ^k p It

In this paragraph we will have occasion to use the Cartesian

product of normalized spaces. As a norm in the produced space the

sum of the norms from the factor spaces will be used. Thus

0" ^) I INNIr^ „^,^rn	 ' II ^ IINN / r^ { II "^ I^uMIN^.

Let H be a Banach space and [O,t 0 1 a time interval. We will 	 /92

gnate by Cm([O,t0];H) the set of functions defined on [O,tO^

values in H. which have on (O,t 0 ) derivatives with respect to

up to the order m, in H„continuously on [O,t01.
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The meaning of the sets L I [O,t 0 ];H) and L 2 ([O t t 0 a;H) is

derived in a similar manner. For the derivatives with respect

to time of the function f, we will use the designation

of	 a2f ('' —'f	 a .^ 3.
ap	

age
a

We are introducing the sets

0'(B) = (z a C'(&)I r = 0 on Ea),

CI(B) _ (v a CIA I v = 0 on E,),

W,(B)a completing the set C'(B)	 in the norm 11 •iWO),

1V1(B) = completing the set 	 1!(B)	 in the norm it •Ilw,,e^.

A	 A
Let	 8, a e CI (B)	 and	 u, v e 1!(B).	 We designate

4D(6, 3) =^ k,j8-j9-,dv,
e

(32.1)

(32.2)

We will assume that

(i) the thermoconductivity tensor k iu is symmetrical;

(ii) the density p and the specific heat c satisfy the conditions

egg in^f p(x) > 0, egg inf c(X) > 0,	 ( 3 2 .3 )
B

(iii) there are positive constants M and N so that



`Y(v, v) > V (	 e'^(vwv, VI .^ a C1(B).	
(32.5)

The relations (32.4) and (32.5) may be extended to 0 1 (B) and

W(B), respectively.	 For	 veWAB)	 , the Korn type

inequality [177] takes place

'!'(v, v) >xi 
in	

vw(v,v, + ,,,j)dv,
	 (32.6)

a relation which expresses the fact that W(v,v) is coercive in
1%

Let Qt,
 

he the cylinder B X (o,t o ),t 0 > 0 and the set

E CO(B)x0o(l;)),C1( B ) ={(p, 0)1(U , 0)Eci(D)x0(111	 Q°D ([01101;
^"(B)), ^(Q,,) =((v , 0)1(v , oie s(Qj,), v=o onBxo)..

-	 u

Let us consider a certain element ^ + _ (v , a) a ,^(Q,•)

and let y r (u,A) be the solution of the problem (26.2) -- c°26.5)0'

If we multiply (26.2) with (t-t
01

 and (26.3) with (t-t 0 T)	 o,

sumTring ur and inte pr.ating on 
Qto 

it results that y = (u,A)

satisfies the relation

0

—W(Y, ^) = q(x, 0 + e (X, 0,	 v ^ e ;(Q+.),	 (32-7)

where YfY, ^) = S^ S 1(t— to) (Pu , ti, — Cu&,u&.,o,.j + Oij Oij.f + ace+ Puu,.fe) +
0 Dt(

,

+ Pi lk + a99 + PIA. J8 + 
1 

he ) 0. j &.j ds dv dt,
To 0

-9 (x4) _ — K i8 (t — to) (M, + T r8 ldv dt,
l	 0

S(X, 0 = to
 
 ( Pbits + aO.0 + Pyai.J81,-oav,
e

X = (a , b, 00), -- = (t, r).

/93
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Let y — (9, e) a P(909 ^ — (v l 8) a S(Q,.) ► " (f, r) a Co"t hJ +

°(B)) and	 X — (at b, eo) be so that (a+ 00) a &(B), b e (At (D).

It is noted that 9 may be defined for y e P(Qo.), ^ e ^(Qa)

9 may be defined for s e C- D ((0, toy; &(B)), y, F AQ,•), and 6

for x with the property that (a, Oo) a C`(B), b e
A.

	
and ^, a ^(Q^•),

We assume that C0111W, 00)(4 k•, W, P(X), a(x)

are measurable functions essentially limited on B, satisfying

the symmetry conditions mentioned in Paragraph 25.

Integrating in part the following identity may be easily verified

1 '• 	 P ^j 
ij +	 + a0 l +2 SoSA

+ To io	 uku8.i 8, tdz ldv dt + . 
toS 

(Pv,b, +a8 2)js - odv ,	 3^ • )
.II	 2 

0

r t^l a im.).

By V(Qto ) we designate the Hilbert space obtained by completing

f(Q,.)	 in the norm of 1.1 induced by the scalar product

Out 0), (v , 8 )) — 
J S ulvi + ijjvj + 91j. ,v,.^ +08 .4

io
C•j8 ,i d r dv dt.

o u 

O

Let	 V(Q,.)	 be the closed linear variety of V(Q to ) obtained

by completing	 .F(Q,.)	 in the norm of I • ; .

/94

O

We will designate by MO.)	 the Hilbert space obtained
a

r completing .F(Q.)	 in the norm induced by the scalar product

01, 0), (V, 4D + 01, 0), (*,,4)>.

Let G(B) be the completion of the set C 0 (B) in the norm of

11 , 111W.(B) x to "(B).

)8



0

I^i, G c,re(^,o,	 d ^ E NO. (32.10)

Let us designate by H O (B)the completion of the set of

Wt, %V ' 0)1 (u, 0) E Z^'(!3), n E ( b (IM in the norm

Ih^, ^^, 0 )! o - j	 (Ptr,w, -+- C ,^r,^^^,> v kj + a0=]dn1uV•
r u

In view of the introduced notations and using the inequality

of Schwarz and the immersion theorem of Sobolev [381],1t can easily

be seen thoat V and	 may be extended by continuity in

V(QtO ) x U(Qto ) avid L l ([O t t O ];G(B)) x U(Qt0 ), respectively. Similarly

e (k, 	 has a meaning for X r lt„(R), y E U(Qj.).

From (32,8) it follows that

, r

y ° "	 (32.9)
+- r	 k,,5 , ,11 , d . ] dr df, V y E ar(Q,^),T° °

n
an inequality which may be extended to U(Qt0)'

In view of (32.4) and (32.6),from (32.9) it follows that there

Is a constant c l > 0 which depends only on To, ems ienf &), ens tint aCr), M, N, x

so that

We call a solution with finite energy of the system (26.2),

(26.3), (26.5) 0 in Qto , with initial conditions of 7 == (u , h, 00 ) el/°(B)

and mass loads	 _ _ (t, r) E L, Mo, t°); 60)),	 the element	 0) E V(Q,,)

which satisfies the following

k
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bo,	 out (32.13)

I

(32.11)

Ri (t) W'("+ Riot for t _, 0.	
(32.12)

It follows from Sobolev's immersion theorem that if

Y = (u, 0) a 1"W'.),	 then	 U 1 Co([0, to] ; «'0( !3 ))	 which is what (32.12)
states. Obviously, any conventional solution is a solution with

finite energy.

Let y s (u.0) be a conventional solution of the problem under

consideration. If  	 (^ ^) _  tt(^, •) ds	 then we have

and therefore, y satisfies the system
	

/95

0

To(a0 + Putif.j) _ (ki) 6 , )),j + 50 rd- + To000 + P,)a,,j).

In general, the following takes place

Lema 32 . 1. Let Y e V(Q#.)	 be a solution with finite energy in

Qt0 with initial conditions X a (a,b,9 0 ) and mass loads z = (f,r).

Then '/ _ ^y(x,,T)d-r is similarly a solution with finite
energy in Qt0 

with initial conditions X - (O,1,0) and mass loads of
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T) dT	 b T a0J (,	 ♦ lP , of o ♦ ^h,ai.,)1•0

Proof. In view of the above we must show that

e

yly , 0 — .9'(-, 0 + SQ, 01 d^ = lv , 0) E 6(Q,.)	 (32.14)

Keeping in mind (32.13) and the definition of y , we can
write

I,ly, 0 = Jo Jn {Puy d ((c — 90) ill + Ado [ (t — 10) 0] —

—	 Nolo — to) ti,,, + p,A,, -((t — t0) 0] +ill

+ To Jo f `,, 
e,, U,, a : Diu do = )o ^n { 

pt`` it 
[(c -- (0) v,] +

+ a0 `!t [(t — t o ) 0] -- (Cu	 urIU t.1 — P 0 ) (t -- to) ti,,, +

+ 	 [(t — f0) tl]
tlt	 TO

+	 k(,©,,0,, ds du ill +
0

+ to p a, b,I du = y(J, ^) + to S
n

Pa, b, Idr,
,r	 r.o 	 ,..o

where	 y = (v, 6)	 satisfies

`d [(t — to ) M = — (t — to) ti„ `^ [(t — t^) 51 = — (r — tow	 (32.15)(itdt

Integrating (32.15) and setting 	 a 0 for t s 0, we obtain	 lgf-
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o .

8(r, t):^ -- - i	 ) (r --to) W, r) ds.	
(32.16)

	

t 	 to	I 

In view of the fact ^, E p(9,•1 it follows that ys uwo.),
as 0 is defined by (32.16).

Keeping in mind the fact that

^( ► ,^)'^`'•`	 ( J'fidr + pb, (t—toR.--

o 	 lI

(---r
d-. + aOo (-

^	
aua,,,)U — tolBJdr dt =

o f.

,•	

K

,
11

f'c1T + Pb' 1 dl r(t ^'°) ^^) + ^ ^,^ Sa' dt -}-

+ a 0„ + P,uaa))d W, -- 10 ) 1 dvdt,

and integrating partially, we obtain

Simllarly we have

of	
to^ Pa, 

i,,l	 dv.
,-o

Substituting these results in (32.14), this is reduced to

—

a relation which is satisfied on the basis of the fact tha`

V e U(Q,• )	 and	 y E y-^,r,•)	 is a solution with finite energy.
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Theorem 12.1. If there is a solution with finite energy

of the mixed problem in Qto, then the solution is unique.

Prc-of. We assume that there are two solutions with finite

energy	 lh. .M: a V(Qj.).	 In view of the linear nature of the problem
it must be that y l - y 2 is a solution with a finite energy in QtA

of the problem which corresponds to zero loads. Moreover, y,_ Y,c. Nx.).

According to lema 32.1, it follows that

Y ==	 [Yj(Xj T) — YS(x, T)I dT,

Is similarly a solution with finite energy with homogeneous

data, so that

1(y' 0 — `' (0 , 0 + 0 (01 0 — 0 1	 V¢^ Q(Q^.)•

(32.17)

0
In view of the fact that	 .v, — Y2 a Nit)	 it must be that

V e p(Q,.), therefore we can take +y = y in ( 32.17) and therefore

Y(Y, Y) = 0.

The inequality (32.10) implies that jyj = 0 and therefore

y l-y ? = 0.

Theorem 32.2. Zf the initial conditions are zero, and

z = (t, ►) a I.,((0, tj;Q(R)), 	 then there exists a solution with
finite energy	 Y—(u, 0) a V(Q,^).	 Moreover, there exists a constant
c'> 0 which depends only on c l , T0 , t o , so that

I Y 1 4 e' II z 114wr.► n L.w1.1
	 (32.18)

Proof. We must show the existence of a 	 Y 
0	

so that

0
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(32.19)

or

(32.20)

k

Let us consider	 y► E U(Q#.)	 fixed, and Y(Y' ^)
0

as a linear functional defined on V(Qt 0 ). According to the

representation theorem of Riesz -Frechet, there exists a correspondence

Of	 8: U(Qj.) -. V(Q,.)	 so that

0
Let R(S) be the set of the values of S In V(Q t0 ). The

application of S is biunivocal. Indeed, if there exists 'o e U*.)

so that S^ 0 = 0, then (32.19)  implies that Y(y, y„) = o, d	 l'(Q,.)
and therefore p(Q,)	 y(Q,,) results in par^icular that	 o.
The inequality (32.10) implies, then, ^ 0 = 0 and therefore S is

biunivocal. From this it follows that there is an application

of S-1 : R(S)-P- O(Qt0 ). Using the inequality (32.10) and the inequality

of Schwarz, we have

I '^ I` < ,-,.P('^, ^) = C,<'^, SO 6 c.; +I 1 8+ I+

0
Let us show that R(S) is a dense set in V(Q t ). If we assume

the contrary, it means that there exists
,^uE ^ ^Q,^) 0;Z(,^), yo¢p,

so that for any 'y t 1 1M.) we have < ►i,,, s^) : o.	 According to (32.19),
Y(,yo, 0	 = 0 for any ^ +- 11(Q,.) which means that y 0 is a solution

with finite energy for the problem with zero loads. According to

theorem 32.1, it follows that yo = 0 and therefore R(S)are dense

in V!Qt 0 ). Consequently we can extend application of S -1 , by
0

continuity,to the whole of V(Qt0 ) so that

is a limited operator with a norm
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II8-111 C 	 (32.21)

Let us consider the bilinear form 9(-. 0. 	 Using (32.21)

and the inequality of Schwarz, it follows that there is a constant

c" which depends only on T D , t o , so that for every µ e V(Q,,),	 we have

1249 8-'µ) I e a" 1 8 ''1+ I II z II1.fQQ M c.io,,) < e"C, I !+ III - 114to,,t x c,to,.^'

This fact, indicates that the functional 	 M-, 8-110	 is
n

limited on V(Qto ). According to the representational theorem of

Riesz-Fr6chet, there is	 y(-) a V(Q,,)	 so that

2(-, 8-10 = <y (x), 10, V µ e No.

In particular, for every	 ^ e 17(Q,.), S4 a V(Q,,)	 we have

2(", 0 = <J("), 80,	 (32.22)

In view of (32.19) and (32.22), it follows that y(z) is the

solution sought.	 From ( 32.19) -- (32.22) we conclude that

I .H I`' •- (F/, ?o — YO, 8-1!1) -	 , 8- 1 y) G a"01 j4 i 11 .. 1141P,,1 n ►̂ tP,,l.

from which follows the evaluation from the th(,,orem.

We will next study the existence of a solution in

the case when the intial data are not zero.

Let g(B) = H O(B) n (W,(B) xW,(B) XW,(B)) and ' = (1 0 r) a G(B).

We define the application of P(z) : H0(B)-► H(B) by

(u , V , G) = I'(-) (V, w, -5),
(32.23)

t'
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(32.25)

	

where (v, %v, D) a Ho(B),	 and	 (u, v, 0) a ll(B)	 so that (u, 0) a 1V,(B) x
;< lY(1^)	 is the solution of the system

A

	

40, D)	 — S (^Oj 1'ot'j.j + 2',a 4)— r) D dv, V D e W, (B)
u

(32.24)
A

`N(u, w) ^•	 ((^u0wu^ — pu►►( ► ► + f► c.►,) dv, Va) a W,(B)•
e

Therefore, if (v , iv , O eHo(B)	 is given, we can determine

with the help of the application of P(z) , the triplet (u, v, 0) a II(B)

namely	 ( u, 0) _ 11' ► (/;)x 1Y,(lt)	 is the weak solution of the system

with boundary conditions (26.5) 0 . In view of (32.4) -- (32.6)	 X99

It follows that the elliptic system (32.25) with boundary conditions

under consideration determines uniquely (u,H). This fact indicates

that the application of P(z) is biunivocal and therefore there is

an application of P -I (z). Similarly, we have (Fichera [1111).

	

II (' (=) x 11W.(8)xN',(NIXWO) G N Ox10 + II z11W.($)x lv.(8)). 	 (32.26)

Let	 x0 , ..., :,%-t a (413)	 and	 Y.(^0, ..., ..-1) n flzo) o ... o P(Z,.-t)•

It is obvious that Pm (z O , ... ,zm_1):H0(B) -► H(B). Let us
designate by H

ni (B;z O ,...,zm-l )the set of the values of the application

of Pm(zO,...,zm-1) from H(B). In view of the fact that P(z) is

biunivocal, it will be the same way also with 
Pm (z 0  .. ''zm-1) 

and

therefore there exists P -1 (z ,... z	 ):H (B;z ,...,z	 )-01 (B).M	 0	 ' .n-1	 m	 0	 m-1	 0
Let	 x Il..(R; t► ,...,0).	 We define the norm in Hm (B) _ Hm (B;O, .. .

...,0) by	
I x1. - 17'x;'(0, ..., 0) r. 10.
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C

From the definition and the properties of the application of 	 a

P(z) the following properties of the Hm spaces follow (see Dafermos

[73]).

Lema 32.2.	 Let	 O(B )• ( i -- u, ..., fit 	 1),	 be f .l.xed elements in
G(B). Then

(i) ifm(B;zJ,...,zm_l) is a complete metric space with the metrics

defined by dm ()(, x l ) - Ix -x11m. Hm(B;zO,...,zm-l) is a plane in
H(B), and Hm (B) is a Banach space with a norm I•im;

	

( it )	 11„(N) D 1l(lt) - 11(B;,:o) -, ... ::) li, B; -o, ...,:,,_,);

moreover,H m (B;z O ,...,zm-1 ) is dense in H1(B;zO,...,z,-1) for any

I < M.

Theorem 32.3.	 If	 (l, i.) a /!., 1(IU, tol) ; G( B)) ,(- c LI(IO,1n);
(x, -11

	

MIM 0	 X	 (too, too Oo) a /IM(/?. z((1), ...,	 (b)) (111 : — o, 1,...,)

then the mixed proulem under consideration has a solution with

finite energy	 !1 E t^(tlal	 in Qt 0 , 'this solution has the following

properties

it, 0) ( 1) C= 1`-( 1 11 . 1„ 1; 11„(lt ))	 and	 (11, it, 0)(0)	 (uo, il l„ Oo),

(V)	 (A) (A 11 IAI	 (A)	 (M^' 1)

(11, 11, n) (t)	 l/w^ Al /t ; : (t), ... ,	 Iy% k - 0,	 ,ill,

and

	

(AI (A, 1) (A)	 lAl	 (in ' 1 )	 (w) (,n 1 1) (-)	 (32. 27)

	

(11, 11, OW) 	 (t)) (11, 11,	 0)(1),

W there is a constant c I > which depends only on T O , so that

(AI (A . 11 (A)
1120) (1)^o f"' 1 SI (N O , (T	 OWO &0„JJo 	 (32,28)

(A-11
^ I lit I l•( I ► ), ...,	 (11)) Y a +' (^^ 

J
I I^ A(') ^I	 lIT	 ,

u	 w,(nl • WO(n)

( e )	 (u,

for k - 0,1, ... ,m, 1( 10 ' U. In (32.28) the equality takes place for

z a 0.  



lot d)
Proof.	 On the basis of lema 32.2, Hoes , 4(It; :(0),...,	 (0))	 is

dense in 11.01; -(u), ..-9 - (op.	 Making use of this fact and of
(32.28) it follows that it is sufficient to prove the theorem for

N /'- (( Q ,	 X c IoM Alot ;(11), ...,	 (0)).

We will use the following auxiliary construction. From 	 /100

(32.23) we have ( v / w o, 0 ) = P- 1 (Zj (u, v 9 . 61	 where (w , a )	 is the

solution in the weak sense of the equations

Tonti — (ku e .1).+ -- ToPU UI. j + r,

P10 4 = (CuAluA.l).) — MAY) + fo/
(32.29)

with the boundary conditions (26.5) 0 . We define

lA)	 IA) (A+1)(A)	 (4-1)	 (A-1) (4) 14-1)
X = (CIO, 110, 00)=P-1 (-- (0 )) ( no, u0, 00) =

(A -11
= I'4 1 (z(0), ..., z (0)) (uo, 60, 00), ( k = 1, 2, ..., nt -F 'l).	 (32-30)

Keeping in mind (32.29), we have

1 4 1	 14 -1)	 441	 (4- 1)
21on0o = ( ki) ©o.,).( — T0p o) I#o1.l + r (0)1

(A+1)	 (A-1)	 p (4-1)	 (A-1)

P ilol = (Colts 110T. )^!	 (PU 00).1 + fl (0),

(k	 1, 2, ..., on + 2);	 (32.31)

in the weak sense.

By determining X) in this way we define

(a# 9 t 14)	 +w: 1 (A)
0l(t)	 (u tl ► , oil) W) _ Y	 uo ti. , Y - - Oot."1.

A o k!	 4-ok!	 /	 (32.32)

Let us introduce the notation
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ows), P, r"') (t) = P- 1 l= (U )1 ( 11"', u' '
) , p" ► ) (t).

On the basis of relation (32.29) we derive

► 1 ►

1,0 ar' = (ku^,).i — 1,0^ullj.l + r(I),
f• ==	 k.1 — (P,, 0j 11 ).0 + AM.

(32.33)

(32.34)

Let

:i2j(t) ! (( f* — Pun), Toa(r• . _ 'pn')1U)•	
(32.35)

In view of the fact that	 a C- ((o, tol; G(B)), according

to (32.30) -- ( 32.35) it follows that	 ^''' ( t ) E C L II^► , tol; C(B1)

t
^wii p =0, (k =0,1,... , 11b + 1).

ani

(32.36)

Let ^l' E 1 'M. ) be the soluti on with finite energy of the problem
(m + 2)

corresponding to zero initial conditions and mass loads of 	 (t).

The existence of 9 (2) (t) is ensured by theorem 32.2. Let

	

gt ' ► l t ) _ (u^ x ► , pu ► )l /) _ ^o d r, So,d"r2... (o '" f 
l y(,)(r)d-r.
	 (32-37)

Applying successively lema 32.1 and making use of (32.36), 	 /101
u ►

(32-37), we conclude that	 y 121 (t), k _ 0, 1, ..., m + 2,

is a solution with finite energy of the problem with zero initial

conditions and mass loads of 	 ^.i2 ► 	 Consequently(t),. 

N



^(ylst, y) _ ^(^' a), ^), Vy C- U(Qj.), (k = 0, 1, ..., m +2).	 (32.38 )

In view of (32 .30) -- (32.35) and the definition of .9

we conclude
(A)	 (A)	 IAI	 (A)	 o

2("(21 , y ) = — V(y(11 , ^) + 90, 0 + d(X, 01 0 E U(98.)•	 (32-39)

Keeping in mind the linearity of -(', it follows from (32.38)

and (31.39) that

	

Y(al, ^+) _ !2(.-, 0 + a(x,	 a U(Q,.),	 (32.40)
(k = 0, 1, .. •, nt + 2),

where

y(t) = U( l )(1) + y12 '(t)•	 (32.41)

0

(A)

Therefore '/( t )+ k = 0 9 1 9 ..	 + 2,	 is a solution with finite energy
( A )	 (A) (A + q (A)

in Q	 of the problem vrith initial coi,	 (uditions X = ,„ u,,, 00)

and mass loads W From (32.32), (32.37) and (32.40) it follows that

y(t) given by (32.41) is the solution sought. Let us show that

the properties (a) -- (y) do take place. In view of the fact that

?/(2)(t'I E V(Q,.),	 (32 .27) implies the fact that	 +/ ("`'(t) a Cw + 1 ([0, to ]; 8(B)).

Inasmuch as y( l)(t) E C-((o, t„ j;110(Bj)	 from (32.41) it follows that

)/(t) a C'" + '([0, to]; H(oB)).	 It is obvious that we have from

(32.41) (u, u 0)(0) _ (u-0,u0,00), which proves the affirmation of (a).

In order to prove (6) it is sufficient to prove (32.27). The relation

( 32.40) takes place for any ^ E U(Q,.) and any t. and therefore for

any	 t e (u, to) and any	 ^ e U(Q,) , where	 Q. = B x (0, (). Selecting

^ = (0, TO D(x)) E 
it(Q,)	

in (32.40) , we find
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5 f

(
^ 	 IA)	 (A)	 r	 (A)

J in( To(a 0 D + Pu it,. I D) + kI/Q jD, ,d#j dv dr
 p

— 

50 s 

( ,r— 1) (r Ddvdt + t 
i 

(aOp + PI)u0j. j) TpDd v,
b

a relation that leads to

S

(A)	
( (

A)	 (A+1)	 0+0	 A
b k';P.jD-.dv = Je ^r — To(a 0 ♦ Auur,r)) Ddv, V D a WI(B).	 (32.42)

Taking	 _ ( z v (x), o ) E U(Q1), 	
v(x) E WI(B)	 in (32.40).  we

obtain.

J	 urn t(A.rvr.i -i- ^, I 0 114.I ) + p ttr IQ do ds = —
o u	

r

	

—
Sa Jb(t
	 1) (fl v, dv tlz-}- l`b p uOOv,dv.

Similarly, we have	 1102

(A)	 (A)	 (A 12)	 (A)

r)nv rrA.ltlar ;1'I' = i n ((^u 0 1'r.) — p it . 1'1 -I- f. t j) dv,	 (32.43)
b 

A

V V E WI(B)•

It followo from (32.42) 9 (32.43), (32.24) that

(A) 1k+1) (A)	 (Al	 (A+1) tAi 2) (A+I)

	

(k = 0, 1, ..., m — 1).	 (32.44)

Tie relation (32.27) can easily be deri.ed from (32.44) by

induction.

Let us show that the statement made in (y) does take place.

Let us consider the relation (32.40) written for Q t . In view of

the fact that	 ^, ^ _ Viz, — 11Q 1 (©) E U(Q,), we have

	

(A) ,r,	
(A) ..'' ♦• 	l	

(A)	
.1,

141
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By deriving this relation with respect to t twice and by partial

integration, we obtain

i 

J	

(A+1) (A+ II	 (A)	 (A)	 1 ► 1
2	 [P 1( I rr1 + C1/AI 1(t.1 141.1 + Q 0 2 1 ( 1 ) (IV +

	

`
1 	 1	 1A1	 (A)	 i	 ( 6 +1) (A 1 I)	 (A ► 	 (A)

	

+)	
-- ku 0, 1 0, 1 d s dv +

2	
(p(p rro, Ito, — Cu(1 rroA.. 1 11c,. r +o e To

1A 1	 iAI	 IA)	 f(	 1AI (A+1)	 1 (k) (A)
+n 00 -} P,r It o, r Oo) (lr = io 1N (.^( u, -}- 1; r 0) (1r (1- -{-

0

(A+ 1) (A+1)	 (A)	 (61	 (A►
-1• 

n 
(P Uo1 fl oe + (1 Oo -1- At) Ira., Oo) dr..

By deriving the previous relation we obtain

(1(") lAU1) Q) 1 	1 41(0, 1 0) (t) =	 (^^ ("(^,) }	
1 lr 

10) (1) do <dt 1(u ,	 ,	 ) ( ) to -}- 'To
	

11	 fro

(►) ( A + 1 ) U ► 	 (A)
C 2	 (11, 11, O) ( 1 ) to 11 Z ( 1 ) 11W-111) z1Yo(E)•

We used the inequality of Schwarz in deriving the last inequality.

Here, c 3 depends or, T 0 . We can wri.l;e

(A) (A+1) (At	 1	 (A)	 (A)

(it{ 
I (u, 11 1 0) 0 0 -{- I' , (1)(0, 0)(T) (I . I

n•u

(A ) (► + 1 ) (A)	 j	 1	 (k) (k)	 11'1 (k)

	

2c3 1(11, 11, 0 ) ( t)1! 4- - ,S (1) ( 0, 0) (-) ( 1 "^	 ^^ = lllr^lu ) Ir^1u).
7a n

Dividing by 2(.}
1!2 and integrating on (O,t) we 	 !103
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conclude

{

u ► a+n (A)

( (u, no 0) (01$ -(

16) 16+,)•)
1(u, u, S) (o ) I

In view of the fact 1

143

(A) a+, ► u ► 	 n; u) c• ► Q 
P, ,(s(o), ..., s) (o)) (no, So, eo).s(u, u, 0) (o)	 No, uo, 00)

the relation (32.45) leads to (32.28).

The coefficients which characterize the properties of the

medium satisfy the conditions of regularity of the order m if

( i ) C,,,,, k, ► r: C'"- 1 01), and for m = 1 the ve:zeralized derivatives

Cijkl -j and k ij 1i do exist and are essentially limited on B;
(ii) : e C,0-'(fi), m ;P 2,	 and for m = 1,2, the generalized

derivatives 0iJ,J do esist and are essentially limited on B;

(iii) P, a e CT-`(,R)	 and have generalized derivatives of the

order of m - 1 which are essentially limited on B. This can

be proven (Dafermos [731).

Theorem 32.4. If

(a) z = (1 , ►) a C`( [o , to); a(B) n (W.-,-,(B') x W.-a-,(B')))

where B' is a certain compact subset of B and )"
)e 
L,([o , tol; G(B));

(Q) X	 (A, b, ©o) a H.(B i z (o), ..., z (o))',
(Y) C ijkl' Sii' kii' p, a satisfy the regularity conditions of the

order m, then the solution y - (u,8) with finite e , )ergy in 
Ot0 

of

the problem under consideration satisfies the conditions

(u, u, 0 ) (/) a C!( [o , to) ► C.- ' - '(B)XC"-k-=(B) X C"'-R-'(B)),

for k = 0,l,...,m - 2.



R

0

It follows from this theorem that if y - (u , e) is a solution

with finite energy of the posed problem, and m - 3, then y is the
conventional solution in the sense of the definition in Par. 26.

These results were extended by Chirita [59] in the case of micro-

polar thermoelasticity.

In [73] nafermos sets also the asymptotic behavior of the

solution when the time tends toward infinity. Ericksen posed the

problem of stability in the theory of thermoelisticity [104], 11051;

this was studied also in various papers (see for example Koiter

[2381, Knops and Wilkes [2361, Curtin [ 1661, Naghdi and Trapp [ 3013).

33. Homogeneous and Isotropic edia
	

/104

T

Throughout the rest of this chapter we will consider

homogeneous and isotropic media. Fror the facts presented in Para-

graph 26, it follows that in the case of homogeneous and isotropic

media the equations of thermoelasticity are

0u + (), -} ) gnad div n - ►iSul 0 - pri _	 t	 ( 3 3.1)

kAO — TOP div it - cl) __. — r.	 (33 .2)

We will introduce the operators

13, _=o--,- 	 of =---o-
(a vrt	 ar'	

(33.3)

o. ^o	 ).+2^1^ o'— 
). + ;L W

where

V
	 µ	 (i.To	 (33.4)

(^	
p	

^2	
I F'	 f	 ( (

(1	 P I
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Theorem 33.1.	 Let u e 
CB.f, t o e C'•', f E 0•0 on It X ( t) ► to)

which satisfies equations (33.1) Then u, O, f satisfy the
equations

(33.5)
p, div it 	 1	 (PAO- dh•f).

X+21,L

(33.6)
0 2 rot u —	 rot t

u

Proof. By applying to the equations (33.1) first the operator

of divergence and then the rotor we obtain the equations (33.4)

and (33.5), respectively.

It should be noted that the equation of the rotational wave

is independent of temperature. The equation (33.5) was obtained

by Voigt [4321, and equation (33.6) by Cristea [681.

Theorem 33.2.	 If „ e C3, 0 c ('4•:1 , f E t", r c (12 on It x (u, t°)

and equations (:33.1) and (33.2) are satisfied. then we have

z
. AAA -t-F +^^;1 ou - i;o ii (^u =	 (33.7)

div t — c'i O ► r•
P

Proof. The operator q, of the equation (33.2) is applied

keeping in mind that (33.5).	 This result was derived by

Cristea [681, Lessen and Duke [2571, Chadwick and Sneddon [481

and Paria [3321.

In a similar way It is shown that div u also satisfies the 	 /105

equation (33.7) (Voigt [4321).
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34. Formal Representations of the Solutions

Let us assume that t u Oon /t x (o, ta) and	 f t 0 .1 on It x it), 11).

In that case we can write

	

I	 gnkil i► - ► rot Y,	 (34.1)

where O t: C1 • 1 , Y e C1 on It x (u, to) and div Y es 0.

We will assume that 0 ¢ 0. If we set

	

u	 grad 9 -} rot
(34.x)

we obtain from equation (33.1)

grad [(X -+ 2L) A? — p^ — ^ O + 0 1 + rot. [µs* — Fj I. Y1 +► •

Thus, we can satisfy the equations (33.1) by taking

„u ( tip — 0),	
(34-3)

34.4)
p ;y - _- -Y. . 

µ

It follows from (34.3)

	

U :_	 1(), + 2:A) 0	 + 1) 1.	 (34-5)

Substituting (34.2) and (34.5) in equation (33.2), we obtain

x

C .(! %)?	 ---	 '---r	
l 	 a,%,

(34.6)
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Thus, we have

Theorem 34.1. (Deresiewicz [82], Zorski (4573). If

u == t,+r►►d	 t rot	 4- 2 µ) 019	 n h	 (34-7)

where	 OF4.3, *	 (!..: on B x t ►► , 101	 and equations (34.6).  ( 34 .4) ;
are satisfied, then u and 0 satisfy the equations (33.1), (33.2).

The following theorem establishes the completeness of solution

(34.7) .

Theorem 34.2. ( Carlson [461)  Let 'n,	 on It	 > a,
N 7 2), it . cu on Is x (u, t„) and	 (I z i.,r-Y on it x (1), 1 0), (/' ;o 2, Q %> ^ ► )

which satisfy the equations (33.1) for f grad Is I rol y	 with
and •y of the class C P ' Q on B X (O,t 0 ) and div Y - 0. In that

case there is a function m and a vector ^ of the class CM ' R on

B x (O,t 0 ) where R s min (N + 2 9 Q + 2), so that

/106

u = gn►d 9 -t• rut	 O= P f(X + 21A) 0 o + 9J,

q ^^ — — 1̂ Y, div yr = 0.
N

Moreover, if D!>4, P>2, Q> I t 	 and u and 6 satisfy (33.2),
then 0 satisfies equation (34.6).

Proof. Keeping in mind (33.3) and (33.4), the equations

3.1) and (33.2) may be written, respectivelv.in the form

cs0:u + (c, — c$) grad div u _13 Rcad0 =-- 1 t,
P	 P

01 0 — TOP div u
c	 c•

(34.3)

(34.9)
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If we keep in mind the fact that

rot rot u grad div u — Au,

the equation ( 34.8) may also be written in the following way

ci grad div u — ti rot rot u — P grad 0 -4 P t = ii.

If we integrate this equation we can derive

u(t) = U(T) + u( T) (t — S) + grad 
(1 

[(-21 div u — x(x)] dx da +
L T

} rot 	 [— c?j rot u(1,) — 4(X)) dX d4,
t t

(34.10)

(34.11)

where x = ( 0 0 — 0 )IP, C _ —YIP•

Using for u(T) and u(T) a decomposition of the form of (34.2),

we can write

u(T) + u(T) (i — s) = grad a(t) + rot b(t),

where a and b are of the class C 2 and satisfy the conditions

d = 0 1 b = 0, div h = 0.

If we define the funtions 4 and k on B x(O,t 0 ) by

^(t) = a + 	 [c; div u(a) — x(X)] da d8,
T t

^(r(t) = b— 
S' S' 

[e2., rot u ( ), )	 (X)IdXda,
t T

then we can derive from (34.11)

U == grad q f- rot 40

and in view of the 'act that div Y = 0, we have div * = 0.

,48
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It can easily be seen that the following relations take place

41h . a •} 4► 	 POP
P

^	 _	 1^•' 1'ltl 11 . 1 —Yr
P

(liv u	 0^, 1-of u --

whence we obtain

0,^4	 - ^ v.

Replacing u and a in equation (34.9) it follows that ^ satisfies

the equation (34.6).

Theorem 34.3. (Nowacki 13161, Soos [3851). If

11 = l A } ('.'µ)I q ^^^ — e^1	 m — (A-}-Ea)0: grad d i v m	 (34.12)

i ---- gruel y'?
A } 'art

^•	 d t

where 0 is a vector of the class C 6 on B x (O,t 0 ), and T is a function

of the class C 4 on B x (O,t 0 ) which satisfy the equations
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J	 1
O, q,O, cJ 

t31,	 j:(^, .+ '2-A) ^,

(34.1j)

(34.14)

then u and 6 satisfy the equations (33.1), (33.2), with the force

f and heat source r.

Proof. In view of (33.3) and (33.4), the relations (34.12)

may be written in the following; form

1U = P' Lr7^L1^ c0	 ^— p(r;—^")a*brad dives }- 	 Rrnd T,
of ^	 p'► 	 (34.15)

0	
c P" 01'1 (12

 q : Illy Jm
^i of

If we replace (34.15) in (34.8), we obtain 	 /108

^ "0.11 4- ( j •; -- ^ 1 crud ^.iv ee - (^
	

rml (; .

I'

w	 (^

	

— P^'^^rOc O^G1^— e^ i^ t l m — r F^^^(c , — ^'i) (O i^^— cA J	 } (34.16)
11	 lL	 01

-}• P4 'Y( ei — ^Y) q ;L1 4 -i p(c'i — ^ ) =D,O-{ epr;^"O:	 Rnid div 	}-

P L r	 c

In view of (34.13) and the relations
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r-AR(i — (1) [Q:O: + P(ri — (ID20A 4 " 9 Pl + 1O=(3t

l	 J^

Y Y	 w= Pl'i(l'1-l'^) q 101 - CA 	 f

	

Y	 4

O, ^^^ — l= 0 = O;r
ell

the second member of (34.16) is reduced to -f/p.

If we replace (34.15) in (34.9) and in consideration of

(34.14) it follows that

p i I1 — n,i lll^' it =( q ^0^— CA
' ) 

yr +
l^	 l	 dl

	

r e F' l i Top N a	 Tod(tl

— CA 
0 

div 4^ ^ — r .
Of I 	 c

	In the quasistatic	 theory of thermoelasticity Ionescu-

Cazimir [213] derived the Galerkin type representation (24.12).

In the case of the dynamic theory of coupled thermoelasticity, the

representation (34.12) was derived by Nowacki [316] and by de Sobs

C3851 using the method of associated matrices (Moisil [2921).

De Sobs gave, in C385 1, an expression of the equations of

coupled thermoelasticity with the help of the functions t ij and 0.

Thic result extends the results derived by Ignaczak [208] in the

uncoupled theory and by Ionescu-Cazimir [214] in the quasistatic

case.

	

35. Thermoelastic Waves
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a) Plane harmonic waves. A plane thermoelastic wave is

characterized by the fact that at a given moment on any plane
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perpendicular with respect to a fixed direction, the components of

the displacement vector and temperature are constant. The direction

considered is called the direction of propagation, of the wave. We

will choose the system of coordinates in such a way that the axes

0x 1 coincide with the direction of propagation. In this case the

plane wave Is characterized b-.,

u (	 u (( XI, (),	 0 — 0(x1 ' f).
	

(35.1)

In the absence of a mass force and a heat source the equations

(33.1), (33.2) become

	

()a _ 1 J-	 ^U

(	 .1-21	( ,	 '-, 
	 P(.2

l u, —	 --	 o,	 (35.2)

t 	1	 ) 11

	

Of C
/ 11 3 	l^

	

( r da; — Jf )	 (^ da1Jf

The component u  describes the longitudinal elastic wave, the

components u 2 and u 3 transverse elastic waves,and A the thermal wave.

It is noted that the transversal waves propagate with a velocity

c 2 and are not affected by the heat field. In the following we will

not study them.

If

11 1 _ 
Z{r I 1( J II (o ) (""), p ^ Ike (p*(xj' (o) a	 0	 (35-3)

;he plane wave under consideration is called harmonic. Re [ ] was

ised to designate the real part of the expression from the parenthesis.

.n this paragraph we will analyze the thermomechsnical interaction
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w

studying the propagation of plane harmonic waves in space. The

problem was studied by Chadwick and Sneddon [48] (see also Chadwick

[49 1, Nowacki (319]).

It follows from (35.2) and (35.3) that u  and 8 satisfy the

equations

9

	

07 2) • _ _ N ±

(35.4)

C

d a ^^	 iTOPw du!	
, ►

daT } 	 + . 

where

(35-5)

In the following we will assume that w is a real fixed constant.

Let us consider a fictive medium for which 6 = 0. In this	 /110

case the solution of the equations (35.4) has the form

►"^ *	 ^Yl^,la,., -} ^'^P - ia,.,	 ( 35 . 6 )

A

where
X1	 a	 °-^ , X., - Vq	 ( 1 i i)	 NV

(35.7)

and Ca and Da are arbitrary constants.

The displacement Q 1 and the temperature 8 corresponding to the

functions (35.6) have the expression
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-ice(/- 
h
=1 ,	 -itr(It!1

Jul = Re [Ole	 -} Vge	 h ) , (35.8)

The function u  represents purely elastic waves which propagate

with constant velocity c  in both directions of the axes 0x 1 . These
waves do not present dispersion or damping effects. The function
A describes purely thermal waves. They are damped and are subject

to dispersion in the sense that the phase velocity depends on the

frequency. The damping coefficient is ;̂ :=IinX.	 2k'Y2k

and the dispersion results from the dependence of the phase velocity

wai1 2 — ^t^,)—= = VU C on the frequency w.

Let us study now the equations (35.4) in which ^ differs from

zero. From (35.4) it follows that both ui and ©* satisfy the equation

((
12

a:^	 ^r) ^ di", + 4
)
 64 

as -, I Y=o,
i	 ,

(35.9)

where

E = TOP e .

C P(;

Looking for the solution of the form

to the characteristic equation

*^4 — 21 4' + q + Eq ) + q,7'.' - - n.

(35.x-0)

einxl, we are led

(35.11)
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We obtain

l
41.e== 

l (0
3 + q I- eq :1. ( ( n1 1 q I- al)_

	 .1ga')l/2(.
r

The coefficient$ enters in equation (35.11) only through e.

Obviously, the roots of the equation depend on a and for

e - 0 we have

V121(0) _ a, r 	 rY(0) = q.

!111

(35.12)

We will designate the roots so that

_ 	 cue%(0) — ^l	
C1

(o) = X., — (1 
D) V2k .

(35.13)

If we ask that the functions ui and A* given by (35.9) satisfy

the equations (35.4) we obtain

Ili = A le"lixt + A_P —iglf, _ 1-	 IrZp	 1Rlelq(r,—R`P—,nowq,
P((a^ — r̀ _) L

0• = B i ei " 98 , + Rye- i ►l.ir, _1. Topwr l [A,eiA,;t — A Ze in^r^^f

h (q — ^ 2 L

(35.14)

where A  arid B  are arbitrary constants.

With the notation

'}.i9a	 (35.15)

we can write

Y
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to, = Re	 + As eA",	 +.

6122a ^ - ItrCf - ^', —
	

e^^ a ltr/l + `` )
 11

R P—^^e 	\	 w

0 = Re j R,P-h IF& a ^" l `- 	{ R-ea^y c- iw(f+	 +

1i (q ^

(35.16)

The relations (35.16) contain on the one hand terms of the form

.4,P-819 6 e-
 
	

9 A SPOT' a 

	 (35.17)

called quasielastic ones, on the other hand terms of the form

Re- a , P
-41- V 1 )	 'treB^^^e-^w(f F

, (35.18)

which are called quasithermal ones.

Tn order to interpret the result, we will consider the relations 11121

(35 .8) and the fact that for a = 0 (e = 0) we have

v
It rl-)(()) r- 

V	
^- 

V 21

(35.19)
21;
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The root n 1 (e) determines the quasielastic terms (35.17/'

and n 1 (0)	 al defines the purely elastic waves (35.8)1.

Similarly, n 2 (e) characterizes the quasithermal terms (35.18) and

n 2 (0) - a 2 the purely thermal waves from (35.8).

From the above presented facts it follows that the effect of

the interaction of the elastic deformation with the thermal field

in the case of plane harmonic waves may be desc;-ibed by two aspects:

(i) Modification. The purely elastic and the purely thermal

waves are modified. The quasielastic terms in contrast with purely

elastic waves are subjected to damping and dispersion. The

quasithermal terms and the purely thermal waves are subject to

dispersion and damping, 	 but with different phase velocities and

damping	 coeffiecients.

(ii) Coupling. In the expression of function u  appear both

quasielastic and also quasithermal terms. The same thing occurs

also for the function e. The presence of different type terms in

the expression of the functions u  and 8 characterizes the coupling

effect.

In order to discuss the phenomenon from the purely physical

viewpoint, it is convenient to introduce the following quantities

	

^
V
; 	 x __ `,*, (.J' -_,--'.	

(35.20)
U)	 k

The equation (35.11) takes the form

	

S4 --' ^%	 } 1 % (	 } e	 ^- 1% _ (► . (35 .21)

From (35.15)  and (35. !:n )  we have

[,	 y	 4Q
	 (35.22)



Solving the equation (35.12) we conclude

i
„V Y 4Cy f- 0 +- i)V2 '+- i(I -+- C)]12 +

x

(35.23)

[y — (1 -+- ;)V'lY. -+- i(i 1 e)1,12)"

I
2	 Vy Ity -+ 0 i i ) V'2Z + i(1 I c) 114 —

2Z	 orV

The expression of the phase velocities v  and of the damping

coefficient 0 . may be obtained from (35.22) a:ld (35.23).

The data from table 1 indicate the fact that a is a small

number. Developing the powers inserles. according to the parameter

e (the convergence is very rapid [491) from (35.22) and (35.23)

we obtain

	

.. ^^ L t +	 e	 — 01 — 14 y2 + y!) ,+ O(e ')^rL	 2(1 + xz)	 +Y.2):,

	

tj 
*. [ — ^K3—	

C 2 z 
2 (5 — :1 Z2) 

+ OW)

	

el 2(I -+- y2 )	 4(1 -+- z 2

i

	

e(1	 X)	 e1(. +- 10y, —K 2 —yfix' ,r2	 C,^2y 
Li — 

,r(1 
+ y2) }
	

8(1 -} x:):,	
- + U(e )i,

V

r ( 1 +- e( 1 — y)	 0(1 — ar — 12 y2 4. 10X3+.;r!)+O(e3)1.

We will designate

e •co .

	

..^	 .'c.

The frequencies which will be reached in elastic media are

limited at the top (Brillouin [401) by the constant

1 r. .11

/113
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where M is the atomic mass of the medium and (c l ) s is the velocity

of the longitudinal waves under adiabatic conditions. For solids

t	 the experimental data indicate that the following eauations

(,) 4 1.)• <' W'.

take place.

Information concerning the order of magnitude of the quantities

which arise may be found in table 1, where 	 t ►1e data were determined

at 20°C.

Table 1

Units
Quantity of Aluminum Copper Iron Lend

Measure-
ment

(r' 0 )s I	 41111 sef•' 13 fi,:{'.1	 lob 	I 4,311	 1116 !^,KI ► 	 111 1,1.1	 111
E - :I,LG	 111-^ l,liK •	 111	 1	 ! 1,97	 (11 7„{:{ • 111	 s
W O see 13 4,66	 lull 1,73 • 111” • tint I "A	 IWII
nem ► e1n, t,31	 t u• :1,19	 111 4,•IK • 10 1
w see -, 9.KO	 1u 13 ^ 7 ,55	 110 13 + 9.J^ • lu ll

:1,C7 • IIN
1,	 9	 lots

It follows from this thac in agreement with experimental

data, we can assume that X << 1. Developing in series according

to the powers of X, we obtain from (35.22) and (35.23)

	

vl ^ ( • 1V 1 + tt1	
X3c(4 — 3 t) 

+ U( y4)1- 8(1 + 04

_	 w•	 X213	 41
81	

C'1V1-}• e [ 2(1 + c)- + U(X )113

L —	
Y 	 X2e(4 + e) XJt(8-20c+C2)

+	 +	 + O(X)
4 ►

tyl"+
 
E

	

t:= 
c

'2(1+c)'=	8(1 + e)4	,16(1+c)" 

•	
X	 X (	 )9= _ wi• V 1 X(,+, ) [

  1 —' 2(1 fi = )s — 8(1 + C r +

+	 + o( xt16(1 + er	 )1.
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For frequencies reached in the laborator y and in nature (f

X << 1) , we have vv cl Y1-}- c .

A similar study may be undertaken to analyze the case when

the wavelength is given. For this, n 4 s considered	 a real

constant. In this case the equation ( 35.21) will be considered in

the unknown X (Chadwick [49]).

b) Rayleigh waves. Let us consider now an elastic medium which

occupies the half- space x 3 > 0. We assume that it exchanges heat

freely,	 by radiation, with the atmosphere x 3 < 0, the temperature

of which is T 0 . We assume similarly that there are no mass forces

and heat source and that the boundary of the half -space is free of

tensions. Consequently, on the x 3 • 0 plane, we have the following,
conditions

t'3 =o, `)0+bd moo, .'or	 a^, - 0.	 (35.24)().r,

where the transfer coefficient h is constant.

We will study the case of surface waves which propagate in the

direction of the axes Ox  (Lockett [ 2657). We assume that the

components of the displacement vector have the following form

Ni ; 991 - Y 933 11 2 = 09 113 = 4r 8 + W+Ir

where 0 and ^ are functions of only x  and x3.
satisfy the equations

P

(35.25)

If these functions

(35.26)

(35.27)

kAZO — ToPA. " — v6 = 0,
	 (35.28)
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t
where
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+^ .

then the equations (33.1), (33 . 2) are satisfied in the absence of

mass force and a heat source.

We must	 rind solutions for the equations ( 35.26) -- ( 35.28)

of the form

(9, +, O J — Re ((m(r3), T(.'3), A (x,)) e0so- W)),
	

(35.29)

If we substitute these expressions in the equations (35.26)-

-(35.28) we obtain for the functions of it, To A the following

equations

(P-' —	 0 = -^- At
C 1	 pc;	 (35.30

A" — (p2 _ iwc) A — _ iTo oil) (b„ — 
P14)),k J	 k

In addition to the boundary conditions (35.24) we also have

conditions which require that the solution should tend toward zero

when x 3 tends toward infinity. Keeping t,:.is fact in mind, we will

!onsider the following solutions for equations (35.30)

4^ = a c ^' V °•_•1 + lie - ''V d -'r

P	 CI	 1	 l (;	 'Z `	 '	 (3 5.31)

Cc
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where A,B,C are arbitrary constants and z 2 , z2a re the roots of

the equation
s

"4	 W W Q	
9

(35.32)

and
Gla

(35.33)

Obviously, the equation (35 .32) coincides with the equation

(35.11). If we substitute the displacements (35.25) in relations

(23.22), we obtain

^3.

i^

z •,	
(35.34)

(as _ P021 D29 }' 2 Fv!.(-^,13 -- Y,aa) -- (,p,

In view of (35.31) and (35.35), we obtain from conditions 	 /116

(35. 2 4 ) the following relations among the constants A.B. and C.

(A+B)(2— wa1-2ib,C=0,
ll	 7^'!! (35-35)

2i(b,A + baB) + (2 — W2) C = 0,
ll	 p'`c.:

r h
	

11 r	
a	 w: l

Al;^—bi/(bz -1+ pa22 +B(p b,)l
bz-1+ 

^ 3	 0rP` 21

where we have designated

b`=1—=^
	

(35.36)
P.,

Elimination of the constants A,B and C from equations (35.35)

leads to the relation
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Y

:' — 

pYC's) 
rG^ + b,hY y- b; — 1 } p^^"/ — 1 b lbgb9(b, { GY ) _-	 (35-37)

P L l^3 — r ì1 (bt + b..) — d b3 (bi b 2 + 1 — ^ ĉ i
/ 	 'j1► 1

which connects the quantities p and w.

If we consider In (35.29) w as an independent variable and

set

w
v = ,

P	 (35.38)

then equation (35.37) becomes

(2 -- h,) (bt,  { b ib, } ba – 1 -} t1) — 1 G,hsbAb, + b..) = (35-39)

_ ►  `(b, {• G_)( •2 -- "2 -- 4 G Y (b,b.. { 1 — 
t~ / JG) L 	 ll	 ci 1	 ``	 c i 1 J

From (35.36) it follows that

1

I	 p-	 p

and from (35.32) we have

l.c,

If we keep in mind relations (35.20) and (35.38), we obtain 	 /117

a,c	 v Y	 N o e	 1•'=

XriI ' l; P#c	 Xcs

with this we are able to write

	

u	 i
 'T o

C,	 X c

	

n-6= 4
	 (35.40)

l► i ^'i (-1 (L y-e)-y
c 	X c,	 /. c,
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Simllarly, we have

e

(35.41)

Keeping in mind (35.40) and (35.41) we can derive from (35.31)

an equation for v. It follows from (35.29) that 1/Re v -1 is the

phase velocity and w Im v-1 is a measure of the attenuation to

the direction of the Ox  axis. The surface wave is subject to

dispersion because these quantities depend on the frequency w.

If we develop in series the powers of k and neglect the

terms of the order X1/2 we can conclude that the velocity v

ceases to depend on the frequency and on the constant h and we have

t	 J	 \	 t	 :

Setting; c 2 _ (1 + Oc 2 , we obtain the known reletion which connects

the velocity of Rayleigh waves and the velocity of longitudinal and

transversal elastic waves.

36. The Elastic Space Subject ed to Concentrated Loads

Let us consider an elastic medium which occupies a whole

space. We will study, in the case of harmonic waves, the effect

of a concentrated mass force and of a concentrated heat source.

The results presented here have been derived by Nowacki [316].

Let

f) - : 1{e^ [.ji (•+') a IG4 
1, r	 He [ r*(•r) c - ^w^ J.	

( 36 .1)

In this case, the unknown functions have the form

i►► 	 Re ( ► i!(•r, a,) a -iwl] , 0 -= Ito [0*(.r, c,,) c- lid 1
	 (36.2)
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The functions 0 and T which realize the representation (34.12)

may be taken in the following way

(36.3)ch i .. Itc • (chi (,^^ c,,) r-^.r^^ y. -• lic e	I' *( x, c) ^-UWc^.

It follows from (34.13), (34.14), (36.1) and (36.3) that
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the functions 0* and T* satisfy the equations

(0 A- T ') ( (J f Qt) (J I	 1 EqA ) chi - -	
o	 — fl

;1) (36.4)

[(A + Q` ) (A t q ) i- sq.X ( `I ' *	 -- 1 r*r
x

where we use the notations

we	
(36.5)

If

ti;t: _ r	
( 36.6 )

Q 

then we are able to write

(36.7)

Obviously, k1 and k2 are roots of the equation

~' — [a-' + 90 + 01- . 1F. Q.q - o .	 (36.8)

z	 a, = 	 cr ► 
q
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In view of (36.7), the equations (36.4) become

	

(0 + ,l ) (A + ki) (0 -}- l;i) 4►, .-, --	 c' 	 •
	

(36.9)

k

From (34.12), (36 .2) and (36.3) it follows that the functions

u;, e* are represented with the aid of the functions 4^k, 4'* by

the relations

(a -}- 2 µ) k (A }- ki) ( A -}- b:i) 00 —
a

	

JA) 
k P + q)	 J-	 q	 +	 (36.10
^•	 ). -{- µ	 { 24

0* 	 p Toµ^co 
( A -{- '=)	 + (a } 02) `!'*•

c

If we assume that the mass force has the direction of the axis

0x 1 and we do not have a heat source, that is,

	

fi	 Sub* ,^; r*	 ^,	 ( 36.11)

then we can consider	 (0 0, 00 0, TO -= o.

It follows from (36.9) that the function 0! satisfies the 	 /119

equation

(A -}_ T` ) ( 0 + k-) ( 0 {- Q ) 
Y- _ — kµO. } °«) f *.	 (36.12)

Let G **, be functions which

( A -(- kY) r! =

satisfy the equations

C 
_f*

_	 C	 (36.13)
kµ(). + 2µ) ^*,

kµ(,\ + 2µ)f *
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F

The solution of equation (36.12) may be put in the following
form

a

x = a,G, + a $Gj + a3G,,	 (36.14)

where a  are constants. If we suppose that the function X given by

(36.14)	 satisfies equation (36.12) and if we consider the equations
(36.13), then we obtain for the constants a  the equations

a,+as +as=U,	 (35.15)
(T=' +I;Y)ai +(T'=+Q)a. } (Ili-I-M)as=0,

It follows from (36.15) that

_	 1	 _	 1	
(36.16)

1

Here and in the following, we assume that the denominators

of the previous fractions are different from zero, but the results

which will be presented may also be derived in the contrary case.

If the mass force considered is concentrated in point y, then

we have
f"

where d is the Dirac measure.

In this case, the solutions of the equations (36.13) which satis-
infinity the radiation conditions (Courant [66], Kupradze

) are
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Q+ 0 
= — C	

e%ft .

.	
7rA-4	 , k( ). .1 • 2 IL)

I 
It

or M.-	
(0 .	 Purr

TnijA(X J- 21,L) le

(36.17)

where
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90 ( ., '1 - YM

	
(36.18)

From (36.14) and (36.17) we derive

4 nklto, + -!.t) It

elAgl?	 0'	 1,-"-+ —	 I	 !"
-	 --z J

(36.19)

The corresponding functions u*
i
 and e* are obtained from

	

(36.10) by setting	 -Z(.,-, y; w) t' (P! -	 o'

We will designate these functions by u*(])(x,y;w) and4

0respectively ., thus indicating the fact that the mass
force has the direction of the 0x 1 axis and is concentrated in
point y.

If we keep in mind the relations

k	 q	 I. ,	'-'q

0'	 r 2 i,	 7,	 Z9

+ 2^L	 u	 q)
km + q	

+	

eq 	 f 2)9

after calculation we obtain
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z

'c+	 •I >tpc ^	 It 
R1/	

1 t.;.w s 	cl.r,d r,

(36.20)
fI •UI	 +l

where

	

!x:(11, w) _ Qalki — q) r"+ '"	 a^(k_	 9) ,,lk,k _ c.,-n
(36 .21)21)

k) Ir	 htl;;	 G11 ) Ir	 Ir

Let us as:tume that

.f; .— s„s(.t — !i), ,.«	 oI 	 (36.22)

In this case we will designate u* and 0* by	 ++; "'(^' .y ; c•,)

and	 q * ^^1(a, y; c,) ),	 respectively. These functions are obtained
from the relations (3'.10), setting	 a;,y(x' y; w)

and T* = 0.

Thus, we derive

•U)	 j	 pink	 I	 ,l2 I':( It, G))tl,	 (,, !/;w)	 _	 s,;_ -	 (36.23)a npc	 Ir	 1 ,^^.,^	 tl.,,ox,

c 

Let us study now the effect of a concentrated heat source. 	 1121

We will assume that

	

fi	 11,	 r• # p,

In this case we will take 0 = 0. The function W* satisfies

the equation

k

16 9	

^ `.



If we have

(0 i A;) 	 r•	 (s -)- k!) 71!k	 l:
(36.25)

then we can write

	

k^—A
	 (36.26)

If the heat source is concentrated in point y, then r* -6(x-y)

and we obtain

'rob, 	 PIR'H
!1	

`•

	

; c.,)	 — --	 --	 - -- - - 1	 (36.27)

Ii, this case we designate the functions u* and e* by
u* (4) a,nd 6*(4^ respectively. We derive from (36.10) and (36.27)

	

p^'^^ r ! (J) _ —	
_ _^)

	
Pik, 1( _ eiA'H

(36.28)

IR^k	 iA Hbtu (.r, y; a) — -- a^rh,(l^ .._• A;_) L (k — rt?) P^ — (kj —oa) a '.

	

l	 !i

The functions u*(p)(x,y;w), 6*(p)(x,y;w)(p = 1,2,3,4) are Green

functions for the problem under consideration.

Other problems referring to harmonic waves are presented in

the monographs of Nowacki 13151, 03191.

37. The Method of the Potential in the Study of Vibrations

a) Preliminaries. In this paragraph we will present a study

;i
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of harmonic waves in homogeneous and isotropic media with the

help of the method of the potential. Ignaczak and Nowacki [209],

[210] derived the reduction of the problem! to the limit of the

Integral equations in the case under consideration. Kupradze and

Burciuladze [2491 (see also [2481) studied these problems with

the help of thermoelastic potentials.

I.et us derive the equations which describe the thermoc-lastic

process under consideration. We will assume that the loads have

the form (36.1). We will use the designations from (36.2) for

displacements and the temperature. Keeping in mind the relations

(36.1) and (36.2) the following equations can be derived for the

unknown functions u*, 8* from (33. 1 ), (33.2)

/122

tL"j., +( a A- 10 	 POi+ pwauj =— fi,	 (37.1)

k6!. + To,3iwu,!, +

The constitutive equations imply the relations

+ u(u!: + u'..) — tie* 8,.,	 (37.2)

9i =k9j,

where t* and q* have the amplitudes of the functions t rs and

respectively.

If we designate by t* the amplitude of the component t
i
 of

the tension that acts in point x of the oriented surface S, then

we have

t), = tAt",	 (?7.3)

where n  are components of the unitary exterior normal at S in x.
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Similarl j,

q' — 4; n„	 (37.4)

where q* is the amplitude of the flux which acts on S.

The system of equations (37.1) may also be written in

matrix form. We will consider the vector v = (vl , v2 ... ,vm ) as

a matrix column. Thus the product between the matrix A =1jaijllmxm

and the vector v is an m-dimensional vector. The vector v multiplied

with matrix A will designate the products between the matrix ljne

V =11vl,...,v^ I and matrix A. We introduce the operator

(37.5)

P (-" ) ^-- 11 D-- ( ^, ) 114.4

where

a	 ()

D44 = h. A + ible,	 (j, k - 1, 2, 3).

If we designate

then the system (37.1) may be written in the following way

(37.6)

/123

(37.7)

Let us introduce the matrix operator

a
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^( ll,r' ' 
H f

^ e... II^N
 ` 11.1' . I ^l ^ ^`.K ► '

	 (37.8)

where

fl	 11	 t/
	

(37.9)
d 11	 11,I'1	 Il.r^ 

t

It follows from (37.2) -- (37.4) that the vector (t; , tg, t;,, q*) s PU

may be written in the following form

(37.10)Pp= II( 'I , fl) 0.
11 Il r'	 lJ

The reciprocity relation from Paragraph 29 becomes

— iaTo [j (fi uu,^^' -- f^'^'III (+1^dr +
S 

(1

	

onb Ju

— l^^s^Ir^ t^^^ drt ^_ ` (r*n^0 *is^ — r*ia©*nr ) c1.1, ^.

rr

4_	(q*010*(s) — q*`4* 111 ) dn.
J$

(37.11)

Let us designate by

ox	 dx

the adjunct nperator of the operator 	 ^► r
►

()X

(3'x'.12)

We have
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h,I - Ma, (f, l; - 1,'2, a).

t

(37.13)

Let	 V=(r!, A • ), P — (n„ Y1•	
The system	 /124

P^	 V	
(37.14)

(dx)
is written as

1Ati'.0 + (), + µ) r..!,)	 Toiowil! + pw =r! = — ^„	 (37-15)

Obviously, if we put the following in (37.15)

0•,
(37.16)

	

a'° =	 y, = iwTof,^,	 Y ^— ►*,

then we obtain the system of equations (37.1).

Let iw Toff tzj _ g1:1, 
r*iti = Y' a) , icy ToU *"." =	 0*"" _

=- — (n')-,, 
Y1ei ), f, _ — (fi `l', 	 r*41)) , V	 (Ci ^.^ 

OW 221 ), D = (u^ ui^ p•u^).

Let us designate by B  a finite domain 	 from the three dimensional

space limited by the closed Liapunov surface DE and by B e its

complementary B  + aB with respect to the whole space.

From the relation (37.11) we conclude

t vnV — VDU) (IV = S
OB

(vsV — Va v) da,	 (37.17)
e, 
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where

(37.16)
tJ	

')!
	r ►

	

)114%4C (^^ 9 us 	,I
AN (.0 X  

9 N`

nIt ^°` Hitt #lt me `-' iw Tptj l,

b) Fundamental Solu'.,ions. Obviously the functions ^^ ^^^(^,p;w), g^^^^ (x,y; W)

given by (36.23), (36 .28) are t'undamental solutions for the system	 ;r

(37.1). Let us consider the matrix as fundamental solution

r(x, W ; to 	 r.. 11t.,,

(37.19)
r,, == 1t7 (.) ' 	 r,, == osm.

where

If r(x,,y;w) is the fundamental solution matrix of the system

(37.14), then we have

P* (y , x; w ) = r(j. , !/; w).	 (37.20)

We designate by A* the transposal of matrix A. If x # y, 	 /125

each column of r(s)(x,y;w)(s a 1,?,3,4) of matrix r satisfies,

as a function of Y. the system

D (	 ) r"'(x, y ; w ) _ (► .	
(37.21)

dX

j
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If w -► 0, 0 4 0 then matrix r becomes

n (a, Y) = Iln.. 114.4,
	

(37.22)

where njY U M (x,y) are fundamental solutions of Vie equations

of elasticity [24e], and nJ4 U I1 4 , . 0. The matrix 11 represen*s

the fundamental solution matrix of the system

ILVMS + ( W + µ) V1,11 = — ,lf,

MO= — r.

If we designate
©(x, y ; to = nx, y ; w ) — n(x, v),

it can be seen that the elements of matrix G remain limited when

x G y, and the first order derivatives of these have in this point

a pole of the first order.

We have

n(x, y ) = T[*(x, y ) = n (y, x).	
(37.23)

We will designate by Hix) the matrix line which has elements

( OX

a	 1 	 4).	 We can write

to =8,fl,	 q=EX.
	 (37.24)

Let 11 (s) (x,y) be the columns of matrix H. As is known from the

theory of elasticity (Kupradze [2461) we have

L gsri n"' (x , 4) doze, = — r,(a;) Si„
	

(37.25)

where	 1 , x E Be,

3/2, x E OB,

0 , x c: B,.
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(37

Let there be a matrix

M(x, y) = IA. lids 4 .

with elements	 /126

NA = H'"" n 'Nr, ,+l), ht„ a M41 = 0, Dle4 ='gi 1 n(G1(.T, y).

The matrix

I.	 v • w(x, ^ ^ ) = H - î^- , ^► r 1 r (X, ,r ; w) — ar(^, ^),	 (37.27)

has at	 point x = y a pole of the first order. Let us

designate by A(x,y;w) the matrix obtained from H 	 , nr) P(x,Y a,)

by transposition and exchange of x with y. In view of (37.20)

we can write

	

A(x'y; co)
— LH nV t(y'x;

(J)^*
^	 (37.28)

From (37.1 ', (37.26) it follows that

(
~a, ^^:^ n(..T, y) = A[(x,, y) = g (-^,-, it .,) n (x, y ) .	 (37.29)

` Ala . 	 /	 ` 01,

The matrix

	

N(x, y ; W) = A (x , y ; w ) -- M* (y, x),	 (37-30)

has for x = y a pole of the first order.

Theorem 37.1. For x X y each column of f ns matrix A(x,y;w)

satisfies as a function of x the system D __ U = 0

that is

nate) A(:^;, ^, ; ^^)	 o,	 x 9&
	

(37.31)



Proof. We have from (37.28)
d

I	 1

where Ars are elements of the matrix A(x,y;w). Thus, we can

write
d

	

[D(-
da A (^', Y a,) 

J 
= n,y ^' d -) H^, t.	

(I , 
11 y 1 	 Y ; (.,)—

	

N„n ( 
J	 ^) 1l, (( y) r-)ry (	

!	
y^,(.r, y ; c.,i	 El.

	

(^Y	 ox

c) Formulas of representation. Conditions of radiation.	 /127

Let us say that U = (u, M) is a regulated vector in B i if

U c Coone2m)	 and the functions u* r, j (r = 1 9 2,3 9 4) are
integrable	 in El i . Let U be defined in B e . Let us say that

U is regulated in Be if U E C1(B,)n C a(B,),	 and u*	 are integrable
in	 B n c(o, S), where T (0 , d) is a sphere with	 center in 0
and a radius 6 regardless of d.

Let us consjder the .relation (37.17). If we apply this relation

for a regulated vector U and for the vector y — 1''^( •y, r.; w), (s = 1, 2, 3, 4),
,just as in Paragraph 30, we obtain

ui(x) =	 ru '(Y, x ; co) HUday —
os

—^ U(y) II(- -, nyl 	 w)da,--^ r`f ^(y , x ; 1D ) D I a ) U(Y) dt'r ►
au	 d y	 /	 Jec	 ` dY

(1 =- 1 , 2, 3, 4),

or in matrix form

U(X) = L MY, x ; w) HUday — ^ (HC (Y, x ; w ))* U(y ) day — ne

— 
JD, r^(Yt ^; w ) D ^ ^ ) U(Y) dry.

Y,

(37.32)

;37.33)
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If U satisfies the equation

D(2-)  U.0.

then, using (37.20), 1,37.28), the relation (37.33) becomes

U(X) = S r(x, y ; w) H Uda, —	 A (r, y ;,w) My) da,,.
as	 au

(37.34)

(37.35)

Any regulated solution of the equation (37.3 4 ) may be written

in the form

U = (U1, iii) _ (Up + U12' 9 ui ) ►

so that

(A 4- ki) (A + k2) u)') = 0, rot, it") = 0,

(A + r2) UM = 0, (Jiv 11 12) = 0,

(A+ ki) (A+k")u, =0.

(37.36)

(37.37)

/128 JThis statement.can ea.,My be proven, keeping in mind the

results from Paragraph 34. Thus from (34.10) it follows that

we can write

a") = -`! grad di g- 0 — ^- grad 0'
(J2 P

C-^^"' = —	 rot, rot , it*,
<o

0 = 11 0) +

It can easily to seen that the relations (37.37) are satisfied.
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We say that the solution regulated in B e of equation (37.34)

satisfies at infinity the conditions of radiation if we have

2487, [2497

U 	
—^fc — 

i..ul: ) = a(!r - '),	 (37.38)

for any fixed y.

A formula of the type (37.35) oc.,urs also in the domain

Be if the regulated vector U satisfies the radiation conditions

[248].

d) Thermoelastic potentials. The formula (37.33) leads to

the introduction of the potentials

the simple layer potent al

(37.35)

	

V(x ; ^) _	 nx, 1, ; (0 ) v(y ) da,,,
JU

the double layer potential

	

6v(.1'; v) '	 ^(x , 1/; (a ) V(1!) day,

the volume potential

	

Lr(' ►'; ,^) ^-	 ^^( ►', !I ; (.)) 4(11) dv,,,

(37.40)

(37.41)

where the components of the vectors iP and 0 satisfy the condition

of H81der on 8B and B i , respectively.

As in the case of elastic vibrations, we can state [247,

[248]
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Theorem 37.2. The single layer potential is continuous.

Theorem 37.3. The double layer potential tends toward 	 1129

finite limits when x -)--edt, from the interior and from the exterior,

and these limits are equal to, respectively,

Jt!

(37.42)

^,)B

the integrals from the right member being understood in the sense

of the principal values.

The demonstration .f this theorem is based on the representation

of W(x;^) in the form

IRX; 0 = ^ A (x, y ; o ) f ^( y ) —	 ila„ 4-
J8

+
 S

[ A (x , y ; : ^) -- M*0, x )) ^(z) (la„ + J 11!*(y, x) ^(z) day.
JO	 JB

In view of the fact t1-at ^(y) satisfies the conditions of

H81der and that the difference (37.30) has for x = y a pole of

the first order, it follows that the first two integrals above

are continuous. If we keep in mind (37.25) we can conclude

and therefore (37.42).

0
Theorem 37.4. The operator N 8a +^^) applied to the

potential of single layers is a vector which tends toward finite

limits when	 x-+zEOB,	 from the interior and from the exterior,

and these limits are equal, respectively, to
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11(

11

d,	 ,ill 1'(: ; Y)	
1

=	 V(-) +

	

+	
I H 

rl
 n) ro, ,y ; co) V y ) dar,

	
(37.43)

-I ` Pt
(
	

rl -, N, 1 (-, !I ; w) ^(y) da,,.
"" 	 to-

Similarly, as in the case of the conventional theory of

the potential, we have

a

1)V(x;
	 0, D^d-- l W(x ;^) =0, x#aB,

'a
(37.15)

In the following we will consider the equation (37.3 4 ) and

the following problems at the boundary.

Interior problems: to find in B  the regulated solution of

equation (37.34) wh ich satisfies one of the conditions

-.,

(I 2 )	 Iim H da , ,il l U(.r) _ G(.),

where x E Bl, - E dB, and G(z) is a vector, the components of which
sal'-i ,fy the condition of H81der;

Exterior problems: to find in B e the regulated solution of

k

/130

(37.4U)
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rt

the equation (37.34) which would satisfy the conditions of

radiation (37 .38) and one of the conditions

(E 2 )	 liln H C 
iO , 

►1,1 IT (>>• )	 6(=),

where	 xE B„ ;edB,	 and G(z) is a vector, the components of

which satisfy the conditions of H81der.

Homogeneous problems, corresponding to the problems (I1),

(I 2 ), (E1 ), (E2 ) for G(z) = 0, will be designated by (Ii),(I2),

(EO ), (E2).

The following can be proven [248]

Theorem 37.5. The solutions to problems (E 0 ). (E0)  which

satisfy the conditions of radiation are zero in Be.

Theorem 37.6. For w 2 different from the eigenvalues of the

problem (A + r!')	 0, div W D(x) =- 0, x E B,, u(=) = 0 gn 813,

the problem (I 0 ) has banal solutions.

Theorem 37.7. For w 2 different from the	 eigenvalues of

the problem

(J { TY ) Illsl ( a')	 O, (i1V 11 	 d: E B(,

^ 1111.1

2 - -	 + 11 X vot 11 1 '= : -- 1), on f) 1;,
Ull

the problem (I 2 ) has banal solutions.

e) Reduction of the boundary problems to integral equations. 	 /131
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Let us look for the solution of the problems (I 1 ) and (E 1 ) in

the form of a double layer potential and for the solution of the

problems (I 2 ) rnd (E 2 ) in the form of a single layer potential.

In view of the theorems 37.3, 37.4, we obtain,for the unknown

density, the following singular integral equations.

— 1̂(x) +	 % (:,Y) J(y ) da,, = GOV ),	 ( 37.46)
^Jti

tv(^) + J^^ H o'- , ^^;) r(^, ^^ ; ^^) v(=) a^^ = Q(-),	
(37.47)

(37.48)

+ 
ion	

y) ^(y) (I(,,

(37.49)

.,	
-

These equations are integral singular bidimensional equations.

Following the procedure used in the case of elastic vibrations,

the following can be proven [248].

Theorem .37.8. If 2 n(^. - 2 µ) # ± µ, then, for the equations

(37.46) -- (37. 119) the theorems and the alternative of Fredholm

may be applied.

Similarly the existence and uniqueness of the solutions of

problems (E 1 ) and (F. 2 ) may be proven.

We limited ourselves here to the presentation of the method

and of certain results obtained with their help. A more detailed

exposition of these questions would exceed the frame of this work.

This has been done in the monograph written by Kupradze, Gegelia,

Baseleisvili and Burciuladze [248], where other boundary problems

are also examined. Problems of plane deformation in the case of

stationary vibrations were also studied by the method of the

potential [1891, [1971, [2277.

38, Short-Time Solutions. Lessen's Method
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Ia Paragraphs 35 -- 17, the problems concerning the particular

case of harmonic waves were considered, in which the equations of

the theory are reduced to elliptic equations. Let us consider now

the general case of non-periodic waves. One of the most widely used

methods in the s tudy of the problems of coupled thermoelasticity is

that of integral transformations. However, serious difficulties

appear when these transformations are inverted. In general, developments

in series according to the powers of the parameter a are used

(Lessen	 [2591) or solutions which are valid for a short time are

determined. We will consider some problems which will illustrate

these methods.

a) Elastic half-space. Let us consider a homogeneous and

isotropic medium which occupies the half-space x i > 0. We Pssume

that there are no mass forces and heat sources and the initial data

are zero. We will study the case when the boundary x  - 0 is free

of r;snsions and is subjected to a thermal field independent of the

point. It is obvious that the solution of the problem must become /132

zero at infinity. In this case we have a one-dimensional problem

so that

	

1t, = tt '(X" t), 0 = 0(X19 09 11 2 = " 3 = 0.	 (38-1)

The equations (33.1), (33.2) are reduced to

	

(A+ X14) Pa	
t'	

0	 (38 .2)

	

d x',	 4	 — ax,	
,

k
 OX2

— c0e_. 	 d1"' =0.
dx L	 dt
	 PTO

The components of the tension tensor which differ from zero have

the expressions

11, = ( X -f 212) 
Clio, 

— P 0 9 f22= 133=
^att,

dxi	ox,	 (38-3)
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If wa introduce the non-dimensional variables

x	 c'c	 coot	 it — `.'`. ►,	 T	 '	 (38- 11 )
k	 k	 l;	 °

then the equations (38.2) become

z	 z	 1i	 V
.4	

'"
ri—

dX 2 	.2	 ox	 (38.5)

62 --d 
T-- 

3 !^ =0
02'2 	ds	 v Oxo-.

where

X + 2 1 '	 (38.6)

We assume that at the boundary we have the conditions

f ly (0, -) = 0,	 0(0, -.) = 1'*H(s),	 (38-7)

where T* is a constant and H(T) is Heaviside's function, defined

In the following way

>0.	 (38.8)

Let us consider the following initial conditions
	

/133

(38.9)
it (X, 0 ) = 0 V u (X), 0 ) = n, T(x, 0 ) = 0.

In the theory of uncoupled thermoelasticity the problem posed

was resolved by Danilovskaia [75]. In the theory of coupled
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thermoelesticity this problem was studied in various papers. Let

us -nention in this sense ,he works of Hetnarski 11721, Aoley and

Tolins [241, Multi and Breuer [2941, holey and Hetnarski [251.

We will present first the solution of , the problem in the

uncoupled case (problem resolved by nanilovskaia) and afterwrrds

we will study the problem within the framework of the theory of

coupled thermoelasticity.

In the uncoupled theory the equations (3$.5) are substituted

by

	

(
-

a 	 a	

(38.10)

	

—	
d 

a)	
At

axa , a-=	 a^

	

cJj	 -_ _ T=0.

	

(a,; ,	a-

We will designate by f the Laplace transform with respect to

T of the function f, that is

(38.11)

If we consider the conditions ( 38.9), we obtain from ( 38.10)

(3$.12)

 
7'

(

dX 2
A2

— P^ =0.

Applying the Laplace transform to the boundary conditions, it

follows that

tu(0, P) = 0 1 Pol P) = T*

PT°	 (38.13)
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Z

4

The solution of the equation (38.12) 2 which becomes zero at

infinity, is

T Q Ole-V;11
1
	 (38,14)

where C  is an arbitrary constant. Imposing the condition (37.11) 20
it follows that

T•

and therefore 
	

PTO
T• Oil

To 	 P	 (38,15)

/134In view of the fact that we have (Carslaw and Saeger [471)

c•-Vr•	 r

l p /	 2

where

erfe y .__ " ( E. - c• d
Vn r

it follows from (38.4) and (38.15) that

e(x, s) = To
xerfc — --
4

_ .

(38.16)

(38.17)

We obtain from (38.15) and (38.12)1

( 2 g 	 AT+' E!-6

dx2 — p-) iE + 

T„ - 
P--- = 0.

The solution of the equation (38.18) which becomes zero

at infinity has the form

(38.18)
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c• —	 T -t • e - V;'

TOO - P)P yP (38.19)

where C 2 is an arbitrary constant. We will determine this coostant,

imposir.^ the condition (38.13) 1 0 We have from (38.3)

(Ill„
^u 	 (X + 2K) ^Ir — aoTo^'

and therefore

r	 T*Ae-0- l
	 Vi• .

'u	 (A 
+ msµ) 

L — ^'C^t•-h + Tod 1 --P) P VP J _ ?,, @ p	 (38.20)

If we impose the condition (38.13) 19 we obtain

C.. _	 AT« —
TuP( 1 — P)

so that we can write

^^^ r _. 
P
T+ ; 4. P• — ^^—VPs)	 Nr	 (38.1,

(iT*((
	 o -Vr• i

u _ (X 4- 2 1A ) (l — P)P l
e-r• 	 v p-

From (38.21) we can derive the expressions of functions tll
	

/135

and u. 'thus, in view of the relations (Carslaw and Jaeger [471)

P 1

Vr•	 _
e -- = 1- ^` a-^ erfc ( x 

	 + es erfe ( 
2yz

x
1	 ^P— 1	 2	 l	 l	 1V- 

we can write

fu = — PTO CM.r, -) — e l - ,H(- — Xg (3E .22)

where

.V(x,-) _ :1 e`(e - r erfc (2vT —^T1+ellerfeVT -4-^`^J •
	

(38.23)
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E:

The term from (38.22) which contains H(T - x) has the
F	 character of an elastic wave, while the other term characterizes
.k

	

	
the diffusion. It is obvious that x n T. that is, xl	clt
characterizes the wave front. Let us take any given point of

the medium under consideration with coordinates xi. Before the

moment t* s x*/c l the tension t ll in this point assumes the expression1
-BT* 3(x*,T). At the moment t* in the point under consideration an

elastic wave arrives. After the moment t* the expression of the

tension is — PT*[; (^,r) — er-=• j,	 The tension is discontinuous

on the wave frond and the magnitude of the discontinuity (of the
k~

r	 jump) is

[tl,].,.,,, = PT*. 	 (38.24)

It should be noted that the jump of the function t11 on the

wave front does not depend on the distance to plane x  s 0.

Let us now study the problem within the framework of the

theory of coupled thermoelasticity. If we express the functions

u and T in the form

9

o	 8	 2

U T=	
__ T,=_ -I 	a a

ax	 A (ax2	 a'C2 ) (38.25)

then the first equation from (38.5) is satisfied. From the second
equation.. from (38.5) we conclude that the function_ must satisfy
the equation

a	 3	 ae)] 	
(38.26)

where a is the coupling constant defined in (33.4).

In view of (38.25), we conclude from (38.3)

t1
2?

(38.27)
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(38.33)

The initial conditions are satisfied if

,;,•, u) 	a	 u ^lti ► o)	 /)Y^( C ► 0)	 (38.28 )
Il+,	 ► 	 Ilse	

— 0.

Applying the Laplace transform to equation (38.26), we obtain

1_ 1(
1 4

r^ 
— P(P -I- ( l + c) I 

p i a • 'dYS -}- /► ^^ P =- 0.	 ( 38. `9 )
^

The general solution of equation (38.''9) which becomcrs zero

at infinity is

'? -- r'<<' - k " -}- 1121' - `'r,
(38.30)

where B  are arbitrary constants and

(38.31)
P^ {/' -}- 1 -}- c :} VP --=p( 1 - c) --} (1 -}.. e)Y},r

In view of

ill
(^ + 211 ) P22 4, 	'1' it

 s1
A (da = _ (38.32)

Ba is determined fr, •om the conditions (38.13). For the function

if we obtain the expression

It follows from (38.25), (38.32) and (38.33) that

a 1.«

0- T*	 _
- P (01 — ka1

► ^	
(k1 — k'')

(38.34)
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Similarly, we have 9	 9(4—g)

e- P, e--f
	 ip-

- ft) 
X

Vi	 P	 op V i

-77:7:7

The problem of inverting the transforms (38-34) is difficult.

Pacording to Abel's [4261 theorem, it follows that if F is the
Laplace transform of function f,, then we have

lim flr) = Ifin pf(p),
T-0	 f--Go

and thus, large values of' p correspond to low values Of T. This

situation permits the inversion of the Laplace transforms for a

short t1me. Tho method permits, however, carrying out an exact

determination for any time of the magnitude of the discontinuities

on the wave front. If we develop in series the powers of 1/p . we

can write

/ 13 7

C	 f (4 - 0	 -

	

k,	 + + SP + P2 9
2	 ( j )

+ 
t(3c — 4) + 0 1—

2VP	 SP VP — 	( 
P54

t	 t	 t	 4 c + t2

p2 + p3 +k2l	 P6

k 2	 2	 C2

	

P	 C 
+ 

02 0 
+ 

t(3 + C2 60 + 20 + 
P4 

3t)

k'-' — 0	 P2	 P3
1

A.?	 2)

	

p2	 +	 02— + 1 — 6c + 3t2 201 — 3c + t
4

k	 k 2	 P

	

2	 P

k	 1	 2 — C	 8— 24c + 3eu	 C(5C2 — 21c)
+ - . A- -	 +

k 2	 p	 2PI	
%4p 3	 8P4

2 — 3t 8 — 40c + 15t2
+	 +	 7/2P33	 61PS/2	 SPk!

(38-35)

In the following we will assume that

C(4 g)

p	 -- 
r(4 — c) 

11	 e2vP z I +	 X,
Sp	 VP

(4 - 3g)
+ 04 — 3t) 

X.
SP VP
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We obtain from ( 38.34)

j11	
1.	 I^ r• ) —

c(1- a) a — x(i—c ) -
^0lA'/J—

l^	 1► e	 ',-Avl^	
l,,^r

	

'	 (38.36)

q	 s'rt' 
r•	

I	 ^—

VP^r	 I ex	 _ c	 i

In view of the relations (Carslaw and Jaeger [47]) /138--

1
 ^ 

e - r• ` — 
H(Te—̂ ) 

(T — X) H(T
p 1	 A

Y-1 a-Vi-	 erfe ^-,
T

slYOT Ila - at

	

^_ 1 r p _1 = r T 1_

^ 
xal erfe yV-	 ^`	 ,

I `	 J	 " T 
—x( 7c

(	
VP K — ^ ^ T tlY - h

	

^,

^ 1 l AVA 1 ^ r ^ 7c 1 ^ 	
— ,C lrfC ^ _^

PVT

K(1—c)«--$.(	 d_E),1•-	 ](T— x)lMT — x) —
ttt — p T a	

l l — 
J c1.

we conclude	 t
i  

— pT• I erfe ^u T + (1 — c ) T -) 2 xe)e► is 2V_ —
.. T

 s+/e

2

 Ex 2 T 
)14 e- i

	 ^(
.^	 (38.37)

	

T• ^	 Z
Me —xT + cew s (T — x) H(T — x) +

	

cm
--	

(	 tri	 =^	 x
+ -- [2 1 

t 1 
e- iF _ x erfe -

	

2	 l 7 1	 r^T

— 
c 

\T

+ 
xa
i 

/	 .,VT 

—xr^ e- 
J^

[	

erfe V	 I`
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It should be noted that in this case we have

[fill a P T•e a ` . (31

Similarly, it follows from (38-37) that

[8] = eT«e- `.	
(38.39)

Let us note the fact that the magnitudes of the discontinuities

are exact for any time.

For the function u we derive the expression

Q `*	 s r

where	 L	 ry^^

i n ePfe .1'	 ^ 1"" 1 1'1 -fe 5 41 ^, 10 e1're r = erfe X.
t

The expressions of the tensions t 22 and t 33 may he obtained in

a similar manner.

It can easily be seen that the solution obtained goes to

zero at infinity. Within the theory of coupled thermoelasticity

the problem under consideration above has been first studied by

Hetnarski [172] who gives a solution for short time, neglecting the

powers of Ewhich are larger than or equal to two. In another study,

Hetnarski [173] presents a solution developed according to the

powers of e. The problem was studied by Boley and To:lins [24] and

by Muki and Breuer [294].

Boley and Hetnarski C251 studied systematically the discontinuities

in the case of the half-space. As has been seen, the magnitude of

the discontinuities may be studied indepjndently of the derivation
f.

t(
.a
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of a complete solution of the problem. In [25) the Laplace transform

is used to study 16 problems referring to the half-space,considering

various boundary conditions. The discontinuities are classified

and their magnitude was determined for every partial problem.

b) Concentrated loads. Let us consider an elastic medium

which occupies a whole space. We will illustrate the method

given by Lessen who studied the action of a concentrated heat source.

In general, if a solution in the form of (14.7) is sought from (34.3)

and from (34.6),	 it follows that the Laplace transforms of the

functions ^ and 
t, 

with reference to the variable t satisfy the

following equations

^;	 r;	 k	 1	 ( 38.40)

We assumed that the initial conditions were homogeneous. If C1

and c2 satisfy the equation

-- .1

t r;	 1;	 11	 l;
	

(38.41)

then the equation which satisfies the function T may be written

in the following manner

tI)	 -- -- _j; .. w _	 I --- (A --	 ^► ) :► .	 (;8.42)
k(a - ► 2tL)	 x -T '.µ	 k

Obviously, the functione.* i do not depend on the coefficient
	

14

E. It follows from (38.41) that
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iii, t = •^• Pt . + A° ( l + t) -!:

	

t '	
(38.43)

t [
 (-!^- + ^ (t + t)Y — - A Pt I1/

Ott

In view of the fact that, in general, the coefficient a is

a small :lumber (e -<]) Lessen suggested a development of the following

form for determining the function 4^

(38.44)
^ — 00 + to i + tt(P$ -}- .. .

In this case there follow from (38.40), or (38.42) for the

functions ;0 , ^1 ,..., the equations

11r 

A— C ^o = —	 0	
r —

	

Q,—'
î llk,	 k(.+2µ) 	 (38.45)

(x+21+)l1 — k P)

Gt

_	 It can easily be seen that the function TO correoponds

problem of uncoupled thermoelasticity. The function ^1 is t

solution of a problem of the same type in which, however, tl

are determined by the function m 0 , etc.

Let us assume that (Nowacki [3191)

j.
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eQ	 pill 
i 

C
t. :,= .1 Rk k p	

.
(38.48)

r-:
61

A-0, r— Q8(x— .y ) Am, 	 (38.46)

where 0 is constant. In this case let us take ^ i 	0 and from

(38.45) we obtain (see Paragraph 36)

R
4t► 	

?, 
` —n 

74- P

 ! V -4 1;).	 (38.47)Inlt( + -N) led) (p`

From (38.47) and (34.7) the corresponding temperature variation

is determined

If we designate

P	
('t t+• I?,
	 •hit•- 1,

k	 k

then the original functions have the expression

^o(Pr ') = 4nc(a `{- awl I
AM. -P, T1 -- R&( P, T) H(r

_
Oo(P, T)	

3Ii 9(TST), = e K'

where

F%i(P, T ) = erfe l^T) — i e-t Ieo erfe (^^ P -}- ^' T 1 +
  l

	 JJ2

+e'rrfe(__P
^tl ^T

E:(P, T) =

/141

(38.49)

(38.50)
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The .functions ^1 etc. are determined afterwards. The

sol,.ition of this problem was studied by Hetnarski [174]. Similarly,

Hetnarski [175] considered the problem of the elastic space when

A a0,	 r=Qa(x—J)a(t).

In this case we take ^I . 0 and equation (38.42) becomes

As in the case of the procedure used for equation (36.24) we

derive for m the expression

-In1,p(% + 2 1A ) R(`t

In order to obtain the function @, Hetnarski uses both approximation
procedures: he neglects the powers of a which are larger than or

equal to 2 and determines the solution for a short time.

The problem of the elastic space awted upon by concentrated mass

forces was studied by de Soos [386] with the aid of representation

(34.12). In thjs case the Laplace transforms of the functions Ai

satisfy the equations

r^
(^ — v)( J - zi) ^1'i — — k^ R

	 A-	
( 38.51)41 . t ( + 2li )

It can easily be seen that if, in the equation (38.41), we

replace C and p by iz and -iw respectively, we obtain equation

(36.8). Let us assume that

In this case we will take 0 2	 4) 3 	 T = 0. The function 0 1	/142

satisfies the equation
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where C3 • 
p2/c2'

Cos t 	`'	 aR
kµ (X w Yµ) amt

k

IP we consider the results from Paragraph 36, it follows that

the solution of the equation (38.52) is

^p =	 r	 p :.a

(38.53)

— r3 r + ^r^	 r ► c^, r-^

From (34.12) and (38.53) the Laplace. , transforms of the components

of the displacement vector and of the temperature variation can be

determined	 The functions were originally determined for a short time

and neglecting the powers of e n (n»2), in [386]. Solutions both far

concentrated forces directed according to other axes and for a

concentrated heat source can be similarly obtained.

Lessen [259], Chadwick and Sneddon [48], Paria [3337, Sneddon

[373], Lockett and Sneddon [259], Eason and Sneddon [991, Nariboli

L3021, Galka [128] and others also studied problems referring to the

space and half-space. Investigation of the coupling effect between

the mechanical field and the thermal field formed the subJect of many

studies (see, for example, [11, [14], [ 15 1, [921, [3037, [308],
[383]9 [4461).

39. Propagation -of the Disco, Anuity Surfaces

The mathematical. method used for investigating the discontinuity

surfaces in the mechanics of continuous media, outlined at the end oY"

the last century, was developed by Hadamard in [1677. In this
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paragraph we will study the discontinuity surfaces in the theory

of coupled thermoelasticity as Riven by Chadwick and Powdrill 151).

Other studies concerning the pt'^, agation of discontinuity hurfaces

in the theory of thermoelasticity were carried out by Chen [561,

Truesdell ( 4241 and others.

a) Geometric preliminaries. We will express the position

vector of a point in the form

It = Ito - f 0311 31 	 (39.1)

where R-0 depends only on e l ,e 2 and a3 is a unit vector which

depends, similarly, only on e l and e 2 . The equation e 3	0 determines

a surface

Ito = Ito (C"' 02).	
(39.2)

The vector t, 	 normai to this surface. If we designate

ila	 Ito,a {
(39.3)

then the covariant vectors from (24.7) may be written in the

following sway

ila	0 3 it	 - ii.	
( 3 9.4)

Ida —	 9.d f !la ""	 {•

It is obvious that	 /143

	

Q UA° '"" 0{ n9u:1 	 t { 11311 :P = o.	 (39-5)

For e 3 • 0 we have gr • ar . We will designate by a r , ars , a`^ s , as

the values which e r , grg, Kr$ . R riven in (24.7)-(24.10) resnen-
tively take for	 e3 • 0. Therefore
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k

4
r

Om	 — asp, a3 ,	 S► 39 asp aly = $;, a ll = 1019	
(39.6)

In view of the fact that

(1110 — it. 4104 — a' (d 0.,

the are element from the surface (39.2) has the form

dnY = a.p d 09 d 011 = a-4 d 0. d 0% . '
	

(39.7)

The expression ( 39.7) is the first fundamental form of the

surface. The scalar product

d Ito dui = — f►,p (10" ( 1 00 - — —Mp d 0, d Op,

where

bao = —112 11 3.0 = — 110 11394zz113 a663 ,_ a3 "PA ,	

(39.8)

is the second fundamental form of the surface. The coeff'cients

bas , bas are symmetrical surface tensors connected by the relations

by = aex box = apx b`,

b'o _ aax b?, b.0 = 44 bw	
(39-9)

The invariant
11 = b; ,

(3^

is t'.e average curvature of the surface, and

K =!b'o!
a	 (3c

20



is the gaussian curvature of the surface.

The symbols of Christoffel with respect to the surface 0 5 a 0

area obtained fro► (24.17) setting 0 3 n 0. If we designate these

symbols by 'F'keeping in mind ( 39.4), we have

r?ir -- a' np .r ► 113 -- 8"VI = a"11,99 .1 - — a" b y ^ — h^,

(39.12)
1'i3
	 a3n..5 . — np11 3 t.	 b.p ►

17.13 = 11 3810.. ° II, j3	 to.

It follows from (24.17) and (39.12) that 	 /144

tie.p c.-ep11a	 !►.0119 ► n°p cam. - ^'^1 a, + bi 49,

e. DA.	 (39-13)

If we consider (39.13) 2 we can write

11,..11, , E 	 !►.a bA,	 (39.14)

and therefore

83 ('n3	 l,,pl,Ytlti°,IUY,	
(39.15)

ar, expression which represents the th_`.rd fundamental form of the

surface.

Let the vector be

V CF: elan +' V383 — r, n° .{_ V383.

(39.16)
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Taking into account (39.13) we obtain

= (V'. — b.10) na + (v + n).. te\ )a91 	 (39-17)

where

e. ='	 nµ	 (39.13)
a•^ 	 va•^ — a l.r^µf ^s = 1 a ^^" rYrvµ•

b) Singular surfaces. Let I be an interval of the real axis

R,G = IxR 3 and E a hypersurface from G which allows the representation

xi = pi ( 61, ear t ), eu ez a U a Rag t e 1.	 (39-19)

For a fixed value of t, the equations (39.1.9) define a surface

E t . Thus, the relations (39.19) describe the movement of the surface

E t when t e I.

We say that E is a smooth hypersurface if the functions ^i

are biunivoeal and of the class of C 2 on U xI and the matrix

d ^^
has the rank of 2 in any point of E. The variables 6j a U°	 1,

6 2 define a system of curved coordinates on the surface of Et.

We will designate by n the normal to F. t and therefore in the

relations from (a) we have

a  -: n.
	 (39.20)

,y
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Tt  fellows from ('^^.3) and (3n.9) that

and thus

1

'i 	 (39.22)

:g tmllat• l,y we have	 /145

Keeping in mind (30.6), (19.8), (jQ. l) we conclude

^pap .,. 
T1.. 1.11 ► ko :	

t

	

.
^l 

gy p 	 (3 . t )

i^'rr ►n (30.1 ) we obtaln the relations

	

/h.. ^^' — I+; ^La	 _T ^xo ^/.. Ala ^^	 nar 4^/.a ^^.^ e+^.

Using the covarlarit derivative

	

911,40	
19 ^6

aril the relation (3Q."3), it: follows that (V)-P it),, may be

written In the fol I nwi ng form

1100 4 ?6;40	 39 P7

:similarly we have ft •om (30.210

?464 ' hnp 1119
(39.28)

lll.a	
_ aao9)

.Mlp1.1 ►+J.

r-

IL
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Tf jj a y j q,, Vien, on the basis of relations ( 24.7) it
follows that

a e ° 0
, ^ a., .

(39.29)

Keeping in mind (39.1) and ( 39.1()) we conclude
yt ._ : Rt 1 0811"

and the relation (3n.'9) taken the form

11440) ., 1 fi-I n ' a) (P ► .0 . 1 U'M t ^) } /► tM^ cr a ► 1.

Thus we have on the surface uf Ei

ap
tl 'P1.^^ ►.p v 8.) _._ 114 ►11•	

(39 - 30)

The velocity of n point from the mobile surface F, at the

moment t o has the component

1•t .	 ►0t?1
(3x.31)

and the velocity of F in the direction of the unit normal at Ft

is
1'	 1 . , fi t .

(19. 31 )

Tf the surface is locnll,y represented by

where 4, is of' the class C ` , then	 /146,

dip	 (39.4)
lit

"t att►

Let us calculate the first and ;second order, derivatives of

a function on a hypersurf ace which intersects each domain of

definition.

s
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SJ + i. J

at ^: Jt	 d 
(39.38)

Let f be a real functi

Let u ps assume that n	 D x

A n ' f 0	 for any t c /.

which will be derived refer

in S2 we will replace n n 2:

on: R -* R and	 Xc R, a hypersurface.

I where D is an oFen set from E 3 and

In view of the fact that the results

only to that part of F which is included

by F s and A n E,	 by F t .

We will assume for the beginning that	 o(a). On F we have

f s f(t,m i (0 1' © 2 )) and thus

lit - vt 
4
- li.,•, ,it ' La = J r,. ^^.4

From (39.35) 2
 and (39.30) we obtain

, f _., ap	 11

Ja•	/► ./.o5► LO '^' J ►► 
►► r •	 ( 39. 36 )

?n view of (39.36) it follows from (39.35) 1 that

•f	 (if —/1°p fad/.p i'1 — ^' of	 (30 -37)
of	 lit	 Jn

We define the 6-derivative with respect to time (Thomas [4131)

by

This refers to the derivative with respect to tire, following

the motion of F along the normal at Ft.

We conclude from (39.37)

St ` t
it

t 	
ai _ "p

S t 	 t i t 	 ^' / J,a,	 (39-39)l

and
Jf of — i. of

Jt	 St	 o	 (39.40)
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If f is a known function of t and 0 a on E then the derivatives

df/dt, f ,a 
can be calculated. The derivatives which are determined

in this sense will be called interior derivatives on E. From (39.39)

if follows that 6f/6t is an interior derivative on E.

The relations (39.36) and (39.40) express connection between	 /147

the first order derivatives of f on E and are called conditions of

compatibility for the partial derivatives of the first order of the

function	 f on E.

If f and Wan are given on E then the relations (39.36) and

(39.40) determine the first order derivatives of its f functions

on T.

Tf we consider (39.39) and (39.31) we can write

ago..
a/	 : ' ` i.a --- n°pP/.p V 1 Plta° r

whence, on the basis of relation (39.28) 2 we obtain

aPi.a
^1^	 'ii	 I•i.a ai l 4	 1lI J^a	 ^•.a

From (39.23) and (39.41) we can derive

	

Vj air'	 0, Pl,a 81!^ ._ __ 1'.a.

If we multiply both members of the relation (39.42) 2 by

aa ^ 0 J 
6 and sum up after the index a, then, on the basis of

relations (39.30) and (39.42) 1 , it follows that

An,

	

RI	
(4110P^.a

(39.41)

(39.42)

(39.43)
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II cif	
c^=f

ox,ox,	 off

(39.48)

Let us assume that •1•l' (" ( 0)• In this case the relations
(39.36) and (39.40) can be applied to the functions 8f/8x i and

2f/3t. Thus, we have

	

, ►= j 	 ar	 r)	 rlf

►► '.
	 (39.44)

	

a•1', d.Yl	
lr	 (ri,l'i,:a '{r,h	 ^	 ,IH (rl.l' l ^

whence we obtain

W1	 (39.45)

	

rill	 r/.r'r	 \ ri.r; 1	 till-,

in which we indicated

	

rl	 r)	 rl	 f (39.46)
If j	ll, ►► ,•

1

In view of (39 . 23), (39.27), (39 . 28), (39 . 26) and ( 39.45) we

find from ( 39.4 11) that

'39.47)

	

i),1•rrl,l'^	 r)N
	 ^	 a	 G,.,^P	 ( ► + r"r,.(+	 i	 ++, i^r.(i)	 _

From (39.47) on the basis of the relations (39.23), (39.10)
	

/148

we obtain

-

If we apply the formula ( 39.36) to the function 8f/8t we can
derive

sf

ar, ^r	 "gyp ^ae ^,a ^^'° + a ►^ (c3i)no (39.49)
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In view of (39.40), (39.36)9 (39.43), (39.46) it follows that

a ( .of	 a (jfl of a ►,,

	

81 axe	 axt Be

s
(39.50)

a  
+ V a f _ o•e .l.. I,.$

— 
an at	 anli

If we keep in mind relation (39.50), we can derive from (39.49)

63 2
„aa 8J _ 1• of ^^.p t- 

a a r +	 ( 39.51)

	

aT, d r	 81	 al► )„	 f ar N
or	 a

-t- a AI',,, — 6 ---- "I.
ant

In view of (39.40), ( 1.9.50) we obtain

a a 	 Of 	 af a	 _ I	 — I' s 	
a°Pl^aT',p — V $̂l	 (39.52)

	

at rr	 c)n 	 {at( of) +0"	 ails

The relations (39.47), (19.51) and (39.52) are the conditions

of compatibility for the partial derivatives of the second order of

the function f on E.

3

Using the conditions of compatibility we will derive the

corresponding conditions for the discontinuities of the partial

derivatives of a function which appear on a smooth hypersurface.

Let us designate by Dt and by Dt the open and disjunct subsel

of D, the reunion of which is D\E, We assume that the normal n_ al

is directed toward Dt. Let

p

2



n4 . -- I(J . , t)1	 E n,F , t C- r}, a- — {(.r, 1)1 .r E n,-, t E 11.

We assume that f is continuous on il+ u % and Q- u 2.'

but it is not continuous on 9. Let f + and f- be the extensions of

f on the open subsets which contain Q#, it	 and dl- u Z respectively

The ,jump of f through E is

[f] - f+ - f-.

If [f] is different from zero throughout nearly the whole of

E, then we can say that E is a singular absolute hypersurface for

the function f.

Let us assume that )' , t" - '(tl) (r? 1)	 and f,, "'(0 , u !;), J L ( !,(tl- u

U E).	 We can thus calculate the jumps of the derivative:

of order r of f on v. If at least one of these is different from 	 (1_91

zero throughout nearly the whole of £, then E is called a singular

hypersurface of the order r for the function f.

Let E be a singular absolute hypersurface for the function f.

We assume that f is of the class of C l on i1 + u ::	 and on il- u

The conditions of compatibility (39.36) and (39.40) are applicable

on E both for f+ and for f - . In view of the fact that

^f ^ •a	 (f+ -^" f ba = ft "fw, $[f,	
aJ+ _ of	 (39-53)

	

at	 at	 at

we can derive the relations

L'N- 's" rfl,alks + df ,,,,fre l _	 (39.54)

	

a(f] _ ^,. (af
a- 	 l die	 l M 	 at	 l a n'

which represent the conditions of compatibility for the jumps of

the partial derivatives of the first order of the function f through E.
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If E is a singular hypersurface of the first order for f, then

[f] a 0 and we have

	

[Oa, [dnJ nit 
[)l^

—
 — 

1'rdnl.
	 (39.55)

Let us assume that f is of the class C 2 on 11+U E	 and

on	 a-u E.	 In view of (39.47), (39.51)9 (39.52) and (39.53) we

obtain the following conditions of compatibility for the jumps of

the partial derivatives of the second order of function f through E.

Oil'(" 
_ _ °p 1^1	 f	 +

l --1.	 -}-	 +ll^ l̂°^^.I ^t0 \ Jt l^l tp	 nJ^l.p) T
If^d'loil J	 1LOn I ,°

vo J 	 j2f°p

	

^^	 .	 pit n

l on li	 anY

i)8^f	 /1,^, AM _	 f	 .,p +
1T^^,t)I I	 I At	 [()?1 	 (39.56)

'1
{Ft [11n, { 

u°p lJ'1„ 1' ,p —	 Ong	
Litt

^; rf	 sr I Est I — ^' ^,)n	
_ 

1 { rrI	 I "f-

I)j

From (39.56) l we obtain
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+-y
If 1. 	 - 2	 (" / l f ^ -̀f-f ldi" x,	 (39.57)J	 -	 t)!t J	 i)n^J
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t If E is a singular hypersurface of the first order for f,

then [f] n 0. If E is a singular hypersurface of the second order,

we have	 II r (I and therefore
I ON J

[d.r,) d', I 	[d##a I I r H ► r [X,at	 I, 
[ , :Pf)

12 I11 ► r	

(39.58)

[tjf2J w.

 1.2

 [,hf21.

The relations (39.54), (39.56) and (39.57) have been derived

by Thomas [4131 and the relations (39.55) and (39.58) are attrib•ited

to Hadamard [1.671.

Let us assume that E is a singular hypersurface of the order

r y 2 for the function f. In this case the relations ( 39.55) arp

applicable for the jumps of the partial derivatives of the order

r-1 of the .`'unction f. Applying these relations successively, we

can write
(),f	 1	 Wf

a.r► 8r, ... ►l .r,,,ol'	 l rl.r^ ... rl.r,,,rll'	 ► rl.r p r).r^ J	
M	 ► ^

and step by step we reach the following conditions of compatibility

d'f 	 _	
[ o il, ]
d'f

Ox,	 . d.r,,,dl 
(39.59)

where (Hadamard [1671)

c)'fr)'J'

oil ,_ ox,... J.r.
	 (39.60)
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rr.:

If f Is of the class Cr+l on 11+ u 1: and on 11- u

the conditions of compatibility (39.50. (39.57 )9 in which

[f] a 0 are applicable to the partial derivatives of the order
of (r-1) of the function f. In these conditions, substituting f

ty	 ---'^^-'-^--	 and using (39.59).  we obtain
... dxp

i

41n	 r
i).rp ..-J.r,Jt,rl.rl,	

rr	
[r ► rr', ►

rp ... ►
r' :. 

►r i ► ,p +

► 'I
Oft W* h.., 

[:)

f-

il.ro ... rl.r, ^► .r t. d.r1 J

xp

J 	 Or+tf
SI	 J»',	 I	 C J,I • p ... Jx,J.rtoxj J

Io

r 0 +If / t l  	 81,.[

do#'
]CYf »n... !r,-21' 

a U"I
pip...».I-^-

,I 	.. ox Jf J 	 81 	 SI»	 f

rl'+t+ f'^ -	 —	

J 

"k ►rr,
^) r„ ... Jr, d.r ,ox, J

^'v ..w^^ l , 

J^'t a^'t J = - 
211 [ d

ill]

1 »' ... its }-

^.+I .!

	

-}• I	 -	 1 ►r t rir .
L d.rn	. ().r,oX,.8 , J

(39.61)

/151

c) Pharacteristic hypersurfaces and wave fronts. We will

assume that the elastic medium which occupies the domain B is

homogeneous and isotropic. In the following we will indicate

= it x 1.	 As shown in rar•agraph 34, the equations of thermo-
elasticity for such medi a may be written in the following form
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all
	 JX^8 .I 	axrda.)	 P drr'

of ° P dx)dt	 Jr, OX)	
(39.62)

if there are no mass forces and heat sources.

These equations were derived under the assumption that the

function.: u  and 0 are of the class C 2 on of. If the functions

u i , 0 of the class C2 on I satisfy the equations (39.62) in fit.

we say that (u f , 0) represents  strict solution of these equations.

Let us determine the characteristic types of the equations

(39.62). The problem will be formulated in the following manner.

Let S be a finite union of smooth hypersurfaces which has a non-

empty intersection with X From now on we will designate S n I
by S. Let us assume that on the hypersurfaoe E from S are prescribed

++,. 09 o++ 
do ,
	 as analytical functiono of	 , ® and t. These

it ►l on	 1	 2
functions represent the data from the corresponding Cauchy problem.

The problem of the determination is placed into a certain neighbor-

hood of S of, a strict solution of the equations (39.62) which should

satisfy on S the conditions of the Cauchy problem.

In order to extend the solution of the S variety by means

of series of powers, we must determine on S the partial derivatives

of u  and a of any order with respect to xi and t. If, in the

relations (39.36) and (39.40) f is substituted by u 1 and e, it

follows that we can determine on S the partial derivatives of the

first order of the function of u  and 9, with the help of the data

of the problem. In view of (39.47), (39.51) and (39.52), it follows /1

that in order to determine the second order partial derivatives,

the derivatives 
d2+r6 

and d20 on S are needed. In order to determine00	 on`

[`	 =F	 214



these derivatives, we will use the equations (39.62). If we
evaluate the terms from (39.62) on S with the help of the relations

(39.47)o (39.48)0 (39.51), (''9.52) we obtain

d ►► ^	 ling
(39.63)

710 1' ^ht
►^ n

► r Ir ^^^	 A4,
dn^	 omit

where the functions Ar (r * 1,2,3,4) are determined by the Cauchy

data. From the system (39.63) we can determine the derivatives

'i9 020	 on S if, and only if

k (let (( 1 '^ — ► ^1 au -- l ►	 - c`) n ►►Ji f 11,	
Q(3. . 64 )

If, in the point of S we have

(39.65)k (let {(i' g — rs) 8, ► — ((, — r) n , n)} = U,,

then we cannot determine the derivatives sought, and the

method cannot be used. If the relation (39.65) occurs throughout

the whole of S. then S is calle,} a characteristic variety of

equations (39.62). We say that (39.65) is the characteristic equation

of the equations (39.62). Carrying out the calculations, the

equation (39.65) is reduced to

	

k(V2— (j)(1'2—('i)2=0.
	 (39.66)

If the hypersurface is given in the implicit form (39.33), then



in view of (39.34), the equation (39.66) may be written in the

following way

k 	

;jrf X1 	 alt	 Jx, Oxi	
t^

It follows from this that the characteristic variety of the equations

(39.62) conaistsof two hypersurfaces, given by

u, (()Ib) 2	 CO* jib
`- '^^	 ^
	

(39.67)

	

itt	 ox, ox,

	

C
41 ) . g ,^ ►t► a►G
	 (39.68)

	

►t	 c" ar, dXj

/.153As we have seen, a hypersurface E may be interpreted as

a mobile surface in the three dimensional euclidlan space. In

the case of a characteristic hypersurface E, we say that the

surface Et is the wave front and for its motion we will use the

term propagation of the wave front.

It follows from (39 .66) that 'ie wave front !Mel) represents

families of parallel surfaces; the propagation of a wave front takes

place with one of the constant velocities c l , c2.

d) Weak thermoelastic waves. Inasmuch as equations (39.62)

are equations with	 second order partial derivatives, the singular

hypersurfaces for u i and a of the order more than or equal

to two will be designated as weak singular hypersurfaces. We will

show that weak singular thermoelastic hypersurfaces are characteristic.

We will refer to these hypersurfaces by the expression of waves.

We assume that E is a weak singular hypersurface of the order r.

m	 ^ ►
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k ^ + Toil V X4 ►► 4 = (),
(39.70)

1f d'u,	 d'6

where

r

	

	 If r > 2, then the equations (39.62) occur on n; if r w 2, then

(39.62) takes place on Q\E. Thus, for any r 3 2, equations obtained

by the application of the equations (39.62) of the operator ox.... JX
'	 take place on Q \ X. Inasmuch as E is a singular hypersurface of the

w

	

	
order r for the functions u  and 9, the jumps through E of the

de..Lvatives of the order ( r-1) are identically zero, and the jumps

through E of the partial. derivatives of order r are defined.

Making the jump through E of each term from the equations

obtained, we find

tfix,	

12	

o.rm	 ox, OX) OX)

r	 oleo	 1	 (39.69)

r xfft ... 0J',d.rjd.1')

To
 
A

d l u ► 	 _	 e'0

If we keep in mind the relations (39.59) we can give another

form to the equatin :is (39.69), expressing the ,jumps from (39.69)

by the right members from (39.59). Then, multiplying with nm...np

and summing up, we obtain



r.

E

Keeping in mind (39 .59) it follows that the jumps X i s E

determine the jumps through E of the partial derivatives of the

order r of the functions u  and A and therefore on the basis of

the hypothesis all of them cannot be zero. Therefore, the determinant

of the system (39.70) 
must be zero. This condition coincides with

the characteristic equation (39 .66 ). Thus, the singular weak
	 /154

hypersurfaces in tb^rmoelastici ty are characteristic hypersurfaces

which propagate with constant velocities e l andc 2 . They will be

designated as weak thermoelastic waves.

If we consider the relations

8tt,	
E, 

_ 1 (Lit" + +7u,	 _ 1 (au, _ au,
I 	 (oil

2	 ox,	 J.1- 1	 2	 i)x)	 0.1-1)

then on the basis of the equations (39.59) we conclude

a•_ty,	 _	 , ,	 lI^-lE„	
y)'-'^ ►+	 (39 71)

.1

L -^ J = - 1 (—V Y

In the case when the wave is propagated with a velocity c l it

follows from (39 -70)l that A t
 = Xn where a = X pnp and

-,	 O'Eof1 - ( _^ • )^-^a -A c,	 (39.72)

[ 8r'-' J

f
t^'"'wu = 0.
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w

If the velocity f the wave is c 	 it follows from (39.70) thaty	
2'

A n 0 and therefore we have

K

"Fln, L= 09	 01 [ L, - .1n! 1 9, 0.atr-1	 I at" F	 at r-1 (39.73)

In view of the above we will say that a weak thermoelastic

wave is dilative if it propagates with a velocity of c  and

rotational if it propagates with a velocity of c 2 . For a weak

dilative wave of the order r, the discontinuity in the derivative

of the order	 (r-1) with respect to time of the velocity

follows the direction of the normal to the wave front. For a

rotational weak wave of the order r, this discontinuity is tangential

to the wave fronts.

It follows from (39.70) that

TOPXcl

k	 for dilative waves,

(39"74)

for rotational waves.

Thus,the jumps of the partial derivatives of the order r

s;
of the functions u i and A through a weak thermoelastic wave E of

the order r are determined by the vector of singularity A of

components a i . The magnitude of this vector is a measure of the

t:
"force" of 1.

rf
T
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R•'

d

c

Let us apply

(39.62). Then, we

equations obtained

(39.59) 9 (39.61).

obtain

0•_j

the operator	 ^ . , . Jx

•

	to equations

form the jump through E to each term from the

and express it with the help of relations

Multiplying with nm ...np and summing up, we

/155 1

(1..; _ii)µ,--(^:^- ► ^1 iEA ► ►► i ►► i -1 - CON; aTi.A N+

}- to, ^^. W( ^/: a N i ... X ► (I"0 Lav (Pi. 0 )} - -

at	 81	 P

(3975)
Tod I, (1 1 II I — 81' it 	 1,03 ^j;a ,Pi.p + ►►a*I• a ^l^^. 1 +

.1 . I; Y + (7',t ► I' -- 21.11) & ... U,

where

In deriving the relations (39.75) we considered (39.23).

In view of (39.43) and the fact that for weak thermoelastic waves

V is a constant, It follows that

8X_ 8	 SX ►

RI	 81

(39.76)

If we consider (39.10), (39.28) 1 , we obtain

),i a ►►► — X) I ► vO 10av QI.O	 ).,a.	 (39-77)

c.
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_...... .,......._.,, ^	 ^.. _.,.'.. :. _.

The relations (39,76), ( 39 .77) allow us to write the equations

(39.75) in the form

(1'j- -Co) (It — ((J — CL) {(41n11tt + /1'0 ( %1 q)f0)is Jt t + (tooxm (pt,p} —

— 21'
Sta 

+ 211 X(. ),1 + (ri—r3) Xn,; + a- an t = 0,	 (39-78)

TOP 1' µl 11 1 + ky — "'0"'I $t - ) ^^(^J^1•p ) a + '2 { ' 11 X^ +

If we multiply (39.78) l with n  and add, we obtain	 /156

(1'2—('21) µ1J11 	
(39.79)

2V St +211(-21),+ 
a =0.
P

(i) Weak dilative waves. For weak dilative waves we have

V = c l , X i = an,, &= - T O sc l a/k, and the relation (39.79) leads

to the following equation of transport

_1_ -a x _ d- _ X 
H — ? two

C1 at	 dot	 (	 2ct	 (39-80)

and w* are given by (33 .4) and (35.20) respectively.

!eping in mind ( 39.80), the equations (39.78) become
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11 = .11„ — IjKo

1 — 201 0 + n 2Ko (39.82)

_ ^	 sue•

a — ao(1-3n H„-} H2KO)	 a
_

(39.83)

F

,

JAI — (LIIIIIII = qa0 X•j'q)I.bf

w
ToPellAI II I + ky -- To 3 ej X N 4 .G'__ ( To — 1 `j	 ( 39.81)

1J

Let us assume that at the moment t = t 0 the average curvature

and the gaussian curvature of the wave front E t , are H0 and K0,

respectively. The mean curvature of the surface E t may be expressed

In the form	 (Thomas [4141)

where n is the distance measured on the normal from E t ,. With

the help of relation (39.82), the equation (39.80) may be integrated

and we obtain

where A . a 0 on Et o.

It follows from (39.74) 1 and (39 .83) that the Jumps of the

partial derivatives of the order r of the functions u i and 0 through

a weak dilative wave of the order r are determined by the values

of the latter on an initial wave front. More precisely, it is enough

to know A on the initial wave front E t0. It may be noted from

(39.81) that the Jumps of the partial derivatives of the order

r : 1 of the functions u  and A are not determined except when the

Jump of one of the partial derivatives of the order r - 1 are known

ahead of time. This occurs because equations (39.81) 1 are not

independent; by multiplying them with n  and summing, we obtain an

identity.
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i

(ii) Rotational weak waves. In this case V c 29 A = 0 and

0. The equation (39.79) is reduced to

(39.84)

and from (39.78) we obtain the following transport equation
	

/157

1 8),t- __ dIt ^

^, Rt	 do	 (39.85)

and y = 0.

In view of (39.82), equation (39.85) may b- integrated and

we obtain

(1-2011 + v'Kp)Y 2,	
(39.86)

where X i = xi on Et °. This indicates that the jumps of the

partial derivatives of the order r of the functions u  through a

weak rotational wave front of the order r are determined by the

values of the latter on an initial wave front. The partial derivatives

of the order r and r + 1 of the function a are continuous on the

hypersurfaces of the type under consideration. In order to determine

the jumps of the partial derivatives of the order r + 1 through

Et it is necessary that we know two of the quantities of v i . Let us

note the fact that in the relation (39.83) for weak dilative waves,

the factor exp (-cw*n/2c 1 ) appears; this indicates that the values

of the jumps of the partial derivatives of the order r of the functions

u  and 8 tend towards zero when the time interval t-t 0 tends toward

infinity.

i

	

	 e) Strong thermoelastic waves. To complete the study of singular

surfaces we study the case of hypersurfaces of zero and first order.

These hypersurfaces are called strong singular hypersurfaces. The pres-

ence of discontinuities implied by these hypersurfaces contradicts the

^^3



hypothesis of regularity in which the equations of thermoelasticity

were derived. Therefore it is necessary to establish beforehand

a theory that would permit us to study the strong singular hyper-

surfaces.

Let 9,( ji) be a set of the regulated regions contained in .4.
If y E M, (0) we will designate by 910 the intericr of lP, and by ()p
the boundary of 9•	 Let 1'(G) be the set of functions with compact
support on C.

If the functions 1it, 0 , e1h r" 1, t, l , q,	 satisfy the relations

duf

- '9	 cU	 -' ( t11 .1 -f - Ul.l)t

and for any ;;v E W14 (m)

() ^,

S^( P 	 dt

then we will say that

to =_ ),e.,S,l + :'µeu -- 3oFjl,	 (39-87)

P V)	 PC,, + (10,

y, _^ k 0,/

and any (`„ E f' (:PO)	 we have

	

ar	 az	
(39.88)

	

of	 ox,

(u,,@) represents a weak solution of the

equation (39.62) on W.

It can be shown [51] that if the functions u i , a represent	 /158

a weak solution of the equation (39.62) on .0 and are of the

class C 2 on I then (u,,8) is a strict solution of these equations

on .0 and vice versa.
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Let us assume that (u,,®) is a weak solution of equations

(39.62) on .4 , Let E be a strong singular hypersurface, and D an

open set from B so that D • D xI intersects E the same way as

before. We assume that u  and A are functions of the class C2

on R♦ and on A
- . 

Let ' .,P cif bean arbitrary regulated region that

intersects E	 and :^+' * n 11+, Y - ,Y n 11-	 be non-Empty sets.

In view of the fact that (u,,9) is a strict solution of the equations

(39.62) on A+ and on n -, it follows that the equations

I,,., P O4, P TA qr., -= 11,

are satisfied in Y+and in ^P-. Therefore, we have

S	 ''	 Ot

s • us-	 ,

)	 ^)
^^ (P Tuvl^l .... (^9r1^ ^lv	 u'	

(39.89)• • us-

Let NO, 
is,
	 v 3 ) be the components of the unitary norral at dy.

In view of (39.34) we can write

V (,	  A 1 % 	 vi = A ►r , on

using the theorem of divergence and the fact that the functions

( C i , C ) become zero on < ) . P, •we obtain from (39-89)

sns

i
A { p T, 1, [-,] + [9r] pit it da = 0.

Tn.a

In view of the fact that the quantities below the integral

are continuous functions on E, it follows from the above relations

that
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pV [r,l + [till H,	0, P T„V [+jl + [9,1 ,it	 U on E.	 (39-90)

These relations are called dynamic discontinuity relations.

If we use (39.87) the relations ( 39.90) may be written in

the form

	

att,	 r at,,
its + CI[  

dtt,	 att,

	

[ d,	 ^ox,	 th 1	 a.t-,	
( 39.91)

— p ( 0 1 ttt --. o,
P

T°VP al
l). , - 

I- Ton V[01 + k 
lox,
  1 nt 0 on E.

1

The equations (39.91) are applicable both to the absolute singular	 /159

hypersurfaces and to the first order singular hypersurfaces.

In the following we will assume that the functions u  are

continuous on a. The conditions of compatibility for the first

order partial derivatives of the functions u  are thus those given

in (39.55)

[ x I = ^., ►^,,	 f Of I -- — VI,,
	

(39.92)

where It = rau'

It can be shown that the law of the conservation of mass

imposes a restriction on the jumps of the functions u  and in our

assumptions this has been identically satisfied [51]. It follows,

similarly, that the discontinuity relation corresponding to the

second law of thermodynamics is satisfied.

We will study the basic properties of the strong singular
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surfaces on the basis of the discontinuity relations (39.91) and

of equations (39.62). Substituting in (39.54) 0 for f and keeping

In mind the relations obtained and also (39.92) it follows from

(39.91) that

(39.93)
Top VX-}-k^-}- Toa V[0] 	 U,

where	
L d0 
	 Forming the sump through E to each term

it it

of (39.62) and applying the conditions of compatibility (39.56) to

the functions u i (with [u I I . 0) and (39.36), (39.37) (39.57) to

the function 0 we obtain

(1 12—r ) µt	 (r7 — r11 ) {wr ►tr"r+ a°pO,I ^I;v):° ►+t -( rt°pa+atPr.O} —

	

, ^ I . S).r	 ^r ^^•	 }'ill {r:^)r {- (r .x — r) 1,rrr} -{ -

	

gt	 at

1 Oli0),a^PtA	 11,

P

	

/`opl'ij ►►►► } !;Y -- Top	 -8 -x _ 1'aap )')1P ► ;0);° +	 1'll),^-{
at

+ (T(p I' -- 201) c, - Toa 8['0] } krt°p [ 01.0-t-

lilt ►
 Jl	 et

(39.94)

where

r)tur	
r d=0

µr - L dal } ► 	 7	 l c1 ►r^

In deriving the relations (39.94), the relations (39. 4 3), (39.77)

have also been taken into account.
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The equations (39.93) and (39.94) represent the basis of the	 1160

study of strong singular hypersurfaces. They differ from the similar

equations (39.70), (39.78) for weak waves by the presence of the

terms in [6] and 6V/6t.

(i) Shock waves. If E is a first order singular hypersurface

for u i and 9 then [8] c 0 on E and equations (39.70) and (39.93) are

formally identical. As has been shown before, these types of hyper-

surfaces are characteristic ►surfaces and thus propagate with one of
the constant velocities c i , c 2 . Therefore 6V/6t - 0 and equations

(39.78) and (39.94) coincide. Therefore, the relations (39.83) and

(39.86) are applied also to the strong dilative and rotational

first order thermoelastic waves, respectively.

If V - c i , it follows from (39.93) that A i - Ani and

1+'41	 I' X#0 4 f 0 [au]	 a f (), [w+) ) — o.	 (39.95)

The discontinuity of the velocity is directed according to

the Normal to F. t . The wave E is called a shock wave. The velocity

of the shock wave c  is the displacement velocity of E.

If V - c 2 , we obtain from (39.93) 1 A - 0 and

jyjj i+$ _ 4 ► , [ e ++1 = 4 ► , [ (.J+,1 f 1).

(ii) Absolute singular hypersurfaces. If E is an absolute

singular, hypersurface for u i , 8, then [A] does not become zero

on E. Multiplying ( 39.93) 1 and (39.94 ) 1 with n  and summing,

we obtain	 (	 4) x 4. k [01 = ^i,
P

( ,2 ) 1,),,)
 — ( 1 — (a)	 --	 (39.96)

Aar	 SY

at	 P
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From ( 39.96 ) 1 , in view of the fact that [97 0 0 it follows that

V 0 C l . Therefore, in order that an absolute singular hypersurfaee

be characteristic, V must take the value of c 2 . If V n c 2 then

6V/8t n 0 and (39 .76) takes place. Eliminating u, n, and Eel between

the equations (39.94 ) 1 and ( 39.66) we obtain the transport equation

J la (%I — 
).Nl) . ld 	 AH 1 ) c: 0.6 — XN,) A.

If we replace tI by (39.82) and integrate, it follows that

X. — an, ... (Xi — +Opt) (I -- 0. 11110 + »3K,,)` 1/2,

where a, — X!, k = WO on E"-

Consequently the tangential component to E t of the vector	 1161.

A satisfy the same relation that the component of X satisfies in

the case of weak rotational waves

It follows from (39 .96) 1 that A may be determined only when

Eel is known on E.

If V # c l ,c 2 , the equations (39.93) 1 and (39.96) 1 imply that

-0101 -

V^)

E - — 
To  

e—	 11e1.	
(39-97)

P( ► '^' -- ^'i)

Substituting (39.97) in (39.96) 2 we obtain the transport equation

The relations (39.93) indicate that the jumps through E'of

LL7-
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the partial derivatives of the functions u  and 8 may be determined

only when I is a free surfaPe (V # c l ,c 2 ), and [6] and V are known.

If these requirements are satisfied and X and & are determined,

then equations (39.9 4 ) determine U,,y and therefore we can determine
the jumps of the second order partial derivatives of the functions

u i and 0.
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CHAPTER V. THE LINEAR THEORY OF THERMOELASTICITY
	

/162

40_ EQuations of j,hermoelestic Eauilibrium

Let us consider the case of equilibrium in the linear

theory of thermoelasticity. In view of the fact that now

the functions involved do not depend on time, it follows that

the fundamental equa^ions ( 25.1) -- (25.3) are reduced to

- equilibrium equations

If).) + A	 of	 (40.1)

- energy equations
9i.j _— r;	 (40.2)

- constitutive equations

^U = C^fxt e r ► — Qu e,
(40.3)

Rj = k,► O, s,

- geometric equations

2e,l = tc^ ,^ } ++ J r•	
(40.4)

in ;40.1) -- (40.4) we used the notations from Paragraph 25.

The coefficients Cijkl' Oij have the symmetry properties (25.5).

To the above equations the boundary conditions are added

which, in the case of a mixed problem, have the form

	

ii, _ To, pe ::,, N _ t o y ► + ► 	 Pe E._, (40-5)
0=Op(-E3, gmi_ 71 peE„

	

where E i (1	 1,2,3,4) are parts of 8B so that E, UE2=E3 UZ I =dB,

	

E 1 n2', 2 -_S,,n	 _.©.

Let us observe that, in the case of equilibrium, the

problem is uncoupled, in the sense that the determination of the

temperature is independent of the deformation of the medium.
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We obtain from (40.2), (40.3) 2 and (40.5) 2 the following boundary

problem for the temperature variation

o _w	 pi. ME39 k1) 0 , j it,	 71 on E,.	 (40.6)

In the following we will assume, in general, that the function

e is determined.

We call an admissible state the ordered set of functions
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{u 
it 

E I ,, t i' ) with the properties

(i) 11, E C'(11), 9!, E rt(P),

Lei? to e 01 01),

(iii) fv = i1i,11) E C'(11) ; 1 1), ( 1),) E CO(/t).

If we define the addition of admissible states and the

multiplication of an admissible state with a scalar by

(iii, e1), 1,j) 1 04, C o, Col -- (ii, + 1)i, E 1) -)- E i), 1 1) -1- Co),

X(u„ E,), 1 1))	 (X11„ Xe, ) , X11)),

then the set of the admissible states is a linear space.

By the term thermoelastic state, corresponding to a specific

force of volume f  and to the temperature variation e, we understand

an admissible state which satisfies the equations (40.1), (40.3)1'

(40.4).

The determination of the thermoelastic equilibrium is reduced

to the resolution of two problems. The first of them is the boundary

problem (40.6).
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The second problem consists in the determination of a thermo-

elastic state corresponding to the functions f  and 0 which satisfy

the boundary conditons (40 .5) 1 . If there is such a state, it is

called the solution of the problem. The problem of the determination

of the function A is considered as an auxiliary problem.

Therefore, the study of a thermoelastic equilibrium problem

amounts to the resolution of boundary problem for equation (40.6)1

and the integration of the equations

(40.?)

11) =	 -- aI/°'	 (40.8)

2E I/ 	 111.1 -T- 11/lt
(40.9)

in which the function a is known, with the boundary conditons (40.5)1.

41. Analogy with Problems from the Theory of Elasticity

Considering the function a known, we can obtain an expression

of the mixed problem with the help of the components of the

displacement vector. Thus, proceeding as in the cane of Paragraph 26,

we obtain the following form of the equilibrium equations.

(t"11 ► IvlA.r),I +.G — ((du e ).) = U.	 (41.1)

^m

The boundary conditions obtain the form

91 1	NI on E1, CI, ► i llw il i	 7, + PI, e ►1, on E..	 (41.

2-



The problem (41.1), (41.2) is a problem of elastostatics	 /164

corresponding to the specific forces of volume f i - (si ,e) ,,

the displacement ii i oil 7 1 and the surface forces ti +0 j eni on E2.
Consequently the effect of the temperature in this case is shown by

the appearance of the term -(^ i^e) 91 in the equilibrium equations

as a specific volume force and of term S ij eni in the boundary conditions

as a surface force.

On the basis of this observation (due to Duhamel [911) it is

possible to transpose a series of results from the theory of

elastostatics to the theory of the thermoelastic equilibrium.

It can easily be seen that on the basis of the linearity of

the theory, the solution of the problem may be written in the

following way

where (u(l),e(l),(l)}is the solution of the corresponding problem of

the loadi syst em I (1) = (f,u ,t ) and (u (2) , c(2) t (2) ) is the solutioni i i	 1	 i^, ij
of the corresponding problem of the load system

1"" = t — ( PiMo , 0 , p,Jeaj)-

In general, in thermoelastic equilibrium problems it is assumed

that the functions f i , ia i and t i are zero, thus only the effect of the

temperature variation is studied. In the contrary case, an auxiliary

problem of elasticity corresponding to the mechanical loads must be

sought.

Strictly speaking, thermoelastic equilibrium problems are

considered,which are,on the one hand, problems in which the function

e and then the corresponding functions u  are determined effectively,

and on the other hand, problems in which the solution is based essentially

on the equation which satisfies the function a or the special mode
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of the loading system I (2) . If E 1 a 8B, the problem is called the

first boundary problem or the problem with displacement given at

the boundary. If E 2 a 8B, we say that we have the second boundary

problem.

Further on we will present a characterization of the second

boundary problem with the help of the tension tensor components.

We assume that the tensor 
Ci3kl 

is inversable. In this case

we conclude from the constitutive equations (40.3)

Bu = Auti tAt + ai3O,

(41.3)

where

all =' AI,tIMtl.
	 (41.4)

We will consider the case when the tensions at the boundary

are prescribed. We assume that 
Aijkl 

and a ij are functions of the

cuss C2 on B and that the domain B is simply connected. Keeping

in mind the compatibility conditions (3.21) it follows that the

symmetric tensor t ij of the class C' on B is the tension tensor

corresponding to a solution of the second boundary problem from the

theory of thermoelasticity if, and only if

f ,,., +.f, = °'	
(41-5)

^,,,„^•,.(Aut ► ft^ { auo)... 4 4 ► , in B,	 (41.6)

r„ ►., = ►. A' V If.	 (41-7)
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(42.3)

i7

42. Formulas for the Mean Values of Deformations and Tensions 	 /165

The mean value of the function f, continuous on B. is defined by

f*(R ) -- —`fdn,	 (42.1)
V(R) Ju

where V(B) is the volume of the domain B.

Theorem 42.1. If u  and e i Exe continuous functions on

B which satisfy the equations ( 0.4), then the mean values of the

components of the deformation tensor depend only on the boundary

values of the displacement and we have

c'(B) = --- 1 --	 (u,n ) +uj n,) da.
2I" ( R ) do

(42.2)

Moreover, if the medium is homogeneous, and a is a continuous

function or B, then the mean values of the components of the tension

tensor depend only on the boundary values of the displacement and

the mean value of the temperature variation 6*(B) and we have

Proof. The relation (42.2) follows immediately by applying

the theorem of divergence. It follows from (40.8) and (40.9) that

Ili = Cliko u t,, — pffe,

and consequently, using (42.1) and the theorem of divergence we

can derive (42.3).

If the boundary conditions are

v., = 0 on d R,	 (42.4)
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then it follows from (42.2) and (42.3) that
A

`u (k) = u, 1u(B) = — 01,0+(B).
	 (42.5)

In view of the relation (5.9) we conclude that in this case

the variation of the volume is zero.

Theorem 42.2. If (u i ,e ij ,t ij ) is a thermoelastic state which

corresponds to a specific volume force f  and the temperature variation

of 6, then the mean values of the components of the tension tensor

depend only on the boundary values of the tension and of the forces

f i and we have

I'(B) ^alj'	^11 *

Moreover, if the medium is homogeneous and the tensor Cijkl 
is

inversable, then the mean values of the components of the deformation

tensor depend only on the specific volume force, the boundary values

of the tension and the mean value of the temperature variation and

we have

(42-7)

Proof. In view of (42.1) and the relation

(1 )" , + f,) (It . -{ ` l, / (IV,
• tl/t	 li	 t7	 1J

we obtain (42.6). In view of the fact that the medium is homogeneous,

the relations ('41.3) imply

E'(n) = A,^iJI*+(/{) + a,t©"(B),  

E,(I{)	 1'( R; 
ft. ,^+ (J,,u.t,f,tict { ` n r A flit+) { a J U"(/i)•

1166



and, in view of (42.6), (42.7) follows.

If f  • 0 and the medium is free of tensions, that is

tu ►►, = o on d B,

then we obtain from (42.6)

t'(B) -= 4).	 (42.8)

Similarly, in this case the relation (42.7) becomes (Nowacki [3151)

s*(B) = a ►)0*(B).	
(42.9)

From (5.9) and (42.9), it follows (Nowacki [314], Hieke [1751)

that

F ►+	 1'(B) 0*(I1) x,,.	 (42.10)

43. The Theorem of Reciprocity

Although the theorems of the linear theory of thermoelasticity

may be derived from the theorems of the theory of elasticity, using

the analogy frcm Paragraph 41, we prefer to derive some of them

directly in order to facilitate the reading. Similarly, we agree also

to take mechanical loads into consideration.

In the case of a thermoelastic equilibrium, we will call the set

(,fn +►► + i+, 0;	 a thermomechanical load system ( it is assumed that the

function 0 is known).

M
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Let an elastic medium be subjected to two systems of thermo-

mechanical loads

	

^^.^ _ ^^^.^ ;,^. ► jai QatS	 Ix	 ^ :).

We will designate by 11 40) = {4,;°', 117 1,117') the solution of the

thermoelastic equilibrium problem (40.7) -- (40.9) corresponding to

the loading system L(a).

Theorem 43.1. If an elastic medium is subjected to two systems

of loading L (a) (a a 1,2), then between the corresponding solutions

H (a) the following reciprocity relation prevails 	 /167

	

dv + 1+"ai=',1a + 	 da =

B	 JB	 Jd	
(43.1)

	

= `pv) vV, 411, — (^u p' s, )^ 1 it'j" d  +
^JB

„+„	 ..f.z '	 da	
^jfi

NOII)njul, ► da..

U	 U  

Proof. Let

(43.2)

In view of the constitutive equations,we can write

1V° p = ^^1 xl r=.i Ekl

(43.3)

From (43.3), on the basis of relations (25.5) we derive

11' 1 ; = 1V.,•
	 (43.4)

Using the theorem of divergence and the equations of equilibrium
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we have
^^ 1Vier1 ►^ ^- ^ t,•^u	

i a 
P,^O^•^u^pfda a ^

o&u 	
(43.5)

♦ 	 P, ► 0' 1 ' ►►► a 8' da+ J fi'^ fi le) dv _ (Pi) 0111 %) u'j" dv.
^D	 11	 R

(43.1) follows from (43.4) and (43.5).

Let us give another form to the established reciprocity

relation. The equations (41.1) may be written in the vectorial

form in the following manner

F

Au=p,	
(43.6)

where the vectors Au	 (Aiu) and Q . (p i ) have the components

A,u =-
	 (43.7)

and

N► = f. — (Po 0). ► ,	 (43.8)

respectively. If we introduce the vector Tu with the components

T,u -. Cu,r►► . ^ ►i^ ► 	 (43.9)

then the problem (41.1), (41.2) consists in the integration of

equation (43.6) with the conditions

on Li t 	Tu a on Let	 ( 4 3 .10)

sere w  a t i + 0 ij OnJ . Let u_ and v be displacement vectors

.th the components	 ui l) and u (2) respectively. We will

^signate

2111(u, V) . 211',.Lo °°--	 rat(O.	
(43 -11)
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From the relations (43.5) we derive

v Tel Ila +i vAodr -. 2 W(o,v)do,	
(43.12)

dl+	 N	 Ir

	

uTnda ;ri n And y --2j IV(u)dr,	
(43.13)uN	 M

	

It

where W(u) . W (u,u) is the elastic potential corresponding to

the displacement u. The reciprocity relation (43.1) may be

written in the following way

(nAv — vAu)dr r 	 (%-Tel — O'v) (Ia.	 ( 4 3.14 )
B	 ulr

Let us observe similarly that the relation (43.1) may also be

written in the following form (Maysel [2811)

f; r'u1ffi1(11,+ 	1,"' 11 (, Ila A i
ll

^rr prlr1 ^
i

Ole - -
I+	 ol 

(43.15)

of	 .+Ir	 in

The reciprocity relations may be used to establish certain

formulas of representation of the type of those given in Paragraph

30 (Maysel [2801). It is possible to introduce potentials which are

similar to the simple layer potentials, double layer potentials and

mass potentials, from the conventional theory of the potential. By

means of this potential the boundary problems are reduced to the study

of certain integral equations (Kupradze [2461).

44. The Theorem of Uniqueness

The uniqueness of the solutions of the problems under consideration
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Is derived from the study of the uniq "eness of the solutions of

problems from the theory of elasticity. For the unity of the

treatment we will mention the following theorem

Theorem 44 . 1. If 
Cijkl 

is a definite positive tensor, then

(a) the first boundary problem has at most one solution;

(B) any two solutions of the second boundary problem differ

by a rigid displacement;

(y) the mixed problem has at most one solution.

Proof. Let ( u 0 0 Eii , t 0 1 be the difference of two solutionsij
of one of the boundary problems under consideration. On the basis

of the linearity of the theory,(u 0 9 E0,,ti^ ) corresponds to

zero loads and it follows from (43.13) that

W(%10 )41v	 u,
n	 (44.1)

where u_0 • (u0). In view of the fact that W is a square positively 	 /169
defined form, it follows that c0

j
 • 0 and therefore

it s .	 q,	 1 P1j4111.1't,

in which a  and b  are arbitrary constants. For the first boundary

problem and the mixed problem it follows that ui t 0. The soluticn

of the second -,undary problem is determined, however, by the rigid

displacement.

If the following conditions are imposed

t1,^ln	 ^ ► ,	 S r„ ► .1 1 H t^1, - 0,	 (44.2)

It can easily be seen that the solution of the second boundary

problem, which satisfies the conditions (44.2), is unique. The

first of the conditions of (44.2) eliminates the translation and

the second one the arbitrary rigid rotation.



,

45. Variational Theorems

We will present two variational theorems from the theory of

elasticity with reference to the equations of the thermoelastic

equilibrium.

We call an admissible kinematic state an admissible etate

which satisfies the relations (40.8), (40.9) and the conditions

imposed at the boundary portion El.

Let .4 Otog co„ it,t be an admissible kinematic and functional

state

41(0 =- 1 ` fl, J u E, ► s„(1r ► ( ( § ') 0) .) 11,(10—u,(1^ f,0--
,^	 J ►

J(45-1)

-- ^-^,;On ► rr,da	 ^ f; ►t,tla,

defined on the set K of the admissible kinematic states.

Theorem 45.1. (Theorem of the minimum potential energy).

If 
Ci,)kl 

is a symmetric and positively defined tensor, T is the

functional defined on K by (45.1) and s is the solution of the

mixed problem, then

'1'(x) < 11101,

(45.2)

►

x
for any x' e h .

Proof. Let x, x• E K and s 	 s e —a.  Obviously s' is an

admissible state and we have

►_e'.	 u:. 1 u: . ^i, '	 Vj I k, Eii ill	 k,	 tie	 11 on 1,. (45.3)
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We can write

its

+ ^ M, 06 f,,dr . ' f,u4 dr	 pgot l: d,► •- U.14"  da .{.

'}'^ Cur,c ►,e;^dr ^'lr(y) -}- I	 ^, ► Ir+ -{-s	 2 

	

``
	 (45.4)

+' 
Jrr(pu0)., t,; dr— fi U: d r — P, j Or, j tt;da —	 l,u; da +

n	 L,

+ Oil f Pu 0 ) u i., d 	 + - 
S

C, )& , es', c&jdP—
B	 2 a

— S 0a.,-F-f+) u;dr. +	 (tuiij — t,) lt,dv.

In view of the fact that s is a solution of the mixed problem,

it follows from (45.4) that

-,►̂— S C,p ► , e ', et,d  r,	 ( 4 5-5)s

In view of the fact that 
Cijkl 

is a positive defined tensor,

we can write

`r(a) < r(,,*),

4r( 8 ) = `l'(8*) M ej 1 = e*j — e,) = 0.

The functional (45.1) may be substituted by the functional

	

r(s) =	
S 

C,l,.,e,ie ► ,dv— `8Q„e,j 0dr —`fiugdn--
S
 t,u,da.	 (45.6)J	 ES

244



k

k

k

A.

(A if, 11) ;;•	 - 11 It jI`,
(45.10)

This is due to the fact that the second term of the right

member of the relation (45.1) may be written in the following form

(a (Ptt O)j utdu =	
pt' 

On ) ut da +^ p, ► On)u,da — pt) tat► Odv,
E,
	
in

and the integral extended at E 1 may be eliminated because the function

e is assumed to be known.

Remark. Let us consider the mixed problem of the thermoelastic

equilibrium written in the form ( 43.6), (43.10). Theorem 45.1 may

be derived also with the help of the results mentioned in Paragraph

43. Let us consider first the equation .

Au= P,
	 (45.7)

where A is a linear operator in a real Hilbert space, and u and f

are elements of the space. It is known (Mihlin [288]` that if the

operator A is positively defined, then the equation (45.7) has a

generalized solution which minimizes the functional

F(u) _ (Au, it) — 2(ii,.f)•	 (45.8)

The domain of this functional is a new Hilbert space which
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is the closure of the domain DA of the operator A in the metric

generated by the scalar product ( Au,u).

The operator A, defined by the lineal D A which is dense

in the Hilbert space under consideration, is called positive if

(A u, r) : (1 1 , A r) V it, 1• c D.."	 (45.9)

(all. it) -,-^ 0, d11 #_ Dm (a11, 11) = O	 it	 (^.

The positive operator A is called positively defined if for

every	 uchI	 the following inequality takes place
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1

where y is a positive constant.

Let operator A be definite through (43.7) and the conditions

(43.10) in a homogeneous form. Let us consider the real Hilbert

space L 2 (0) the elements of which are square vectorial functions

summable in B; the scalar product of this space is defined by

^di %. (It, —	 VE it, lit (IV.

,r	 ^ 11 $ '-I

The symmetry of the operator A follows from (43.14), keeping

in mind the fact that we have homogeneous conditions on 8B.

Inasmuch as Cijkl 
is a definite positive tensor, it follows

from (43.13) and theorem 44.1 that: ',;he operator A satisfies the

conditions (45.9). It follows that the solution uu of the problem

under consideration minimizes the functional (45.8). In view of

(43.13), (43.8) we can write

P(u)- 2t

For nonhomogeneous boundary conditions it can easily be

shown that we are led to consider the functional

3 0 ►, „^t«.	 (45.11)

In this case we can state that in the set of the displacement vectors

corresponding to the admissible kinematic state, the solution of

the problem minimizes the functional (45.11).

It can be shown that the operator A is	 positively defined

(Mihlin [2881). From Viis fact follows the existence of a generalized

solution and the applicability of the variational method stated in

[288].

We will now present a known variational theorem from the theory

t
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elasticity (see Gurtin [1631) with reference to thermoelastostatics.

Theorem 45.2. (The Hu-Washizu Theorem). Let-W be the set of

iissible states and A a functional defined on .c 3 by

A(8)	 •- ` ( 'J;IJ C rr^rr tlu	 (11 ..}- fill 0) Ell 4I1,
rr rr

_1 fe) tt, du + ` 1, Do dal 	 (1, - /,) a, du,

every	 s s-- (a„ g ilt 16)) C .m.	 Then

(45.12)
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(45.13)
RA(s) = o,

if cnd only if s is the solution of a mixed problem.

Procf. Let s • (u i ,l: ii ) and s - (ui, ei i ,t l } be two
Ii

admissible stater. Then 	 ^+ ^8't.at'	 for any scalar A. Then in

view of (31.14) we will form the expression

88. A(s) m^- 
:1 

A ("' +

It can easily be seen that

a,• A(») ::	 kr'rltra/r -- I, 1 — Pil o ) _;, — ( I ,i.l + f.) tt; —
11

-}°'_ 111`rl y. f.l.l tt i) dig + \ l"tl, 1111	 i` (f;ll, -} U."" 1^) uiI1Ia.	
(45.14)

L,	 .•3

If we keep in mind

fi 1l u,dr ==^ 1;,n,It,lla—` 11"Jl;1d r.

Jr	 +H	 • It

then (45.14) takes the form

.
e

^
(45.15)

-"
 ^

1 14.1 -) - .f^ltr;llr .^	
l 

1 l tl r.i -^ ► I l.r) --- e„lt'„11r -{-
tJ	 J) l	 JJ

+ S- (ur - it,) I; da+` (t, — f,) tl; da.
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If s is a solution of the mixed problem, then it follows

from (45.15) that

S., n(x)	 0 for any	 *'c- Af,	 (45.16)

which implies (45.13).

In order to prove the reciprocal, let us assume that relation

(45.13) takes place. This implies (45.16). If we select s'= {ui3O,0}

where ui becomes zero on aB, then from (45.15) and (45.16) we have

u 
(11). ) + f.) it ' dr -- U,

On the basis of the fundamental lemma from the calculus of variationsit

Follows that 
tii 

ii + f  n 0. Let us select s' _ {ul,0,0} where uj

becomes zero on E 1 . We obtain from (45.15) and (45.14)

Sr(t,-t,)u4da -11,

whence, on the basis of a generalization of the fundamental lemma 	 -173

(Qurtin [1631) it follows that t i = t i on E 2 . Let s'= {O,eij,0}

where ei, becomes zero on aB. We derive from (15.15) and (45.10

e

whence follows tip = C iikl - Oue. Taking s' _ {0,0,t	
wherewhere tij

becomes zero on 3B, we obtain 2c 	
uij + u  

i . If we do not

request that ti i become zero on aB, we obtain from (45.15) and

(45.16)
` (ft. — u,) to n j da = 0,

L,

whence, using an e-tension of the fundamental lemma (0urtin [1631),

we derive that u i = u i on E i . Consequently s = { u ii ,E ip tiN}

is a solution of the mixed problem.
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46. The Existence of the Solution. Approximation Method

The existence of solutions of the boundary problems of the

linear theory of thermoelasti.Aty results from the theorems of

existence established in the theory of linear elastostatics (for

example see Fichera [1121). We will limit ourselves in the following

to the presentation of an approximation method of the solutions

and to the study of the existence of approximation solutions

(Mihlin [288], 4urtin [1637).

The standard method for determining a approximate solution

of the mixed problem consists in minimizing the functional (45.1)

or (45.11) in a particular class of functions. It is attempted

to find an approximate solution u (N) in the form

Fd "^i f
	

(46.1)

where 40 1 l ( N) 0— 4 1N) are given functions which become zero on

E , and 
I(N) is a function which approximates ui on E l . The term

u N) will be omitted in the case of the second boundary problem.

The constants a l , a29 ... ,aN are so selected that the Cu (N) )  is
minimum.

If we set	 a

(46.2)

then we have

	

N	 N
4) ( 2 11 a^, ..., a .v) =A -} E A " a" + 1 F.1q	 Am

" amawf (46-3)

	

":1	 ^ n^,na1 

where
A =	 rv, -rN)!f^l,tll;, ^1 t.r dv —	 [J. — (^l,e),,l .,,;N' dv

--

 S
( 11 + P,j On/) i1, 1 do,s.

(46.4)
Am ^	 , ^t.1	

SufJ^ —(pue)+,] ^,'dv— ` (t, -}-ar, 4n,) ^^"^dn,
1-.

As•	 rl,tl-p%1 T171 1 dv.
J!f	 s
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t

When E 1 is empty, we will have U(N) • 0 in the above relations	 /174

and therefore

:t — ( ^1 :, A	 1.11 — 01, 0) , 1 ^P'f l^i' _	 (^^ -^- N^,en)1 ?'*I da.	
(46.5)

If Cijkl 
are components of a semidefinite positive tensor,

then the matrix ( Amn ) will be positively semidefinite and

C
0
a 1 ,0 2 ,...,aN ) will. have a minimum in a i 	n0 if, and only if

a  is a solution of the system

N	
(46.6)

x =1

'text we will establish the conditions in which

the system (46.6) has solutions and in which the approximate solution

U (N) converges in energy for N 	 on the solution of the problem.

In the following we will assume that Cijkl 
is positively

defined. We will designate by M 0 the set of continuous vectorial

functions with continuous first order derivatives on portions of B.

Let G 	 be an N-dimensional subspace of M b with the property that

elements of G  become zero on E 1 . If 1 1 # n, we designate by

u (N) a given element of M0 , and by GN the set of the vectorial

functions of the form

If	 S, _= 0.	 then GN - GN.

Theorem 46.1. There is	 "^''^ r r,	 so that for every vtG

we have

(p(u111) < a ► (c).	
(46.7)

t. R
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From (46.4) and (46.10) we obtain /175

S1, CIM 111.1 /1 A. ” d o _ 0
F

If Vl A O	 then u (N) is unique; if x1 =. O	 then u (N) is

determined up to a rigid displacement. Moreover, if u is the

displacement vector which corresponds to the solution of the mixed

problem, then

SW(u — W"') dr = int 11'(u — w)du.
wEbN ,j	 (46.8)

The relation (46.8) specifies the sense in which the vector u (N) is
optimum.

Proof. Let x(1),1(2), ... ,#- (N) be a base in GN . In order to

establish the existence of a solution u (N) for (46.7) it is
sufficient to establish the existence of a solution a i of the

system (46.6).

Inasmuch as Ci,jkl 
is positively defined; it follows from

(46.4) that

N

E A ►, at, x. > 0.	 (46.9)
P ' s -1

Let us assume that

N	 (46.10)
E .9„x, «. = 0,

► ,S a I

and let

N 

(46.11)



and in view of the fact that 
Cijkl 

is positively defined, it

follows that h represents a rigid displacement. If Elf 0

then h . U.

In view of the fact that 1(1),...,o(N) is a base in G1N

it follows that

	

at  = a; _ ... = aN ._ U.	 (46.12)

Therefore if E,= 0	 then (46.10) implies (46.12) and

accordingly it follows from (46.9) that the matrix ( Ars ) is positively

defined. This state of affairs indicates that the system (46.6)

has, in this case, a unique solution.

Let us consider the case when E, ^- O•	 If

A., x, = 0 t

(46.13)

then (46.10) takes place, and therefore h, defined by (46.11)

is a rigid displacement. From (46.5) and (46.11) we obtain

N

A.	 h, de	 (ti + Pu e ►jj) h, da.
... ^	 Ju	 on

Inasmuch as h_ is a rigid displacement and the forces f  and

t i are in equilibrium (which implies that f  - (B ij e), i and

t i + B ij enj are in equilibrium) it follows that

N
E
r-1

Therefore (AIDA2,...,AN) is the orthogonal with any solution

(al,a2,...)aN) of the homogeneous equation (46.13). Using Fredholm's

alternative, it follows that the nonhomogeneous equation (46.6) has

a solution.
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In order to demonstrate (46.8) we will show first that

(Tong and Pian [4173) if (u i , e i , t ij 't is a solution of the

mixed problem, then for any UrNo we have

0(w) — Q►(u) : W(tv — n) do +	 0r,-+-Poo) nAtar--ur) (Ia.
u	 L^

(46.14)

Let us designate	 w  - u  • ui. Obviously

11100 dr =	 11'(u') du -t- 	 W(u) dv + `
11

	 dv
•u	 H	 u	 n	

u,	

(46.15)

==
	 di , -}-	 IV(o) do +	 (t, ) +P^,0) t4,1 dv =

	

u	 u	 u

W(w — u) di+ + `(U) dv +	 (I, ) +-Pr,0) nru , da —

	

u	 u	 cur

( to 4	 to, III'.
u

	

We obtain from (45.11) and (46.15)
	

/176

'1'(^^') — r!►(tt) = _ ` 11'(a) rlv —	 W(u) riv —
• U	 !t

—'H IJ^ —(Pu0),^1(rr'r—u,) dv -- 
S_ 

(1, 4 P011 1 ) Orr — ti,) da =_

= J VV(w—u) rlc—	 (fo,r -1 A) (tv, — ii,) dv +

	

H	 H
,

+
J_ (fir -+- Pj) 0 ) ►+r( tv, — ir,) (Ia.

Keeping in mind the fact that t ij satisfies the equilibrium

equations, we derive the relation (46.34)
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(46.17)

t- 
FI*

If	 W EoN,	 then W . u (N) on E1.

Inasmuch as	 it follows from (46.7) and

(46.14) that

Sft W
011s ' _ u) dv 	 _	 ( h) + %J 0) ►►► (v;v)•_'n,) do

< m(tv) — (u(n) — ^ (##) + Ali 0) ►► ,(w, -- Ito du

a
 j

W(w — u) dv,
e

for any w E p*. The same procedure is used when E, = 0.

Let us study the convergence of the approximate solution.

This has been done in detail by Mihlin [288], [2891.

We will assume that

(i) for any displacement vector u_ corresponding to a admissible

kinematic state, there is a. series 11V(N)), %V (" ECJv	 such that

W(n — w(xl) (Iv -). 0 for N--)- oo.
►r (46.16)

Theorem 46.2. Let us assume that (i) takes place and u(N)

and GN satisfy for every N a 1,2 0 ... the conditions imposed by

theorem 46.1. If u (N) is a series of approximate solutions (solutions

for (46.7)), and u is a displacement vector corresponding to a

solution of the mixed problem, then

` WW(o — u'xI ) dv -► 0 for N -♦ oo.

254



Proof. Taking into consideration (1) 9 it follows that	 /_17

there is a series jtv,N, j, w,N,eG,,* such that (46.16) takes place.

The relation (46.9) and the fact that Ci,kl 
is positively defined

imply

()4  W(u — W01 ) do < Mu — V01) dr.
e	 a

In view of (46.16), (46.17) follows.

The above theorem includes the method of the finite element

(see for example Tong and Pian [4177, Zienkiewicz [456], Oden [3251).

47. Homogeneous and Isotropic Media

Let us consider now the case of the thermoelastic equilibrium

of homogeneous and isotropic media. It follows from the statements

presented in Paragraph 23 that in this ,case the constitutive equations

(40.3) have the form

I„	 t" A.) 4	 1' E,, -- p 084,,	
(47-1)

q, = I;O,j.

Inasmuch as the medium under consideration is assumed to be

homogeneous, thecoefficients a, U, B, k are constant.

The boundary problem (40.6) becomes

kAO -- -- r hi 11, 	 (47.2)

0- O pus, k 0. 	 on
('111



If this problem is resolved, the following equations must be

studied

(47.3)
10 ) . ) A- A — u,

	r„ = ar„ g,, + 2 1Aeu — P ulp	 (47.4)

+tit,,
(47.5)

with the boundary problems (40.5)1'

From (47.3) -- (47.4) results the following expression of

the equilibrium equations with the help of the components of the

displacement vector

	

JAott, -+- (k i- ,A ) +t..,, -i .I, - s 0,,	 u.	 (47.6)

The boundary conditions assume the form

(47.7)
It ,- . a, on E,.	 XU,. got + j L ( U ,. ) + ti,,.) I A,	 1 post, on:;.,.

If we assume that k # 0, we conclude from (47.6) and (47.2) 1	 /17 8

(a + 2 !i.) 0 div u = — di g' P — P, r,
k

(47.8)
µA rot It = — rot L

If f  a r	 0 1 it follows from (47.6) and (47.8) 1 that

A Du, = 0.
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We have thus (Qurtin [1633, Carlson [463)

Theorem 47.1. If the functions u i , of the class C 4 on B

and 8 of the class C2 on B satisfy the equations

14101, + ( h + fA) (t,,,,

40.0,

(47.9)

(47.1.0)

then

A dig• u = 0, 	d rut u = 0, 	 AAI#, = 0.

Let us assume that in (47.4) the function a is known. We

will present the method due to Coodier [135],to determine a

particular solution for equations (47.9) which allows the reduction

of the thermoelasticity problem to a problem of elasticity, with-

out mass forces and with loads at the boundary. A particular solution

of equations (47.9) is sought in the form

1!! = O'l.
	 (47.11)

The function 0, assumed to be of the class C 3 in B, is known

under the name of thermoelastic potential of the displacement.

Substituting (47.11) in (47.9), we obtain

[(a + 2 c4 ) A (I) — P0],, = 0,
(47.12)

and thus the equations (47.9) are satisfied if the function t is
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(47.14)

the solution of the equation

14► : _	 4 in It.
	 (47.13)

X+:µ

The components of the tension tensor corresponding to the

displacement ( 47.11) have the form

C, -: mb ' 11 311 + :144', 1 , — P43,,.

In view of (47 . 13) it follows that

A

Let us mention also the use in some cases of a Boussinesq-
	 /179

Papkovici -Neuber representation for the direct study of equations

(47.6). Thus, it can easily be verified that the functions

	

^	 1
	

(47.15)

where m and *r are functions of class C 3 on B which satisfy the

equations

	

^^	 1
0 ,	 J	 ►'^(f ^ -- ,i 0„1, (47.16)

are solutions of equations (47.6).

It is shown (see for example Gurtin [1631) that any solution

of equations (47.6) may be written in the form (47.15).



Often it Is convenient to characterize the fundamental equations

by means of the components of the tension tensor. It should be

recalled (see Paragraph 23) that if u 0 0 and v 0 -1, then the
relations (47.4) may be written in the following way

1 -}- v	 v
	 (47-17)l_.. ^	

^ S^^ ..0 {- a0$1j.

Making use of the analogy from Paragraph 1{1, we can

state (Boley and Weiner [2319 Carlson [461)

Theorem 4;.2. Let there be tensor e ij of the class C 2 and

the tension tensor t ij which satisfy the relations (47.17) where

0 is a function of the class C 2 which satisfies the equation (47.2)1.

If also	 k 0 0 and v 0 1, then the equilibrium equations (47.3)
and the compatibility equations (3.4) imply the following compatibility

equations for the tensions

+	 (47.18)

+ -

Inversely, if t ij is a symmetric tensor of the class C 2 on B,

which satisfies the equilibrium equations and the equations (47.18),

then the tensor 
eij 

defined by (47.17) satisfies the compatibility

equations (3.4). if the domain B is simply connected, then there is

a displacement vector which satisfies the relations (47.5)•

In the case of a domain which is multiply connected, in order 'Co

r

f
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ensure the uniformity of the displacement, the following conditions

are derived from ( 3.27) and (47.17)

1 `' v	 l'1t — 1' ilr"rm 4 x 1.., M) 41	 -.. V
	

l'rr^ l -- 1'r ,r^ 'rArn 4 1^r ► , ml 1^ C1
-^	 r
^i	 LA	 1^ f.^

_L. a ^	 (^r^r^- 1'ur^r'rxilo•u,) 1^C1	 (^•
l.^

i	 f	 n	 (47.19)
1'Lm 1 1 . • rn 1) ► '"	 r \r\	 /'rAO.^rr ' rx 1^.1	 x^	 /'r1nr 11 ur 1^ 1 	 1^,

1'i	 !.M	 hi Jf.^	 ► n

In conclusion, let us derive the expression of the ;thermal 	 /180

field which dues not produce tensions in homogeneous and isotropic

media.

We assume that we are dealing with a second case of the boundary

problems, and that E i = 0 on 8B.	 We consider also that there are no

mass forces and thermal sources. If we set t ij = 0 in B. then it

follows from (47.18) that

e, ij = 0,

and therefore

A = a i x i + b,	 (47,20)

where a  and b are arbitrary constants.

It follows from (47.17) and (47.20) that

Si j = a(ara r + b) 8,1.	
(47.21)

t

x
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The displacements corresp p -.a'ng to the deformations (47.21)

are

u, = a ((ajxj + b) x, — 
2 

a,.r)xj l + u°,
JJ	 (47.22)

where ui are components of a a rigid displacement.

48. Special Problems

In this paragraph we will study some of the special problems

of thermoelastic equilibrium for homogeneous and isotropic media in

the absence of mass forces. We will assume, with the exception of

Paragraph 48 (f), that there are no heat sources. Other problems

of t'Ais type are found in the monograph of Nowacki [3157.

a) The problem of the half space. Let us assume the medium

under consideration occupies the half space x 3 > 0. We will study

the problem of thermoelastic equilibrium for the case in which,

at the boundary, x 3 = 0 is the prescribed temperature variation

0(a'u xv 0 ) = 0( XI, X.A.	 (48.1)

In addition, we assume that the boundary x 3 = 0 is free of tensiono.

This last case implies the following boundary conditions

1 '3( Xi, 1's, 0) = 0.	 (48.2)

We will also impose the conditions

is = 11 ,	 0 = 0,	 xa --> 00.
(48.3)
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This problem has been studied by many investigators (Melan	 /_

and Parkus [2861 9 Lurye [2711 9 Sternberg and McDowell [3931,

Sneddon and Lockett (3751).

In the following we will present the solution given by Sneddon

and Lockett 13751•

If we designate (Sneddon and Berry (3721)

a z — 1 = 
X±l1	 b =_P ,	 (48.4)

El	 ^l

then the relations (47.1) are written

1 tll = Ilr.l }- Il / -} ((u'= ^- 2) e„ — bOl S,l.
JA	 (48.5)

Equations (47.9) become

(48.6)

In order to integrate the equations of thermoelastici ty , we

will use the Fourier transform. Let

I jOO 

^-Qo

°°	 is a
Th^a1t xz+ 1'a) _ > - 

	
11,(.x1, .I':, X.) L°° dx, a.,

27- _„ 

9* ( x l, x :, X3) _ 	 S00.	 0(•/'1,	 X3 ) e 
ap

e 0d1'1 ds3.
2n

(48.7)



The equations (47.10) and (48.6) imply

...........

(48.8)( d" _ 1
%) 0•

4243

U

2 — a ll)	 — (az — 1)	 ib x,O*,

48	
r

(48.9)

where

as	 Od + 042,	 a9. 
d

	 (48.10)

The solution of the equation (48.8) has the form

0• = Ae-O's 4- Be",
	 (48.11)

where A and B are arbitrary constants.

We derive from (48.9) and (48.11)

+ 1),	 4P-13,

ilj (C3 /","a)

/182

(48.12)

In (48.12) C
r
	Crand ' are arbitrary constants, and D and D 1 are

defined by

i bA I

02	
i 2C

a
J7

1
I	 i

11 - --	
, I 	 (X

 
^x.

(48.13)
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A = 6*(x„ x_).

Llarly, we obtain from (48.15) and (48.16)2

x	 ib0*ap 	b 0*

(48.17)

(48.18)

a

If we consider the conditions (48.3) it follows that

0*	 At, ax,,

Ir*	 I',
	 (48.14)

Applying the Fourier transform to the relations

(48.5) and keeping in mind (48.14) we conclude

tG a = — µ( a I -}- ax f, /).^^., - - x^ / ► -} i x;,l'^ d-1-j!

1 	 i(° — al) (ateCti -}- 221)..3) -( a =(ix= l).rz — aC3 —

— ial)) — bA l e 121%

(48.15)

From (48.1) and (48.2) we have

0*(al, 12 2, 11 ) - 0*(x l • a.l, f'(a ) , a." 0) _- 0.	 (48.16)

If we impose the condition (48.16) 1 , it follows that



In view of (48.17) and (48.18), it follows from (48.13) l that	 L-QZAL

D = 0. Consequently, the relations (48.14) take the form

0* == b*(a„ a.) P-°`',

tie*_	 ib0*acp	 *

2(a = — 1) at ;'	 2(a' — 1) a

If we replace A and C S given by (48.17) and (48.18) in

(48.15), and we keep in mind that D = 0 9 it follows that

t, = 0,	 '2's > 0.

(48.19)

(48.20)

Therefore, a state of plane tension, parallel with the

boundary x 3 = 0 takes place in the body.

Inversing the transforms (48.19), 0 and u  are determined.

Sternberg and McDowell [393] considered the case of an axially

symmetrical problem in which

0 = 0„ H(c — r),

where e 0 and c are constant, r 2 = x 2 + x2 an d H is the Heaviside

function. In this case, using cylindrical coordinates (r, 0, z),

it follows from (48.19) that

2(a = — 1)

Its	 Gc 0„

2(a' — 1)

where

J,,((x'') J„(xr) c-ax-%a da.
0
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Ju (x) was used to designate the first species and u order

Bessel function. For the nonzero components of the tension tensor,

the following relation; result

	

Orr + Of* 	
— e60„a 

I ( 1 , 0; 0),
a- -- I

Orr — o^ = eb0„ti r /(1, 0 ; 0) — 2 1(1, l ; — 1)l.

	

7	 t _	 L.	 JJ

The integrals J(1,1; -1) 9 J(1,0; -1) 0 J(1,0;0) have been

tabulated for various values of r/c and z/c by Eason, Noble and

Sneddon [98].

b) Elastic layer placed on a rigid foundation. Let us consider

an elastic layer which occupies the region	 0 '< x 3 ` d and which

is placed on a rigid, frictionless foundation. Let us assume that

the surface x 3 = 0 is free of tensions and the surface x 3 - d is in /184

in contact with the foundation. On the surface x 3 - 0 9 it is assumed

that the temperature is given,while on the surface in contact with

the foundation, a thermal flux is assumed.

Thus, the boundary conditions are

0,	0	 o	 for "'3 =0,	 (48.21)

4) 0
113	 0,	 tx3 	 ')X3

	 for • :, = d.

This problem was studied by Sneddon and Lockett C3761.

In the previous problem, it was shown that the solutions of

the equations (47.9), (47.10) have the form (48.11)2 (48.12).

Obviously, these solutions may also be written in the following

way

	

0*	 .)`1 rh acx3 + -k' •h ad'39

(48.

266



+ iaa • 3 1' A a:r3) — i(a'° — 2) (Asap sh 2.1•3 +
+ 1"Ot'X3 eh OCX3 ) — "I" Sit a..r.^ -I

+ a 2 ac(A9 Kh aX3 + iP' A ar3 + ' a '2.3 1'' ch aa•3).

►►a = (f1 3 -}- /''apr3 ) t'h a.r3 + ( A 3 + Pxp .ts) Sit A ,- ,.

(48.23)
I13 .- (A3 + ia/".r3) All 7.1•3 + (A 3' + ial'r'a) ('h a:rsr

where A i ,A I E,E I are integrat{on constants and P and P' are defined

by

1, ` W — 1) (
A a	 i x 

a
A _ W 1'

( n` + I ) a l ^'	 as — 1 /	 (48.24)

( ea + 1) a (	 ^t= — 1 )

For the components t 
1 

of the tension tensor, the following

expressions are found

µ 
/p3	 ( aAp — ixpA 3 + Pxp) S a.l•3 + 2 l'731"'3 ch Ofr3 +

+ (aAp — iapA 3' + P'ap) ch a.r3 + 21"apa.r 3 sh axsr
1	 (48.25)

tas = — i(ct'- — 2) (A Oxp ch ac.r3 +	 Sit 2.1-:1)—
µ

— 6T Ch 2 .1 •3 -f - R'-a(A 3ch ax ,t + i /'(-h o: .t • 3 +
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The thermal conditions imposed at the boundary imply 	 /M

i:	 li• ,	 E#_ ^• - ^•'^-,	 (48.26)
aC	 C

where S n sh ad, C; • ch ad.

The tension conditions imply

I (r1`	 :,') :Iprp	 - /!/; } (f':1,x "}- (! 11 a 1'	 0,
(48.27)

(aap --- i2p.4, + 1'ap) 8 + 2P aap dC + 31' aap 0 = 0,

(A, -{- iI''ad) N -}- (Aa + i I'm d) C = 0.

If we designate

I) - -" 
'^ix^ („= --1)	 '=ix^ ( ri :..1) ('S {-adC-1)'

then we have

.'rt x

	

Ip - _. 1 _. (}h/:” -- '.: x = DNC- 1 ) xp, A, - ix DSV	
(48.28)

2n .3t

:,'r►  x

(:.'x= ASS-'(a` — 1) + ib '].

In the case when the foundation consists of a material which

foes not conduct heat, the elastic layer is thermally insulated

from the foundation and we have Q a 0, and therefore
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We obtain P a P 1 a 0 and therefore

A. _	 ihiN xis	 hil+

ra([1 1 --

A'	 _ _ 1#6 . * '%;(,

(48.29)

If we consider the above relations, it follows that in this case
	

/186 1

the Fourier transforms of the temperature and of the displace-oAnt

components are expressed as

0+ = t1+ (rh x.Y3 — ,v(' .ha •^'a)^
(48,30)

+	 M* ap
+Ip =- 

^xs (
---- ( eh x.r3 — NC- 1 >'<h x .!'3),

113	 (4l x.T3 — ,v(` 1 (il a 1'3)x( 4-1)

In general the inversion of the transforms P. ui implies

serious difficulties. For some particular cases, the functions

were originally determined, and the results were interpreted

(Sneddon and Lockett [3751, [3761). Other problems referring to
the elastic layer are presented in [3151.

c) Elastic space with a circular crack. At the start, let

us mention the fact that if we take

!1 3	 — /t'=aQ^.3 -i (a :' — 1) 1.3 11 ! , 33 -} Xh* — Yf	 (48-31)

0a` ? Y93,

L C!",
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(48.32)

where	 O(xl,x2,x3) and O(x1Ox2Ox3) are harmonic functions

then the functions u i , 0 satisfy the thermoelastic equilibrium

equations in L'ae absence of mass forces and heat source. This

can easily be derived by substituting (48.31) in the equations

(48.6) and keeping in mind (48.32). A representation (48.31) is

due to Sneddon [377] and is useful for etudying some problems

referring to the half space. We obtain from (48.31) and (48.5)

43 — 2 1A [ (0- 1 ) a'a 'h fa98 + x3 19319

1a9 = 2µ[(Q1--1)x9 4'13,, — (ll j — L) (1) + 13 + X3 v'U—x1311	 ( 48.33)

-,- ,hence it follows that for x 3 a 0, we have t«3 N 0.

Let us consider the problem of determining the thermoelastic

equilibrium in the case when, in an elastic medium which fully occupies

t  e space,	 there is a crack (Olesiak and Sneddon 13261).

We assume that the crack is circular, and that it is loi ted

in the plane x 1Ox 2 and has its center at the origin. If the radius

of the crack is equal to unity, and we use cylindrical coordinates

(r,^, z), then the crack is described by the disk

r< It	 =U.
	 (48.34)

Let us consider the case when the crack is free of tensions. 	 /187,:

We assume that the temperature, as a function of r, is prescribed

on the surface of the crack. In this case we have the boundary

conditions
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r	 for (48.40)

► •	 17-01	 1 ► ,	 _	 ^ ► ,	 (48-35)

fit	 ► i,	 ► 	 > t,	 (48-37)

►► 	 9( ►'l,	 n,	 < r < 1,	 (40 .38)

n,;,	 ^ ► ,	 u,	 ► > t,	
(48-32)

by means of which we are able to determine the displacement and

the temperature of the half space z > 0 and therefore, by symmetry,
the space in its en` ety. obviously, we also have the condition

that the displacement, temperature, tension and the flu x should

tend towards zero at infinity.

In order to resolve this problem, we will use the representation

(48.31). With that, the conditions (48.35) will be similarly

satisfied. The problem under consideration is a problem with

axial symmetry. Keeping in mind (48.31), (48.32) and the conditions

(48.38), ( 48.39 ) 9 it follows that in order to find the temperature

the function *(r,z) must be determined, satisfying the equation

p	
and the conditions

(48.41)
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w	

S0̂

io

(48.44)

1

Similarly, it follows from (48.31), (48.32) 9 (48.33), (48.36)

and (48.37) that the function O(r,z) must satisfy the equation

Cit	 r ur	 (0:3
	

(48.42)

and the conditions

r	 s	 ^ 1

l	 JR O

RI R1 ►
ru g - - i- Y^	 Il,	 r , • i.

(4 8 .. ,. ,)

We will designate by P the zero order Hankel transform of
	

/188

the function f±r,z). We have (Sneddon [371)

Applying the zero order Hankel transform, the following equation

follows from (48.40)

.'	 w

('8.45)

This has the solution

(48.46)



where A is an unknown function. If we designate

4(t) = a
n 
_ EA (t) ►

then the function 0 may be written in the form

Y = i- C7 (t) a-u.10 (Er)
2 

and we conclude from (48.31)

— 
a
-	 69 () a-4.10 (6) • ) dh Sa

Similarly, it follows from (48.42) that

(U = H(^) a-u.

Setting

fO _ (a1 — 1) [2;2 1: (4) — 9 (s)1^

we obtain

^p =	
So 

1 ^(^j1 
1 f (^) + 9 ( ) ^' —e'Jo ( =r),1 .

(48.47)

(48.48)

(48.49)

(48.54)

(48.51)

(48.52)

Irt follows from (48.31), (48.33), (48.48) and (48.51) that

^^^(r^ ► ) =	
a1	

^^ (( =) '/o ON it E,	
(48.53)
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The conditions (48.41) lead to the following integral equations /189

for the function q

	

•10 (Er) 41 4  =_ —!; 9( ► ),	 11 < r G 1,	 r
a	 (48.54)

J^ 
qtr 

E) '^o	
/(	 o(^r )i1^ =o 	 r>1.	 48.55)

In view of ( 118.53), the conditions (48.43) imply the equations

c^	 (48.56 )
1	 X4(4) — f(^)l .1 0 ( 4r ) %l ; _ ll,	 11 G r < 1,.o

(48.57)

io,

If we keep in mind (48.54), then the equation (48.56) is

replaced by

^^E.^(E)•1o(Er')dE _ —_b y( r )^	 116 r < 1.o	 a'	 (48.58)

The solution of the dual Integral equations (48.58) and (48.57) is

(Sneddon 13711)

t,

	

2h '	 '	 rg (r) dr

	

B 0 — — 
rI ^	

tiro Et tit^	 ^^ -.r— .

	

, 
U	 0	

C (48.59)

(48 60)

Similarly the solution of the dual integral equations (48.54),

(48.55) is given by

E4k E) - -- .— COS E
	 Oil) ^^•_v -

-a-	 Jo yl!— ^1`

•:GE— ^'	
Y dil— )' r •^1 ( xy ) sin (Ex) d r.

rag o y 1 = -y^ )a
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If the faces of the crack are kept at a constant temperature,

g(r) _ -TO , then the following is obtained

2b T* Kink	 211T* 
(Kill— cus).

In this case we have
2G T*

nui

0j,( r , 0)	 0 - r= )^,	 11 < r < 1.
n (n'--1)

A similar study can be made also in the case when the 	 /190

thermal flux is prescribed on the faces of the crack (Olesiak and

Sneddon C3261, Sneddon 13781). Other problems referring to media

with cracks were studied by ,Sneddon [374], Das [78] and others.

d) Doussinesq's problem 	 for a heated die. Let us consider

the problem of the thermoelastic equilibrium of a semi-infinite

medium which is in contact with a rigid heated die (Sneddon [3791).

The presence of the die rrnduces a temperature variation in the

medium under consideration. We assume that the boundary of the die

is a revolution surface and that the axis of the die is Ox 3*

Similarly, we assume that the nondeformed boundary of the medium

is the plane x 3 = 0 and that the tip of the die starts to enter

into contact with the original medium. In view of the fact that

the die is pressed normally at the plane x 3 = 0, then, when the

equilibrium is established, it will have, in contact with the plane

x 3 = 0, a circle with a radius a. We will consider a = 1.

We will assume that the portion 0,<r-,< 1, z = 0 is the prescribed

displacement u  and on r >1, z = 0, the normal tension is zero. We

assume, similarly, that the surfaces in contact are smooth and that

the temperature of the die is a function of r and z. These assumptions
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(48.65)

imply the following conditions

rsrrll', 11)	 0, r	 11,	 ^rrl 1', I1) =- 11,	 r> 1,
	 (48.61)

We will consider the thermal conditions of the form

11 (r, 0) - o„ ( r ) 11 ( 1 - r),	 (46.62)

In order to study the problem we use the representation (48.31).

On this occasion we introduce the functions q(E) and f(&) by the

relations

In this case the functions t and ^ have the form

000

V	 -- (0 : _ l) - ' 9(b)/.- e t ,/o l ^r)Il ti,
a

and therefore we have

r

	

11)	 y - 1I,1 l Vii) --	 ( ) I •/0	 a !') 1^y,
0

	

(J;:(I', 11)	 -^^^t O —/l-=1	 .^(4) •/ o ( 4 1' ) (^{r	 rrel' ^ i1 )	 1),
0

ao

U (r, I1) = 21, 1(«=—.1)^ glb)'10 lr)11 ;.

(48.63)

(48.64)
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From (48.31), (48.46) 9 (48.63) it follows that
	 /_2

(48.
9M 

= ,-(^G 
1 0( ^, 0 ) = ,`(^ r̂, }) 

K
r O(r, (1) Jo(^r dr.

If we designate

D( ►') = K k—l9(G) Jo( E, r ) Or,
o	 (48.67)

then from (48 .65) and (48.61) the dual integral equations follow

for the function f(E)

^^ 4-I f ( b) Jo l S ►') tl _= D (r) J. 9( r),	 11 4 r 6 1, (48.68)

f( G) Jo (& r )II S 	 o,	 r>1.
0

We will write a solution of these equations in the form

f - f l + f 2 , where f l and f2 satisfy the equations

^00 ^ -I f^( ) J o (; ►') 11	 D ( r ),	 0 < r	 1,
•o

C	 r	

(48.69)

U

0

(48.70)

KC0
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The solution of the equations (48.70) does not depend on the thermal

field and it can be written as in (48.59).

If we keep in mind (48.52) it follows that

U ( L 0) ^ K r 00 (r) Jo (Zr) dr.
0

In this case we derive

Solutions may be obtatred also for other thermal conditions

on the plane z - 0 (Sntldon [3743).

49. Plane Thermoelastic Deformati on
	

/_

In this paragraph use will assume that B is a straight cylinder

with a length R, the bLses of which are perpendicular with respec^,

to the generators. We select a reference in such a way that the

axes Ox  are parallel with the generators of the cylinder. Let

E be the domain of the transversal section and L its boundary.

a) Statement of the problem. Let us assume that the domain

B is occupied by an isotropic and homogeneous medium.

Let us define the state of plane thermoelastic deformation

parallel with the plane x 1Ox 2 as being that state of deformation

in which

Its -- 1120'19 d'2)9	 (1	 U O'l , a'.),	 If:)	 O.
(49.1)

Keepiu g in mind (49.1) we conclude from (47.5)

...aa	 Ile,	 j- lip.,,	 C23 " O.	 C33 _ O ,	 (49.2)
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and therefore

aY — 4 C. 8.y + 21,. Bay — PO4QY f	
(49.3)

133 " k:yY -- 00,	 1.0 = 0.	 (49.4)

The previous relations indicate that in this case tiJ . ti,(xl,x2).

It follows from the third equilibrium equation that the state
f	

of plane deformation parallel with the plane x 1Cx 2 is possible only

I

	 if f 3 n 0. The other equilibrium equations are reduced to

lap . 0 +f,  = 0,	
(49.5)

whence it follows that the state of plane deformation under

consideration demands that the functions fa do not depend on x3.

The tension on the lateral surface of the cylinder is given

by
1, — 1+a++af

and therefore, on the basis of relations (49.4) it follows that

t 3 s 0, and to does not depend on x 3 . Therefore, if a tension is

prescribed on the lateral surface, then, in order for the state of

plane deformation under consideration to be possible, this tension

must be parallel with the plane x 1Ox 2 and it should not depend on x3.

Rt -	 l+ (1(1 . _ `	 1 (Is'
^	 J	 '

It , %,ur case we have

The surface force which is applied along a portion of the

cylinder S. contained between two right sections at unit distance

one phase from the other, and between two generators which proje

in points P 1 ,P2 from the plane x 1Ox 2 is given by the relations

R. -_ `	 1a0 )1 0 d.v,	 R;, . 0.
P1 i's



11 

^7
i

We will consider tas n^ as a tension on an are element.

We obtain the expressions for the components of the moment resulting

from the tension

C0 119 1111"39 
"13, 	

X, l ►0) fill
P,Ps

Equation (47.2) is reduced to

open = — ' ' r,
A

(49.6)

which indicates that the plane deformation under consideration
	

Liu

requires that r should not depend on x 3 . Proceeding as before,

It follows that the expression k8,,a na has the interpretation

of a flux per unit of arc.

Consequently, in order to determine the thermal field, the

equation (49.6) must be integrated in the domain E. with certain

boundary conditions L. These conditions may take the form

0 = (ion L,, k0,, "a = 9 on L, 
	

(49-7)

where	 L, u L. _ L, L, n L. = o	 and 8 and q are prescribed functions.

After the determination of the functions a the system of

equations

yap. a 1- fa -- t► ,	
(49.8)

1.Y = Xe"svY + •I.L e.y —(i0e,,,•	 (49.9)
°- Eoa	 ► sa. o f lip . d,	

(49.10)

must be integrated in the domain E with certain boundary conditions.

The equations (49.6), (49.8) -- (49.10) are plane thermoelastic

deformation equations. In the case when the tensions are given
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at the boundary these conditions have the form

fap /1 D = Fa(8)r 8 E .Tip	 (49.11)

E.where t o are prescribed functions, n a are components of the exter-

nal versor normal to L.

The conditions necessary and sufficient for the existence of

the boundary problem (49.b) -- (49.11) are (Mushelisvili [2961,
Fichera [1221)

SLf'

	

c
 11 , ta it y - = 13, eMP3 XX fa (I a + `

L
	 x, tadv = 0.z	 `	 (49.12)

If the functions u a and a have been determined, we obtain from

(49.4) the expression of the component t33 and thus are able

to calculate the tensions which act on the bases of the cylinder

in order to maintain the state of deformation under consideration.

Assuming that the function a is known, we can express the mixed

problem by means of the displacement vector. Thus, it follows

from (49.8) -- (49.10) that the functions u  must satisfy the
equations

(1Na.00 i O. i (1) 11 P.o2 1-fl—P09%  = 09

(49.13)

and the boundary conditions

jq __ Ti, on V, pm,.j, ko 'j' tiot p I` uo.,)l	 on L",	 (49.14)
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where v u l," = 1,, V n V' = n.

The plane deformation problem may be studied in general by

methods known from the theory of elasticity (Mushelisvili [296],

Melan and Parkus [286], Boley and Weiner [ 23], Nowacxi [315], Grinde

[152], Kovalenko [242], Green and Zerna [139], Kupradze [246],

Teodoreseu [409], Fichera [1121D.

As we have shown in the problems of thermoelasticity, it Is

assumed that the mechanical loads are zero. Strictly speaking,

those problems are considered, rightly, problems of plane thermo-

elasticity i on the one hand, those whose solution is based

essentially on the equation which is satisfied by the function 9,

or on the special character of the loading system, and, on the

other hand, concrete problems in which the function @ and

then the corresponding displacements are effectively determined.

/194

b) Reduction of the problem to the isothermal case. Let us

consider first a case in which there are no mass folnes and

thermal sources. Consequently the function A satisfies the equation

0. OCR = 0.

	 (49.15)

Let us designate by F(z) the analytical function of the complex

variable z = x  + ixz , which has the function 6 as real part

F(z) _ U + i^.
	 (49.16)

Let us introduce the function ua by the relation

U0 + IUD	 dz.	 (49.17)
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It is obvious that we have

If we consider the unknown functions u' such that
a

It s =. ,1; +• 	
2(X 	 (49.19)

then we obtain from (49.2) and (49.18)

0
Sao — 6ep i-	 ^a0,

°•(X + µ1	
(49.20)

where

top = 11"0 + is' 6.
(49.21)

In view of (49.20) and (49.3) It follows that

fap = ),C vv sap + 211 =ap•	
( 4 9 .22)

Consequently the problem of thermoelasticity was reduced to

a problem of elasticity in the displacements ua, the deformations

E ,	 and the tensions tas referring to the same domain. It should

be noted that the tensions b as from the new probem,called the

auxiliary problem, coincide with those from the initial problem.

Let us assume that the domain E is simply conne^...". If zero

meciianical loads are prescribed at the boundary, then the solution

of the auxiliary problem is

1aa = 0.

h
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Thus, in a simple connected medium which is in a plane thermo-

elastic deformation ntate, in the absence of heat sources and

mechanical loads, no ta, tensions appear and the displacements
are given by

	

1111 =	 A	 _	 . If:.

	

(X + 1A)	 (49.23)

	The tension t33 is expressed as
	

/1951

	

P^ . 	 ( 49.24)r99
__A 

Obviously, in this case the deformation of the medium is due to the

temperature variation caused by the thermal. loads at the boundary.

Let us consider the case of a multiple connected domain. We

assume that the boundary L of the domain E consists of the external

outline L0 and of n internal outlines Lr (r s 1,2,..., n) which

do not have common points. The function F(z) whose real part is

the uniform function e, can have many forms

P (-) = i R,. lul; (; — :,) + Mu (0,
	 (49.25)

where z  are points situated inside the outlines L k , B  are real

constants and F0 (z) is a holomor-phic function in the domain under

consideration.

In this case, we derive the relation

to o { iir ° = :	 Is, loo (= —=t) }, L ( n t	 ih,) log(: — z,) 1 fo(z),
	 (49.26)

^.^	 or.1

in which ak , b  are real constants, and f,(z) is a holomorphic

function in E.
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). + !i
(49.28)

We obtain from (49.26)

f 01 F left KI ^ = 21d(. /t, 1- a, ♦ fb, ► ,	 (49.27)

We designated by [f]Lk the variation of f when it follows a

positive direction, an outline which contains the outline Lk.

In view of the fact that the functions u are assumed to be
a

uniform, it follows that the functions ua have many forms.

In this case in the auxiliary elasticity problem the displacements

ua must have the multiform nature given by (49.28). It is said

that the auxiliary problem is a problem with dislocations. The

quantities

7C';	 ki , ar _.- rpb, , (fit	
?:(ins• /
	 (49.29)

f JA 	 X - }I'L	 a;1A.

are called the characteristics of the dislocation. The results

presented are due to Mushelisvili [2961.

Let us consider now the case when only the mechanical loads
	

/196
e zero. In order to reduce the problem of thermoelasticity to

a problem of elasticity, let us look for the solution in the form

flQ = 9/a -}- 0.a 9

(49.30)
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where the function t(x l ,x 2 ) satisfies in the domain E the equation

----P-- e.	
(49-31)

Q'.0	 X i 2k

If we replace (49.30) in the equations (49.13) (in which

f  • 0) and we keep in mind (49.31), it follows that the functions

ua satisfy the equations

µ4J;.00 ' f ()+ + !^) u i. ee = 0.
	

(49.32)

We obtain from (49.9), (49.4) the expressions for the tensions

189 __ xa PP — 2 1A 0 .2410	 (49-33)

where

4o -- X 4o. S.o+ = l^^aP ►	 (49-34)

Wrap = n;. P 1 «P.a

It is obvious that the equations (49.32) are equivalent with

(49.35)
1.P.p = 0.

If we have the boundary conditions

120 110 —O.
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then we derive the following conditions for the functions ul

f; s K0 no = — 2µ (4'.go no — ^.vtt »s) an l..	 (49.36)

Consequently, the problem of thermoelasticity is reduced to

the determination of a function t which satisfies equation (49.31)

and to the integration of the problem of plans elastic deformation

t;
	 (40.34), (49.35)9 (49.36)•

fi

As is kncwn from the theory of elasticity (see for example,

Mushelisvili [296], Sokolnikoff 1 382 0 Gurtin [1631) the solution

of the problem of plane elasticity may be determined with the help

of the Airy function. In this case we have

dap = dap <<,;p — J1 •ap ,	 (49.37)

where the function A(x l ,x 2 ) is biharm.onic

	

. AA.-I = p ,	 (49-38)

	It follows from ( 49.37) that
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t; = -^Y- (A .z)r ^: = — .. i1 (A.	 (49-39)(49.39)
11N

With this, the conditions ( 49.36) become

d9	 2 t 
d 

N) 	 i	 2 d N, )on L.	 (49.40)

The plane deformations may also be studied with the help

of complex variabl y.^. On the basis of the theorem of Goursat

( for example, Mushelisvili [ 296] 2 Gurtin [ 1631) the function A

may be expressed ( see also Paragarph 55) by two analytical functions

of complex variable z = x  + ix 2' Thus



The displ..,ements ua and the tensions ta s are represented

in the form

2;A (oil'+ ill') _ ?, -} 3µ ^(z) —. "'^'(M ) — X'(N),
X +JA

I t', + tea = 4 Re [^' (y)1,

t„,: — 1 1, + 2it iy = 21ix^"(") •+' X'(--)].

(49.42)

Similarly, we have

+ itl = — i ilY ( A . , + iA,2) = -- i (is
	 (^) -} ^'^'(^) -}- X (x)1•	 (49.43)

In view of (49.30) 9 ( 4 9.33) and (49.52) we obtain, for the solution

of the problem of thermoelasticity, the relations

	

X	 :11^-

	

4(11 1 •}- itt^) _ ),
	 1) V-0

_
 "^'(")	 X'(a) + 24 ( (1),, + i ^,aJrI

t o + t:: = 4 He [^'(")^ — 
21.tp	

U (49.44)

t_Z — t,^ } Zit^^= + 2 11( (D.22 — 'D. 11+2 iO• 1 2)•

A detailed study of the problem of plane elastic deformation with

the help of complex variables may be found in the monographs of

Mushelisvili [296) and Green and Zerna [1397

c) Thermal tensions in a tube,, Let us consider the case when

E is the domain contained betwesii two concentric circles with radii

R1 and R2 (RI < F,) and a center at the origin. We will use polar

coordinates (r,^). In this system the equations of thermoelasticity

288



du	 1

err	 dr ' eea ' -- It, ere = 0.
r

(49.45)

are derived easily from (24.86) -- (24.90).

We assume that there are no mass forces and that the 	 /198

boundary of the domain is free of tensions. We will consider the

case where the temperature 9 is a function which depends only on

r. Let u  u u(r), u^ . 0. It follows from (24.86) that

If we consider the relations (24.76), (24.80), (24.85),(24.86)

then the equations (49.9) are substituted by

	

Orr == a ( err -I- egg) + 24 err — p 0,	 (49.46)

aee _ ( err	 Zee) + 21A egg — p 01

are = 21A erg.

We obtain from (49.45) and (49.46)

Orr	
i	 a

d 	
p '

(49.47)

1 d	 2y
Ogg =	

dr 
(rte) }-	 u. — p0,

a.g _ 0.

The equilibrium equations are reduced to

	

t^%r 
+ I-( arr — oee) = r► .	 (49.48)

The boundary conditions may be written in the form

arr(Irl ) _ ^^,	 arr(Ire)	 0	
(49.49)
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If we replace the tensions from (49.47) in the equation

(49.48) the following equation may be derived for the function u

d	 1 1	 a	 d0
dr I r dr	 ), + 21A (jr '	 (49-50)

The solution of this equation is

A,r+- 1 . A,+-	 A
	 i,' k,

rOdr,	 (49.51)
r	 (X + 2µ)r 

where A  are integration constants. We obtain from. (49.51) and

(49.47)

i + µ) A,	 ^^` A	 l ^^
r	 (^, + 2µ)r. x,

Opp = 2 + (A ) A, + 2µ- A, — 2µao +	 2µa	 r9 dr.r`	 X + 2µ ()L + 2µ)AR

(43.52)

similarly, it follows from (49.4) and (49.51) that

a	 O"=^ c d	 ) — aO	
2

X+2w

/199

(49.53)

If we impose the conditions (49.49) we derive the following

values for the integration constants

Ri)  ^

x.
r

Rj 
0 dr,

R.

r0 dr.

(49.54)( X + IA) AI=	
µa

4 =	 aR'A2	
(X + 2 µ) (1122

Replacing these values in (49.52) we obtain for a rr and a00

the expressions
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Orr s	 2µH	 r2 -- 11,
(^ + 2µ )r2 [ RE — !!i

O s	 2µHr rig + R;

••	 L1 a + 2µ)r '•' R — ley

R,

r Odr – 
i
r 

r 0dr 1,
R,	 "	 11

ij?,
Rr 0dr 

+i' s
rOdr — r20	

(49.55)
1.

  J

The radial component of the displacement is given by

A"- 
R,	

H	
(49.56)

9^ =	 H	 µr {- ^^'- 1
R,
 r0 dr -}- -----^— i rO dr.

( X + 2µ) (B12 – Ri) X + µ	 r 	 (X+21µ) r R,

If there are no heat sources and at the boundary of the domain

E we have the conditions

O(RI ) = TI, O (R2) = T2,	 (49-57)

where T1 and T2 are constant, then the solution of equation
(49.15) which satisfies (49.57) is

0 _ C, 1 11 r + ("21

(49.58)

in which we designated

C _ T2 °- T,	 ,	 T, In R2 -- T

2 
In R	 (49 -59)

	

^' _ In 112 — In lz ,' ('2
	

n1 112 — In R, '

In this case we can easily determine 	 from (49.55) and

(49.56) the solution of the problem of plane deformation. If

T2	 0, then we obtain for the tensions the expressions

O – ;A P T ,	 r i n '* - –	 -I 	 I1^	 R2r. – 	
+ .2µ) In112//1 L	 11,	 (t–	 ) lu

 it,
-- ^,t!_	 !!i	 r^ I

(49.60)

a –	 ;APT, IZz 	
Ili ,
	 Ilz	 11 ^.

o• — (^	
2µ) in I!_//1 i — in
	 ] + -	 In - x

	

r	 R` — Rj	 r^	 11,
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The method of Mushelisvili presented in Paragraph 52b may also 	 1200

be used to study this problem. Thus, in the case of the temperature

distribution ( 49.58) the function F(z) int roduced in ( 49.16) is

(49.61)
/''( z) -- (;, log z -+- (`^

We obtain from (49.17) and (49.61)

+t? + iu*	 -(Cl log.- + C, — C,).	 (49.62)

The constants Bk , ak , b  from (49.26) are reduced to B 1 • C1,

a l s b  a 0. The solution of the auxiliary problem of elasticity

which corresponds to the characteristics of dislocation

9	 07

was establist,ed by Mushelisvili [2-96]. This has the form

2µ (u, + itt" = 0- ' 7  +,34(z)--zV; (z)+

`Y(z) =	 Ftµ	 + µ) 1 —	 Ili In Ire — 16 In It,

— /r;	 }
C,:;()• +f	 JA) O ff

2n (^ } 2µ) I 2 lr: :.'r. (i.	 }	 ";j,)

A ( z )	
Et^(1,	 µ)

= —
!r; R2 

In
k?

o' — EiK(? . 	µ) (Inr -+-
Irk Ir_	 .- In

R^ _ It: lu l.;- N; In 1.,

c^	 = EaF^C). {	 µ) rinr—^o
R; 1.	

In
Ir: —	 I! In IrZ — k; In rr,	 1

(nO` -+- 2 EA ) l a'=(I!—Ir;) Ir, 1^ — 1.;	 J'

o;m = 0.

(49.63)



The displacements are determined from (49.19), (49.62) and

(49.63).

Other problems involving the state of plane thermoelastic

deformation will be found in the monographs written by Melan and

Parkus [286 ] 9 Boley and Weiner X 23 3, Nowacki [315 ] 9 Pars 1353,

Grindei (1521, Teodorescu (4091, where there is also a large

bib'_ivgraphy of works in this area.

50. Generalized Plane Deformation

a) Statement of the problem. We assume that the cylinder•

under consideration in the previous paragraph consi sts of a

nonhomogeneous and anisotropic medium for which the coefficients

tijkl' B id , k i, do not depend on the axial coordinate x3.

Let us define the state of generalized plane thermoelastic

deformation parallel to the plane x 10x 2 of the medium under

consideration as being the state of deformation in which we have

/201 j

(50.1)
i+t

	

These restrictions imply the case that e.,	 c,,( . ► „ .^;,), ^,, ^,^ (,.^ ,.:)

Moreover we have
:^Eap	 IIa.0 	 110.a, 2fa3 -- 2:3a 	 113,a, X 33	 (fir

t ia ' ' CWD Il k, p — ►+ta of

t33 — (I330 11 4'.0 — P33 Q•

(50.2)

(50.3)

(50.4)

The equilibrium equations ( 40.1) take the form

taa.a + f, _` 0,	 (50.5)
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from which it results that the generalized plane thermoelastic

deformation requires that the functions f i will not be dependent

on x3.

Let us assume that the following tension is prescribed on

the lateral surface of the cylinder

t i„% = p,,	 (50.6)

Thus, the functions p i must not be dependent on r. 3 . ,The

equation (40.6) Is reduced to

	

V.-.a U. a).a =- —r.	 (50-7)

Obviously, the state of deformation under consideration

requires that the thermal loads be independent of the axial

coordinate.

If the thermal flux is prescribed at the lateral surface,,

then in order to determine the function e, equation (50.7) must

be integrated in the domain E, with the boundary conditions

	

Coa O.P nQ -- q on L.	 (50.8)

After determining the function e, the system of equations

(50.3), (50.5) still must be integrated in the .domain E with the

undary conditions (50.6) on L. Thi, system of equations may

written in thf! following way

( Coop Il k, a).. — (P t, 0), + fd = 0 in ?.."	
(50-9)

The conditions (50.6)	 take the form

	

( (.'Iatp u 1, a - - P'. o) #J.: p, on 1..	 (50-10)

I



F
r

If we know the functions u  and e, we obtain from (50.4)

the tension t 33 and can thus calculate the tensions which act

on the bases.

The generalized plane deformation of homogeneous elastic media

wa y, considered in various papers (see, for example, Lekhnitskii

[2561) assuming that f 3 ' p 3 ' 0. This restriction is uneeessary. 	 /202J
The equilibrium conditions of the cylinder under consideration

may be written in the form

f• da + 
J

PO (is 0, ra13 JJOI (11( + i
L

e.03 "'dO ('M :: 11^	 ( 50.11)
L'	 L	 3; 

	

xj3 da `f- ` a. P3 (lx = ^ 1, 3 da.	 (50.12)
it	 •L	 E

The relations (50.12) are similarly satisfied on the basis of

relations (50.5), (50.6) so that

.E
la3 da = \ Y.3 '+'ra ( 131.1 + f3)) da =

E

=
 j 1P.. 1311. 1 + x. f.11 da = S ^'a P 3 d8 + j .c, f3 da.
E	 L	 E

It has been shown (Iesan [2031) that in certain conditions of

regularity, the relations (50.11) represent necessary and sufficient

conditions for the existence of the solution of the boundary

problem (50.9), (50.10).

The problem of the generalized plane thermoelastic deformation

for homogeneous and anisotropic media was studied by Manolachi. [276]

with the help of -.omplex variable functions. The case of the

connected multiple domains was analyzed by Iesan [191], using the

method of the potential.
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b) Reduction of the problem to the isothermal case. Let us

consider a homogeneous and anisotropic medium which is in a

generalized plane thermoelastic deformation state in the absence of

thermal sources and mechanical loads.

In this case the equation (50.7) becomes

use 0,40 = 0.
	

(50.13)

We assume that the boundary problem i'or the determination

of the function 6 has been resolved. In the following this function

will be considered as being known.

Let X (, 	
the roots of the equation

ka0	 0 0.
(50.14)

On the basis of the relation (23.7) we can write

a — (--1)4 fl), i = V" I'.	 (50-15)

If we make the transformation

y ! = bxjj 'Ja = X2 + aa't,	 (51. 16 )

then the equation (50.13) will take the form

-d2-0-
	 ago _ 0.	 (50-17)

+, aY2Y

Let us introduce the complex variable	 yl + iy 2 . Let F(C)

be the analytical function which has as its real part the function e

PIM=0+4-	 (50.16)
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Obviously, we have 	 /203

vu 
z^ ^^W	 vu	 4-	 (50.19)

In the variables x  these r?lations are written as

V. s ^. j'u N •,	 (50.20)

where

	

_arf.	
_ a^ ;- M y 	 1	 __	 a .

	 (50.21)
b^ , 31	 p, ,.lz __ __.

A

Let us consider the functions ua defined by

^^! == iffy	 SP(t) dt.	 ( 50.22)

Thus we have 

0, diij	 dill	 ,
oy,	 djV2	

._ Jy
f	 ^Y'	 (50.23)

In the variables x  these relations become

a,! 0 = a,p (1	 /^a0 `^, (50.24)

where

1

	

afi ' by	 an " 0, a,, = a, an = 1 ,	 (50.2 5)
bit '= —a, b,, ^-1, !I.r by	 b22	 1).

Let us introduce the functions ui by the relations

p,pu c+',	 (5C.26)

in which pis are constants Which must be determined.
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If we designate

Its	 I iva 14.0 0

(50.27)

then we obtain from ( 50.3) and ( 50.26)

Its =- Its 1 coats Pkw itv s	 U.	 (50.28)

In view of the relations (50.24) it follows from (50.28) that

Its Ka + ( (Yiaro Ptv tw• - . pta) U '- C f"P Po h, V'	 (50.29)

We require that the functions ti a satisfy the equations

(50.30)

We obtain from the equilibrium equations (50.5), in which 	 /204

f  a 0, and relations (50.28), (50.30)

qta10 Ptv tt vo -- P 	 U,a - f Cis to Pw hvo (50-31)

Keeping in mind (50.20), the relations (50.31) become

` ctalO Pt (a, Sat, + bp ^aP^ _ ptµ (^^ µ = 0. 	 (50-32)

If we have	

11Cisko (a ,o $aµ 1^ bvorall)PMV	 plµf
(50.33)

then the equations (50.32) are satisi'ied. We ;- ,ill determine

the constants 
pkv 

so that (50.33) takes place. It can be shown

that the system (50.33) dPLermines, in a unique manner, the constants

pia'

In view of (50.29) we obtain from (50.6), in which p i 	09

Iia yea 	 (Ciako Pry Qvo — pis ) 0 + rtato P l'v bp ^% 1 ►ta on G.	 (5C-34)

In this way the problem of thermoelasticity was reduced to the
5
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p^( G)	 Bi. log(" — rr1 t- F'oA^
(50.35)

resolution of a problem of elasticity (6 • 0) with a certain load
at the outline. The elasticity problem consists in the integration

of the equations (50.27), (50.30) with the boundary conditions ( 30.34).

If the domain E is multiply connected, then, as in th y- case

of (49.25), the function F'(O has th- form

R

where C  
are points situated inside the outlines L k , B 

are real constants and F 0 (C) is a holomorphic function. It follows

from (50.22) and (50.35) that

u! } iii;	 /s,. log ( — ;r) +	 (^^ } iG lo g•	 (50-36)

in which ak , b  are real constants and f0(c) is a holomorphic

function. In this case we obtain

•'nl(P), u— />>t b ) !t, ,ri 'f Nn 114 •t': t hn Gk — 1►1: a .̂ l•	 (50-37)

Consequerrtly, for multiply connected domains in the auxiliary problem,

the displacements ui must have the multiform nature given by (50.37).

The results presented here were derived by Iesan [1961.

51. The Problem o f Saint Venant. Let B be the inside of a right

cylinder with a length I t the bases of which are perpendicular on

the generators. We assume that the generic transversal section E

is limited by the closed Liapunov curve, L. We will select the

reference Ox  so that the axis Ox  is parallel with the generators

of the cylinder, one of the bases is in the plane x 3 a 0, and the

other one in the plane x 3 = 1.
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-11.1.p ,,,,,._,,._	 ___ --I

We assume that B is occupied by an elastic medium which	 /205

is in equilibrium under the action of a prescribed temperature

field. We will consider that the mass forces and the tension on

the lateral surface are zero. Aaopting the principal of Saint

-Venant, we assume that the tensions that act on one of the bases

are statically equivalent to zero. It follows from the equilibrium

conditions of the medium that the tensions which act on the other

base are statically equivalent to zero. If the mechanical loads

were not zero . this would 'mply the resolution of an auxiliary

problem of elasticity.

We will study the case in which the temperature is a polynomial

of degree	 r in the coordinate x3 of the form

© =	 Tt (xu a .) xar
	 (51.1)

A.0

where the functions Tk (x l ,x 2 ) are given. Consequently, we assume

that the temperature obtainea by the integration of the equation of

propagation with certain boundary conditions is approximated by

The equilibrium conditions are

	

tu. 1 = 0 in B.	 (5= .2)

In view of the fact that the lateral surface is free of

tensions, it follows that we have the conditions on this surface

	

ti, "a, = 
0•
	 (51-3)

On the bases situated in the plane x 3 = 0, we have the

following conditions

4
 taa da = 0+
z	 (51.4)
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ir  
133 da = 0,	 ( 51 -5)

S T. (83 da =`0,	
(51.6)

L

which express the fact that the tensions which act on these bases

have the resultant and resulting moment zero.

Let us designate by P (n) the problem of the determination

of the thermoelastic equilibrium of the cylinder when

0 - 711, (xi, 4.0-03,
	 (51.8)

where n is a positive integer, or zero, and T n (x l ,x 2 ) is a prescribed

function. It is obvious that if we know the solution of the problem

P (n) for any n, then, on the basis of the linearity of the theory,

are will be able to determine the solution of the problem when the

temperature has the form (51.1). In order to resolve the initial

problem,we will use the method of induction. First we will resolve 1206

the problem P (0) , and then we will establish the solution of the

problem P (n♦ l) when the solution of the problem P (n) is assumed to

be known.

If u (k) are components of the lisplacement vector from the

problem P '") (k - 0, 1 9 2, ...,r) then the components of the

displacement -ector corresponding to the problem in which the

temperature has tr n form (51.1) are given by

lit =	 ti^R)

.bo	 (51.9)
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3

9

Boley and Weiner (23] studied the problem of the deformation of

homogeneous and isotropic bars when the temperatuie is linear in

x3 . Toe results presented in this pa.ag-caph were derived by

Iesan x:1901 9 [200], [203]0

a) Homogeneous and isotropic bars. In this case the constitutive

equations are

r0=). e„a„+2 JACo -00 go,	 (51.10)

where A, u, $ are constants and

	

2tjj == u 1 .,	 11).1•	
( 51.11)

Let us consider at the beginning the problem 00) . We

will assume that

0 = fixj ► .r.),	
(51.12)

where f is a given function.

Let us look for the solution of the problem in the form

ti, = — 1 a, [x; + v(J-2 ---	 a.vx.z? )^ --	 r	 a. y r 	 , (51-13)
1 . 2 - 9	 1	 ( I ( rlr 'r-2)•

1
v.r,a” -- r at "1 — v (.r — .r) -- (13 v.r t + 1+2 ( a'Ir a'_)^

where v  (x l ,x 2 ) are unknown functions, a  are unknown constants

and v represents the Poisson coefficient given by (23.20).

If we introduce the designations



1

"i stf	 a  p ..^.
	

p., +

ago _: ^Yoo aAo 4- ",,t	 A,o+
(51.14)

we obtain from (51.10) -- (51.13)

r,	 too	 ffao+ 1.3	 ( ► ,
(51-15)

I
I	 where E and u are constants defined in ( 23.19), (23.20).

The equilibrium equations ( 51.2) are reduced to	 /207 1

(51.16)

and the conditions ( 51.3) become

11,0 110 = 0 on L.	 (51-17)

Thus, the functions va (x l ,x 2 ) are the components of the

displacement vector from the problem of plane thermoelastic

deformation (51.14), (51.16), (51.17) corresponding to the

temperature 0 - f(x l ,x 2 ). In the following we will consider this

problem as being solved, and thus the functions va, 
oaf 

will be

assumed to be known.

The conditions (51.4), (51.7) are satisfied on the basis

oP the relations (51.15). We obtain from (51.5), (51.6) and (51.15)

a,	 -1a 112_.1 !, — 11EMI + 1 1'"j1s — X01 132) 1'),

	

it 1 1 11 M 1	 I _3t	 r !. .11.l I	 (51.18)
Ed

	

a, _	 Y — a 1 :'0 — a.x!,
h. A
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(51.20)

where

1' - 
j_ 

Ala, .{/, == 
S 

a•,'Ada, A - N:af - vopa, A	 ^rda,

!,a = (X. — 4) (.^•a -- x0) da, d — [,,Is: — 1i:, As; = ^ a.da
L'	 L

(53-19)

Consequently, the problem P (0) is reduced to the solution

Of a problem of plane thern ►oelastic deformation. The solution of
the problem P (0) has the form of (51.13) where the constants a  are

given by (51.18).

Let us study the process of recurrence. We will designate by

ui, ei J , ti j , respectively, the components of the displacement vector,

the components of the deformation vector, the components of the

tension vector, from the problem P (n) and by u i , e ij , t ij the similar

functions from the problem P (n+1) . Let us establish a solution of

the problem P (n+l) assuming that the solution of the problem P(n)

is known. In view of the fact that the solution of the problem

P (n) is known for any Tn ( x l , x 2 ), it is also known, therefore, in

the case when the temperature has the form 9 = T i1+1 ( x 1 , x 2 ) x3 . The

problem may thus be presented in the fcllowing way: let the functions

ui' Eii' t ij be found which satisfy the equations (51.2), 
(51.10),

(51.11) and the conditions (51.3) -- (51.7) when the temperature

has the form

assuming that the functions ui, Oi l ti p which satisfy the equations

(71.2) 9 (51.10) 9 (51.11) and the conditions (51.3) -- (51.7)

where the temperature is

U = 0XIt a'a) -s,
	

(51.21)

are known.
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1208 1Let us search for the functions u  in the form

!! ► -- (1 } I)  
0K, 

10, !1,1.3 — b ► I xa - ;- v (A, — ASM — bavx1270—

— b3vx l — T1'21'3 + 1111( 1.1, 1•.)1,

N

0

a	 i
te a - (1 + 1) 	 tt±dxl, — b l vl l a,--- b•_^1; — v(A, — ms)r

b3 v1'2 + -1. 1 1'3 + w2( 1'lf 1.2)^t

113 	 01 {- 1)	 ^^"a* d1 .3 + (b1 1'1 + b2b2 + ba) 1 '3 + 1'1 ( x1, x.)^r
0

(51.22)

where the functions wa(xl,x2),F(xl,x2) and the constants b i and

T must be determined.

We obtain from (51.22)

1,

Eap —: ( 11 -} I) ` aQp(ll'3 — v(b 1 .t•1 + 1) 23.2 } 1,3) 8.0+73¢
.o

	

1I ( •,	 I
Ea3 _ ( ►! + I) 	 Eaa (11 .3 }- 3̂ '	 ^a 	 -P3ap.1'p {- !la ( •1•I, 1.21 0);

	

0	

llE 33	 (1 + 1) ^^s• F,g d.r3 + b1 .r1 } b 2r2 }- b3 } 1!!(•1'1, 12, 0) Jfl 0

(51.23)

where	
27ccp = tva,p + wp.a•
	

(51.24)

In view of (51.20), (51.21), (51.23) it follows from (51.10)

that
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The conditions (51.3) become	
-WIOL No+

d F-̀ -- goni,.
u it

(51.30)

(51.31)

-a

160 	 ( n-j- 1) 
IJ

x
O 1.00  d`'3 + R	 ; (.0 + XE.0uXI, •r1, 0)1,

f,,, '- ( q + I) 
1^01. 

da•3 +µl I'',. — -f'.,2p ;r0 -}- l, i( I' ."S,
	 I

133	 (» }- 1) r` f ^fy^ dj', + 7s(b,.r, { kx. -} 1j 3) I. vR„ 4-
1 o

-} (). + 21l) U a( xg , J'"., (1)J,

(51.25)

where

Rap ^YoO^.P 'f' 2,uyap•

The equilibrium equations are reduced to

7'A3.0 + Y. ` (),

A!'' == h in E,

In which we designated

9.l l 'u ^':) — 1 ( c 'I, .r.^, U) + Xua.("19 a':, 0),

/i (^'„ ^'s) = — ua..( 1'I, IVV 0 ) — 
1 

130'11 xs, 0)•
11

/209

(51.26)

(5]..27)

(51.28)

(51.29)



/►. - -- ^,if9( ► 'ft e 'st (1 ) 1869

q - -.e3,0xOn.	 Xx, 0) if6. (51.32)

where

It follows from the above that the functions w  satisfy

the equations of the problem of elastic (6 . 0) plane deformation

(51.24), (51.26) 9 (51.27), (51.30).

The conditions which are necessary and sufficient for the

existence of the solutions are

J_ 9, ells {- 
iL

jylx	 11 	 r.,aP. '0041(1 + e3.0X PA(d8 = 0.	
(51.33)

 . ='	 L

In view of (51.29 ) , ( 51 .32) and the theorem of divergence,

we obtain

S 
i	 Pa	 = ^r ►a^(• ►',t , x,	 (51-34)z	 L

`rP^aPa'alJPllR -}•
iL
 P9aP'ra/► PIIN — 

Jr
►':,aP'► 'a1lSa ( ► 'If . t 0) Ila,

so that the conditions (51.33) are satisfied because the functions

ti p satisfy the relations (51.4) -- (51.7). In the following we

will assume that the functions w  are known.

The necessary and sufficient condition for the existence of

a solution of the problem (51.28), (51.31) is

	

hfla	 `y81x.
	 (51.35)

If we consider ( 51.29 ) 9 ( 51.32) we can write	 /210

hd a—iLgdx=— 1, 133( x„ xz9 0 ) da=0,	 (51.36)
!A s
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T D = — µ e3, ,xjC ,9 + 11 (xl , x21 0 )] da,	 (51.43)

In view of (51.42) it follows from (51.7) that

08

f.-

f-

F

4

t

on the basis of the fact that the functions ti p satisfy the

conditions (51.4) -- (51.7). The function F depends on the

constant T. In order to determ ine this constant we introduce

the function of torsion m(x
10

x 2 ) which satisfies the equation [382]	 !

0?=0 in E,	 (51-37)

and the boundary condition

= e.%O xa np on L.	 (50-38)
do

Let us consider the function 0 defined by

I.,= TQ +^_	 (51.39)

It follows from (51.28), (51.31), (51.37) -- (51.39) that

the function *	 satisfies the equation

4=h in 1,
(51.40)

and the condition

4 _ — it: (x,, x., 0) it. on L.	 ( 51.41)
1911

The function * does not depend on T and we will assume that

it is known. We obtain from (51.25), (51.39)

t.3 = ( tt + 1) [^:' I .*.3  dx, + ttT( 4+ ,a — eua-To) +	 (51..42)

+ 14r: + 41ta ( X1, x2, 0)l.



where D is the rigidity upon torsion ^3823

n ° µ Sz 036"x.9,6 + a, •4 "i) da.	 (51.44)

It is known that D > 0 so that the relation (52.43) determines

the constant T.

We find from (51.5), (51 , 6) and ( 51. 25) that	 /21' 1

!	 (51.45)6t = F:d (I,^Nt — l tgNz -{- ( .^/ ts — "i122) QJ ►

	

bII	
Ed [ I

ttN2 — 1 12N , + ("ills — flu) 111+

1

	

N	
11.4 Q — 

b t ,t'; — bs"'$p

where	 Q = j
z	 y
t2 da, N, __ .re 11 da, i2 = — v-,.. — ( X+2u) tq (.rt, y2f 0)^

while the other designations are given in (51.19)

The conditions ( 51.4) are similarly satisfied on the basis

of the equilibrium equations and the boundary conditions. Thus,

we have

	

S
la2da _	 Y.3 + .r, t,3.i) da = 	 I("'a tp3),p + J6133.31da

"'1453 n o ds + (It +1.)S_xt* da=0,
L

because the functions ti p satisfy the equations (51.4) -- (51.7).

Consequently the problem thus posed is reduced to the

integration of the equations of a problem of plane elasticity.

The study of some special problems is presented by Boley
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and Weiner [231, Grindei ( 1521, etc.

b) Bars made of different materials. Let us consider the

case when the transversal suction E is the combination of domains

E 0 and E, ( j - 1,2,...,m), E 0 being a multiple connected domain,

li ►i►ited by closed curves L^ Q a 1,2,.. . m+1) which do not have

common points. We assume that the domains E, are finite and simply

connected, limited by the curves L,(j se 1,2 9 ... ,m) respectively,

and Lm+1 is the boundary of the domain E. We will consider the case

when the bar consists of different materials , so that in each of the

domains E i Q - 0 9 1,2 9 ... ,m) we have a homogeneous and isotropic

medium and by going from one domain to ano 11her, the thermoelastic

properties of the respective media are different.

The problem of Saint -Venant for these bars in the isotherr!al

case has been studied by Mushelisvili [ 2961, Bors [351, et al.

We will impose that in this case the components of the dis-

placement vectors and of tension vectors be continuous in B. These

conditions, together with those on the lateral surface, may be

written in the following way

I u, I, -- IUirIG?	
(51.46)

It,;. 11 it, - = I i ► , to it,, on l ( i	
(51.47)

NO to Its	 0, on 1,,„, 1 , v .,-:1 E I o, i l,	 (51.48)

where we designated by n  the components of the vector of the	 1212

unit normal which 1b external at the boundary of the domain F 

and [ I  
indicates the fact that the expression in the parentheses

or brackets is calculated for the medium which occupies the domain

E 	 (i - 0,1,2,...,m).
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where	 r111 _..I

A, = (V, — vn) X,-

Let us designate by A i , u i , B i the constants which

characterize the thermoelastic properties of the medium which

occupies the domain E  (i a 0,1,2,...,m). The constants E i , vi,

a i (i s 0 8 1 9 2 9 ... ,m) corrervond to these coefficients through the

relations (23.19), (23.20).

We will consider three auxiliary problems of plane elastic

deformation A (k) (k n 1 0 2 9 3). Let us designate by "I"', caA', rA' (k I„2,3)
the components of the displacement vector, the components of the

deformAtion tensor; the components of the tension tensor, respectively,

from the problem A
N) . These auxiliary problems are characterized by

the equations

Tap	 boo)cap + 2111 `.0ji)r	 (51.49)

d ( d)	 1raklp .+. rd)
^r (51-50)fps 

?cola = 0, in	 i	 0, I, _►, ..	 »)	 (51.51)

and the conditions

C Tao li np = [Tao)lu ))p , C J
'a` 'I — I r."' ) lu = fl^a'^

r
1 )^' f r( i — 1, 2, ..., NI),	 ' 51 .

52)
I' .;p) 

JU 010 _ 0, Pt'	 M+1,

t
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(51.56)

The above auxiliary problems were considered by Mushelievili [2963

In the course of the study of the problem of saint,-Venant in the
isothermal case. They were elso studied by Sherman [363]. In the

following we will assume that the solutions of these prcblems Ore

known.

In order to solve the problem F (0) we are searching for the

solution in the form

r
tt l = — -^n,[a^-}- v,(.1^— a)^—nxv,:rlt•3—n^v,a't } ^n A r^A ^ { rtl rt, rs1,

Acl

trl^	 —/tlVJ.t',.r^ -- ^ r (/^[:^ — VIIJ'1 _ 	 it,V,J..' •{• ^.1 fltryA) }'
A-1 (51.53)

tl^	 (rt^.r^	 n^,.ry	 n.^) .ra,	 Iil :.'^	 tl,	 1	 i	 ^,^•	 ^f^ f ^	 figr I r 	 r

where va Are unknown functions and a, are unknown constants.

In view of (51.52) it follows that the functions (51.53) are 	 /213

continuous in E if

i r, ),	 - [t', to	 pe L, (i -- 1, 2, ..., gin).

We conclude from (51.53)

rip "` Qap '}' F„I nA^sa^.:a = 0,
A^1

taa	 F.^(n la, -}- n,a: }- n9) ^- v, ► TaA t vi ?pp —

(51.54)

(51.55)

where

lop = ^,Yoo a,p -}- 2µ,Y.p — p,p,,pr
2Yv p—rra.p '} ro.,, ill Z,^ i—U, 1, 2, ..., m).
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In view of (51.51) and (51.55) the equilibrium conditions

(51.2) are reduced to

0.0 .8 — u iu 1,0 w.^ o, 1, 2, ..., m).	
(51-57)

The conditioner (51.47) and (51.48) become

	

t Q.o if no `= I Q.o to ►► o on L,(i — I t 2, ..., m) ► 	
(51.58)

[ .7. p to no = o on /.. e,

on the basis of relations ( 51.52).

In conclusion, the functions v  are the components of the

displacement vector from the plane thermoelastic deformation problem

(51.56) 0 (51.57), (51.58), (51.5 4 ) in which the temperature is

f(x l ,x 2 ). We will assume that this problem is solved (see Sherman

[3631, lesan 11931).

The conditions (51.4) and (51.7) are satisfied on the basis

of relations (51.55). We obtain from (51.5), (51.6) and (51.55)

o f = Ji.^,nf f — 1i ..r ►rf , n., -- Ii rrnf.. -- h12 ►►ff,

. 3 = p — fe,df
	 (51.59)

where
m	

fI1. 0 1 r Ira ^.f'pl^/f, lfiO _ ; 1' jxj J' V, rW — d. [R, + Vj(1	 O	
t p

	

/_ "	 (51.60)^^ Too' flff, fh --	 [F:, ( vf TOO 1 fla,
Lj

f!	 1' n l^ :: — h"is, /► _- ' I	 At^^fla, Ate, == E,ar f
fh ..o s,

3

:a
i
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►here

F^--
hil

It can be shown (Mushelisvili (2961) that d 3 # 0 0 d # 0.	 /214

Let us study now the process of recurrence. We will try to

find the solution of the problem of F (n+l) in the form

;tl = (+r + lj St O
ld - -I.- bt [rl F- vr(21 --x:;') ] --•

°	 (51.61)

— b2.vex 1a'2 — b3 vr.tl — s.r2r3 } ^bAv'R) + tv,( sl, x.)^r
A^1

u2 -- ( ►t }- 1)	
4 

41.1'3 — bl v i .r,j'2 — 1' YA — v,(si --a'e)] —	 (51.61)
0

3
— b3 Vp1'2 } -j .1 j .3 + I b A rfl*) +. 'V20 '11 •f':)^

A=1

11 3=( N E-1)rr*rla • 3 + (bix, + box. + b3)
.I1'3

(.1'1, t2)Jrio,I

where the functions wa g F and the constants b i g T are unknown.

For the components of the tension tensor we obtain the

expressions

r	
11

IaP 	 1) c l; 41 J-3 i- %t:P F E hA•	 f- Xi4,P rr9 (.rlr- 2,n)JrJo	 A-1
(51.62)

1.3 = (1'r } 1) lio	 11,13 + µr[ H',a — -P3aOXP }-1ra(Xj, a'2, 0)1}, 1

t33 — ( ►r	 1)j^ ;, t331i a3 f-l:r(bl s l i b...r2-{-b	
A-1

3 ) f vrna, ^vri bssa) 1-
ll 

/0

	

1( X1 + x (11) 1[30'11 X210)^f

7vaP = Xy PP S.O }- 21A-(.0,

'	 (51.63)



In view of (51.52), the conditions (51.46) -- ( 51. 11 8) are

reduced to

f +f'a 1,	 let,. 6, [ Rap hHo — [ Ra p Eno 14),
(51.64)

	

f ►''10,	 1A
	

J+—[1A ^o
n̂

 l = 9, on 1,,(i -== 1,'2, ..., 1++^,	 (51.65)p

C R^ p b ►+p `- ►o, (51.66)

f+H`

	

µ ^^++ ^p ++p 9 on Lw+il	 (51.67)

in which	 /215

	

xa	 iAp -- ^,) 11^(J' 1 , d Yr (^) ++a, P" ^lla ffyVX1 , a•1 , O),	
(51 . 68 )

91	 0)	 es,,O 'p l ++,r,

9 = (apf Tf yi p rp — ifs (xj , r3, U ) I Na•

If we keep in mind (51.51) and (51.6?) the equilibrium equations

take the farm

I ► ,	 (51.69)

I), 1, ... ,fa),	 (51- 70)

where

(51.71)

(ll
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In the following the functions wa (x l ,x 2 ) from (51.61) are

the components of the displacement vector in the plane elastic

deformation problem (51.63), (51.64), (51.66), (51.69). The

necessary and sufficient conditions for the existence of this

problem are (Sherman 13631)

M	 M
Ra	 S Da^^ d  +	 Pa d N —	 x( ) ds f 0,

/.0 Ej	 ^h, +R 	 1.1 LI

w	 ^
hI n 	 e9apa 9a)da }	 e9apxaPpda --	 ^Ls

e3ap .ra xp'ds = 0.
6.0 Ej	 L^

(51.72)

If we keep in mind (51.68), (51.71) and the meaning of

the components n  we can write

	

M	 M

	

R, = 1;	 1;3( ri, X21 0 ) da, 31 = eSa p xa 109( X1+ xz+ 0 ) tla,
,.o E^=o ^Et

so that the conditions (51.72) are satisfied on the basis of

the fact that ti, satisfies the relations (51.4) -- (51.7).

We will assume that the functions w are determined.a

For the function F we obtain the equation (51.70) and the

conditions (51 .65), (51.67). The necessary and sufficient condition

for the existence of a :ilution of this problem is (Mushelisvili

[2961)

N =	 S ELthi da —	 q ds +	 ` q,ds =0.
,moo L'1 L, 41	 (,p Lj (51.73)

It follows from (51.68), (51.71), (51.5) that

N i —	 ^ye( ^'^f 912f (1) 11 R= 0.
,y0 E,



The conditions ( 51.4) are similarly satisfied on the basis
	

/216

of the equilibrium equations and the boundary conditions. This

is indicated in the same way as in the case of homogeneous bars.

In order to determine the constant T we will introduce the

torsion function ^(x 1 ,x 2 ). This function satisfies the equation

(Mushelisvili [2963)

¢ = 0 i ll 2:,(i =- u, i , 2,... ^ ►►^ ),	 (51-74)

and the conditions

lloil. 0	 (51.75)

pe /,, i = 1, 2, ... , ►►:1,

on

If we introduce the function> through (51.39), it follows

that this function does not depend on T. We obtain from (51.7)

(51.39) and (51.62)

e30"'a(AI[VIfl	 (51-76)
r=o z ►

where D is the rigidity at torsion

rn

/) = " 
S 

1j.030.ra (p fA i- .c^ + x`)da.	 (51-77)
^ =u E ►

Consequently the constant T is determined by the relation

(51.76). From the conditions (51.5), (51.6) and (51.62) we

obtain for the constants b  the expressions similar to (51.59).
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c) Thermal tensions in nonhomogeneous and anisotropic bars.

We will study next thA case in which the cylinder B

is occupied by a nonhomogeneous and anisotropic medium. In this

case the constitutive equations are

tU == rojil l1 r.1 -,3,^ p .	 (51.78)

We will assume that

1

In the following we assume that E is a domain Coo-smooth

(Fichera [1121) anO C jjkl , O IJ and T  are functions of the class

C am . This problem may be studied also under more general conditions,

but we preferred this path in order to insist on the method used.

The problem consists in the integration of the equations (51.2),

(51.78) with the conditions (51.3) -- (51.7) in the case in which

the temperature is given by (51.1) and the coefficients Cijkl and

Oij have the form of (51.79).

We say that in the medium under consideration an elastic 	 /217

(e = 0) plane generalized deformation takes place (see Paragraph

50) parallel with the plane x 1Ox 2 , if u i s u t (x l ,x 2 ). In this

case the constitutive equations are

tU 	 CIIA' a I, f.a ►

and the equilibrium equations,in the case when the mass forces

f I (x l ,x 2 ) are are taken into account, become

t"..a 1- ft = 0 in ::.
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If the boundary conditions

11, 01.	 11 on i,
are considered, then the conditions necessary and sufficient for

the existence of a solution of this problem are (Iesan [191], [2031)

jj;fJ Ila }- j 
L 

F
8 

lIP -_ o' Jy/'33p.1 'afpllq }. i r3op'!a/p1lR ,.: 0.	
(51.8 0 )L

If f  and t i are of the class C c, then ,/l E ((:') (Fichera [1121).

In the following we will use four special problems of the

generalized plane elastic deformation designating them by

D (r) (r - 1,20 ,4) . Let vi s) and a
( s) be the components of the

displacement vector and the components of the tension tensor

from the problem D (s) . These problems are defined by the equations

^ii^	 C'^lrp'1'd P	 ( Y = = t, 2, :i, 4),	 (51.81)

^!a'a ( (^1^33f'p),^ `.: (^,	 (1'	 t,'^),	 (51.82)

^^+
,
i
,
a.a i	 (51.83)^a	 r^s33.Y '^	 r

NMA -- CO3(e l: c3a '0„ -- 0 in 2.'.,	 (51 . $4 )

and boundary conditions

^;`,' ►, -_ — ^'i33 ^'p ►+^,	 ?!a' ►la V - c+23301a1
(51-85)

	

'	 p a on I,.N(1:01%	 e053— 	Ci^0:1 ./' )f

It can easily be verified that the relations (51.80) are satisfied

for each of the problems D 	 , the fact that ensures the existence

of the solutions. We will assume that the solutions of these problems

are known. In the case of a homogeneous and isotropic medium, the

problems D (s) have the following solutions

`X
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ni p ' =-- --	 ^^	 -- (^•^	 .f•.,	 l.u ► __	 ___-' ^ .rl.r2^ 1.tl'1 . ^),

(`^Y ) '.`	 _ ;,	 ^._- .i' l .Y^.^ !!,j )	 _"--• ^-	 (.f j	 .fs), fj' f 	^^^	 ( 51 .86 )r(a	 1 10

40)z=	
2( X 

x
 F µ) fir t^3 ^ = n + tii	 Or vi _ ^l^'!r=t)r /218

where m is the solution of the problem (51.37), (51.38).

Let us now study the problem F (0) . We are looking for

the solution of this problem in the form

1	 3	 4

21
ao13 — N Pia 9 ./•9 x3	 a. t,.'$) ra( 1 11 x2)t

(51.87)

ll3 c (alxl + a2X2 -1- a3 ) x ,, +	 a. il l + r3(xl,x2),
8.1

where v
(Is) are the solutions of the problems D (s) (s = 1929394)9

v i are unknown functions and a r (r d 1,2,3,4) are unknown constants.

We obtain from (51.87)

43.1'381;3 — (I4eia7J'3 8f0 + i a,rr) 4- Ilk,
8.

14.3 = (a l X1-i- a 2 .r2 -1- a3 ) A t3 — Sts"aJ'3 — 8l,0ePa031.Ot

so that the relations (51.78) imply

11) CCI 33( a lx l -}-a 2 .P2 . {-a 3) —('V 0a3P3d3a41 'b +' i 4 8 Qi1 ) 1 7tfl,
=.l

where a ( ) are g1ven by (51.81), and
ij

W11 = Ookork.8 — Y(1f•

(51.88)

(51.89)

In view of (51.82) -- (51.84) and (51.88), the equilibrium

Iuations (51.2) are reduced to

ll t.a

J



4

i

R64.0 = 0 In X.
	 (51.90)

On the basis of the relations (51.85), (51.88) the conditions

on the lateral surface become

nt,n, = 0 on L.	 (51.91)

Consequently the functions v i (x 1 ox 2 ) are the components of

the displacement vector in the generalized plane thermoelastic

deformation problem (51.89), (51.90),(51.91). We will assume

that the solution of this problem is known.

From the conditions (51.5) -- (51.7) we obtain the following

system for the constants as

i h"(1 , = 11., (* _= 1,	 :1, -1), 
(51.9 2 ).(

where

/.,p = ^L Ja[ ( 3333 .1p -V '130 1 j da, 11a3 � `YXW"3333 + 411da,

Ii,a = xa(C33P3e0P3J 'p r- asj)) (la, 1,3a=
ir 

[C3333J, + Qi9'] da,3: 

1133' 7y[^3939 .+ Q39^) da, L3, _^ [^^3^3ep,3t'p f 471114 ] da,	 (51 -93)
z

L4. ^
E 
e30px0[("0939 J ,, + (1(i8 1 (1(1,

11,13

=L 
e30Q.r'P[Cp^9+ QP31]da,

Lid = S
E 

('900 J' P [ C133VS ekv3 J'A + QP9 A d a,

11, _ —` x.n33da, 11 3 = —
^ 1;  

7s33da, 11, _ —i
z 
eus x,, np3da.

}^
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It is known that (Lrs ) 0 0 (Iesan [2031), so that from the system

(51.92) the constants a  are determined uniquely.

The conditions (51.4) are satisfied, similarly, on the basis

of the equilibrium equations and the conditions on the lateral

surface. Thus, we have

it
1-341a = 

it ( la g f' ^ih0.0) 10 = ` ( X46094 da = J x,1s411p11a =0.
 s	 ^

Consequently the solution of the problem F (0) has the form (51.87).

If we keep in mind (51.86), it can easily be seen that in the

case of homogeneous and isotropic media, the constants L rs are

reduced to

L`p = F: xaxoda, L,, == RA j-., Lu = o, L14 = 11,
L

where Eis Young's modulus, and A,x0 and D are given by (51.19) and

(51.44).

Next, we will study the process of recurrence. We

are looking for the solution of the problem P n+l when the temperature

is given by (51.20) in the form

rra	 ( n { 1 ji
s,

►r!Il.r^—	 hs r:^ - l/ll':rap d'p.l'a A ^!►,^+a	 11Q ( r 'Ir ^)J,
o	 .a1	

11	

(51.94)

143 = (11 t l ) r (^^ a^ il.r' } (bl .rl { Ir^,r^ { 6^)xa } Fj Ir.^y I lha( Xu X:) 
J 

r

where ui are components of the disp'.acement vector from the 	 1220

problem P (n) corresponding to the temperature (51.21), wI(xl,x2)

are unknown functions and b r (r - 1,2,3,4) are unknown constants.

We obtain from relations (51.78), (51.81), (51.20), (51.21),

(51.94)
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lu = ( ►o t t ) K't'*'41J'3 eW3( 61 r1 ¢ h.;.r; 1")3) —CoN3tab3b4ap }

t

11	 (51.95)

where	
ill = es ) kA k.4,	

(51.96)

(51-97)

If we keep in mind (51.82) -- (51.84) and (51.95) the

equilibrium equations are reduced to

c,=.g 1- r1 = 0 in 1.	 (51-98)

in which we designated

fl,(.r,, •"2) 	a( a 1, ^., 0) + x,z.a	 (51-99)

The conditions on the lateral surface become, on the basis

of relations (51.85) and (51.95)

Q 1a 11 a = P1 on L,	
(51-100)

where

P+(•1.1, ► _) = — li la lra	 ( 51.101)

Consequently, the functions w j(x 1 ,x 2 ) are the components of

the displacement vector from the generalized plane

deformation problem (51.96), (51.98), (51.100). Keeping in mind

the relations (51.99) and (51.101), we can writc

^u = ri, ► 3 u4( 1 1, 1 ^, ^).
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r ^'

(Iola _r p, d• = ` t al^'^ ► ^': ► 0) (14,L 	 iL

	

.-

(51.102)
L euax.Opda + ^ t3s^^'.hq dN	 t3,t,.r,tnd J'„ J'2, 0) da.4	 = S^

Inasmuch as the functions t* 
ii 

satisfy the conditions (51.4) --(51.7)

it follows from (51.102) that in this case the necessary and

sufficient conditions (51.80) for the existence of a solution of

the problems (51.96), (51.98), (51.100) are satisfied. In the

following we will assume that functions w  are known.

From the conditions (51.5) -- (51.7) and (51.95) the following

system for the determination of the constants b  results

6.1	 (51.103)

/221where LrS are given by (51.93) and

K.	 °^LJa(033 + k33) da, J1 3 = - iL (a33 + k33)(Ia,

K4 --= -- ^ e310 "'A (743 { k03) (Ia.

The conditions (51.4) are similarly satisfied on the basis of the

equilibrium equations and boundary conditions. This can be

shown in the same way as in the case of homogeneous and isotropic

media. With this, the problem which posed is solved.

In the case of homogeneous and anisotropic media, this problem

was studied by Chirita [60].

d) Bars composed of different nonhomogeneous antsotropic-

materials . Let L — L, u L21 1', n L, .=O	 We assume that r is an

arc of the curve from £ so that -L P ur is the boundary

of the domain £ p included in £ so that 1 1 n !' 2 =0,	 We will
consider that the domains £ p are occupied by anisotropic media

with different thermolelastic properties, and designate by G'iJe„ p,"')
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the corresponding coefficients. Let R
P
 be the three dimensional

domair occupied by the medium with the coefficient 
Cijkl' Oij.

We assume that

C1;11 , `^ii1019 XI), PI; I = FIT) ( X" XI ) iu h,.	 (51-104)

Similarly, we will assume that the tensor C(P)is positively

defineu and of the class Co . The domain E will be considered

as being occupied t hy an elastic medium with discontinuous

coefficients at the passage through r.

The displacement vector and the tension vector must satisfy

the conditions of continuity

[+^^ ]+ = [14 ]x+ [40 ]I vp = u,p ]s vp on r x [o, l].	 (51-105)

where v s are the components of the versor of the normal to r,

exterior to the domain E1.

The problem of thermoelasticity consists in the integration

of equations (51.2), (51.78) with the conditions (51.3), (51.105)9

(51.4) -- (51.7), in the case when the temperature is given by

(51.1) and 
Cijkl' sit 

have the form of (51.104) in Rp.

Let us consider the problem of the plane generalized de.ormation

in the isothermal case for the domain E (2037. We will take into

account the mass forces f"Ol E c— (20)	 so that the equilibrium equations
have the form

	

tt", f- AO) == o in !".
	 (51.106)

The constitutiiie equations are

	

/^'—Clakp«1.p 111 :.o.	
(51.107)
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If the components of the displacement vector and of the tension

vector are continuous at the passage from one medium to another

we have the conditions

[t+ill s [ tool:. violi v, -- [tl.i: v. on f.	 (51.108)

Let us consider the following boundary conditions 	 /222

[it, n, It= h; on/,,,
(51.109)

where h (I p) are functions of the class C".

If we consider the results derived by Fichera [112], it

follows that under the assumption of certain regularities (see

[112] P. 386) the boundary problem (51.106) -- (51.109) has a

solution	 'tic 0"'(11 u tq)n (`-(2;x u /,2)n C"-(X)

If and only if

x

fir° 
f;01da I ^L hit) fl*^- U,

°	 ( 1.110 )x	 5

owl ^Z°	 iLo

It can easily be seen that, if the conditions (51.108) are replaced

by

[ill h ° 1".12, Vl.11 v. = [ to.lx va +- #7( on 1',

where g  are functions of the class C*011 then tho conditions

(51.110) are replaced by

x

	

iI^feida ( h'4o) ds]+
J
	(is	 0,

0'1	
L°	 !o	 r

	

Fi [^ ex.dx.fo da + 
1"0 e3:0J'.hV)dq j+ 	 e3,P X,90 (18 = 0.

(51.111)

(51.112)
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We will use four special generalized plane deformation problems

that we will designate by C^ s) ( a a 1,2,3 , 4). Let vis) and air)

be the components of the displacement vector and the com

 P	

onents

of the tension tensor respectively,from the problem C ($^. The

problems C (s) are characterized by the equu-,iono

01.0'. + (C%6ro),. = 0 + 	 1, 2)+

4.
(51.113)

aia = C+i1,011 D	 III 2.®,	 (51.114)

and the conditions

10"], — It ' 19, [ ali tv. -' [aia ]lV. + g I ) on r,
	

(51.115)

[013.1na

5

1a = —C1,*13xOn a+ (P=1,2),	

(51.116)

11041#14  J0 En^aC a'A9^p ffa on ho,

where
^f = I ^fa99 — N3 I XO V.,

Q AS

96 = PnO3I C"iar9 — CV-1, 91 X0 V.-
(51.117)
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It can easily be verified that for the problems C (s) , the

conditions (51.112) are satisfied. In the following we assume

that the funcions vi s) and vi; ) are known.

Let us search for the solution of the problem P (0) in the

form of (51.87) in which vi s) are the solutions of the problems

C (s) , vi (x l ,x 2 ) are unknown functions and ar (r . 1,2,3,4) are

unknown constants. In this case the components of the tension

tensor are expressed as

Iu = (V	 +
S^ e(a f a'^	 a2.C2 + a3) — ^1 a0 Po9^ a1 '^ + a, aii,+ no,

-^	 (51.118)

where

no) 	 0411O Vc.0— A )f•	 (51.119)

If we consider the equations (51.113) and the relations (51..118)0

it follows that the equilibrium equations are reduced to

it

7rf,.. = 0, iu	 (51.120)

Keeping J u mind (51.116), the conditions on the lateral surface

become

no,iia = 0 on L.	
(51.121)

From (51.115), (51.117), (51.87), (51.118), and (51.105)

the conditions follow

1 11,1, = [ n,J:, [n,:l, va = [nt,]z v. on t.	 (51.122)

In the following, the functions v i (x l ,x 2 ) are the components of

the displacement vector in the problem of the plane thermoelastic

deformation (51.119) -- (51.122) in which the temperature variation
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is f(x 1O x 2 ). We will Assume that this problem is solved.

The conditions (51.4) are satisfied on the basis of the

	

equilibrium equations and	 the conditions :)r the lateral surface,

the same way as in Paragraph 51 (c).

From the conditions (51.5) -- (51.7) we obtain the following

system for the unknowns a 

S 3l„Ir a — A ., l ► -- i,	 a, 4),	 (51.123)
1s

where we use they designations

s r
.{l ap =' ^ ^z ,r,^ ^^°,;ys• I'p t Q ;1^ 1 ^ Iln,

JJJ	 '0-1 0	 1 51.12 )

/224

^((

	

3 ^	

S- 
,Is (^^^^19 }' ^^i l ^ 1111,

0 ` 1	 0

y,	 a	 yan:l p 0:1 pt	 J,1) 1111,
0+ I	 0

ITO

2

p.,l LP

0*I ^=y

{ r	 , C	 II 01	 •U` 11 l	 \	 I o1 :1 7 .11',.:P lop 	 eydtl 1410,
P-1	 P

2
{/la	

v ^`
	 r rV,3 X,, } 0^9) 1 110,

p I	 P

^ll;i	 v 0' :i g 4 •1' 11 	3 } Tpi I11O,

:{^11	
0 1 J:.' 19 ^1 p ' t A^^i19v91'av9 .1'x 1 ^^^I I11f1,

P

I Q .- --c ,1' a tta^lin, :i^	 —^rra,lli(if
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in which we designated

The conditions on the lateral surface become

( sr, ►► ,1 P -_ i,l` on 1

(51.129)

(51.130)

It can be shown ( see Iesan [ 2051) that det ( Mrs ) # 0, so

that the system ( 51.123) determines the conEtant a r . With this,

the problem P (0) is solved.

Let us study n

the solution of the

v (S) are comr,onents
ds)" w i ( x i , x 2 ) are

unknown constants.

4w the recurrence process.

problem P (n+l) in the form

of the displacement vector

unknown functions and br(r

In view of (51. 94) it foll,

Let us search for

(51.94) where

from the problem

n 1,20,4) are

:)ws that

^r^' _ (^t -i 1) t ^`'^+ ^l.ra I ^ i°^a.lbr.r•^ i !r: r 'x { Ira)
t n

(" ,;;ar'ot► alr,.rc► i	 !r, a;;' {	 ? r	 k.°,' ^+

(51.125)

where

a,$

The equilibrium equations are reduced to

'',,., i (141P1 -- 11 ill !a,

(51.1?_0)

(51.127)

/225

(51.128)

330



where

P101	 ).rDl„	 ( 51.131)

If we keep in mind the relations (51.115), then the ^onditions

(51.105) are reduced to

( ►i•i]i = ["")2 ' [ ?r,ll= -_ 17111:•x, .:- (h on P,	 ( 51.132)

in which

q j _:t [ 1-lY► —	 ] ,x•	 (51-133)

Thus, the functions w  are components of the displacement

vector from the problem of the generalized plane deformation

(51.126 ) 2 ( 51.128 ) 2 ( 51.130), ( 51.132). The necessary and

sufficient conditions for the existence of the solution of this

problem are satisfied, which can be easily proven. In the

following we will assume that the functions wi, 
aii 

are known.

The conditions (51.4) are similarly satisfied, which is proven

similarly as in Para graph 51 (a). From the conditions (51.5) --(51.7)

we obtain the following system for the constants b 

(r = 1, '_, 3, -1),
	 (51.134)

in which the constants Mrs are given by (51.124) and B r takes the

expressions

B.
D

 	 •1a('733 i 99 110, "3 — —	
[('733 T 7.33') da,

D	 pal —D

'l

lA 4	 -- ^.	 ^'3,^ ^a( rs3 -,- /;1 ^► ) Flu.
D=1 'D



The system (51.134) determines the constants b  and

consequently the problem posed is solved. Obviously, the case

in which the domain E is occupied by n elastic media with different

properties can be treated in a similar manner.

t



aLCHAPTER VI. NONLINEAR THERMOELASTICITY

52. Successive Approximations

Let the equations of the nonlinear theory of thermoelasticity

be written in the form (21.12) -- (21.35). We will consider the

initial conditions (21.9) and the boundary conditions (21.10).

We assume that the reference state is a natural state and that

the functions c and Q  are analytic. Consequently, we have

°°(52.1)
G	 A,(I'U f T f a .)f	 X11 = E Qi,( I%rnnf T, T,l,.V,)f

	where A  is a homogeneous polynomial of degree 	 r in 
Eii 

and

T and Qir are polynomials of degree r in the variables Epq,

T and T j , while the coefficients of these polynomials are functions

of Xs . In the case of homogeneous media, the coefficients of tnese

polynomials are constants.

We assume that the charges depend analytically on the

parameter a so that

00
E E"r(n)

J	 f
nil	 n=l

co	 00	 On
as _	 `nalnlf	 ^l( =	 En^l^nlf	 ^i0	 en.tiu If

n=1	 /	 18=1	 n=1

00	 00

11 _ ^.nlf 'nl f 1^' _	 ^nl^1n1
^ t

n=:	 n•1

00	 00

	

0 — TO + ^ :n5r(n1	 11 * c c ^nxp(n1
'	 f	 jJ^'	 n:l	 n=t

(52.2)

	

:	 The specification of the parameter c depends on the specific problem

	

^y	under consideration (see for example Green and Adkins [1411).
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We assume that the solution of the problem has the form

03	 m

"ut	 (52.3)

We will establish the equations and boundary conditions

and the initial conditions for the functions u 1n) , T(n).

In view of (20.9), (21.14) 0 (21.15), (52 .1) it follows that	 /227
we are able to write

TU = rtlrt u r, t — Poo + Ill/,

PoY = Pu u/.I f- a0 + S,	 (52.4)

alt = k1/ 0,1 i Al v	 9 = T— To,

where H ii and S are polynomials in tar s and T which do not contain
s

linear terms,and Ai are polynomials in u rns , T and 
T,k which do

not contain linear terms. The coefficients Cijkl' S ij , a and ki

do not depend on u rns and T and have symmetry properties (23,13 .

From (52.3) and (52.4) we obtain

TO =
CO

 F A T^^',	 r = 
AE 

Etyjtkl/	
Q/	 eA At	 (52-5)

Anl	 ^j
A:t

where
T+i' = Cllt• t tlk"t — P,/Ttu^

P,/ t/r lr + 4 T'u,

QS" = k, ! T;t; ,

Tin) ) = Ctat uV, — A,, T( N)  + TIJi'^	

(52.6)

Pori") = Pu it i "i + aTOO + St"1,
1"1 =Qc	 x'11 T; + A ii' tt	 ^,
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In the relations (52.6), n ( ) and S (n) are polynomials of a
higher iegreethan one in the variables ura8 and T (a) (a = 1 # 2,...,n -1)
and Ain) are polynomials of a legree largerthan one in

a	 ,. ia)ur 8, T (a) and .,k (a	 1,2,...,n-1).

From (21.12), (21.13) 9 (52.2) 9 ( 5.2.3) and (52.5) we obtain
the equations

TIM,J -i- Pori", = Poill"),

PoToj ") — Q1 46) = por'" 1 +• Po
llm-1) q it = 1, 2....,

	 (52.7)

where
	 0(0) . = U 0( k ) == — ( Tit ^( ►) ^- ... + T( &) • (tr	 l _ 2

If we consider the relations (52.6), we derive from (52.7)

(^^lltlll^^!!rJ _ (i^/lZr^"')r! ^' POP.) =POU`")r

^,	 r	 _ ,,, _—	
(52.8)

('u 7 r11r1 — 7oi^i1 ►i1.,	 n rloC	 Pojj''"',

	

11 —	 ...

where	
/228 1

 

W411 =

Pu r	 Purl,", -j^ Il ir.lt T{^'^" ,
 -= /''"' — Iu ►A, , / +

Po	 (52.9)
}

The initial conditions become

111")(X, 0) = ni^ .ali(.1', 0) = bin), rl '"'(.l', 0) = r(," 1 .	 (52.10)
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The boundary conditions imply

"I"  = ;r' P(- 1, X [0 , to), (Cpsitir', ° Pi1 T'"') vj =
	

(52.11)

sill, Pe 1;2 X [0 1 lo),

T. ") ^, 4 40)I " 1 3 X (0, to), ku T; ^ Y1 	 .XO1 "' hr 1., X 10, to),

in which

an ^ psn j^^u = fir' ► '

(52.12)
/T) _ 114"),Iv	 . 	 ^.	 ^" ► 	 ^1") Y	 11	 '1 .;11	 1	 it	 1f	 1	 • ^,	 •^f ^ f

When n - 1 the equations are the same as those in the linear,

k (1) ,
	 r (1)	 (1)	 (1)	 (1)	 (1) ,	 Pi

(1)	
4u, .^^utheory with	 loads	

'	
ifi	 , ai 	 ^i	 , ^^ _	 UU

that	 l) , T(l),...,uimLet us assume	
u 
	 , T (m are determined from

the above equations and conditions. 	 Then for n - m	 we obtain

a problem characterized by equa .tiors of the linear thermoelasticity

for the same domain in which the loads	 depend in a known way

' on the functions u (a) , T (a) (a	 1,2,..., m-1), determined in the

previous pages.	 The solution of the problem for n - 1, if it

exists, is unique, and consequently the loads 	 which appear in

the problem with n - 2 are uniquely determined. 	 Thus, for n - 21

the solution is unique.	 In general the functions uin) and T(n)

are uniquely determined.

The method presented represents an extension of the method

of the successive approximations of the theory of elasticity given

by Signorini [365;	 (see also gang and Truesdell [4361).

An interpretation of the development of (52.3) follow& from

the generalization (Iesan [1881) of Rivlin and Topakogl-. ' s theorem
^r

[350] of the theory of nonlinear elasticity.
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In general, if the equations (52.1) are substituted by

N # I	 N

YJ
► W2	 ry

we say that we are dealing with a theor y of thermoelasticity of

the order N.

53. The Theory of Thermoelasticity, of the Second Order /229 1

We will establish here the equations of the theory of

thermoelasticity	 of the second order in the manner given by

Chadwick and Seet [52].

The following considerations assume certain conditions of

regularity for the functions of Q and Q  in a neighborhood

corresponding to the reference configurations; these conditions

appear in all theories of this type.

Let If be set of functions (u i ,T) corresponding to the

admissible th..:,modynamic processes in the medium under consideration.

The element {0,7 0 1 from x corresponds to the thermodynamic

process in which the medium remains always in the reference con-

figuration.

It is always possible to introduce (see Paragraph 35) a length

k0 and a time t 0 , which are characteristic for the material under

consideration, which together with p 0 and TO permit the use of

certain adimensional quantities.

Let
a, = sup flit,.,1 -f' Io To'I T , ► I + T61101}^o

az — snp { Iisi.Y1 I- Toro-l i r , ► I f- To ' Io1 i	
(53.1)

J,- 101 If ► .J► I + 120 TO 1 1 7"'11 ^ 101 ^-1 1.11 -F 10To1I61},
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r	 ^+

0j = (Izij + mu., E., f 
Z 

kvj 0 ,. + k1ji10
1 0

,) -t- 0(ai),

(53.2)

8

where	 --

The quantities a  and a 2 are called the primary and secondary

j amplitudes, re spectively, of the admissible process. Obviousl yP	 ,	 P	 Y,	 P	 Y
a1< a2•
	 We will designate by j-, the subset of 

Jr defined as

the intersection of the domains of the functionals a l and a2.

In order to establish the results which follow, we will limit

ourselves to admissible processes for whict lot,, F), J"o ► 1,1i d 1, aj x I.

As will be shown, the restriction a 3 << 1 ^s sufficient to derive

the constitutive equations of the theory of the second order

thermoelasticity and the condition	 a2 « is necessary to Justify

their substitution in the equations of motion and in the equation

of energy.

We assume that a is of the class C 4 with respect to F Ij and T

in the neighborhood of the reference configuration

I Ej) I +- 'To' 1 0 1 °- 8,

and that Q  are of the class C 3 with respect to E iJ , T or , T in the

neighborhood

I Eq I +- 1o To' I'/•,.I 1- To" i 0 1 < 8,

while the positive constant d was selected in such a way that

I Il l.) , I Ht, 0  < Ild f: I H f, J' I h,►, i < R).

Developing in Taylor's series around the reference
	

/?30

configuration we obtain

c = 1 V jjjj Eu E,j — Pu E►► O — 1 (10" + 
C 

Cutjmn EfjEtj Ea% +



where

: ( it =a 	 d =c
C1111Il	 ► 	 C116166"

(aRodEA,10R..^e 'aE► rt3F:^r o

J =a	 8=Q

^;^r ( dE► )JVkjJT I	 pit ' —( JE„aT ^o ►

(53.3)

(53.3)

a'°	 (e=a	 J'”

n	
Au = a' 1

Ito T=^o ' ° -- laT1 ^o'	 —lOT'^'	 ^aT„lo

=Q	 a^Q,	

( a
=Q. 1 .

( JT d T,,lo ' ^ _ (—T ► ,aT'/o, »I^^„ = JT.^iIF:„Ju► ,

The new thermoelastic coefficien ts have the following symmetry

properties

e;:, _	 (53.4)

1. 11 ! = t'fl } ,	 kill, =` k.,j,	 mllr,	 tlli^,,.

Substituting (53.2) in (21.14) and setting

h: == e	 1 al,, ,u, ,,	 =`„ = 1r^., + ,r^ , ,,	 (53 -5)
,)	 ^,+,,r

we obtain

T,l

	

	 /rIN • Lr• — 3, ► 0 + 1 Cu► ,.nC. . Emn + QIrw.1/ iu"MI.r +
r

1	 +n	 '
(r	 1, i,	 + (^Ii:, E.. —^lrrr),r) Q — t 1'IV	

. U ( nl),	
(53 '6

+1 Jmn r,rrr .. ^
'l

Po ol — iq u e u 1- no — l ^^i:.'-u^., i t au'r^,. ► rr...l ^.

r

It follows from (53.2)2 that

^, = (ki) 'T Ip llra E r.	 l k,, , O„ _}- k''10) 0 ' , 
+ 0(a.).

(53.7)
Of

f.

/231 i
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The constitutive equations of the theory of thermoelasticity of

the second order are obtained from (53.6) and (53.7) imposing

the condition that a 3 « 1 which Justifies the neglect of terms

which have not been explicitly stated. When expressions (53.6),

(53.7) are introduced in the equations (21.12), (21.13), terms

will appear containing both ui.J' a r , 0and also ui,rs' ® pq'
e. As a general rule the terms remaining from (53.6 and

(53.7) will not generate terms of the order 	 a3. Thus, the
condition a1 a 1 is not sufficient to express the equations

with partial derivatives of the theory with the help of the

components of displacement and 	 the temperature variation. We

will replace this condition by a stronger condition a 2 « 1. It

follows from (53.1) 2 that the terms which appear by this introduction

of the constitutive equations in the equations (21.12), (21.13)

are of the order 	 a2. Inasmuch as a quantity which is of the

order of ai is of the order	 a2, it follows that the order with

respect to a 2 of the relations (53.6), (53.7) is maintained by

the derivation operations implied by equations (21.12), (21.13).

Thus, imposing the condition a 3 ac 3, the equations with partial

derivatives of the theory of second order thermoelasticity

expressed in variables u i , 0 are obtained by replacing (53.6), (53.7)

in (21.12), (21.13) and by neglecting the terms in 0(a 2).

In the case of the homogeneous and anisotropic media, these

equations are

x ,,
H:.

t°

C111,8111',81 — POOP $ }- C1/r.00ur,, lto,00 +

I Ciro S01 o, o fh. rl + U0.801 '.0 + Cono ur. our, 8, + C )S(ur. to 0 +

. t. 11r. j og)) --- (3 ),081.0 1- us. r ef,) — Pi;'oof, + Poll = Po'l1,

kO et„ }- m 1,r.( ur, .1 e, j + Sir.. of u) + k1r, of r et 1, +

+ kj)"(00,))f 1 -- ToaG — 1'0(Pu u 1,) -- Cji:,u,.,ur., +

+ PW(M. s il o. I i- P101(f., e ) — ( P1, -(- To'M")'ki,,o —

— (a + 61'0) 0  = -- Por.

(53.8)
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If we consider the relations from Paragraph 22 0 we can

derive the equations of second order thermoe last ieity

for isotropic media. Thus, in this case the constitutive equations

are (521

T+j " Ac,,8,1 + 2 iA cl) -- p0lljo }

	

'(' 
l	

vl crr t.. - vZt„cr, } , Atly ,u^	 ^. Ar i r cnp ..

	

`	 r	 (53.9)

'	 X110
	 A lp

I. .)	 ”'	

/

V2 :pp

+ ( AC ID -- p 0) ►► !., + a ( p, } v,) t , • e l , — 141/p. du l.. t

Poll = pe r, }• n0 —

Q1 = 1
. 0, 4 }- 1111014£ ►► }- 2m 2 t lr 0fr I ki1100f1

In the case of homogeneous and isotropic media, the equations

(53.8) become

().+µ + ( vl } Vg ) 14. .+(0'	 11l') 0} Ur.1,+

+ { µ } (A - F- vy) H,., 1- (N•u' --. p ) 0', fig .,, f-

} {(A } E4) 1l,., }. 2(v, + v 7 ) tl l ►,rl} t(r.f. + 2(µ {- V 3 ) u, ► .an t .. +	 53.10)

}- {(A 4-'L) ►►l,r + 2 ( v2 }- va) H U,r)) t►l.lr + 2(!t F v3) i(q .0) If 1. rr-

-ptU0 — A' ► 'll, r) 0 , )' (21-0 I na . l  — p ++ l, 0 09r	 Mo.>ft = point
t'	 (k _i ^•111^^ } Ip 1 11r,r) Otu } 2N1 ,̂ 11s,, O rr. }'

f- ( 111 j t1 1.1r + '..tpl 2 +l t, .ir + /̀ '''n tr) (e rr —

— Too  — (a + bTo) 06 — T,:l3' 1 'tl, ,b -

— { Top + ( p + Tg; l"') 0 — To k" I f ,. r ) 11 ,.. —

— To(ptl r. , — 2tO'tfo , ,O t+r,. _ — port

a
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r IL -
t 4

where

Ullj) ^	 ("(.I +'t').^^•2

An incorrect version of the equations of second order

thermoelastinit y 	for homogeneous and isotropic media was give

by Dillon [86]. The correct relations for this case were derive

by Hermann [170].

Application. Let us consider the case of plane waves ii..
If-t 	 theory of thermoelasticity of the second order. We assume that
`

	

	 ui s ui (xl ,t), 0=6(x l ,t). Equations (53.10) in the absence of macs

forces and thermal sources become

A	 (), + 211 + (a), + Oµ f vt }- (iv.. )- Kv^) tct.t +-	 ( 53 .11)

1 O.' t ' .^ 2^w' t ' —(:) U} ii i,a + (), +''1,L

+ 2 v3 ) it,.. t il t . tt — ((i	 21j.01) — (i ) ti i, t + (ins } ` f 9 ►
 = pout,

/233 1

t!^	 ( + 3 1L + vi -+- 2 VO u t. t f- ( !L ' t ' — P) 0 ) ur. it +
(53.1' )

+	 21L + vy + 2 vO ur. tutI it -+- lµ(t) — P) ur. 0, t = Pour,

(k + ku ► 0 .+- ( mt -^ 2 ma) ut. t} O,tt + Qm t + 2m2) ut.tt +

4 . 0 1 0, 1 1 0, ,— Toa6— (a + bTo) 06 — Top ( tlut.10—

—(TOP — TO(Xf l) _^.. 2tLM — P) Ill. t +P + Top") 0)u1.t—TOP —

 — To([A' t ' — P) ? A . 	 t = 0,

where r,A = 293.

If we set u  = 0(r = 2,3) then we obtain from (53.11) two

equations in the unknowns u  and 0 which permit the study of purely

longitudinal waves. Similarly, if we set in (53.11) u i = u2 = 0,

we can study the possibility of purely transversal waves. In contrast

to the linear theory, these waves will be affected by the thermal

field.

Johnson [225] carried out c study of longitudinal thermoelastic

waves.
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54. A Stoppelli Type Theorem of Existence and Uniqueness

Let us consider a homogeneous medium which is in thermo-

elastic equilibrium under the action of mass forces p 0 EF i , of the

superficial forces 
EP  

of the heat source p 0EW and of the thermal

flux eH where c is a parameter, and F i ,W,P i , H are prescribed functions.

If we consider the relations (21.12) -- (21.16) it follows that in

this case the basic equations are

the equilibrium equations

	

^i.I i Fo e P.	 0,
(54.1)

the energy equation

	

fir, , ^ ^ Pu eTT'	 ^^,	 ( :i 4.2 )

the constitutive equations

d(I	
. __ I fig 	 (54-3)?	 a(11, , l	 I ,^	 rill	

r
'	 47

The boundary conditions are

	

'I',, N,	 C1 1,	 V O N) 	 ell on oil. 	 (511.4)

The problem posed represents and extension of the problem

considered by Stoppelli r3971 in the nonlinear theory of elasticity

to the theory of thermoelasticity. Stoppelli 13971 studied the

equations of the theory of nonlinear elastostatics for charges of	 /2311

the type which appear in (54.1), (54.4) and under certain conditions

he proved a theorem of existence and uniqueness. Moreover, if

Icl is sufficiently small, Stoppelli showed that the solution to

which the theorem of existence and uniqueness refers depends,

analytically, on e. Truesdell and Noll [4211 rnd Wang and Truesdell

[4361 presented Stoppelli's theorem. In the following, we will present

briefly Stoppelli's method with reference to the problem of thermo-

elasticity (54.1) -- (54.4) (a problem studied by Ni p cor 13091).
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X	 I;

.ar

It can easily be seen that in order to have the existence

of a solution, the following conditions are necessary.

Pt d A + pok d'^ V — 0, ^ fl d A + p.8 d V = 0.
(54.5)

OD	 a	 ON	 B

Following Signorini [366], we assume that we have

J ey
) j jP, dA -r ` poet) k X jFl. d V = 0.	 (54.6)

an	 n

The idea consists in the reduction of the problem of the

existence and uniqueness of the solution of the problem of

nonlinear thermoelasticit-,,when jej is sufficiently small, to

the corresponding problem from the linear theory.

We assume that the reference state is the natural state.

This means (see Paragraph 23) that the function 5 is such that

we have

_ d Q	 d;
1(j.nr., 	 d 1' —0 for u,., = 0, T= To.	 (54.7)

The functions Q  is satisfied by the conditions (20.9), thus

we have

ONY." T, 0) = 0.

(54.8)

In certain conditions there result the existence and uniqueness

P solution tu i ,T) with the second order derivatives which
tisfy the conditions of H81der and the condition

111(0) = 09 	 T(0) = To .	 (54.9)



Let the equations of nonlinear thermoelasticity be

T,i., + pofj = 0 ,	 Qj i + Por = 0,	
(54 .10)

with the conditions

„	 Q*N, _ 17 on 011,	 (54.11)

and (54.9).

Let us conelder the deformation x i (X) obtained by the

superimposition of a rigid rotation Q. around the origin on the

deformation xi(X). In view of the designations from Paragraph 19,

we have F = QF*, It can easily be seen that the relations

Tai	
s 
QfsT*^s.,)'Qr.r 

= Qg•i• take place.

Consequently, if the functions {xi(X), T*(X)) represent a
	 /235.

solution of the problem ( 54.10), ( 54.11), then { x i ,T) where

x i	 Q
ij
x*, T = T* represents a solution of the problem

	

TA, + Po2iaf. = 0, 4t., -f- Por = 0 in B,	
(54.12)

	

T,IN, = QJ', QjNj = H on i)B.	
(54.13)

Inversely, if {x, ( X), T(X)) is a solution of problem ( 54.12),
fu

(54.13) then {xi = Q
ji

x
j

, T = T*) represents a solution of the

problem ( 54.10), (54 .11). It is appropriate to consider the

problem (54.12), (54.13).

At the start we will introduce some designations. We say

that the function u, defined on the domain limited by 0. is of

the class Ck ' X on p iF u. 6. Cr(S2), and the derivatives of the order
k satisfy the condition of H81der with the exponent a on R.

Let	 V* e00.	 We say that ( y l ,y 2 , y 3 ) is a system of cartesian

local coordinates with the origin in x*, if y i = a i ^ ( x^ - x*),

with (aij ) the orthogonal matrix and the axis x*y 3 is airected

according to the exterior normal at the point s. The surface
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30 is of the class C k '
X if there is a number r > 0 so that the

intersection of the sphere with the center in x* and radius r,

V(x o ,r) with aft may be represented by y3 s f(y l ,y 2 ) with f e 0.1(1)),
D being the projection of VnAl on y 3 0 0.

We designate by Z the space of the elements of the form

Z = {u i ,T) where u, k (''^^(/t^, T E (r-'(R).	 For = e Z, we introduce

the norm

	

a = II = 1:
1
 lm^ax I ^, I I- S^ 'lia% I	 ) I -( F, (max 1-,. Jr I + P.r•)I

	

(54.14)

where z  suit z 4 C T, 0 ijr is the H81der coefficient of the

function u i.jr , and 
04jr 

that of the function T^ jr . With this

norm the space Z is a Banach space.

F
Let Z' be the space of the elements of the form

^ R 	which satisfy the conditions

(Pr, 4" E ("'(1; ), yr, `i' E 0' • " (d l3),
(a)

	

0, (11 1  +	 ¢r dA .: _ Ur
x	 dtr

(^)

	

	 S
euc 1 ^4^r (I v +	 pug r?t dA = 0,

U	 JR

`rdl' -1) ^dA —o.
R	 JR

It

For	 we define the norm
8

;II II	 ^, [nutx. I^Pr I + mux	 + b, + c,) +
^^ ,	 tr	 ^•ar

+ Inax I Ir I + m ►tix	 +
n	 .0rr (54.15)

346



where b i , b are H81der coefficients of the functions m i , T. and

c i ,c are the largest of the H81der coefficients of the

derivatives of the functions m i , * with respect to the paramete

of the representation of 8B. It can be verified that V.

provided with the norm (54.15) is a Banach space.

Let us designate by V the subspace of the elements of Z which

satisfy

rot a :- o, #i t 	 o, 7' = TO for 1 = o.	
(54.16)

It can be shown that Z" is also a Banach space. We will

assume that

(i) B is a compact set and 8B is of the class C 29

(ii) Q is of the class C 4 with respect to the variables u i, ,,T and

Q i are of the class C 3 with respect to u i ,T r, T in the sphere

S - {z1 11Z - z 0 11 < R} from Z, where "z 0 - (0 9 0 0 0 2 T 0);

(iii) -o	 IPo 1'+r P, It' ; 1',, 111 c :'.

Let us consider the relations

T )t. j d' e Po i. ,	 'ri,	 Qj. t + a p (,r	 `h ill li,
(54.17)

- - '/'nN, A- cQjA/I, ^. T„	 --Q)A', -- e11	 V on ^► I;.

Considering these relations as a, functional transformation, we

will try to determine the rigid rotation (Q i^) and the functions

{x i (X), T(X)} so that ^D i - 0, T
	 00 m 1 = 0, >V i = 0 and that relations

(5 4 .5), (54.6) be satisfied. Let z 	 {uIT}, z' _ {^i'^'^i'^'}, and
G(z) = z' be the application defined by (54.17). We will determine

the rigid rotation 
Qij 

so that element z' defined by (54.17) belongs

to the space Z'. Accordingly, we will have G :Z 	 Z'. Keeping in

mind the assumptions (i) -- (iii), it follows that th^ first

condition from the definition of Z' is satisfied. It follows from
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conditions (S) that Qi, must satisfy the equations

cel)kQ k,A„ = Ifr,

where

A„ __ j pj, P, d P + 
S 

1'r 11, dA,
to	 ^^It

	

and =	 P,jkTjk (it".
!r

Consequently Qij must satisfy (54.18) and

	

Q, QJrm	 Q ► iQ ►, _.. 8,,, (Iet (Qj) ) = 1.

(54.18)

(54.19)

(54.20)

We will write the equations (54.18) in the form

E
	 (54.21)

where the application of jr is defined by the set of their own

orthogonal matrices. It is noted that 	 The problem of

the inversing of the application of F was resolved by Stoppell.i	 /237

and, as is known, this application is inversible if, and only if



fi.
i

then thm.re exists an axis so that any rotation of the body around

It, while maintaining the loads, does not modif y the

state of equilibrium. It is said that the loads 	 have, in this

case, an equilibrium axis. Therefore, we have the following result

from the theory of elasticity.

Theorem 54.1. If the loads (F1 , P i ) do not have an equilibrium

axis, then there exist two positive numbers a and S, independent

of e, so that if
I ^f l G (K Igl,

the equation (54.21) has a unique solution Q. with the properties

IQ ') - 8„1 <P.

In view of assumption (ii)  it must be the case that	 EN(:,, II). This
implies a certain higher limitation for Iel. The application

G(z) Q z' is defined on	 '14:,, ' le) a Z"	 with values in

The following stage represents the problem of inversing

the application of G in the reighborhood of a point "z .
0

Proceeding in the same way as in the case of elasticity,

it follows that this problem is reduced to the existence and to

the uniqueness of the solution of the system of equations from the

linear theory of thermoelasticjty

Ci)tl ►'r, rf -- p , ) 7';0 ti- SO,,	 k,j 7'.,, _= 811' in /t,	
(54.24)

boundary conditions

( 011ki '&. j — (B U T.,) Xj = —8p„ —kT,N, = 8^ on d B.	 (54.25)

In view of the assumption (i), the definition of the space Z'

he results, from the linear theory of thermoelastic equxlibrium,it
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follows that the boundary problem ( 54.24), ( 54.25) has a unique

solution which satisfies ( 54.16). This solution admits second

order derivatives which satisfy Htllder ' s condition. Therefore

we have

Theorem 54 . 2. If conditions (i) -- (iii) :occur and the

system of loads (F i ,P i ) does not have an equilibrium axis, then

there exist two positive numbers y and X so that for fie) < y the

problem (54.1) -- (54. 4) has a unique solution z • {u i ,T) which
satisfies ( 54.9) and 11 z - i o ll < X.

The extension of Stoppelli's method to the equations of

thermoelasticity does not cause any essential difficulties.

If the functions Q and Q i are analytical ones, it is shown

that the solution, the existence and uniqueness of which was

mentioned above, does not depend analytically on c.

55. Plane Deformation
	

/238

a) Statement of the problem. Let us consider the equations

of the nonlinear theory of thermoelastostatics written in curved

coordinates (see Paragraph 24). We prefer this type of writing

because it facilitates the formulation.of the problem in complex

variables. We select a system of curved coordinates e  so that

0 3 = x 3 . The state of plane thermoelastic deformation parallel

with the plane X 1OX 2 is defined as being that state of deformation

in which we have (Green and Adkins (1411)

ta--1',(©^, 0'= ), •^, = ,r,( 01 , 0 1 ), .r. _ _l' s = 03,	
( 55.1)

T =- T (01 , 01).

In this case we can write

11 = I1*(01 , 0 1 ) + 0 311 3 , r = r *(01 , 0 2 ) + 0':1 3 ,	 (55.2)



11, : Olt G I -= A 19 J.a == a,;, .933 = 1 9 903 = 0,

0.3 — A .a, 0.3 = o, 033 -r- 1 9 9 = I a.$ I == a, 0= I AID I —A.	 (55.2)

It follows from (24.13) that

2Y.® — A .P — a.r, r,3 — 0•	 (55-3)

The invariants I  defined in (24.22) take the form

A
11 = 1 + aO.A.a,	12 A (a.0A4 6 _}.. 1 ),. 13 — 

A	
(55 .4)

a	 a

In view of the fact that aasA00A . avpAvpa, the relation fnllnuy s

13 — 12 + 11 — 1 = 0.	
(55.5)

Let

I a I l ,J a 1 31 Ji - I l - 3,J2 . I2 - 2I l + 3.

obviously, we can write

a = ( 11, 121 13, T)	 a l(l, J, 7 1 ) = ay (ji, J=̀ , T).

The relations (24.71) become

-'a = X 05 + .PAI D,

(55.6)

(55.7)

/239where	
.3 aai	 2 , ► a3	 (Jay

	

- - .. _	 — -- -
V4 (if

^=2^jaai= .=^Jaay,

	

a J	 aJ2

	

_ 2 a s 	2 as	 as
a r. ' ^• V.1a r_' p = 2 ^J a 

r_

(55.8)
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We obtain from ( 24.S9). (24.74) and (55.1)

42 — 	 as + Cs Y1 + Ca Y: yj ) T ih, 93 ffi 0, (55.9)

in which T 1 = Ai0 T16, yt ow Y•®	 and C i are functions of the

invariants [,J, T, T II• T 11., Tli' T 110 Y: , T II' T I!o Y° Ya

In the absence of mass farces, the equilibrium equations

are reduced to

T'0 110 = u.	 (55.10)

We will assume that there are no thermal sources, so that

equation (24.68) becomes

9°11. = u.	 (55.11)

If we represent the tensions with the help of the Airy
function

9" '101	
(55 .12)

where E°o VA = e,o,, then equations (55.10) are satisfied.

We obtain from (55.7) and (55.12)

IlaO = a No Jr + A,0 .e.	 (55-13)

It is known from the theory of elasticity (Green and Zerna 11391,

Green and Adkins [1411) that the force which is exercised on an

arc of curvature from the plane x 1Ox 2 measured on the unit length of

the axis x 3 can be expressed such that

(55.14)

352

vt^.4.	 ..... _



The geometric relations take the form

In the study of the state of plane stress from the theory of

linear elasticity, it is useful to formulate the problem In complex

variables. This formulation is useful also in the nonlinear theory,

in particular, for the study of the second order approximation (see

for example Green and Adkins [141]).

Let us introduce the complex coordinates (C, ^') •ind (z, z )
	

/240

in the nondeformed body and in the deformed body by the relations

C — X, + i.1' 21 r -- •1 1 — ix.,

-+-
	 (55.15)

Let ua be the components of the displacement vector with

respect to the system of rectangular cartesia.n coordinates. Let

gas designate

n ==	 + iu 2t ^ ► 	 — iu^^.	
(55.16)

It follows from (55.15) and (55.16) that

(55.17)

If we take 6 1 = z, 6 2 = T , we obtain

A1:- 
1,	 A-	 I, A ll –= A A. = A ll — A-' =1 ► ,
N

ya _ a d 1C1^) _ 1 11 —	 1-	 (55 - 18 )

01)^dn	 1	 oD !!/ ►
a„=a21T o	 ^l_ — l

	 1112--	 -},^

all = a`j = !1221 ale
a	 /i
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(55.19)

1 aD (t
Y11 Yn = d. t	 J^

d1► ^U dD d1) J  d 
Y12 4 d:	 ds	 dq d:	 d dz

Similarly, we have

d U d 1►̀	 >
	

(55.20)

If we designate by Trs the contravariant components of the

tension tensor in the coordinate system ::,2,x 3 , it follows from

(55.12) that

T11	 4
dam ' 	

( 55.21)

	The relations (55.13) become	 1241

	

a$p _ ,,j^laD _ I W ^► _^ M ( 1 	 +a ril) a1► 1 W +1 Y.	 ( 55.22)

d:a 
_ J .: 

l	 ' l2d.,	 l2	 ,^^ ^1^ J	 2d„	 ^l.

From (55.14) we obtain

`I I?
4 ;;	 (55.23)

b) Successive approximations. We assume, as in Paragraph 52,

that the complex displacement D and the temperature T may be developed

in absolutely convergent series, according to the powers of parameter

c. In the following we will limit ourselves to the first two terms

from the developments which appear. Let

/)(^, ¢}	 cDi (z , z ) + e z DZ (z, z) -1

,r (p, z)	 a 7' i (-, -} + e2 T, (=, =} + ... .

(55.24)
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It follows from (55.18) and (55.20) that

Y,/	 i + cal 4. c 2ac 4 ...,

where

rill,	 rll ► ,	 ti:
rll ► 2 	 . ► I ► 2 ' dD I 001

t
	 ;l;	 rl:	 rl:	 r ► :

	

rl:	 rl.	 ` rl; 1	 ` Il.

Consequently, we have

,1	 1 -1 211 1 : 1 0 -} '21 (1 2 ) t 2 -} ... .

(55.25)

(55.26)

(55.27)

If we take into consideration (55.20), (55.25), (55.27)9

we obtain

rl / ► 1 rll ►
1)
	

(55.28)

.1 •	 rt^i	 ^1

	

Ohl 	1

With the designations

q	 `'	 1/2t;2	 It — 
rl rf 2 	I^	 112 ^ 2	 U2^n

l l./!^	 rl./!	 rl./!rh1!	
-.	

12./!22 %'

II
o3 	 A/	 ^o J e2
12,/ 11.1	 ...,	 ^ _r r1 '	 ^ llr/j r) / ^	 ^Irl.. ll l

t	 00 472
P ' "	 ^_ 	 for c	 11^

., d T0r/,

we have
012 = c(2Aa 1 —GT,) + c 2 I2Aa.— GT2 + (2A+ C)ai +
iul 

+ 4(A—C)dD^ 
dD,— 

1Ti— fPa,T,l,

	

d a r)^	 Jl

()aq = B+ c(2Ca,—RT,)-}- ...
aJ!

(55.29)

/242

(55.30)
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It follows from (55.8), (55.25) and (55-30) that

Jr =.W, + ciC , + ... f 	(55.31)

where

.WO = 2B, .W j = 2 [(2A-2C+B) a,—(Q—K)TI].	 (55.32)

Similarly, we have

wFf.

({1 -W + Y) c [ (2A+B )ai — CTJ +

+ • (2A + B) a t — 0T3 + 3(A— (7) dD, 49 '01 +
di d.-

(55.33)

+ (211 + 3C) a,—K a1 Ti — MT;-4Pa, T,I + • ..

If we set
(55.34)

then we obtain from (55.27), (55.3 1 ), (55.22)1

()2 1,1 	 OA

d- _ oD. + 2(A—C) dDl + dLl ()D-
dz —

11 ---
Oz 

— d1), 0/11—(]`KT, dDI
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In view of (55.33), (55.27), (55.32) it follows from
(55.22) 2 that

— 
(t)

- J 2B

,)292 _ — 2 A+B (r ► I)x 1)11x1 6- Tx —

2 A + 3 C + B 4- 21[

 v

1)1 + 1 ►ilx

2 11	 oz	 r ► ^

o il — 4C -- D ()l) l ^► i► ,	 1 -} 11 r,lli r,T+^ .^

r

7i()1) 1 	 ill ► , 	1[	 2P r)I► 1 	 ^► ^^^1 Z,
( 	 7 -( h	

+
	 J ► '

/243

(55.36)

We introduce the designations
:l

(55-37)
G	 It 0	 _1[	 _ 4P

u l = c ! —c,_—1, a._=2e1 +3e2 +2e4 •-1, a3 =. Gel -4c.:— 7.

The Poisson coefficient v and the Young's modulus E from the linear

theory are connected to A and P by the relations

	

2A + 1;	 2:1 {- r
	

(55.38)

With the designations thus introduced, we have from (55.35)

and (55.36)

^^{, _ — it ]► 1

a^	 O

r,'? 	 1	 (^ 1►1	 r, U	 1	

(55.39)
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,la ?g.^	 Jlia	 (J71^	 r ► l^, ,1/i^	 ,l/i^ ,l/j^	 , ,11)	 (55.39)

rla ?s ._ _l CA.,b )

_ I	 ,111 N/I	 J
13 flip 

,J	 (	 I (s1) 7'1r
,	 ,^ ►^,^.. I ;,^/^	 (55.40)

relations which correspond to the classical theory and to the 	 /244

seco'..d order approximation, respectively.

The coefficients Ca from (55.9) have the form

rlll	 , ► I ► 	 ( 55.41)

where

	

d(',	 ^^^ — 
for, ^ 

	 for
(^  

a

It follows from (55.18) and (55.19) that

	

a'- . - '.rt } ... ,	 (55.42)

	

1 .1 1 ► ,	 1	 d 1 h	 d1i,
1 'hs — e 

oz,	 oz



we obtain from (55.9) and (55.41)

(55.43)

where

	

aT1	 _ • ► T,

q,.,, :: .^ ►; 	 ; (•^k,	 1^:^1 	 ,^:) ,^^^ i	 (55.44)
dZ

' '_11.71

q1"	
dZ

t
o	 it 1 P , f) T,

Equation (55.11) implies	 /245

	

0111 Ila = o, 7;:, Ila = o.	 (55.45)

Let us assume that the plane domain under consideration, F.

is simply connected and the mechanical loads 	 are zero. For this

case it was shown (Paragraph 49b) that, in the linear theory, no

tensic,ns t a s appear, and the displacements are given by (49.23).

We will study now what takes place in the secuno,. cider approximation.

We obtain from (55.44) and (55.45)

() 2 71d 7 1 ,	 aT, a T,	 a T, a r), + 01)1)1

(55.46)

	

, ► T,, oD	 alp { , 1 j  	 aT + a an a T l(oDI	 l	 1
}o	 r► 	 a^	 o-

	 ['o

	

 ,:.  d	 a^	 v: a. aZ ^ ^ 
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It follows from (55.46) that

	

T,	 (55.P7)
where F 1 (z) - dF/dz.

We introduce the functions u 0 by
a

	

(I - 2 v) P	 (55.48)

0where D 0 
a u 1 + iu 0

2	
We have from (55.39) and (55.48)

to 2
	 11 1) 	 IP ?l	 (41	 (55.4S','

o	 , tozo -1to:'! 	 2 (1	 2v)

We designate

'I 'll	 T 2--- = 01 1', ^ c 9 7 1(11 1 j-	 T12 = eV 2 	 0V	 (55-50)

Obviously T 
11W-1 

T 12 
).1 D 0 satisfy the equations of the linear

(1 
theory cf elasticity in the absence of mechanical loads. 	 We
have, therefore, T 11	 T12 IM 0 and D 0

 to 0, up te a rigid displacement.(1)	 (1) 
Consequently, we obtain from (55.48)

	

M	 fi t (I -2v) P (-,).	 (55-51)

In view of (55. 4 7) and (55-51), equation (55.46) 2 becomes

yr"

(55-52)

where	 4 6

	

4k y	 41- 2 +	 (4 k + k3)-

(55-53)
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It follows from (55.52) that

T- (M+ i) = YF' (.-) F' (=)+o'(-)+ ii'	 (55-54)

If we keep in mind (55.51) and ( 55.5 4 ) we obtain from (55.40)

	

OD. dL^	 1
— 2v) ( .	 o;

2v) + P, + 2b] P, (=?^""(^) —

(55.55)

r

x'

where

6 = Pi (1- 2V)2 a_-}-P, (1 —'.'v) (Px+Po) f-P3•
(55.56)

We introduce the function D2 (z,z) by

^^- (-, 
y) - 

n'(^, 
^) + h, ^,(^) ^;,(^)	 ^` 

o(z) 
+ h^ C (^,,,(z)): d--,	 (55-57)

in which we designated

^^	 1— 2v	
1 _2v) t -. P. ! •̂ t^^,	 (55-58)_-	 [PI

ha = P, (1--2v), h 3 = h (I —2v),
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It follows from (55.55) that

TI

 
ai

_
	 r!

The first relation implies

A,F(i)	 + 4( 1 — v) a (z).

i

We obtain from (55.60)

i	 0 D2	 8D!r	 t?l1= — 21t, F"(x)^'(z) f-Y

(55.59)

/24

(55.60)

(55.61)

+ 4 (1—v) [S2'(^) +il' 0)1-

In view of (55.61), a second relation from (55.59) becomes
+ s1'(=) — —It'

^1.vS	 °(L — v)

so that we can write

^s(=^ =)	 Cl (^) + zit (:) -} w(') + w(s) —

Ih-- v) F'(z) P (a).

(55.62)

(55.63)

We derive from (55.60) and (55.63)

(3-4 v) S2(:) — :fl'(Y) — w'(-)

(t — '?.v) It t F'(^) I^''(z).
s(t — v)

(55.64)

If we designate



/Pu ( V, w) _ (3—•4v) f2 (^) -- :A'(i) — ^+'(^1,
155.65)

then we have from (55.57), (55.63) 9 (55.64)

^^; (., ^> — h3 (z, ^) + - -(
	 ^)I	 F'(.-) F' (z ) •{-
	 (55.66)

•-- !-- F(z) F (z).
2(1 — v)

	These results indicate that in the case under consideration, 	 /248

the temperature causes tensions T^2 ) , T 1' . Determination
of the tensions and of the displacements is reduced to the problem

(well known from the theory of elaoticity, see, for example, Mushelisvili

[2961) of the determination of the functions	 Q W , w(z), which
are holomorphic in the domain E and which, at the boundary L of

this domain, satisfy the condition

r

(1k) } r,II' (r) {- W ) ) = — 
h'	 - P(Y) F' (r,), r1 E rr

2(l — v) (55.67)

which expresses the fact that the tensions on L are zero.

Application. Let us consider the case when E is the inside of

a circle with a radius R and the temperature TI varies linearly with

x 1 We assume that the origin of the axis of coordinates is in the

center of the circle. In this case we have

7', = ax,, F, (z) = 1 a.:.	 (55.68)
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We obtain from ( 55.67)

rf2	 r' r 1	 r	 -
h a'̂  1? 2 ^!l	 e L(,) + TA l YI)	 t.1	
iu(i--V) ,
	 p	

(55.69)

keeping in mind that nn . R2.

If we take

z, co ( = 0,
2(1 v)	 (55.70)

then the condition (55.69) is satisfied.

It follows from (55.65), (55.66), (55.70)

h a x R^	 1 1x.x-=^ —	 j ., - 1,	 ( 55.71)

and consequently, using (55.21), (55.33), (55.3 4 ) we derive

h Jr axz.'` 
T,1 2 	

h, '
WOOR" 

(
1
	3 .1

The results presented here have been derived by Iesan [192]. In

the case of incompressible media, the study of plane thermoelastic

deformation was made by Chaudry 1537.

56. Special Problems

Various inverse problems which describe the deformation of the
medium have been studied in the theory of nonlinear elasticity,

determining the corresponding charges which keep the body in

equilibrium ([3497, [102], [1411). Moreover, the problem of finding /249

all of the deformations which satisfy the equations of equilibrium,

in the absence of mass forces, regardless of the elastic medium
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under consideration, has been posed. Frickeen [102] has shown that

for elastic homogeneous isotropic and incompressible media, there

are at least five families of deformation with this property. For

elastic compressible media, the only deformations of this type Pre

the homogeneous ones [1033. These typesof solutions of the equations

of nonlinear elasticity were obtained earlier by Rivlin t3491. In
these problems the determination of the charges is reduced to the

determination of the tensions at the boundaries; the

states of deformation may be "controlled" only by boundary conditions

(an important fact for experimental studies [1413). The solutions of

these problems are called universal solutions [422] or controllable

states [3697.

In the theory of thermoelasticity, the problem of controllable

states was studied by Petroski and Carlson [338], [339], Hayes,

Laws and Osborn [1691, Laws [252]. It was established that for

compressible media, there are no essential controllable states

(but only the trivial case in which the deformation is homogeneous

and the temperature is constant). It was also shown that in the case

of incompressible media, there might be essential controllable states

and such states have been determined (Petroski and Carlson 13381,

(3391, Laws [252]). For illustration we will present some problems

of the above-mentioned type.

Let us consider the theory of thermoelastic equilibrium

for homogeneous and isotropic and incompressible media, assuming that

mass forces and heat sources are absent. In this case, the

equations (24.40) and (24.68) become

( 56.1)

Q' lit = o.	 (56.2)

The constitutive equations are

_„ = n ai ' +(D9„ + 
T BIJ,	 (56.3)
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P'
rrc

9' = (C1 ai j- Ca Yi F- C3 YA Yi ) T II'+
(56.4)

where we used the designations from Paragraph 24. In (56.3), p

is an unknown function.	 The condition of incompressibility, I, 0 1,

is added to the equations under consideration.	 In this case,

the function a depends on T,I 1 and I 2 and the function Cr depends

on the invariants 1„ 1 2 , '1 4' = TII' T II. , 1® — TII' T II, ^i, I' — Tp' TII, 7: Yi

and on the temperature T.

In the first two problems, in which we will prescribe the

deformation and temperature, we are considering the class of materials

for which we have [3391

= i ( T, 111 12)+ C. = C. ( 11, 12, 14', 1e, Te)•
	 (56.6)

If the functions C s depends on the temperature, then it
'I a.

	

	 can be shown [3381 that in this case all controllable states have

a constant temperature. In other problems we will prescribe the

deformation and the heat flux [252].

(a).. Let us consider the thermomechanical state defined

by the relation
_ C _ D

V `1 -1 ^	 V It ^ :,

D	 r_	 (56.6)V.t 	 0 X	 (sic)

•! •3 = VA R -1'31

7' = To ^ 7'1 -1'31

where A,B,C,D,T C ,Tl are constants which satisfy

C. + ly- _ 1, A, is > 0.

(56.7)

/250



If we take e  a X i , then we have

all' I
, (122 

= 1 t (1 29	 A ft, y1) — alit
A	 It

G II	 A, (J 22 = It, 632 = 
- R ' 

(if ) all ^ 01 0 f A (1 — 11

A
-}	 -}- Ali, l.., — A	 k	

Alt

f, = T;, Is (Alt-1) Ti, 16 _ ; (Ali — 1) = T;,

fill = 1 } A B, 1322 — 1 ..+ A B, k' a = 1 + 	 0 0 #
^f	 A	 A R

(56.8)

and therefore Q does not depend on X 1 and X2 , and C s are constant.

It follows from (56.1). (56.3), (56.8), (24.72) that the

function p is independent of X 1 and X 2 . Moreover, we have

P = — /► o — 2:1 
li (al,	 A R al.)'

	

(56.9)

where p o is an arbitrary constant. In view of the relations (56.3),
(56.6) and (56.9) we can easily obtair the components of the tension

tensor. These are functions independent of X 1 and X 2 . It may be
noted that

{j

0, (, 0 j ) .	 (56. 1o
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It follows from (56.4) and (56.8) that

9'x9'!0,

9' ^C► 4- C=(AB-1) +.0 3 (AB _ 1): Ti.
(56.11)

r	 J

Obviously, the equations (56.2) are similarly satisfied.

Consequently, for any medium of the class under consideration,

the deformation (56.6) satisfies the equations of equilibrium and

the equation of energy in the absence of mass forces and heat sources.

For a given body, the corresponding boundary loads can easily be

determined.

(S) Let is assume that

(01 , 0 2, 03 ) = ( r, p, =),	 (56.12)

where r, m, z are cylindric coordinates in the deformed body

,r, m r com q,	 = r Kin 9, a, _	 (56 -13 )

Let p, 8 9 Z be cylindrical coordinates in the nondeformed body

.1', = pces0,X 2 = pAin0, X,= Z. 	(56.14)

Let us consider the thermomechanical state defined by the

relations

r= -P, '? =0, w=aZ,

T= To + T, 0 + 	 (56.15)

where a > 0, T0 , T 1 are constants.

r^
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If, in the nondeformed state, the domain occupied by the body

is limited by the surfaces -V, — ± h , & — 0 9 a — at p =- p19 p ' p,
where h, a t p l and p2 are constants, then the thermomechanical state

56 .15) describes the deformation of the body under • consideration

which, in the deformed configuration, occupies the domain limited by

the surfaces = f ah, a 0, 9 — a / r, A-p,/yap r=

the plane ® • 0 is at the temperature T 0 , and the plane Q • a	 is

at the temperature T O + *Tie

The mechanical deformation described by (56.15) is a part'!,.;;",
case of the class of deformations studied in [141].

It follows from (56.13) -- (56.15), (24.7), (24.8)that

011 = 011 = (i 33 M 0'i = 1, Osm — r:^ (;V2
 = s r

I r

a .	 01, = 0 (i f j),

9u	 X , 9211 -= X rY, 93, == s , 9 = r`,

9" 	
L

a , 
9er 

= 

1

arse' 
9 3 ' = X2, g1..— go, =0, ( i f A

and therefore, the Invariants of the deformation (24.22) are

a-,l: =_° -}-, 13=1.

(56.16)

/252

(56.17)

Keeping in mind the relations

T11 1 = T11 3 =11, 71112= 1" T1,Xr. (56.18)

Yi = 1 ( t -- x), Y! = 2
X 0 — X), Ya = 1 P., — 1 ), Y, = 0 (i

2a	 ^	 ..

we derive
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(56.23)

1^

J,s I,	 TZ

ar= 1,	
2).a r$

(1

(56.19)
9?' r

Consequently, the free energy does not depend n r and z, and

the functions Cs do not depend on m and z.

it (,'lows from (24.72), (56.16), (56.17)that

Is11	
1 + X 3 ' 

I1 22 _ l fit- X3

(56.20)

1s33=21, Is'^^0(i'9),

and therefore the components of the tension tensor are expressed as

(56.21)
1 	 a

r2	 ),r2 	 r-'

-33 _ p - I- ),2 (p + 2).r,

0.

The Christoffel symbols rir different from zero are

1

so that the equations of equilibrium (56.1) take the form
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()-.11	 -11	 a_^.._'LL'	 :Y
- ^-	

-33-_0 1	 -=0,-'--=0.	 (56.22)
—Jr	

--- r

	 coo	 o-

It can easily be seen that these equations are satisfied if,

and only if, the function p has the fora



where p o is an arbitrary constant.

It follows from (56.21) and (56.23) that

Tll = r2 ..22 = — ISO,
(56.24)

1 )	 ,3

	

33	 po

	

' 1 3	 31

If we keep in mind (56.18) and (56.4) it follows that

q 1 _ q 3 =-

	

q2 = 	 C,+	 ^^—a^ r,.^ 	i,^i— )ycd 7',.	 (56.25)

It )nsues from (24 .59), (24.60) that, in this case, we

can tvri v, Q  = q  , Qi I i = qi II i . It can easily be noted that

the equation (56.2) is identically satisfied.

In the case of the previously considered domain, the thermal

flux on the boundary portions at the surfaces r = r i , r = r2,

z = t h is zero. The other charges which act at the boundary may

also be calculated easily.

The equations (56.4) may be written in the form 	 (Truesdell and

Noll [4211)

Yi + Its Y4 YN 9
I

,	 ! 6.26)

where the functions B  depend on I1 , I21 J 4	 g i gi' J5	 gigjyi'

J6 = g igj yi Yi and on the temperature T. The problem of the

controllable states may be posed, also, in the following way:
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the functions of deformation and the components of the thermal flux

for which the functions p and T existshould be determined so that

equations (56.1) and (56.2) aresatisfied regardless of

the functions o and B i . The controllable states with prescribed heat

flux in the	 case of homogeneous isotropic and incompressible media,

were studied by Laws [252]. We will present two controllable

states for media in which the functions A i depend on I i , I20 J49 J59

J 6 , T.

(y) Let us consider the thermoelastic deformation defined by

1W

i
/n^	 /^, ^ 0,qr ^ _ R, q,; - q

11

	 r
(56.27)

where qr , Y q  are physical components of the vector g, 	 /254

and A,B,C,D,E,F,G,H,K are constants which satisfy the

.relation

A(VP — DE) = I.

(56.28)

In this case we will select curved coordinates as in

(56.12). The metric tensors of the deformed body G ii and Gii are

given by (56.16). It follows from (56.27) and (56.28) that

14	
= A z F- E z 	 D^ Cx

9u = .1 , + 9zz -	 l	 -6	 ), 933 -	 (	 f	 ),

912 — 913 -- 0 ; 923 = —A-(FD + EC), 9 — rz,	 (56.29)

911 =	 , 9zY = D" + C-, 9 33 	 ^'-F2



and therefore we have

_ +.(Ui.+Ca)ri+ F2 -1- B",
(56.30)

2=Aa re

If we keep in mind (56.16) and (56.29), we can derive from

(24.30) for the nonzero components of the tensor y^ the expressions

= ^ i r, — 1
1 r YY = ^ [(^^`-^-Ce)r:-1 1r YsYi r	 r

r= Y2 = Y' _ r''-(PD {- BC).	
(56-315

r

In view of the fact that in this case q' = q l	 qr'
q 2 	q2 = q 3 = q 3 = 0, we obtain

J , -^ _^ J6 c 4r = r1 -t - t ^, •J6 - - -	 - 1
=	 4rt r'

(56.32)

Similarly, in view of (24.90) and (56.27), it follows that the

equation (56.2) is satisfied. We derive fron (56.26), (56.27),

(56.31)

— 1	 K0Z'_^^ ^ 1 (A2--111;:-} (:t 	 1 al r,(56.33)
Or 	 /	 ll	 J	 l

a ll, OT

a^ a^

Consequently the function T does not depend on the variables 	 1255

0 and z. It is noted that in this case, the func`ions B s depend

only on T and r. The temperature T is determined from the equation

(56.33) 1 . Obviously, if B s does not depend on T. then the situation

is considerably simplified. Let us now determine the tensions

r

373



We obtain from (24.72), (56.16) and (56.29)

Jill = !! .4 2 _ Its 
If 22 _ ! ! ( !i ` f C`') - r`( D`0	 0	

}-C2) - 'F'I) l- 1%C) =,

^- (56-34)
w.	 1;33 = I, (F2 J E2 ) - (h'D + EC)'r 2 - ( hit. ) 1:$ ) 2, B12 _ R13-11.

R=3 = (Fn + EC) [1 1 - F•--E2-r1(D- } C`)h

and therefore, we can write

A2 A	 A2

i

i

Tt2 _ ^ p }- a►(u 2 -)) [I1(D^	 C^) —	 (56-35)
r

- r- ( D2 + C2) - (1,1 1) + CF:)2)1jr,

T 33 = p + J► (F-' + 1: 2 ) + [ 1 1( 1,12 + E2 ) - (FD j- F:(,I)21.2-

-(F' )- E2) - )
 T,

T.2 3 	 (1^'D -} EC) {Ir } [I, - F--F.=-r2(D2 {-C2)l1Y),

Tl2_ T13 == 0.

If we keep the relations (56.30) and (56.33) in mind, it

follows that 0 and 41 depend only on r. In this case the equilibrium

equations have the form of (56.22). Keeping in mind the relations

(56.35), it follow: that these equations are satisfied only if

the function p does not depend on m and z and satisfies tt;e relation
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alp	 1	 12

sir	 r	 +'= J

r;; (!^ lD" }:) — ra ( ()z 1 (7 2 ) — (1''U } I:C)z )'.' —

ir

Consequently, the relations (56.27) characterize a thermo-

mechanical state for which there are functions T and p so that the

equations (56.1) and (56.2) are satisfied regardless of Q and Bs.

(6) Using the design gtions from (56.12) -- (56.14), let us

now consider the deforniatlon defined by

rz=Apz-{- 11,?^ CO, +D!, +6,-=R3 }-P +1l,

/_256

Qr= -1 h, qm= q:=o,	 (56.36)
r

where A,B,C, ... ,K ar^ constants for which the relation (56.28)

takes place.

The tensors of the matrix Gii and G ij are given by (56.16).

We derive, from (56.14), (56.36) and (56.28)

r'l
9u = :	 9zz=Az(b,zP"+Ez), 933="" (D'=Pz.4 Cz),

:1' p-

912 = 913 =c , 923= A z (DP p'-+k:C), 9=0,
►► — ^i'= p z ' ^.,	 1 (

ll" P z ^ CI), 91 -- 1 ( F,pl + EI),r,	
P.	

P:

9 V = 913 — p, y23 =  (DF pz + EC).
P`

(56.37)

In this case we have
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I^ _ `l ' A' } 1^ (cYr^ } ^^e) .}- a=r=
r= P.

`t (knp2 4• 2) -}- e1 (U°p 2 + C'), 1 3 - 1+
•4.:P2

r2

lilt _ 46. [ C :r:. }- 
1:,•, 4_ p •. (n:,.:	

r'^)1,
r2

11 22	 1	 + `L 
x 

(D'2 p' + C'),
:1 2 P2	 ,•:

l9

(56.38)

The nonzero components of the tensor

12 2

Y; have the expressions

D21-2} 1--. C^
P2

• 3	 ( I)P P2 j . C).
P2

The equation (56.2) is similarly satisfied. The invariants

1 4 , J5 and J 6 are given by the relations

L	 K2 :1iP2	 •g. A'P-	 ^x

J — - r'-', .Ig	 _(-	 — 11, Js=^^r,2 ^r2 — 1
r-	 -r= t r	 1

From (56.26) we derive

all— 
[B. }
	 1

1 :1 = p2 — 1 
B2 + 

_1 A r p2 _ 11' 
133 1

  I{

,Or 	 r2	 J	 4	 r 2	 J	 r

aT ST

a? — a:

(56.39)
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(56.40)

(56.41)

Consequ—^tly the furictions T and Bs do not depend on the variables
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m and z. The function T is determined from (56.41). For the

tensions we obtain the expressions

Tt1 = A^p2 4) + A2 [CV-1 —E— E2 4- P 2 ( Dire + F2)1 T + p,
r-	 r=

T22=— , ( 1)2 P2 t C2 ) 4D +^ , (D'-p'- + C 2)-}- 1 ^^`[' ^- 1 p ,	 (56.42)
P`	 r-	 A2 p-	 r2

T33 = 112
p2 } E'-)(P^}- 

^A- 
(H'"-P1+E2) }	

2 
1`Y + pr

P 
a 
1

,.23 = 1, ( DID p-'-J- EC) 4P + "t2 (DID' p2 + EC) `Y',
P-	 r2

T13 = a2=0.

If we eliminate the function p. it follows from (56.42) that

A2'-1
r`-. 22 = -11 } r 1.- (ll= p'= 1- C'2) -- p J ^ }I

Ll P:	 r-

	

+
r r2	 `1= 

(l: 2 	 F2p2)1`Y,

	

l p 2 A	 r2 	
J

	

r	
r2µ	 LP	 ^

ss — 1 (DI P " y l:C) (^b	
'^2P2 

yr }^	 T13 — -12 = 0,

P -	 l	 T-	 J

where r depends on p by (56.36). The functions t and T depend only

on the variable r. The equilibrium equations in this case are

i
's

/258
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if

(56.22). It follows from these equations that p is a function

only of r. In view of the fact that 
P 

-r2 T 22 does not depend on

k	 p, the first equation from (56.22) determines the function T11

(or p) in the form

r

where T 11 is the value of T 11 for r = r ot and the function

r T` -
0
 T 11 is given by (56.43)1'

Otner controllable states are presented in [1691, [2523 0 [3397,
[3423.
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