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AlINOTATION

The basic technical theories of anisotropic plates and shells made
of rigld reinforced plastics are reported in the book. Solutions of
numerous technical problems most often encountered in engineering prac-
tice are obtained, with recommendations on efficient design of elastic
reinforced plastic parts. Some sections are entirely devoted to ques-
tions of seiection of the optimum structure of the material.

The results obtained are valid for thin three ply plates and
shells, 1f appropriate substitution 1s made of the rigidity parameters,
which are among the mcst efficlient stress schemes for reinforced plas-
tic structures.

The book is intended for engineering and technical workers who are
engaged in the development of thin walle¢d reinforced plastic structures.
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FOREWORD

Shells of laminated plastics made on a base of continuous fillers
and various synthetic binders are multiply anisotropic, heterogeneous
elastic systems. Some simplifying hypotheses permit study of deformed,
stressed states of a shell to be reduced to study of bending and deforma-
tion of a surface of reduction. 1In this case, the system of stresses
which develop in normal sections of the shell are replaced by a stati-
cally equivalent system of elagstic forces and moments.

It follows from s.ch a reduction that, to within the assumptions
made, a structurally nonuniform laminated shell can be considered a unl-
form shell, i.e., laminated plastics can be considered uniform materials,
which have some reduced properties which are determined by the properties
of the initial components and the mutual location and orientation of the
reinforcing filler.

Skillful use of the abovementioned properties permits the develop-
ment of extremely efficient laminated plastic structures which, in
many cases, are not inferior in efficiency and technlical character-
istics to excellent structures made of traditional materials. The de-
fects inherent in welded metal structures, which significantly reduce
the critical loads or result in premature destruction, are absent in
thin walled laminated structures.

With the appearance of new structural meterials, fiberglass plas-
tics, the field of use of laminated plastics in engineering broadened
substantially, and the technical and economic advantages of thelr use
increased sharply. The development of methods of calculation of thin
walled laminated plastic structures becomes of great practical impor-
tance in this connection. The attention of investigators was first
drawn to these quostions by the founder of the Soviet School of Aniso-
tropic Plates S.G. Lekhnitskiy, the results of many years of study of
which are reported in his monographs [16, 17].

The laminated plastics used in engineering have symmetrlcal elas-
tic properties in the majority of cases, i.e., they are orthotropilc
materials. However, their principal directions of anisotropy may not
coincide with the directions of the coordinate axes and, consequertly,
it becomes necessary to consider the elasticity relationships which
correspond to the general case of anisotropy. For orthotropic materials,
there are reliable methods of determination of the necessary mechanical
characteristics in two principal directions nf anisotropy. Moreoever,
fundamentally new characteristics of the laminated orthotropic material
must be known, which usually do not have to be dealt with in isotropilc
uniform shells, namely: the shearing strength by layer and the trans-
verse separation strength. These new characteristics of laminated plas-
tics are associated with their structural inhomogeneity and the signif-
jcant difference of the elastic and strength properties under various
types of loads.

This book reports an approximate method of accounting for the

effect of interlayer shear on the stressed, deformed state of laminated
anisotropic plates and shells. 1In selection of simplifying hypotheses

i1



for study of thin laminated shells, it was considered that the elas-~

tic properties of existing cements and binders are appreclably less

than the corresponding elastic characteristics of the reinforcing fillers
and, consequently, the interlayer shears which develop in the bending

of laminated shells can sBignificantly distort the pattern of the de-
formed state deszribed by the hypotheses of nondeformable normals ex-
tensively used in the theory of shells, especially when the shell op-
erates under heating conditions.

The results of thorough scudies of thin laminated anisotropic
shells, with interlayer shear and transverse deformation taken into ac-
count, are reported in the monograph of S.A. Ambartsumyan [1]. Since
the corresponding rigidity parameters of a laminated sheet differ sig-
nificantly, allowance for transverse deformation gives an extremely
insign‘ficant correction, and we will disregard its effect.

The proposed approximate method of c2lculation of laminated
shells was used 1in study of three ply plates and shells, and 1t showed
satisfactory correspondence with experimental results. Besides the
usual elastic characteristics of a laminated shell, two new ones appear
Kl and K2, which define the connection of the cross forces to inter-

layer shears of the mean surface and characterize the resistance of
the laminated shell to such shears in two mutually orthogonal directions.
Laminated shell rigidity parameters Kl and K2 are determined experimen-

taliy in transverse bending tests of laminated strips and, consequently,
they somewhat compensate the errors which are tolerated by the initial
hypotheses adopted.

The results obtalned in the work are valld for three ply plates
and shells with a light elastic filler, if appropriate rigidity param-
eters are used. This question 18 presented in detall in the last chap-
ter, where some stability problems characteristic only of three ply
plates and shells with elastic fillers also are discussed.

In distinction from the traditional courses on the theory of
shells, the author attempted to discuss problems connected with effi-
clent design of plates and shells made «f reinforced plastics, sub-
Jected to the effects of the loads most frequently encountered in en-
gineering practice. Chapters 8 and 13 are completely devoted to ques-
tions of selection of the optimum structure of the material of cylin-
Arical shells operating under axisymmetric loads.

Tne present work does not cover many questions raised by modern
engineering practice and the needs of machine building. Problems con-
nected with large displacements of the mean surface of a shell, includ-
ing problems of stabllity are not touched on. Nonlinear elastic and
inelastic de’ormations of laminated shells are not discussed, and ques-
tions of nonlinear oscillations are not covered. There 1is no doubt that
they will be treated in the works of other investigators in the near
future.
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LAMINATED ANTSOTROPIC REINFORCED PLASTIC PLATES AND SHELLS
V.I. Korolev

CHAPTER 1. BASIC EQUATIONS OF TECHNTICAL THEORY OF ANISOTROPIC PLATES
AND SHELLS

1. Initial Hypotheses and Basic Relationships

We will consider laminated shells produced on a base of continuous /7%
flillers and synthetic binders &s uniform anisotropic systems, the elas-
tic constants of which are determined by conventional methods.

We use the rectilinear element hypothesis [14] for description of
the deformed state of the srhkell. ™his is satisfactorilily consistent irith
experimental results for three ply plates with a light elastic filller.

Based on this hypothesis and the assumption that the normal stresses
are independent of interlayer shear for the stresses which arise in nor-
mal sections of a shell, we have the following expressions

0y = ¢y (e +2%0) 4 ¢y L2y f:xﬂ*{c“(m—¢23xﬁ:l
Oy = €4y (&) - 2%7) i Cg 1y + 221 4 €4y (w0 4 22%));
T ey (8 - 3%]) g (g - 2%5) A ey (@0 4 22%7),

(1)

where c1J (4,J=1, 2, 3) are the elastic constants of the material; El’

€, w are the relative elongaticn and shear of the mean surface of the

shell; e’ K e’ K € are the effective changes in curvature and torsion
1 2 3

of the mean surface of the shell.

As in [14], for shearing stresses which act between the layers of
the shell, the following expressions can be obtained

3 (-4 3 @Mt (2)

2 ¥y Ty e

“‘:z
In distinction from thin three ply shells with an elastic filler,

shearing through the layers in a laminate. shell chan-e by a parabolic
relationship and disappear at the bounding surfaces z=+§/2,

We will account for the effect of surface load X, Y on the shear- Lg
ing stresses in the membrane solution, on the assumption as in [1],
that the shearing stresses change linearly through the thickness 53¢ the

¥Numbers 1n the margin indicate pagination in the foreign text.



shell.

We will characterize the shearing stresses between the layers which
corresnond to shearing stresses (2) by the maximum shears which arise
in the mean surface of the shell. Like the stresses, shears through the
thickness of the shell change parabolica..y.

By reducing stress system (1)={2) to the statically equivalent
system of elasti: forces Tl’ Tz, 3 and moments Gl, 02’ H, the follow-

ing elasticity relationships can be obtained for a laminated anisotropic
shell

Ty= Bye,+ Byyey + By o;
Ty Byyey+ Byy ey + By

(3)
S.’..Bls’l"*‘B,,!’ ’*‘ B“m; °
Gl e --Dll %: m— Dl:”: —ZDI.“:;
Gy v —Dyyu; — Doy %g — 2D %5 (%)
l’ 33 —-Du u: — D:a”: - 2033,‘;;
Q= —Kyvii Qp = —Kyy,, (5)

where shell rigidity paramn=ters DiJ’ BiJ’ Kl’ K2 (4, J=1, 2, 3), in

the case of a sufficient?r laige number of layers, are determined through
reduced elastic constanty of the material cij(i’ J=1, 2, 3), 013, 623 and

and shell thickness § by the following expressions

Bij=cyd; Dij = qreigb(ivf =1,23); (6)
Ky = $6u8 Ky 3Gy (7)

where 013, 023 are the moduli of elasticity in interlayer sghearing.

The rigidity parameters of a laminated shell also can be determined

from the simplest experiments, which are described schematically in
Section 8.

By solving expressions (3) for the components of deformation, the
known relationships, which will be needed subsequently, can be obtained
: 1
&=5F (84,7 + 0,375 + ayyS);
ey = -‘6- (a“Tl + a”T’ -+ azaS); ( 8)
1
O = = (81,7, + 33T, + a5,S).




TR

In the general case of anisotropy, elastic constants aij(i' J=1, /9

2, 3) are independent, and they are exoressed through elastic constants
c1J by the expressions

"z."n“";! Coafgy=C1p”
ay, = B e
A ‘ a4
'
", Cr3fas— C1acy
a"::: Ky 2 ’ al! = L A L '
Ce (9)
L vyl )y =
ayy = 1 .gA LI ayy = 1801y A"n‘n :
A =2 €),€04039 + 261415Ce3 — "uc:. -
3 s
= Cu€yy — Casye

The deformed state of a laminated shell is defined by five random
functions: three components of displacement u, v, w in the directions
of coordinate axes Gys Qpy which coincide with the lines of curvature

of the mean surface of the shell, and by the external normals to the
mean surface and by two functions ¢, y which characterize the bending
of the shell without allowance for the effect of interlayer shearing

4 ou v 04, .{,..‘L'_-
&= AT Ta; T WA, Oay G

1 o u 04 W (10)
o g (F:) + Frug (&)
X = Ty
u;:.-};-‘—’“f—ﬁ—j%t{‘;’,;‘j: (11)
2= 4o () + & we ()
{ dw u
““‘P'*'n‘;m‘:“?«ﬁ} (12)
Y==‘P+‘7:;'f%""%

As curvilinear coordinates @y, @, ON che mean surface of the shell,

it is advisable to consider only coordinates which form a rectilinear
regular grid of coordinate lines. Geometrically, this condition 1is re-

duced to t'e requirement that vectors Pyo» To s which are tangent to /10
1 2
coordinate lines Gys Go, not the collinear. For this, it is necessary

analytically that, of the three Jacoblans

g T -



8 (r.y) (v 2) 2 (s, 3)
O(n..u“")" O(G..ﬂ.) d ‘(u.;ﬂ‘) (13)

(whare x, y, z are coordinates in the vector parametric representation
of the surface) at least one be different from zero.

If the coordinate 1lines coincide with the lines of curvature of
the meun surface, the curvilinear coordinate is orthogunal, and we sub-
sequently will use primarily such a coordinate system.

In such a coordinate system, Lame's constants Al’ A2 are du%ermined
by the expressions

=V (3 + () + ()

¥
5y (14)
a=V (55) + (38) + (32)

The equations of continuity of deformation for laminated aniso-
tropic shells are written as in the case of isotropic shells, and they

have the form

QMywg 4 OA%, oA
da, Ay, dag da, !
g @
._1(04”._1 iy M.,)+
da, 1 oay, | dqy !

e — e — Ry — (15)
3 ®©
__1_(0.«!':. ___’_ OA'T _.?A'.g)-*-
Ty \™ oa, A, da, s ?
O (A e\, MW
+ ou,(n. ‘z‘)+ N, Gag 2 0
s O ‘
-&'— ¥e 1 {_2_,_’_ OA.! { o“l 2 04
Rl + )?’ + (‘.l‘. 0“‘ Al dﬂ" - Al 6“' —a—(;l! ! +
s ©
+_:’_._i_(u.e 1 27 a, )}=o
day A, \ ™ oa, A, ~ oa, 9a, '

here €ys €5, w are the components of deformation and shear of the mean /11
surface of the shell determined by expressions (10), and Kys Ky Ko are
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the total changes of curvature and torsion of the mean surface, which
can be determined by the following expressions

e 1 0y vy %4,
=% = A Ta, T A4, oay

1 o ' 0A, .
u,mu:—-z-a-(‘—:-:-——l—ﬁ"h-aa-:-. (16)

=i [ () + 2 A (2]

2. Equations of Equilibrium of lLaminated Shell and Boundary Conditions

If the positive directions of the elastic forces and moments are
selected as indicated in Fig. 1, the equations of equilibrium in the
system of curvilinear orthogonal coordinates selected can be written
in conventional form

a(.;::,r') + o(:a.'s) _Ta%:_l.__*_sgg_; —Aan%:--F
+ 4,4, X =0;
UML), 2GS, TS — A FE MAY =0
6(;;:.74.4_ a(‘;ﬂ‘;'o.) +A,A,(-£:—+-%:~)-— AAZ = O; (17)
Q) | G _ g, %y 2 _ 440, 0
LG LU g S S 44,0, =0

in addition, Tor determination of the normal transverse stress 0, the

following expression can be obtained, which characterizes equilibrium
of the internal and external forces in the normal direction

0; = g [2° (87 + 3022 — 42%) — 27 (8 — 382 + i)l + (18)

4O [3( Ly Ga) o (g )]

where Z+, Zz~ are components of the normal surface load applied to the
upper (z=8/2) and lower (z=-8/2) bounding surfaces of the shell, respec=-
tively.

The boundary conditions for an anisotropic laminated shell, the

detormed state of which is described by the rectilinear element hypoth- /12

eses, differ significantly from the bounaary conditions for shells -thich

rre deformed by the direct normals principle. We subsequently limit our-

selves to cases when the edge of the shell coincides with the coordlnate
lines. In the case of closed shells or shells closed in one directlon,



the boundary conditions are replaced by the corresponding periodicity
conditions, which should ensure well defined movement at any point of
the closed coordinate line.

Fig. 1. Adopted positive directions
of elastic forces and moments.

Variation of the potential energy of a laminated shell 1s ter-
mined by the following expression

OU = [[ (T, 08+ T30ty + S0 — G, 8x] — Gy dx; — 2H by — (19)
—Q8y; — Qady, 4 X du -+ Y v+ Z3w) A A,da,da,.

By substituting relationships (10)=-(12) in Eq. (19), we obtailn

o= [[(ro (2 + i s &) +

+T°(Aax+A;,xr+m)+
+e8[a (%) + 3w (5)]
G )

(e ) - B )

—ms [ () + 2w ()] -
—08(0+ T — ) — 08 (v oy — ) H X (20)
+Yév — pbw} A,A,da,da,.

By partial integration, we obtain /1



QU = [T Adu 1 SA8v — Gyly b — HA 0y — Q, 4, w)3}da, +
4 f1T4A 80 + SA Bu -~ God 0 — HA B¢ — QA Sl day -

+ .’. ﬂ[ o+ M's ~ Ty du' + S M“ - AlAl'?'!"*‘AnAix] du+

DA&
,+[_1m:~ '

[ QA0 g('.(:' + A4y ('%:- + TT,':‘) - A,A,p] bw—

da,

04. — A5 Lot A A | 80—

[ o}‘g(:‘

(21)
208 200 -6, (,,,'+ni’-:-}—A.A.o.]6w-

day

_ [ DAy +- 6.4." —G 004\ +FHS2 6.4' A|A'0‘] 6\‘)} dql du’.

dug

On the strength of the independence of variations of §u, 3dv, 6w,

§¢ and 8Y, the boundary conditions and equilibrium Eq. (17) follow as
a result cf this.

We present the houndary conditions for an edge which 1s bouncded
by the coordinate line al-const. The boundary conditions are decomposed

into boundary conditions for tangential forces and movements and bound-

ary conditions for normal forces, moments, deflection and displacement
functions ¢, V.

The following uniform boundary conditions-can occur for *he tan-
gentlial forces and movements

,.0, $=0; u=0, S=0;
T'=0, v=0;, u=0, v=0, (22)

Correspondingly, for the normal forces, moments, deflection and

displacement functiovns ¢, ¢, the following uniform boundary conditions
(canonical form) can occur

Gi=H=Qi=0 ¢=H=Q,~0;
Gl=—=1{=w=0; q)z;.l{»_;“);'o;

2
Gi=9=0Q,=0; ¢=1v:=0,=0 (23)
G‘—;“p:’_':lvt-lo; (p__;\P;__'u,

In the case of flat plates, conditions (22) and (23) determine /14
the boundary conditions for the two dimensional problem and for bending,
respectively. For shells, boundary conditions (22) and (23) are set,

i.e., when the deformed state of a laminated shell 1s described by the
rectilinear element hypotheses, an extremely great diversity of bound-

ary conditions can occur, namely, 3. different cases of canonical edge
supporting anchors.



Thus, for example:
a. unsupported. edge
Tl-s-Gl
b. rigidly fastened edge

-H-Qlu();

Uusysysdmym(;

¢. edge unsupported in cthe tangential direction and rigidly
fastened in the transverse directinn

T

I-S-w-¢fw-0;

d. an edge rigidly fastened in the tangential direction and
unsupported in the transverse direction

u-v-Gl-H-Ql-O
etc.

There is a diversity cf boundary conditions because, compared with
the undeformable normal hypotheses, the rectilinear element hypotheses
take into account two additional degrees of freedom of movement, which
are characterized by the magnitudes of the interlayer shears in two di-
rections.

3. Laminated Shells of Varlied Orthotropic Structure

As has been noted, laminated shells produced on a continuous filler
base can have diverse structures, depending on the mutual location and
orientation of the filler,

We will assume each unit layer to be uniform and orthotropic, with
elastlic constants El’ E2, G, Vis Vo3 the well known relationship E1v2=
Ezvl occurs here.

1. If the principal axes of anlsotropy coincide with the coordi-
nate axis in production of the shell, the material of the laminated
shell will be crthotroplc, its elastic constants will coincide with the
elastic constaats of the unit layer and basic relationships (3)-(5), /15
which connect the deformed and stressed states of the shell, are sim-
plified and take the form

Ty = By(e, + vy2,);
Ty = By(e, + v&,);

S == Ba m; ( 2“ )
Gy == =D,y (3 + vpy); 25)
Gy = —D, (": + vyl (25
H = —2D,x;;



B e

Q=—Kwi Q= —Ky vy,

(26)

where the rigidity parameters of the shell are determined by the ex-

pressions

=Bb g B8 . p_ e
Bl - "’V|V| ' Bg ‘—V.\" ' B’“ Gb'
Do BB p B
P R2(t—vyw) Y YT 21 —vvy) !
G5

Ds =7

Ky =268 Ky=2Gyuo.

(27)

By solving Eq. (24) for 31,62, @, the following relationships can
be obtained for an orthotropic shell

Fig. 2.

Diagram of
reinforcing of crtho-
tropic plate rein-
forced in directions
not coincident with
the coordinate axes.

where

6 = iz Ty |

! By (1 —wvyvy)

e _Ta—vy Ty |

f2 = By(1—vyvy) *
)

] S e l
)

B;.

(28)

2. If the shell is produced in such a
way that the principal direction of anisotropy
with modulus of elasticity El forms angle ¢

with coordinate axis ay (Fig. 2), the basic re-

lationships which connect the stress and de-
formed states of the shell are defined by general

expressions (3)-(5).

However, since the shell /16

materlal is orthotropic, elastic constants cij

will not be independent, but they will be deter-
mined through four independent, for example,

El’ E2, G, vy by the known expressions

¢y = E cost @+ 2Eysin* cos? ¢ + E,ysint g;
€1 = Eyvy + (B, + Eq — 2E3) sin® gcos? ¢
€pr= E,sind ¢ + 2F,sin? cpfos"'qa + E,cost ¢
e = G+ (E, + E, — 2E;) sin* g cos? q;
€1y = -E,- (E,sin? @ — E, cos® ¢ + Eycos 2¢) sin 2¢;

Cyy = .;-(E'z cos? ¢ — E, sin?¢q — E’; cos 2¢) sin 2,

T E, - Ey
Ei-gmwr B

: E3=2G+ E;v,.

(29)

(30)



Elastic constants 844 (1, J=1, 2, 3) in Eq. (8) also are not inde-
pendent, and they are determined by the formulas

' 1 2v sint
ay, = .E‘l:::._"’_ + (‘&‘ _—E:—) sinfpcostq - -—E.;!-;

¢ { 2 cost
a,,--’-‘-%-‘l +(?——E:L) sindq@costq 4 —L—.-'-"-’-;

g = cos'29 ( 12—"; + -’-{-Xl)sin’Zq)'
-—6-‘-..- u. " 1]
vy 1 1+V| ‘+V| ‘ i ’2 . (31)
an=— [~ (2 + St -7 ) st
= ["2"" _ to'e +._3,-(-('T-25—‘-)c032«p] sin2q;
2 1 - 1}
cost @ sinffgp {/4 2v

3. Still another case of practical
importance can be presented, when the struc-
ture of a laminated plastic ensures that it
has orthotropic elastic properties [14].
With a large number of unit layers which
are cross laid at argles +¢ (Fig. 3), the
laminated plastic can be considered ortho-
tropic.

In this case, the basic relationships
which connect the stressed and deformed states
of the shell are represented by expressions
(24)~-(26). The rigidity parameters of the

shell are determirn~d by Eq. (27), where Ey»
Fig. 3. Diagram of rein-

forcing of orthotropic E2, G, v, are the elastic constants of the

plastic with crossed laminated material.
bilas reinforcing.

If the elastic constants of a unit orthotropic layer of filler
Elo, F2o, GO, vlo are known, the following should be assumed in Eq.

(27)
Ey=c,i Ey=cn G=cy

. L (32)

YV, T e— =
2 1
‘1t !

where Cy3s Cpp» C33s Gy, are determined by relationships (29), i.e.,
they depend on the cross laying angle of the filller.
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CHAPTER 2. CYLINDRICAL BENDING OF RECTANGULAR PLATES

4. General Expressions for Calculation of Bending of Laminated Beams

Some simplest cases of determination of the deformed and stressed /18
states in cylindrical bending of rectancular plates with bending rigid-
ity D and rigidity K with respect tn interlayer shear are discussed in
this chapter. For extremely narrow plates, the Polsson coefficients
in the expressions for D should be considered to equal zero. All the
results obtained below are presented for a strip of unit width.

The coordinate system and symbols adopted in this chapte: are in-
dicated in Fig. 4., It 18 assumed that one of the principal directions
of elasticity coincides with the x axis. The basic elasticity relation-
ships in sccordance with Eq. (24)=(26) have the form

G=-D¢'; Q=—K(p+w). (33)

v From Eq. (33) and the equilibrium
TYRIRIRRRRRIRERRRRNRY equations
. o . pp—

e

Q'=-p; G'=Q, (34)

general expressions can be obtained
t 2 for determination of the stressed and
deformed states of rectangular strips

in cylindrical bending. Since system
Fig. 4. Coordinate system and of Eq. (33), (34) 1is equivalent to one

basic symbols. fourth order differential equation four
random integration constants appear in the general solution, which are
determined from the boundary conditions

| g

]
Q=—pz4+C;; G= —-’325—+C,z+c,;

=% T 20 T D
(35)
x C\8 c
we—tmt G (k+T) T

~

General Eq. (35) are valid along the entire length of the strip, /19
and only constants Ci(i=1l, 2, 3, 4) differ in sections which differ by
the nature of the loading or by rigidities D or K. To determine the
new random constants with each such section, the conditions of smooth-

ness and continuity of conjugation

Wr =Wrat; Pr="Past; Gr=0GCnqy; ’Qh=0uu- (36)

are added to the boundary conditions.
11
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%, Bending of Cantilever Strip with Concentrated and Uniformly
istributed Loads

a. Bendin of cantilever by concentrated force applied on unsup-
gorted end (fig. B). AZter determination of constants 5 J=1, 2, 3, 1)
rom the Boundary conditions J

w=0; ¢=0 at x=0
G=0; Q=p at x=g;
from Eq. (35), with p=0, we obtain

G:aP(:-—l), Q P

w=w(z’—alz—— K) (37)
....-—i)—(2'-2).
w The maximum deflection of the /20
L7749 naummmmnll strip at the unsupported end
Ryl
v X
. . . . [EPSSUSTINES S 4
/) pis
7 ) wloss =45 439 39
Fig. 5. Diagram cf bending of Here and subsequently, the sym-
cantilever by force applied to bol for the relative give of the
unsupported end. strip by interlayer shearing is in-
troduced

v =2 (39)
;///! 4 Y=%m"
g/ HHHHHH’HH“H ,
“ Correspondingly, the greatest
Z [ values of the normal and shearing

' stress=s are

Fig. 6. Diagram of bending of o oPl 30 3p

cantilever by uniformly dis- Omax = 5 = —5-; Tmx =g = 5. (40)
tributed load.

b. Bending of cantilever by uniformly distributed load (Fig. 6).
By determining the random constants in a manner similar to the preced-
ing from the boundary conditions

w=0, ¢=0 at x=0;
G“O, Q=0 at x‘ﬂ"

we obtain

12
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Q=p(l—2z) G= —-;-(z—z)-;

@ = £ (z* — 3z + 31); (41)
W = (29— 4128 + B8z — 12y (z— 21) 1Y),

The maximum deflection of the unsupported end of the beam is

'w’mu“-g—‘b‘-(i+4y). (42)

6. Bending of Hinge Supported Strip

We consider several cases of loading of a strip which are most
often encountered in various engineering applications.

a. Pure bending of strip (Fig. 7). Integration constants Ci(i- /21

1, 2, 3, 4) can be determined, for example, from these boundary condi-
tions

w=0 Q@=0 G=M, at z =0

(pao at z:.:-%-;

Q=0, G—Mﬂ
M i
=g (=200 (43)
M,
w--=7m‘-' (z —1).
The maximum deflection of the
w center section of the beam
AN N
. X M,n
| lmax == =575 o (4h)

! ' In pure bending, interlayer
shear 1s absent, and the greatest

‘ normal stresses are constant cver
g%‘gét;{ip Diagram of pure bending the length of the strip.
b. Bending of strip by concen-
Qw , trated force applied in middle sec-
l tion (Fig. 8). Because of symmetry,
X the left half of e strip alone can
be consldered OgxgL/2.
b { i Boundary conditions:
P
Fig. 8. Diagram of bending of at =0 w=0 G=0, Q=;
. hinge supported strip by concen- !
trated force applied in center. at z=5 ¢=0.

13



After determination of random constants CJ (J=1, 2, 3, 4), we
obtair

P, p
Q"-z—. G--—é-'-:
@ = g5 (* — da?); (45)

w = o% (42 — 31 24y 1Y),

The maximum deflection in the center of the strip /22
pp
|w|mn-'4'87)‘(1+12\')- (46)
The greatest shearing stresses are constant in each half of the
beam, and the absolute value 1s
Tm.".:—;i—lb-,-, (u7)
The normal stress in the critical section of the beam
‘ 3Pl
Omax = 553 (MB)
c. Bending of strip under uniformly distributed load (Fig. 9).
After determination of the random constants from the boundary condi-
tions
at z=0 w=0, G=0
at z=5 ¢=0, Q=0
we obtain Q=% —22) =L (-2
¢ = g5 (42 — 6l + I');
. (49)
w= —E5 120 — 202® 4+ P+ A2y (L — ) B,
The maximum deflectlor. of the /2

strip in the center

1 4
bhbtbbbbtgibedttettiiy

|wlmax = g (1 + 48Y). (50)

' Bl The greatest shearing stress be-
tween the layers occurs at the ends of

Fig. 9. Diagram of bending of /- strip

hinge supported strip by uni-

formly distributed load. ,mu:z%%” (51)

14




The normal stresses in the critical section

aer = - (52)

7. Bending of Rigidly Fastened Strip

In the case of rigid fastening of the ends in the simplest cases

of loading, it 1s especially easy to obtain expressions for the elastic
forces and deflection.

a. Bending of strip by concentrated force applied in center (Fig.

10).

The boundary conditions

at x=0 ws=0 ¢=0, Q'§;

P S— z
/

. — at X=x ¢=0.

7

After determination of the random

{ constants, we have
Fig. 10. Diliagram of bending p p
of strip with rigidly fasten- Q=-5; G=—@z-1)
¢d ends by concentrated force. Pz
‘P=——5W—‘)¢ (53)
w = 481) —3lz — 24y 1%).
A, HHHHHHLHHHV//

The maximum deflection in the center

ff724 of the strip
|

|w|mu—- 9,1) (1+48Y) (54)

NN
N

Fig. 11. Diagram of bending

of strip with rigidly fasten-

ed ends by uniform loading. The shearing stresses are constant 4g5
over the length

~8r
T (55)
The normal stresses in the critical section
3Pl (56)

Cmax = 745F ¢

b. Bending of strip by uniformly distributed load (Fig. 1l).

The boundary corditions

15
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at x=0 ws0, ¢=0;

at x-% ¢=0, Q=0.

Accordingly, for the elastic forces and deformations of a sheet,
the following expressions can be obtained

0 --f,-(l—f!z); G = — -{;'03’—-01:+l’);

¢ = -E (228 =3z 1) (57)
e = shs 2t (2 — I+ 2y 2 (L= 2) ).
The maximum deflection in the center
lemcxmﬁg‘-‘ﬂ(l+48\’). (58)

The greatest shearing stresses arise at the ends of the strip

3nl (59)

Yo

The normal stresses in the critical center section of the
strip
uar = L. (60)

8. Experimental Determination ¢f Elastic and Rigidity Parameters of
Orthotropic Laminated Shells

For determination of the complete set of rigidity characteristics /25
of a lamlnated orthotropic material, tensile, torsion, clean and trans-
verse bending tests of rectangular strips cut in the principal direc-
tions of anisotropy are required,

With standard specimens under tension, tensile rigidities Bl, 82,

modull of elasticity El’ E2 and Poisson coefficients Vys Vv, are obtained,
which should satisfy the condition E1V2'E2“1'

Flexural rigidities of the laminated shell D1 D2 are determined
3

by Eq. (27), 4if the reduced flexural and tensile and flexural modulil
of elasticity are the same. Otherwise, flexural rigidities must be
determined in clean bending tests of rectangular specimens according
to the symmetrical two cantillever beam system (Fig. 12).

It evidently is advisable to provide for clean bending tests in

the principal directions of anisotropy in all cases, if only as con-
trol tests, the more so that they are the simplest.

16
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If the deflection of a strip in
(gi} the center section measured under

"0-1 ‘ r»ﬂ-q load is L and the width of the strip
is b, the flexural rigidity is deter-
mined by the formula

’ ’

- { - Palt €

Fig. 12. Diagram of clean bend-

ing test. The torsional ~igidity of a

plate D3. shear modulus G and, con-

p sequently, shear rigidity B, are
‘“——‘*71 3

determined by torsion tests or by
transverse btending tests of rectan-
\ gular or square plates loaded with

’ four equal balanced concentrated
forces applied to the corners of the
plate (Fig. 13).

Torsion tests of specimens cut
Fig. 13. Diagram of torsion in the other principal direction of
tests. anisotropy are cont:ol tests,

As the results obtained above show, the effect of interlayer shear- /26
ing of laminated plates in the deformed and stressed states depsnds on
the relative thickness of the plate, the boundary conditions and the
nature of the load. It 18 evident that, for determinetion of the rigid-
ity parameters of a plate, it 1s more advisable to use transverse bend-
ing tests by systems of hinge supported or rigidly fastened beams.

If, for example, the deflection of a hinge supported strip of width
b, measured in transverse bending tests with loading force P applied in
the center of the span is LY the rigidity of the laminated plate with

respect to shearing between the layers 1s determined by the formula

12DP1

K“‘uﬁﬁ&—pu' (62)

By conducting such tests of strips cut in both nrincipal directions
of anisotropy, we obtain rigidities Kl, KE'

In this manner, the simplest mechanical tests of rectangular strips
cut from a laminated plate completely solve the problems associated with
determination of the elastic and rigidity characteristics of laminated
shells.

If a laminated shell is bent in one or both directions, the fabrica-
tion of flat control samples should be provided for, which are cut under
the same technological conditions and g5 through the same heat treatment
as the shell itself.

17



¥

To obtain control samples, it 1s advisable to provide for tech-
nological margins in the fabrication of an actual structure, which are
then cut into samples for mechanical testing.

18
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CHAPTER 3. AXISYMMETRIC BENDING OF CIRCULAR PLATES WITH CYLINDRICAL
ANISOTROPY

. Egquations of Bending of Circular Plate and General Solution under
Axisymmetric Loading

We consider a circular plate of constant thickness made of a cy-
lindrically orthotropic material (Fig. 14).

It is assumed that the axis of
2 , ) anisotropy passes through the center of
pir) the plate perpendicular to the mean sur-
e face, and that the principal axes of
‘ . >~ elasticity coincide with the axis of
anisotropy, with radial and circular
directions. A load distributed symmet-
rically about the z axis acts on the
b #2a -{ plate normal to the mean surface.

N 2 { S|

In conformance with Eq. (10)-(12),
Fig. l4. Sketch of circular (24), (26), in axisymmetric deformation
plate and basic symbols. of the plate, the basic relationships
which connect the stressed and deformed
states of the plate have the form

T,= B,(u’ +v,-':—-): ’

, 6
T,=B,(%+v‘u'). ( 3)
G,=—D, (‘P' +"a‘%);

o (64)
G.=-—D,(-—'—+v,<p).
Q1= —K,(v' +9). (65)

For determination of radial displacement u, plate deflection w
and deformation function ¢, we have three equations of equilibrium

(66)

(rTl)"-T.=O;
(rG,)’ — G, = ’Qx%}
(r@y) + pr=0.

System of differential equations (66) is decomposed into two
systems relative to u and w, and ¢

u'+-':-'-—-ii,:-u=0; (67)
v, ® Mo G
¥+ == 35 — T r'}
’ pr C: 1 68
Ve TR T (o9
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where C1 is the random integration constant and

Ey
A‘-.E;., (69)

General solutions of Eq. (68) have the form

Q:’*"--J-w-‘i"&-

-Re
——-m_ y +-—,—-———“D 4 C* 4 7™
ot Cyr?

T Ak T (9—53'513 m’-—ﬁ Dy, —
_ — C: M-l pi-h .
-K.-'-lnr ’.+l + A , +Ch

p(34vy)rt (l+v)c‘

Gy = —D, [2(9—1';1). '*'(Ti-:‘)o: + : (70)
+Cah+ ) = Gy (A — v Y]
- (1 +3v) pr? (14 v4) C,

Gy = —Dy [gayai, + e b +

4 Ca(1 + v A 1 Cy (1 ,,_M’)r-au)] .

Integration constants Cl’ 02, C3, C“ are determined from the

boundary conditions at the edges of the plate. In the case of a solid
plate, the boundary condition on the inner profile is replaced by the
condition in the center of the plate with r=0, which 1s reduced to the
requirement of limitation of deflection of the plate or the finite na-
ture of the bending moments, or the cutting force as a function of the
type of load.

~N
rn
\O

General soclutions (70) permit various cases of symmetrical loading
of the plate to be considered with diverse boundary conditions.

10. Bending of Solid Circular Plate by Uniform Load

Let a solid circular plate be bent by normal pressure uniformly
distributed over the upper boundary of the plate (see Fig. 14).

In this case, by virtue of the finite nature of the deflection in

the center of the plate and the absence of rotation of the normal,
Cl 03—0 and, consequently,

b ). ~
G' - ___Dl [.(A‘+vl),’ +C'(l+\'3) rl !J ;

2(0—2%) D,
F(1+3 : A-1]
Gy = —Dy [SEBIEL ¢y (14 av) 1 11)
et C: At .
w"'ak."su»-v)n.”'x+3 A

wzuovw +c7

20
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a. Edge of Plate Hinge Supported

By determining constants 02, Cu from the boundary conditions with

r=a, w=0, Gl-O, we obtain

Ww =

pat (A—3) (A4 44 vy) r\¢
uw-xnu.[(x+ﬁux+u (70 +

+ ot (7)) + 2R (F - 1)]:

S (5~ 4 ()] &

= TE=0D,; ¥ v

6.~ B3 [(5)'~ ()"

oSSR () - B ()

The maximum deflection in the center of the plate is determined
by the expression

_ pas (A4 44 vy) pa* |
1 |max = B(AF3) (A Fvp (A +1) D, + 4K, ' (73)

and, at the edge of the plate (r=a)

o _ PaAR(1—vvy) (74)
Ci=0; Gy= s rvaticar

In the center of the plate, bending moments G1=G2=O if a1, or

they increase indefinitely if A<l, 1.e., the stressed state depends
essentlally on the nature of the anisotropy.

b. Edge of Plate Rigidly Fastened

In this case, we obtain

a‘ _r_ A#l_ 1
W=g0= mo+nmt*”3+4( )

v+ 1)( ZY]) + £ "Z,}',“"

T ;ﬂD ( ( )]‘ (75)
G, = — (3 +vs) pa? (_[_) Atve (_'_)""] .

2(9—2Y) a By, \a .
{
6=~ (2 - R ()T

The greatest deflection in the center of the plate

pa pa?

[l = s OTO5 TR (76)
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The bending moments at the edge of the plate

pal

Gla---z"/:’.‘_;‘) ' G,zv,Gl. (77)

In this case, the stressed state of the plate depends essentlally
8t the nature of the anisotropy. If 12>1,‘the maximum stresses develop

at the edge of the plate. If A2<l, the stresses in the center increase
indefinitely.

Thus, 1f a laminated, cylindrically orthotropic, circular plate
operates under uniform normal pressure, the modulus of elasticity of
the material in the circular direction should be greater than the mod-
ulus of elasticity of the material in the radial direction. It is ad-
visable to use laminated plates which do not satisfy this condition for
the manufacture of circular parts. If, for some reason, a plate should

be made of a material, for which A2=E2/E1<1, the center of the plate

must be reinforced with an absolutely rigld disk, i.e., a disk the
flexural rigidity of which is considerably greater than the flexural
rigidity of the plate.

1l._ Bending of Solid Circular Plate by Concentrated Force

Let a solid circular plate made of a cylindrically orthotropic
laminated plastic be bent by normal concentrated force P applied to the
center of the plate (Fig. 15). 1In this case, p=0, Cl=-P/2w, C3=0 must /31

be set in Eq. (70). We then obtain

P(A+vy) -1,
Gl = Dg [23 ()‘1_1)'0‘ Cl ()'+ v,)r" ] ’

PU+v) r-t1,
Gy=Dy [ty — Gt P

Pr Pinr Cy rl.+i+c‘; (78)

W= An (M—1{) D, + 23K, A+

Pr %
P= =3 —1) D, + 6

a. Edge of Plate r=a Hinge Supported

The stressed, deformed state of the plate 1s determined by the

expressions
P4V [, (r\-17, ]
6= gemyy 1 (£) 7]
G. = P(14v)M\ [1 _d+vidd+avy) (_r_)k—l] .
LT YL} r+vg(1+v) \ i

v~ — = [(5) — e (5)']: (79)
] ] Aot
v =gz, [(5) — wewary (5) -
PlnL
a

+ 2n K,

(h—1) A4-24-vy) ]
(A t+vy (A1)
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’ The deflection in the center of the
plate reverts to infinity. Consequently,

PO B in transmission of the force, distribution
K 44;, AN of the load over a definite area must be
A f—’ easured, or a rigid disk must be incorpo-

-
S~ s

rated in the center of the plate,

- b. Edge of Plate Rigidly Fastened

In this case /32

Fig. 15. Diagram of bend-
ing of circular plate by
force applied to center.

6, £ [1- S ()]
6= gy [~ (5) '] (80)

@ =~ gy [(5) - (5)']

= “””*‘T&+4)u.[(k*‘i>(f)’”
l’ln-‘:—

"‘2<f)l‘k"(k"”J T2XK,

In this case, the load also should be transmitted through a rigid
disk in the center or it should be distributed over a certain area in
the center of the plate.

Relative to stress distribution, the same conclusions are valid
as those made in the preceding section. For the fabrication of circular
plates operating under locally distributed load applied in the center of
the plate, it is advisable to use plates the modulus of elasticity in
the radial direction of which 1s greater than the modulus of elasticity
in the annular direction, i.e., A<1.

It 1s of interest to note that precisely such anisotropy of elastic
properties develops in circular disks strengthened with radial stiffen-
ing ribs. However, radial ribs which converge in the center of the
disk form a rigid hub. For more favorable stress distribution in the
reinforced disks, annular strengthening ribs should be provided.

12. Bending of Circular Plate with Rigid Disk in Center by Uniform
Pressure

We now consider a circular plate made of cylindrically orthotropic
laminated plastic, subjected to uniformly distributed normal precsure.
The inner profile of the plate 1s rigidly fastened to a massive disk /33
located in the center (Fig. 16).

In this case, we have Cl=0’ Q=-pr/2 and, consequently,
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2? POOR QUALITY

(5 -1) _re(5e)
4K, TT8O-MD;,
et [(2) 7] | ()
- A1 + A —1 ;
P - Eﬁ% +C."'+C.r'“;
Gu= =D, [3GEm + Calh+w) P —
— Cy (A —v,) ,.-(Ml)] :

G, := —D, ['%;'_—3;'.)7%’7’ +Co(1 + A"l)","‘ +
+Ca(t —hv)rm 0]

W =

(81)

a. Edge of plate r=a hinge sup-
orted (see Fig. 1b). By satisfying

boundary conditions w=0, G,=0, we obtain

} L] {

Cooe— P2  O—v)o** 434y,

NS YT 20D 0w P Aty

..E:’é}‘:g:\:ss‘:,:.':“'.;‘.“._ C; = P 34wy [ (1 +vy) (82)
olete e 0:0’.’:::’;m. 2(8~—-2%) D, (A—vy) 02). + A4 vy

.. o, OO
.:’;\. 3 where (Q = -'3-) .

CC ]
a

@,
OO OO
Ao,

At edge r=a of the plate, the bend-
ing moments

Fig. 16. Diagram of bending | (83)
of hinge supported circular _ Ao oht8 g
plate with rigid disk in cen- G,=0,6G,=— Pa’;':éi.;;,'v') (H;:-)_o“ 32:':_;_;:}' 2.
ter by uniformly distributed e '
pressure,

At the edge of the plate around the
the inner disk

Gy = — 2 x
1= T T—

(A=v) B=N **—22 B+ v * 3+ (A+3) (A+va)
X 7w
(A—va) @** + L+,
G. = V.Gl.

' (84)

b. Edge of plate r=0 rigidly fastened (Fig. 17).
3-5

Com pa !_Qma .
s = 2(9—A%) D, i—QM ’
pr.;a ‘_Qk—a
Ca“—" - 2(0—2a3) Dy I—Q”' ' (85)

where p=b/a.
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:

At the edge of plate r=a, bend-

/0 c ing monents
: R o pet (h—3)— 200"V (0 13)
v/ 7 T =y 1ot " (86)
e Gy = v,G,
sl

Correspondingly at the edge r=b,
Fig. 17. Diagram of bending of we obtain
circular plate with rigidly fas-
tened rim and disk in center by
uniformly distributed pressure.

- pbt  A+3—2h 34+ (A1) o™t |
Gl = 2 (90— A% ‘_02), ' ’ (87)
G’ - V'Gl.

In both cases considered, the greatest tangential stresses arise
on the outer profile of the plate

+

Tinax = 320 . (88)

13. Bending of Circular Plate by Forces Applied to Rigid Disk in Center

Let a circular plate fastened in an absolutely rigld disk be load-
ed by an axisymmetric system of normal forces applied to the disk. If
the resultant equals P, C1=-P/2n and, consequently, according to Egq.

~N

(70), with =0, the bending moments and deformation are determined by
the following expressions

P(r*—a) n » 1"..'..__ (v’(rkol__a)ul)
4n(p3—14) D, 2a Kk, a A1
C_‘(f‘-,'-—ﬂ'-,') .
S = B

Pr Y -\,
== mwonp, TGN O

P4y A-t
a,:—.D,[-,E,‘_(-{T;{;—’E‘-—C,(Hv,)r + (89)

+ Cy(h =) "V

W =

Ga= Dy [gittid — ot +hv) ! -

(M —1) D,
- Ca(l - }s\'l) r'("’ ”] '
P
Q= =57

a. Rim r=0 hinge supported (Fig. 18),

Pa--1 1+v.+(k—\')01”
Cy=- Y ;
3= AM=1)Dy (A=) g*F + A4V, oo
o PP Adui (vt
. .

T W=Dy vy P Aty
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On the outer profile of the plate, bend-
ing moments

-----

O
.'o:-\."o'-.o.o:c:-:v

.....

‘%...;'....I".

:-:\ﬁ:.'-ﬁo' G. - Pas “—-V;V.) J.(_;._._"Qzl_mlol-..’._“ ( 1)
L] 2n(AS—1) (h—vt)0ﬂ+3+\'o ' 9

Correspondingly, on the protfile of the /36
rigid disk, we obtain
Fig. 18. Diagram of bend-

ing of hinge supported

circular plate with rigid Pl =._._.¥L_Tx
disk in center by forces (1) (A \,Q;+4A::x:;&4) O 1) (0 +v3)
applied to disk. b 1L okl 1L s = =
PP X v e (92)
G’=V.G’-
b. Rim of plate r=a rigidly fastened (Fig. 19). In this case,
the following can be obtained
Pa-=-1) i__olol i
Cﬂm 2“(’“_')0‘ ’_th ]
Ca- por i 1__0’--1 (93)

WD, §_gB

The respective bending moments on the outer and inner profiles of
the plate

— p (L+|)Qzl_219k¢l+1_1.
G,*"'zn(v-u 1=t i Gy=vyGy (94)
P (=P Aty
Gl = 2“(1""” ( )Q ’_03\ M G-. =: Vg GI’ (95)

In hoth of the boundary condition

p cases consldered, the greatest shearing
stresses arise on the inner profile of
;V the plate
3p
A // tm‘=4“56' (96)
o320 —o
92a -l 14,

.,__Bending of Annular Plate by Load
Uniformly Distributed Over inner Profile

Fig. 19. Diagram of bend-

Let an annular plate made of cy-
ing of clrcular plate with lindrically orthotropic laminated plas-
rigidly fastened rim and tic be loaded with load P=27b 17
rigid disk in center by forces i cdiet :g : dw gﬁ 1 Toq unfigrm-
applied to disk. y stributed over e inner pro e

(Fig. 20). With different fastenings /37
of the outer profile of the plate, the
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elastic forces and deformastions are de-

920 —~ termined by general expressions (89).
a. Rim of plate r=a hinge supported.
’ p In this case, It is easy to ogtain
- pla \ P“+V.)l‘ -3 lol)
iﬂ(x"-ﬁva(x'i'"n.‘ (t—¢ )
Fig. 20. Diugram of bending C, = P (44 vq) A+ [ ') (97)

of annular plate with hinge T W=D, (V) U—q

supported outer rim by forces

uniformly distributed over The bending moments on the inner
inner profile. and outer profiles of the plate are de-
termined by the following respective
expressions
G;”O;
— P A (1 —v,vy)
G = 28 (M= 1) (=) (98)
(x+v.’(7~+i)q’“~—23~(l+w)o""-(’v~i)(’-""-)
1—¢?
G, =0;
C.— — P At (1 —v,vy)
P ma-n(-y) (99)
A=) =) P+ 2 1+ v) P =t ) At ve) |
1—¢

b. Iim of plate r=a rigidly fastened (Fig. 21). In this case,
the following can be obtained

Pal-®  A—vg+(1 4V )QMl

Ca= TR D, (h—va)+ (At va) @
Pb’o#’ ‘+\"—'(A+vl’Ql-‘ (100)
C= w0 =ND; h—vet AtV

On the inner profile of plate r=a, the bending moments

P
Gl-"'—'—,—;—('—,—:-’TX
¢ (1) Ot vp) P4 -'u+~->o“'—<>—~.m—n (101)
I~V¢+(A+V,)Q2L
G, =v,G,.

Correspondingly, on the inner profile, we obtain
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A R SR A AP R T IRT:

G‘ b 0;
G =PIy 0= -2kt 1.(102)
VUt h—vy+ O +ve) 03

In both cases considered, the great-
est shearing stresses arise on the inner
profile of the plate

& o
RO R )
Solels e e

2SOSH]
'.'.‘:'.‘.'0

3P
Ty =2 TIr R ( 10 3)

It 1s easy to determine thet 1. is
advisable to make annular plates with a

esmall opening in the center of laminated
plastics, the modulus of elasticity in the
radial direction of which 18 greateir than

Fig. 21. Diagram of bend- the modulus of elasticity in the annular
ing of annular plate with direction.
rigidly fastened outer rim

by forces uniformly ap- 15. Bending of Circular Plates with
plied over inner profile. Annular ber Reinforcing

L8
'

Fig. 22. Cir-
cular plate with
annular fiber
reinforcing.

A characteristic example of the practical use
of circular cylindrically orthotropic laminatecd plates
is circular plates made of synthetic polymers and re-
inforced in the annular direction with a fiver filler,
fiberglass, for example. As has been noted, rein-
forcing of the plate only in the annular direction
permits more efficient anisotropy of properties and,
consequently, a more favorable distribution of stresses
to be produced.

We consider a circular plate reinforced in the /3
annular direction with uniformly placed fibers of cir-
cular cross section (Fig. 22).

If the reinforcing fibers are located at uniform
distance 2 in each layer, the basic relationships
which connect the stressed and deformed states of the
plate can be presented in the form

G —Dy(¢ + v E);
Gy = — Dy (£ + ') (104)
O = — K, (@ +¢).

Flexural rigidities of the plate in the radial and annular direc-

tions Dl’ D2 and Polsson coefficients Vis V
lowing expressions
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D, =D s P
U T T U

Mo, ast—n) Eul _ "
D.;.,.I)Ll-}--——.-,-r—-’i-‘e"] D(l+")o (105)

where EH’ EC are the moduli of elasticity of the fiber reinforcing and

binder; v is the Poisson coefficlent of the binder; ; 1s the cross sec-
tion radius of the reinforcing fiher; 2 1s the distance between the
reinforcing rings.

Such plates have a favorable elastic property anisotropy, since
the following relationship occurs

AoV ) TR, (106)

Thus, for the calculation of laminated circular plates with uni-
form annular reinforcing, all the formulas obtained in the preceding
sections are applicable. In the loading of such plates, both continuous
and with an opening in the center, concentration of stresses and im-
permissible increase in deflection do not occur.

Simultaneous reinforcing of a plate in the annular and radial
directions obviously is inadvisable with respect to stress distribution
and complexity of production.

The basic difference of laminated circular plates reinforced only /40
radially 1s that the anisotropy of thelr elastic properties changes
radially.

16, Bending of Circular Plates with Radial Fiber Reinforcing

We consider a circular annular laminated plate obtained by bond-
ing layers reinforced radially with a fiber filler (Fig. 23).

Evidently, the packing density of the fiber filler satisfles the
relationship

Oﬁns%'p' ’

where t is the cross section radius of the fiber filler.
The aperture angle of the fiber reinforcing a=2n;/b. The baslc

relationships which connect the stressed and deformed state of such a
cylindrically orthotropic plate can be presented in the form

G =—D,(N¢ —DvE;

¢ ’,
Gy =~ D} — Dy’ (107)
O‘=——K'(w'+q>)'
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3
E_ ¢
where D'Igff"57 is the flexural rigidity of the
-V

unreinforced plate; Ec’ v are the modulus of elas-
ticity and Polisson coefficient of the binder; K1

is the rigidity of the laminated plate with respect
to interlayer shearing; EH is the modulus of clas-

ticity of the fiber filler; D, is the radial flex-
ural rigidity of the plate.

1

If the Ec/EH ratio is disregarded compared

with unity, the following expression for rigidity
% can be obtained

Fig. 23. Circular D,=D(1+4). (108)
plate with radial
fiber reinforcing.

where

k-..;z:i.!'_:.!!).%, (109)

2a

By substituting Eq. (107) in plate equilibrium Eq. (66), we obtain
the following system of differential equations, which describe the bend-
ing of the circular plate with radial reinforcing

(r+8¢ +¢ —3 =-—-9,-,‘-5:]

‘-—-—__-—o —— .
w A (110)
pr Cy

The following expressions also can be found for the bending moments
and deformations

G,=-D,{r€-[4(1+v+i;.)_£_“_’t”.).+
+(14v+ £)Im ) 4+ 20 x

r

fnax§

P TONT
+ Sz (5]
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"-'—D{-fr[4“+v)+(t+v)lnL#_
_*|(t’-+'2r+k|]+%§2( ”..v-o-t( R
-b'z( -5t ( )} (111)
'P--,;r[Ar-k-i-rln"“‘ %”',g%('z')“‘

C\k —{)"/r\»
- zb 2 n- (T) !
neJ
’ua&t"-.—..-‘:!- —
u iK; X inr

- 2,‘, [Ar® —kr 4 P — k) In(r -+ k) =rinr) —

.___Ps_l;;_ m‘x‘g)i:('ir?)m"*'%i{. )'(r)nol’* 5.

naad N

Integration constants A, B, C, Cl are determined from the boundary /42
conditions on the inner and outer profiles of the plate.

17. General Relationships and Differential Equations of Asymmetric
Bending of Circular Anisotropic Pilates

Let a circular plate made of laminated
cylindrically orthotropic material be bent
by a transverse load, which is distributed
symmetrically about the polar axis of the
plate x. This is practically the most fre-
quently encountered case of loading.

We place the origin of the r, 8, 2z
cylindrical coordinate system at the pole
of anisotropy, ard we direct the z axis
along the axis of symmetry of elastic prop-
Fig. 24. Acnrepted coor- erties (Fig. 24).
dinate system for circu-
lar plate,. A transverse load distributed symmetri-

cally about the polar axis can be expanded

in the trigonometric series

® (112)
P _-.-"gal’,. (r)cosn @,

The general elasticity relationships are written in the form
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G0 [ (4 55+ 3
G.u-o,(.:..‘“';+_;+\.'%_); (113)
He- (3Lt

R ACERCAR
0.--3.(¢+-‘,_-,‘;.). (114)

In accordance with Eq. (17), with A =1, A,=*r, the plate equilib- /43

rium equations are written in the form

a(rQy) My )
200 1 S0

a(rG,) oH .

awi t(,,m—G.uo,r, (115)
A ’ .

T = T H =0

Since bending of the plate will be symmetrical about the polar
axis, the elastic forces and displacement can be sought in the trigo-

nometric series

® = X @a(r)cosn?;
fnc=()

(116)

=X Pa(r)sinn0;
nas(

W = Zow,, (r)cosn @,
“iﬂ
G, = X G; (r)cosn O,
nax(
G, = XOG: (r)cosn O;
H =X H"(r)sinn 9,
"%o (r)sinn (117)

) = 20(): (r)cosn @,

Q: = X Qr(r)sinn 0.
=0

—-ﬂ
In accordance with Eq. (113), (114), the coefficilents of expansion

of the forces are connected to the coefficients of expansion of displace-
ments ¢n’ wn’ W by the following relationships
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G} (r) = —D, e + 22 (1 Y+ 90) ;]
61() = =Dy [3 ¥at+ 52 +v]

Wy = =2 [ -2 Bl (118)
Q7 (r) = — Ky(ga+w0)i

Qy(r) =— K,(‘Pa - ."lw”),

By substituting Eq. (117) in the equilibrium equations with Eq.
(118) taken into account, we obtain differential equations of asym-
retric bending of circular plates

o S (B ) g

-+ .’.‘.!.‘i’.'_r.";‘.’!.)_ ¥n - .".i‘.‘.’.!:'.‘" ) Yn = kxwm

onpn + 2200 — (22 4 k) o —

ale ’ | (119)
- n(w.’ vi) P — n(«)::- ) qa..=—nk,-"lr"-:
PO A4+ g Y = — R —rw, —

where
Dy 45, D G (1 —w1vs)
oM B TR e l
D _GH=vv) _,. (120)
Dy — Ey ¥
K Ky K _Gn_p
D, = ki -D—l'_k" Ky = G &

If the load is distributed skew symmetrically about the polar axis,
all the relationships are obtained by substitution of cos né by sin n®é
and vice versa, with corresponding changes of signs of n.

In the most general case of asymmetric loading, the solution is
found by summing the asymmetric, symmetric and skew symmetric solu-
tions. 1In conclusion, we note some identity relationships between the
coefficients introdnced above

k
g7 =M Moy =oy (121)
Al +Av) =AM+ v,
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CHAPTER 4., BENDING OF RECTANGULAR PLATES BY NORMAL LOAD

18, Differential Equation of Bending of Anisotropic Rectangular Plates

We consider a rectangular plate macde of laminated anisotropic
material and loaded by forces which are normal to the mean surface of
the plate before deformation.

We select the x, y, 2z rectangular coordinate system as indicated
in Filg. 25.

In accordance with Eq. (4), (5) and
(11), (12),

[ 8
Gx""Dn%g"Dn‘?;"'Du(';}'*'%):

(3
o )
/ G, :‘:"'Dua - Dn '0 Du(o—t'*"a%')i (122)
L~ . 0
7 ur——ol,-,——v..w,,— — Dy (G +35);
ow
Fig. 25. Coordinate system Q,————K,(q;-{-?;-);
and basic symbols. ow (123)
Q=—Ki(v+5)-
By substituting Eq. (122), (123) in the ejuilibrium equatlons
4G
T‘l‘+ % =OIO
00- o
% T =0 (124)
001 + oo '-:',—"pu

we obtain a system of differential equations of bending of rectangular
anisotropic plates

» dw J J
1\,(«)+ duz) Du dxl'*qD '_a“:“"""""Dss‘(Zq—'*‘

13 "9z oy dy?
4‘”“09 +C aﬁy+lkszﬁ' (125)
K’("”*‘W) D“ (:9:“; +C d.zdy + Das 3:(‘; +
l)” - 2Dy owy-} D,,%‘i; (126)
K (G + Zl“:)+ Ky(G +g7) = (127)

Eq. (125 and (126) can be reduced to the following symmetrical
form
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't
Ly(9) = DK, 53 + (2DuK, — D4K,) 3{,':;” +
+ (Duky — CK) 5750 — Dok, - — KK, 22 (128)

Ty ’
Ly($) = DK, 25 4 (2D 3Ky — DyK,) 20 4.
o 0z Oy

+ DuKy — CK\) 33x, — Dik, 35 — KiK, 32, (129)
where
C-:’SD|2+D”. (130)

. .
Li( ) =(DuDs — D},) = +2(DyyDyg + DDy — CI3,y) ey +
+ (D:a + 2DuDsa + Dy Dyy — C‘) ";,:%;T +
4 2(D33Dsy 4- DyyDyy — CD,) '0_,%",7; +

+ (PyDs — D) 555 — (DyK, + DK ) 2 —

— 2 (DK, + Dza’\’l)mf}r"(paf{r}-D”K,)-g:T + K\K,. (131)

By multiplying Eq. (127) by operator L&() and with Eq. (128), /47

(129) taken into account, a differential equation of bending of a lami-
nar anjsotropic rectangular plate can be obtained with interlayer shear-
ing taken into account

] Yy ogr O 8y
(D, Dyy — D:,,} l‘l o -2 (Dan — Dy,D,,) K, afl‘;y +
X [Kx (D:a -+ zf,)."D” -+ DnDn - C’) + Ka (DnDaa - D:a)] x
w »
X gzvagy T 21K (DyaDyg — DyyD,y) +

+ Ko (DyDys — Dy,D )] ";,‘%% +

+ [K, (D}, +2D,,D s + DD, — C*) + K, (D,D,, — D,)] o+
oy
+ 2(DyyD\3 — D,yD,4) K’b_.':%‘;_"_ +
T N

+ (Dy,Dy, ~- D:a) K.'%?’u‘.‘ — R,K’ e

a4 | I

X [Du 5+ 4Dus ;,—,%y— + 2(C + Dy) a_ﬁ_gy_, +
o4 P L

+4D,,,a“;:, + Doy o;: ] =Ly (p). (132)

For brevity, we introduce the following designations

1
P D,0,=D,, du = 201Dy —DygD,y) |
o= — 31 = Py '
D:a'*‘anDn""DnDu_C’ ..
Gy = = guw ;
die = 2(D33Dyy— DyyDyy) v = 2(Dy3Ks+ DgyKy) | (133)
13 = ab3 ’ n - ab '

35



]

-— D

ao‘ = _‘L'!B%——D-'l—; a.‘ = _"'-_SD K'+'-."K-l ;
a” == D“K':-D K i Goo 1“‘K|;

o = K (D“D:’—-D! ).; aye = K (0 ,D,,—D}) ; (133)

oy = 2K, (D“D.!i—-DnD. s Gy = 2K, (D,!D.,,‘-D..Dﬂ .

Gy = (K, (D} + 2DyDys + DDy — c*) +
+ K, (DD — D:.)' ';.1573
0 = 2 Ky (DuDis — DiaDis) -+ Ky (DuDia = DD}
Gy = lK. (D:l + 2DuDu + Dan - C') +

+ K, (DyDy — D)) ¢‘b‘ i

DysKy __ DuKs, Dy

=" hh=—F— 1=}
o = zx,v::‘;;z).,x; { Pom HeDu—Duly .y Ly
gy = DukiCke g Duks—Cly, o, ~2CtDn)
o, = 2l By = 2, v.=i,’-’,;?-; (134)

K. K K.\K D
a, = 10:; Ps = IbI; Y "

Then, in dimensionless coordinates E=x/a; n=y/b, system of dif-
ferential equations of bending of an anisotropic plate (132), (128),
(129) is written in the form

Ly (w) = Li(p); (135)
Li(p) =la o -+ a2 0w M ow
15 “taasonT Uy agan.—arﬁ:"al'o-i‘;
FL
Lo(®) = By 5o + Ba g+ Bs guge — Bo 5o — B ey, (136)

where the following differential operators are written through L¢ 0),
L, ()
y

o a¢ (4
Li( ) =8 555 + 0 gy + %a -5a.—.5;lr+

..
+ %W"'.au oo + a, a:;“l +¢003%:'_
_ o [ 8¢
%o(?x;’gr+vam+’?aw+w3£§+w ::0 )3 (137)
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Lu( ) = 0w g + O ggvgm + O g5vgr -+ O gy +
+%0%—%':§r—ﬁ11%n‘—%1£r+%r (138)

19. General Equations of Bending of Orthotropic Rectangular Plates

If a laminated plate 1s made of an orthotropic material, the
resulting general relationships and differential equations are simpli-
fied when the principal axes of anlsotropy coincide with the coordi-
nate axes, since Dl3-D23=0.

By replacing D,y by 0, D,, by D,, D33 by D3 and D,, by Dv, or /4
D2V1’ for an orthotropic rectangular plate, we obtain

(]
C,=—D.(%+v,%%—); (139)
(24
01=—K1(W+!—2§‘);]
o= —Ka(v+57) (140)

System of differential Eq. (127)=-(129) takes the form

(2]
L(9) = DtKlz‘:"l‘(D!Kl CKl)W leﬁ—;;‘; ‘

o (141)
Li(¥) =D5K37,T+( D,K,— CK, )Z)%%"le"ﬁ;
2 42) 4 K2+ 55) - (o

where Lu() is a differential operator in up to fourth order partial
derivatives

L, ()=D\Dy5 ¥ + (DD, + Dy "C) a:'av +
+D'D’——~—(D Kg'*‘Dst) 3, -
_(D,K|+D,K.) +KK| (143)
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Differential equation of bending of an orthotropic plate (132)
takes the form

D\D,K, 3¢ + D, (D,K, + D,X)) + K, (D} — ") T:.'.':—,r +

+ 1D, (DK, + D,K,) + K, (D} — C") gzvgz- + DDK, 55 —
— KKy [Dy 5% +2(C + D) 5vger + Dy 5| = Fulp). (104)

System of differential equations of bending of an orthotropic plate
(135), (136) is simplified, since D13-D23=0 and, consequently,

G = Gy = O13 == Oy = Gy = Q)3 = Qg = @y =
=P =P¢=1ys=1vy=0. (145)

In dimensionless coordinates g=x/a, n=y/b, the system of equa- /50
tions has the form

X P )
Fud) = B2 + o s, 22 (146)
Fo(w) = Fy(p), (147)

where F6(), Fu() are the following differential operators in partlal
derivatives

a¢ 9% 56
Fo() == aoo’az‘.‘ + ag FRY™ + ag, oaaoano +

L g a° , ¢ o4 , ;Y

+ e~ o (g -+ e 35 + Ve ) (148)
2 - a4 8¢ a4

14()—040—65:;+a22w+a045;‘7—

P 9
— @y T T g7 + gy

(149)
Coefficients a,, Bys vy (1=1, 3, 5) a,y are determined by Eq.

(133), (134); with Dy3=D,;3=0, Dyy=Dy, Dpy=Dy, D33=D3, we have
DD, )
ado""‘%.q"; ao;=£;';n’—;
p.D +D}—C" DL K
Gy =~ At a:o=£3"%i'£“; (150)
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g

Ggy = 'E'_D"'EI"ML; g = K\Ky;
3 DyD

a, = [K,(D,D, + D} — €*) + DDK,| —ir ;

ay = [K,(D,D, + D;— C') + DIDOKI] _.1!5'{';

Qizr..g-!f_'.' pl=£%f-.-. Y1 = D.
’ a '
a K\Dy—CK, , By = KyD, ~CK, , _2(C+D,),
L _—T— 8™ —aib ¢+ Yo="gp
o = Kk . K\Kq D, (151)
=G Bo ==

Yiz’"bT‘-

20. Energy of Deformation of Anisotropic Rectangular Plate

In the majority of cases of solution of specific engineering
problems, an exact solution cannot successfully be obtained. There-
fore, various approximate methods of analysis must be used. In the
theory of shells, variation methods based on the principle of the de-
formation energy minimum are most widespread. If an anisotropic plate
is bent by normal load p, the potential energy of bending i1s determined
by the well known expression

1 . ) e,
U=— :.,—j‘f(G,nl + Gony + 2H %y + Q\y, + Q,y,) drxdy. (152)
By using the Hooke's law relationships, we obtain

U= -;- ff {D"n:‘ + 2D, %{x; + I)“x + 3D jxi%g +
+ 3D,y %% + 4Dy, % + K, ' + K, ! dzdy. (153)

By substituting «

(153) btai s |<Be’ Yys Y, from Eq. (11), (12) in Eq.
y We O ain

e
1 * K2
o=t [on () +an it S 0a(3)

+D.u(i’3’—+" )+ D22 ("_"4--_).;.
D
K(wq-—-)]dd% (154)

In this manner, while a possible deformed state of the plate is
determined by functions ¢, y, w, the actual deformed state differs from
all the kinematically possible states, i.e., those which satisfy the
boundary conditions given, insofar as, for the actually deformed state,
the functional
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abahhal haa

Ainteiat ok

Vet [ [Du(52) +204 ST 5% +Du(5E)' +
+ Du (5L +52) 4-—0..—3’-(-1 +5%) +
V10 (5 ) e (os )

+ Ky(v - ) — 2pw) dedy

(155)

has the minimum value.

The integral is taken over the entire surface of the plate. If
the plate 1s orthotropic and the directions of coordinate uxes x, y
coincide with the principal directions of anisotropy, Eq. (155) is
significantly simplified and takes the form

V=—Lfm-¥)+mh£3%f+m( )+
+D,(-‘§,§;+-"-‘£)'+ K (o+50) +

+ Ky (v +157 )" — 2pw] dzdy. (156)

The simplest alternate version of use of the principle of possible
displacements, which is called the Ritz method, 1s as follows. Desired
functions ¢, ¢y, w are assigned which satisfy the assigned boundary con-
ditions at any values of random parameters CJ(Jsl, 2,. « .,n) and cor=-

respond as well as possible to the physical essence of the problem

Q= ‘P(Z'v I’ C]v an Cav veay Cn);
\p:\{’(z. y; Cl' Cll Caa---vcn);

IR (157)
w w(.‘l.’, 1’8 C‘, C‘, C,, .o ..Cn).

By substituting these values in Eq. (155) for an anlsotropic plate
or in Eq. (156) for an orthotropic plate, after integration over x and
y within limits which correspond to the entire surface of the plate,
we obtain

V=V(Cl, Cos C3" . e Ch)‘ (158)

We select constants Cl’ C2,. . ey Cn in such a way that the energy

of the system has the least value, i.e.,

Ez—éa=...=-éa‘-=o. (159)
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Values of random constants Cl’ C2,. . .Cn result from solution of

the system o0i' n equations, which determine the desired solution of the
problem with the required degree of approximation. 1In the limit, as
n+=, an exact solution can be obtained. The accuracy of the solution
depends on how successfully functions ¢, y, w are selected.

21. Bending of Orthotropic Plate by Concentrated Force

Let a concentrated force applied at the point with coordinates X

Yo act on an orthotropic rectangular plate, the principal axes of ani-)-

tropy of which coincide with the x, y coordinate axes (Fig. 26).

We will assume the sides of the
plate to be supported and satisfy the
following boundary conditions

w-Gl-W-O at x=0, x=a;
w-02-¢-0 at y=0, y=b.

Such boundary conditions satisfy a
possible deformed state, which ‘s de-

Fig. 26. Diagram of bending termined by the expressions

of hinge supported rectangu-
lar plate by concentrated

force. o -
(p="§“§‘ Amn cos 222 sin-"—’é‘i;
33 g,
V= Bmnsin 22 Z cog 20V, .
Mafne| (160)
W= 2 z Cmnsin =22 sin———":” .
M=l nei )

In accordance with Eq. (156), the functional of the elastic energy of

the system
ed W (D s
V._..;.H{D,[EEAM i 222 g 22|
Mol nei

+2D1V.(Z 2 Amu m‘“ Sln m:‘z sin ﬂgy) b 4

Mei nwi
g; )
X(LZBMR n: sin m:’ sin ":")-}-
Mufnmt
oo o 2
N QO Rx n
2[,;-’ ';tijmn Nlll’—T—- In——-g—u—] -f« (161)
co. w] 2
4‘""\""" (Y 1r -’1.-1_"..
P O
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L s Al

o oD s
+ Kl[ 2 E (Amn+cvun m.n )005 m:g-ﬂin ’””‘) -4

b
Mwi nel
o s (161)
+ K, y 2 Bmn + Cnm—r) sin = cu\—“-g—v-) }dzdy..
Mol Rwi
—Pm;‘ §'Cm-\ sin "':”‘ sin "'2”‘ .

Because the integrals of the product of the trigonometric func- /54
tions discussed differ from zero only in the quadratic terms, we have

o0

JB

= %b- —: [ ( Amn + 2D, v ,-1—?-':- AmnBoin +
Mef ne
+D, (S2) ,,.,.+D,(A,,..,-——+B...n 2) +
+ Ky (Amn +:'7"_) + Ky (Bmn + Con 2 )'] =
—-ng" ;2‘:‘ Cmn Sin "':" sin "I""’ . (162)

The minimum of functional (162) is realized under the conditions

Ame [Dy(Z2)'+ D (52) + Ko +

+ Brn(Dy ¥y ++ D) 2 4 Connly 2 = 0

Awn (D, g + Dy) -"—"i’l + Ban [Dy(22) +
+D,( ) + K,] + ConK s 5 = 0; (163)

.—--+(m.[K,(m: y?k

LR 4P mnazy, . NBAYe
+ K, ——).l .—_-:—;b—-Slﬂ a s

maz

Amqu

for my, n=1, 2, 3,. .+ .

By solving system of En. (162), we find /55

— 4P Aym o o maAZTy . MAYa

Amn = % o sin —— sin ——;
. AP A . maxy . ANY

Bun == — —5= 32 sin — = sin—=; (164)
AP Aym . o mRT, . RAYa

Conn = — A Sin ——= sin —p=,

(myn=1,2,3,..)

where
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Bim = KiDy (22 )+ (KD, — KiC) 22 (52) + |
+ KKy
Bym = KDy (52) + (KD — KO (FF) 5 +
+ KKy T
Bom = DDy (22 )" 4 (DD, + Dy — ) (ZE) () +
+ DDy (52)" + (DK, + DK (Z2) +
+ (DK, + D) () + KiK. (165)
Bm = DyDyK, (22 )"+ Dy (DK, + Do)+
+ K, (D ._c](““) )4JD“DKV+DJQ+
+ K (D} —C") (__-) (--) + DD, (52 +

+ KKy [Dy(2)" + 20+ D) (B 2) () +

+ 04 ()]

C = D‘V'+D. ED,V"""DN

for m, n=1, 2, 3,. .

The bending moments and cutting forces are determined by the ex- /56

pressions
o [ m n
G B‘PD.:‘ (A.MT+A'MTV')X
H ab Ly
Mef Nmf

X sin —2%e gip "’;y“ sin

maz,. ARy,
a kl‘ 6 !

o0 O n m
G. o 4P 1D, Sim Ftvidin
= abd

Am X
Mui Ney
X sin —220 oo "’;V‘ sin m:' sin ":":

H - 4,::1)’ 2{1 (Alm '?""'Almbl)

pape Am X (166)
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T THRRSRET e

sy oy

e en MR N HREY

mazy ﬂﬂvb
x sin =22 sin cos — coo-—‘-!

0, = APK: E; “"‘“"" "_')

mn T, AR LX.XJ ARy
L LR _Th Rl ;
X 8in ——sin cos ——sin ——~

P “"‘::'*” x

LEXN ARy maz nay
x sin - sin ) sin cos —— .

(166)

22. Bending of Orthotropic Plate by Uniformly Distributed Load

Let an orthotropic hinge supported rectangular plate with sides
a, b be bent by a uniformly distributed load of intensity p. We select
the coordinate system as indicated in Fig. 26.

We will seek a solution of Eq. (1l46), (147) in the binary trigo-
nometric series

P = o "% Amncosma sinn ay;
Y= m}:l = Bumnsin mag cos n ay; (167)

W = :\.a Zcmsmmniainnnn

We represent load p in the form of the binary trigonometric series

(168)
i lmz_,‘"g Pun sin m xg sin n ay,
where
Prp == “,"m (mn=1,3,5,...). (169)

By substituting Eq. (167), (168) in bending Eq. (146), (147), we
obtain

moa

DS L Amn (74 (a,gm* + azym?n® + dynt) +

Meainey

+ 1% (ay3m® + @44n?) + ay) cosm aE sinn n = (170)
= — 3‘ 2 Comn |72 (@ m® + ay;mn?) +71a, m) X

m-ln-:

Xcosm n§ sinn vy,

by



S‘ B.... [ (aum? 4 agym®n® + agint) +

-::l':;..m P - Gegnt?) +- agl Sin M it cOB R AN =
R - .§| ng Cmn (32 (B3 % + Pam®n) + nPyn)X
xsinm nd cos n nn;
= S S Conlnt (0um + 0mtnt + ayimtnt + seent) +

mer{ 'l-

+ a‘a.,(v,m‘ 4+ yamint 4 yynY)sinmatsinnnn =
-3 2 Pu (4 (aum® + am'n® + aon4) +

Mmei fe|

4- 1% (apyn® + 0yyn’) + Gglsin m at sinn Ay,

According to Eq. (169), coefficients Ann» an, C

zero only at odd values of indices m, n=1, 5, 3,. .

(170)

m differ from
. therefore, we

will not subsequently stipulate thls, and we will understand that

summing is carried out only over the odd indices.

We introduce the following designations

i, n
reo

- (aggn® - aym'n® . agm'n’ + aouni’)
- abag (yym i yamn® - yynt)
= atlagm' -~ azgm’n’ - agn') +
- A% (ag® - apn®) i oo |
9-;“' "aat (01 m’ e "m’) 1 Aggm;
mere nt (yn’ - Pam'n) 4 aAPen

for m, n=1, 3, 5,. . .

In accordance with Eq. (170), we obtain

vmn ,mn
al
Lmn""Pmnm""—,“ Amn wPmn om, byl
v % *o
cm n
B'“'=p"‘";ml'

(171)

(172)

and, consequently, the solution of Eq. (146), (147) has the form

L5

NN
\J
[0 <]



3
t ]
L
3
]

¢-.'-,“1§-‘:S—L——slnm1’cosuan. )
(173

8
3

16p
W - _-5,-2 —:Wsinmagsinnnn.

MimiAem]

The maximum deflection in the center of the plate

min-2
® oo oA didond 2

I [ 1(-—0 4 c',""'
lone = 8 3 3 ' (174)

The bending moments, torques and cutting forces are determined /59
by the following expressions

“,n mn
6pb) \ mEVely :
. M :2 2 ) 1ty sinm ag sinn ay;

mn
it mnc .

. 0 . m, ﬂ
Ganm,;l),zyt AL sinmnisinnan:

cm Fl
Mmef ey

.m,
H - "‘"D H"’ cusm:técosnnn;
S
. (175)
—2,—“ Vf':!._____..z_ cosm at sinn xy;

-m
m,n
mn |
m-l n- vy

(- «©
6 n
(),;!..'1!“'_'_2 2.—.!.———-—;.-—-..8{“";35(;05"1"

The maximum shearing stresses on the edges of the plate (x=0,
x=a and y=0, y=b) arise in the middles of the sides, and they are de-
termined by the expressions

-mn

2% Sy
o220 § 00
mn;""‘

Mefnet

2k S mr e g (176)
T, -l 3 .____.__.___" >3
s max n3Y m."‘ﬁ mn C;" n [
where Com,n. Clm,n. czm n c3m,n are determined bty Eg. (133), (134) and

(171).

A solution in the form of binary trigonometric series is inconven-
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ient for practical use. Therefore, 1t 18 advisable to conslder a solu-
tion presented in single series.

23. Bending of Orthotropic Rectangular Plate with Two Supported Edges
by Uniformly stributed Load

Let the principal axes of anisotropy of the plate be parallel to
the sides. We select the coordinate system as shown in Fig. 27.

We will assume the edges of the
plate x=0, x=a to be supported and to
satisfy the following boundary condi-
tions

w=Gy=y=0.

In this case, solution of plate /60
bending system of differential Eq. (1u46),
(147) can be sought in the form of sin-
gle trigonometric series of the follow-
ing type

Fig. 27. Coordinate system
selected.

¢= "2‘% (M) cos Ayt;

w=§%mmum
" (177)

W= "gl’ Wy (n) sin AL,

where
(An =n ﬂ).

We expand the uniformly distributed load in the trigonometric
series
(178)

pP= “}3’ Ansin AL,
where
An=!’,ffor n=1,3,5,... (179)

By substituting Eq. (177), (178) in bending Eq. (146), (147), we
obtain

\

n_? s [aoc A (An ags + Go3) Pn + (Aaeo +

+ Mn Gz + Boy) Pn) COS A = 23[""""”:"‘ (180)
= An (7‘:“1 + a,) w,.] cosALk:

o

S Lo ¥ = (g ) i (b0 N g+

+aw) vl vt = 3 [pL — (1 +

b7



+ Ba) wa) sin Aek;
-J [ao.w,. — (M85 + Vi Goo) wh' + An (Anayy +

(180)

+ Y3 Goo) Wa — An (AR Geo -+ ¥ 80) w,.] 8in At =

== i n(An Gyg -+ An Gy + Ggg) 8in Ant.

Here and subsequently, summing is carried out only by odd indices /61
(n=1, 3, 5,. . .).

System of Eq. (180) 1is satisfied if, for each n=1l, 3, 5, . .
there 1s a solution of the following system of conventional differential
equations

Bu9n' — (An gy + Gog) @ + (Ah G4g + A 820 + o) P =
= A3t — A (A 0y -+ ay) wp:

8oy Pn" — (An 83 + Gga) Yn + (Anayo + bntize +80) Y =

= Pywn — (ks + Bs) wn; (181)

agaw"" — (A Bau+ Vs 8oo) WhY + An (AR Gy + Y 8go) wr -

- ,":‘ (,": Qg = }'l aoo) Wy = %‘f‘:"(}w'\ (7 + A:; Qg + aoo).

We present system of Eq. (181) in canonical form, doing them cor-
respondingly by coefficients a,,, a,¢ which, according to Eq. (150),

are different from zero

] 2)
‘Pn eﬁ') Pn + e("2) Pn = ﬂn )wn — In Wn
2 .
‘pr'\v—en‘)ipn +¢$:)‘pu = ’(n”wn - A wm

. 8
w¥ — o0l + 0 wo — 0 wa = B (183)

(182)

N
o
N

for n=1, 3, 5, 7,. . ., where

2
e L. hnagh gy 42
"o [ DDy

+ 8D, + K,D]- (184)

"‘ .;" ;'C ;"
¢ o 2ofeotIntatdey e [ T DiDy+ 55 %

"o Qo4 = "DyDy

X (K.D, -+ K\Dy) + KIK:];

[—E—(DD&D —C") +

L8




Eaali At )

SRR A

e A NS

'),-—« ’."ﬂ_‘ [ ’w » 0y .
n - deq = ‘_D’.‘i)"; —.l(hll)' - ZLK'),

Mo (dma,+ @ Y'Y (;‘: )
12 = ( %: ‘):;: l),u,"f‘ = Dy + K,) Ky
3 _ B Kb,
R gt o
;:\ﬂ 4P b A,:‘ i ) )
,(“”7‘; :00 s = DDy [—:i— (A’D‘—_:”C"l) ‘* le' H
o) — ";"u’*'\'a"oox
Sos
bt o (184)
= "DyDyK, {’ZT |DyDsK, + Ko (D\Dy + D) —C")) +
+ DK Ky
o' = M (An 949+ Y3 o) b
n Gon =g DKy
M

X

a?

A.
- {"a_:’ [K,D{Ds + K‘ [DlD‘ “*—‘ D; — C'] +
+2(C+ Dy KKy :
msla) —- ;‘i‘ll')“:l ﬂm-{-\" am) .
4o
DK, M M :
= T‘B‘r*(* s ’*-) =

_4p b M
Qo = An D3D.K, [F D.D; +

"i
+ = (KsD, + K\D;) + K,K.]

for n=1, 3, &, .

After finding the general solution for plate deflection Wp s for
aeformation functlons b Vpos partial solutions of Eq. (182) are taken.

In this manner, the soluticn of system of differential Eq. (182), (183)
1s determined by the roots of tiie characteristic equation

K — ol k4 0 K — w0 (185)

Eq. (185) always has two real roots. The remaining roots are
determined by coei.'icients mn(J (3=1, 2, 3).

We consider the most general case of complex roots, 1l.e., we will
assume that the roots of characteristic Eq. (185) are

+ k. _-L-(s,‘;tr"‘) . (186)
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The general solution of differential Ej. (183) can then be present-
ed in the following form (for brevity, we wlll omit index n of coeffi-
clents Cy, A,y By, kyy 8y, ri)

wn -,--—-—-{ Cychkn 4 Ca®y(n) + Cs Py (n) -+
m

4 Cyshky -+ Cy @y () + Co Py () (187)

where the well known functions of V.Z. Vlasov are designated by
01(71) (1=1, 2, 3, W)

M, (n) = chsycoesry; My(n) = shsycusry;
My(n) = shsasinrn; @ (n) =chsnysinry. (188)

There are the following relationships for these functlons

D =Py —rd; B =s®—rd,; )
B, = s Dy 41y O, =sDy L rdy;
Q’; = (5' -— r') O, — 2rs (g,
@, = (5" — ') D, 4 2rs Dy;
@] = (s' = ) @y — 2rs Dy
O, = (' — ') D, 1 2rsDy;
(S'—-dr)d) r(r' —3s") @,
= s(s'—3r)(p‘_.,-(, — 3s")
(
(

=s(s"=3")D, {r(r—3s

)
s(s" =3V, —r (P — 3«') O

]

&D“ st —6r's"+r —4rs(s'—-r’)®,;

- (s o
Ol = (s —6r's" + ') @, + 4rs (s’ —ro,; (189)
_yy r) |
‘)

(I)l\ 4 4

' —6r'" 4 r) @y —drs(s' — ') Dy
(D’v=(s‘ 6r's’ 4 r ®.+4rs(< ——r)d),

A table of functions ¢

¢2, ¢3, @u [15] is presented in the ap-
pendices.

1,

In the coordinate system selected with a uniformly distributed
load, solution of system of Eq. (182), (183) should be even relative to
¢n’ W and odd relative to wn, i.e., the solution must be sought 1n the

form
Pn(N) = @ + Aschkn 4 A, D, (n) + 4, D5 (n);

Yn(n) = B, sh kn + By @y (M) + By @ (n);

n (190)
wa(n) = — 505 4 Cyehkn + €y @y (m) + €y @y ().
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By substituting Eq. (190) in differential Eq. (182), we obtaln

AgSchkn + Ag[(sb — 08 +r4) Dy (v) —
— 4rs (88 — 1) @, ()] + A, [(s — 6r%® + r4) Dy (n) +
+ 4rs(s® — ) O, (n)] — ek’(Ak* chkn +
+ Agl(s* — r3) D, (n) — 2rs Dy (n)) +
+ Agl(s® — r*)®,(v) + 2rs @, (n)}} +
+ 6P (@o+ Aych b+ Ay Dy () + A3 Dy (n)] =
= fV{chPchk n + Cy [{— ) Oy (n) —
— 25Dy (W)} + Ca 1(8* — 7%) Dy (n) + 218 Dy ()] —
— [P wy + Creh kn+ Cy®y (n) + Cs Py ()
B kS sh kn + By [(8% — 6r%® + ré) Dy (n) —
— 4rs(s* — rY) @y (n)] 4 Byl(s¢ — 6r3s® 4+ r$) @y(n) +
+4rs (& — %) @y (n)] — e {Bik¥ shkm +
+ By |(8* — r?) @y (n) — 2rs D ()] +
+ By [(s* — r?) @y (n) + 2rs O, ()} +
+- 3&2"[51 shk n + By ®y(n) + B, Dy =
= (Ck shky + C,[s(s* —3r) Dy (n) +
4 r (Pt — 383) O ()] + Cs (s (s* — 3r*) Dy () —
—r(r*—35") @y ()] — fa (Ciksh ke n-+
4 C, 18Dy (n) — r ()] + C3[s Dy (n) 4+ 7 Py ().

(191)

Since equality (191) occurs witn any values of n, on the assumption /6"
that ku-en(l)k2+en(2)#0, the following expressions can be obtained for
coefficlents Ay, B, (1=1, 2, 3)

_ ,$\2) Q, . )
=@ G
1ok — 12 k(PRI (192)

== [N, S . S —
Al Cl k‘___e(ni)k'l.{_e("g) ] Bl Cl k._es‘”kg_*‘e(“z'f‘ 1

Ay = ADC, + APCs; By = AYC, + AWCs;
Ay= —APC,+ AVCy;  By= —AYC, +80C,
[ ,(“l)(‘z_,a)_,ﬁ‘z)] {‘4_6,2‘2_*_"__4‘1) (2 —r®) +
[(‘6_6".": +r8) — el (5 —r) +,(“2)12j_‘
+¢(“2)] —-ér’cilg’ [es,”—-‘.! (‘2_'2)] )
+,"2‘: [e(”i)__z(;:__'z)lz '
o [:‘ — 62 4 e (%) +
[(:‘-—Grzs’ +r8) =D (s —r%) +
D] [ 2 (=] [AD () — A2

where AN
n -

AP = 2rs

DT rars [ 2 (@ )2 ‘
M‘s) (s*~3r%) — fﬂ [:‘——6:"’+ b)) (2—=r®)+ (193)

3
A =5

[ orm 4 )~ ) e [E+

51



where coefflcients Ajn

el ot [l =20 )] [AD (-3 + A1)
+‘,‘,‘\ ) 2(. l)lz
2t [ =200~ )] [AD (P —3r") — (9] -
ol D @)+
— [0 (=36 + 1] [ —0rtr el (42— %) o D)
+f("’j +4r08 [ —r (88— %) 2

A("‘) [

Thus,

@ == % lq)o -+' Alnch k"" + A...Q)m(l‘) + ."3'\(1)37;(“)] cos m;
-

n={,3

§ = § (B,nshkan + Byn @gn(n) + Byn @0 ()] sin Ank;

n=tf,3

W = z[— -(-?-(%-) + Cinchkan + anmln('\) +
+ Can Do ()] 8in Ank,

acteristic Eq. (18%).

Correspondingly, the following expressions can be obtalned for the

bending moments and forces

- 52

Gl D 2 [ N’o -+ AmCh kn N+ Aunq)pl ('\) -

+ Aa" m’“(")l - 1;" lknBlnCh knn +

+ Byn @30 (0) + By ;1 (v])]] sin A,k

G,~—D, Z + [knBinchkan + By @3 (n) +

ﬂ-l

+ Ban m‘ﬂ (“ ] - ,q;v‘ (Wo + ¢4|n ch k"'] -*-'

+ Agn @y (1) -+ A Dy (1) sin Aok

o0

’ *
H = —-Ds 2 {T [A‘nanh knﬂ + A'n(blﬂ (n) +

nei

+ Agm ‘I"zn ('1)] + ‘,:;"" [Bynsh kp v 4+ Bya @y (n) +
+ Bsn @4 (‘l)l} cos ’mgi

(193)

(194)

B n (J=1, 2, 3) are expressed through random
constants C n (J=1, 2, 3) by Eq. (192), and kn is a real root of char-

(195?
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0‘ = _K‘ E{lqﬁ.+ Ap.Ch ku‘] + Alﬂ‘pl'\(") +
nw|
+ Agn @y () '*'—,:“[—"—?{3'7 + Cinchkan +
n

+ ConDyn () + Con Dyn (q)} cos Ank;

Qs ==Ky Y (IBinshkan + B ®yu(n) +

+ Bn @n (W) + ';,' [Cinknsh kn N+ ConPin(n) +
+ Con @30 ()]} sin k.

For each number n=}, 3, 5, random constants Cln' C2n are determined /67
from the boundary conditions at the edges of the plate n=+1/2.

In conformance with conditions (22), the boundary conditions for
the edge B=const have the form

unsupported edges
02-H=Q2=0;
rigidly fastened
yrd=w=0; (196)

loosely supported
w=G2=H-0; w=H=Q2=0;

w=¢=02=0; Yy=w=H=0;
w=¢-Q2=0‘
Besides these conditions, there can be different fastening of both
edges, 1.e., any pair combination of the boundary conditions written
above. However, in these cases, the deformed and stressed states of

the plate will not be symmetrical about the x axls and, consequently,
all six random constant remain necessary in sclution of (187}.

24, Case of Different Real Roots of Characteristic Equation

Bicubic Eq. (185), by the known substitution

k= km
can be reduced to canonical form
k3+3pk+2q=0, (197)

where
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ol ol @
308 (i1

p== " (198)

The number of real roots of Eq. (197) depends on the sign of dis-

criminant D-q2+p2

' ] »
ol2) o oDallB (@ @B

D= — + — DY R 11" S S (199)

Consequently, a case of three_different real roots can be visual- /68
ized. Let these roots be El’ Ez. E3. The roots of bicubic Eq. (185)

will then be in the form +k,, +k,, *ik;. We will assume that edK4n
(1=1, 2, 3) are not solutions of uniform Eq. (182), i.e.,

K — kel + e - 0

(i=1,2,3).

The solution of system of differential Eq. (182), (183) can then
be presented in the following form

(M) = ¢+ Aychkyn+ Ajchkyn -+
+ Agcos by + Agshk v - Ayshkyn - Agsinkyy;
Yu(n) = Bechk,n + Bychkyn + Bgcoskyn +
+ Bysh kyn+ B,shk,n + Bysinkyw; (200)
w0, (1) = —:‘fgy 4 Cyehkyn + Cychkyn+

+ Cycos kyn) +- Cysh by n -+Cyshkyn + Cqsin kyn.

In this case, it is easy to obtain a solution for the general case
of asymmetric boundary conditions.

By substituting Eq. (200) in system of Eq. (182), we obtain

Ak ehk, 4+ Ayt chky - Akycoskyn +
+ Ak shk n+ Akyshk y 4 Adkysink,n —

—eh

[Ak bk, n -+ Ak chk,q — AKdcosk,n + (201)
+Agishk - AR shk,n — Akl sink,q] +
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e (o + Aychkyn + Agch kgn + Aycos kyy +
+ A sh k,n+ A shk,n + A sin k,n)]
= f[C Kkl chk, n + C,kich kn — Ckycosk, v +
+ C kel shk, v + C ki shk,y —Ckysink, ] —
-/ [—'%f"" + Cychkyn 4 Cychkyn + Cyconkyn +

+C.shkxn+C.shk.n+C.slnkm]:

Bkyshk, w + Bk shk, n -+ Bk, sink,n -
S BK ehk nt Bkychk n+ Bk cos kyn —
— oV Bk sh k, n - Bk shk, n— Bykysinkyn -
+ Bk chk w + Bkl chk, w — Bk coskyn] +
+ 2 [Byshkyy + Byshkgn - Bysinkyn +
- Bychkyn + Bych kyn -+ Bgcoskyn) =

a2 1Y [C.k:sh kyn+ C,k: sh &, n 4 C,k; sin kyn - (201)
S Chlchky q+ Ckychkyn —
-—-(‘,k:cosk,n] —_ ‘”[Ck shk, v+
+ Cikysh kg — Cyhgsin kg + Cikychbyn +
4 Cykgch kg + Cokgcos ky q]
for n=1, 3, 5. . .
Since Eq. (201) should be satisfied with any values of n, from /6
Eq. (201) we obtain
/(2)9
¢0ﬂ= ':‘:)w:;) ;
/“)k' ls"’)
b Ot (=12
/(”k’ j(’)
AJ»J—-C;»:!A‘—W (/= 1,2);
K2 4 gD
‘4)'¢3 = .—Cj’a“—*-c(”k.-{-. @) (i 03)v
(3),8__ 49 (202)
B = c,.._(_’___’_)_.
K} — 0] e
ki (19K — 14))
8103 = CJ’G j (”k|+'(2) '

B, = ¢, s [+ 13)
/.-0 + ,u),,‘_*,,(z) !

3) ' 4)
By=-—¢C 1—(.,(__"__,(_)_ .
% e 1 oD
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In this manner,

Q= ‘-\:n J'Pon + Ainch kynn + Agnch kg n -

n=t, 3,

+ A,nCOS k‘u" + A.nﬂh k‘u“ + A.uﬂh k'”" -3-

+ Agnsinkgyn) cosdk;
0
\ ='§'|Bln9h kiwnn + Beash kg n +

'{" B’n sin k,n'l + B‘n ch kl" ] + B.ﬂCh k,u L] +

~+ Byncoshsnn) 8in Ant;
N 0
w =: —-:,'(—’T-‘f—C";Chklnﬂ‘*'C'uChk.n“-‘-

Now |

+ Cygn o8 kan ) + Cynsh kyn ) +-
+ Consh kg ) + Con sin kyn ) sin A4E.

(203)

The following corresponding expressions can be obtalned for the

elastic forces and moments
@
G' F- --Dlnz'oln(n) Sin }'HE;
Gy, = —-D,"X‘G.n (m)sindsg; | °
Q‘
H = —D,";,' Hy(n) cos Ang;

O =— Kl"‘tvd‘Oln (n) cos A,

Qs = -K,'g{ Qan (M) sinAng;

3

where e
Gl"(n) ,‘q‘on "*- A‘,,Ch,unl] +

+ ZAJH! n shkmn + Agn €08 ks 1) + Ay sin kan'l] +
3
+ T [ ’imBanh kln U] ‘f‘,,_. "iths nsh "*Jn 1N+

+ KsnB3n €08 Kgn 1) — kgnBgn sin kan']] ;

Gim(n) -- -:7 [ }; (kjnBinch kjnny +
L=
-+ k)'aBua, a+h kin ']) -+ "'SHBSH cos kgn n-—

¥

—KynBensin ky u] — -'l'-';‘—l [%,, <4 i‘(.-l;,. chkjnn +
)-
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+ Ajes, nshkimn) + Agncos kv + Agnsin k,..q] ;
3 .
’lu(") et —:-'- [’E (A)nk}n’h k’n“ + A;.;.nk’nﬂhk,nﬂ) hanat

_ .“3"’\"" Sin k’" " + "‘anﬂﬁ (o4} k’q “] +

LY

']

2
+ [;}';(Biu shkjnn + Bjes,wcbkpnn) —

- Ban sin kl’\ n + B.n cos ksn “] H

Qia(m) = [‘Po- + X(Ajnchk}n‘\ 2 Ajes,nSDkjan + } (205)
jmi

+ A3ncoshyan + Agntinky, 'l] + ?"f‘ ["‘ ‘:(2;) +
n

-+ z (Cinchkjnn - Cjag, nshkiny) +Cancos kg, n 4
Sy

- Con8in kan q] 3

Qzs (n) = E (Binsh kv + Bjos, uchlijnn) +
Je1
4+ Bynsin kan v + Bencos kyan+-

+ '%"' lz (Cinkjnsh kjan + C}ﬂ.nkinCh kinv) —
Jm i

— CSnk.‘\n Si" kan n + ("ﬁﬂka'l cos kSn “]

for n=1, 3, 5, . . .

Coefficients Ajn’ Bjn' (y=1, 2, 3, 4, 5, 6) are determined through /72
random constants C, by expressions (202).

J

For determination of constants CJn (=1, 2, 3, 4, 5, 6), boundary

conditions (196) are used. In this manner, tiere can be 36 different
combinations of possible support fastenings of the edges of the plate
n=+1/2.

If 1t turns out that any of functions eikdn“ is a solution of uni-
form Eq. (182), 1i.e., kjnu'en(l)kjn2+en(2)'o’ the solution corresponding

to the solution wnaclchkjnn¢czshkdnn should be sought in the form
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where
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Tn ('\) d Agkjn‘] sh kh. N A‘k;u d ch kj“ L H
¥n(n) = Bikjanchkinn - 3ksnnshkjnn,

A. foad Cl
A. - C|

B,wcl

,(nl);,}zn_ e

?Jt,,.i 2";”'—0& )) '

) I&"";’n— ,("3)

2K (2kh,—eD) ¢
"}n(’?)k}n",(n‘)) .

B’”Ca

2k, (27, — (D)
ko (%5, — 1)

23, (2k7,—e1)

y

|

(206)

(207)



CHAPTER 5. STABILITY OF ANISCTROPIC RECTANGULAR PLATES

g;. Formulation of Problem of Stability of Plates and General Methods
of Determination of Critical Loads

The advent of high strength materials led to the extensive use of /73
thin walled structures containing thin plates and shells as the basic
elements in industry. Experience in the use of such structures shows
that they, as a rule, turn out to be unsuccessful, not because the
stresses which develop in them exceed permissible limits, but because
of disturbance of the equilibrium of individual thin walled components.

Questiong of the instability of equilibrium arise everywhere where
there are thin walled structures. For thin walled structures made of
laminated plastics, because of the low rigidity of the latter, assurance
of stability is a particularly important problem in designing them.

If a parameter which characterizes the thin walled nature of a
structural element, for example, the ratio of wall thickness to the char-
acteristic plan dimension, 1s designated ¢, questions of stability as-
surance will be significant 1in the event the critical loed 1is deter-

mined by the relationship p-Aeq. where q>1 since, in this case, a reduc-
tion in wall thickness will significantly decrease the critical load,
while stress will increase only in proportion to the decrease in thick-
ness. The critical load 1in such thin walled structures proves to be

one or two orders of magnitude less than the load at which failure of
the material occurs. For plates, g=2 and, consequently, if the bulging
of units which consist of rectangular plates i1s an undesirable structure
according to the operating c-nditions, proper selection of dimensions 113
which ensure structural stability i1s an extremely important problem.
Dimensions can be selected with the availability of calculation for-
mulas or nomograms which define the critical load as a function of
geometric dimensions and elastic constants.

The problem of stability of a flat plate subjected to forces ap=-
plied in the plane of the plate can be formulated in the following man-
ner. It 1s assumed that the magnitude and principle of distribution
of extreme forces remain constant and that parameter y characterizes
the external load. The critical value of parameter y 1s determined at
the time of appearance of other forms of plate equilibrium accompanied
by distortion of its 'nean plane.

The theory of elastic stability has been worked out extremely
thoroughly, and a number of effective methods are available. One method
of determinatior of the critica. load i1s as follows. On the assumption
that, at some value of load parameter y, the development of a distorted
form of plate equilibrium is possible, differential bending equations

are compiled with external forces T1-7T10,7T2= T2°, s-ys°, which are

applied in the mean plane of the plate and give bending component p nor-
mal to the mean plane of the plate, taken into account. The solution
of such an equation, which contains y as a parameter and which satisfles
all boundary conditions, exists only with certain specific values of
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parameter vy, which are called the eigenvalues of the problem.

Each eigenvalue Yy (k= 1, 2, 3,. . .) defines a critical load

which corresponds to a specific form of loss of stability. It is evi-
dent that only a load determined by the smal.est eigenvalue of parameter
Y 1s of practical importance.

Engineering practice usually 1s limited to obtalning approximate
values, for which variation methods, based on general theorems of the
equilidbrium of mechanical systems and according to which the potential

energy of the system has a minimum value in the equilibrium position,
are extensively used

If Uo is the potential energy of a plate in planar equilibrium and
U is the potential energy of the plate in the distorted state of equi-
librium, the critical load is determined from the equation

(208)

l.e., for determination of the cr1t18a1 value of load parameter y, the
work performed by external forces T1 » T2’ S in minor bending of the

plate must be made equal to the potential energy of bending of the
plate.

The solution of specific enpineerinp problems by energy methods /15

looks approximately as follows. Expressions are assigned for func-
tions ¢, ¢ and plate deflection w, which satisfy the boundary condi-
tions of the problem

[ca R <o)

§ = z.\:xinmffmn(z' !/);

m n

W““";\.::anwmn(z. II); (209)
W = a\-::cmnwmn(x' U)-

m n

By substituting these expressions in variation Eq. (208), we ob-
tain an equation of the type

F(A, B, C.y)=§§1U,,(A,B,c)_yvm(c)|=o, (210)

If a finite number of terms is taken in Egq. (209), Eq. (210) 1is
not exactly satisfied. In this case, 1t is evident that the best ap-
proximation 1s obtained upon satisfaction of the conditlons
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oF oF aF
oAy =By =y =0 (211)

1-1. 2. 3. s oy n.

By setting the determinant of uniform linear system (211) equal
to zero, a characteristic ejquation can he obtalined for determination of
the critical value of load parameter y.

Investigation of stsbility can be approached from more general
standpoints of the stability of motiocn. Here, instability or stability
of the planar shape of a plate exposed to forces applied in the mean
plane of the plate should be indicated. Together with this unperturbed
form of equilibrium of the plate, perturbations of the form of motion
similar to it are considered. If the smallest perturbations desired
cause finite deviations from unperturbed equilibrium over time, the
latter are called unstable.

As applied to plates, this method 1s reduced to the following.
A differential 'equat.on of transverse vibrations are compiled, with the
longitudinal forces tuken into account. Further, natural oscillation

frequency @en is determined. It depends on the plate dimensions, elas-

tic constants of the material Cyy and load parameter y. At some values /76

of parameter y, the frequencies may turn out to be zero or imaginary,
and thelr corresponding deflections will increase indefinitely. Such
values of parameter y determine the c¢ritical load.

26. Differential and Variation Equations of Stability of Rectangular

Plates

We consider a rectangular anisotropic plate with sides a, b. We
select a coordinate system such that the x, y axes are along the sides

of the plate. Let the plate be loaded along the edges with forces Tlo,

7,7, 5% in the menn plane of the plate (Fig. 28).
Let bulging of the plate occur at some
po— b , combination of forces Tlo, Tzo, SO. it 1s
r 111} Ilfj, i evident that, with as small a distortlion of the
{4 mean plane of the plate as desired, the equi-
f -1 1librium equationy in addition to the internal
E} ) t: forces 1n the plane of the plate which arise
‘ r’h in bending do not depend on initlal forces
qTTITﬂTmT ;. Tlo, Tzo, SO. More than that, these forces
. }- ’ generally can be disregarded. The equatilons

of equilibrium of the forces ncrmal to the

mean plane of the plate depend essentlally on
Fig. 28. Loacding dia- the initlal forces, since the projections of
gram and conventicnal these forces on the normal to the deformed mean
symbols. plane are on the same order of smallness as the

61



soem o SRRLTET

cutting forces which arise upon bulging.

By projecting forces Tlo. Tzo, S0 on the normal of the mean plane

of the plate after bulging, we obtain

o 8w ¢ Otw

o

i.e., the normal component of initlal forces Tlo, Tzo, S¥ 1s equivalent
to the distributed transverse load determined from Eq. (212). Since,
because of the smallness of the bulge, all relationships obtained in
study of the bending of a plate remain unchanged, the following system
of differential equations can be obtained which descrite the bulging
of rectangular plates.

1. Differential equations of stabilit of anisotropic rectangular /77
plate. For rectangular plates of anisotrop%c structure, the system of
differential equations of stabllity has the following form

0

T g T g1 asv
9) e |l e -y e e J .
Lq(w) r(u" 0§*+ b% on? 75 dgdq)[“(“)_‘o' (213)
o B A 'w e ow |
L.(‘P) =y gEs i uldax‘ o - dq ot oyt —ay 5"'":'1' — Qg "Tg ' !
v N A P ¢
W () = P g + Ba grogs + e gzy — (214)

& e |
1 gt ﬁ". dy °

where differential operators in partial derivatlves L6(), Lu() are
determined from Eq. (137), (138).

2. Differential equations of stability of orthotrogic rectangular
plates. Tn the case of orthotroplc plates, the principal axes of anlso-
tropy of which are parallel to the sides of the plate, differentlal

equations of stability (213), (214) are simplified somewhat and they
take the form

, r° a3 To a3 age @t
Fo(u) -+ (;‘L R + Tzﬁ—ﬁ-‘ - =5 FEm 0'])1'“ {w) = 0
F M XY ou (215)
() — ux;‘?“f‘ ﬂgw——-a.—(ﬁ: ;
N [ LTI F LT du a
FI("”" ﬂxm'rﬁam-—ﬁb-‘,—“-. (L16)

Differential operators in partial derlvatives FG()' FN() are
determined by expressions (148), (149).

Eq. (213)-(216), together with boundary conditions (22), permit
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determination of the critical values of forces Tlo, T2°, So, which are
applied to the edges of the plate in the mean plane. It is particular-
ly easy to obtain results in simple loading. '.e., when the external
forces change in proportion to parameter y -i- e,

It should be noted that, in the practical use of the method of
direct integration of differential equations reported above, great dif-
ficulties arise in a number of cases, which are connected with satisfac-
tion of the boundary conditions. Moreover, as a rule, the character-
istic equations which can be obtained in determination of the critical
load are transcendental, and they do not permit expression of the de-
pendence of the critical load on the geometric dimensions of the plate
in explicit form. Thus, it is highly advisable to have an approximate
method for determination of the critical load. Approximate methods
are based on consideration of the pctential energy of bending of a
plate upon bulging.

In derivation of the variation equation of stability, an expres-
sion must be obtained for the work of the external forzes which 1s ac-
complished in bulging of the mean plane of the plate.

This work 1s ietermined by the expression [17]

i S \3 duw \? N O dw
Mz-Tof'o”T:("’i‘) + 1 (%) + 28 ] e (217)

Based on the general theorems of mechanics, the equllibrium 1s
stable if the potential energy of the system 1s at a minimum. Conse-
quently, the magnitude of the critical load is determined from the con-
dition that the increment of potential energy of bending of the plate
upon bulsing equals tche work of the external forces.

Since the potential energy of bending of the plate is determined
by Eq. (155), (156), we have the followlng variation equations of sta-
bility of anisotropic rectangular plates.

1. Variation equation of stability of anisotropic plate. For a
rectangular plate made of anisotropic laminated plastic, the variation
equation of stability has the following form

v\ 2
'

+—59,,9§§.(%%.+%P)+ %D”%% %’*‘%)*‘1"1 ‘P"r%%) +
abd
+K’(¢+%).}d:dquJ [T:(%—':)’+ T:(%)z+

ow Ow
+ 2852 5 | dzdy.

(218)

2. Variation equation of stability of orthotropic rectangular
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plate. For an orthotropic plate, when the principal axes of aniso-
tropy are parallel to the sides of the plate, Eq. (218) 1s somewhat
simplified, and it takes the form

[ [0.(32) + 200 2 3+ 005 + 0S4 2+
+K.(q>+ 2V 1K (v + ) | dzdy =

’_55[1- 0:.) +T'( )+2Soa‘: :;:]d.tdy (219)

A T )

27. Stability of Orthotropic Rectangular Plate Compressed in One
Principal Direction of Anisotropy

Let a rectangular orthotropic plate be compressed in one principal /7
direction of anisotropy by forces Tl0 uniformly distributed along the

sides x=0, x=a (Fig. 29).

y We obtain a general expression for determina--
tion of the critical load by means of integration
of the differential equation of stability. By

increasing the intensity of load Tlo, such a

state can be reached in which the planar form of
== equilibrium of the plate becomes unstable and
bulging of the plate occurs.

RERER

bhidipe

fo—p—o

Fig. 29. Diagram of

plate compressed in The system of differential equations of
one direction. stabillity has the form
0
Fo(w) = L t,g, Fy(w); (220)
3y oy "
Fl (‘6) == @y l:;;a 4ty dgag,la —q:‘%ﬁ__;
30 .
Fu(¥) = Bi5o + Bs g5 —Ba g (221)

where functionals F6() and Fu() are determined by Eq. (14c) and (149).

a. Stability of plate hinge supported on profile. The solution
of Eq. (220) which satisfies the boundary condltions of hinge support
along the contour

at x=0, x=a w=Gl=w=0;
at y=0, y=b w=02=¢=0,

can be sought in the form
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¢ = Acosm afsinnay;
¥ = Bsinmafcosnnay;
w = Csinm n§sinnny. (222)

By substituting Eq. (222) in system of Eq. (220), {221), we obtain

¢ (agym® +- ayymin® 4 ayminé 4 a, 4n*) +
+ 9 o 1 (Vim® + yymn? L gy nt) =

- —+mtal [ns (3im* + ayym®n? + a, (n) 4 n9 (3om® + Gy gn?) + ay o3 (223)
A nd(a,mt + azm®n® 4 a, nt) 4 a? (agm? - ag4n?) 4
48y 4) = —C laym3a® + agmn® a® 4 aym a;
B (a4 (agm® 4 agym®n? 4 a, 4nt) 4 A2 (agym?® + a4 4n®) +- (224)
-Lagy) = —C {pyn*n3 4 Byminn® -+ Bynn).

In conformance with Eq. (223), the critical load is determined by
the following expression as a function of two integer parameters m, n,
which determine the mode of wave formation

° e at
L/ .
1T X

% n? (a,‘,m“ + agamind 4 agymind -+ a,4nt) + a,, (Y m4 4y m3n? 4 yw‘) ( 225 )
T (aggmd - agam 3+ agn) + ¥ (agomd - ag gn?) + g

We present Ea. (225) in a more convenient form for practical use.
We introduce the following designations

$1(q) = 7* (a0o® + a43q* |- 0549 -+ G o)
22(9) = 00 (V1¢* + V3 + Vo) (226)
3 (g) = 4 (8409% + agaq -+ ayy);
S () = 7% (a9 + ay ),

g=12r: w=u (227
n

where

The critical load is then determined by the simple expression

roo At Wl (@)t ule(e)
H q “"a(ﬂ'f'“C.(‘q)-f-aoo . (228)

From expression (228), we obtain

6Ty _ a%a' (5ile—1als)ut + 2000 §1 U + 00 s
du 9 s W+ T U+ ap)? ’

(229)
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It is easy to note that the sign of the right side of Eq. (229)
i1s determined by the coefficlient

Sile— tals = 714 {(ago030 — Gig0 ¥y) G* + dgqayy — 894800 Ys 1~
+ (243850 + G400y — 045800 Yy — agstiney,) ¢ +
T (834030 + B4gB03 — Qig@o0 Ys — 33800 Y3 — Goylgo ¥1) ¢* +
+ (G0 636 + A5ua0 3 — B3804 Yo — By (B0 0 Vo) 4] (230)

or, according to Eq. (150)

D, DK} .
Sife— Cafy= “‘{ : c:J g+ a?;n [D:K: + (ZD,D. +D: - C‘) K:"

—2CD,K K] * + = (DD, + 2D} — C") (DK} + D,K?}) —

~2(D,D, + D} — C*) CK\K,} ¢* + o5 [DIK? +
' ) D'K? ( 231 )
4+ (2D,D, + D} — C*) KY = 20D, K, Ky g + —2p2ie)
In this manner, over a wide range of change of plate rigldlty
0
oT
parameters —sﬁlzo and, consequently, in bulging of a hinge supported

plate compressed in one principal direction of anisotropy, one half
wave forms transverse to the compression, 1l.e., n=1,

The critical load is determined by the smallest value of the
expression

%), = 28 4@+ ) 232
N T E AT E e (232)

where q=12, 22, e ey m2.

It now 1s advisable to consider the case frequently encountered

in practice of the cylindrical shape of loss of stability of a rectan-
gular plate upon ccompression in the direction of the unsupported edges.

b. Stability of plate with two supported and two un§%§%%££%g§§%gg§.
In this case, the approximate solution of system of Eq. ( y (2
can be sought in the form

P==Acosmal; $=0; w=Csinmng. (233)

By substituting Eq. (233) in the system of differential equations
of stabllity, we obtain

T°
A0 mag, + RO méay vy = —+ miat(atmiayy + 7P mlay, + 8oo); (234)

A (m4 x4 a,, -+ m®ntay, + ag) = -- B (m® ade, + maay), (235)
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whence, for determination of the critical load, the following expres-
sion can be obtained

m3x

. () s
Tt‘”DlK‘(maq) | DD;( ) +(D:Ka+0uxn)(—‘) +K'K'

(236)
. f ma\?
or o D,A.( )
e
1 D‘("‘“)'{"l‘l (237)
In accordance with Eq. (237), in cylindrical bulging of a lami- /82

nated strip in the direction of compression, one half wave forms (ms=
1) and, consequently

T, . = VDK
cr n'u.+'A".a*’ (238)

The critical load for higher forms of loss of stability (m>l) does
not tend toward infinity, as occurs in the case of uniform shells, but
toward finite limit Kl. The equivalent of this is that, wlth decrease

in length of a rod, the critical load, upon increasing, asymptotically

tends towards finite limit Kl. This phenomenon should be tsken into

account in the use of reinforcing ribs made of laminated plastics to
strengthen a cylindrical shell. The carrying capacity of such stif-
fening ribs can be limited by their rigidity in transverse shear.

28, Stability of Hinge Supported Rectangular Orthotroplc FPlate 1n
Compression in Two Principal Directions of Anisotropy

We now consider the problem of the stability of a rectanguiar
hinge supported plate with sides a, b, in which the principal axes of
anisotropy are parallel to the sides and which is compressed by uni-

formly distributed forces Tlo, 2 (Fig. 30).

We obtain a solution by using varia-

. tion equation of stability (219). We assign
NI ITEI R RN I the deformed state of the plate after bulg-
] o ing in the form
- nAN
—- o 7
— -, Acosi (239)
== ¢ = AcosAzsinny,
LLLARRRRRRRERRRR'S B
a w == EsinAzsinny,
where
Fig. 30. Diagram of LY nn
plate compressed in == V=7
principal directions (240)

of anisotropy.
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the following can be obtained

8

-G-ZLas—AhlinAzdnqy: %w-—BqﬂnAzsinqy;

o

%u,lqcodzcoaqy; -%%u:lf?.cos.lzainqy; (241)
o ‘

5 = BAcoshzcosyy; %-Eksin}.zcmqy.

By substituting Eq. (239), (241) 4in variation equation of stabil- /83
ity (219), we obtain

a b

U={[{DAsin?Azsin®ny + 2CAn ABsin*hzsin®ny +
[

4 DB tsin?Arsintyy - Dy(mA + A B)? costAzxcostny -+
- Ky (A -+ AE)cothasinvtny + K, (B + 0 E)? sin*A zcosdny —
L E cos"Azsin' ny — 7o' E'sinAzcosny) drdy =
M \Dy R A 4 20 AN AB + Dy BY + Dy(n A + A BY 1

LKy (A +AE) + Ko (B4 nE) — (T + Ton') £,

(242)
where, as before, C=D12+D3.
The minimum potential energy condition has the form
orr AU ol
T{-ivzf-d—l,—:_—ﬁ—é"-vo' (2“3)
or, after reduction,
ADNM =Dy L Ky + B(C + Dydn+ ELK
v : s)An+ EAK, =0
"l(C+Da))"|+B(Da‘]=+Dav'f‘l\’:)'f‘Et]K,—::(); (244)

AMK, - BnKy+ E(V K+ 0" Ky — T0A" = T0?) - 0,

The condition of nontriviality of the solution of thils system
gives the necessary characteristic equation for determinatiloir of the
critical load
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Chy Dyw* + D, 4* + K, Kyn =0
K, Kyn KM+ Kynt — ay
— (32" +T3n') (245)
or
(T + T00") [(Dy A" + Dyn® + K,) (Dy 0 + DsA' - Ky — "My =
m= (DAY 4 Dyt + K)) (Dyn? + DyA® + K) (K, A + Ko v?) +
+ 2CK,KyA"' — (Dyn' + DyA’ + K,) K} A* —
— (DA + Dyn” + KD Kon' — C* (K A" + Kyn') 4. (246)
As a result, for determination of the criticsl load of a hinge

supported orthotropic plate compressed in the principal directions of
anisotropy, the following expression can be obtained

oy ofn\* Li(m,n)+ 2g (m, n)
71(“ ) +T'(b) = a! C.('rrc.rc)+;.(:v:.n)+a.‘ (247)

where, in accordance with Eq. (150), the following designations are
introduced

w1 (M, n) - A% (agem® -i- aymén? - az;mind - agent);
Ca(m, n) s= 2y (yymé & yymn® 4- yynd);
Ea(m, n) - a4 (aggms 4 agmn’ + a,nd); (248)
La(m,n) .= 3% (aym? +- ayyn?).

In simple locading, when the load along all edges 1n8reases in
proportion to a single parameter, i.e., when Tl =T, T2 =4T, the

critical value of parameter T 1s determined from the expression

" e > -
oo ci(mon)4-2q(m. n)

(20.+m(%). va (mom) o (mon) tag

(249)
i.e., the problem is reduced to finding the smallest value of the
right side of Eq. (249) as a function of integer parameters m, n.

29. Stability of Infinitely Wide Orthotropic Plate in Compression
Along short Sides

Let an extremely wide orthotropic plate of length a be compressed
by forces Tlo, which are uniformly distributed along the wide edges.

We will assume that the principal directions of anisotropy coincide
with the sides (Fig. 31). In this case, a cylindrical form of loss of

stability can be ccnsidered, 1.e., it can be assumed that all components
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of displacements and forces do not depend on coordinate y. The system
of differential equations of stability then takes the form

v r
eolt ! 08y Y}‘vlv == —"'} (a“ww — a.wlv + auuy")c

’

(250)

v "
B¢ — Qe P +a°,tp=-nlw'"..¢‘w'_

In accordance with Eq. (150), system of
Eq. (250) can be presented in the following

TR AR RA TN form
L (D’?i% _Kl) DIKI':—:".:' =
=T (D gr = Ka) (D1 = Ki) G
(Dsger — Ko )(Dy 55 — Ki9) = (251)

= (1)3 e .-K,) Ka'.

x

Fig. 31. Loading dia-

gram of infiritely wide
strip. System of Eq. (251) satisfies the solu-

tion of the system

VR, } (252)
¢ —Pe= plu,

where e TR K
Dl(l\’l—r) ' 1 - I). * (253)

The general solution of system of differentlal Eq. (252) has tLhe
form

w = Cycos kx - Cysin kz 4- Cyz 4- Cy;
2k . "
(P=;,—p_FT:_.-(Cl.QIn’{J‘——(,gCOS]\‘I)——C,. ‘ (254)

It also is easy to find the bending moment and cutting force

o Dt
Gy= ~ p"x-}.-k_r (Cycos kx +- C,ysin kz); ,

a (255)
Q, = W (Cysinkr — Cycos kz). J

Further, we consider some partial cases of fastening of the plate
edges x=ta/2.

a. Edge of plate hinge supported. Because of symmetry, an even

solution for X can be considered, i.e., it can be assumed that C2=C3=O.
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Consequently, the boundary conditions are satisfied if cos ka/2=0 or
ka=r, and the critical load is determined by the expression

. ‘DK
Ter™ wh4 Rar- (20)

b. Edge of plate rigidly fastened. The boundary conditions have
the form

C,cos 1';-;-'- +C, = 0

N3k k
Cl;ﬁ—vsiu-—,}:o; (257)
as a result, it follows that ka=2r and, consequently, /8€
7. _ANDK,
er’ WO Kt (258)

c. Edge x=-a/2 rigidly fastened, edge x=a/2 unsupported. In this
case, the boundary conditions have the form

Cicosa—Cysina —Cy = + Cy = 0;

C,sinu+(",cosa+(},-'-)-’-;:-‘-;,‘;&3-—:0: (259)
Cycosa+ Cysina = Q; l
("T == 0,

where

ﬂ:,*’f-k—-:.:-—. —-ZL
2 2 ' Dy(Ky—T) * (260

The characteristic equation for decermination of the eritical
load has the form

sina cosa

=0, (261)

cosu sina

from whicl we have k2a2=n2/4 and, consequently,

r . DK,
Cr AD, fika (262)

d. Edge x=-a/2 rigidly fastened, edge x=a/2 hinge supported. For
such boundary conditions
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from which we obtain the following system of linear equations

C.cosu--C,llua—(.‘.i--i-c.-co;
C,sina + C,cosa 4 C, P'H' = ;

Cicosa 4 Cysina +C.-§— + Cy = 0;

Cicova -+ Cysing = 0.

(263)

From Eq. (263), it 1s easy to obtain the following trans-
cendental equation for determination of the critical load

tgka =

piha ke
Pitht T 14y k! (264)

where parameter y characterizes the effect of interlayer shearing on
the critical load of the plate and is determined by the expression

05

N

0!

Yoo dom or a6 g

Fig. 32. Graph for de-
termination of least root

of equation tanx=

X
1+yx2
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D,
V= R (265)

- If the least root of Eq. (264) is
designated ty w, the critical load 1s de-~
termined by the following formula

. miDlK' (266)
cr w0, +K,a*’

The least root of Eq. (266) as a func-
tion of Y 1s determined by the graph pre-
sented in Fig. 32.

S
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CHAPTER 6. TRANSVERSE OSCILL! 'ONS OF ANISOTROPIC LAMINATED PLATES

0. Formulation of Problem o: [ransverse Oscillations of Anisotropic
aminate ates

We will consider small bending oacillations of uniform anisotropic /88
plates of constant thickness bounded by & simple profile. We will as-
sume the bending deformations which arise in the oscillations to be
small elastic oscillations which are governed by the generalized Hooke's
law., Such oscillations are described by differential equations which
are similar to the differential bending equations. Thelir fundamental
difference 1s the dependence of the external load and, consequently,
deformation functions ¢, ¥y and plate deflection w on time, as well as
the presence of additional terms which define the inertial load.

Forced oscillaticns of the plate which arise as a result of vari-
able transverse load p(x, y; t) should be distinguished from the natural
free oscillations. We will state that the plate accomplishes free
transverse oscillations 1f any forces which impart deflections and ve-
locities to the particles of the mean surface are instantaneously re-
moved.,

Thus, the system of differential equations of oscillations of an
anisotropic plate can be written in the following for

Ly(w) ~ 5 La() + La(q); | (267)
0w Pw ow
L(g)=a,> n+ a'sgr—‘*' s oy MG T G FE
% " 020 an (268)

Lo(®) = By 55 + By 5oy +Baggig —Bo 5w —Bs G s

where p 1s the plate material density; q is the variable transverse
load applied to the plate.

Differential operators L6(), L,() and coefficlents ay, By are /89
determined from Eq. (134), (137) and (138).

In the case of a rectangular orthotropic plate, the principal

axes of anisotropy of which are parallel to the sides, the system of
differential equations is simplified, and it takes the form

Fe(uw) = b — oﬂ L Fow) + Folp); (269)
L 9N Py ou
Fy(y)- a %.3’_ -+ “3‘77,}“’ g
P P (270)

Fo(¥) = B g + PBs- a*:a,‘ ﬂ-"—f)}_f

Operators F6(). Fu() and coefficients Gy B1 are determined by
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Eq. (148)=(151). The free oscillations of the plate are determined by
solution of uniform system of Eq. (269), (270).

Deformation functions ¢ and ¢, as well as plate deflection w should
satisfy boundary conditions which depend on the fastening conditions of
the bounded profile of the plate and the initial conditions which de-
fine the form and velocity of displacement of the particles of the mean
surface at the initial moment of time, i.e., at t«0, the following con-
ditions should be satisfied

Pe=qo(3. )i $=¥%(E ) w=w( n),
W . 271
Q=4 =0 %—=mwny ( )

The solution of the problem of free oscillations of the plate is
reduced to determination of the form of the oscillations, which is
determined by the mode of functions ¢, ¢, w and the natural oscillation
frequency. It should be noted that, in oscillation theory, the eigen-
frequercies of an elastic system are of extremely great importance.

Fecllowing S.G. Lekhnitskiy [17)], we reproduce the trend of the
solution of the problem of free bending oscillations cf an anisotropic
plate by the Fourier method.

We represent the solution of system of Eq. (267), (268) in the
form of the product of the periodic time functions by the amplitude of
the corresponding functions, i.e., we set

Q= (Cl“n)gpl -+ C’ sin pl)d’(ﬁ. n);
Y = (Cycos pt - Cysin pt) ¥ (%, v); (272)
w == (Cycos pt 4 Cysin pt) W (L, v),

where p 1s the frequency of the natural oscillations of the plate.

By suostituting Eq. (272) in Eq. (267), (268) for determination /90
of ¢, ¥, W, we obtaln the system of differential equations

Ly(W) + p*od L, (W) - 0;
La(@) 0, G+ ay g +
s g — ae - — 0, 5 (273)
Lu(¥) = By G + By -+
+ Ps a(::g,, = P 0;;:’ "ﬂa%‘;“" '

By satisfylng the assigned boundary conditions of the problem, as
1s done in determination of the critical load, we obtain a character-
istic equation which determines the presence of the nontrivial solution
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A(p)=0, which gives an infinite spectrum of the eigenfrequencies of
oscillation of the plate.

The elgenfrequencies of oscillation of the plate depend on two
integer parameters m, n=1, 2, 3. . . The lowest frequency is called
the eigenfreguency of the primary tone, and the remaining frequencies
are called frequencies of the second, third, etc. order. Each eigen-
frequency Pmun corresponds to the form of the natural oscilletions an

wmn’ wmn’ which 13 determined to within an arbitrairy factor.

Functions ¢ mn? y mn? W frequently are called eigenfunctions.
They are used in solution of problems of oscillations of a plate.

If the deforn.d state of the plate must be determined at any
moment of time, the following procedure is used: initial functions ¢o’

Vosr Wo and initial velocity vo(E, n) are expanded in series by the
eigenfunictions

Po (51 m) = \ Zam‘Dm &, n)

PYo(S: 1) = E 2 Bmn¥mn (8 )

o o (274)
wy (8, ) = ZZYmnWmu(E. n);
Y (€, ‘1 = .ggomnwmn(gp n);
and the solution 1s found in the form of the analogous seriles /91
¢, t) = %}_(Cmn cos pt + Cymnsin pt) @ (8, 1);
Y onit) = %; (Cymn oS pt + Cymn sin pt) Wmn (§, 0); (275)
w (§' m ') = §; (Clmn COSPt + Cgmn sin p’) Wmn \5 1"')
There is no difficulty in finding constants Clmn’ C2mn and, con-

sequently, the deformed state 1s determined by the sum of simple har-
monic oscillaticns.

The porsitility of expansion of the solution in serles by elgen-
functions is based on the orthogonal nature of the latter. Actually,
let the plate accomplish simple harmonic oscillations of frequency p,
when the inertial load acting on the plate is pép 2w(x,n). Since the
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e
¥

-

plate acquirer deflection wy as a result of characteristic load
p6p12w1. anda deflection w, as a result of characteristic load pspkzwk.
according to the reciprocity principle of the work of Beatty, we have

(276)
08 [ [ plwawy d§ dn = od [ [ pawnw, dt dn,
from which it follows that
(pi = ph) ff w0 (2 ) wn (B m) dE dy =0, (277)

i.e., eigenfunctions w, are orthogonal. The orthogonal nature of
eigenfunctions by Uy {(1=1, 2, 3, . . .) 1s proved similarly.

Thus, 1f deflection 1s presented in the form of an expansion by
elgenfunctions

(=]
w(Ev ']) =;a¢w‘ (&, n)’
the coefficients of expansion are determinred by the expressions

o = Fw Gom)wi & n) dg dn
JJwi@ wdgay (278)

If the elgenfunctions are normalized, 1l.e., 1if
i ul(E wdtdy =1, (279)

the coefficlents of expansicn by eigenfunctions are determined by the
expressions

ai = [fw(E, n)wiE n)dtdy. (280)

31. Variation Equation of Transverse Oscillations of Rectangular Plates

Exact determination of the form and frequency of oscillation of a /92
plate, with the exception of the simplest cases of a hinge supported
r2ctangular plste, involves the solution of extremely complicated sys-
tems of differential Eq. (267), (268) for anisotropic plates or Eq.
(269), (270) for orthotropic plates. In the solution c. specific
engineering problems, approximate methods based on some general prin-
ciples of mechanics are extremely effective. 1In theories of core
systems, such methods permit rapid determination of the frequency of
osclllation of the primary tones, which are of the greatest practical
interest, without integration of differential equations. These methods
can be generalized for the case of transverse oscillationc of plates.
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We consider the action functional of Ostrogradskiy-Hamilton
'p
S = f(T=U)dt, (281)
tA

where T and U are, respectively, the kinetic and potential energies of
a plate accomplishing transverse oscillations.

From the class of permissible functions which describe bending
osclllations of a plate, we take the population of principal oscil-
laticns with frequency p.

By integrating over time for one period of oscillation tB-tA-

2r/p, we obtain the variation equation of transverse oscillations of
the plate in the form

G(Tmax-umax)'o; (282)

the natural primary oscillations satisfy this equation.

We now write Eq. (282) in expanded form. For this, we determine
the maximum values of the kinetic and potentlal energles of the plate.

If the plate accomplishes transverse oscillations ¢o(x, y: t),
wo(x, v t), wo(x, y; t) the corresponding potential energles for a

plate with a general type of anisotropy and an orthotropic plate, the
principal axes of anisotropy of which are parallel to the coordinate
axes, are determined by the expressions

Uy =+ [[[Du (%) + 2D, 50 20 4 b, () 4
+Du(3% a¢u)+20“‘;'io(23’o+0‘4’0)+

+3 D,"‘“("Lu: e ) 4Ky (o 2

s (283)
Ko+ 53] s
1 aqg, P, a“ v, '
Ur—?fHD:(f,H 2D 2 G+ Du ()
\ ¢, i)\j » bur, uo -~ 0
~"D'"‘<"67 ! ) + K,y ( ”aEE‘) (“’o : )]drdl/ (284)
The kinetic energy of a plate accomplishing transverse oscilla- /93
tions 1s determined by the known expression
-y ff (% (285)
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When the plate accomplishes ore of the primary oscillatlons,
i.e., when

VYo (2, 1i 8) = Y (2, y) sin (pt + a);

wo (2, yi t) = w(x, y) sin (P + @),

Po (2, yi t) = ¢ (2, y) sin (pt + a);
] (286)

the greatest potential energies are determined by Eq. (284), (285)
where, instead of deformation components ¢°, wo, wo, their amplitude

values ¢, y, w stand, and the greatest kinetic energy of the osclllating
plate

Tmn = '1'
087 [[wt(z, yydzay. (287)

Consequently, the variation equations for the principal natural
oscillations of the plate can be written in the following form:

a. variation equation of oscillation of anisotroplic plate

oo 08 2 4 oa(2)
'“’”(T*"?) +%bw%(%+%ﬁ’-)+
+%Da ( +5% )+K1(<P+-%-':;—)'+K.(¢+_‘};L)’]d¢dy_
—'le”f w’(x.y)dzdy}=0; (288)

b. variation equation of oscilllation of orthotropic plate, /94
the principal axes of anisotropy ¢f which coincide with the coordinate
axes

8 L =0 ” D, (%) "pen, oD (5) +
+m(ﬁ+ﬁw\+K&w+Z)+

b Ky (o 2) = ob ] dz dy. (289)

In Eq. (288), (285), g' designates the variation of the functional.

The solution of the variation problem of transverse osclllations
of a plate, as in the case of static bending and stability, can be ob-
tained, for example, by the Ritz method, namely, deformatlon components
¢, ¥, w are assigned in the form of an 1nf1nite sum with the indeter-
minate coefficlients
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¢z, y) = .2.1 .}IA-».. Pmn (2, P);

V(z, y) = ;.:_“Bm%..(z. ME (290)

w(z, y) = ;;“%:Cmnwmn (v,

8 % -
where ¢mn’ wmn’ Won are complete ems of continuous functions de

rendent on two parameters and satisfying the conditions of fastening
of the edges of the plate. Afte» formulation of Eq. (290) in varia-
tion equations and integration, the problem 1s reduced to finding the

minimum of the quadratic functions of arguments Amn’ an, Cmn’ i.e.,
to solution of a system of uniform linear algebraic equatiohs for Amn’
B c__.

mn’ “mn

The conditlion of nontriviality cf the solution leads to the char-
acteristic equation for determination of the oscillation frequency

291
16i;(p)| = 0. (291)

The smallest value of the rooct gilves an approximate value of the
~wclllation frequency of the primary tone, The remaining roots are
-he frequencles of the higher tones,

32. Determination of Frequencies of Natural Oscillations of Orthotropic
Rectangular Plate

We consider bending cscillations of a rectangular plate made of an
orthotropic material. We will assume the principal axes of anisotropy
to be parallel to the sides of the plate (Fig. 33).

a. Free oscillations_of hinge support- /95
z ed rectangular plate. It 1s particularly
lo ) - simple to obtain a solution of the problem
/&2 for a hinge supported rectangular plate.
/ In accordance with Eq. (273), the system
s of differential equations of the natural
1// _y// oscillations of an orthotropic plate has
Pl the form
; ,

Fig. 33. Basic designa- Fq(w) + 0b p*F (u) = 0; (292)
tions. M 3° dw
F«(‘I-‘)’:ﬂr;,-é-%‘ﬂam'-:?—a,—a—%; |

B

v a3 w
Fo(¥) =B go -+ m;g,%,—m%;.} (293)
where operators Fé(), Fu() and coefficients Oy Bi are determined by
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Eq. (148)=-(151).

The solution of system of Eq. (292), (293) which satisfies the
conditlons of hinge support of the plate, i1.e., the conditions

at x=0, x=g w-w-Gl-O;
at y=0, y=b w-¢-02-0,

can be sought in the form

¢ = Acosmn sinn xy;
¥ = Bsinm af cos n ay; (294)
w == Csin m at sinn ny,

where m, n are whole numbers.

The oscillation frequency 1is determined from Eq. (292). 3y sub-
stituting Eq. (294) in this equation, we obtain

Qb pt ==

__ 8 (agm® 4 agamnt 4 ag m3nd 1 a,,n8) - Y dag(¥) M ¥y mINT 4 y4nd)
R (agem + aggmind agnt) + n? (agem? + agen?) + agy

(295)

where coefficients ayys Yy are determined by expressions (150), (151).

The osclillation frequency of the primaiy tone at m=l, n=1l

a% 52 (ag, * age - age+ Gas) + Bon (Y1 4 Y2t V) 6
pn = y o5~ (a4 +- @33+ ag)) 472 (ago - dgg) + a0y * (296)

b. Free osclllations of rigidly fastened rectangular plate. For
a plate with rigldly fastened edges, it 1s extremely complicated to
obtaln a precise solution. Therefore, for determination of the fre-
quency of the natural oscillations, we use variation Eq. (289), which /96
we write in dimensionless coordinates £=x/a; n=y/b;

ICIC R T L
00

al? o oy n

{ ap 1 oy A\ o, ! 1_‘2_“_!_ ' -
—Da('g—;l"*'—T) ’T‘I‘I(WTT i)ﬁ
(48 oot asin o (297)

We will seek the form of oscillation of the primary tone in the
form
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z (1 cos -?-"-!-),

P = B(i — cos 2’")sin 22y .

b '
w==F(1—cos ‘: )(1—003 i’ii) .

By substituting Eq. (298) in the variation equation, the follow-

ing can be obtailned

,I

b3 (G R) A e (3
4nt

+%’%’-AF+§“£§—BF}=O.

where :

9A T 9 T 6F

has the form

D D - C 3K,
O
c Dy D, 74 3K,

< 3(f+5r + Ko) Tnh

3K, 3Ky 3K, 3K,

Jna 2ab a? b
908 p?

403

from which we find

B [0 +K) (a+ B — 57| = 5o KK +

+ (T +55) [+ B s + B — o] -

’AR

(h+K)— KKz 4 K,

where
D,
“at

D
A = +—3',:—; Ay = b: +"3’,,"a"

Consequent.y, the frequency of natural oscillation of the primary

t one

_D.’_...*.['Z')Bl.*.
+(1:++-3§‘l-—__.__996”'.)p+ 2(’)\:4-03) AB +

(298)

(299)

(300)

(301)

(302)

(303)

(304)
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N
Pu ,/m X

1 D, C+ D) D R T I
X / KXy [7:7+ 2(3:'% -t T"‘] ( r +'T)<""" Bathi )
O +F) Oa+ o) —gor (305)

As K1+m, Kz»m, i.e., without accounting for interlsyer shearing,

the known fermula for the frequency of natural oscillations of an ortho-
%ropic rectangular plate with rigidly fastened edges follows from Eq.
305)

22,79 D 2(C+ Dy) D
Pu="ms Y W T

(306)

c¢. Transverse oscillations of laminated strips. Free primary
oscillations of laminated strips are described by the following system
of differential equations

w' -+ 2% — s'w =0; (307)
¢ — ol = 0¥,
where X 5o -
‘:-..—-L' _-—_._Q._L- C= Q0 p
® Do 2r3 K =5 (308)
If
k:=Vr"+s'-—r'; k::"r‘+s‘+r" (309)

1s designated, it 1is easy to obtain a solution of Eq. (307) in the form /98

w = Cych &z 4 Cysh kyz + Cycoskyx + Cysin kyz;

k|(l)

9= (Cishkyz + Cychkyz) + (310)
e
k.

e (Cysin kyz — Cycos kyz).

There also can be found

Dt
G,=— P e (Cyeh kyz + Cysh keyz) —
10 - (311)
Dkl w*
(Cycos kyz 4 Cy s1n kyx);

3
k.+(o'
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KK
Q)= — -f—'Ll' (Cy sh kyz + Cych kyz) +

+'P'.:._¢'J(C"i" kyt = Cycos kyz). (311)
|

We select a coordina:e system as indicated in Fig. 34, and we
determine the free oscillation frequency with various fasteninge of the
ends of the strip x=+a/2.

of strip hinge supported.
By satis? Eng the boundary conditions

N

2
e oy at xerk
T /7‘Z-j;3’. the following can be obtalned
ﬁ' ’:" ° C,cha, + Cycosay = 0;
> k. k'
A4 <4 - Croy cha + €y oty eosy = 0;
1 ]
Cyshay 4 Cysinay = Q;
' s (312)
C sh al + C‘—‘L—'Bi" ag = O,
Fig. 34, Strip with rigidly RS k+o®
fastened ends. where
dm"—l/‘]/i-}-Z—r—i
(313)

. ' - l/]/1+2—+1
- 7

X
y - The characteristic equation can be
J /:/

written in the form

0

cos a2=0; sin a2=0;

and, consequently, the frequency spec-
trum of free oscillations of a laminated
strip 1s determined by the expression

. L Vg TS (314)
p o )/Q.ﬁ- n“m‘b. ‘,"K;G’ ¢

b. Edge of strip x=0 riglidly fastened, edge x=a unsupported (Fig.
35). By satisfying the boundary condltlons

Fig. 35. Diagram of bracket
and coordinate system.

w=¢=0 at x=0,

GI=Q1=0 at Xx=a,

we obtain the following system of linear equations for determination
of the frequencles
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Cl+C,==0

?_I_.J(C,chZG,-f-C,Bbz“n) + (315)

"l
+ m (Cyco82aq + Cysin2ay) = 0
]

R
T (Cysh 2a, 4- Cych 2a,) —
)
]

k
— et (Cysin 20y — C cos 2a,) = 0. )

K+ o

Consequently, the firequency spectrum of the natural oscillations
of a laminated bracket i1s determined by the equation

(316)

sin 2ay == 0,

(-%,_)9_*_(1_1 ..-)chZa,coszag ’:— ‘:

where ay and a, are determined by Eq. (313).

As Klaa, there is the known equation for determination of the fre-
quency of natural oscillations of the bracket

chkacoska = 1. (317)

33. Axisymmetric Transverse Oscillations of Circular Plate

If a circular plate made of a cylindrically orthotropic laminated
plastic executes axisymmetric transverse osclllations, the system of
differential equations has the form [14]

é(rG
(;rl) ""Gl - er; } (318)
9 i
(((r)q) 3 z‘m_ -—q (r, ‘) r,

where p 1s the density of the laminated plastic; q is the external
transverse load which changes over time.

By substituting basic relationships (64), (65) in Eq. (318), we
obtain

m¢ i 99 Ky (290 o),
L e B (e, (29
% { aw 1 0 o8 ‘7"" ‘”’ f
At tra e =55t )

For the principal normal oscillations of the plate
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Fi(r 8) = @(r)(Cicost + Cysinat);
wy(r,t) = w(r)(Cycosot 4 Cysin o ¢); } (320)

and, consequently, the oscillation amplitudes comply with the following
system of differential equations

”"” Q' ) oz .
Vb5 = (R e = e (321)
" wr ’ 9 .
w _}..;-—{-p‘wz—(‘P +",")' (322)
where /101
o)
k’___ ’l‘)" . ;";--g—:—' p’—":%‘f‘- (323)

Eq. (321), (322) are equivalent to the following differential
equations

oV + 2 w'"—(ﬁb}i—p’) 9+
+ (5 +L)e = (5 + 5+ e -0 (324)
w=-—~,},,.—(tv +2¢" —-,lr‘v'+-’,'-:—«v)- (325)

Eq. (324) is a fourth order Fuchs class differential equation. Ve
will seek its solution in the form

(=]
(p = "o. onmrm.

memz

(326)

By substituting Eq. (7526) in Eq. (324), the following can be ob-
tained

%[a—{-bm-{ﬁcm(m—i)+em(m—l)(m—2)+
+m (m — 1) (m — 2) (m —3)] Am ™ +
+ 2ld 4 f(m—2) + p*(m— 2) (m — 3)] Ap-2r™ —
T+ (=2 P = 2) (=) (327)
— k?p!ZA;"_‘rm == 0'
[}
where .
a =, 40, + (3 —A) g + 41" g, — 31%
b=doy — 60, —2 (A" + 1) o + 31;
¢ = Gop — (A' 4 2);
d = p*leg—2"); (3co)
e = 2(20,+ 1);
/=0 (2-+1).
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The following recurrent formulas for coefficients A_' can be ob-
tained from Eq. (327) "

m=0 ms={
la -+ bm 4 em(m — ) A em ‘m —{) (m — 2) 4
+ m(m — 1) (m —2)(m —3)) A = 0; (329)

m=2, m=3
Ap =
- ~ld4 [ (m—=2)+p* (m—2)'( -3)] A
atbmpem(m—1)+em(m—1)(m—2)4m(m—1)(m—2)(m~3g) ™2

(330)

m=4

A KA, —ld4 1 (m=2)+p* (m=2) (m—3)] A,, _, (331)
™ et bmAem (m—") 4 em (m-~{)(m—2) 4 m (m— 1) (m=2) (m~3)

In accordance witn Eq. (329), the characteristi: equation for
determination of Po has the form

o) — o) + (3—A%) ol + 41", — 3A" = 0. (332)

The roots of this characteristic equation are

. 333)
LR O L A N A Ay (

It is easy to note that A ‘=0 (m=0, 1, 2, 3, « + +)o

2m+l

In the case of a continuous plate, the solution which corresponds
to root po=—x should be set equal to zero, and roots poI-l, poII-3

gives llrearly dependent solutions. The missing solution should be
sought in the form

v (w3 anrm), (334)
where ¢2 i1s th2 solution which corresponds to the root poII=3.
By substituting Eq. (334) in Eg. (324), we obtaln
}30(3(16 —A)m + (52 —AYm (m — 1) 4 14m (m — 1) (m — 2) +
mix
+m(m —1) (m—2) (m — 3)] Anr™+ X [p19 = 0") + 7p%m — 2+
+ P (m=2)(m—3)] dn-or" — K'p' X Anar™ = (335)

= 4, ([2(9 — A?) + 2(34 — A% m + 36m (m — 1) +
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+4m(m — 1) (m ~2)) (Am), ™ +
+ 3100 +20" (m— 2] (Arng), (335)

In this manner, for coefficients Am". the following recurrent re- /103
lationships can be obtained

me2
Ay = — '5—(-2-5-’;-,37 {P' (0—4") 4, +

, k3 -1 ) ’
+ Ao [Gk. (A.)l 2 “'8‘(2""_,_:3‘()0 1 ) (A.).} L

(336)

where

(4, = — FR=3 (40), (337)

for my2n (n=1, 2, 3, . . )

' - — '
An = = = A F G m = F T = =2 X

x {[P* (9~ 4%) + 75" (m —2) + p* (m — 2) (m = 3)] M-, —
— K P A + A, (2(9-A") +2(34— 2" m +
-+ 36m (m — 1) -{- 4m (m — 1) (m — 2)] (An), +
+ Aq [6K° + 2" (m — 2)] (Am-2)), (338)

where coefficients (Am')l are determined by the expression

("“ﬂ)l [ -]

Ke* (Am_ i)y =16 (0=4") +7p" (m —2) (m—3)] (4], _ 2
= m(3(6 =)+ (52— W) (m—1) + 14 (m = 1) (m =2) 4 (m—1) (m—2)(m—3) * (339)

The odd coefficlents again equal zero.
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CHAPTER 7. MEMBRANE THEORY OF ANISOTROPIC LAMINATED SHELLS

4, Region of Applicability of Membrane Theory of Shells and Boundar
on ons

The simplest alternate versicn of the general theory of shells is /104
the membrane theory, which is widely uscd for calculation of various
engineering structures and buildings. The explanation of this is that
the membrane theory quite satisfactorily describes the behavior of
thin shells under various loads which have to be of concern in engi~-
neering. The simplicity and value of membrane theory is not only sig-
nificant mathematical simplification of the basic differential equa-
tions of the theory of shells but also that, in many cases, the results
of the basic stage of the theory, which consists of determination of
the nature of transmission of forces from the equations of equilibrium,
are valid for any thin shells regardless of their structure and nature
of deformation. Structural inhomogeneity within the shell material ap-
pears in subsequent stages of solution of the problem, which are con-
nected with determination of the deformed state and the nature of dis-
tribution of stresses through the shell.

As in the case of isotropic or anisotropic shells [1, 8], we will
call membrane theory an approx.mate method of calculation, based on the
assumption that bending stresses are smell compared with the stresses
unirormly distributed through the shell. This assumption is mzthemat-
ically equivalent to the assumption that cutting forces Ql Q can be

disregarded in the first three equilibrium Eq. (17). With the inten-
tion that only shells of rotation will be considered subsequently, we
write the basic equations of membrane theory for this partial case.
Membrane theory of anisotropic shells is discussed in greater detail
in the monograph of S.A. Ambartsumyan [1].

As curvilinesr Gaussian coordinates which define the positions of /105
points or the mean surface of a shell, we use arc length s, reckoned
from the initial parallei (point M in Fig. 36) and angle B between

two planes passing through the axis ~f rotation. One such plane wae
selected as the initial plane. We introduce two more coordinates:
shell cross section radius r and angle o between the normal to meridian
n and the axis of rotation.

Principal radii of curvature Rl, R2 are determinad by the expres-

sions [8]

r

sina ' (3“0)

R, = i Ry

du

Two Gauss~Codacci relationships are satisfied identically, and
the third has the form

dr d(Rgsina) “
Ti;,‘z"‘_":?ﬁ'—" = Ryicosa, (341)

The last relationship can be obtained from geometric considera-
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tions (Fig. 37)
Ar
m == CO8 Q.
Tf the components of the distributed surface

load acting on the chell are X, Y, Z, equilibrium
Eq. (17), with A.*1, Ay=r, take the form

r%’%‘-—(T,—T,)cosu-&-%—‘;-:-Xr;
”’-{-r-’z,-s--{-ZScosas-Yr; 342
K]} ds
Ty Ty
KRNI L R 3
Fig. 36£. Sketch o
of shell of ro-
tation and con- In accordance with Eq. (10), the components of
ventional sym=- deformation of the mean surface are determined by
bols. the expressions
_u v
Q=% TH
1 o W
faa =gt T et R (343)
"
<\ m.—=—:--%'-+-gf-—-'-’-cosa
"
/Vdﬂ
For shells with undetermined anisotropy of /106

elastic properties and for shells made of ortho-
tropic materials, the principal axes of anisotropy
Fig. 37. Geomet- of which do not coincide with the coordinate axes,

ric interpreta- in accordance with Eq. (8), (343), Hooke's law has
tion of Gausse- the form
Codacci relation-~
ship. ou y .
%o T y Pl 3 (83T + 813T 5 +-a,55);
-:-—%%+-1:-cosn+7':-'-=—;—-(a,,T,+a.,2T,+a,,S); (344)
{ du av v 1
a2

25 T 3y — 3 ouse =-6—(a,,T‘+a33T, + agS).

Correspondingly, for orthotropic laminated shells, the principal
axes of anisotropy of which coincide with the coordinate axes, in ac-
cordance with Eq. (28) and (343), the elasticity relationships have
the form

o, w Ty—v; Ty
o TR = B =)
dow u o Ts—vTy
r —0'5_+ 7 CoSG 4 Ry — By(f—vvy)’ (345)
{ 0u , Ov v S
7W+3;f--’—008(1—ﬁ. ’
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Thus, the systems of differential equations of membrane theory can
be integrated in tw successive stages:

stage 1. by solution of system of Eq. (-42), elastic forces
Tl’ T2, S of gﬁe shell are determined;

stage 2. from system of Eq.< (344) or (345), displacements
u, v, w are determined for anisotropic and orthotropic shells.

Since, by the definition of membrane theory, interlayer shears Yqs
Y, are absent or negligibly small under load, by Eq. (12) we obtain

{ ow v
-G ErER YETT TR (246)

The components of effective change of cuvcrvature and torsion of
the mean surface, 1n accordance with Eq. (11) and (346), are determined
by the following expressions

(347)

Bending moments and torques G
Eq. (4) or (25).

For shells of rotation with random anisotropy of properties and
for orthotropic shells, the principal axes of anisotropy of which do
not coincide with the coordinate axes, there are the following expres-
sions for determinaticn of the bending moments and torque

6:=Dugr (G —7-) +Du [+ (L 55— 7) +
F2( =) [ (L) o
+r g (FF ) - (5 -]
F] w

?0 S D

1» G5, H can now be determined by /107



4-%(%%-—7%:)%»- i (5 =)+
_b_b_(bw u )___coln(_irﬂw v ] (3"‘8)

Correspondingliy, for orthotropic shells of rotation, the principal
axes of anirotropy of which coincide with the coordinate axes,

6D () [ ()

= (=)

+v‘-'z-(%':;_ “)}; (349)

1Dy [r o (33— )+ (o — W)

S S

From the last two of equilibrium Eq. (17), cutting forces Qs Q5
which were eliminated in equilibrium Eq. (342), can be determined

8 (r¢
rQ, ,,,:__%;.1.)..{--‘-:—%’--—6,0080
I‘QQ'-~ G, .J 0(1”) +llcusa (350)

o

System of Eq. (348), (350) or (349), (350) are supplementary 1in
membrane theory, and they are used only for checking the possibilities
of its use, namely, if it turns out that the bending stresses actually
are negligibly small compared with the membrane stresses, i.e., they
are uniformly distributed in the thickness of the membrane, this is
confirmation of %the applicability of membrane theory.

In some cases, it can be foreseen that membrane theory cannot sur-
ficiently well describe the axisymmetric stressed and deformed states
of a shell of rotation. This will occur in those cases when there is
a break in continuity of geometric dimenslions §, Rl’ R2, rigidity char-

acteristics cij’ including rigid fastening or other kinematic connec-

tions or, finally, there are areas of discontinuity of external surface
load X, Y, 2.

The condition of the presence of areas of slight disturbance of
the geometric, elastic or strength parameters can be replaced by more
general ones, namely, for inapplicability of membrane theory, 1t 1is
sufficient that the abovementioned parameters have a large index of
variability.
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In areas of a shell where there are such features, additional
stresses can develop, which cause local bending of the mean surface of
the shell. Exact solutions show that areas of bending stresses are ex-
tremely small and, consequently, at some distance from such areas, shell
calculations can be carried out according to membrane theory.

Thus, membrane theory is described by systems of Eq. (342), (344)
for shells with random anisotropy and for orthotropic shells, the prin-
cipazi axes of anisotropy of which do not coincide with the coordinate
axes, and by system of Eq. (342), (345) for orthotropic shells, the
principal axes of anisotropy of which coincide with the coordinate
axes.

In accordance with Eq. (22), the boundary conditions of membrane
theory have the form:

1. unsupported edge T=S=0; (351)
2. rigidly fastened edge us=v=0; (352)
3. hinge supported edge Tl'V'O or us=S=(Q, (353)

It follows from boundary conditions (351)-(353) that membrane

theory is applicable in the event the shell 1is not loaded by cutting /109

forces and moments on the edges, since end effects, 1.e., local bend-
ing of the shell, will develop on the edges.

35. Membrane Theory of Symmetrically Loaded Shells of Rotation

If a shell of rotation is loaded symmetrically about the axis of
rotation, the surface loading components should be functions of arc 8
alone, i.e., they should not denend on angle B8:

X=X (8); Y=Y (s); Z=Z (s). (354)

Since all geometric parameters Rl, Rz, r of shells of rotation de-

pend on arc s, the elastic forces and displacemnents also are functions
of coordinate s alone and, consequently, the equations of equilibrium
of a symmetrically loaded shell of rotation have the form

r—'g;‘——-(T,—-T,)cosnm - Xr,
ri:_.‘s:.+28cosa=—-r}’; (355)
T T
..I_I'T+T".=;Z.

If, following V.V. Novozhilov [21], stress functlons are introduced,
®(s)=T,r sin a; ¥(g)=Sr?; (356)
the following can be obtained from the first two of Eq. (355)
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%‘-f-'- =r(Zcosa — X sina);

(357)
- —ny, °

Consequently, the stress functions are determined by the expressions

OMnﬁwmm—meb+Q; (358)
0 .

[
Y (s) = -—Jr’}’ds + W, (359)

By determining force T2 from the last equation of equilibrium, in
accordance with Eq. (356), (358), (359), we obtain

Ty Ty=Ry(Z-F): S=—1r. (360)

rsina

According to membrane theory, the nermal, tangential and shear- /110
ing stresses are determined by the simple 2xpressions

T T s
£\ - X*—X- |

T = (XY X7) 4 s (361)
Yo y-

Ty (V0 ¥)

where X+, X, Y+, Y™ are components of the external surface load ap-

plied to the upper (z=§/2) and lcwer (z=-6/2) bounding surfaces of the
shell, respectively.

As was noted in the preceding section, the expressions for the
elastic forces of an anisotropic laminated shell coincide with the cor-
responding for an isotropic shell.

In accordance with Eq. (344), movements of a symmetrically load-
ed shell of rotation are determined by the following system of linear
differential equations

du W

1
o+ Y (T 4 ayls + a,S);

= cosa + = +@Ty+ @y, Ty + asS); (362)

dv v i
T T C0se = (810Ty + gy Ty -+ a5 S).

System of Eq. (362) is equivalent to the following:
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o i -

w e KL (@ — 010 ©) Ty + 8158 + a1y 2] — R, 5% (363)

%:L"‘ e u "("u""zanﬂ'f'anﬂ')!;l +
+(¢u—¢u0)s+("n“‘“nQ)‘%“z3 (364)
F =% = (0, — 00 Q) B + G T + 0By -,
where Ry
= (365)

If, as in determination of stresses, the deformation functions
b n= (366)
are introduced, from Eq. (364), it 1s easy to obtain

] .
Tff" = 6__5:71_5 (81 — 20350 4 645 Q") T, -

+ (813 — 833Q) 8 + (a;3 — 843 0) R, Z};

RS
-
f
f

@ "'7!6"(“13'_"&39)7'1+aas+azanzzl. (367)
whence .
£- %fl(“n = 20,30+ 30 0°) Ty + (4,5 — a550) S +
’ is (368)

+ (@1 — 853 0) ByZ] 5 + s
n- ‘;‘J [(a,,-—auq)—t;‘--{wa”-"?-+a,3-’—:3—2] ds + o

where @o, wo are the values of the deformation functions at the edge
of the shell.

In this manner, the components of movement of an anisotropic
symmetrically loaded shell of rotation are determined by the following
expresslions

u=="Fsina;, v=ry;

w= —fcosa ‘%"'[(“u — 8330) Ty + 0595 -+ agyRyZ). (369)

As should be expected, in distinction from isotropic shells, with
any boundary conditions, each movement depends on all three components
of external surface load X, Y, Z. The rature of the stressed state de-
pends essentially on the boundary conditions, namely, only with statilc
indeterminate boundary conditions will the forces depend on all three
components of the external load.

Eq. (369) also determine movements of orthotropic shells of rota-
tion, the principal directions of anisotropy of which do not coincide
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with the coordinate axes.

In the case of orthotropic shells of rotation, the principal direc-
tions of anisotropy of which coincide with the coordinate axes, the ex-
pressions for the elastic forces remain as before, and the movement
functions are determined by the formulas

[+ 3+ )mm

t=1
—(z+ ) 2] + b (370)

ne [ Sansng
[

u~*§ﬁna, v=9r

w=—fcosa - = ["lz (V’l' 7?;‘)7:]} (371)

In this case, movements u, w are caused by the radial and merid- /112

ional components of the external lcad Z, X, and displacement v 1i¢
caused by annular forces Y, 1.e., the same as 1ir. isotropic shells of
rotation.

In this manner, calculation of symmetrically lecaded anisotropic
and orthotropic shells of rotation is reduced to determination of four
random integration constants oo’ Wo, ¢°, wo' Consequently, on each

edge of the shell 8=8 3 8=5,, for an unambiguous solution, two boundary

conditions each must be assigned. In this case, at least two of the
boundary conditions should be kinematic. Otherwise, the existence of
the stressec membrane state will be impossible, 1.e., bending of the
mean surface of the shell without stretching (compressing) or shearing
will occur, or displacement of the shell as a solid will be possible.

We now consider some examples of calculation of symmetrically load-
ed shells of rotation according to membrane theory.

36. Calculation of Closed Containers Operating under Constant Internal
Pressure

Shells of rotation in the form of cylindrical and coulcal shells
closed by end plates of different geometric shape and of spherical and
toroidal containers are exceptionally widely used in industry. Partic-
ularly in chemical equipment, these shells operate under uniform in-
ternal pressure. Such structures are calculated according to membrane
theory, with the exception of small end effect areas, where more exact
equations, which will be obtained later, must be used for the calcula-
tion. In such zones, special dexign measures must be used to moderate
stress concentrations and more uniformly distribute the stress.
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In shells of rotstion subjected to uniform internal pressure,
X=Y=0, Z=p, where p=const is the intensity of the internal pressure.

In accordance with Eq. (358), the stress function
3 pR'lin’a
(Dupr,linad(R.dna)+0, =-—|3-——+C. (372)
[ ™

Consequently, the elastic forces are determined by the expressions /113

pR c
Tv="3" -+ Talaa’ (373)
. ph R C
Ty = —-2-!—(2— T:-) = T, sinia

It is evident that, for shells of rotation clos2d at the top,
Cz0 must be set and, consequently, for such shells

L Pl? . . pR o I"
et (e d) o1

The deformation functions for closed shells of rotation, accord-
ing to Eq. (370),

a

t -

[t—2w — Bello) o o] Sufeda g, (375)

..’l'; sina

and the components of movement

um%g—ﬂ[l — 2y, — 20 ‘ll ¥ ot - Q’J X
g
‘ X ”fl‘::n -+ Eosin a;
W= — !;28: o[‘ — 2y, — 2% (i;—vz) Q+_:_|;_Qa} X \ (376)
ao
x—{?—‘s%‘-’-gg— tocosa + fn: (2 —vg —0Q).

Consequently, radial movement of the shell, i.e., movement per-
pendicular to the axis of rotation, is determined by the expression

- R
¢~ Ar=ucosa+wsinag = 2’;’3(2—\»,—-9). (377)
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Correspondingly, the angle of rotation of a meridional element

so= fRigm [ H20 b st -3t -k (378)

a. Spherical container or spherical bottom (Fig. 38)., 1In the
case of a spherical contailner

and, consequently, the forces generated in the shell
T)=T=52. (379)
The radial deformation and angular dis- /114

placement of an element of the meridian are
determined by the respective expressions

o pat(f--vy) . pactga LN
*o 2‘5’6 ] x. > 2£‘6 (7+2\' v.). (380)

b. Closed cylindrical container (Fig. 39).
Fig. 38. Hemispher- In this case, Rl*w; P=Q; Rz-r-a and, consequently,

ical bottom. according to Eq. (374)

a

Ty Loy Ty pa. (381)

Corresnondingly, the radial de-
formation and angular displacement

. et (2--v,) | _
Co—’—-y,;'-r’-. %o = 0. (382)

c. Ellipsoidal bottom (Fig. 40).
Fig. 39. Closed cylindrical In this case
container,

al

&= —1.

The radii of curvature of an el-
lipsoidal bottom are determined by the
known expressions

Fig. 40. Ellipsoidal R ViTE _ eVTiTe
bottom. Y Y Otesina? ' ' Vitesinta

(383)
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Consequently, the elastic forces and deformations

(ETH
7'“'——‘/1-{-"“ a'

1
Ty 5 (l —e sin? o) V-—_*_—e-%-ar;

=14 esinta;
= Z (384)

pat(i+0) . .
;.:‘: ')b 6(‘+3”inm. (""\' ﬂ“"‘a)n

]/ {42 cos a
Yo = 25, f{+esin'a sina

X[Q"*"-!(l V:)Q+4—--- 2Qesin’j.

X

d. Ccnieczl bottom (Fig. Ul1). 1In this case

N
—
[

l

R1=~; Rz-x tg v o=0,

If distance x is reckoned along the generatrix
of >he cone from the top, it is easy to obtain

ey .
Ty £EL T, pragy

_PEEY [, vy
Xo = “3E,F ( g

b= 2= vk i (385)

Fiz. 41. Con- e. Toroidal container (Fig. U42)., 1In this case
ical bottom.

R<4rsina
Ro= —goa—i Ru=r

a2

A toroidal reservolr 1is not closed at
the top. Conrequently, the forces are de-
termined by Eq. (373), and the value of
constant C must be determined.

st From the conditions of equilibrium
of an element of a torus cut along a plane
\\\\ passing through the curvilinear axis of
the torus, and of 1 cylindrical surface
Fig. 42, Closed toroidal passing through the curvilinear axls, we
container. find

= Pr QR+
U\%_% T Ryr (386)

and, consequently, the desired constant is C--pR2/2. Thus,

~
[
[
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R4r .
LR LEITITI N (387)

The respective radial and angular displacements
pR!
So= gy (@—v—ek
R
1.-4%[Q'+2“—”3)0+4"%{'+ﬁﬁg¢—]- (388
: 3

Further, we consider some problems in determination of efficient
bottom parameters, which ensure strength with the least possible weight.

37. Some Problems Connected with Deteirrnination of Parameters of Least
Welght Bottom

Let a cylindrical container of radius a be subjected to internal

preasure of intensity p. Spherical and conical bottoms of the least
possible welight m:st be selected.

Since the }yoblem is solved from the point of view of membrane
theory of shells, some simplifying assumptions must be made. Namely,
we willl assume that, in uneven Jolning of the bottom with the cylindri-
cal part of the container, the resulting thrust is taken up by a rein-
forcing ring which is mounted in the butt section. We designate the

permissible yleld strength of the material by o and the specific welght
of the material by y.

a. Spherical bottom (Fig. 43). In this case

Resths

Since the stresses are uniform in a spherical
shell, the bottom should be made of constant thick-

ress and provide isotropic structure of the lami-
nated plastic.

The welght of the bottom 1s determined by
the formula

s*!_\‘\ i

= 25y (1 — cosa) R*Q.

Gsh

The required bottom thickness

P e i)
D R e edtocralbadily

=R
6 20 °

gé%é°:3' Spherical Consequently, with bottom aperture angle a, /1!
' the weight of the bottom shell

npya® {—cosa

Ggn =~ —ma " (389)
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The required weight of the reinforcing ring in the butt section

S pYwna! cora (390)

Gl‘ b Own 'iTB"i"

The total weight of the spherical bottom shell with the reinforc-
ing ring

ngﬂ:‘\'.'+("';::‘cﬂn. (391)
where 9
k_.ijihﬁf
Ly
(). (392)

Fig. U4 presents Lhe results of
calculation of the weight of the bot-
tom as a functicn of the relative
specific strength of ‘he shell and
ring material k and of aperture angle
a of the spherical bottom.

Eq. (391) and the calcuiation
results show that it 1s advisable to
reinforce the butt section of the bot-
tom with a ring of a materiel, the
specific strength of whicn 1s ronsider=-
ably greater than the specific strength
of the laminated plastic. The maximum
possible weight advantage over a hemi-
spherical bottom reaches 28%. In re-
inforcing with the same material, be-
cause of the unidirectional nature of
the laminated plastic, the relative
specific strength k=0.5.

b. Constant thickness conical bot- /118
tom (Fig. §5). The shell welght of a
conlical bottom of constant thickness

Fig. 44, Spherical bottom
welight vs. aperture angle and

t] apyad 2 .
relative specific strength of sh = —5— S’ (393)
plastic.

Key: a. Relative welight the required welght of the reinforcing
ring .

3
G,‘ mwtgq

or K (394)

Cons-quently, the total welght of the conical bottom shesll and
reinforcing ring
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A pa® 2 1
6 = 255 [+ ko). (395)

The results of calculation of the bottom weight
by Eq. (395) are presented in Fiz. U6 as a function
of k and %he half aperture angle of the cone,

The minimum weight advantage of the use of a
conical bottom over a hemispherical bottom is 50%, if
it is considered that the specific strength of a coni-
cal bottom made of uniform oriented laminated plastic
is greater than the specific strength of a hemispherical
bottom. Actually, if the yield strength of a unidirec-
tional plastic is o, the yield strength of a full
strength plastic is 0/2, and the yield strength of the
plastic of a conical bottom is 2/3¢.

c. Variable thickness conical bottom. 1In the use /119
1cal bottom of laminated plastics for manufacture of bottoms,
with reinforce available technological methods of continuous winding
ing ring permit a variable thickness bottom to be obtained
) without difficulty.

Fig. 45. Con-

Since the stressed state of a
/[]]| conical bottom 1s variable along the

/ generatrix, it 1s more advisable to
/66/ make a variable thickness conical bot-
4

&
S

tom. Evidently, the relationship of
change in thickness of the bottom is
the following

Omuocumenswsris Le¢ o
S %Y
h W
Y
o
ISRAE

\ d(z) = n:;ua ' (396)
N ,
25 ‘(\-—:;// Consequently, the weight of the
bottom shell
20
0 15 i/ [ 60 af G, . apye 4 (397)

sh
Fig. 4€. Constant thickness o Jdsin2a

conical bottom weight vs. half

aperture angle and relative Since the wei
ght of the reinforc-
specific strength of plastic. ing ring remains the same, the total

. weight of a variable thickness conical
Key: a. Relative weight bottom

(,'=an¢-(3“:2“+ka). (398)

g

The results of calculation of the bottom weight by Eq. (398) 1is
presented in Fig. 47 as a function of cone half aperture angle a and k.
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The minimum weight advantage of the
/ /” use of a variable thickness conical bot-
tom over a hemispherical bottom with k=0
is 33%. If it is considered that the
specific strength of the conical bottom
is greater than the specific strength of
a hemispherical bottom, with k=0, the
minimum possible weight of a variable /120
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2E8S
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Q
—

Ommocyrmesswy Bec ©
~N
[~
K
|
f~3. -
l b o~

thickness conical bottom equals the weight
N of the hemispherical bottom. This could
§:~—~ have been expected beforehand, since both
2 T bottoms are full strength.
10 d. Box bottom (Fig. 48). We now
0 15 70 o5 60 @° corsider a box bottom, obtained by even

Joining of the spherical part wlth the
zégicgz.boggg;agéigggisg?ess cylindrical part through & toroidal shell.

half aperture angle and rel-

ative specific strength of The weight of the spherical psrt of

plastic. the bottom
[3 " . _ _
Key: a. Relative weight Gsph — Sya { a+es$;iu cosa) (399)

The weight of the toroidal part of the buttom

Geop = -"—ﬁyi{e(z—z)[(-’—z‘--—a)(l —e)+ecosa]]. (400)

Thus, the total weight of the box bottom

__ npa’y ((1—e+esina)® (1 —cosa)
G = 3 { sinfa +

+-e(2—e) [(-3--—0)(1 —-z)+acosa]}. (401)

Fig. 48. Box bottom.

It is easy to note that the welght of the bottom decreases with
decrease in ¢ and, consesjuently, the smallest joint radius based on
design or other considerations must be used.

The maximum weight advantage will be at a=60° and e¢=+0, i.e.,
the toroidal part of the bottom, by ensuring even joining, replaces
the ring, as i1t were. The welght advantage is 23% over a hemispher-
ical bottom.

The results of calculation of the box bottom weight as a function
of € and a are presented in Fig. U9,
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Fig. 49. Box bottom weight vs.
geometric parameters.

Key: a. Relative welght
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ORIGINAL PAGE I8
OF POOR QUALITY

CHAPTER 8. OPTIMUM METHODS OF CONTINUOUS WINDING OF CYLINDRICAL FIBER-
GUASS REINFORCED PLASTIC SHLLLS

38. Basic Concepts and Initial Hypotheses

One of the most convenient and widespread methods cf production /121
of laminated shells 1s continuous winding. There are various methods
of continuous winding, which differ in the method of placement on the
mandrel and type of filler, as well as the nature of impregnation of
the filler. Rotation of the mandrel combined with forward motion of
the carriage with the bobbin along the mandrel permits the most di-
verse filler orientation to be achieved. After winding, the shell
together with the mandrel go through heat treatment, as a result of
which hardening of the binder cccurs. After heat treatment, the shell
is removed from the mandrel. To make removal of the shell from the
mandrel easier the latter is covered with a film before winding, which
prevents adhesion of the filler.

For mass production of c¢ylindrical shells and types, high capacity
coll winders usually are used., One of them is shown 1in Fig. 50.

Fabric and nonfabric glass
filler, in the form of threads,
tapes, bands and fabrics are used
for continuous winding of fiber-
glass reinforced plastic shells.
Folyester, phenol, epoxy, organo-
silicon resins and various modi-
fications of them are used as the
binders.

Fiberglass reinforced plastic
¢cylindrical shells obtained by
continuous winding are anisotropic
laminated materials. In distinc-
tion from natural anisotropic
materials, the nature of the aniso-
Mg, 50, Unit for continuous wind- tropy of the fiberglass reinforced
ing of cylindrical shells. plastics and other reinforcing

plastics can be regulated by change
in orientation and mutual location of the filler during production. It
1s expedient to call such anisotropy of the material controllable tech-
nological anisotropy, in distinction from structural anisotropy, which
1s produced by strengthening the shells with stiffening ribs.

The most efficlient reinforced plastic structures are those in which /1c
anisotropy of the elastic properties most profitably corresponds to the
stressed state of tbhe shell or ensures its maximum rigidity with re-
spect to a glven load. Determination of the optimum structure of lami-
nated plastics in various structures presents interesting new problems
of the theory of elasticity and the theory of shells.

This chapter discusses the problem of the selection of optimum
structure of a fiberglass reinforced plastic in a cylindrical shell
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which 18 exposed to axisymmetric loads, which produce a uniform state
of stress in it, determined by the components of the normal forces Tl'
T,.

2

It 1s assumed that the bindev has i1deal elastic, strength and ad=-
hesive properties, which ensure compatibility of the deformation of
individual glass filler elements all the way to failure. The glass
filler is considered in the form of circular cross section fibers,
which does not restrict the generality of the results obtained.

It is easy to nhow that, in elastic deformations, forces Tl’ 'I‘2
will be taken up by the filler and binder in propcrtion to their moduli
of elasticity EH’ Ec and their volumetric content in the material.

If the relative volumetric content of binder is designated g, the
relative fraction of the forces which are taken up bty the binder 1is
determined by the expression

g Bk
E =0 (4o2)

The moduli of elasticity of avallable resins change between
o] o]
3:10° and 7:10° n/m°, and the modulus of elasticity of glass Ey"

7‘103 n/me. The optimum conter.t of binder in fiberglass reinforced
plastic is approximately 30% and, consequently, by Eq. (402), qw2-Uuf,

~N
[
"ny

Thus, the normal and shearing forces in filberglass reinforced
plastic shells are primarily taken up by the glass filler. This de-
termines the carrying capacity of the structure. Based on this, we
will assume that the effective load on the shell is taken up by the
glass filler.

We will call continuous winding the optimum 1if it ensures equi-
librium of the glass filler without the binder. It should be noted
that, in nonlinear deformations in the binder and in plastic deforma-
tions of the material at the time of failure, the fraction of the load
which 1s taken up by the binder decreases sharply. Therefore, selec-
tion of the optimum winding general speaking 1s of decisive importance
for increasing the carrying capacity of a shell. We will call a shell
composed of fibers alone the basic system.

Since actual resins which are used as binders in the manufacture
of shells have various properties, they provide compatibility of de-
formation of the glass filler in different ways, and thils explains the
results of studirs in which a significant effect of the binder on the
elastic and strength properties of fiberglass reinforced plastics was
found. Actually, with slight adhesion of the binder to the glass filil-
er, tne distribution of forces through the shell will be irregular.
This leads to both premature destruction of the filler in the most
stressed fibers and to overstress and fallure of the binder, 1.e., an
increase in irregularity of distribution of the forces and subsequent
reduction of carrying capacity of the shell.
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If the axial force in a cylindrical shell 1is Tl and the annular
force is (l+a) Tl’ the normal forces which act on a surface which 1is

located at angle 6 to the generatrix of the shell is determined by the
expression

Ty=T (1 acostd). (4o3)

Let glass fibers be wound on a cylindrical mandrel at uangle ¢ to
the generatrix (Fig. 51).

It i1s easy to determine that the same number of
fibers passes through segments AB, AD and BC (Fig. 51).
If the length of a segment of the generatrix ABs=a,
the length of a segment perpendicular tn the fiber
direction equals a sin ¢. Consequently, na sin ¢ fi-
bers pass through the segments indicated above, where
n is the glass fiber packing density, i.e., the num-
ber of fibers passing through a unit segment perpen-
dicular to the fibers.

The angle between the normal to area BC dropped /124
from point A (AE]/BE), and the length of segment BC
ing diagram and o .
conventional a5 — (04 ¢q) Tom |BC| ez 20T (bolk)
symbols. sin (0-+¢q)

Consequently, the normal force which arises in area BC in stretch-
ing of the fibers by force f 1s determined from the expression

T .- .!.".’Li‘_'.‘.:E."ﬂ"_"’_.afn sin® (8 -+ ¢). (405)

According to Eq. (405), the distribution of normal forces in a
cylindrical shell depends essentially on the orientation of the glass
filler during winding, 1l.e.; on angle ¢.

According to Eq. (405), winding of the fibers at one constant
angle ¢ does not ensure equilibrium of the basic system. We will sub-
sequently assume Eg. (405) to be written for the limiting state of the
shell, 1.e., we will assume fiber tension f to be equal to the break-
ing force of the fiber. For convenience in use, it 1s advisable to
subsequently present Eq. (40%) in the form

Ty = 221 4 008 29 — 2cos 2pcos® 0 -+ sin 2psin 20]. (406)

39. Continuous Winding of Cylindrical Shells with Unidirectional Glass
Fillers at Optimum Angles to Shell Generatrix

Since winding a cylindrical shell at one constant angle does not
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snsure equilibrium of the basic system, we consider the case when the
shell is wound with two glass fiber systems at angles ¢1 and ¢2 to the

shell generatrix (Fig. 52).

We initially study the simplest case, when each layer of one sys-
tem of fibers corresponds to one layer of the other system. Accord-
ing to Eq. (406), the force on the area 0 is presented in the form

r, -l,} (2 4- cos 2¢, + c08 2@y — 2 (08 2, -+ cos 2¢,) cos? & + (407)
+ (sin 27, + sin 2¢,) sin 20).

The equilibrium conditions of the glass
fibers have the form

€08 2p, +- €08 2qy <3 < o

T¥a (408)
sin 2¢, -+ sin 2¢, == 0.
Filg. 52. Bias cross
winding. From Eq. (408), it 1s easy to find /125
v @ =ue=—tma (m=0,4,2...% (409)
60—} . o829 ©+ — s (410)
40} £ 4~ — Ao ree ]
208 —1— where a»-., 1.e.,, the winding should be crossed
at angles t¢. For different stresses of the
0 2 ¢ 5 & w0 nnh shell, the optimum cross winding angles are
T, determined by Eq. (410).
Fig. 53. Optimum winde+ The results of calculation by Eq. (410)
ing angles vs. Jtress are presented in Table 1, and they are 1llus-

of cylindrical shell. trated in Fig. 53.
The basic relationship whichk connects the carrying capacity of
the shell with the strength of the glass fibers has the form

Tv= 53z in. (411)

We now consider a more general case of continuous winding, when
N layers wound at angle ¢2 to the generatrix are applied to each layer

wound at angle ¢1 to the generatrix.

The equilibrium conditions of the fibers have the form
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sin2¢, 4 N sir 29, = 0, (412)
TABLE 1. OPTIMUM WINDING ANGLES OF

CYLINDRICAL SHELL UNDER AXISYMMETRIC
LOAD Vvs. 'I‘2/'I‘1

k:;nrpmnun ’ _1# v

a
Ocenoe pacTrike-
mite 0 0*
b 1 iy
Dryrpoupce na-| 2 54° 44
paoBne ¢ ocenoll 3 80®
C cunon 4 632 25°
5 5e 55’
9 71° 35’
oo 00°

Key: a. Type loading of shell
b. Axial tension
¢. Internal pressure with axial force

Consequently, the optimum winding angles are determined by the
following exresslions

cos2q, - 2 '*.')._2.; i;g?).’,‘_;i:,'-’“ +2) ;
9 (a*+2042) ¥V —2(a+1) (413)
cos 2q, — (24 ajaN v

The carrying capacity of the shell

T ;H/", (414)

Determination of the optimum winding angles by Eq. (413) is not

difficult in any axisymmetric stress of the shell. Further, we study

the cases of loading with uniform internal pressure most Ifrequently
encountered in practice.

If a shell operates under uniform internal pressure, the optimum

winding angles are determined by the formulas

. 4¥ -5 4—5N
cos 2y - —— =~ C052¢y = —ax— . (415)

It follows from Eq. (415) that

~
H
N
(o)
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1SN 2 (416)

The carrying capacity of the shell
2 b
PR = = (N + 1) fn. (417)

TABLE 2. OPTIMUM WINDING ANCLES OF
CYLINDRICAL SHELLS OPERATING UNDER INTERNAL
PRESSURE VS. LAYER RATIO N

N " "

1 S4° 44 125 16’
1.4 §50¢ 46’ 124° 29’
1.2 46° 54 118° 08’
1.3 43° 08’ 115° 04*
1.4 40° 14’ 11242
1.5 J5° 46’ 100° 28°
1.6 31+ 08’ 106° 46
1.7 26° 34’ 104° 02’
1.8 21° 2¢’ 101° 06’
1.9 14° 58’ 97° 36
2 0° 00°

The results of calculation of the optimum winding angles by Eq.
(415) are presented in mMable 2.

N=1 corresponds to bilas cross winding; N=2 corresponds to longi-
tudinal-transverse winding, when two layers are wound in the annular
direction (¢2-90°) on one longitudinally laid layer.

The calculation results presented in Table
2 are i1llustrated in Fig. 54.

v
P ! We now compare the yileld strengths of
‘li shell materials obtalned by continuous winding

100 with the same glass fibers and different aniso-
tropy of the strength properties. According to

80 basic relationship (414), which connects the
carrying capacity of the shell with the strength

60— of the fibers, the following results can be

w'\- o obtained (Table 3).

2 5g, Optimum Continuous Winding of Cylindrical
Shells with Flberglass Fabrics

¢
I 42 16 5 N Fiberglass fabric is an aggregate of two

mutually orthogonal glass fiber systems connect-

Fig. 54. Optimum ed together with varied amounts of interweaving
winding angles of in textile processing. By type and amount of
cylindrical shells interweaving of the warp and woof fibers, card,
operating under in- satin and serge cloth are distinguished (Fig.
ternal pressure, 55).
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Satin fabrics have the greatest flexibility, they ensure the high-
est quality packing in continuous winding, and they have the best ca-

pacity for impregnation with binders.
produced from fabrics usually are called fiberglass laminates.

For convenience, we introduce the following designations:

f

TABLE 3.

c Tipeasan nposmocrs » rAaSEME
RAUPARRSHEAT ANNSOTPOTNR
& Tun crensonaacrina .,ﬁ:ﬁ:,’,‘m,
% %%
d Oasouaupamaemnufi ! 1:0 In 0
€  Panuoupounuii t:1 Ti-ln -'-,— n
- . 2 1
2:1 3 In -:i-ln
~ . m n
m>n m:n > In e In
Key: a. Fiberglass plas~ ¢. Yield strength in principal

1’

VS. NATURE OF ANISOTRCPY

FIBERGLASS REINFORCED PLASTIC STRENGTH

tic type
b. Nature of aniso-

tropy

O el

2% l]:?

b 0)

Fig. 55.
card; b.

s

directions of anisotropy
d. Unidirectional
e. Full strength

ALEL

) 24

e U

LA B
T

Fiberglass fabric structure: a.
c. serge.

satin;

Fiberglass reinforced plastics

are the breaking forces of the warp and woof fibers;
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ny» N, are the packing density of the warp and woof fibers;
kef,n,/fin, is the relative strength of the fabric (k¢l).

As in winding with unidirectional glass fillers, winding of a
cylindrical shell with fabrics at a constant angle does not ensure equi-
librium of the basic system, except for straight winding of the
warp in the annular or longitudinal directions. 1In this case, of course,
the anisotropy of the fabric should be k-T2/'I‘1 or k'Tl/Tz’

We consider the general case:of cross winding of a cylindrical
shell with two fabric systems, which are laid so that the direction of
the warp fabric is at angles ¢1. ¢2 with the shell generatrix.

Both systems are composed of the same fabric of relative strength
k in which, on each layer of the first system, there are N of the second
system.

In accordance with Eq. (406), the normal force on arca @ /129

T, m:—’—'é'ﬂ—l(/\f-i~ 1) (k + 1) — (k — 1) (cos 29, + N cos 2q,) +

+ 2(k — 1) (cos 2p, -i- N £18 2¢,) cos? O —
— (k — 1) [sin 2q; - N sin 2¢,] sin 20]. (418)

Consequently, the equilibrium conditions of the basic uystem are
written in the form

(N+1)k+1)a

(k—1)(2-+a) ' 4
sin2q, -+ Nsin2q, =0, (419)

co8 2¢; + N cos 2¢; =

The relationship which connects the carrying capacity of the
reinforced shell with the strength of the fibers has the form

Ty= L2 (N 4 1) (K + 1). (420)

The following expressions for determination of the optimum winding
angles can be obtained from Eq. (419):

€08 2¢p; =
L@ k=) N — (ko )Pt (N L) — (k—1)8 (2+u)’
2(N+1)(k*—1)a(2+a)
€05 2, = (421)
(k—1)2(2+-a)2 V24 (k+ 4)3 03 (N 4 1)2 —(k—1)3 (2+a)’
2N (N 1) (k*=1)a(2+a)

Since it 1s quite complex to study Eq. (421) in the general case
of loading a cylindrical shell, we consider the case of loading a shell
with uniform internal pressure (a=l) in greater detail, for cross wind-
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ing N=1,
In this partial case, ¢,=-4,"¢

cos2¢p-=-77‘—__;"+__':, : (u22)

it follows from this formula that, for manufacture of fiberglass fabric
cylindrical shells operating under uniform internal pressure, fiberzlass
fabrice must be used which satisfy the condition

0cke3, (423)
i.e., the fabiric strength along the woof should not be greater than
half the fabric strength along the warp. Otherwise, the excess strength /130
of the fabric along the woof cannot be used, even in bias winding.

The results of the calculation by Eq. (422) are presented in
Table 4 and are depictec in Fig. 56.

TABLE 4, OPTIMUM CROSS WINDING
ANGLES OF FIBTRGLASS FABRICS

A 9 h 9
540 44° 0.25 61° 48’
005 55% 48’ 0.30 684° 07’
040 5707’ 0.35 66° 50’
045 53° 24’ 040 70° 52°
60° 05 80*

According to Eq. (420), the carrying capacity

“.

of a shell under internal pressure equals

”

o PR = % finy (k + 1). (L2l)

75

” It can be concluded from this that filberglass lami-

» nate shells are considerable inferior in strength

g r to sh«1ls made by winding unidirectional glass fill-

60 ers, the carrying capacity of which cquals

53 8

0 PR =3 n. (425)

0 Q! 8 8 4¢
Fig. 56. Optimum Actually, the relaticnship f1n1>fn always
winding angle of occurs, since the fiber strength in textile process-

cylindrical shell ing only decreases, i.e., f1<f. Besldes, the fiber

vs. relative warp .
packing density in fabrics 1s less than the filber
g?df:ggic?trength packing density in winding: n,<n. Consequently,
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even in the most favorable case, when rlnlmfn, the carrying capacity of

a fiverglass laminate shell is 25% less than the carrying capacity of
a shell produced by winding unidirectional glass filleres.

It also follows from Eq. (424) that with a given warp strength of
fiberglass fabric, the maximum carrying capacity of the shell is reach-
ed at k=0.5, 1.e., in straight winding of fabrics, the warp strength of
which 1s twice the woof strength.

It seems advisable to consider a still simpler method of manufac-
ture of shells, when annular winding is accompanied by laying the fabric
warp along the shell generatrix.

Let N layers be wound in the annular direction on each layer of /131
fabric laid along the generatrix or vice versa. In this case, the norma
force on area 0 13 represented by the expressions

Tos=tiny (¥ ik + 1) [1 = L=HI=) copro] (426)
or
To=tying (N, + k) [’ + 4 —wk).g—z = cos’o] ) (427)

The relative fabric strength 's not limited by blas winding condi-
tions, and it changes in the Ogkgl interval.

Thus, the number of annular layers on one layer of fabric laid along
the generatrix i1s determined by the formula

{tda—k {t—k--ka
N‘rz_‘.:.k“___ﬂ- or Ny=—raoi (428)

Since N>0, the fiberglass fabric should satisfy the conditlors

hgmin(i-é-u; Tj;)gu

(429)
i;:k;max(i-{-u; —IT:-_n-) 9

We consider several possible cases.

1. Axial tension of shell a=-1; the optimum fabrics which
ensure the greatest strength of the shell should be unidirectional
(k=0). According to Eq. (428) N,=0.

2. Uniform tension of shell a=0; for the manufacture of a
cylindrical shell, the annular stress of which equals the axlal stress,
it 1s advisable to use full strength fabrics (k=l). According to Eq.
(428), Nl-l.

3. Shell under internal pressure a=1l; in this case, the
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optirum fabrics should lave relative woof strength k=1/2 and be wound
only annularly. According to Eq. (428), N,=0.

41. Optimum Methods of Combined Winding of Cylindricsl Shells

There is still another method of continuous winding of shells w*‘‘h
fiberglass fabrics alternately with some unidirectional glass fillere.
This combined winding method permits the impre-ement of fabrics which
do not satisfy the conditions of optimality. MNoreover, in laying the
fabric warp in the direction of the generatrix, the strength of the

sgei% is increased correspondingly compared with fiberglass laminate
shells.

We initially consider the combined continuous winding method as

applied to the manufacture of shells which operate under uniform internal

pressure. Let the warp of the fabric form angle . 2Y with the generatrix

of the shell and the unidirectional filler be wound at angle °2 to the
generatrix.

If N layers of unidirectional glass filler are wound on each layer
of fabric, the optimum winding angles are determined by the following
expressions

u:-a::‘w,u-a&-w,-—-s )

U=k (hr+ k1) '

Bk]— 4"+ k ket & + 10k — 4 (430)
3y (h+Ek+1) ’

cos 2¢q, ==

€08 2Qg = —

where

f is the tensile strength of the fiber; n 1s the packing density of the
unidirecticnal filler.
We also consider the case of winding of the greatest practical

importance, when the fabric is laid with the warp in the axlal direc-
tion (¢1u0), and the unidirectionai glass filler is cross wound at

angles +¢.

In this case, the normal force on area 8 1s represented by the
formula

Toz/ln‘[i_*.&L’fiﬁzﬂ_(k,cos%p—}-l-k)cos’()]. (431)

The carrying capacity of the shell 1s determined by the expression

PR = 2 (finy + fany + fN), (432)

and the optimum cross winding angle of the unidirectional glass filler
is found by the formula
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conZpen Bt (433)

where parameters kl' k should satisfy the condition

c-kl+k;2. (434)

In the individual case when kl+k-2, ¢=90°, i.,e., the unidirec-
tional glass filler should be wound in the annular direction.

TABLE 5. OPTIMUM COMBINED WINDING ANGLES

‘-h'+h

3 3 4 5 [} 7 L} #

04 100%] 70011’ | 65°35° | 63°08° | 64°37' | 60°34’ | 50°48" | 59° 12’
02 100°] 60049 | 650 14’ | 62 54° | 64°21° | 60° 20" | 59°34' | bO®

03 0] 69°26' | 64° 52 2032 | 61°04° | 60°05' | 69* 22° | O8° 48’
041000 6902 | 64*31° | 02012 | 6048’ | 50°560° | 50°08° | 58° 36’
051{90°] 68°45' | 64°08° | 61¢82° | 60°30° | 5H9°35 | 68°54° | 68* 24’
06100°] 68207 | 63%43 | 61232° | 60° 12’ | 59°19° | 58° 40’ | 58° 42°
071900 67°37' | 3% 18 | 6110’ | 59°54’ | 59403’ | 58°26' | 57° 09’
O8[O0%] 67006 | 62051 | 60°48° | 59°34° | 58°46° | 58° 42’ | 57° 46’
0.9190°| 56°32 | 62022' | 60°25' | 59°15° | 5830’ | 57°56° | £7° 32
1 100°] 65°50° | 61°50' | GO° 56°54° | 58912 | 57°42' | 51° 18’

The results of calculation by Eq. (433) are
presented in Table 5 and Fig. 57.

¢ "] [ ] We now study the general case when it 1is /133
)4 — necessary to determine the optimum combined winding
¢ | o of a cylindrical shell operating under axisymmetric
5"{_‘*142;._4__~ loed T,/T,=1l+a. We consider the simplest longitudi-
§0 |- t— nal-transverse winding, when the fabric warp is
,‘ b laid long the axis of the shell or is wound with
55 [ Lo the warp in the annv'ar direction, depending on the
| [ nature of the stress of the shell.
527 o o5 or ¢

Similarly to the preceding, for determination
Fig. 57. Optimum of the optimum winding angles of the unidirect¢ional

combined winding glass filler, the following calculation formulas
angles. can be obtalined
_ 2k—kja—2(14a)
cos 2p = (;H-a)k. ; (435)
2(1—a)—2k(1+a)—k a (436)
cos 29 = ki (2+0) ’

When the warp of the fabric i1s laid axially, according to Eq.
(435), the filler paramters should satisfy the conditions
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k>t t+hE (437)

If the warp of the fabric is wound annularly, the filler parameters
should satisfy the conditions

ky+ k=329, k-——’_ﬁ’_l;g-;-:-}. (438)

i4+a’

42, Optimum Winding Angles of Bottoms of Varied Geometric Shape

We will consider a bottom manufactured by continuous winding, in /134
the form of a shell of rotation and smoothly Jjoined to a2 cylindrical
body of radius a (Fig. 58).

If the (r, x) coordinate origin 1is
placed in the pole of the bottom, the
principal radii of curvature of the bottom
are determined by the known expressions

papesen— G
1 R, = _y—(l—':',"al-; Ry=rV1i4r" (439)
h—s\_’.—_\_’_‘
Fig. 58. Coordinate sys- The meriddonal and annular forces
tem for shell of rota- which are generated in the bottom as a
tion. result of uniform internal pressure are
equal to
T, =L Vi+r ‘
(440)
N g . .|
T,.—:—c- ‘+r <2+i+'12)

Since a shell of rotation with positive Gaussian curvature
l/R1R2>0 is a nondevelorable surface, the bottom can be made only by

continuous winding of glass fibers.
Let nc fibers pass through small segment ¢ perpendicular to the

fiber direction. We consider an element of the bottom cut by two axial
planes and two conical surfaces, so that the condition ds1 gin ¢=c,

d52 cos ¢=c, where ¢ 1s the winding angle, i.e., the angle between the
fiber direction and the meridian of the surface, is satisfled (Fig.
59).

The same number of fibers, equal to the product of the packing
density and the length of segment ¢ (perpendicular to the fiber direc- /135
tion), 1.e., equal to nc, passes through segments dsz,c and dsl. In

distinction from a cylindrical shell, the fiber packing density on a
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double curvature shell 1s not constant, but it changes direction toward
the pole of the shell, 1.e., the fiber packing density 4in winding shells
of rotation is a function of the cross section radius or &#xial coordi-
nate x.

The normal forces which are generated in area dsl, dsz, with the
fibers under tension of force f,

T,=fn cos® ¢; T,=fn sin® ¢. (441)

According to Eq. (4U40), (441), a system of differential equations
which determines the optimum continusus winding of shells of rotation
has the form

pr "'i + ’-" o 2,’3 ('US’ ¢,

pr) T4 (24 ) < 2msint . (Hh2)

By dividing the second equation of (ll#2) by the first, we obtain
an expresslion for the square of the tangent of the optimum winding
angle of the bottom as a function of the shape of the bottom

rr’
ch., 2~‘r-r—-'-,f. (443)

tan "

This basic relationship permits the pattern of change of winding angles
¢ in the manufacture of shells of rotation of arbitrary shape to be
found:

Shape of shell of rotation Optimum winding angle
Hemispherical f_"iim_‘
Ellipsoidal arctg | 2= gy
Fllipsoidal b=a//? mng;/é’.f:.,‘._;g’).
Conical 54°44° )
Oglval uﬂg]/2—7:£:$

r
Box arctg ‘/2-'—a
0

-

However, in continuous winding of shells with a nonzero Gausslan
curvature, 1t must be kept in mind that, besides satisfying the conditlon
of equilibrium of the basic system, i.e., equilibrium of the glass filler
without the binder, still another no less important condition must be met
which specifies no slipping of the glass filler from the shell surface,
and it is geometrically reduced to winding along the geodetic lines of /136
the surface. According to the Klero theorem for a surface of rotatilon,
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this condition can be written in the form
r sin ¢=h, (bby)
where h 1s the geodetic line parameter,

With an opening at the pole and continuous winding of the opening,
the gecdetic line parameter equals the cross section radius of the
opening.

According to Eq. (443), (44l), the differential equation which
determines the shape of the bottom and the optimum winding can be writ-
ten in the form

. PIATT L
—"“j:;f""'; et = 0. (44s)

By replacement of the variables
F=t;  r'-U(1), (4u6)
differential Eq. (U445) can be reduced to the form

Udv - (3=2:m4a; (uu7)
1+U3 C@=1)

from which, after integration, the desired shape of the bottom is de-

termined in the form of a simple quadrature as a function of parameter
h

P [ S
‘Jnu;un-;- t- %o (448)

c=m—(-§—";1.2},-- (449)

h

where

According to Eq. (4u48), the optimum shape only exists in regicns .
where the sublntegral expr«ssion 1s positive.

Optimum shape of bottom with longitudinal-transverse winding.
There 1s interest in determinatlion of the optimum shape of a bottom with
longitudinal=-transverse winding of the cylindrical shell.

In longitudinal-transverse winding, the glass fibers will go in the
direction of the meridian of the shell. Consequently, tc erisure equi-
librium of the basic system in the annular direction, a bottom shape
must be selected in which the annular stresses equal zero.

According to Eq. (440), the desired bottom shape is determined by
the following differential equation

rr"+2r'2+2-0. (450)
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The solution of Eq. (450) is represented by the elliptical integral /13

|

. 1 dt
z.“of }at—ts ' (451)

which can be expressed through elliptical functions.

In the dimensionless coordinates n=x/a, {=r/a, the shape of the
bottom 18 determined by the equation

n=06(z), (452)
where function ¢/(f) and its first derivative are presented in Table 6.

TABLE 6. OPTIMUM SHAPE OF BOTTOM WITH
LONGITUDINAL-TRANSVERS® WINDING

4 ®(Q)-108 ' () t G () 103 @'}
0 0 0 0,52 4,7629 0.2809
0.02 0.3 10" 0.0004 0.54 5.3484 0.3049
0.04 021%-10-2 | 0.0016 0.56 59834 03303
0.06 0.720. 107 | 00036 0.58 6.6702 0.2572
.08 00177 00064 0,60 7.4131 0.3850
0.10 0.0333 00100 | og2 8.2152 0.4164
042 0.0576 00144 0.64 0.0797 0.4490
044 0.0815 0.0196 0.66 10013 0.4839
0.46 04365 0,0250 048 11,017 0.5215
0.8 04944 0,0324 0,70 12,008 0.5621
0,20 2667 00400 072 13,266 0.6062
0.22 0.3594 0.0485 0.74 14521 0.6544
0.24 0.4613 0.0577 0.76 15,880 0.7076
0.26 0.5865 00678 0.78 17.344 0.7666
0,28 0.7327 0078 | 080 18,931 0.8329
0,30 0.9015 0.0804 0.82 20,531 1.1008
0,32 1.0047 0.1029 0.84 22,270 1/ ()
0,34 1.3139 0.4164 0.86 23,472 0.9371
0.36 1,5608 0.4307 0.88 26,301 0.8170
0,38 1.8372 04459 0.90 98,687 0.7240
0.40 2.4450 0.1624 0,92 31,435 0.6292
0,42 2.4861 04792 094 34,682 0.5204
0.44 2,8621 04973 0,46 38,702 0.4212
0.46 3.2764 0.2465 0.98 44.184 0.2001
048 3.7204 0.2368 1 58,115 0.0000
0.50 £.2242 0.2582

, —— The optimum bottoin shape 1s
— preserted in Fig. 60, where an

ellipsoidal bottom with the same

semiaxes as the optimum bottom

46 1s noted by the dashed line.
\ E@*
Y ¥ y/

N S

28 06 0 09 08¢

Fig. 60. Optimum shape of bottom
with longitudinal-transverse winding.
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CHAPTER 9. END EFFECTS IN AXISYMMETRICALLY LOADED CYLINDRICAL SHELLS

g&. Differential Equation of Axisymmetrical Deformation of Cylindrical
ell

We consider an orthotropic cylindrical shell, the principal axes /138
of anisotropy of which coincide with coordinate axes x, g, which char-
acterize the distance along the shell generatrix and the circumferen-
tial angle (Fig. 61).

According to Eq. (10)=(12) and (2u)=-
(26), in axisymmetric loading of an ortho-
tropic cylindrical shell, the basic elasticity
relationships are presented in the form

\
T‘ = Bl (u' + V'%) ]
Ty=By(F +ww'); (453)

Q1= —Ki(9 +v');
G‘ == —‘D‘q)'; G’ =V G‘-

Fig. 61. Gaussian coor=-

dinates on surface of

cylindrical shell. The equilibrium equatlons of a shell
subjected 