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FOREWORD 

This volume contains thesunvnary papers of the SPS Workshop 
on Microwave Power Transmission and Reception held at the 
Johnson Space Center, Houston(\, Texas, January 15-18, 1980. 
These papers are summaries of the material presented during 
six technical sessions: Microwave System Performance, 
Phase Control, Power Amplifiers, Radiating [Iements, 
Rectenna and Solid State Confi9urations. As part of the 
DOE/NASA Concept Evaluation Program~ a set of conclusions 
were reached based on numerous analytical and experimental 
investigations. These papers provide a comprehensive 
record of the material developed to support those con­
clusions at the Workshop. 

It is hoped that this volume will be a useful contribution 
to the continuing evaluation process of the SPS Microwave 
Power Transmission and Reception System. 

R. H. Dietz 
SPS Microwave Systems 
Johnson Space Center 
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1. System Sizing 

) N82-12539 

SYSTEM PERFORMANCE CONCLUSIONS 

G. D. Arndt 
NASA ~ Johnson Space Center 

o Reduced Power Levels 
a Antenna Diameters Smaller than 1 Km 

The init~;~ sizing for the satellite power station was a l-kilometer 
transmit array with 5 gigawatts of DC power out of the rectenna. There 
are, however, some advantages in having a smaller system size. 
Commercial utility companies can probably ahndle l-g;gawatt increments 
easier than 5 gigawatts; the fmplementation cost of l-gigawatt system 
is lower; and the sidelobe radiation levels near the rectenna are lower. 
Disadvantaqes of smaller systems include lower end-to-end microwave 
transmission efficiency and an increase in the overall cost of electricity 
(mills per kilowatt-hour). 

The downlink operating frequency is another trade-off consideration. 
The SPS reference system operates 'at 2.45 giQahertz, which is the 
center of a lOO-megahertz band reserved for government and non~)Qverment 
industrial, medical, and scientific (IMS) use. This band has the 
advantage that all communication services operating within the 2450 : 
50 megahertz limits must accept any interference from other users. 
There is another IMS band at 5.8 gigahertz which should be considered. 
One way to reduce the terrestrial land usage requirements for the SPS 
rectenna is to increase the operating frequency while maintaining the 
same antenna size. This reduction in rectenna size must, however, be 
traded off against the large temporary degradation in transmission 
efficiency under extremely adverse weather conditions at the higher 
frequency .. 

The end-to-end microwave transmission efficiency for smaller SPS systems 
operating at different frequencies will not be determined. The nominal 
microwave transmission efficiency, from the rotary joint in the satellite 
to the DC/DC power interface at the output of the rectenna; is shown 
in figure 1. This end-to-end efficiency, for a frequency of 2450 megahertz, 
may be written 

Microwave Eff = 0.805 Effcoll X Effconv (1) 

For the reference system, Eff 11 = 0.88 and Eff [IV = 0.89, and tbe 
microwave link efficiency is g~ percent. This ef~iciency will be uSt:.'d 
as a reference for comparing smaller SPS systems. In equation 1) the 
rectenna collection efficiency Effcoll is a function of incident power 
dens ity nnd i ncre.'Tlental rectenna aY'ea1;'Jhil e the convers ion effi ci ency 
Effconv varies only with power density. The RF-DC conversion efficiency 
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depends on the input power level to the rectifying diodes connected 
to the ha')f-wave dipole elements in the rectenna. Durin!=! the past 
several years, excellent progress has been made ;n developinq higher 
efficiency diodes, particularly at lower levels. fh;s RF-DC conversion 
efficiency, which is the collection efficiency of the individual dipole 
el ements times the diode rectifying eff;c; ency, vari es from 70 percent 
at 0.04 milliwatt per square centimeter to 90 percent at 10 milliwatts 
per square centimeter as a function of incident power density. These 
data assume a 3 percentage point improvement in the next decade over the 
present achievable conversion efficiency. 

The degradations in end-to-end microv'ave effici ency for small er SPS 
sizes are summarized in fiqures 2 and 3 for operating frequencies of 
2450 and 5800 megahertz respectively. The 63 percent reference 
efficiency is that performance expected for a l-kilometer, 5-gigawatt 
SPS system opereting with a constant 89 percent RF-DC conversion 
efficiency in the rectenna. The difference in performance between the 
5-gigawatt and the l-gigawatt systems as shown in figure 2 ;s due to 
a reduction in rectenna conversion efficiency at the reduced power 
density levels associated with the l-gigawatt system. Also, for 
transmit arrays with a diameter less than 1 kilometer, the power beam 
is dispersed over a wider area at the ground due to reductions in 
antenna gain. This dispersion reduces the amount of ener9Y intercepted 
by the rectenna and further reduces the RF-DC conversion efficiency. 
The data indicate that smaller SPS powers are feasible, provided the 
antenna size is not reduced; that is, a l-kilometer, l-nirawatt SPS 
system will have only a 4 to 5 percent (percentaqe points') reducbon in 
microwave transmission efficiency as compared to a 5-gigawatt system. 

The transmission efficiency for systems operating at 5800 me~ahertz as 
given in figure 3 is interesting in that there is very little degradation 
in performance at the reduced power 1 evel s. The reason is that the 
power density levels at the rectenna are considerably higher for the 
58GO-megahertz systems, and hence little degradation in RF-OC conversion 
efficiency occurs as the power is reduced. There is a1so a constant 
degradation relative to the 59.3 percent reference efficiency due to 
lower effici enci es in several of the microwave subsystems operating 
at the higher 5800-\'l/egahertz through a heavy rain, rectennas for these 
systems could have intermittent power reductions unless located in dry, 
southwest regions. 

There is a significant reduction in rectenna size at the higher 
frequency as shown in figure 3. If rectenna costs and land usage 
requirements become major factors, operating at 5800 megahertz should 
be seriously considered. 

2. Startup/Shutdown Operations 
o Three sequences for startup/shutdovm provide satisfactory 

performance 
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An SPS in synchronous orbit experiences solar eclipses by the earth, 
moon, and other SPS. The most important of these eclipses are by the 
earth, both in occurrence and duration. The satellite will be eclipsed 
daily by the earth for approximately six weeks during the sprin~ and 
fall equinoxes, t1arch 21 and September 21, respectively. Specifically 
there will be 43 eclioses centered around the spring equinox and 44 in 
the fall, for a total of .g7 times per year. These eclipse periods will 
vary each day, with the t'lme bui 1 di ng up to a maximum of 75 mi nutes at 
the equinox. Except for the first and last days of each series, the 
satellite is totally eclipsed. 

Because of switching conditions and transients in the DC power distribution 
systel11~ the microwave system will be brought up (or shutdo\.Om) in controlled 
increments, rather than havinf) on-off switching of 7 Gl~ of power. The 
resultant microwave radiation patterns can vary greatly, depending upon 
the sequencies used for energizinp the antenna. The beam patterns have 
been evaluated in order to reduce the environmental effects of the 
microwave radiation from the antenna under transient operating conditions. 

Let us now examine what happens to the solar array during an eclipse. 
Both the solar cells and the structures will cool off quickly. The 
structure will drop to 700 K (-3350 F) during the longest (72 minutes) 
occult period (Ref. 5). The sular cell temperature drops from its 
nor~a1 operating value of 3100 K to 1100 K at the end of 70 minutes. 
After emerging from the earth's shadow, cell temperatures rise quickly, 
particularly if the cells are open-circuited. A solar cell's output 
is a function of temperature and the cells will produce a higher 
output povler for a few minutes until the temperature stabil izes. 
Since the voltage regulation to the klystron tubes is ~5%, the tubes 
cannot be energized until near steady-state operating temperatures 
are reached in the solar array. 

The operational procedure would be to open-circuit. the soiar cells 
;Jrior to emergence from occulation, close to the DC power circuits in 
the solar array after the solar cell temperatures have stabilized near 
3100 K (a few minutes depending the length of the eclipse period), and 
then sequentially energize the klystron tubes in an optimum manner to 
minimize radiation effects. 

The pattern characteristics for the main beam, sidelobes, and grating 
lobes were examined for eight types of energizing configurations which 
include: 

1. Random - the antenna is startinq at the center and 
progreSSing outward -

2. Concentric rings - starti~~ at the center and proaressi~~ 
outward 

3. Concentric rings - beginning at the outer and progressino 
to the center 

4. Line strips - center to the outside edge 
5. Line strips - outside edge to the center 
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6. Line strips - edge-to-edge 
7. Radial cuts 
8. Incoherent phasing 

In each of these sequences shown in figure 4, the amount of antenna 
power is increased in ten discrete steps. For each of the configurations 
the reference error tolerances for random amplitude and phase errors 
throughout the antenna are included. The results are obtained through 
co~puter programs which simulate the 7220 subarrays as individual 
radiators properly phased together. 

To briefly summarize the results, three sequenc~s provided satisfactory 
performance in that the resultant side10be levels during startup/shutdown 
were lower than the steady-state levels present during normal operations. 
These three sequences were: 

o random 
o incoherent phasing 
o concentr'ic ri ngs - center to edge 

As an example of the performance of the random sequence, the random 
startup is well-behaved in that the partial power patterns closely 
resemble the full pOWl~r chara('teris'~ics, oniy reduced in amplitude as 
shown in figure 5. As the r,"!d',ated power ;s decreased the effective 
antenna area decreases, and the far sidelobe levels increase. The peaks 
and nun s of the sidelobes remain spatially stationary as the antenna 
radiating area changes. 

An example of a poor startup/shutdown sequence is shown in figure 6, 
i.e., 1 ine strips - edge to edge. By taking successive vertical 
strips at one edge of the antenna and progressing to the other edge, 
the peaks and nulls of the sidelobes moves inward towards the rectenna 
with additional power. These patterns have sidelobe levels several 
orders of magnitude greater than for steady-state. In conclusion a 
proper choice of sequences should not cause environmental problems 
due to inc'eased microwave radiation levels durino the short time periods 
of ener0izing/de-energizing the antenna. 

3. Antenna/Subarray ~1echan;ca1 Al ignments 
o A1 innment reau"irements determined by grating lobe peaks 

and scattered power levels 
o Antenna alignment requirement is 1 min or 3 min depending 

upon phase control configuration. 

There arc two types of mechanical misalignments: (1) a systematic 
tilt of the entire antenna structure produced by attitude control 
system errors, and (2) a random tilt of the individual subarrays pro­
duced by antenna bending or subarray alignment errors. The rectenna 
collection efficiency (which is an indication of the a~ount of scattered 
power) as a function of systematic (structure) and random (subarray) 
tilts is shown in figure 7. It is interesting to note that the two 
tilts have the same degradation in collection efficiency per arc 
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minute of misalignment. It will be shown later that the systematic 
tilt has an order of magnitude greater effect on grating lobe levels 
than the random tilts. 

The antenna and subarray/power module misalignments produce well-defined 
~rating lobes. The grating lobes occur at spatial distances corresponding 
to angular directions off-axis of the antenna array where the signals 
from each of the subarrays add in-phase. When the mechanical boresights 
of the subarrays are not aligned with the pilot beam transmitter at 
the rectenna, the phase control system will still point the composite 
beam at the rectenna; hmt>/ever, some of the energy will be transferred 
from the main beam into the grating lobes. The gratinp lobes do not 
spatially move with misalignment changes tut their amplitudes are 
dependent upon the amount of mechanic;almisalignment. The distance 
between maxima for the grating lobes is inversely proportional to the 
spacings between phase control centers on the transmit antenna. If the 
phase control is provided to the 10.4 meter X 10.4 meter subarray level, 
grating lobe peaks occur every 440 Km. If the ~hase control system is 
extended down to the power module level, the grating lobes will be 
spatially smeared and the peaks greatly reduced in amplitude. This 
improvement in grating lobe pattern would be due to differences in 
spac"j ngs between the power tubes \A/ithin the antenna. ,l\n exampl e of 
the first grating lobe peak for a total antenna/subarray tilt of 3.0 
arc-minutes is shown in figure 8. 

Based upon environmental 2onsiderations, the qratino lobes are constrained 
to be less than .01 mw/cm. The total mechanical al"inement requirements 
for both the subarrays and the total antenna can be determined from 
this constraint. The amplitudes of the grating lobes for phase control 
to the power module level and an antenna tilt of 1 min is shown in 
finure 9. The locations and spacings of these grating lobes across 
the continental United States with the rectenna centrally located are 
shown in figure 10. 
Conclusions from the antenna simulation studies are: 

(1) Systematic (antenna) tilt has an order of magnitude 
greater effect on grating lobe peaks than random (subarray) tilt. 

(2) The systemati~ tilt must be less than 1 min for phase 
control to the 10 meter square subarray level and 3 min for phase 
control to the power nodule level in order for the grating lobe peaks 
to meet the guideline of .01 mw/cm2. 

(3) Random (subarray) tilt is limited to 3 min in order to 
maintain a 2% or less drop in rectenna collection efficiency. The 
random tilt has a profound impact on the amount of scattered micro­
wave power but only a very small contribution to the ~rating lobe peaks. 

4. Scattered Microwave Power 
o System error parameters have been defined to minimize 

scattered power 



Fr" ¢~~l!YL.!'$ --:,~~.~;. 
,;r: 

" 

,; 

, 

I 
l 

, 
I 

~ 

l·.·.·· . ..,--:: 

N 

5 

! 
~ 
VI 
Z 
LLI 
C 

O! 
LLI 

'" 0 ... 

NASA-S-79-11121 

.01 

.001 

.0001 

• 00001 

ORIGINAL PAGE IS 
OF POOR QUALITY 

FIG~:lE <) 

G'lAl1:iG L'J: £ "[,WS r~R 10 '~ETEr. sect.: ':(5 ;'.:' PH,\$E 
CO:ITROL 1') P:l~:EH I"JDULES (TUGES) 

DISTArlCE FROM RECTENtlA BORESIGHT (Km) 

"'1 -"tre 10 GRATING LOCATIONS FOR A SINGLE BEAM .... \ . , ... "" '\ 
I .... '\ r\ 

\ • .I \ 
\ \ 

' ... I \ ~ I 
~ 

'\ , 
\ 

..... ,"'\ I , 
\ 

0 '\ ( 
\ \ \ I 
\ • .... , 
\ 

\ 0 II! • ., 0 • • • • ".'- - .."". 

\ " I 

• • • • .. • I 

• • II • • • • • 

\ , 
\ 

"../ 



..--. 
3: 
:2 ...... 

.... 
e; 
;:> ... 
Q 

e; 
-' 
rc:; 
;:> ... 
0 ... 
u .-
-
'-' 
(l) 
'-
(l) 

~, 

rc:; 
u 

VI 

I 2 

,a ... $ 

The relative importance of the electrical and mechanical tolerances 
on the rectenna collect'jon efficiency is summarized in figure 11. 
The baseline error parameters are 0 = 100 rms phase error, + 1 dB 
amplitude error, 2% failures, .25 inch mechanical gap between the 
10. Meter X 10. meter subarrays, antenna tilt < 1 min (attitude 
control) and subarray tilt < 3 min. The scattered microwave power 
is the extra power lost (not incident upon the rectenna) due to the 
error tolerances. The rectenna wou1d intercept 95.3% of the total 
power transmitted by a perfect system; the error tol erances reduce thi c:; 

amount of received power to 86.0% of the transmit power. 
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SPS LARGE ARRAY SIMULATION 

S. Rathjen B. R. Sperber, E. J. Nalos, Boeing Aerospace Company 
1.0 INTROOUCTION 

The computer simulation has been developed with the objective of producing 
a flexible design and verification tool for the SPS reference design. The computer 
programming efforts have been directed primarily to beam pattern analysis. The following 
reasons have been specified as the purpose of the computer programs: verification of the 
reference design, definition of feasible departures such as quantized distributions, the study of 
far-out sldelobe roll-off characteristics, the analysis of errors and failures, illumination 
function analysis to develop beam patterns for efficient collection, and beam shaping synthesis 
to meet environmental constraints. 

2.0 ARRAY SIMULATION PROGRAMS 

Three types of computer simulations have been developed to study the SPS 
microwave power transmission system (MPTS). The radially symmetric array simulation is low 
cost and is utilized to investigate general overall characteristics of the spacetenna at the 
array level only. "Tiltmain," a subarray level simulation program, is used to study the effects 
of system errors which modify the far-field pattern. The most recently designed program, 
"Modmain," takes the detail of simulation down to the RF module level and so to date is th'e 
closest numerical model of the reference design. 

Early in the computer program development stage, radially symmetric array 
simulations were written to model various power taper distributions and to compare their 
beam efficiencies. 

The radially symmetric simulations have been used to study a variety of 
spacetenna distribution functions enabling comparisons of the on-axis power densities, the far 
field patterns, and their associated beam efficiencies. 

The "Tlltmain" array simulation is much more complex than the circularly 
symmetric simulation due to the fact that "Tiltmain" models the spacetenna as comprised of 
7220 subarrays. In "Tiltmain," the ground-grid is specified as a planar circular area where the 
electric fields are determined. The field at any particular point on the grid is computed using 
scalar wave equations with approximations that make them accurate in the Fresnel Zone. The 
equations are not valid for the very near field, but give vl~ry good results in the Fresnel Zone, 
02/A :>R72021?l, and the far field R>202p, where 0 is 'che diameter of a circular spacetenna 
or the diagonal of a rectangular spacetenna,;' is the wavelength of the transmission signal, 
and R is the range from the spacetenna to the ground-grid. The electric field at any particular 
point is determined by calculating the field from each subarray in the spacetenna to the given 
grid point and then summing all the fields to give the total field at that &rid point. 

The total power collected by the ground-grid is calculated by multiplying the 
power density at a point by the incremental area associated with that point to give the power 
over that area, and then summing up the power from each sample. Efficiencies with respect 
to the total power collected on the ground-grid and with respect to the total input power of 
the orbiting spacetenna are calculated at incremental grid distances out of the specified 
diameter. 

"Modmain" is the most complex simulation of the MPTS to date in that the 
spacetenna is modelled not only as 7220 subarrays (as in "Tilt main") but each subarray is 
modeled as a composition of RF transmitter modules. "Modm<lin" models over 100,000 
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modules and simulates phase errors, amplitude errors, failures, and systematic as well as 
random tilt. 

The "Tiltmain" simulation was unable to model below the subarray level 
because its program structure caused data storage limitations problems; "Modmain" is 
structured in such a way as to overcome this disadvantage. Previously, the amplitude and 
phase of each subarray was stored in an array and recalled for each ground point. With 
"Modmain" the amplitude and phase of every module is not stored but the contribution of a 
module at each ground point is calculated and stored before moving on to the next module 
where the contribution is added to the previous ground point contributions. 

3.0 REFERENCE DESIGN VERI FICA nON 

The computer programs have been used to investigate different antenna 
aperture illumination functions. An optimized aperture distribution will maximize the RF 
power intercepted by the ground rectenna and minimize the sidelobes and grating lobes. The 
types of illumination functions investigated include: Gaussian, cosine on a pedestal, uniform, 
reverse phase, inflected Bessel, and quadratic on a pedestal. Each of these was evaluated in 
terms of maximum power densi ty at the transmit array and the rectenna, sidelcbe levels, beam 
shape, and beam efficiency. Several Taylor series tapers were also explored with general 
results indicating that sidelobe levels decrease as the amount of taper increases. 

Figure 1 shows five spacetenna distribution functions and the required space­
tenna size and power demities to produce the same peak power density on the ground and the 
same size main beam. Figure 2 depicts the five far-field patterns showing the relative levels 
of the sidelobes. It was found that a 10 dB Gaussian taper has the best performance and that 
when quantized into at le>ast eighT levels produced nearly the same results as a theoretical 
continuously variable function. From antenna layout considerations, a 10·.step, 10 dB Gaussian 
taper was then chosen for the aperture illumination (See Figure 3). The farther out sidelobes 
were compared for the continuous and ten-step quantized Gaussian tapers. The results show 
very little difference between the two cases. 

In order to verify the energy distribution at distances far away from antenna 
boresight, it was necessary to determine the roll-off characteristics of the entire antenna . 

. This was done by a numerical integration technique applied to the radiation pattern of the 
10 dB Gaussian taper distribution. It was established that the sidelobes rolled off at 
30 dB/ decade of angle. This ccincidentally is the roll-off ra te of a uniform circular aperture. 
Next, the error plateaus were computed from the assumed error magnitudes and the number of 
subarrays associated with three different subarray sizes. The aperture efficiency was also 
obtained by numerical Integration. Next the subarray roll-off characteristics were obtained by 
numerically integrating the square aperture distribution for each of 19 different cuts over a 
450 sector of 0. These cuts were then averaged at each Q. The resultant subarray sidelobes 
also roll off at 30 dB/ decade of angle. There is an additional error plateau associated with the 
randomly scattered power by each slot in the subarray. This second plateau will in theory roll 
off in accordance with the radiation pattern of the slot. 

The lowest integral element in the MPTS is the klystron module, composed of 
a klystron, its feed and radiating waveguides, thermal control, solid state driver and RF 
control, power distribution, power return, and the support structure. The factors in selecting 
the klystron module sizes include: RF power density and thus the thermal environment, ease 
of quantizing the spacetenna aperture distribution, and awareness of klystron module inter­
faces. The high power density i., the center of the beam is generated by 36 klystrons, each 
rated 70 K W, radiating RF from 3,n area slightly larger than 108 m2 (.Jrea of subarray). The 36 
klystrons are organized into a 6 by 6 matrix. At the edge of the 10 dB tapered antenna a 
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subarray should have .3.60 klystrons. Since 3.60 is not an integer number, each edge subarray 
has 4.0 klystrons formed into a 2 by 2 matrix. Matrix configurations were similarly established 
for each power density step in the taper. Due to the klystrcn module 'system interfaces and 
the thermal1imitations, the smallest possible size module is 1.5 by 1.5 metc-!rs. 

The reference system calls for phase control at the klystron module level. 
Current thinking defines this level rather than phase control at the subarray level because of 
the belief that the modules cannot be assembled together accurately enough to retain a 
uniform phase front. The uniform phase front for the subarray could not be achieved due to 
the tilt of the modules and the distributed phase errors which occur within the subarray. 
Figure 4 shows the comparison between subarray and klystron module phase control level as a 
function of random t11t. The peak power density on the Earth is closely correlated to the beam 
efficiency and so Figure 4 shows that the klystron module phase control level is significantly 
better than subarray level control. 

Simula tions made to compare phase control level as a function of random 
phase error is shown in Figure 5. The results indicate a range of values for both systems, 
meaning that for 100 of random phase error both phase control systems have a random range 
of values statistically which are equal as would be expected. 

Grating lobes are peaks in radiation occuring at angular directions off axis of 
the spacetenna where the signals from each of the subarrays add in-phase. The lobe 
ampli tudes are a function of the mechanical alignment of the modules and the spacetenna 
pointing whereas the spatial position of the lobes is dependent upon the modules sizes. When 
there is no mechanical misalignment (no tilt of modules or spacetenna), the grating lobes 
appear to be split because the pe3ks of the "array factor" fall directly in the nulls of the 
subarray pattern. As tilt occurs, the peaks move out of the nulls, quickly increasing their 
amplitude because of the [\',eep slope of the subarray pattern nulls. Figure 6 shows a 
comparison between grating lobe amplitudes for module and subarray phase control levels 
when two arc minutes of spacetenna tilt is simulated. Once again phase control at the module 
level shows a significant advantage over control at the subarray level. 

4,0 SHAPED BEAM SYNTHESIS 

In order to improve the overall collection efficiency by increased beam 
flatness out to the rectenna edge as well as provide an additional means of sidelobe control, 
beam synthesis with resultant phase reversals at some portions of the spacetenna was 
considered. These phase reversals are obtained by a fixed phase shifter at the klystron input 
and represent a first step towards a continuously variable phase distribution across the 
spacetenna, should this be more de~,irable. The results indicate that it is possible to synthesize 
a pattern that is considerably mor'e flat-topped than the 10 dB Gaussian or other patterns that 
we have investigated. The price paid for this improvement is increased spacetenna size or a 
larger rectenna. 

It is possible to increase the flatness of the beam without limit with 
arbitrarily large apertures and large numbers of beam components. Figure 7 compares the 
10 dB Gaussian taper with the reverse phase taper and the continuous phase synthesis. The 
comparison shows the differences in the amplitude and phase illumination tapers across the 
spacetenna as well as the far-field patterns. Results show that reshaped beam pattern with 
"squarred" main beams are possible but at the expense of larger transmit antennas or larger 
rectennas. 

The idea of adding a suppressor ring to the spacetenna was investigated in the 
hope of significantly reducing the first sidelobe level. Figure 8 presents the results of this 
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study. The upper left diagram shows the layout of the spacetenna with its uniform distribution 
out to 0.72 times the normalized radius and the suppressor ring of width W. The diagram on 
the upper right shows the linear relationship between beam efficiency 'and the first sidelobe 
level as the ring width changes. .98 Ro means that the width of the suppressor ring is bound by 
the edges .98 Ro and Ro' Looking at the lower right diagram shows the effect of changing the 
phase of the suppressor ring as well as the ring width. From this diagram it may be concluded 
that an in-phase ring is better than one which is out of phase. The lowel' left diagram shows 
the far-field pattern produced for the suppressor ring case where the inside edge of the 
suppressor ring is at .94 Ro. Although the first sidelobe is lower by about 5 dB than the case 
without a suppressor ring a significant loss in beam efficiency accompanies this achievement. 

A dual suppressor ring case was looked into with a 10 dB taper rather than 
the uniform illumination and a larger spa..:etenna radius of 2 km. Figure 9 presents the 
illumination across the large array with the ring closest in out-of-phase by 1800 and the second 
ring in-phase with the array. The far-field pattern for this case is shown in Figure 10 with a 
sidelobe level about the samf: as the referenced design but a main beam radius which is about 
2.35 Km less. 

A study was made to look at using defocusing and phase taper for beam 
shaping. Cases where the beam was focused at infinity showed much lower peak power density 
and much broader beams. These results indicate that reshaped beams with reduced peak levels 
are p'Jssible at the expense of larger spacetennas or rectennas. 

Quadratic phase taper was utilized to look at shaped beam synthesis. In 
Figure 11, the far-field patterns for 4 cases with uniform amplitudes and different quadratic 
phase tapers are compared. As f/J max increases the on-axis power density decreases (see 
Figure 11) and the beam efficiency decreases significantly (see Figure 12). Figures 13 and 14 
show the far-field patterns and efficiencies for quadratic phase taper with the Gaussian rather 
than the uniform amplitude taper. These results show that the reference Gaussian taper 
without quadratic phase error is the most efficient pa ttern. Figure 15 presents a table which 
shows how the quadratic phase taper may be utilizeci to' design alternate SPS systems. 

5.0 SPS SYSTEM SIMULATION 

In this final section thrEe types of SPS system simulations are described: a) 
Incoherent phasing, b) startup/ shutdown operations, and c) multiple beams. Incoherent phasing 
was simulated to investigage the effect of complete phase control failure. The results show 
that the far-field pattern takes on ~ constant value in the rectenna and sidelobe region. The 
constant value is about .003 mw/ cm over 5 dB below the Russian exposure level. 

Computer simulations were utilized by JSC to investigate the performance of • 1 
the MPTS during startup/shutdown operations. (See paper by G. D. Arndt and L. A. Berlin 
entitled "Microwave System Performance For A Solar Power Satellite Dudng 
Startup/Shutdown Operations" on p. 1500 in Vol. II of the Proceedings of the 14th Intersociety 
Energy Conversion Engineering Conference.) Three sequences are recommended-random, 
incoherent phasing, and concentric rings-center to edge. The use of incoherent phasing is 
attractive in that it allows the antenna to be energized in any sequence. In conclusion the 
question of energizing the antenna has several practical solutions and should not present 
environmental problems. 

The possibility of transmitting several powel" beams from an SPS has 
intrigued various researchers for some time. n,ecently, some computer runs were made to 
verify the cap::lbility of transmitting multiple bC::lms using a modifIed version of the large 
array program TIL TMAI.\J. The scheme used ~,. generate the beams W3.S the simplest possible 
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one imagineable; namely, splitting the main beam along an axis by spatially modulating the 
illumination function by a factor cos (k r sin Q) when: k = 21fI ~ , r = subarray displacement 
from center, G = beam split angle. Results of a simply split 6.5 G.W. reference Gaussian are 
shown on Figure 16, and are as predicte~ except for the central lobe which did not diminish as 
the split angle was increased to 6 x 10- radians. The central peak may be due to an in-phase 
residual component in the spatial modulation or a grating lobe effect. Understanding and 
eliminating the central peak will be among our future efforts along with investigating various 
other multiple beam effects. 

6.0 CONCLUSION 

The computer simulations described have proven to be .)owerful versatile 
tools in the prediction of RF performance of the space solar power satellite. They are 
continually being refined and their use is being extended into the planning of initial 
experimental verification of the array performance • 
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AN ACTIVE ALIGNMENT SCHEME FOR THE MPTS ARRAY 

By 

Richard Iwasaki 
Axiomatix 

Los Angeles, California 

in order to lIlaxilllize the efficiency of the microwave power 
transmission system (MPTS), the surface of the array antenna must 
be extren~ly flat. which is difficult to achieve using pass~ve 
techniques over the 1 km dimensions of the array. In order to 
achieve and maintain this required flatness, a rotating laser beam 
used for leveling applications on earth has been utilized as a 
reference system. A photoconductive sensor with a reflective 
collecting surface is used to determine the displacement and polarity 
of any misalignment and automatically engage a stepping motor 
to drive a variable-length mechanism to make the necessary corrections. 
Once aligned. little power is dissipated since a nulling bridge circuit 
that centers on the beam is used, an important alignment feature since 
even laser beams broaden considerably at 1 km distances. A three-point 
subarray alignment arrangement is described which independently 
adjusts, in the three orthogonal directions, the height and tilt of 
subarrays within the MPTS array and readily adapts to any physical 
distortions of the secondary structure ( such a~ that resulting from 
severe temperature extremes caused by an eclipse of the sun). 
Finally, it is shown that only one rotating laser system is required 
since optical blockage is minimal on the array surface and that it is 

possible to incorporate a number of redundant laser systems for reli­
ability without affecting the overall performance. 
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1.0 ROTATING LASER BEAM REFERENCE SYSTEM 

A commercially available rotating laser system, the Laser 
Level, appears to satisfy many of the requirements for achieving 
flatness over a very large area. A key element for achieving flatness 
is the use of a pentaprism for attaining exact perpendicularity about 
the rotating axis. A unique feature of the pentaprism is the automatic 
compensation of any tilting resulting from errors such as misaligned 

bearing surfaces. 
The Helium-Neon laser source must use a collimator to minimize 

the inherent beam broadening, a limiting factor for defining alignments 
at long distances. It is estimated that the beam diameter expands from 
1 mm at the laser to 3 inches at 500 m, and the sensor system must be 
able to accommodate this wide range of beam diameters. 

2.0 OPTICAL SENSORS 

A photoconductive sensor configuration has been devised to 
attain alignment with the center of a laser beam, for any laser beam 
diameter. The basis for this design is the use of a nulling-bridge 
detector circuit that utilizes symmetry about the separation (about 
0.1 mm) of two colinear photoconductive strips which total five inches 
in length. The conductivity of the photoconductor increases with laser 
beam illumination so that equal illumination results in identical resis­
tance and therefore a null in the resistive bridge. This null condition, 
when properly biased, dissipates very little power. 

If the two colinear strips are asymmetrically illuminated as a 
result of the beam center being offset, however, the nulling condition is 
lost and a voltage imbalance occurs. The magnitude and polarity of this 
voltage inbalance can be used to drive an electric motur to realign the 
sensors as part of a negative feedback loop until null is again realized. 

The 0.1 mm separation permits operation close to the rotating 

laser system, whereas the 5 inch overall length easily accommodates the 

3 inch diameter laser beam at extremities of the array. Tapering of the 
tips of the photoconductive strips near the gap will compensate for 
relative signal strength changes by providing a variable resistance 
along the strip. Further improvements in the laser light collection 
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efficiency can be obtained by using optical matching by protective thin 
film coatings and by shaping the glass supporting structure into a para­
boloidal or semi-circuiar shape and metallizing it to form a reflective 

surface. 
Redundancy can be readily implemented by having multiple adjacent 

photoconductive strips, each driving separate variable length motors. 
Using a pin-and-socket arrangement, these multiple photoconductive 
sensors can be as easily replaced as vacuum tubes. 

The locations of the three photoconductive sensors required to 
align each subarray are just above the attachment points, which are referred 
to as the three point support. 

3.0 THREE POINT SUBARRAY MOUNT 

In order to reduce the number of adjustments required to align the 
subarrays, a three point mount with a single support has been studied. 
The entire subarray is aetached to any seconda~y structure configuration 
by only a single sturdy support. This single support can readily adapt 
to any tilting arising from physical distortions of the secondary structure 
by simply adjusting the height of the subarray. 

The initial alignment procedure, during fabrication, can use the 
rotating laser beam reference plane to adjust the position of the single 
support mount. Installation consists of sliding this mount into a keyed 
slot built into the secondary structure and centering the beam on the 
photoconductive sensor located at the center of the subarray where the 
single support is attached. The two orthogonal tilting directions are 
controlled by two variable length struts which form a triangular tl"USS 

with the support and subarray. Each tilting direction is independent of 
the other so that iterative adjustment procedures are avoided. During 
fabrication, an astronaut would visibly align the photoconductive sensors 
above the struts within the laser beam reference plane, and subsequent 
adjustments would be implemented by the active alignment instrumentation. 
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4.0 OPTICAL SENSOR POSITIONING 

The use of a rotating laser beam reference system requires that 
a clear field of view to all sensors is desirable such that only one 
laser system is necessary to align all the subarrays. Since there are 
supporting structures located beneath the subarrays, obviously the flat 
radiating surface of the array is a better choice. 

If the rotating laser system is in the center of the array and 
the optical sensors are 0.125 inches wide, then the closest sensors 
7.1 m away would subtend an angle of 0.05°. Sensors located at farther 
distances would subtend even smaller angles. For example, the second 
set 11.2 m away subtends 0.03°. Using the square symmetry of the array, 
it is possible to illuminate all of the sensors by offsetting the laser 
at,least 0.125 inches from the exact center. Larger width photoconductive 
sensors can be used and would correspondingly subtend larger angles. but 
the offset concept is still valid. Adjustable position sockets for the 
photoconductive sensors can provide some flexibility in the event of 
inad~ertent blockage. 

If redundant rotating laser systems are used, a common baseplate 
is recommended to ensure that both reference planes are coincident. 
Multiple laser systems (with pentapr-isms assumed to be 2 cm wide; placed 
1 m apart in line with the service corridors discussed in secti.on 6.0 
will not obscure the required field of view of each other. 

Electromagnetic interference arising from the microwave power 
radiated from the array is reduced by the normal orientation of the 
photoconductive sensor to the array and its 5 inch length, which, on the 
basis of a dipole on a ground plane, has minimal coupling effects. Also, 
the metallizing of the sensor, with the possible addition of wire grids 
on the exposed optical face, should not permit interference. The effec­
tive cavity formed by the metallized sensor is also non-resonant to the 
radiated microwave frequency. Therefore the placement of the sensors on 
the array face is not unreasonable. 

5.0 VARIABLE LENGTH MECHANISMS 

In developing the concepts for an active alignment system. two 
of the dominating criteria were to use simple designs and attempt to 
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incorporate redundancy provisions suitable for operation in space, 
especially in view of the reluctance of using electric motors for long 
duration missions. 

The variable length mechanism, which is basically a worm gear 
drive driven by a stepping motor, is the only electromechanical device 
used for this active alignment scheme. The redundant variable length 
mechanisms are short segments serially located along the strut, each 
independently driven by a separate photoconductive sensor nulling bridge 
circuit. If for some reason one motor or the bearings of one variable 
length mechanism fails, then the other redundant systems intrinsically 
maintain the variable length capability. And if multiple failures occur, 
replacement of the ~ntire strut consists of removing and installing only 
two pins in a U-clamp arrangement. 

The center support attachment is unique in that it uses a uni­
versal ball joint about which the subarray can readily pivot in any 
direction. The side orthogonal support struts, designated arbitrarily 
as azimuth (Az) and elevation (El), pivot about the axis formed by the 
central universal ball joint and the opposite side strut attachment 
pOint. Since three points in space define a plane and if these three 
photoconductive sensors align themselves to the laser beam reference 
plane, then the subarray is considered aligned. And on a macroscopic 
scale, if all subarrays are aligned, the array itself is aligned. 

Since worm gear drives move by the rotation and translation along 
a pitched thread, the actual physical movement can be made quite small 
by means of gearing ratios and stepping motors. Further, by geometrical 
considerations of the triangular struts, the actual amount of tilting for 
a given amount of variable length change is quite small. Therefore an 
extremely high degree of resolution is achievable in adjusting the ori-
entation of the subarray and therefore the array itself. 
is accepted, then it is easy to imagine that the design 
the concept so that the desired practical resolution is 
proper choice of pitched threads and the specifications 
motor. 

Once this premise 
engineers can extend 
feasible. by the 
for the stepping 
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6.0 MAINTENANCE SERVICE CORRIDORS 

One aspect of the three-point support is the existence of a 
square matrix 'of service corridors or passageways directly under the 
subarrays for rapid accessibility for necessary repairs. A service 
vehicle traversing these corridors will be at most only half a subarray 
dimension away from any position in the array. In addition, since there 
are only three supports per subarray, the supporting under-structure is 

not cluttered. 
The matrix of corridors also presents the possibility of incor­

porating a shadow-masking alignment monitoring scheme using 170 laser 
beams on two adjacent sides passing through strategically placed aper­
tures under the subarrays and incident on detecting sensor~ on the 
opposite side. Misalignment is indicated by the loss of signals in 
both intersecting laser beams, thereby immediately locating the source 

of the problem. 

7.0 MONOPULSE POINTING SYSTEM 

A related topic of discussion to the alignment scheme is the 
accurate pointing of the MPTS array towards the effective location of 
a pilot beam, which may vary due to refractive variations of the iono­
sphere. One method which might be considered is a monopulse tracking 
system that senses the phase differentials of an encoded pilot beam 
and points the array in the proper direction. Although this scheme will 
not permit rapid compensation, if the ionospheric fluctuations are slow, 
the pointing accuracy will be adequate such that instantaneous fine 
poi nti ng adjustment by an auxil iary retrod; recti ve pil ot beam phase 
reference system ;s possible. 

Four receiving antennas, mounted within a microwave baffle to 
reduce coupling effects to the radiated microwave power, located at the 
extremities of the array, will allow active tracking of the pilot beam 
source located at the rectenna. 
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A POWER DENSITY LEVEL OF 23 MW/cM2 HAS ACHIEVED 

THE STATUS OF A FIRM DESIGN SPECIFICATION BASED ON 

THEORETICAL CALCULATIONS Or: A THRESHOLD FOR MICROWAVE­

IONOSPHERE NONLINEAR INTERACTION (THERMAL RUNf>.WAY). 

THERMAL RUNAWAY IS NO LONGER A VALID THEORETICAL 

CONCEPT ALTHOUGH FOR COMPARABLE POWER DENS TTl ES ENHP.NCED 

ELECTRON HEATING IS OBSERVED TO CHANGE THE ELECTRON 

TEMPERATURE BY A FACTOR OF TWO OR THREE~ BUT NOT BY A~i 

ORDER OF MAGNITUDE. 

THERE IS~ SO FAR~ NO EXPERIMENTAL EVIDENCE TO 

SUPPORT 23 MW/CM2 AS AN UPPER LIMIT. 

THE QUESTION TO BE POSED AND ANSWERED IS AT 

WHAT POWER DENSITIES IS THE IONOSPHERE MODIFIED IN A 

WAY THAT PRODUCES UNACCEPTABLE COMMUNICATION EFFECTS 

AND/OR ENVIRONMENTAL IMPACTS? 
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FREGlUENCY 

6-10 MHz 

430 MHz 

2380 MHz 

\,--J 

ARECIBO'TEST RESULTS 

CASE 1 HEATING WAVE PENETRATED THE IONOSPHERE 

OHMIC HEATING DIAMETER OF HEATED CROSS SECTION 
AS A FRACTION OF VOLUME RELATIVE TO FOR FIELD-ALIGNED 
5 GW SPS HEATING SPS HEATED VOLUME SCATTER IS LESS THAN 

1% 3.00 II x 10-3'''12 

40% () '0 v • .L ,4 x 10-3~12 

5% 0.01 lO-3M2 
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ARECIBO TEST RESULTS 

CASE 2 HEATING WAVE REFLECTED BY THE IONOSPHERE 
(NOT THE SPS CONDITION) 

PLASMA INSTABILITIES ARE EXCITED BY THE HF HEATER 

WAVE LEADING TO FIELD-ALIGNED STRIATIONS THAT SCATTER RADIO 

WAVES. 

FIELD-ALIGNED RADIO-SCATTERING CROSS-SECTIONS UP 

TO -103M2• 

SINCE THE EXCITATION OF THESE INSTABILITIES REQUIRES 

A MATCHING OF THE HEATER FREQUENCY TO THE IONOSPHERIC PL/,SMA 

FREQUENCY~ A CONDITION THAT IS NOT MET BY THE SPS~ THEY WILL 

NOT BE EXCITED. No OTHER INSTABILITIES ARE PRESENTLY KNOWN 

THAT THE SPS FREQUENCY WILL EXCITE. 

THE SIMULTANEOUS ILLUMINATION OF THE IONOSPHERE BY 

THE SPS FREQUENCY AND A SECOND FREQUENCY SEPARATED BY ABOUT 

15 MHz OR LESS COULD PRODUCE THE INSTABILITIES DESCRIBED 

ABOVE. 
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ENHANCED ELECTRON HEAiING BY THE SPS BEAM 

(1) WILL INCREASE ELECTRON TEMPERATURES BY UP TO A FACTOR OF THREE 

OR MORE~ MOSTLY IN THE LOWER IONOSPHERE. 

Power nuX. .= 23 mW/cm:~ . 
Frequency' = 2450 MHz 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(2) IS PREDICTED TO BE DEPENDENT ON THE INCIDENT POWER DENSITY. 
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Height = 90 kim' 

Temperature = 1~~7°K. 
1000 

30 mW/cm2 .,,-,., 

·1 ~ 
0 
"-,,. 800 
CD ... 
:3 .... -I 
RI 
'-cc 
~ GOO l . I 
~, . 
Q) ...... ~ r23 mW/cm2 
c c 

400 '-.... 
0 
Q) -w 

S ___ ..... "1. 

./ 30 mW/cm2 
I 

/. 

/ 23 mW/cm2 

0·1 , • • i • i.:'=;=':;:' ~ : t a ~~oo, G • t ~ I !'-~ • ,-r-~ i , r 
o 5 . 10 ' . 15 

Time (ms) 
,0 5 10 15 

Time (ms) 
_ , __ J ______ .. __ 

.5--

1 

1 , 
1 

~ 

01 

! 

.. 
: 

j 

I 
j 

I 
L_..... '··"M ...... ··· __ -'~_~._ ....... _. • • _' b _ ,.i. •• " J 



'.$I 

"', (p 

ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(3) WILL INCREASE ELECTRON TEMPERATURES IN AND NEAR THE BEAM BY SMALL FACTORS. 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 
(LI) WILL CHANGE THE ELECTRON DENSITY IN THE BEAM BY SMALL AMOUNTS, 
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OBSERVATIONS OF ENHANCED ELECTRON HEATING AT ARECIBO ARE CLOSE TO~ BUT BELOW~ 

THE PREDICTED INCREMENTS. 
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PROPOSED EXPERIMENTAL STUDIES FOR ASSESSING IONOSPHERIC 

PERTURBATIONS ON SPS UPLINK PILOT BEAM SIGNAL 

Introduction 

Santimay Basu and Sunanda Basu 
Emmanuel College 
Boston, MA 02115 

The microwave beam of the proposed Solar Power Satellite (SPS) 
at geosynchronous altitude is to be formed and directed by 
phase information derived from a pilot signal at 2.45 GHz 
transmitted from ground and received in a number of module 
locations on the SPS antenna. The frequency of the pilot 
signal has been chosen to be sufficiently low as to avoid 
the effects of strong scattering by turbulence in the 
neutral atmosphere and yet high enough to avoid any possible 
refractive effects caused by the ionized upper atmosphere. 
However, the ionosphere is known to contain irregular 
variation of concentration due to natural processes and 
the downlink microwave beam has also 0een predicted to 
interact with the ionosphere to cause ~rtificia1 irregular­
ities (Perkins and Va1eo, 1974; Perkins and Roble, 1978; 
Duncan and Behnke, 1978). Thus the uplink pilot signal has 
to propagate through the ionosphere containil:~ natural and 
possibly some artificial irregularities. In view of the 
fact that microwave signals from communication satellites 
suffer considerable perturbations both in intensity and 
phase in the equatorial and auroral zones there has been 
some concern that the uplink pilot signal may suffer 
perturbations with possible consequences to the formatien 
of the downlink high power microwave beam. While there 
may exist some satisfaction regarding the SPS site location 
at midlatitudes avoiding the intense belt of equatorial 
and auroral irregularities, there is evidence for the 
occurrence of ionospheric irregularities at mid latitudes 
causing considerable perturbations of signal intensity at 
VHF and even at GHz. Though these effects due to natural 
irregularities are usually smaller at midlatitudes as 
compared to the equatorial zone, the effective perturbations 
at midlatitudes may become magnified if a geostationary 
satellite acquires finite orbital inclination. The 
generation of artificial irreGularities by ionospheric 
heating in the underdense mode and the effects thereof 
on trans ionospheric microwave propagation remain totally 
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unexplored from the experimental standpoint. In the 
following sections we shall provide some evidence of the 
occurrence of natural irregularities at mid1atitudes based 
on scintillation measurements by the use of VHF and GHz 
transmissions from geostationary satellites and satellite 
in-situ measurements. We shall then provide an outline of 
our proposed measurements related to the detection, 
lifetime and drift of artificial irregularities generated 
by ionospheric heating in the underdense mode. 

Formulation of the Problem 

Figure 1 illustrates that in the presence of fluctuations 
of ionospheric electron concentration confined within a 
layer of thickness Le, an incident plane wave undergoes 
phase fluctuations as it emerges from the layer. For small 
phase fluctuations, the emerging wavefront contains only 
phase perturbations without any fluctuations in intensity. 
As the wavefront propagates towards the observer's plane, 
phase mixing occurs and thereby spatial intensity fluctua­
tions also develop. In the presence of a relative motion 
between the propagation path and the irregularities, the 
spatial variations of intensity and phase sweep past the 
observer's receiving system giving rise to temporal varia­
tions in phase and intensity called phase and intensity 
scintillations. In the practical situation, such as for 
the SPS case, or radio wave scintillation measurements, 
the ionospheric irregularities between the transmitter and 
the receiver are located in the far zone of the transmitter 
so that the radiation can be well approximated by a 
spherical wave. On the other hand, the beam nature of the 
wave has to be considered when the irregularities are 
located in the near zone of the transmitter as frequently 
encountered in optical propagation (Ishimaru, 1978). 
In the case of spherical wave propagation between a 
transmitter and receiver separated by a distance L and the 
scatterers at a variable distance n from the transmitter 
the correlation functions of intensity (I) and phase (¢) 
over the receiving plane in the weak-scatter regime are 
given by: 

Br(L,P) 
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where 

p - dimension transverse to propagation path 
K - irregularity wave number 
q, (K) - irregularity wave number spectrum 
kn_ wave number of the propagating wave 

222 2 IH.I = k cos In(L-n)K /2kLI 
1 

(2 ) 

The variance of intensity and phase may be obtained by putting 
p = 0 in equations (1) and (2). These equations may be used 
to obtain the respective variances from a knowledge of the 
irregularity spectrum. In solving the equations for the 
ionospheric case, it must be considered that the irregulari­
ties in the inertial subrange cause the diffraction effects 
as distinct from the case of geometrical optics. Measurement 
of variances and temporal spectra allow a determination 
of the strength of turbulence which may then be used to derive 
the structure functions of phase and intensity. In principJ~. 
direct measurements of phase and intensity correlations are 
possible using the spaced receiver technique with variable 
baselines. 

Strong Ionospheric Irregularities at Midlatit~des 

At Ramey Air Force base near Arecibo, Puerto Rico, night­
time scintillation events accompanied by long period (30 
mins to 1 hour) variations of total electron content have 
been routinely observed (Kersley et al., 1979; Basu et al., 
1979). The top panel in Figure 2 shows the temporal (local 
time = UT-4.5 hours) variations of total electron content 
measured with a radio polarimeter by the use of 137 MHz 
transmissions from geostationary satellite, SMS-l. The 
bottom panel shows that the fluctuations in total electron 
content were accompanied by intensity scintillations in 
excess of 15 dB. 

Satellite in-situ ,lbservations have also revealed existence 
of such large and mall scale structure ncar Arecibo. The 
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solid line in Figure 3 shows the spatial variation of ion 
concentration, N (or electron concentration for charge 
neutrality at F region heights) recorded by the ion drift 
meter on board the Atmosphere Explorer E satellite. The 
AE-E data has been kindly made available to us by W.B. 
Hanson. The ion concentration is sampled 16 times per sec. 
The irregularity amplitude ~N/N computed from 3-sec intervals 
of N data are indicated by the circles. The satellite 
altitude, longitude, magnetic local time and latitude 
are indicated in the diagram. Long period spatial variations 
of electron concentration, as well as, steep horizontal 
gradients at a latitude close to that of Arecibo may be 
noted. Such steep gradients are accompanied by small 
scale irregularities with amplitudes exceeding 10%. Such 
levels of irregularity amplitude (~N/N) and ambient density 
(N) provides ~N values which can explain observed scintil­
lation events near Arecibo shown in Figure 2 if we assume 
a layer thickness of about 100 km (Basu and Basu, 1976). 

In Figure 4 we show a case of similar perturbations of total 
electron content accompanied by 1 dB fluctuation of inten­
sity at 1.7 GHz (Fujita et al., 1978). Such levels of 
GHz scintillation activity with a maximum of 2.3 dB are 
often observed near the June solstice at Kashima, Japan 
with ETS-II satellite, for which the propagation path is 
nearly aligned with the earth's magnetic field. It may 
be of interest to note that the magnetic dip location of 
Kashima is nearly identical to that of Arecibo although the 
geographic latitude is higher than Arecibo. An equivalent 
enhancement of scintillation activity may be encountered 
at U.S. sites such as, Boulder or Arecibo, if the geo­
stationary satellite acquires finite orbital inclination. 
Such large amplitude natural irregularities may cause phase 
perturbations at the SPS frequency. Their effects on both 
the pilot and power beams should be carefully assessed. 

Proposed Heasurement of Phase and Intensity Scintillation 
Effects During Ionospheric Heating 

We have made plans to perform several experiments in con­
junction with RF ionospheric heating both in the overdense 
and underdense modes at Arecibo and at Platteville. In 
December, 1979, we had planned to make use of the Arecibo 
heating facility and perform ground and airborne measure­
ments of the effects of ionospheric heating. Figure 5 
shows the observing geometry, the shaded region indicating 
the heated volume at 5 MHz. From Roosevelt Roads, Puerto 
Rico, we planned to receive the 249 MHz transmissions 
from LFS-9 and ohtain the varia'ce and temporal spectra 
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of phase and intensity scintillations at that frequency. 
In view of the finite orbital inclination of LES-9 satellite, 
the locus of the intersection of the propagation path with 
300 km ionospheric height lies within the heated volume 
between 06-10 UT. In addition, the AFGL Airborne Ion­
ospheric Observatory agreed to provide supporting measure­
ments of phase and intensity scinti11ati9ns using LES-9 
and F1eetsatcom satellites (Figure 5) 6300 X air.glow and 
ionosonde measurements. The Fleetsatcom satellite was 
chosen to probe the ionosphere outside the heated volume 
and detect the presence of naturally occurring irregular­
ities. The aircraft was also expected to scan the heated 
region to define the extent of the perturbed volume. 
Simultaneous diagnostic incoherent scatter measurements 
from Arecibo Observatory were requested for determining 
the electron concentration and temperature. 

Unfortunately, the Arecibo Heating Facility could not be 
made operational in December, 1979 so that the above ex­
periments had to be postponed. However, we have drawn 
up a back-up plan for similar experiments using the LES-8 
satellite in conjunction with the heating facility at 
Platteville during Feb-March, 1980 (Rush et a1., 1979). 
In addition to some of the experiments outlined above, we 
have planneu to include spaced receiver scintillation 
measurements to obtain ionospheric drift. We also propose 
to set up an observing station such that a field aligned 
propagation path can be viewed through the heated volume. 
These measurements will provide an estimate of the phase 
and intensity structure functions. Experimental support 
for the above program will be provided by Dr. J. Aarons 
of AFGL. At a later date, we shall utilise the phase 
coherent spread spectrum signals from NAVSTAR-GPS satellites 
at 1575 MHz and 1227 MHz to make accurate phase scintilla­
tion measurements in the GHz range. These results are 
ex~ =ted to provide a direct input to the design of the 
SP~ system. However, it is essential that the heating 
facilities at Arecibo and Platteville be upgraded as 
proposed by Gordon and Duncan (1978) and Rush et al., 
(1979) to meet the SPS power density levels at F-region 
altitudes before accurate experimental results can be 
provided for predicting SPS ionospheric and telecommuni­
cation systems impact. 

This work was partially supported by National Science Foundation Grant 
No. ATM 78-25264 and Air Force Geophysics Laboratory Contract Fl9628-78-C-0005. 
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Total electron content (top panel) and scintillation (lower panel) 
measurements obtained at Ramey Air Force Base, P.R., using SMS-I 
at 137 MHz on June 1, 1977 showing large amplitude scintillations 
correlated with content fluctuations. This diagram was made 
available by J.A. Klobuchar of AFGL. 

~ 

* * 0 
~ 

~ 

U 
W 
~ 

I 

I 
1 
1 

! 
I , 
I 

i 
i 

i 

, I 
..-"---.... .....:.---~ ,.~~-

?tJ~j-;-r-r~~~:"' J!j l .. fit -.", 77Wr'5M--r'-~·""" ·~,..:.ort~'-"*-")S"''*~+AS«-9Wn .. 'tM¥M£;H ts· ~----... ~~-- ~ 



Figure 4. 

5 'l. 

JUNE 18, 1977 

/' 
Example of nighttime scinti:lation 
(lower) and irregular variation of 
TEe (upper) observed at Kashima on 
June 18, 1977. 
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PERFORMANCE ANALYSIS AND SIMULATION OF 

THE SPS REFERENCE PHASE CONTROL SYSTEM* 

w. C. Lindsey and C. M. Chie 
LinCom Corporation 

P.O. Box 2793D 
Pasadena, CA 91105 

ABSTRACT 

This short paper provides a summary overview of the SPS reference 
phase control system as defined in a three phase study effort (see Refs. 
1-5). It serves to summarize key results pertinent to the SPS reference 
phase control system design. These results are a consequence of 
extensive system engineering tradeoffs provided via mathematical 
modeling, optimization, analysis and the development/utilization of a 
computer simulation tool called SOLARSIM. 

1.0 INTRODUCTION 

The SPS reference phase control system investigated under contract 
to the Johnson Space Center is reviewed in Section 2. The next section 
is devoted to the analysis and selection of the pilot signal and power 
transponder. The SOLARSIM program development and the simulated SPS 
phase control performance are treated in Section 4. 

2.0 THE SPS CONCEPT -AND TH[ REFERENCE PHASE CONTROL SYSTEM 

Figure 2.1 illustrates the major elements required in the operation 
of an SPS system which employs retrodirectivity as a means of 
automatically pointing the beam to the appropriate spot on the Earth. 
From Figure 2.1 we see that these include: (1) the transmitting 
antenna, hereafter called the spacetenna, (2) the receiving antenna, 
hereafter called the rectenna, and (3) the pilot- signal transmitter. 
The rectenna and pilot-signal-transmitter are located on the Earth. The 
purpose of the spacetenna is to direct the high-power beam so that it 
comes into focus at the rectenna. The pilot signal, transmitted from 
the center of the rectenna to the spacetenna, provides the signal needed 
at the SPS to focus and steer the power beam. 

As seen from Fig. 2.1 the SPS phase control system is faced with 
several key problems. They include: (1) path delay variations due to 
imperfect SPS circular orbits, (2) ionospheric effects, (3) initial beam 
forming, (4) beam pointing, (5) beam safing, (6) high power amplifier 
phase nOise effects, (7) interference (unintentional and intentional), 
etc. 

2.1 SPS-Transmitting System Concept 

From the system engineering viewpoint, the SPS transmitting system 
which incorporates retrodirectivity is depicted in Fig. 2.2. As seen 

-. 

*This work was performed at LinCom Corporation for NASA Johnson Space Center 
Houston, TX, under contract NAS 9-15782. 
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from Fig. 2.2 the SPS Transmission System consists of three major 
systems: (1) The Reference Phase Distribution System, (2) The 
Bearnformi ng anCflifi crowave Power Generati ng System, and (3) The Sol ar 
Power to E1 ectri cal Power Conversion System. ----

2.2 Reference System SPS Pilot Waveform 

The reference systE~ SPS pilot waveform utilizes: (1) NRZ command 
modulation, (2) split p' se, direct s.equence pseudo-noise or spread 
spectrum modulation, B·~-DS. This combined data-code modulation is 
used to bi-phase modulate (BPSK) the RF carrier. Multiple access in the 
SPS network is to be achieved via code divison multipl~ access 
techniques (COMA). Thus the baseline SPS pilot waveform is characterized 
via four f:1odulat'ion components summarized by the symbols: 

NRZ / BPSK 
Comr:land Y-""-'-
Modulation r 

RF Carrier 
~10dulation 

/ B~ / COMA 
Spread ~ .... -- ~1ul ti pl e Access 
Spectrum Modulation 
Modulation 

A functional diagram indicating the mechanization of the pilot 
transmitter is shown in Fig. 2.3. As illustrated the data clock and 
code c-Iock are coherent so that the uplink ,')perates in a data privacy 
format. The purIJose of tile spread spectrum (SS) code generator is 
several fold. First it p 'ovTdes 'in~curity, second it prov1oes a 
multiple access capability for the operation of a network of SPSs, and 
thir~-the anti-jamming protection is provided for both intentional 
radi 0 frequency interference (RFI) and unintenti onal RFI such as those 
arising from a neighboring SPS on the adjacent orbit. Proper choice of 
this code modulation will also provide the needed isolation betv/een the 
uplink and the downlink, since a notch filter can be placed around the. 
carrier frequency at the SPS receiver input ~o blank out the 
interferences without destroying the uplink signal (see pilot signal 
spectrJm in Fig. 2.3). The selection of the PN code parameters to 
achieve the code isolation and processing gain required will be 
addressed in Section 3. 

2.3 Reference'Phase{ontrol-System 

The reference phase control system concept was presented in detail 
in Ref. 3; its major features are summarized in this section. Based 
upon earlier study efforts (Refs. 3,4), a phase control system concept 
has been proposed which partitions the system into three major levels. 
Figure 2.4 demonstrates the partitioning and represents an expanded 
version of Fig. 2.2. The first level in Fig. 2.4 consists of a 
reference pha~e distribution system implemented in the form of phase 
d1 stn bub on tt ee structure. -me major purpose of the tree structure is 
to electronically compensate for the phase shift due to the transition 
path lengths from the center of the spacetenna to each phase control 
center (PCC) located in each subarray. In the reference system, this is 
accomplished using the Master Slave Returnable Timing System (t.1SRTS~ 
technique. The detailed mathematic~rlodeling and analysis of the 
MSRTS tec:.nique is provided in Ref. 4. Based upon extensive tradeoffs 
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usi ng SOLARSP: arid appropri ate analysi s duri ng the Phase II study, a 
four level tree is selected to be the reference phase distribution 
system configuration. 

The second level is the Beam Steering and Microwave Power 
Generation System which housf's the SPS Power Transponders. This 
transponder consists of a set of phase conjugation multipliers driven by 
thp. reference phase di stri buti on system output and the output of a pil ot 
spread spectrum receiver (SS RCVR) which accepts the received pilot via 
a diplexer connected to a separate receive horn or the subarray 
itself. The output of the phase conjugation circuits serve as inputs to 
th~ third level of the phase control system. The third level of phase 
control is associated with maintaining an equal and constant phase shift 
through the microwave power amplifier devices while minimizing the 
associated phase noise effects (SPS RFI potential) on the generated 
power beam. This is accomplished by providing a phase··locked loop around 
each high power amplifier. 

2.4 Reference -System-?P"S-Puwer 'Transponder 

In addi+fon to distributing the constant phase reference signal 
over the spacecenna, a method for recovering the phase of the received 
pilot signal is required. Figure 2.5 represents the functional diagram 
of the SPS power transpolder. This includes the pilot signal receiver, 
phase conjugation electr)nics and the high power amplifier phase control 
system. 

In the mechanization of the SPS poy.:er transponders, two receiver 
"types" will be required; hovJever, most of the rwdware will be common 
between two receivers. One receiver, the ~;i~t-~vread-Svectrt~ 
Re"Ceiver~ is located at the center of the spacetenna or the--rer-erence 
subarray. It serves two major functions: (1) acquires the SS code, the 
carrier and demodulates the command signal, (2) provides the main iput , 
signal to the Reference Phase Distribution System. . 

The second receiver "type" will be located in the Beem Forming and 
Microwave Power Generating System. Its main purpose is to phase 
conjugate the received pilot signal and transpond power via the j-th 
spacetenna element, j = 1,2, ... ,101,552. ---

In the case that data transmitting capability is not implemented 
for the pilot signal, the Costas loop can be replaced by a CW loop. 
This avoids the need for provisions to resolve the associated Costas 
loop induced phase ambiguity. 

The key technical problem areas concerning the reference phase 
control system design and specifications are the SPS pilot signal design 
and power transponder analysis. Figure 3.1 illustrates the radio 
frequency interference (RFI) scenario. 

The interferences are generated by di fferent mechani sms: (1) sel f 
jamming due to the power beam leakage from the diplexer/cilculator; 
(2) mutual coupl ing from adjacent transponders, (3) thermal noise and (4) 
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interference from adjacent SPSs. The signal and interference spectrum 
at the input to the 8PS transponder is depicted in Fig. 3.1. In 
general, the combined phase noise interference from the power beams 
consists of a coherent and a noncoherent term. Depending on the 
mechanizaton of the antenna structure and diplexer/circulator 
characteristics, these terms are associated with gains K1 and K2• Note 
that the phase noise interferences are concentrated around the carrier 
frequency (2450 MHz). The up 1 ink pilot signal on the other hand has no 
power around this frequency. Its puwer spectrum peaks at f 0.75 Rc ' 
with a value proportional to the produce of the received power (P r ) and 
the PN chip rate (Rc)' and inversely proportional to the PN code length 
(M). The parameters Rc and M are related to the processing gain of the 
PN spread signal and determines its interference suppression 
capability. The RF filter characteristic is mainly determined by the 
waveguide antennas, which have bandwidths ranging from 15 to 45 MHz 
depending on the array area. Our goal is to optimally select (1) the 
pilot signal so that it passes the RF filter with negligible 
distortions, and (2) a practical notch filter that rejects most of the 
phase noise interferences. When this is done, one can be assured that 
the reconstructed pilot signal phase after the sync loops is within a 
tolerable error for the retrodirective scheme. 

3.1 Pilot Signal Parameter Selection 
SOLARSIM is developed to enable performance tradeoffs of pertinent 

des i gn parameters such as pn ot signal transmi tter EIRP, PN code 
requirement, chip rate and RF front end characteristics (notch 
filter). The computer model is based upon a mathematical framework 
which includes the analytical models for power spectral density 01 the 
pilot signal, various sources of interference, the RF front end, the PN 
tracking loop and the pilot tracking loop. The resulting design values 
are provided in a later section. 

3.2 Pow~r Transponder Analysis 

Analytical models are developed for the SPS transponder tracking 
loop system that include: (1) the PN de spreader loop, (2) the pilot 
phase tracking (Costas) loop and (3) the PA phase control loop. The 
phase reference receiver that feeds the phase distribution system is 
also modeled. Various sources of potential phase noise interferences 
are identified and their effects on the performance of the individual 
loops are modeled. In particular, a model of the phase noise profile of 
the klystron amplifier based on a specific tube measurel11ent is 
introduced. Important impl ications on the PA control loop design are 
also addressed. 

An analytical m?del for evaluating the overall performance of the 
SPS transponder is glven. The phase fluctuation at the output of the 
transponder is shown to be directed related to the various noise 
processes through the closed-loop transfer functions of the tracking 
loops. These noise processes are either generated externally to the 
transponder ci rcuitry such as i onospheri c di s turbances, transmit 
frequency i nstabil ity, or externally such as recei ver thermal noi se, 
power beam interferences, data distortions, VCO/mixer phase noise and 
the phase vari ati ons introduced by the reference di stri buti on tree. 
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3.3 Summary uf Results 

The important findings and preliminary specifications the 
transponder design parameters and results based upon SOLARSIM and the 
analytical models discussed in Sections 3.1 and 3.2 can be summarized as 
foll ows: 

eEl RP = 93.3 dB vi 
·PN Chip Rate "'10 Mcps 
.RF fi 1 ter 3 dB cutoff frequency rv 20 MHz 
eNotch fi 1 ter 3 dB cutoff frequency r.J 1 MHz 
-Notch fi lter dc attenuation rV 60 dB 
.PN Code peri ad tV 1 msec 
~ostas loop phase jitter < 0.1 deg for 10 Hz loop bandwidth 
vChannel Doppler is negligTble 
~lystron phase control loop bandwidth > 10 kHz 

In arriving at these design values, we have used extensively the 
capabilities of SOLARSIM to perform the necessary tradeoffs. Figure 3.2 
represents a typical design curve generated via SOLARSIM and used to 
pick the RF filter 3 ~B cutoff frequency. The details and other 
tradeoffs performed are documented in Ref. 5, Vol. ii. 

The preliminary I"esults are generated using a tentative model of 
RFI with coupling coefficients Kl = K2 = 20 dB. Explicitly, we assumed 
that the transponder input sees a CW lnterference with power equal to 
0.65 KW and a phase noise (lff type) interference at about 20 W. Of 
course, when these values are changed significantly, our predictions 
have to be modified. For this reason, the development and verification 
of an acceptable model for the effects of mutual coupling on the phase 
array antenna based upon the "near field" theory is extremely important 
and essential in the near future. 

A maximum-length linear-feedback shift register sequence, i.e., 
m-sequences generated by a 12 stage shift register with a period equal 
to 4095 is recommended as the spread spectrum code.In the code division 
multiple dccess situation, the theoretical optimal solution is to use 
the set of 64 bent function sequences of period 4095, enabling as much 
as 4095 simultaneous sate" He operation of the SPS network. The bent 
sequences are guaranteed to be balanced, have long linear span and are 
easy to initialize. However, the set of maximum length sequence of 
period 4095, though suboptimal, may suffice. This depends of course on 
the code partial c~rrelation requirement and the number of satellites in 
the network. The design detail is discussed in Ref. 5, Vol. II. 

At this paint our results indicate that it is feasible to hold the 
antenna array phase error to less than one degree per module for the 
type of disturbances modeled in this report. However, there are 
irreducible error sources that are not considered herein and their 
effects remain to be seen. They include: (a) reference phase 
distribution errors, (b) differential delays in the RF path. 

4.0 SPS PERFORMANCE EVALUATION VIA SOLARSIM 
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Because of the complicated nature of the problem of evaluating 
performance of the SPS phase control system and because of the 
multiplicity and interaction of the problems as they relate to subsystem 
interfaces, the methods of analysis and computer simulation (analytical 
simulation) have been combined to yield performance of the SPS system. 
The result is the development of SOLARSIM--a computer program package 
that allows a parametric evaluation of critical performance issues. The 
SOLARSIM program and its various subroutines have been exercised in 
great detail to provide system engineering tradeoffs and design data for 
the reference system. In what follows, we shall focus on the key 
results obtained from one of the SOLARSIM subroutine~ viz., POWER 
TRANSFER EFFICIENCY. 

4.1 System Jitters and Imperfections Modeled in POWER TRANSFER 
EFFICIErKY 

The system jitters and imperfections can be grouped into two main 
classes: (1) jitters arising due to spacetenna electrical components 
which include such effects as the amplitude jitter and the phase jitters 
of the feed currents and (2) jitters arising due to the mechanical 
imperfections of the spacetenna which include the subarray tilts 
(mechanical pointing error), tilt jitters and the location jitters. The 
location jitters include the transmitting and receiving elements and 
arise from the misplacement of the radiating elements. 

4.2 OAfinition of Power Transfer Efficiency 

The power transfer effi ci ency adopted is defi ned by: 

POWER TRANSFER -= Power Received by the 10 kill Oiameter-Rectenna 
EFFICIENCY Total Power Radiated by the Spacet2nna 

This definition is convenient because the multiplying constants due to 
the propagati on lhrou'gh the medi um cancel out from the numerator and 
denominator. 

4.3 Effects of System Imperfections on' SPS Efficiency 

Figures 4.2 - 4.3 summarize the effects of the various system 
imperfections on the SPS power transfer efficiency obtained through 
SOLARSIM. In Figure 4.1, the power transfer efficiency is plotted 
against the total phase error produced by the SPS phase control 
system. For a mechanically perfect system with no location jitters and 
mechanical pointing errors or jitters (curve CD ), the total rms phase 
error is restricted to less than 100 at RF to yield a 90% efficiency. 
Curve CV depicts the influence of the mechanical pointing error 
(assumed to be la' with a jitter of 2') when the location jitters are 
dbsent. As can be seen from the figure, for a total phase error of 100 

the power transfer efficiency of the spacetenna drops down to 87.3%. 
When the location jitters of 2% of lambda is added for the transmitting 
and receiving elements, this number drops down to 82.0% 'see Curve 
® ). It is expected that the SPS system wi 11 operate in the regi on 
betv"een Curve CD and ® . In this case, the power transfer efficiency 
wi 11 be 1 ess than 90% for a typi cal rms phase error of 10 degrees. 
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Figure 4.1. SPS Power Transfer Efficiency vs RMS Phase Error. 
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4.3.1 Current Amplitude Jitter 

The effect of the current amplitude jitter is shown in Fig. 4.2 for 
a mechani cally perfect system. As can be seen from the fi gure, for an 
amplitude jitter of 5%, the power transfer efficiency of the 
Qechanically perfect spacetenna with the current phase jitter of 00 is 
92.3%. This value drops to 91.63% for the total phase error of 5° and 
to 89.57% for a total phase error of 100 • One can conclude that the 
power transfer efficiency is relatively insensitive to the amplitude 
jitters. 

4.3.2 Location Jitters 

Figure 4.3 investigates the effects of location jitters 6n the 
power transfer efficiency of an otherwise perfect SPS. As can be seen 
from the figure, the degradation of efficiency is severe: for a 
location jitter on each radiating element of 2% A the power transfer 
efficiency irops to 88.3%. As a comparison, Fig. 4.1 shows that for a 
rms phase €::i'ror of 70 (2% A = 7.2 ) the efficiency is down to 91.2%. It 
is noticeable that the effect produced by location jitters on the 
receiving (conjugating) elements is comparable to the effect produced by 
the phase error. This is true because both these effects enter into the 
transmission system at the same physical point, i.e., the center 
subarray. On the other hand, povler transfer effi ci ency is rather 
sensitive to the location jitter on the radiating elements. 
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DESIGN AND BREADBOARD EVALUATION OF THE SPS 

REFERENCE PHASE CONTROL SYSTEM CONCEPT 

P. M. Hopkins and V. R. Rao 

Lockheed Engineering and Management Services Company, Inc. 

1. INTRODUCTION 

Efficient operation of a very large phased array such as the proposed solar 
power satellite [1], requires precision focusing a~d pointing of the power 
beam; i.e., the power beam must have a planar wavefront directed precisely 
at the center of the target antenna (rectenna). To maintain such a power 
beam requires real-time phase compensation at each subaperture in order to 
adjust for structural deformations and other transitory factors. In the 
current solar power satellite (SPS) baseline, the spaceborne antenna (Space­
tenna) is an active retrodirective ay'ray [2], [3]. A pilot signal trans­
mitted from the center of the rectenna is phase-conjugated at each subaper­
ture (power module) of the spacetenna, thereby assuring that the radiated 
c/)mposite wave is focused on the target. This scheme requires a large amount 
of precision electronic circuitry on the spacetenna. Specifically, pilot 
receivers must be located at each power module and an adaptive distribution 
network is required in order to provide a properly phased reference signal 
at each conjugator [4], [5J. 

In order to verify theoretical and simulation results, a project was initiated 
by the Tracking and Communication Systems Department of Lockheed E1ectron'ics 
Company to design, develop, and test a breadboard system comprising a pilot 
recei ver and transmitter, phase di stri bution system, and power transponder. 
This breadboard system 'is to be used in the Electronic Systems Test Laboratory 
(ESTL) at the Johnson Space Center. The total breadboard system will include 
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one pilot transmitter, one pilot receiver, nine phase distribution units, and ~ 
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two power transponders. It will be shown in the following sections of this 
paper that with this complement of equipment, segments of a typical phase 
distribution system can be assembled to facilitate the evaluation of signif­
icant system parameters. 

The major objectives of the project are to determine the achievable accuracy 
of a large phase distribution system, the sensitivity of the system to para­
meter variations, and the 1 imitations of commercially available components 
in such applications. 

2. ACCOMPLISHMENTS 

The des ign and developm0'nt of a breadboard tltaster-Sl ave Returnabl e Timing 
System (MSRTS) was the first objective of the project. Nine units were 
planned; three were completed and used for prototype evaluation tests. Six 
remaining units are in final assembly. 

2.1 MSRTS BREADBOARD 

The MSRTS breadboard system is of a modular design with three major elements. 
These are the Phase Tracking Unit (PTU), the Interface/Return Unit (IRU) 
and the r~ain Frame. Modular construction permits the equipment to be confi­
gured in various ways as required to model portions of the proposed SPS 
phase distribution tree network. A simplified functional diagram of a single 
MSRTS stage is shown in Figure 1. Figure 2 shows the tree distribution 
stY'ucture for which the breadboard MSRTS is desig1ned. 

The major components of the PTU are Voltage Controlled Oscillator (VeO), 
loop filter, circulator, mixers and a phase detector. The phase lock loop 
circuitry is used to advance the phase of veo to compensate for the effect 
of the delay introduced by the path between nodes of a tree structure. 

At the IRU, two functions Jre performed. F'irst, a portion of the received 
reference signal is returned to the preceding PTU via the single inter-
conn' .:ting cable. This return signal arrives at the PTU with a phase delay 
proportional to the liQe length. The delay is measured in the phase detector 
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of the PTU, and the VCO phase is appropriately adjusted so that the reference 
phase is correct at the IRU input. Second, the reference signal at the IRU 
is doubled in frequency to match the reference input to the PTU. When the 
PTU is phase locked, the phase of the IRU output signal is the same as the 
phase of the preceding PTU input signal, within the accuracy limitations 
of the hardware. Each IRU can provide up to four outputs. 

The Main Frame contains supplies and a patch panel that facilitates the 
interconnection between PTU's and IRU's mounted in separate mainframes. 
Each mainframe is capable of supporting a total of three PTU's and/or IRU's. 

2.2 MSRTS BREADBOARD TEST RESULTS 

Three prototype MSRTS breadboard units were used in a variety of test con­
figurations to evaluate the accuracy of phase control and the effects of 
component imperfections, These test configurations included those shown 
in Figure 3. 

For example, the three-node ser"ies network of Figure 3c was tested with 30 
different cable combinattons, using RG-14 coaxial cable in lengths between 
200 and 250 feet (60 - 80 meters); that is, after initial adjustment of the 
test configuration with zero phase error on the vector voltmeter, 30 different 
combinations of cables were substituted for Test Cables A and B. For each 
combination, the resulting phase error was measured and recorded. The results 
are presented in the histogram of Figure 4, which indicates a standard 
deviation of error of 4.20. This experiment is intended to demonstrate the 
accuracy of the breadboard MSRTS with arbitrary cable lengths. It is impor­
tant to note that the cables were not cut to precise measurements. 

Another type of phase error measurement was made with the configuration of 
Figure 3a. Minor variations in electrical line lellgth were introduced by 
Ineans of a phase shifter (PS2). The phase error at the vector voltmeter 
was initially nulled with PS2 set to zero. Then PS2 was varied from 0 to 
1800 , equivalent to a half-wave variatio~ in cable length. The resulting 
phase error is shown in Figure 5. 
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2.3 INTERPRETATION OF TEST RESULTS 

A detailed report of the MSRTS breadboard test results has been prepared 
[6J. The conclusions from that report are summarized in the following: 

• Satisfactory performance can be obtained using readily 
available components under closely controlled conditions. 

, Commer'ci ally ava il abl e components exhi bit ron-ideal behavior 
which ;s critical to MSRTS performance~ e.g. port-to-port 
isolation of mixers and circulators was not sufficient to 
prevent extraneous signals which can cause phase errors. 
These effects can be minimized with compensating networks. 

3. CONTINUING DEVELOPMENT 

The breadboard MSRTS will be used as part of a larger breadboard system 
which models the total SPS phase control concept. A pilot transmitter 
will generate a pseudonoise (PM) code-modulated spread spectrum pilot 
carrier at 2450 MHz. A central pilot receiver will phaselock to the pilot 
carrier and provide a reference for the MSRTS. At the final level of the 
MSRTS tree, each IRU will provide a reference phase signal for a power 
transponder. Each power transponder will receive the pilot carrier, phase­
conjugate, and retransmit. The ESTL breadboard system, shown functionally 
in a typical test configuration in Figure 6, will consist of the following 
units. 

• One Pilot Transmitter 

• One Central Pilot Receiver 

• Nine MSRTS Elements 

• Two Power Transponders 

• One Klystron Power ~TIplifier 

These units can be interconnected in various test configurations. Tests 
will be performed to evaluate the feasibility of the MSRTS phase control 
concept and to determine the sensitivity of the phase control system to 
variations in system parameters. In addition, techniques for suppressing 
the phase noise of the klystron power amplifier will be investigated. 
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Design and development of the ESTL breadboard system will be completed by 
March 1980, The test and evaluation program will be completed by July 1980. 
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COHERENT MULTIPLE TONE TECHNIQUE FOR 

GROUND BASED SPS PHASE CONTRO~ 

C. M. Chie 
LinCom Corporation 
Pasadena, CA 91105 

The ground based phase control concept has been under study at 

LinCom as an alternative aproach to the reference SPS phase control 

system (See Refs. 1,2,3). The details of the ground based phase control 

system study are documented in Ref. 4. In this short paper we summarize 

the coherent multiple tone technique used for the ground based phase 

measurement waveform design and phase control system. 

2.0 Ground-Based Phase Control Concept 

The ground based phase control system achieves beam forming by 

adjusting the phases of the individual transmitters on board SPS. The 

phase adjustments are controlled by ground commands. To specify the 

correct amount of adjustments, the phases of the power beams from each 

individual transmitter arriving at the rectenna center must be measured, 

the appropriate corrections determined (to ensure that all power beams 

arrive at the same phase) and relayed to the SPS. The proposed scheme 

to be considered is s~quential in nature, i.e., the phase measurement is 

performed one at a.time for each individual transmitter at approximately 

one-second intervals (measurement time allocated is 10 ~sec). The phase 

corrections are updated once every second. A 10-bit phase quantization 

for the corrections giving 0.35° resolution is envisioned. The uplink 

command data rate is on the order of 10 Mbps. The functional operation 

of the ground-based phase control concept is summarized in Fi~. 1. As 

evident from the figure, the key issues that need to be adaressed are: 

*This \·mITwas performed at L inCom Corporat ion for the NASA Johnson 
Space Center, Houston, TX, under Contract No. NAS9-1S782. 
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(1) measurement waveform design and selection, 

(2) phase measurement pilot reference design and selection, 

(3) uplink phase corrections command link format and design, and 

(4) system synchronization techniques. 

3.0 Two-Tone Phase Measurement Scheme with Coherent Subcarrier 

In the basic two-tone measurement scheme, two side tones at fa ~ ~f 

are transmitted from the satellite to the ground receiver. A phantom 

carrier can be reconstructed from the sidetones by passing the signal 

through a squaring circuit. The output will then have a CW component 

with frequency 2fO and a phase component equal to (~1 + ~2)' where ~1 

and <P2 are the channel induced phase shifts at fa + M and fa - ~f, 

respectively. This phase shift is very close to double the one that 

would have occurred if the do\'mlink signal were a s;nglesinusoidat 

frequ,.:ncy fa. If we divide the 2fO component by two, we obtain the 
<P1+<P2 

avera'Je phase 2 Unfortunately, the divide by two circuit results 

in a 00 
- 180 0 ambiguity. 

4.0 Four-Tone Phas~ Measurement Scheme 

The four-tone measurement scheme given in Fig. 2 is a simple 

modification of the two-tone scheme. Basically, we first use 

frequencies at fa ~ 2~f for phase error measurement with introduces TI 

ambiyuity. Then we use frequencies at fa ~ ~f for ambiguity 

resolution. The scheme works as follows. The transmitted signal at the 

input to the transmitting antenna is (neglecting multiplicative 

constants) 

[ ( 
£, £. 2nk£' + cos w 1 - - -) t + (1 - .) 8 - ---] o N N i N £,= 0,1,2 

t! 

~ I 
j 
j 
I , , 
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where 9
i 

includes the commandable phase shift, ~ is the ambiguity 
f 

introduced by the divide by N circuit, f = ~~ and 1 = 0,1,2 dcpendinu 

on whether the PM is in the power mode (1), ambiguity resolution mode 

(2), or phase error measurement mode (3). At the receiver on the 

ground, 

where~+(1) and ~_(1) are the phase shifts introduced by the channel. 

The reference signal s3(t) is given by 
1) 1) 2ll 1m ] 

5
3
(t) = cos[tllo(l+ N t + (1+ N eR + -rr 

+ cos[w (1- .~)t + (1- !)e _ 2lltl!!. ] o N N ~R . N 
vJhere 9

R 
is the phase of the ground reference, and 2~m is the ambiguity 

introduced by the ground divide by N circuit. If the operations are 

synchronized, we can then measure up to modulo 21T at the output of the 

measurement circuit, the phases 

,,+(t) + (l+ N)(8
i
-e

R
) + .2~1 (k-m) = <J!+(1) + 2llt\(t) ("I) 

ifJt} + (1- -~)(ei-9R) - ,2~~ (k-{1l) = <J!Jl} + 2llMJ1) (2) 

Actually, in (1) and (2), <J!+(t) and <J!_(1) are the measured phases and 

M+(l) and M_(l) are integers so that the absolute values of .+(1) and 

9-<1) can be restricted to 1T. Note that we are \nterested in 

determining [q>+(1):!:.c.t(1)]/2 modulo 21T. For 1=2, we know from (1) and 

(2) that 

.+(2)+<J! (?) 
- -'1"-=-- + [~1 (2}+M (2)JlT-(e.-e ) 

~ + - 1 R 

Now if we can resolve whether OI+(2)+MJ2)] is even or odd, we can 

determine [c..f>+(2)+~(2)]/2 + (Si-SR) modulo 2ll. This information is 

(3) 
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provided by comparing 

f+(l) - ~_(1) = - j(8 i -8R) - ~N(k-n) + ++(1) - +_(1) +[M+(1)-M_{1)]2w 
(4) 

,+(2)-)'J2) 2 4 + (2)-+ (2) 
- .... 2- = -" (a i~ R) - -~(k-n) + + 2 - + [M+(2)-MJ2)]wl 

(5) 
If 6f is designed properly (6f < 50 MHz) the left hand side of (5) and 

(5) are nearly equal. See Ref. 4 for a discussion on ionospheric 

effects. Equating (4) and (5) we have 

Since we can measure"~+(Q,), we can determine from (6) whether [M+(2)­

M_(2)] is odd or even. This then determines whether [M+(2)+M~(2)] is 

odd or even, since [M+(2)-M_(2)] + [M+(2)+M_(2)] = M+(2) must be even. 

With this information, we can solve for [~+(2)+q_(2)]/2 + (ai-OR) modulo' 

21T in (3). 

5.0 Basel i ne System for Ground-Ba,sed Phase Control 

The implementation of the ground-based phase control concept is 

determined by the phase control waveform designs employed. Based on our 

waveform selections, functional subsystems to implement the ground-based 

phase control concept are identified and functionally represented. The 

resultant ground-based phase control functional block diagram is 

depicted in Fig. 3 and includes: 

-Satellite Signal Processing 

eTime-Frequency Control 

eProcessing Control Center 

eSignal Distribution Network 

eProcessing Power Module 

eDownlink Pilot Transmitter 



-Uplink Command Receiver 

-Ground Based Signal Processing 

-Pilot Beacon Receiver 

-Calibration Receiver 

-Phase Measurement Unit 

.S~lnchronization Unit 

-Phase Update Algorithm 

.Data Processing Unit 

-Uplink Command Transmitter 

The ground-based system envisioned employs satellite based 

frequency /t imi n9 reference wi th an IF frequency of 490 ~1Hz. A 4-tone 

measurement scheme using frequencies at 2,450 ± 9.57 MHz and 2,450 ..±. 

19.14 t·1Hz is selected. ;"ach power module devotes 10 lIsec per second for 

phase correction meaSUl'l :ent, representing a minimal loss in total power 

transmitted. Two freqllencies are chosen for the downlink and one 

frequency for uplink; the downlink pilot signal center frequency is set 

at 4.9 GHz. '. 
Our preliminary investigation indicates that the effects of power 

beam interference and thermal noise on the phase measurement error can 

be controlled to a tolerable level. The ground based system can also 

function if the ionosphere is nonturbulent in nature and the satellite's 
,-.... 

tilt rate is limited to 0.5 min/sec. 

6.0 Limiting Factors Qf the Feasbility of Ground-Based Phase Control 
System 

The feasibility of the ground-based phase control concept becomes 

,unclear if the conditions on the ionosphere and the satellite motion are 

not met. The ground-based phase control system can only correct for 

random phase fluctuations which have a correlation time that is large 

_ ......... ~ .. ~J' 

I 

I 

j 



r--~'-compared with 1.25 sec. The noise components"w~~:h~re faster than 1.25 

~j sec is uncompensated for and result in a degradation on transmission 

, ' 

I 

efficiency. Unfortunately, measured ionosphere data which is suitable 

for the SPS system is not readi ly avanabl e.. (Most data are concerned 

with spatial correlations rather than tempural correlations. Also, most 

data are measured from low orbit satellites rather than geostationary 

satellites.) The other limiting factor is the statistical behavior of 

the ra"':'.'~,n pointing error exhibited by the spacetenna. Again, the fast 

component of this error is not corrected for and it contributes to 

efficiency degradation. At this point, we feel that the development and 

specification of models for ionospheric phase disturbance and satellite 

motion is essential. It is hoped that our findings can serve as a 

guideline for any parallel efforts in studying these two factors. 

'. 

elm 
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AN INTERFEROMETER· BAseD PHASE CONTROL SYSTEM 

Jame.H.Ott 
.. ar .... S.Rlce 

Novar Electronics Corporation, Barberton, Ohio 

ABSTRACT 
An Interferometer-baed phase contrul "y.tern fl)r foou.lng and pointing the SPS power beam Is discussed. The 

system Is ground based and closed loop. One receiving antenna Is required on earth. A conventional uplink data 
channei transmit. an a·blt ~Ihase error corroction back to the SPS for sequential calibration of each power module. 
Beam pointing resolution I. better than 140 meters a'i the Rectenna. 

INTRODUCTION 

Key to bcusing and pointing the SPS power beam 
is the maintenance of precise phase relationships 
among the transmittLd signals of .~ach Spacetenna 
subarray. Specifically, the Signals transmitted by 
each power module must arrive at the center of the 
Rectenna in phase. This reau1ts in a power beam 
having a planar wavefront pointed at the center of 
the Rectenna. However, structural deformations in 
the Spacetenna can, if not compensated for, alter 
the phases of the power module signals at the Rec­
tenna by altering the patio .l~ngths of the signals 
between the power modules and the Rectenna. In 
addition, variations within the Spacetenna circuit­
ry can also alter the phases of the signals. 

Novar Electronics Corporation has developed an 
interferometer-basfi\d phase control system. 1 This 
approach, which we call Interf(,rometric Phase Con­
trol (IPC), has three significant characteristics 
which differentiate it from the Reference System 
retrodirectiv\~ approach. 

1. Interferometric Phase Control is a ground 
based closed loop ~ystem. 
Unlike in the retrodirective approa,:.h, the 
phase correction information 16 obtained on 
earth by measuring the resultant power trans­
mission of the Spacetenna power modules and 
comparing them against a reference. 

2. The Spacetenna's power modules are calibrated 
sequentially. 
A Signal from a reference transmitter near 
the center of the Spacetenna is sequentially 
phase compared with a calibration transmis­
sion of each of the power modules. 

3. During normal power tF2nsmission, the fre­
quency C?f each power I!If.i!ule is shifted 
slightly during phase calibration. 
Maintenance of a properly focused and pointed 
power beam can be accomplished concurrently 
with the normal transmission of power from 
~he SPS by using frequencies for calibration 
which are different from the power ~eam 
frequency. 

SYSTEM DESCRIPTION 

On or near the Rectenna site, a~ antenna called 
the Phase Measurement Antenna (PHA) receives the 
transmission from the Spacetenna Reference Trans­
mitter (SRT) and the particular power module bef.ng 
phase tuned (calibrated). Analysis of these Sig­
nals provides sufficient information to generate 
a phase error correction term which is sent ~~ to 
the on-board phase control circuitry, shown in 
Figure 1, of the power module undergoing calibra­
tion. 

r 
Uplink oataChannel 

lromGround 
InltlUfMflllllon 

To Rectenna 

FIGURE 1 
POWER MOC'!JLE PHASE CONTROL CIRCUITRY 

Phase Tuning DUring Normal Power Transmis5:1.on 

Simultaneous with the transmissio~ of the powe 
beam, cohet'ent signals at three different frequen­
cies are transmitted from tbe Spacetenna. Two of 
these signals are transmitted from the SRT. which 
is located near the center of the Spacetenna. and 
one is transmitted from the power module being 
phase tuned, as shown in Fig.ue 2. The two Sig­
nals transmitted from the SRT are respectively 
called s1 and SrI. and the signal transmitted by 
the power IIIOdu1e being phase tuned is called s2. 
The frequency of sl is midway between that of srl 
a~d s2 so tha~ the beat frequency of 51 and s2 
ig the same Sa that of sl and SrI' 

At the PMA. si~ple mixing and filtering cir­
cuitry detects two difference frequency signals. 
One signal is due to sl and s2' The other. which 
i~ called a phase reference Signal, is that due to 
sl and SrI' These two beat frequency signals are 
then phase compared. 

The pha"'s comparison gives the phase difference 
between the fiO beat frequency signals which is a 
functi~n of ::'-axis deformations* in the power module 
being phase tuned plus biases in the phase feed net­
work of the SPS. Certain components of the phase 1 
difference change with a change :l,n frequency. others I.· 
do not. Since the power module being phase t~med is 
transmitting at a frequency different from the power . 
beam frequency, it is .lecessary to distinguish bet- . 
ween these frequency dependent and frequency indep­
endent components in lil'l'der to determine the phase i 

*deformations in a direction toward or away from the 
Rectenna. 
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correction that will be correct at the power beam 
frequency. This is done by shifting sri and s2 to 
a different set of frequ~ncies, according to a phase 
ambiguity error avoidance criterion, and making a 
second phase difference measurement. These two 
phase difference measurements are numerically ad­
justed by -2n, 0, or +2n according to a second phase 
ambiguity error avoidance ~riterion. These two 
numerically adjusted pbase differences provide suf­
ficient information to calculate the phase error 
correction2 transmitted back to '~he SPS power module 
being phase tuned. This phase error correction can 
be made with an 8-bit binary word sent to the SPS 
via a dat~ channel. An 8-bit accuracy produces a 
phase resolution of ~600 t 28 ;: 1.40.. This is 
sufficient to give a power beam pointing resolution 
better than 1.40 meters at the Rectenna. 

A tradeoff exists between sF.';:·ellite bandwidth 
requirements and the power module updating rate which 
is limited by filter settling times. It is antici­
pated that the frequency spearation between sl' s2, 
Sri and the power beam will be on the order of I MHz. 
At these frequency separations, the update interval 
for an entire Spacetenna could be on the order of a 
few seconds. It is possible that this will be fast 
enough to correct for any cha::lges that will occur at 
the Spacetenna due to deformations, thermal effects, 
etc. 

Power M(l~', .1. Being 
Phase Tt: f ,"" 

Spacetenna 

~--.,f-- Spacetenna Relerence Transmitter (SRT) 

Earth '5 Surface 
Phase M8aS~ ~ _M'" 

~
_ Antenna(PMArment ~, 

Rectenna 'l1 

"~-' 
Alternate Phase 
M"asurement Antenna 
(Off·slte) 

'--__ ~:1 Phase Difference Information 
J for Phase Tunnlng 

FIGURE 2 
INTERFEROMETRIC PHASE CONTROL 

·Plctorlal representation of relationship between space· 
tenna slgn~ili and ground Instrumentation. 

Phase Tuning During Startup 

It is also possible to use this interferometer 
technique to phase tune the power modules at the 
power beam frequency during initial startup or main­
tenance. This would be necessary to calibrate the 
phase tuning system used during normal power trans­
mission for any phase vs. frequency nonlinearities. 
In this case, the measured phase difference is the 
phase error correction. --

IONOSPHERIC EFFECTS 

With the ground based closed loop interfero­
meter phase control approach, ionospheric effects 
are limited to phase errors introduced into the 
space-to-earth transmission path only. 

Although, the PHA is shown to be at the center 
of the Rectenna, it is not necessary that it be 
lncated there or even within the Rectenna site. 
Off-site measurement has the advantage that the 
signals being phase tuned do not have to pass 
through an ionosphere that may be subjected to 
undetermined heating effects by the power beam. 

An important advantage of Interferometric Phase 
Control is its inherent ability to make use of sta­
tistical error reduction techniques to minimize any 
ionospheric effects. This includes time averaging 
and/or spatial averaging using several on and off­
site phase measurement antennas. 

PREDICTION OF DEFORMATION DYNAMICS/HAPPING 

It should be pointed out that once the Space­
tenna has been initially phase tuned, learning 
curves or adaptive modeling techniques could be 
used to predict the dynamics of Spacetenna struc­
tural deformations. \-lith such predictions, it 
is felt that the capability would then exist to 
phase tune the entire Spacetenna based on frequency 
measurements of only a "few" key power modules and 
occasional measurements of the rest. By adding 
two additional receiving antennas on the earth so 
that there ar.,' three earth antennas spaced a few 
kilometers apart and not in a straight line, ad·· 
ditional phane measurements can be made. These 
measurements provide information to "map" the 
face of the Spacetenna, that is, to determine the 
relative distance, direction and motion of each 
power module with respect to the SRT. This pro­
vides the capability for performing a transverse 
~ analysis, from the earth, of select samples 
of power modules on the fac~ of the Spacetenna. 
In addition, the interferometer phase control 
technique provides the ability to automatically 
identify defective power modules. 

Interferometric Phase Control (IPC) was origin­
ally developed as a closed loop, ground control ap­
proach for focusing and steering the power beam 
because of Novar's concern over effects that the 
ionosphere might have on the pilot beam of the retro·· 
directive system. IPC could provide a useful adjunct 
to the retrodirective system to m1.tigate phase bias­
ing problems with the retrodirective system and to 
provide a backup system if there are times when the 
atmosphere/ionosphere precludes use of a retrodirec­
tive system. Until definitive studies have been com­
pleted on the atmospheric/ionospheric effects on the 
retrodirect.ive system, Novar recommends the simul­
taneous development of power beam control techniques 
using both the retrodirective approacl! an:t IPC. 
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N82-12548 
A SONIC SATELLITE POWER SYSTEM MICROWAVE POW!R TRANSMISSION SIMULATOR 

JameIH.OU 
Janlel S. Rice 

Nov ... Electronici Corporation, Barberton, Ohio 

ABSTRACT 
A almulator II delcrlbed which generat .. and t""lI'IIltl a beam of audible IOQild .nergy mathematically similar 

to the SPS power beam. The simulator provldea a laboratory means for analysis of ground baaed closed loop SPS 
ph ... control and of Ionospheric effects on the SPS microwave power beam. 

INTRODUCTION 

Navar Electronics Corporation is in the final 
atages of constructing and testing a Satellite Power 
System Microwave Transmission Simulator. In a 
ground based laboratory environment, the simu~ator 
generates and transmits a beam of audible sound 
energy which is .. thematically similar to the micro­
wave b;lam which would transmit energy to eal:th from 
a Solar Power Satellite. 

SIMULATOR DESCRIPTION 

Figure 1 shows the major functional parts of 
the simulator. The Sonic Spacetenna (Figure 2) is 
1.3 meters in diameter and contains 3200 independent 
transmitting elements. These elements are connected 
in a 64 row by 64 column matrix. Each column .,~ 
driven by a driver which multiplexes each of lhe 64 
rows 32,000 times per r ~ond. This enables the 
simulator's computer to control the amplitude, 
phase, and frequency of each of the 3200 transducers. 
The simulator is designed to transmit a coherent 
sonic power beam at 12 kHz. Any illumination taper, 
e.g., Gaussian, can be programmed and the resultant 
ground pattern studied. A computer, RAM Memory, 300 
}Ul disc drive, and line printer are incorporated to 
provide a very high degree of experimental flexibil­
ity. 

.... Ibollc 
Mlcrop/lone 

f~ (((cce 

~ATOR CAPABILITIES 

A uniq*~ feature of Navar's Sonic Simulator is 
its ability to provide actual photographs of the 
transmitted power beam. Figure 3 shows a scanning 
system which provides an intensity modulated raster 
of the sonic beam. By adding a phase signal to ~he 
intensity modulator, the phase coherence can also 
be photographed. This technique, developed at Bell 
Labs in the earty 1950' sl will provide photographic 
records similar to Figure 4. 

As soon liS the Sonic Simulator is operational 
(mid-February, 1980), its initial use will be to 
generate a colli .. ted coherent sonic beam to verify 
that the beam divergence and sidelobe characteristics 
are in satisfactory agreement with the aperture il­
lumination equations which hav, been used to define 
the SPS microwave beam. 

The concept of "ground based" phase control 
implies a closed loop phase control system which 
makes corr~ctions in deviations in SPS beam pointing 
and focusing from ground based measurements of the 
received power beam. In other words, ground based 
phase control is a servo control system which like 
any servo system has a measureable transfer function, 
frequency response, step response, noi&e factor, 
resolution, loop stability, etc. Novar is using its 

Command 
Memory 

~---+--------------------------tam------------------------------~ 

Detector 

Computer 

FIGURE 1 
SONIC SPS PHASE CONTROL SIMULATOR 
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intcrferomec r ph 8 ~on trol t chniqu to foc u nd 
point th sound b m. Th nd clos d loop 
cll.l ractcrlstics of lh Sonic Slmul tor will b 
mea ured . A d scr lptlv s rvo loop dlagr Lm and 
transfer func tion wlll b d v lop d Illi. 11 m sur d 
h.lrac l erls tl c:; wlll b t at d for Ill: .:ct!ment with 

conlrol system theory . Th n xc tep will th n b 
lQ an. lyze and miligate eff c ts of unwant d in­
lcrf ring inpuls such ao ir c urr nts in th labor­
llory and lh' r (1 c lion of th sonic beam off 
walls . 
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FIGURE 2 
SONIC SPACETENNA 

Th Sonic Simu l a to r ca n be readily fo r ced t o 
deal with the sam no i se cha r ac teri s tics as the 
i onosph r e would int r oduce i nto t he r eal wor ld SPS 
phase con trol system . This would be acco~plished 
by al t eri ng the pr opaga t ion of the simula t or' s son i c 
beam through the use of sc ulp t ur ed reflec t i ng s ur­
faces and cont rolled a i r t ur bulance . 

FIGURE 3 

PHOTOGRAPHIC SCANNING SYSTEM 
·A precision mechanical scanning . ystem provides an 
actual photograph of the sonic beam. The camera lens 
remains open In a darkened room wh ile the sound·to· 
light moou lator (device being pointed at, provides a 
light output proportional to the Intensity of the sonic 
beam. The modulator is scanned up and down and 
forward and bac~ward to provide a photograph o f a 
cross section of the beam. 

I onospheric effec t s wil l impac t an SPS Phase 
Control Sys t em simila r t o the way that no i se and 
o f fs et error impact any closed l oop servo system. 
Therefore , conventiona l control sYB t em synthes i s 
t echniques should be a ble t o r educe SPS phase con­
tro l error s due t o i onosphe r ic eff cts . 

Analyt ical t echniques will be developed to 
permit the va lida t io n of these sonic propaga t ion 
model s a gainst measured ionospheric pa r ame t e r s . 
This would , for example , lead to the ·.,uan ti t a t ive 
correlation of i onosphe ric elec tron density patterns 
with the sound r eflec ting surface ' s ro~ghness and 
pla cement. 



FIGUHE 4 
REPRESENTATIVE PHOTOGR~PH OF A MECHANICALLY 
SCANNED SONIC BEAM (Boll Sy.t~m Technical Joumll. 
1951) 

CONCLUST :-IS 

It Js expect ~d that a number of conclus ions can 
be provided rega rdin g the applicability of _~e sonic 
simulation technique to the future development 0 f 
the SPS pO',e r transmission system . If conclusions 
are favoraule, we would expect that the sonlc simu­
lato r wi ll provide a low cos~ a lternative t o many of 
the time consuming orbiting satellite experirn ~ts 

that would otherwise be necessdry . 
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SPS PHASE CONTROL STUDIES 

1.0 

W. W. Lund. B. R. Sperber. G. R. Woodcock 

INTRODUCTION 
Boeing Aerospace Company 

To properly poi nt and form the SPS mi cro\,lave power beam, the outputs 
of the power amplifiers in the transmitting array must be phased in a specific and 
coherent fashi~n. The purpose of the SPS phase control system is to bring this about 
reliably. 

A number of different phase control schemes can be, and have been, 
envisioned. The one selected for the SPS baseline system is a retrodirective CW phase 
conjugating system using a spread spectrum uplink signal and a reference phase signal 
that is distributed via fiber' optics. The basis of this selection is relative tech­
nical simplicity and requisite assurance of success. 

The operational principle of the retrodirective phase control system 
is that if a signal EReceived' described by . 

EReceived • cos (wt + .ref + 0rec) 

is received, a phase conjugated signal 

ETrnnsmittQd = cos (wt + 0ref - 'rec~ 

(1) 

(2) 

is transmitted. If this is done allover the transmitting aperture, the resulting 
beam "/ill leave in the inverse direction o~ the incoming pilot beam. 

Problematic technical aspects in implementing the scheme above are that 
the received and transmitted frequency spectra are dissimilar and that the referents 
phase Pref against which the received phase 0rec is measured must be the same all 
over the transmitting array. (Regarding tolerable systematic phase shift, it may be 
noted that a phase shift of 3 x 10-2 radians will scan the beam approximately 40 meters.) 

Transmitter noise. receiver noise and pilot beam pO\,ler detennine how 
clo~e the pilot beam frequencies of the spread-spectrum uplink can be to the downlink. 
Studies at Boeing and elsewhere have yielded values for this offset in the range of 5 
to 50 MHz. In the case of the most recent Boeing pilot link study, the network of 
COns; cerati ons used "las as sho\,1n on Fi gure 1, yi el di ng the characteri sti cs of the fi nal 
system as a function of transmitting frequency notch filter cutoff frequency fc, pilot 
beam receiving aperture and desired signal to noise of the received pilot signal sho\'10 
on Figure 2. 

For accurate pointing it is important that the received pilot signal be 
scaled to generate the transmitted downlink signal instead of merely translated. I.e •• 
if the downlink frequency ·js fo' the pilot frequency is fo + 6f = w/2n and the received 
field is given by Equation (1), the downlink should be: 

Etransmitted • co~ Eo (fo + d fl-! (wt + 0ref - 0rec~. {3l 

instead of 

Etransmitted = cos (4) 

'.'~''''''''''' .. it ... 
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The reason fOI" this is that; f frequencies are not' scaled but translated by some 
a.:ount .~f, tht. tr;!nsmitt~d beam is incorrectly steered off the pilot beam axis by 
an amount W. W depends on the transmitting aperture tilt 9. the range of R and the 
tl'Qllsndtting fr\;~luency f according to the "~4uint" formula:' 

W = R 9 A f fo -1 • (5) 

For the baslel ined spread spectrum pilot signal A f is effectively o. 
Selection of the specific spread spectrum uplink signal scheme and the 

decoding of the uplink at the receiver is pending further study of ways to mitigate 
ionospheric and tropospheric distortions of the uplink wavefront. The basic problem 
is that the inaex of ref,·acti~)fl in the beam propagation path depends on the atrnos­
pher'ic pressure, composition, temperature and the degree of ionization; and in the 
troposphere the index of refraction increases with increasing density while in the 
ionosphere th/,; opposite is true. A secondary problem is geometry: if there is only 
a single pilot beam just a small central portion of the propagation path through the 
trcposphere and ionosphere is sampled. Finally, the effects of the power beam on 
the temperature and density of the ionosphere must not interfere with phase control 
or beam poi nti ng. -

The effect of phase errors on the transmitted beam is to distort the 
wavefront. The effect of average phase errors can be treated as a function of posi­
tion in classical optical fashion to get beam offset, defocusing. astigmatism, distor­
tion and similar quantities. The effect of random RM§ phase errors 62, assumed not a 
function of position. is to reduce the main beam efficiency by the factor 

62 - (6) "random • e 

Because in general there is a residual on-axis 62 over a single phase 
controlled a'~ea proportional to that area, the above equation qualitatively illustrates 
the reason for the recent change in the baselined level of phase control from the sub­
array level to the klystron power module level. The approximately factor of 10 averagf.{ 
decrease in phase controlled area contributed to a smaller effective 62• The revenues 
from the extra received pO\'1er of the no\'/ more efficient power beam over a satellite 
lifetime ,."ere found to adequately compensate for the increased phase control system 
cost. Other benefits associated with phase control to the module level include increased 
pointing accuracy and decreased waveguide tuning mismatches. 

, 
2.0 BASELINE PHASE CONTROL SYSTEt·t DESCRIPTION 

The baselined phase control system. illustrated on Figure 3, consists 
of 101,552 klystron module level power amplifier phase control subsystems, as shown 
on Figure 4. and an 816-2/3 MHz reference phase distribution network of fiber optical 
cables and master slave returnable timing system repeater uni:s as shnwn in Figure 5. 

The reference phase distribution tree (to be described in more detail 
in the next section) has four levels tulminating at the klystron module with no more 
than a 1:36 output branching, and constitutes most of •. the physicai and operational 
(but not functional) complexity of tha system. Its purpose is to provide identical 
phase reference phase signals to all klystron modules for use in conjugating t~e pilot 
to get the pOl'/er downli nk. . 

The klystron power amplifier phase control subsystems contain the phase 
control system's functional complexity insofar as th~y each receive and decode the 

• 
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4.0 COSTS 

Reference phase control system element costs, estimated by standard 
aerospace avionics cost estimating methodology from the computerized Boeing Program 
Cost Model data base. After estimation of the first unit cost on the basis of platfonn. 
function and service factor~ the costing n~thodology used was to discount the per unit 
cost on a 70~ learning curve through the 1000th unit. After this was assumed to satu­
rate and per learning unit costs were constant. Table I summarizes characteristics 
of the phase control system units on board subarrays. while Table II sunnarizes the. 
segments of the reference phase distribution system at levels above the subarray level. 

The primary results of the cost estimations are that the phase control 
system costs total well under $100 million and are dominated by the costs of the phase 
control pilot beam receivers. With more detailed reference satellite phase control 
system specifications there can be a requisite reduction in cost uncertainties. How­
ever, it should be noted that substantial (factor of two or more) reductions in phase 
control system cost are unlikely because current aerospace and electronic industry 
technology routinely deals with production runs such as those required for the SPS 
phase control system on equipment of comparable complexity. 
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spread spectrum pilot link signal, make any necessary corrections, conjugate ;t 
using the 816-2/3 NHz reference phase signal from the phase distribution tree and 
actively compensate for phase shifts suffl~red in the power amplifier and waveguide~ 
feed networks. 

Fiber optic cabling was chosen over conventional coax for the reference 
phase distribution because of its lower mas~, lower signal attenuation, and the fact 
that it has no short circuit failure mode. It also has lower phase delay and costs 
less. However, the phase delay variations are not low enough to eliminate the need 
of feedback (i .e., returnable timing systems) on all but the subarray (Level 4) ref­
erence phase control tree level. At the lowest level the length is so short that 
temperature induced variations in phase shift are judged to be tolerable. 

NASA-funded technology development work at Boeing is currently develop­
ing 980 MHz fiber optic transmitters and receivers for SPS use. The expected success­
ful completion of these and tlle;r demonstration with a 1 km cable should substantially 
verify that fiber optic technology can distribute the reference phase; 

3.0 BASELINE SYSTEM RELIABILITY AND REDUNDANCY 

It is clear that any reference phase control system that refers phases 
to central points has critical links when system reliability is considered. Because 
of thi s, the most cent,"a 1 units in the reference system have been made redundant and 
autonomous. 

The baseline transmitting array has three autonomous master reference 
phase receivers, which each transmit a ref.erence phase signai via separate and redundant 
fiber optic cable links to each of bventy active Levell sector phase distribution units. 
(See Figure 7) TheSe units select valid phase control signals and distribute them via 
redundant fiber optic cables to twenty Level 2 (group) distribution units. The group 
distribution units in turn tree the signal out further to 19 subarrays each. At the 
subMray, a last distr'ibution unit sends the signal to each klystron module, where it 
is used as a refel~ence for conjugation of the phase control pilot Signal receiver out­
put. The klystron is held in proper relation to the conjugated pilot beam signal by 
a cont."ol loop of its O\'Jn that compensates for its internal phase shifts with tempera­
ture, time, and voltage. 

An analysis of the basic reliability of the baseline configuration was 
pedortred by G.E. under subcontract to Boeing. The element reliabilities and basic 
configuration assumed are shown in Figures 7 and B. For purposes of analysis the 
phase control system was considered as .four segments. The first segment starts at 
the master reference receivers and continues through the sector reference distribution 
unit I s selecti on s\'Ji tch SWI. The second segment is from the output of SWl to the out­
put of the subarray group signal splitter B19' A third segment runs from this splitter 
through to the output of the subarray splitter Bmn. Finally, the last segment was 
analyzed from the Bmn output to the klystron input. 
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Table I. Intrasubarray Phase Control System 
Production Cost Characteristics 

Subarrays PCR PCR RPDS RPDS length 

Subarray Number of of This Mass Cost Mass Cost Cable 

Type Klystrons Type 1M ilL 1W. ilL .<m.L 

1 4 1028 4.4 2240 1.0 595 33 

2 6 1052 6.6 3360 1.0 595 49 

3 8 612 8.8 4480 1.0 595 61 

4 9 664 9.9 5040 1.0 595 72 

5 12 900 13.2 6720 1.0 595 95 

6 16 784 17 .6 8960 1.0 595 132 

7 20 628 22.0 11200 1.0 595 167 

8 24 644 26.4 13440 1.0 595 197 

9 30 632 33.0 16800 1.0 595 232 

10 36 276 39.6 20160 1.0 595 296 

TOTAL 7220 112T $57M 7 T $4M 

Table II. Intersubarray Phase Contro1 System 
Production Cost Characteristics 

Item No. Regld. 

Master Reference Receiver and 
Reference Phase Transmitte.r 3 

Cables 60 

Slave Repeaters 400 

Level 2 Cables 380 

Level 3 cables are common with 
area-subarray data harness (see WBS 1.1.3) 

Avg. Unit 

424K 

4.6K 

2S.1K 

2.5K 

~ 

Cable C~ble 
Mass Cost 
{kg} 1$) 

3.7 73 
5.4 108 
6.9 138 
8.0 160 

10.6 212 
14.5 290 
18.2 365 
21.6 433 
26.0 521 
32.5 649 

91 T $lM 

Per SPS 
{M} 

1.272 

0.276 

10 

0.95 

$12.5M 
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SPS FIBER OPTIC LWK ASSESSMENT 
T. o. Lindsay, E. J. Nalos 
Boeing Aerospace Company 

1. INTRODUCTlOr~ 
• 

Fiber optic technology has been tentatively selected in the SPS baseline design 
to transmit a stable phase reference throughout the microwave array. Over a hundred 
thousand microwave modules will be electronically steered by the phase reference signal 
to form the power beam at the ground receiving station. The initially selected IF dis­
tribution frequency of the phase reference signal has been set at 980 MHz or a submultiple 
of it. 

Fiber optics offers some significant advantages in view of the SPS application. 
Optical transmission is highly immune to EMI/RFI. which is expected to be severe when 
considering the low distribution power «lmW). In addition. there will be savings in 
both mass, physical size. and potentially in cost. 

2. FIBER OPTIC LINK VERIFICATION PROGRAM 

2.1 TASK DESCRIPTION 

The purpose of the present program is to demonstrate feasibility of a fiber optic 
link at 980 MHz for SPS application. The specific tasks are: 1) Analyze existing optical 
fibers for use in the phase distribution fiber/optic link with emphasis on phase change 
effects and ability to transmit high frequency IF signals; i.e., low attenuation and ade­
quate bandwidth; 2) Analyze suitable optical emittel~s and detectors to determine feasi­
bility of ~peration and usage at 980 MHz; 3) Select and purchc.se optical emitters, 
detecton" >l1d fibers for link development; 4) Design and construct impedance matching 
systems for matching the optical emitter and detector to laboratory equipment; and 5) 
Assemble and test a two-way link at 980 t1Hz consisting of matched detectors, emitters, and 
a two-fiber cable of minimum length of 200 meters. 

In the present phase control system for SPS, a two-way link is required in the 
phase distribution system at each level to achieve phase compensation for phase changes 
induced by temperature changes and other property changes in the electronic circuit. 

2.2 FIBER OPTIC LINK DESIGN 

The results of the component selection for tile fiber optic i ink are sUR1J1arized 
in Table 1 below. 

TABLE ~~.QMf.0NE~T ?~~.ECTION FQR FI~~R OPTI~._!~.~!._~:_NK __ ... _. __ _ 
Component 

Emitter 

Type 

GaA1A~ Multi-Mode 
Inj~ction Laser Diode 

GaA1As Single-Mode 
Injection laser Diode* 

Light Emittin~ Diode 
(LED) 

Features ----_._----. ---
1. Moderate cost 
2. High power 
3. High modulation bandwidth 
1. High power 5. Low threshold 
2. High coupling eff. 6. High reliability 
3. High bandwidth 7. Narrow spectral width 
4. lOVI distortion 
1. No threshold current 
2. low distortion 
3. Low cost 
4. Stable operating point 
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TABLE 1: COMPONENT SELL~TION FOR FIBER OPTIC TEST LIi.K {Continued) 
co.' _______________________________ _ 

Component 

Detector 

Fiber 

Type 

Silicon Avalanche 
Photodiode* 

Silicon PIN Photo­
diode 

Step-index glass 
Multi-mode 
Graded-index glass 
Multi-mode* 

Step-index glass 
Single-mode 

Features 

1. Gain - B~I product:: 80 GHz 
2. High RCVR SIN 
3. Moderate cost 
1. Low bias voltage 
2. Stable op~rating point 
3. low cost 
1. low cost 
2. low attenuation 
1. Moderate cost 
2. High bandwidth 
3. Low attenuation 
1. Extremely high bandwidth 
2. Low attenuation 
3. Poor coupling efficiency --------.-.-- .- -------...• 

*Selected for link 
development 

As a result of the investigatiolls. multi-mode graded index fiber was chosen due 
to its high bandwidth, 'Iow attenuation, availability, and high coupling efficiency with 
injection laser diodes; single-Inode injection laser diode was selected for its high band­
width, high output, and excellent linearity; and an avalanche photodiode was selected 
because of its high bandwidth and superior sensitivity. 

The link will operate at a wavelength of 820 nm where present laser diodes and 
avalanche photodiodes are readily available and offer good reliability. Fiber attenuation 
although not minimum, reaches an acceptabls value at 820 nm also. 

The injection laser diodes were purchased from Nippon-Electric in Japan; the 
two-fiber cable was obtained from Siecor (fibers manufactured by Corning Glass Works). 
and the avalanche photodiodes from RCA. 

One of the problems to be solved for the 9S0 MHz feasibility link was to develo: 
simple, but effective, signal coupling techniquEs fer the emitter and detector. The 
approach chosen is illustrated schematica17 in Figdre 2. The use of the 47Q resistor 
in series with the injection laser diode caltses apr1ro)(.imately 50n to be seen by the 
driver Cl.mplifier and it also aids in converting th~' driver output 'to a current source 
which is needed by the diode for linearity. The ou~put Signal current from the avalanche 
photodiode flo\,/s directly into the 50n input impedance of the laboratory amplifier. In 
both cases, the de biasing networks are isolated from the signal paths by shorted quarter­
wave microstrip techniques. 
2.3 EXPERH1ENTAL RESULTS 

The results of an initial test to couple 980 MHz through a sample link are shown 
by Figure 2. The fiber length was 300 meters and the type is similar to that to be used 
in the two-way link development. Results are listed for two values of detector biasing. 
The output voltage waveforms were monitored using a sampling oscilloscope and, in both 
cases, the trace was stable and noise-free. 

The test setup ~..,as similar to that sho\\In in Figure 3. The emitter and detector 
modult. are to~ards the right foreground shown with a length of coiled fiber optic cable. 
Labot-atory equipment includes a 980 !'1Hz frequency synthesizer, a vector voltmeter, 
oscillC'5cope, preamplifier, and biasing and monitoring equipment. 
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The emitter and detector modules used in the initial test are shown in Figure-4a 
and 4b. The thermal environmelllt aboard the SPS is expected to be widely variable with 
values anticipated between -50QC and +150°C. Therefore, a major subject of interest 
involves the variation in propagation time through a fiber as temperature is changed. 
Propagation t'ime is dh~ectly related to the transmitted phase and is known to .'8 affected 
by thermal expansion and refractive index variation. Data was also taken to determine 
the magnitude of the phase variation versus temperature as illustrated in Figure 6. 
The phase sensitivity is not low enough to obviate the need for phase compensation except 
possibly for the shortest (last) level of pha~e distribution. 

For a one-way link length of 200 meters, the transmitted phase would vary 
approximately 2.5 degrees for every °C of temparature change at 980 MHz. This rate is 
acceptable with the presant phase control system because of the two-way link length 
compensation. The two lengths of fiber will be adjacent for the total link. providing 
accurate tracking and matching • 

At the outer levels of the phase reference distribution network, the link lengths 
average4l0 meters and comprise over 90% of all of the elements. It may be possible to 
eliminate the return link in such cases as the phase shift will be greatly reduced for the 
short runs. averaging 0.125 degrees of shift per °C. 

As fiber optic technology progresses, longer wavelengths should be investigated 
where bandwidth and attenuation characteristics are superior for fused silica fibers. It 
is anticipated that phase shift sensitivity may be reduced at longer wavelengths because 
of dispersive changes in the refractive index. Fiber optics represent a promising 
approach for the phase distribution system for the SPS and merit further development to 
realize their full potential. 

FIGURE 1 

-------­, 
200 f!ET£RS 

OPTICAL 
FIBER PAlii 

1960 
H~z . 
REF 

DCA 

A~i~ 
I"~ 

TEST CONFIGURATION FOR 2 WAY FIBER OPTIC LINK. 

3 

... •• ...... 1 U r P1'I~ 



r.;;;u;r4\ _rIP,?"" it 1'!'!"""'"'.1"'''n·'''.~'·r1-·~· 

J. 
r·-

l ' 

J i ' 

ORtGINAL PAGE IS 
OF POOR QUALrrY 

(M'~!£R MOrul (: 

ITHAESH • 60 .. 

lop • 67 .. DC 

'MOD • 0.7'.1S 

'0 • ~62 ,..14.m , .. 

D[T(CTOR ~OOULE: 

t;, 

ll,
& 

. J.l. 

,-------

VS1AS 185 Volts 

Vo 71 MY RlIS 

'D 19. ~,..I •• tt 

315 v,oas 

283 flY R~IS 

19.1 tw.n 
_ .... -"--4 .. ·0 .. ,. 

FIBER: ceRrUMS IV'O 
Length· 303 Het.ers 
Atten • 3.9 db/kit. 900 .. 

BW • 870 HHz-t. 
N.A • 0.218 

FIGURE 2 FIBER OPTIC LINK DESIGN SPECIFICATIONS 

FIGURE 3 INITIAL 980 MHz LINK TEST SETUP 
l 

-.- ---.. --~---.. ---""lIi!j 



," 

j;: 

, .. 
I 

,.if 

,",)44*;;,4U 

ORtG'NAL PAGE IS 
OF POOR QUALrt'Y 

;.:/ 
.: ~~... j' I 

FIGURE 4A EMITTER MODULE BOARD. FIGURE 4B DETECfOR MODULE BOARD 

.. 
Lt.I 
II') 

< :z: 
a.. 

z -

FIGURE 5 

:';:: :." :. . .;.. .:' .. _ ... 1:.~ ..... :. . 

::;f~;';'-'~:: ·~;~'~:~~lrl~j~L~;I.:~_L~~~~~·~';;';·;~ n;;:; ·~:i_~:~~~~i~.::.:~~ _.,::.: , 
:g~tf~·L.:.~_.:G:~~f~,.jl:::L::~L.~~;:::~:~~~:.~ .. i:::::.i:Ji::;~·~. t_.::: ... ;: 25 .,.:,,':.:,.::, : ... ';;" .: ';:,,':: ':., .. :,,':'::T· ::; .:. ". 

15f~[i"~~i~tif~t"l~:~~:;!:"1-:"_J""};~~ 
10 -'" -'" -" ;:_~;",;,-,_;",..;.c:.;.,,,, .'-- ... _-_._' '-';"-':.;=;;"~..:!;-;";"';';.-".;--"-

-'j~:-t,i':t±-:l:' ,:; •• :,H8~!7jH··;,S .• :·i: .·~ci;~":·t·t: 
" ': .. :... :::" ".~; ,: "1.;". . .: :,;:. .:; ; "!:: 

0

5 .:'i:,~:.::~~±~~-;i~[-:_~~J:l·j~;;::-·~;J.' 
':':'j : ~'l ;~~~J':.' ....L ___ ~.~ ... 

PHASE CHANGE OF GRADED INDEX FIBER vs. TEMPERATURE 
• CORNING FIBER 303 METERS LONG 
• FREQUENCY 980 MHZ 

-40 0 40 80 120 160 

TEMPERATURE, °c 
.'! 

I 
I 

5 I 
"'_~__', ", J 

, ". . ~ 



r ·"·· .. ·,,·:··_· .. ", -
, 

l;" 

~ 

( 

l I 

I 

t , 

II ~ 

- -
N82-12551 

IONOSPHERIC EFFECTS IN ACTIVE RETROOIRECTI\'E ARRAY 
AND f.IITIGATIXG SYSTE~t DESIGN 

A. K. Nandi and C. Y. Tomita 
·Rockwell International 

Abstract 

The operation of an active retrodirective array (ARA) in an ionospheric 
environment (that is either stationary or slowly-varying) is examined. The 
restrictions imposed on the pilot-signal structure as a result of such opera­
tion are analy:ed. A 3-tone pilot beam system is defined which first estimates 
the total electron content along paths of interest and then utilizes this 
information to aid the phase conjugator so that COl'rect beam pointing can be 
achieved. . 

I. INTROO{lCTION 

In oruer to make the solar power satellite system perform correctly, it 
is necessary to point the high pOl~er downlink beam towards a specific point 
on ground. The downlink beam is narrow and point.ing accuracy :tequirements 
are stringl'nt. One way of achieving this objective is to use the retrodirective 
array sllch that the down-going pOll/er beam points in the same direction from 
which a ground-originated pilot signal came. In this approach, the dOlmlink 
wavefront is obtained by conjugating the phases of various segments of the 
upli nk (pi lot) wavefront. For operational reasons. the uplink and downlink 
frequencies cannot be identical. Both the uplink and dOl'lnlink wavefronts are 
required to travel through the ionosphere. The object of this note is to 
examine system operation constraints imposed by the ionosphere and find 
possible remedies. The discussion that follows is based on the.assumptioll 
that the ionosphere is stationary or slowly-varying. Also, heating effects 
on the medium due to the downlink power beam are not taken into account. 

II. IONOSPHERIC EFFECTS ON SINGLE-TONE PILOT BEAM 

It is well-known that an important feature of the retrodirective array 
is t.hat the dO\m-coming be-am is phase coherent when it arrives at the source. l 

This statement is rigorously correct only if the propagation medium is non-dispersive 
spatially homogeneous and tc.'mporally stable. In case of the ionosphere, one or 
more of the above conditions are violated. Under certain conditions, beam 
pointing error can occur and phase coherence at the source can be lost. 

Consider the situation shown in Figure 1. Assume the uplink and downlink 
frequencies are given by fu and fO, respectively (fll ,. fn). The '(path-dependent) 
phase shift at fu on one particular radio link can be written as 2 

where 

2n f L b L 
,(fu) = C

U 
2n fu C ~ N dt (1) 

b = e = electron charge, m = electron mass, 
EO = free-space permittivity 

= 1.6 X 10 3 mks 
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(I. 
L is the physical path length involved andJO N dR. is the integrated electron 
density along the path under consideration (=10 17 1019). Note the second 
quantity on the right hand side of Equation (1) accounts for ionospheric effects 
on 3: C\V tone. On using appropriate constants, one can write 

2n f L 
2n IL +(fu) u 40.5 N dR. = x f C C u 0 

2n f L Ku u = C - fu 

Since one is interested in knowing the phase shift at fO' a reasonable 

estimate of the phase can be obtained by multiplying ¢ (fu) by fO/fu (this 

estimate becomes increasingly accurate as fu ~ fO). Thus, 

-+(fO) = fO/fu x ~(fu) 

• 

On conjugating this phase, one obtains 

(2) 

(3) 

(4) 



u1 

The downlink signal at the 

S~own(t) = cos [wDt + 

The down~ink signal at the 

* ¥ 

transmitting end can be written as 
L fD 

2n fD C - Ku ~] 

receiving end is given by 
'f

D
' K

D
· 

(Ku fu2 - f
D
)] 

For a temporally stable ionosphere and ignoring second-order effects, one 
can set Ku = KD in Equation (6) and obtain 

(5) 

(6) 

R fD I 
Sd (t) = cos [wDt - K (£2 --f )] (7) own . u u D 

If, in addition, the pl"Opagation medium is assumed non-dispersive, then 
the second term on the right hand side of Equation (7) involving Ku ~ould 
be equated to zero. In the present situation, this kind of assumption is 
highly unrealistic. Note in Equation (7), Ku applies to a particular radio 
path and will, in general, be different on different paths because of 
ionospheric inhomogeneity. A consequence of this fact is that the phase 
c.oherence (at source) property of the downlink signal mentioned earlier 
does no longer hold good. Furthermore, if a coherent phase perturbation 
occurs due to some ionospheric large-scale features (such as a wedge), 
then even a beam pointing error is possible. The magnitude of these 
effects need to be evaluated for worst-case ionospheric conditions. The 
two tone pilot beam system which aims at alleviating some of the ionospheric 
problems mentioned above is discussed next. 

II I. n~o-TONE P I LOT BEAM SYSTEM 

If two tones (symmetrically situated around the downlink frequency) 
are used on the uplink transmission, then under appropriate conditions an 
average of the phases of the uplink tones can be taken to be a good estimate 
of the phase at the downlink frequency. The idea here is that the pha~~ 
errors caused by a stationary ionosphere can be largely eliminated by this 
approach. Let fl and f2 be the two tones consituting the pilot beam and 
symmetriea]l}" located around the downlink frequency fD. The choice of the 
offset 6f is based on conflicting requirements and is not discussed here. 

and 

Then 

Using the notation as before, for a given link one can write 

L 40.5 2n (L = 2n f1 C· -~ x 1: JO N dl = +1 

+(f ) = 2n f L _ 40.5 2n l,L N dl = 4» 
2 2 C f2 x C02 

+ :: +(f) + +(f2) 
2 

2n f 1. _ 40.5 " 2rr rL 
II D C f x C JO D 
= +(fD) 

N dR.; 
1
'6f\ 'fD «1 

(8) 

(9) 

(10) 

I 
j 

1 

1 
........ - .. -___ ... __ " .... ' .... , .... ~Ii.J 

__ ,Lo.._ ••. --'. _''' ........... .l!O;-.._ .. ~ ...... , • .:::.<>-_ 



f 

Note ~ is a desirable quantity as far as correct,retrodirective array 
operation is concerned. Normally, all one needs to do is to conjugate 
this quantity and use it as the phase of the downlink signal leaving the 
space antenna. However, the ari thmetic averaging indicated in Equ.ation (10) 
can give wrong answers for'f (often called II ambiguities). This can happen 
if 

(i) ~(f2) - ~(fl) = K (211) + A; IAI < 2n and K is odd integer 

and/or 

(ii) asynchronous dividers are used. 

It is clear that in spite of its inherent attractiveness, the 2-tone pilot 
beam system cannot be used because of the n ambiguities that can occur 
during phase averaging. 

IV. TIIREE-TO:\E PIl.Ur BE/\~f SYSTEM 

Before proceeding with tht.' main task of solving the phase conjugation problem 
in an ionospheric environment, it is worthwhile to find out whether «PI and «P2 
could indeed differ by integl'al multiples of 2II when typical SPS paramete'rs 
are used. POl' the prt.'scnt problem, it is sufficient to show that ionospheric 
effects alone can give dse to phase differences which are multiples of 2n. 
A measure of this effect is obtained by multiplying "'I (Equation (8» by f2/fl 
and subtracting q,2 (Equat ion 9». l11US 

f2 
A+ = £} ~l - 4'2 

• 2U x l40C~ x f N d1 x [i
2 

- ~>]! 
Let 

{

fl = fO - Af 
and 

f2 = fO + Af 

(11) 

(12a) 

(12b) 

(12c) 

then, the number of 2II phase changes obtained for different values of IN dR. 
and Ai is shown in Table 1. 

,,' 
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Table 1. Number of Ambiguities (n) Vs. Af 

Af fl f2 1019 el/m2 1018 el/m2 MHz CHz GHz n n 

,100 2.350 
. 

2.550 92 9.2 • 
50 2.400 2.500 45 4.5 
10 2.440 2.460 8.9 0.89 

S 2.445 2.4SS 4,4 0.44 
1 2.449 2.4S1 0.9 0.09 

, ........... _. 
_,. ,""" II 

It is clear from Table 1 that in order to avoid ionospheric ambiguity for 
the strongest concentration under consideration, Af should not exceed 1 ~nlz. 
Other operational constraints render such a choice unacceptable. 

In what follows, a 3-tone approach due to Burns and Fremouw is used to resolve 
the ·;mbiguity problem. 3 It is based on a direct measurement of fN dt along 
thCl paths of interest and then using this information to estimate the path 
· .... elated phase shift at the downlink frequency fD. 

Consider a frequency-amplitude pattern as shown in Figure 2 where the three 
uplink tones fl, f2 and f3 are coherent at ground. Indeed, the three tones 
can be generated by ~ low-deviation phase-modulated transmitter. Thus, using 
equatiolHi similar to Equation (8) for three frequencies f1, f2 and f3, one 
can write 

64>A = 412 - ~l 

= ~ 1(£2 - 9 L - 40.5 x IN d£ x (i
2 

- iA (13) 

and 

• ~n l(f1 - 9 L - 40.5 x J N d£ x (i
1 

- iA (14) 

The second difference of phase shift is given by 

OS) 

, 
j 
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Figure 2. 

For suitably chosen ~f, one obtains 

2!l f 2 6f2 62«t::--C x 40.5 x N dl x f 3 
1 

(16) 

Suppose one needs to avoid a 3600 ambiguity in c52~ for values of f N dR. 
less than 10 19 • From Equation (16), one easily finds 

Let 

£1 = 2.45 + 0.153125 (this choice will be justified later) 

= 2.603125 GHz 

Then 

= 0.651 x 1016 

or 

6f := 80. 6 ~Uiz 

Thus, with t1f :> 80.6 MHz and asslUning that c521f1 can be measured, then fN dR. 
can be calculated rather easily from Equation (16). An implementation that 
measures o2~ with relative ease is shown in Figure 3. 

3-TONE 
GENERATOR 

'Oji 

,~ 

£2 
f1 FILTERS ~ 

£1' f2' f3 
£3 

-

Figure 3. Measurement of c52~ 
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(17) 

(18) 

(19) 
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Reordering Equation (16), one easily obtains 

N = computed value of f N dl 

f 1 3 C 1 
2 6f2 x 2li x 40.5 x (-62t)measured = 

.. 
Q • (-62t)measured 

2.603 GHz and 6f = 80.0 ~~z, one can compute 

a .. 1.6 x 10 18 

,. 
Based on S/N ratio considerations, the accuracy of the N computation in 
Equation (20) is determined by the accuracy of 6

2
t measurement and is 

given by 

~ = a· °62" 

Once an estimate of f N dl for a given link is found, one needs to 
perform several steps of signal processing starting with the phase 
at fl and finishing with the conjugated phase at fD. These steps 
are ShO\ffl in Figure 4. 

It is fair to point out that the conjugator used is a modified 
version of the one in Reference 1. With the additional boxes, the 
ne\\' conj ugator clearly takes into account st~ady-state ionospheric 
effects. 

For the present configuration, the uplink and downlink frequencies are 
related by the equation* 

or 

fl 
n + 2 f = n D 

For fo = 2.45 GHz and n = 32, one obtains 

fl = 2.603125 GHz (see Equation (18». 

(20) 

(21) 

(22) 

(23) 

It is interesting to examine the output ,.*(fO) of the conjugator in Figure 4. 
On taking differentials, one obtains . 

A,.*(f ) :: 40.5 x 2n (1 - f02/f12) AN (24) 
D fD C 

One using fD = 2.45 GHz and f1 = 2.603 GHz, the above equation simplifies to 

At*(fD) ~ 3.95 x 10- 17 AN (25) 

*Note the mode of operation indicated here is different from that in Ref. 1. 
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o 
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o 
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2 
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Figure 4. Modified Chernoff Conjugator 
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so that 

AN : 2.53 X 10 16 x A~*(fD) 

Suppose one requires an r~s accuracy of 10° (= .174 rad) on ,*(fD)' Then 
the required accul'acy on N is given by 

a'" = 2.53 x lOiS x .174 
N 

= 4.41 x 10 15 

On going bac.k to Equation (22) , one finds 

10 18 a
6 = oN/a, a = 1.6 x 

2 

= 2.76 x 10- 3 

Squaring the quantity on the right hand side of Equation (28) and on using 
some result$ in R('ference 3, one obtains a value for (PR/a2).** Thus, 

PR/02 = (SIN) ratio at the receiver sketched in Figure 3 

8 
= Val' (0",) t " op 

8 
:;:: 

7.62 x )0-6 

= 1.05 x )06; i • e. , 60 dB 

(26) 

(27) 

(28) 

As far as Figure 4 is concerned, several comments al'e in 01'der. Firstly, the 
use of the same N f01' both uplink and downlink phase compensations need justi­
fication. Secondly, the conjugator suffers from divider ambiguity problems. 
This makes it necessary to phase conjugate at IF and then suitably multiply 
the conjugator output frequency to 2.45 Gflz. Preliminary design of a 3-tone 
conjugator operating at IF has been completed and will be reported elsewhere. 

V. CONCLUSION 

An attempt has been made above to incorporate the 1'ole of the ionosphere in 
ARA system design. A conjugator has been sketched that compensat('s for steady­
state ionospheric effects. I~ork is currently in progress to evaluate the 
magnitudes of ionospheric wedge effects. Based on (limited) available data2 

and because of geometry considerations (the proximity of the ionosphere to 
the rectenna). it appears unlikely that any compensation towards ionospheric 
effects '"ould be necessary. However, in order to make a definite conclusion, 
more data on wedge structure are desirable. In addition, this problem needs 
exanlination in the light of ionospheric heating effects due to the downlink 
power beam. 

**PR is the total 3-tone signal power received and (12 is the noise power 
out of anyone of the tone filters that have identical bandwidthg, 
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HIGH EFFICIENCY SPS KLYSTRON DESIGN 

E. J. Nalos, Boeing Aerospace Company 

1. Introduction 
Considerable data has now been accumulated on the feasibility of an 80-85% high power 
klystron design from previous studies. The most likely compact configuration to 
realize both high efficiency and high gain (~40 dB) is a 5-6 cavity design focused by 
an electromagnet. A refocussing section will probably be required for efficient 
depressed collector operation. An outline of a potential klystron configuration is 
given in Figure 1. The selected power ~utput of 70 kW CW resulted from a maximum 
assumed operating voltage of 40 kV. The basic klystron efficiency cannot be expected 
to exceed-70-75% without collector depression q Although impressive gains have been 
achieved in raising the basic efficiency from 50% to 70% or so with a multi-stagg 
collector, the estimated efficiency improvement due 'to 5-stage collector at the 75% 
level is only about 8%, resulting in an overall efficiency of about 83%. These esti­
mates need to be verified by experiment, since the velocity distribution of the spent 
klystron beam entering the collector is not precisely known. It appears that t,qe net 
benefit of a 5-stage collector over a 2-stage collector is between 1.5 - 3.5 kW per 
tube. This has the double benefH of less electrical po\'1er to be supplied as \'/e11 as 
less thennal power in the col'lector to be dissipated. Table 1 indicates an estimated 
energy balance in the klystron which leads to the above estimates. A modulating anode 

, is incorporated in the design to enable rapid shutoff of the beam current in case the 
r.f. drive should be removed. In this case, the collector would become overheated 
since it would receive the full beam power. 

2. Depressed Collector DeSign 
One of the greater uncertainties in the design is the velocity d'jstribution of 
electrons in the output gap, particularly for a high basic efficiency tube. Experi­
mental verification will be requh'ed for the selection of proper depressed voltages 
at each collecting electrode. Varian has reported that about 10% of the electrons 
develop twice the doc. beam voltage in a 50% LFficient tube. We estimate that this 
will be reduced to perhaps 2% for an 80-85% efficient tube. To obtain initial 
specifications for the collector supply, an estimate was made of the possible voltage 
ratios required, as indicated in Figure 2. 

3. Voltage Regulation 
The requirements on the modulating anode and body voltage are dictated primarily by 
phase flucuations. At 40 kv, ~ ~ 3000 0 and at 41 kV, this calculation yields 29720 • 
Thus, d~/dt = -370 per kvo If a 100 phase error were allowable in the klystron, this 
would t.ranslate into a r;~i~ulation requirement of +.67% at 40 kv, provided that klystron- , 
to-klystron phase errors are not correlated. Although it is likely that voltage fluc­
tuations on all klystrons on a given d.c. - d.c. converter will go up and down together, ' 
the time delays in distribution, of the order of fractions of microseconds, will make 
them appear as though they \'/ere uncorrelated at a given instant at all klystron term;­
nals.> With this in mind, the initial regulation requirement on the modulating anode 
and body supply was set at 0.5%. Since it is contemplated to include the klystron 
in a phase compensation loop, it may be possible to relax this 14equirement when the 
loop performance is verified. 
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4. Electron Beam focusing Design 
The focusing options for the klystron include: (1) solenofd Electrof·tagnetic (EM) 
focusing, (2) Multiple-pole electromagnetic focusing with periodic field reversals, 
introducing the possibility of Permanent ~1agnet (PI'1) implementation, (3) Periodic 
Permanent Magnet (ppr1) focusing used successfully on low and medium power tubes 
(mostly TWT's); and 4) Combined prllPPM focusing wherein the Pt·' section at the 
output is used to retain good efficiency and good collinlation in the high power 
r.f. region. The low risk approach of (1) was recommended in order to achieve 
the highest efficiency, but R&D efforts in a combined PM/PPt1 approach should be 
investigated for possible 1at~r incorporation. 
In order·to achieve a conservative design, we have initially selected a capability 
of achieving 1,000 Gauss in the solenoid when operating at 3000C. Selecting a 
minimum ID dimension compatible\'Jith directly winding the solenoid on the tube 
involves a trade study of the required solenoid power and weight as a function of 
solenoid 00. Figure 3 shows the trade of solenoid power and weight with coil 00. 
It is anticipated that the solenoid will consist of copper sheet with glass-like 
insulation between layers, wound directly on the tube body. With factory adjusted 
cavity tuning, there will be no protruding tuners. It is possible that the sole­
noid may be used for baking out the tube in space. 
As a matter of interest, the performance parameters of a 50 KW PM focused klystron 
were estimated in Table 2. With the design assumptions postulated, it does not 
appear to offer any advantages over an efficiently focused solenoid design. 

5. Design ApproC.\r'" to Long Life 
The objective of SPS is the achievement of 30 year life and since the main component 
of the r~PTS system is the r.f. transmitter, its consideration is of paramount impor .. 
tance. The major transmitter elements which contribute to life are summarized in 
Table 3. The achievement of uniform tube-to-tube perfonnance will require stringent 
materials control, well defined construction techniques, and special design features 
such as temperature compensated cavity frequency control. 
An initial risk assessment of the unknowns on the space environment have led us to 
favor a closed envelope approach as a reference design. Some of the concerns with 
open envelope operation near the Shuttle vehicle deal with outgassing from non­
metallic skin of heavy molecules and absorbed volatile species: cabin leaks (oxygen); 
ft.:el cell flash ev~porators (water vapor); Vern'jer control rocket engine exhaust; and 
main rocket engine outgassing (~'/ater vapor). The degree to which such contaminants 
can be localized, and the pumping speed of space, etc., have yet to be determined. 
The NASA objective of 30 year life, in the light of current experience and understandins 
thus has to be based on the following phased approach: 

Conservative Design: 
Emission; R.F., Thermal and Stress: Derat'jng 

Determination of Appropriate Manufacturing Procedures 
Adequate Protective Features 

Modulating Anode 
System' r1onitoring Requirements 
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. t Failure Mode Identification 
~~ Infant Mortality Elimination - Burn-in 

• 

• Understanding of Space Environment 
Processing in Space 
Open Envelope Operation 

• Definition of Maintenance Philosophy 
Allowable Down Time 
In-place Repair Feasibility 

Development of Improved MTBF Analytical Model 
Space Test Verification 

There are promising developments in transmitter life which lend some credibility 
to the 30 year life objective. For instance, the best ten high power klystrons 
running on the BMEWS system have seen 9 years of life and are still running. 
With proper burn-in procedures, current space based TWT's are being qualified for 
7 years life. Over 100 such tubes currently in space have been running for \'/ell 
over 2 years. It is our expectation that within the SPS development time-frame, 
tube~tTBF's approaching 30 years with the suggested design approach \'1111 be feasible. 
It is important to recognize that significant life test programs on the ground will 
be required not only for cathodes, but the entire r.f. envelope. 

5.1 Cathode Design 
The mechanisms limitingtt:ermionic cathode life are primarily evaporation rate of 
the cathode material, cathode matrix properties, and impurities. The cathode-tube 
interaction is paramount in realizing long life, regardless of how good the cathode 
may be in a diode test. The approach to realize 30 year life must be bused en 
minimizing tube-cathode interactions through conservative design, good beam focusing 
and proper selection of materials to minim'ize poisoning gases produced by electron 
bombardment. The most likely candidates, based on present knowledge, are either a 
tungsten matrix cathode operating at a temperature of slightly above 10000C or a 
nickel matrix cathode operating at about soooe. The lower temperatu,~e wouid be 
preferable from the life point of view but factors such as migrat~or. and reacti­
vation feasibil ity tend to favor the higher temperature cathode. Ow' current 
assessment, based on discussions with the tube industry suggests that it would 
probably be unwise to utilize some of the newer cathodes until sufficient life 
test data has been accumulated. Encouragement with respect to long life in 
thermionic cathodes can be derived from the work at Bell Telephone Laboratories 
on the so-called Coated Powder Cathode (CPS), which is in use on long life. repeaters, 
capable of 50,000 hours life at current densities approaching 1 amp/cm2, much higher 
than those proposed for the SPS Klystron «.2 amps/cm2). 
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5.2 Tube MTBF Considerations 
Ideally, a failure model of the transmitter would be desired, in which no 
failures occurred until wearout mechanisms set in; i.e., avoidance of early 
mortality. To some degree this can be achieved by a burn-in procedure to 
identify and remov~ infant mortality victims. It is anticipated that with 
the referencE design tube, partial or full bakeout in space will be feasible, 
avoiding the need to perform costly burn-in on the ground. Also, with mass 
production, automated manufacture, good quality control, and maintenance, 
infant mortality can be minimized. 
With rougly N = 100,000 tubes, if a maximum of 2% of all klystrons are 
allolt/ed to fail at scheduled SPS shutdown, (every 6 months), the required 
tube ~1TBF would be approximately 

(.02N) (Tube MTBF) = 6 months - .5 ye~rs; i.e., MTBF = (50)(.5) = 25 years. 
N 

This is compatible with the r~l,lference klystron de~ign; however, a more refined 
reliability model needs to be developed, of which the exponential failure model 
is but one case corresponding to a constant failure Nte. With proper burn-in 
procedures, and as better understanding of fai1~re modes is developed, the SPS 
klystron may require a much lower MTBF to meet the above criteria. With a proper 
burn-in period, infant mortality failures can be avoided and failures shifted 
tm'Jard cathode wearout 1 imi tations. The requi red burn-in period for current· 
space qualified TWT's is of the order of 1,500 hours. Further understanding of 
the required tube MTBF under these conditions will evolve with the ground based 
development program implementation. 

6. Klystron Tube Protection 
The tube interacts with the subarray through the waveguide feed system. The 
primary requirement is maintenance of a good r.f. match under all conditions. 
During initial processing or if mismatched, either external or internal arcing 
may occur. Crnmnercial waveguide components are available to visually detect 
arcs and use a trigger signal to disconnect the tube rapidly, in this case by 
connecting the modulating anode to cathode. This can occur in much less than 
1 ~sec, adequate to prevent damage. 
With loss of r.f. drive, the entire electron beam power appears at the collector. 
The conventional klystron is designed to handle this power. In our case, the 
collector is designed to handle only the spent electron beam after normal r.f. 
interaction. If the loss of r.f. drive is sensed at the klystron input, the 
modulation-anode power supply will be used to shut off the electron beam. 
The most likely region of dc arcing is between cathode structure and modulation­
anode and betvleen the modulating anode and the r.f. circuit. In the event of an 
arc, the energy st~red in the modulation-anode power supply RC-circuit is discharged. 
Ordinarily the arc extinguishes after a brief interval and normal tube performance 
is restored auto~atically. Should some unknown fault cause persistent non-clearing 
arcing, arc logic could be designed to sense repeated loss of r.f. output and to 
shut down the modulation-anode power supply. 
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Persistent repeated nonclearing rf arcing in the klystron rf load or output system 
may result in tube damage. The rf arc logic protection circuit is designed to 
sense reflected rf power caused by the arcing and to shut down the modulation­
anode power supply pending correction of the problem. 

7. Operation Under Reduced Voltage 
One advantage of the klystron is the fact that efficiency does not deteriorate 
significantly with voltage. The effect of solar cell voltage degradation on 
klystron pO\'/er output is indicated in Figure 4 for the condition that the klystl'on 
characteristics remain on the V-I portion of the solar cells corresponding to 
maximum d.c. output. This condition can only be achieved if the perveance of the 
tube is slightly changed. 'If the modulating anode is mounted on a diaphragm, such 
an adjustment could be made. This feature would also be useful for adjustment of 
tube-to-tube uniformity. It is seen that if the solar cells are not refurbished, 
the efficiency remains high, but the power output drops significantly. On this 
basis, it was decided to refurbish solar cells and not require the transmitter 
to adjust perveance for solar cell optimal matching. 

8. Klystro~ Power Output Trade Study 
The reference klystron represents an initial point design within the given NASA 
guidelines. It is intended primarily as a vehicle to d<:'!r;:onstrate its potential 
in the SPS application. If the operating voltage at GEO can be increased to a 
value above 40 kv other klystron power levels become of interest. 
One of the advantages of the 1; near beam ampl i fi er such as a klystron is the fact 
that the different interacti~n regions, i.e., beam fOt'mation, r.f. interaction, and 
beam collection are physically separate and hence distribute the ther~al stresses 
over a large area. The most critical portion of the k1y~tron from the thermal point 
is the output gap. The output gap interception for blo typ'ical values of beam 
transmission (95% and 98%) is indicated in Figure 5. The capability of the output 
gap to handle this

2
interception is given for t\,/O values of heat rejection capability: 

0.25 and 0.5 kw/cm of area. This could be either heat pipe cooling or pumped fluid 
cooling. 
It ;s seen that for a 4~~ beam interception and W ,: 0.25 kw/cm2, the maximum beam 
voltage is about 67 kv, corresponding to a pO\'Jer level in excess of 200 kw. If the 
perveance \'1ere increased from S = 0.3 to 0.5 x 10-6, still within the regime of 
potentially high efficiency, this power level would correspond to 580 kw. This has 
encouraged us to investigate two additional point designs, at 250 kw and at 500 kw, 
respectively, the parameters for \'1hich are summarized in Tab'le 4. 
The efficiency including solenoid power is somc\'/hat higher than that for the refer­
ence design. It is \'/orth noting that even with a longer tube/the efficiency 
increases by about 2~~ points due to lO\'/er incremental solenoid t'eqlJirements at 
higher power. The specific mass decreases from about O.S kg/kw at 70 kw to less 
than 0.4 kg/kw at 500 kw CWo Thus, it appears advantageo~s to consider a higher 
power klystl"on design should the voltage constraints pet'mit it. 

The cost of a single klystron tube is estimated from the cos~ trends in Figure 6. 
For a 70 hi CW tube, the mass production cost is estimated at $2800. The acquisi­
tion cost of r.f. tubes and lO-year replatement cost of spares, based on a proj2cted 
transportation cost to space of $60 per kg, for a sYstem output of 6 GW RF in space. 
are summarized in Table 5. The transportation costs (';cmprise about 47 to 62;~ of the 
total cost. Again, with the assumptions made, it appears advantageous to go to as 
high power per tube as possible. As the ground-based development program proceeds, 
the results of these trade studies will b~ used in updating the present baseline 
design, not only fot' the klystron transmitter candidJte, but for other transmitters 
as welt. 



" 

r·.

'·'·· 

t· 
~. 

INTERNAL COLLECTOR 
.tEATPIPf:/E VAI'ORA TORS 

COLLECTOR PLATES, 

COLLECTOR UEATPIPE 12' 
TO RADIATOR 

REFOCUSING SOLENOID 

CAVITY/SOLENOID HEATPIPE 
EVAPOR.ATORS --.,.. 

" 

MAIN SOLENOID 

RF INPUT FROM 
SOLID STATE 
CONTROL DEVICE 

"---'CATHODE 

CAVITV/SOLENOID HEATPIPES (41 
TO THERMAL RADIATORS 

o. OUTPUT WAVEGUIDE 
L-L-~ 1. 1 I 1-1-..J incha 
nTTlilTl I r I I II fTITH em 
o 

" 
figure 1 Reference Klystron Configuration 

Table 1 Energy Balance in Reference Klystron Design 

2·SEGMENT 5·SEGMENT 
COLLECTOR COLLECTOR 

ll£t,M flOWER 92.62 Kw 92.62 Kw 

RF LOSS IN DRIVER CAVITIES .40Kw .40Kw 

RF POWER PUTPur
' 

70.6GKw 70.66 Kw 

OUI PUT CAVITY RF LOSS 2.19Kw 2.19 Kw 

OUTPUT INTERCEPTION LOSS2 1.62Kw 1.62 Kw 

POWER ENTERING COLLECTOR 17.75 K\Y 17.75 Kw 

COLLECTon RECOVERY 7.10040"" 10.65060" 

T/ICHMAL LOSS IN COLLECTOR 10.65 Kw 7.1 Kw 

NET OEAM POWER 85.52 Kw 81.97 Kw 

EHICIENCY EXC. SOLENOID 82.6" 86.2% 

NET EFFICIENCy3 81.2" 84.6" 

1. ELECTRONIC EHIC. (.7!H)( OUTPUT CIRCUIT EfFICIENCY (.97) I( 'REMAINING POWER (92.22 Kwl 

2. BAScO ON ~% INTEUC(PliON 0 vo/3 (33)~1 nnd 2 "u/3 167~~) i.e., .0178 Volo 

3. INCLUDING t.5 Kw FOR SOLENOID AND HEATER POWER. 

,,' 

• 

I 

l 
1 

I 

• 



[1. 
. ~.~-- .. ,.,~ ... -.~ .. ,. 

• '" ,r~·-· 

, t 
• 
.' 

. I 

f: 

ORtG.r.Al.. PAGE IS 
OF pOOR QUA:lWa,,'''TfocvnnltlT r, VOl"",;f OISTlUr.UtlON'; 

---- --3~;-(:~:;;:r-I-~:-·1-l:-.;-r-"" 
COLLU'10ll C(I':rICiUflAlI0N; -" --- -, -. - -;--;- ,---.. 

f,~()D,f.r;OI't su,,:;-;--- \,:!.. I/I~. ~:.':- ~~.!!.II-"'" ""0 
re,;>\' :;1.:,'1" ,. I:: :., HIE!> .r. .O~ .~IO ,!l .M 'O'~"I 
:;rlld II f (; rr:o:'. 0 0 .01 0 I .0,' 
C;OLLrt:U"l ., .G ,02 .(\t:O .Ii .(102 .01 I 

COL Ll C, (.1,( -2 •• !t .o·~ .03U .G .0' .OZ4 
COL II ronlll "3 .!::t .ro, .S3G .J .07 

(:OlLt CTOII .• , - ±- - .!I.'~ 
COI.LI C10:1 I.!. .- .- - "', .~r; 

lOl.\I.~:,,- \~: ..;:';,,," .. _. --Il~,i-

BODV 

UIlC •• ·.\lC:y I\;N:()VI MUH I.N 
L!'lIM L r ICII ':1'\'. I ~:CI ::lll.l :'(110 l1.,"·;~ 

• .,u.;~·:. : :0:,,1/1/,1. U.~~III'ut !'oS! III 

--_... -------:----_ .... - _._---
FigII!''' ~:. Rcfcn'I\('c Kli'stron 1l"I,rcs.;cd Cullc\,'lor Ilcsi~n 

Cor'ER SOLENOID 3"10, ,00) GAUSS, " •• 5" LONG 
(!) ASSUMES 'OWER GENERATION. U kt/kw ANO 'ASSIVE HEAT REJEClION •• .2 IIpw C12S-C'. 
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Tabl.. 2 
VOL TAC:/CL'q: EIIT 
PlP.VEt,'H:r /~:;" :'·/~O'.\EP. 
ElECTPC'I!C cHlClE~iCY 
CIRCUiT [H i C i £llC'" 
RF PC''':::? CJi:>UT 
tlE"TfR PO,:R 
DRIVER Rf L~5S£S 

SO KW rernunelll ~'~,nrl KI)',',on "rsi~" 
JaKV. 1.111 AW5 
s- .24". Po • 691<11 
0.75 
0.97 

SOKW 
.IKW 

•005VOIO = .]KW 
.025\'010 • I. 12K" 
.OJ( SO) - l. 5JKil 

(b) 

7. kW"I2!iOC 

, OUif'UT WT£f'~[PTIC:I lOSS 
Rf OUTPUT 0'1[ T'f LOSS 
PO''';ER l:ITO C:JLlECi/Jil 
COLLECTOR TlI£R:·,'.l I:IPUT 

Is.car" 
8.51~~ R~~OVED P SCOoC 

PASSIVE CCOuriG -
RADiATOR & ilEAT PIPES UQUID ~nAl CYCLE I!I 2.2/l.5t:r.H'W FOR 2iSoC 

•• 94/.4J~C/~~ Faa soooe 

IIEIGHT ESTIMATE 
1UB£ & POl'£?IE~ES 
COll E C10R - 5 S[Gi'~NT 
MAGIlETS 

RADI,'TOI\ 01 ST."I~r 
CVA.I/l(i (I 21S"C 

-Ml.Q,L I W'!. 0 5:iO~.r:.. 

TOTAl.. WE I GIlT 

12.0KG 
6.0 
7.5 
o 1 ~n£R 
~6-:Cji;G­
C.2 8,OKL 

35.1 . 41.5~G 

o SP[CIFIC WEIGHT • .78 TO .83 
kG/~ 

u EfFICIENCY· 00.11 
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Table ,. "'eaturcs Affecting Tran5nliUcr urc 
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BEAM FORMATION 
CATHODE MANlJFACTURI~JG MATERIAL PROCESSING 
EMISSION SUI'pnES~ION FROM SURFACES 
CATIIODE liAS£: MATERIAL pur,ITY-POISONING MECHANISM 
EVAPORATION rtATES FROM IMPREGr~ATED CATHODU 
HEATErt WARMUP 
BURN·IN Pf:RlOD-NO INFANr MORTALITY 

BEAM FOCUSING 
SOLENOID DESIGj~iMATEI1IALS-SPACE BAKEOUT fEASIBILITY AND CON'rROL 
MAGNETIC CIRCU.ll MATERIAL SELECTION "'lCos-.-A'=HlGo.f.UJ*CONDUCTOft9 

RF CIRCUIT 
COPI>ER AL TFRNATIVES rOR CAVITIES 
PROPERTI[SOF.LOSSY IfHERNAL CERAMICS 
OUTPUT WINDOW POWER LIMITS B£O, A~205 

BODY AND COLLECTOR 
LE AKAGE OF INSULATORS 
SUPPRESSION OF SECONDARY EMISSION 

EXTERNAL 
U:AD AND CONNECTOR COMPATIBILITY 

2.S 
VOLTAGE CURRENT 

AMPS 
2.0 

• 82 EFFICIENCY 
80 PERCENT 

24 

. 22 

ASSUMPTIONS 
- KL YSTON DEPRESSED 

COllEt-TOR 
- r~o REFURBISHING 

OF SOLAR CE LLS 
1. ALL VOLTAGES DROP 

DYSAME PERCENTAGE 
INCL. DEPRESSED 
COLLECTOR . 

2. MOD. ANOOI: ADJUSTED 
TO OBTAIN DESIRfD 
PERVEANce. 

3. SOLAR CEll ARRAY 
fOLLOWS MAX. 
EFFICIENCY CONTOUR 
THROUGI10UT DESIGN 
LIFE • 

20 MICRO PEnVEANCE 
. loIVo 3/2 

10 20 30 
LIfE. YEARS 

Figll(~4 Klystru" rt'I'form:lI1~l' WIlL'n Optimally :'tl:ltdlcd tu S~li:lr Cdl OuallUt 
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50 200 100 400 
• 'ERVEA'~CE •• 3 X 10 G • ION0 312 I I I 

RF POWER OUTrUT KW • ASSUMeO EFFICIENCY" 83% 

• FnEQUENCV· 2.4 GHZ 

LIMIT OF CONSERVATIVE DESIGN 

OUTPUT CAVITY 
nollE RC(PTION 

KW 

r ,.," .... ," .. ', 
POWER 

10 

• 
5% OEAM INTEnCEPTlor~ 

3~~ BEAM INTERCEPTION 

4 
40 50 liD 10 SO 

VOLTAGE,KV 

figure~, High "uwcr CW Limitatiolls of lIigh Efficiency Klystron 

Table 4 Alternate High Power Klystron Designs 

70.6kw 250kw 500kw 
VOL TAGE/CURRENT 42kv/2.2amps 65kv/5amps 80kv/B.2amps 
PERVEN~Cr: K x 10 u .2S .30 .36 
RF SECTION LENt;!H - VVo 16.Sin ZO.Sin 22.S," 

WeiGHT. kg I'OWER.kw \"[,IGHT rOWER '!ir tCiHT 1 rOWER 

TUBE WEIGHT CAVITY, SEALS. BODY 10kg 15kg l(i.okg 
ETC. - 1.2 \ Vo 
COLLECTOR WEIGHT (EST.)- Volo 7.0kg 13.2kg 18.7kg 

SOLUJOID (EST.) @ JOCoc. 1 KGAUSS, 20kg 2kw 24.8kg 2.9akw 27.9kg 3.9&kw 
P- 82 x L - \-V~ K 
UEAnn AND RefOCUSING COIL l.Okw 1.S0kw 2.0kw 
RF LOSSES 4.2kw 14.7kw 29.&kw 

RADIATOR AND HEAT PIPES 0 1m 0 1m 0 1m 

WEIGHT AND POWER DISSIP'N REO'D 9.5 14.5 72kw 25.3 33.6 19.2kw 47.3 72.0 35.8 
~30~loC 

WEIGHT AND POWER OISSIP'N nEO'O 4.9 9.3 9.9kw 16.7 32.1 34.1 33.& 64.9 69.0 
05000 C 

TOTAL Wf.IGHT KG 51.4 60.8 !l5.0 123.7 144 199.8 
I SPECIFIC WEIGHT KG PER KW .127 .8f:O .380 .4n5 .258 49.!L 
,. EFFICIWCV INC. SOLENOID SO.51% 82.43% 82.(;7% .. 
lEGEND: 

• SOLENOID FOCUSING, riVE STAGE COl.LECTOR, 45% RECOVERY. 
• RF lOSSES AT Itl:PUT, OUTr>UT, I'LU!; 4;:' INTERCEPTION lOSS TOTAL 4.45% OF Volo 
• USefUL RF OUTPUT;: .7;;29 V"ln 
• COLLECTOH THEHr.1AL DISSIPATION = .10(; V~lo 
• COLlECTOB rOWER nECOVfREO" .OBeo Vnlo 
• EFFICIENCY = 33.': " EXCLIJDI~':G SOLE1;OID 
• HEAT PIPES (I/O r.:E. TERI + RADIATOH WEIGHT ESTIMATW @ 2.01/1.3?kg'kw @JOOoC (BODV AND SOLENOIDI 
• Q .94/.4Sk.gt'kw @500(JC (CGLLECTOfi) 
• S BAND DESiGN WI1H SOLENOID @ ~l\.~~. 10'" 3"OD " 4:;" 
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Introductfon 

-125 
ANALYTIC INVESTIGATION OF EFFICIENCY AND PERFORMANCE 
LIMITS IN KLYSTRON AMPLIFIERS USING MULTIDIMENSIONAL 
COMPUTER PROGRAMS t MULTI-STAGE DEPRESSED COLLECTORS: AND 
THERMIONIC CATHODE LIFE STUDIES • 

by 

. . H •. G. Kosmahl 
NASA LewIs Research Center 

Cleveland, OhIo 

In 1972 this author together with L.U. Albers perfonned an extensive para­
metric Investigation of the extraction of energy In output gaps of klystron 
amplifiers, using our own 3-D computer programs. Due to complexity of the 
program which used a hydrodynamic, axially and radially deformable dltk-rlng 
model ar,~ the resulting long computing time we limited our Investigation, 
Ref. 1, to the output gap, by far the most Important and difficult part of 
the klystron interaction. As Inputs best results from Independent studIes 
at G.E. by T. Mihran, Ref. 2 and at Varian, Ref. 3, by E. Lien were used to 
Initiate the starting condItions for the electrons and the RF voltage usIng 
our program. Although this method of computation Is less exact than process­
Ing the entire klystron interaction In 3-Dlmenslons we verIfied that, for a 
confIned flow focused beam throughout the penultImate cavIty, radIal velocItIes 
remain very small and the beam Is highly lamt"ar. It was, therefore .• con­
cluded that possible errors resulting from treating only the output cavIty 
In 3-D would remaIn small. 

Discussion of Results 

We proceed now wJth the discussIon of the computer results. Figure 1 shows 
the cross-sectIon of the ring model used In computations and the degree of 
complexity and care applied to compute accurately the radIal and axial defor­
matIon of the rIngs and the space charge forces. The price paid for thIs 
effort ~ the computing time - was felt to be justIfied for the one time veri­
ficatIon.. Figure 2 shows 'typical axial and radial space charge functions. 
In agreement wIth basic theory the radial functions obey Gauss' law inside the 
beam and the ax I a 1 space charge force I s zero at the tunne 1 wa 11 r-a. 

EffIcIency 

Let us now turn to the discussion of computed efflclenc'les. Figure 3 shows a 
plot of efficIency versus a eea for two bunchIng levels, i 1- 1.81 '10' and i 1 - 1.64 10 
B • 2.5 XBBR ' and 0.5\.1 perveance. The voltage swlngsa are 1.10, 1.05, and 1.0, 
respectively. The 1.81~.lo bunching Is characterized by a very compact bunch 
with a small velocity spread and absence of a typical antlbunch disk since the 
maxlmum~eloclty past the output gap is only 1.14 uo • As can be seen from the 
plots, the efficiency seems to decrease linearly with Increasing Sea with a 
slope of approximately 2.5 percent points efficiency loss for each 0.1 radian 
Increase In Sea. Note that bla , S e , and 2. 'l were held constant and only a 
was permitted to Increase. Thus at large Sef3 values the aspect ratio lla is 
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small; the RF fields penetrate deeper into the tunnels than in cases of narrow 
tunnels. We observed that many disks were caught in the long fringes and ex­
perienced a post-acceleration when the RF fle!d reverses Its phase. This phase 
reversal Is also responsible for the increase In current Interception that Is 
marked In ~rcentage points, since the radial RF fields action changes from 
converging Into diverging. Computations at P._>1 were not continlJed due to a 
rapid Increase In Interception to Impractical levels. 

The above finding. of, increasl.,g hJ tlith d~creasing ~d.. I.s confirmed by a 
number of new experimental results in high-efficiency klystrons and TWT designs, 
mainly at Varian (3), but it seems to disagree with the estimates of Mlhran (4), 
and the very early finding by Cutler (5). It should be remembered that Mlhran's 
conclusions were based on the behavior of rigid disks and did not treat the 
energy extraction, while Cutler's experiments with helical structures cannot be 
cons i df!red representat i ve of a soli d wa 11 tunne I and a discrete gap wi th regard 
to RF and space-charge fields. The author knows that the constant bunching 
level ass~led for computing the straight lines of Figure 3 cannot be strictly 
realized in practical designs. The value r--el- 0.5 Is probably as smail as 
can be realized at high frequencies and further decrease In~CL would only 
increase the demands upon the focusing fields to excessive levels. 

A physical explanation for the behavior presented in Fi9~~ was recently found 
by researchers at Varian, notably E. Lien. who showed that a favorable conver­
sion of second harmonic bunching into fundamental Lunching takes place at small 
va iues ~Q.. 

Another important selection criteria for high efficiency designs 15 the choice 
of perveance which, in turn, is a measure of space charge forces in the beam. 
Large space charge increases the degree of the velocity spread in beams of all 
tube types and also decreases the efficiency of depressed collectors. If we 
again assume constant bunching, then £1ffilre 4 demonstrates clearly the destruc­
tive effects of increasing perveance on the electronic efficiency of /~(,e 
output gap. Note also the increase of Interceptions. On the other hand, to 
achieve high overall efficiency, the circuit efflciency~~_ must be as high as 
possible which requires larger values of perveances. Thus, a comprolise Is 
required. This author suggested a value around 0.25 ~perv. as most reasonable 
selection. I ~ 

Still another selection must be made concerning the length of the output gap. 
The results are plotted in Figure 5 with 90 , the output gap length in radius, 
as parameter and the outgut voltage at out as abscissa. Fortunately, within 
a range of 80 = 200 to 40 ,~ remains insensitive ~o gap length. 

Parametric Optimization of the Output Gap Performance 

If one assumes, as we did throughout this paper, that the quality and magnitude 
of the bunching used In this study was very close to a practical optimum, then 
it should be possible to perform a parametric computer optimization of the 
electronic klystron efficiency. Note that the,value of ii/%:0 • 1.81 obtained 
by E. Lien is close to the theoret~cal 1 imit ',Jr. =;.. and that this design 
resulted In a very compact bunch and absence of a typical antibunch disk since 
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the maximum velocity past the output gap was only 1.14W •. With this justifi­
cation we proceed to discuss Figure 6 which Is the most Important result of 
this study. 

Figure 6 15 a summary of some of our computations executed for disk distribution 
and klystron design parameters as supplIed by Mlhran from General Electric and 
Lien from Varian. Our results are plotted with solid and dotted lines as ~ 
versus phase. AV1,ll1lable for comparhon were results published by Mlhran et al. 
(2) and by Varia .. \3). both wIth one-dimensional programs. The top circle 
indicates an 83 percent value 85 computed ~y Lien (3),{and private communication) 
who measured 75 percent with 2 percent RF Interception and the triangle, an 82 
percent'value as computed by Mthran et al. (2) Note that both Investigators 
used almost identical bunching levels with, however, dlfferent~Clvalues of 
0.485 and 0.75, respectively. Disregarding at first Interception (which cannot 
be computed with one-dimensional models) it is s~en from Figure 6 that Lien's 
number is about 3 percent and Mihran's about 10 percent points higher than our 
result (which indicates 6 percent current interception at') • 0.806). The 
strong dependence of~ on 8.t=L Is evident. A ",ore sensible evaluation is 
possible if not only measJred and computed efftciencies but also int~rceptions 
are compared. Turning now to Table I whtch summarizes mea$ured (by Lien) and 
computed (author's program) results, excel1ent agreement in efficiencies Is 
evident. At~ = 1.08 the agreement in interception Is also very good and be­
comes less good with decreasing~where measur~"ents indicate some residual 
interception while our program Indicates none. 

It is be 1 i eved that th i s d t fference I s more due to the IInon Idea 1" features of 
tubes than tc program errors. Also, the level of Interception In Lien's klystr~n 
was very small to begin with. 

A compar i son between M i hran' s measurements of '? = 0.62 wi th our computat ions 
was not pos~ible because Mihran6s measurements were carried out at a perveance 
of 0.72x10- instead qf 0.5x10- and disk distribution for ~he higher perveance 
was not available. 

In computing the above cases the correct 
tips, as discussed in Ref. ~, was used. 
case (C) where the ratio of the Ez field 
of the 3~; at r=~ was approximately 2.5. 
not the uniform one is important for the 
close to r=a. 

Conclusions 

field distribution between the tunnel 
The deta iIi s i I I us t rated i n .Ela~ . .r.~ .1" 
at the tunnel tips to that in a middle 
Using the correct, actual field and 

trajections of slow electrons moving 

A very accur~te mathematical model and computer program for the computation of 
electronic '"teraction, electron trajectories, interceptions, and efficiency was 
developed for the output cavity of a klystron ampl ifier. It is concluded that 
one-dimensional programs yield efficiencies that are approximately 10 percent 
points too high at , levels> 0.7. It has been confirmed that"1e~ 0.75, with 
a few percent interception, is possible and that Il'],,~ 0.8 could b" obtained with 
6 percent lIieeal li interception. With the augment~tion by a novel depressed 
collector, overall efficiencies of 80-85 percent seem possible. A very important 
conclusion is the result that~ increases linearly with decreasing~'a. at least 
in the range 0.4'''~ ~ 1.0. Another important conclusion is tha!~efficiency 
increases initially with interceptions. At~)0.7 transverse velocities of many 
rings are comparable to axial components and exit angles up to 300 were observed. 
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Multi-Stage Oepressed Collectors 

The combination of LeRt developed Multi-Stage Jepressed Collectors (MOC) ani 
Spent Beam Refocusing Schemes has led to demonstration of highest collector 
and overall efficiency when applied to TWT's with moderate electronic efficiencies 
( ~~, 25%), Ref. 7. MOC efficiencies in excess of 97% were measured on dc 
beams of medium perveance (0.5~ perv) and more than 85% MOC efficiency on 
spent beams with 20% electronic efficiency. This author developed simple re­
lations for predicting the MOC 'and the ovef'al1 efficiency;' 0'1, for TWT's in 
Ref. (8): 

;0" :: 
(Pint, Psol designate, respectively, the intercepted and solenoid power). 

These relations may be derived, Ref. (8), from a more basic relation derived 
b'i this author,also in Ref. (8), for th~ smal1est (normalized) energy of an 
electron in the spent beam of a helical TWT: 

The factor f(~perv) is a simple function of the perveance ranging from 
f(o)= 1.26 to f(2) := 0.8 for hel ical TWT's. It assumes different (from tf-,ose 
quoted above) bJt as yet unknown values for coupled cavity TWT's and klystrons. 
Relation (3) holds also below saturation and does not contain any small signal 
quantities, Were f( Jl perv) known for klystrons it could be then applied to 
eq s. ( 1) and ( 2) . f 

During the earl ier days of our collector work at LeRC we dld some collector 
work In conjunction with klystrons of microperv .75 at C-Band and 0.5 at Ku 
band and ~ e '" 40%. Highest then achieved collector efficiencies were 
approxlmatJl y 65% resulting in overall efficiencies of about only 50% due to 
interception and poor circuit efficiencies (less than 90%). A klystron with 
80% electronic efficiency has a very unfavorable velocity spremthat will 
make the design of a MOC even more difficult because of the presence of 
majority of rings at the output whose velocities are(0.2~. This author doubts 
that a MOC efficiency of more than 50% could be practically realized. This 

" i i 
:! 

,j 
" !~ 

i 

! . 

! ! 

i 
j 

". 

: ! 

i : 
I ' 

: I 

t 1 
~-.. -,,.-,- -.. --.-.... -----.~....".¥ .. -............. , 



I 
"-
k 

f 
~ 

~ 
p 
l' 

" 

l 

• 
~ 

" ,,', 

" 

fact plus the presence of interception, circuit losses ( "1el( ~ 0,95), the 
solenoid power and a complex power supply are likely to limit the effective 
RF output efficiency to below 85%. 

Cathodes 

Cathode performance and cathode life are the main limiting factors to the 
reliability and long life of microwave amplifiers. The Microwave Amplifier 
Group at LeRC was and is, for this reason, engaged and committed to testing 
and analyzing hig~ performance' impregnatea tungsten matrix cathodes since 
1971. Figure A shows the results of long life tests, carried out In2!!!l 
tubes at a density of 2A/em2 on a large number of samples. At 2A/cm the 
standard Philips B-cathode has a useful life of about 40,000 hours. The 
M cathode, the most promising and Interesting 2f the matrix type cathodes, 
is expected to perform for 8-10 years at 2A/em judging from the recorded 
performance to date. Since the SPS klystron would require a cathode loading 
density of only 1 or less A/em2, commensurate with a trUe cathode temperature 
of about 980°C, an educated guess would lead us to an estimated life of 
perhaps 20 years. Actual test results of this duration are, of course, not 
available at all and great caution must be exercised In making predictions 
for system life exceeding 15 years. 
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Fi&.. 1. (a) Effect of source ring on reference ring. (b) Typical over· 
-lapping and deformation of disks 12 and 13. Crosses and circles 
indicate centers of ring!. Position -4 is prior and position -2 
past the output gap. 
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TABLE I 
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Fig."l Elect.ric fields for three differently· shaped tunnel tips. (a) 
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PROGRESS REPORT ON THE ADAPTING OF THE CROSSED-FIELD 
DIRECTIONAL AMPLIFIER TO THE REQUIREMENTS OF THE SPS 

William C. Brown 
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Waltham. Massachusetts 02154 

Presented at the MICROWAVE POWER AMPLIFIER SESSION OF THE SPS MICROWAVE SYSTEMS WORKSHO:P 
January 15-18. 1980. Lyndon B. Johnson Space Center. Houston, Texas 

ABSTRACT 

Progress in adapting the crossed-field directional amplifier to the SPS is reviewed with special emphasis 
upon (1) recent developments in controlUng the phase and amplitude of the microwave power output. (2) a 
perceived architecture for its placement in the subarray. and (3) recent developments in the critical pivotal 
areas of noise, potential cathode life. and efficiency. 

Introduction and Bac::kground 

The first proposed use of the crossed-field 
directional amplifier in the solar power satellite dates 
back to 1969 and 1970. 1 Since then there have been 
a number of successive discoverIes and developments 
resulting in an ever-increasing better fit between 
the device and the severe requirements that are 
imposed upon the generator by the SPS. 

First proposed by the author in the form of a 
200 to 400 kW liquid cooled amplitron1 , the crossed­
field device approach was soon changed to a passively 
cooled amplitron in the power range of five to ten kW 
because of the high desirability of passive cooling in 
the SPS satelUte as pointed out by O.E. Maynard. 2 
Such a tube was desig"!d and the first phase of its 
development completed. 

In 1975 R.M. Dickinson of JPL proposed that 
because of its high efficiency, simplicity. relatively 
low mass, and already established high production 
volume and low cost, the microwave oven magnetron be 
incorporated into a directional amplifier package and 
considered for the SPS. While subsequently investi­
gating this approach the author made two important 
discoveries: the first. that the microwave oven 
magnetron, when operated with a ripple-free DC power 
source and with no externally applied filam!nt power, 
has an extremely high signal to noise ratio ; the 
second, that under these conditions the carburized 
thoriated tungsten cathode can be operated at such 
low temperatures that a potential life of more than 
50 years is indicated under the high-vacuum a~ 
highly controlled operating conditions in space. .6 

The potential role of the magnetron directional 
amplifier in the SPS is now being further evaluated 
under a NASA-MSFC contract. 7 This investigation 
first involves an extension of the laboratory data base 
on the magnetron directional amplifier utilizing the 
microwave oven magnetron. This data, when combined 
with information obtained from other sources, will then 
make it possible to accurately define the projected 
characteristics of a higher powered version of the 
magnetron directional amplifier for SPS use, and to 
define a program of technology development that 
would result in the development of such an amplifier. 

Because of the basic similarities of the magnetron 
and amplitron in their construction configurations 
and performance characteristics it is found that much 
of the experience gained in adapting the amplitron to 
SPS use is directly applicable to a similar adaptation 

of the magnetron directional amplifier. 

The current study involves a penetratin(5 look at 
all of the interfaces associated with the magnetron 
directional amplifier. At least one level of higher 
integration must be examined. and in some instances, 
more. The study has progressed far enough to yield a 
specific architecture that is shaped by these inter-
faces and that appeal's to have many attractive features. 

One of the most important developments of the 
current activity is the precise control of both the 
amplitude and phase of the microwave power output 
trom the amplifier by feedback control systems utilizing 
phase and amplitude references. The method by which 
amplitude is controlled is of overall SPS system interest 
in that it can be adapted to match the entire microwave 
generating system to the solar photovoltaic area at the 
point of maximum operating efficiency. 

The material which follows is intended to provide 
the reeder with: (1) a brief summation of those 
features of the crossed-field. device that are of a 
desirable nature for the SPS; (2) a comparison of the 
amplitron and the magnetron directional amplifier for 
orientation purposes; (3) knowledge of the recently 
established architecture of the subsection of the sub­
array into which the amplifier is placed; (4) an 
introduction to the recently developed method for 
accurately contrOlling the phase and the amplitude of 
the microwave power output; (5) discussions of several 
very important pivotal areas relating to noise, tube 
Jife, and efficiency and (6) a summation of areas of 
concern needing additional attention. 

Features of the Crossed-Field Microwave 
Generator that are Desirable fol' the SPS 

• H1th Efficiency: Overall efficiencies in excess of 
85 have been demonstrated in an off-the-shelf 
magnetron used for industrial microwave heating and 
in certain laboratory models of the amplitron. An 
efficiency in excess of 80% at power levels (3 kW) 
low enough to utilize passive cooling has also been 
obtained. 

• High Signal to Noise Ratio: Random noise level in 
a 1 MHz band down 100 dB or more at frequencies 
above and below carrier frequency by more than 10 
MHz. The noise level may be lower because 
instrumentation is the limitation. 

• Potential Life of 50 Years or More: Such life is 
possible by operating at low emission current 
densities that allow the low operating temperatures 
that have a proven association with extremely long 
life of carburized thoriated tungsten cathodes. 
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• Low Ratio of Mass to Microwave Power Output: 
The current estimate by the author is 0.4 kilograms 
per kilowatt of microwave power at the tube output. 
This includes the weight of the passive radiator but 
not the buck-boost coils which are considered a 
power conditioning function. 

• Accurate Control of the Phase and Amplitude of the 
Microwave Power Output: By use of a set of phase 
and amplitude references and a set of phase and 
amplitude sensors the phase can be controlled to 
within ±1 degrees and amplitude to within ±3%. 

• Potential to Perform the Bulk. of the System Power 
Conditioning Requirements: The buck-boost coils 
necessary for output amplitude control of the 
magnetron can take on the addud function of 
adjusting the input of the micl'owave system to 
operate at the optimum output voltage for the solar 
array. 

• Minimal X-Ray Radiation: The crossed-field tube 
energy conversion mechanism generates negligible 
radiation, permitting maintenance functions during 
operation of the SPS. 

• Only One Voltage and Two Terminals Required for 
Normal Microwave Tube Operation: Auxiliary power 
is req uired for a few seconds to heat up the cathode 
and initiate emission. 

• Simplicity of Construction: Thr ~rossed-field device, 
particularly in its magnetron form, is very simple 
in construction. 

• High Degree of l\laturation in Production and Cost: 
Currently, more than two million magnetrons that 
closely resemble a similar tube fo!' the SPS are 
manufactured annually for the microwave oven. 

Definition of Crossed-Field Directional Amplifiers -
Comparison of AmpUtron and Magnetron 

Directional Amplifier 

A directional amplifier is defined as a device which 
passes energy in both directions but which amplifies 
in only one direction. There are at least three ways, 
as shown in Figure I, in which a crossed-field device 
may be used as a directional amplifier. The fi§s~ is 
in a self-contained device called the amplitl'on.' The 
amplitron is unique among the devices in that it needs 
no assist from auxiliary devices to obtain its directional 
amplification. It is a relative broadband device and 
has a very small phase change from input to output 
as a function of a change in frequency, magnetic field, 
or DC current level as compared with other crossed­
field directional amplifiers and linear beam tubes, as 
well. This feature is advantageous in many appli­
cations where a high degree of phase stability is 
needed. The device does have limited gain of about 
10 dB. The device is widely used in radar systems. 

The second way is the combination of a magnetron 
oscillator and ferrite circulator which converts the 
magnetron oscillator into an amplifier with a bandwidth 
over which gain can be obtained. 10 The bandwidth is 
dependent upon the level of the drive relative to the 
level of the power output of the device. Typically, a 
bandwidth of 15 MHz can be obtained at 2.45 GHz 
with a gain of 20 dB while 5 MHz is possible with a 
gain of 30 dB. At these gains and within these band­
widths, the efficiency will remain high and nearly 
constant. The very high signal-to-noise ratio is 
independent of bandwidth and gain. 

The total range of phase shift within the device as 
the drive frequency is shifted over t his bandwidth is 
approximately 1800 • The center of the frequency range 
over which amplification occurs is at a frequency de­
pendent upon the operating current level of the tube. 
the temperature of the tU~::l envelope. and other 
secondary factors. 

OC pow,. 

DC """. 

DC fOWli 

DC powu 

Figure 1. Directional Amplifier Approaches Utilizing 
Crossed-Field Devices. 

As shown in Figure I, the principle can also be 
carried out by means of a "magic T" or. synonymously, 
a 3 dB hybrid, an alternative method originally sug­
gested for the SPS by R.M. Dickinson. A matching of 
the characteristics of the two tubes is required in the 
hybrid, but a ferrite circulator is not required. 

It should be noted that the operating \~eory of 
the directional amplifier is well established. They 
are often called "reflection amplifiers" or "locked 
oscillators" • The principle is probably more often 
employed for solid state amplifier devices than for 
vacuum tubes. 

It is important to realize that the magnetron device 
and the amplitron are very closely related so that 
development work that is done on one may be directly 
applicable to the other, as indeed is the case in the 
SPS. A set of scaling laws and design equations 
apply equally well to both devices ill establiShing their 
power level, voltage and current inputs, efficiency, 
cathode size, and other basic parameters. Both 
devices even use the same slow wave circuit, with 
which the electrons interact. However, the manner in 
Which connections are made to this internal circuit is 
the basis of distinguishing these devices. As shown 
in Figure 2, the circuit is made reentrant in the 
magnetron and one output connection is made to the 
device, while the internal circuit in the amplitron is 
cut and the ends of it matched to external trans­
mission lines. 

Overall Architecture of the Subarray Employing 
the Magnetron Directional Amplifier 

Physically placing the microwave generator in the 
subarray and making the proper allowances for its many 
electric(':l and mechanical interfaces with other components 

I 

f'f r I 
J 



and with space itself introduces the perennial systems 
design problem of making all the parts fit. This 
problem is currently being worked on as a necessary 
part of the MSFC study to project the characteristics 
of the magnetron directional amplifier and to define 
the technology development program to fully develop 
the magnetron directional amplifier. 7 
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Figure 2. Diagram Illustrating the Basic Differences 
of Construction and Operlltion Between the Amplitron 
and the Magnetron. 

It is believed that the development of the 
subsection shown in Figure 3 represents a substantial 
advancement toward the ultimate solution of this 
problem. The design recognizes and solves the 
follow in g problems: 

1. The microwave generators must dispose of their 
heat directly to space by operating at temperatures in 
the 2000 to 300 0C range. On the other hand. solid 
state devices which may be needed for many purposes 
cannot reliably operate at temperatures higher than 
1500 C and lower temperatures are preferable. 

The design takes care of this problem by having 
the generators radiate heat in only one direction. 
Heat normally radiated toward the face of the array 
is largely reflected by a thin inSUlation blanket. There 
is also a substantial temperature drop across the thin 
walled waveguide construction. The solid state 
devices are located either on the face of the slotted 
waveguide array or in the sl·)ts immediately back of 
the face which are a property of the proposed method 
for fabrication of the thin··walled slotted waveguides 
radiators. Such components may be easily attached to 
heat radiating sinks on the front surface. if need be. 

2. Phase and amplitude sensors. phase and amplitude 
references. and electronics associated with the control 
loops for phase and amplit ude control must be incor­
porated. l'he architecture of Figure 3 provides the 
means of putting both the references and sensors for 
both amplitude and phase at the point where they are 
needed most-right at the radiating surface of the 
antenna. All solid state devices that are associated 
with the control electronics are located in the same 
area where they can be operated in a relatively cool 
environment. 

In the architecture the phase and amplitude 
references are fed from the backbone of the subarray 
through flat ducts welded to the surface of the slotted 
wav'eguide arrays. These ducts serve an additional 
function in that they are very effective stiffeners of 
the thin aluminum faces of the waveguide array. 
However. the fact that these ducts run all the way to 

the edge of the subal'ray IifOve1'DS the number of tubes 
and area of slotted waveguide array that are in the 
subsection. Thus. the whole subsection may be 
considered as a plug-in unit and this concept replaces 
the earlier held concept that each tube and its slotted 
waveguide array section repreaentE'd a plug-in unit. 

Figure 3. Assembly Architecture for the Magnetron 
Directional Amplifier in the Antenna Subarray. Two 
Subsections are Shown. Microwave Drive and All 
References and Auxiliary Power are Inserted from the 
"Backbone" of the Subarray. The Array has Two 
Distinct Temperature Zones. Tr.<) Top is Used to 
Radiate the Heat. The Bottom is Used for Mounting 
of Solid State Components. 

3. Interface with the microwave drive source. In 
Figure 3 the microwave drive sou~ce is not shown but 
it is derived from another magnetron directional 
amplifier identical tti the ones directly attached to the 
waveguide radiators. At a gain level of 20 dB. one 
magnetron directional amplifier can drive between 50 
and 100 other magnetron directional amplifiers. The 
microwave drive for anyone subsection. as shown. 
is delivered to the intended tube through a w~veguide 
which runs the length of the subsection and serves 
all the tubes. The energy may be siphoned off by a 
number of different techniques including directional 
couplers and the standing wave techniques used in 
the design of the slotted waveguide radiators. 

After the power is taken off the central waveguide 
feed it enters one port of a "magic Til. or alternatively. 
one of the ports of a ferrite circulator (not shown). 
Two magnetrons with matched performance are placed 
at either end of the Magic T. unequally separated in 
distance from the center by a quarter wavelength. 
The combined power of these generators then comes out 
of the fourth port of the device directly into the 
slotted waveguide array. 

4. One of the interesting features of this architecture 
is that the cathode and magnetic circuits are operated 
at ground potential. This permits the power for initial 
heating of the filament and for energizing the buck­
boost coils on the magnetron to be operated at ground 
potential. The anode and its radiator are isolated from 
ground potential by means of alumina ceramics which 
also support the anode and the magnetic circuit. The 
output of the magnetron is a coaxial probe which 
excites the waveguide without physical contact and 
therefore can remain at anode potential. 

5. Sources of auxiliary power. Not shown in Figure 
3 but located along the spine feeding the subsection 
array are sources of the auxiliary DC power needed 
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for the phue and amplitude control systems and for 
the transient heating of the filament fo~ starting- pur­
poses. The amounts of power that are needed are 
relatively small, Ilharscteristically five or ten watts 
for each magnetron directional amplifier. This power 
is most easily obtained »y tapping off a portion of 
the microwave power from the magnetron directional 
amplifier that drives the subsection array, then 
performing the desired impedance transformations at 
microwave frequency and rectifying the output with 
the highly efficient type of rectifiers that are used in 
the rectenna. The auxiliary power is then distributed 
to the individual magnetron directional amplifiers in 
the subsection array through the nat conduits 
located on the slotted waveguide array surface. 

Incorporation of Phase and Amplitude Tracking ir !!!!. 
Magnetron Directional AmpUfier 

The output phase of any microwave generalvr in 
the SPS, regardless of kind, must be carefully 
controlled in order that it not appreciably impact the 
overall phase budget of the subarray which must 
include many other factors. Open ended control for 
the magnetron directional amplifier and klystron is not 
feasible and probably only marginally feasible for the 
amplitron. For the magnetron directional amplifier 
and klystron this control must utilize a low level phase 
reference at the output, a comparator circuit to com­
pare the phase of the generator output with the 
reference phase and to generate an error si;,p1al, and a 
feedback loop to make a compensating phase adjustment 
at the illput. 

The control of the output amplitude in the face 
of m~ny factors that tend to change that amplitude is 
also essential for generating an efficient microwave 
beam. In the case of a crossed-field device the output 
amplitude can be controlled to a predetermined value 
by another control loop which makes use of small 
electromagnets that can be used to boost or buck the 
residual field provided by permanent magnets. 

The amount of power required to compensate for 
expected variations in the permanent-magn:!t field with 
temperature and life, and minor changes in the 
dimensions of the tube with life are very small. With 
additional power, but still reasonable in the context 
of power dissipation from other causes, this arrange­
ment can also adjust the operation of the microwave 
generator array to the most efficient operating point 
of the solar photovoltaic array. This would be very 
difficult by any other means of power conditioning 
because the output of the solar cell array is DC and 
the direct transformation from one DC voltage to 
another is not possible without resistive losses. In­
direct methods such as transformation to high 
frequency AC, then an AC voltage change by trans­
formers, and then back to DC again by rectification 
would appear to be highly impractical in this application 
where huge powers, very low mass requirements, and 
difficulty of diSSipating the inevitable losses in the 
transformation process prevail. 

It is of importance to note that the magnetron 
directional amplifier will be operating in an efficiency­
saturated mode so that modest changes in operating 
voltage wUl have only a minor impact upon operating 
ef"iciency. Thus the optimized efficiency of the solar 
cell array wUl predominate in the combined operating 
efficiency of solar array and microwave generators. 

The overall schematic for the combined phase and 
amplitude .·~ontrol of the magnetron directional 
amplifier is shown in Figure 4. Also shown is how 
this control can be related to the overall power 

absorption by the solar cell array. A central computer 
eetablishes the most efficient operating point (maximum 
power output) of the solar cell array and then adjuete 
the reference power output of the banke of mapetron 
directional am~Ufters. making certain of course not 
to err on the side of Il8king for more power than ia 
available from the array. 
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Figure 4. Schematic Diagram of Phase and Amplitude 
Control of Output of Magnetron Directional Amplifier. 
The Packaged Unit is Enclosed in Dotted Line. 
Relationship to SPS Overall System is Indicated 
Outside of Dotted Line. 

The phase and amplitude tracking system 
requires a set of references and a 3t of sensors. 
These references and sensors are located at the front 
face of the Slotted waveguide array where the most 
accurate sensing of the phase and amplitude can be 
made and where the solid-state sensing and control 
devices can find a temperature environment that they 
can tolerate. 

The amplitude reference is a DC Voltage whose 
value can be remotely controlled from a central source. 
The amplitude sensor is a crystal detector coupled to 
the slotted waveguide array. It provides a DC 
voltage which is compared with the DC voltage refer­
ence. The error voltage, after suitable gain. 
establishes a current in the buck-boost coils Which 
changes the magnetic field, which in turn changes 
the magnetron current to change the power output of 
the magnetron in a direction to minimize the error 
voltage. 

The phase control system makes use of a phased­
controlled signal from a central source. a sample of the 
output power. and a balanced detector which compares 
their phases. The error signal can be used to operate 
a number of different types of phose shifters positioned 
in the input side of the magnetron directional amplifier. 

A test bed, shown in Figure '5, has been 
constructed to check out the proposed control system. 
For most laboratory measurements a resistive micro­
wave load is substituted for the slotted waveguide. 
The sensors ore located in the waveguide approach 
to the load. Although the eValuations of the control 
systems are not complete, the initial information 
indicates that they behave as predicted. 

N oiae Emission Properties of the Amplitron. 
Magnetron, and Magnetron Directional Amplifier 

The lack of historic data on the noise performance 
of CW crossed-field devices and the consequent 
inability to predict their behavior in the SPS 
application where the noise level of the transmitter is 

\ 
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a highly critical issue under tandably became a major 
factor In th preliminary s I ction of 8 generator 
approach in the refer nce de Ign. In th recent time 
fr ame poopl within the SPS microwave sys tem 
community have become aware of th very low noise 
data tha t haR been obtained from t h microwave oven 
magnetron 4 •5 which i now serving as a scaled-down 
ver ion of an SPS magnetron and to II Ie er degree 
they are aware of the low noise datb ' t , was 
obtain d from the ampli tron developme. 

Figure 5. Tes t Bed for the Phase and Amplitude 
T"acking Investiga ion. Shown with Slotted Waveguidfl 
L, ·ad as an Option. 

The early lack of data in thi s area is 
ullders tandable when it is considered that the 
pl oduction of random noise outside of an area 
im nediatel y around the signal (where it is important in 
cl"nmunica~ ion or doppler radar app lications ) has been 
01 li ttle concern or interest in the past. However. 
jt .t t he converse is true in the SPS .lpplication where 
t ile high power level of the transmitte r makes it ' 
mandatory to have very high r atios of carrier signal to 
r mdo m noise everywhere but immediately close to 
1 e carrier. Even after the importance of this noise 
\ ,s realized it \\ as necessar y to make special noise 
meas urin g setups to ob tain more sen ~.itive measurements 
of noi!<e. In these setups the carrier signai was 
gr'eatly a tten uated in order to allow the noise to bll 
visible as exhibited on a sensitive spectrum analyzer. 

~ l any measu rement s of signal to noise ratio over 
frequency ranges of as much as ±1 000 MHz either 
side of the carr ier have been made on magnetron 
direc tional amplifiers with t his equipment, 4 A typical 
set of measurements is shown in Figure 6. The data 
was t aken both with normal external power applied 
to the filament and with no external power applied. 
The reader 's attention is to be foc used on the very 
high signal to nois£: ratio that is obtained over a 
frequency ;1~~ eep of 200 Mil z with no external power 
applied. The signal to noise ratio is 100 dB for a 
1 I\IHz band of noise, This corresponds to a signal to 
noise ratio of 130 dB per 1 KHz of noise which is 
greater than the 125 dB Quoted for the klys tron in the 
re fe rence ~r.: sign. Sweeps of ±1000 MHz around the 
car rier also exhibit equally large signal to noise ratios. 
T he r eader is reminded that with 1' Iese s ignal to noise 
levels even a 10 gigawatt transm itter would be radiating 
only one watt of noise fo r each megahertz of the 

fr q uency spect rum. 
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Figure 6. Spectrum of LockEld Magnetron . 

The signai to noise level may be substantially 
better than 100 dB IMHz because the measurements ara 
still limited by equipment sensitivity . The sensitivity 
is currently being increased by 20 dB so that signal 
to noise ratios of as great as 120 dB /MHz can be 
measured. 

It should be noted that while these noise 
meG.surements were made with a device gain of 
approximately 20 dB. the noise behavior remains 
independent of gain ot t "h gain levels At high gain 
levels the drive source appears as a sr .. all reflection 
factor (0. 1 for a gain of 20 dB) and this has a 
negiigible impact upon the behavior of the tube. 

It s hould also be noted that these low noise 
measurements have been observed on magnetrons made 
by different manufacturers and in different time 
periods. but not on all magnetrons that have been 
randomly selected. However. no studies of a 
statistical nature have been made nor probably should 
be made until more sensitive measuring equipment is 
available. And it may be more effective to devote 
any limited future effort to better understanding the 
sources of noise in the magnetron. 

There is currently no government support of any 
investigation into the sources of noise in the crossed­
field device. However. Raytheon Company did carry 
on a modest effort in this area in 1979 in which special 
external probing equipment Y"1I1 built to examine the 
fine structure of magnetron ot- i'alion with the hope of 
determinin g some of the factors that greatly impact the 
noise performance. Some of these results are very 
interestin g but a discussion of their logic and impli­
cations would be so lengthy and involved that it would 
be outside the scope of this summary article. 

Measurements of close-in phas e modulation noise 
added by the ma gnetron directional amplifierll were 
also made '::he!'; 1t was operatin g witt. a gain of 
approximately 20 dB, These meas urement s indicated 
a carrier- to-noise level that was typically 115 dB for 
a 1 KHz band of noise in the r ange of 10 KHz to 
100 KHz removed from the carrier frequency , This 
represents excellent performance. 

The discussion is now turned to harmonic 
generation. In this area there was no part icular 
is s ue between the crossed- field and klystron nevice 



approach since it 18 known that both of thesc device 
a long with all rth er c lasaes of microwave generators 
prod uce harmonics. It was appartlnt, howevcr , that 
there was litt!a data on the quantUative level of these 
harmonics In any device, partly for the reason that it 
l'i diffic ult t\) make auch measurements in waveguide 
~ here the harmonics usually beconle accessible. 

However., a method ot making measurements in a 
small coaxial line and water load attached immediately 
to the output of the magnetron and matched into it 
with a normal loaded Q, thus avoiding the problem of 
multiple mode propagation, was employed. Measure­
ments made on two representative tubea, designated 
as Iftl and *12 , are given below. 12 

HARMONIC LEVELS 
1/11 *12 

Freguenc:i *dbc *dbc 

f 0 0 
0 

2 f - 71 - 69 
0 

3 f 
0 

< - !, ', - 85 

4 f - 86 - 93 
0 

5 f - 62 - 64 
0 *dbc - decibels below carrier level 

These findings are somewhat better than had been 
an t icipated . T he unexpected anomaly of the Significant 
ene r gy at the 5th harmonic is an Indication of the 
difficult y of the a priori assessment of the more 
compJJ'!ated characteristics of any microwave generator 
that may be designed for the SPS. 

Investigation into the DeSiSing of Magnetrons 
with Cathode Life 0 50 Years 

It is well known from the theory and experience 
assoc iated with properly carburized thoriated tungsten 
cathodes that such cathodes can have extremely long 
life i f thej ~, re operated at low temperatures in a good 
vac uum. 1 , 14 An investigation of the application of 
this knowlEldge to the design of long life cathodes for 
RPS IT'agnetrons lias precipitated by a question raised 
by a NASA reprf',sentative about the life of tubes with 
carburized thoriated tungsten cathodes that had ex­
hibitcd very h igh signal to noise ratio when pow~r 
from lhe external heater source was set to zero. Tne 
r esu lt ing investigation not only indicated that very long 
life 'an be achieved but also led to the discovery of 
an lil' par en tly overlooked feedback l'lechanism in the 
maglletron that maintains the emitting surface of the 
cathode at a temperature just sufficient to supply the 
needed current that flows from the cathode to the 
anode. 15 This mechanism assures that the tube will 
determine it s own long life , independent of external 
circ umstances with the exception of compromised high 
"acuum and demand for increased anode current 
beyond the design value. 

The investi~atlon that was "lade began with the 
use of an optical pyrometer to observe the brightness 
tcmperatu re of the ma gnetron cathodes through 
optically transparent windows In specially constructed 
tubes . The arrangement is shown In Figure 7. The 
tube is fitted inside of a magnetic solenoid so that the 
magnetic field and therefore the operating voltage of 
the tube can be varied. Most measurements were made 
without the ap plir.ation of any external heater power to 
the fil amen t. 

It was observed that the only parameter that had 
s significant impact upon the cathode temperature was 
anode current. It had previously been assumed, for 

example, that cathode bombardment power would 
Inerease with greater magnetl~ field and greater power 
input. By contrast, it was observed that when t.he 
anode c urrent was held constant and the magnetic 
field varied over a range of two to one to give an 
increase of power input by approximately the same 
amount, th<l cathode temperature remained the sam 
to within ±100C, or not much greater than the 
resolution of the optical pyrometer . 

Figure 7. Test Arrangement for Viewing the 
Temperature of the FUament- TYPB Cathode in the 
Microwave Oven Magnetron as a Function of Anode 
Current, Applied Magnetic Field, and Microwave Load. 
Optical Pyrometer ia in the Right Foregrou:1d. Trans­
parent Window is Visible Outside of Solenoid- Type 
Electromagnet. 

The variation of cathode temperature with anode 
c urrent is shown in Figure 8. The slope o:{ this 
curve is nearly the same as that obtained from the 
dichardson- Dushman equation which predicts tempera­
ture limited emission density as a function of true 
temperature. If the Richardson equation is matched to 
the true temperature of 1896° Kelvin that corresponds 
to II brightness temperature of 15000C, then a 
reasonable value for the cons tant A of t}:e equation is 
obtained. The emission as a f unction of temperature 
may then be obtained and as t he three points on 
Figure 8 indicate follows clos"iy the experimental data. 

It has been established from life test e'/aluations 
that the life of a carburized tungsten cathode is a 
very steep function of the operating temperature. 
The difference between lite at 20000K and 19000K is a 
factor of ten. 

From the great body of design data that is based 
upon mEiny laboratory investigations as well as life 
test data, an operating temperature of 1900° Kelvin 
is associated with a potential life of 500 , 000 hours or 
more than 50 years , as derived from the curves and 
the notes on Figure 9, if the cathode is made from 
0.040 inch diameter wire that is 50% carburized. 13 ,14 
This is a reasonable design and f . reas,'mable 
operating temperature for a cathoc& th~.t could be 
used in a magnetron designe" fOl ' SPS use. 

Of course, life test data for 50 years is not 
available. But the design data of Figure 7 would have 
predicted a life of 130,000 hours for each ':If a lot of 
12 tubes manufactured by Machlett for use iT. he IYWV 
transmitter. The filament wire WIlS 0.035 inch in 
diameter and 20% carburized, and the tubes were run 
at 1950° Kelvin. The 12 tubes had a total running 

151. 
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time of 850,000 hours and there had been no failures 
when the equipment was retired from service. Some 
of the tubes had ileen operated a1 86,000 hours or 2/3 
of the predicted life, Consldering that there were no 
failures among the 12 tubes this teat would indicate 
that (he use of Figure 7 is conservative practice. 
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Figure 8. Cathode Brightness Tempel'ature and 
Associated Points of Temperatul'e Limited Emission 
as Function of Anode Current in the Microwave Oven 
l\lagneh'on. 
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Figure 9. Thoriated-Tungsten Filament Life Cur~es 
as Function of Wire Diameter and 'I. Carburization. 
Note lncl'ense 01' Dem'ease in Life as Function of 
Temperature as Noted. 

These tubes were also high power ane high 
voltage tubes, similar to the projected SPS magnetron 
and subject to the same cathode failure mechanisms if 
the vacuum inside of the tube were not sufficiently 
good. 
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The conclusion is that a Wl'y good argument can i 
be made for extremely long cathode life in the proposed 1, 
SPS magnetron. The argument is bused upon observa- j 
tions of low operuting cathode tcmperaturcs in operating i 
magnetrons. an internal mechanism that will automatically 1 
keep the cathode temperature as low as possible OVtlr 
c'<)sely controlled operating conditions in the SPS, an, 
enormous body of experience and inforlllation on the car-
burized thoriated tungsten cathode that is well 
documented in published papers and books and the 
correlation of the long life of' t.he Machlett tubes with 
predicted life. 

Crossed-Field Device Efficiency 

Crossed-field electron tubes of the magnetron and 
amplitron type are properly recognized as the mOllt 
efficient of microwave genel'atOI' devices. But the 
highest electronic efficiency, defined as the efficiency 
with Which DC power is converted into microwave 
power, is associated with a high ratio of the magnetic 
field B to a design parameter Bo which is proportional 
to frequency as shown in Figure 10. But the 
theoretical electronic efficiency is always degraded to 
sOllie degree by the circuit efficiency, and can be 
degraded by improper design of the interaction area 
and other design parameters as well. When the B IBo 
ratio is high and the tube otherwise properly designed 
the measured electronic efficiency has exceeded 90% 
as exhibited by the commercially available 8684 
magnetron. For reasons largely related to the physical 
size and cost of the permanent magnet, crossed-field 
devices are almost always designed in the l'ange of 
B IBo of foul' to six. This is true of the microwave 
oven magnetron whose operating characteristics have 
l'ecently been intensively evaluated. 
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Figure 10. Magnetron Efficiency as a Function of 
B IBo Ratio. 

However, the microwave oven magnetron can have 
its permanent Illagnet removed and be operated in an 
electromagnet. When this has been done the 
measured overiJl efficiency can be considerably 
increased as shown in Figure 11. The ml·'lSUrement of 
82±1% efficiency was carefully measured after cxtensive 
preparation and precaution and th~n a balance was 
made between the DC power inpui. and the sum of the 
micl'owave power output and the power diSSipated in 
the anode as an additional precaution .16 After taking 
a carefully measured circuit efficiency of 95% into 
account, the electronic efficiCl:cy was computed to be 
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86%. To this may be added at least one lind perhaps 
two percentage points to take into account the 
amount of backbombardment power that was needed to 
heat the cathode to a temperature sufficient to 
provide the emission (No external filament power 
was used). 
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Figul'e 11. Theoretical and Experimentally Observed 
Electronic Efficiencies of Conventional Micl'Owave Oven 
Magnetron and 915 MHz Magnetron. Electronic 
Efficiency is Efficiency of Conversion of DC Power into 
Microwave Power. Overall Efficiency Includes Circuit 
Inefficiencies which can be Ascertained from Cold Test 
Data. 

Although this efficiency I1'''lY seem high, actually 
it is from six to eight percent lower than it should be, 
and considerably below that of the 8684 previously 
ro.ferred to and also shown in Figure 11. The reason 
fOl~ the degraded efficiencies that seem to occur for 
all B /Bo ratios is not fully understood. A con­
taminated field pattern does exist in the tube in the 
cathode-anode interaction area and there may be some 
leakage current, although small, around the end 
shields. But there are probably other factors as well. 

To the author's knowledge there hal never been 
a dedicated effort to maximize the efficiency of the 
crossed-field devl.::e, with but one exception. The 
one exception was an effort made on an ampUtron 
device and resulted in an overall efficiency of 90% ±3% 
(Figure 10). It therefore seems probable that if 
there were a dedicated effort to optimize the design 
for efficiency an efficiency of 90% could be achieved 
from an SPS tube. The procedure would be to use high 
B /Bo ratios, make certain that the end shield and pole 
piece design were proper, make certain the cathode 
potential always remained at a neutral potential with 
respect to the vanes. contour the vane tips, and design 
for high circuit efficiency. 

Areas of Concern Needing A,dditional Attention 

Although the magnetron directional amplifier has 
been operat£;d at very high carrier-to-noise levels, 
confidence in such performance and the potential to 
improve on that performance must be based upon an 
improved understanding of what causes the noise. 
Recent experiments would seem to indicate that the 
random noise that is observed is not an inherent 
property of the basic energy conversion mechanism in 
the crossed-field device but is rather associated with 
one or more extraneous mechanisms that lire complex 
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and difficult to comprehend. It is expected that 
vurious hypotheses may btl generated to explain them 
but that there will be little confidence in these 
hypotheses until special tubes are constructed to test 
them. 

Similarly, in 'I',':, \fea of efficiency, there is the 
concern for the mit;,' i:1J, ,'ix to eight percentage 
points in efficiency in ta.' micl'owave oven magnetron 
and mOl'e than that in the e:!<perimental amplitron. 
Presumably, most of this efficiency loss can be 
accounted for by the contaminuted field patterns in 
the interaction area; therefol'e tubes with good field 
patterns should be constructed to check this 
hypothesis. 

Of particular concern are complications arising 
from the desire to operate the SPS tube at relatively 
high magnetic field to obtain high efficiency and at 
high ratios of voltage to current to assure long 
cathode life, but measurements of signal to noise 
from the microwave oven magnetron run with these 
conditions indicates a lower signal to noise ratio. It 
should be noted that under these conditions the 
rather primitive end-geometry arrangement to contain 
the space charge may allow current leakage from 
the interaction area that can lead to noise. The 
condition may be further exacerbated by a change 
in the shape of the magnetic field caused by magnetic 
saturation of the pole tip. 

To better understand these dreas of concern it 
seems clear that some special experiments requiring a 
special experimental tube will be needed. 
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C. D. Lunden, W. W. Lund 
1.0 SPS ANTENNA ELEr~ENT EVALUATION E. J. Nalos, Boeing Aerospace Company 

The SPS transmitting aray requires an architecture which will provide a low 
\'Ieight, high efficiency and high structural rigidity. Several candidate ante' 1.1 configu­
rations include the parabolic dish, the parabolic cylinder, the lens and the ',:i:lveguide slct 
array. As discussed below, the waveguide slot array is preferred over the other options. 

Parabolic dishes are widely used on earth. For SPS application, they could be 
readily laid up in six-foot diameters with lightweight graphite-epoxy materials. On 
the other hand, the. area efficiency of such an array is relatively low. Moreover, a 
zero spillover feed configuration is not ~resently apparent. 

An array of parabolic cylinders with line-source feeds could give better area 
efficiency than an array of dishes, but would suffer from feed blockage. 

A lens, using lightweight waveguide structures, with zero blockage behind-the­
lens feedhorns can have high efficiency and little spillover, but the SPS center-to-edge 
illumination tapers would give a spatial IIlumpiness" which would produce undesirable 
grating lobes in the fa~-field pattern. 

As noted above, waveguide slot arrays constitute the most desirable option. 
Consequently, such an array has been chosen for the SPS. Waveguide slot arrays offer 
high efficiency, uniform illumination, and are fairly lightweight. Band\,/idths of such 
arrays are narrow, ty~ically 1/2-2%. Although this does not directly impact the SPS, . 
which transmits power at a single frequency of 2.45 GHz, the narrow bandwidth does 
constrain the thermal and mechanical tolerances of the antenna. 

2.0 SLOTTED L-lAVEGUIDE r,10DULE DESIGrl VERIFICATIOtI 

2.1 EXPERIMENTAL PROGRAM 

The purpose of this program is to better define the electronic aspects of 
an SPS specific waveguide slot array. The specific aims of the program are as follows: 

o To build a full-scale half-module, 10 stick, array, the design parameters 
for ~hich are to be determined by analytical considerations tempered by 
experimental data on a single slotted radiating stick. 

o To experimentally evaluate the completed .lrray with respect to antenna 
pattern. impedance and return loss. 

o To measure svlept transmission amplitude and phase to provide a data base 
for design of a receiving antenna. 

2.2 ARRAY CONFIGURATIOrl 

The first step in module design is to fix the gross dimensions, including the 
module length and width, and the dimensions of the radiating sticks and the feed wave­
guide. Because the feedguide is a standing wave device in which the coupling slots must 
be spaced by )..g/2, where >..g is the guide wavelength, and because :"'g is a function of 
waveguide width. the radiating stick and feedguide dimensions are not independent. 

The SPS baseline design calls for a half-module of ten 1.6 m long sticks of 
6,cm x.9 cm cross-section. For these dimensions, at the SPS frequency,the feedguide 
dlmenslons are also 6 cm x 9 cm. To assess the desirability of the beseline configura­
tion, the ohmic losses of several alternative confisurations of elu31 ~rQa W2r: c~lcu­
lated. The 12R losses for these are plotted in Fi~urD 1 as functions of radiating stick 
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in the loss curve is quite ~ha)low. Also, the values of the minima do not appear to be 
very configurationally sensitive. On the other hand, it was determined in the course 
of this study that end-feeding of the feedguide may afford somewhat lower lo:.s than 
expected of the baseline configuration which utilizes center-feeding. 

Based on the above considerations, it was decided to configure the experimental 
module according to the baseline design. The commercially manufactured waveguide which 
"lost nearly approximates the baseline guide, is WR-340, with dimensions of 4.32 x 8.64 cm. 
Because this \'1as not available in sufficient quantity, WR-284 waveguide was used instead 
for the developmental module. Because this waveguide is narrower than the baseline, and 
because it would be used for both the radiating sticks and the feedguide, the design ' 
frequency of the developmental module was increased from 2.45 GHz to 2.86 GHz. With 6061 
Aluminum feedguide, the ohmic losses in the module are expected to be less than 1%. 

2.3 WAVEGUIDE STICK DESIGN" 
<0", 

The design of the waveguide stick entails the assignment of values to both the 
slot offset from the waveguide centerline and the slot length. The slot length, 1 , is 
chosen so that the slot is re:onant at the design frequency. The slot offset is chosen 
to give the desired slot conductance. This is determined by impedance matching considera­
tions. Thus, for a waveguide stick containing N identical shunt slots, the desired value 
of normalized slot conductance, g, is just g= lIN. 

For a single isolated stick, the choice of slot length and slot offset is 
relatively straightforward. The slot length is given to good approximation by 
~ = Ao/2, where AO is the free-space wavelength. The conductance and slot offset are 
related to sufficient accuracy by a well known equation. 

Tentative radiator stick dimensions in WR-284 waveguide a',re: 

Slot Spacing 
Slot Length 
Slot Width 

," 

3.0 inch 
1. 98 inch 

. 125 inch 

Slot Offset 
Slot t~orma 1 i zed 

Conductance 
Number of Slots 

• 187 inch 
.055 

18 or 20 

Whel'e several sticks are placed in close proximity, however, as they are in tt 
SPS module, the design problem is exacerbated by mutual coupling between the sticks. rr 
is,'the slots in any particular stick are now loaded by the slots in the neighboring sti( 
and will necessarily exhibit resonant frequencies and conductances which differ signifi­
cantly from those predicted by single stick equations. 

The changes in stick behavior due to mutual coupling effects are shown in Figure 
2. Here, both the resonant frequency and the reflection coefficient of a single stick at 
resonance change noticeably in the presence of a second stick. A theoretical analysis 
of this problem, based on an adaptation of a mutual coupling analYSis for an array of 
dipoles (L. Stark, Radio $cience 1,361,1966) is shown in Figure 3. As might be expected, 
the effects converge rather rapidly, suggesting that a particular slot does not interact 
to any significant extent with other slots that are more distant than third or fourth 
neighhors. figure 3 also shows that mutual coupling effects are also. present between 
neighboring slots of a single stick. 

Because of the mutual coupling'problem, the choice. of slot length and offset 
has been pursued in an iterative manner beginning from the Single stick analytical values. 
Data fOl~ several iterations with two waveguide sticks, are shown in Table 1. Because the 
slot offsets, once machined, are fixed, stick impedance in these data was varied by 
changing the number of slots by the means of a sliding short in the waveguide. Adjacent 
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sticks were fed in-phase using home built four-hole directional couplers machined in 
one end of each stick, pennitting swept return-loss/coupling measurements without 
interference by guide flanges. 

2.4 FEED GUIDE DESIGN 

The radiating waveguide sticks ar~ fed in-pha~e by a feed waveguide whose axis 
is perpendicular to those of the radiating sticks. Like the radiating sticks, the feed- . 
guide supports a standing wave. The power is coupled from the feedguide to each radiating 
stick through a resonant (length - Ao/2) coupling slot which is in~lined to the feedguide 
axis. The tril,nsfonned radiating stick impedance seen by the feedguide is proportional to 
sin2 29, where 9 is the inclination angle. The phase of the power coupled to the stick ;s 
inverted as the c~upling slot is reflected in the feedguide axis. For maximum power trans­
fer to the 10 radiating sticks, each stick must present an impedance to the feedguide of 
one-tenth the feedguide characteri stic impedance. Tt1is.~ictQtes a rather small coup1 ing 
slot inclination of about 7°. To maintain proper phasing of the radiating sticks, the 
coupling slots are alternately reflected in the feedguide·axis. 

Tentative fead stick dimensions in WR-284 6061 aluminum waveguides for the 
1/2-module are: 

Slot Spacing 
Slot Length 
Slot ~/idth 
Slot Offset Angle 

3.0 inch 
2.0 inch 

.125 inch 
7. 

3.0 RECEIVING TECHNIQUES EVALUATION 

Slot Nonnalized Resistance 
Slot Number 

.10 
10. 

The receiving antenna receives a pilot Signal from earth with phase information 
to keep all modules in-phase. Symmetry considerations argue for the pilot Signal to origi­
nate from the center of the SPS earth receiving array. Ionospheric phase shift and Faraday 
rotation call for the pilot signal to be centered on the SPS power frequency with the phase 
information in symmetrically disposed sidebands. The purposes of the receiving techniques 
evaluation were to: 

o Conduct a shared antenna versus separate receiving antenna analysis to deter­
mine feasible pilot beam budget and receiving antenna constraints due to power 
module. 

o Design and select a pilot-beam receiving antenna technique' compatible with a 
power beam array which must allow simultaneous transmission of an S-Band 
carrier and reception of the anticipated pilot-beam spread-spectrum signal. 

The pilot beam link analysis established that very small low gain pilot receiv­
ing antenna elements imbedded in the transmitting array are significantly superior to 
any scheme of diplexing. because: (1) The total system pm'ler losses are two orders of 
magnitude lower with a separate antenna than with any state-of-the-art diplexing device; 

. (2) The small antenna. due to its inherent broad bandwidth. is fully compatible with a 
spread spectrum signal; whereas the transmit array is not. (3) The small, low gain 
antenna represents a much lower development risk than a dip1exing device. 

Also from the pilot beam link analysis. formalisms have evolved from which to 
determine values of pilot transmitter pOrler and antenna aperture, as well as pilot receiv­
ing antenna aperture. The transmi tter pDl'/er and aperture depend foremost upon the reqlJi s­
ite pilot link effective radiated power, ERP. The ERP. in turn, depends upon the signal­
to-noise requirement of the pilot link receiver; and hence. the noise environ:~lcnt in which 
the receiving system must operate. Consequently. the ERP requirements were found to be 
extremely sensitive to the cut-off frequency of a required receiver I.F. notch filter. 
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The relationship between transnlitting antenna diameter and system power loss 
(efficiency) is shown in Figure 4. This relationsMp is not monotonic due to the fact 
that increasina the antenna diameter produces two opposing effects. It reduces the 
amount of pilot transmitter power required to produce the requisite ERP, while simul­
taneously increasing the degree of rectenna blockage. At low diameters, the transmitter 
pOWE::r effect dominates, and the loss decreases with increasing diameter; whereas, at 
larger diameters, rectenna blockage becomes most important, and the system loss increases 
with increasing diameter. Thus, for a particular ERP, there is a rather limited set of 
pi lot transmi tter pm'ler/aperture combinations which gives minimum system loss. 

The relationship between system losses and pilot-link receiving aperture is shown 
in Figure 5. For small apertures, an increase in aperture reduces system losses due to a 
deCI"eaSe in th~ required E~p'~ At, large apertures, the system losses increase with increas­
ing aperture, due to receiving antenna blockage of the spacetenna. The specific nature of 
this relationship depends on the required signal-to-noise ratio, SlUt in the pilot receiver 
and also on the bandl'lidth, fe, of the intermediate frequency notch-filter. As SIN is 
increased, the pilot ERP must increase, and so also must the system losses. As fc is 
decreased, more of the power transmitter noise spectrum is passed by the receiver I.F. 
This increase in noise must be overcome by an increase in pilot link transmitter power. 

As sho'vln in Figure 5, the optimum receiving aperture, under any foreseeable 
conditions, ;s quite small. Consequently, the pilot-link receiving antenna requirement 
can be satisfied by a simple dipole or slot antenna. Adaptations of these to the SPS 
array are shown in Figure 6. The 510t antenna is inserted in a notch cut in the outer 
portion of adjacent waveguide narrow walls. The dipole is positioned at a distance 
Ao/4 above the array by a small rigid coax feed, which like the slot, is slipped through 
a hole in the \'Javeguide walls. These antennas may be dimensioned either to be resonant 
or' non-resonant. The apertu)'e of the resonant structure is larger, but so also is the 
effect on the impedance of the neighboring transmitting-antenna radiating slots. To the 
extent that the lO\'/er aperture can be tolerated, the non-resonant structure ;s preferred. 

An important consideration in the pilot link design is the isolation of the 
pilot receiver from noise inherent to the high-pm'/er down-link signal. l"Jith the di­
pole, isolation can be improved by rotating the antenna so that it is cross-polarized 
to the power transmitting antenna. An alternate noise-cancelling scheme utilizes two 
dipoles per receiving antenna, dS shown in Figure 6. These are separated by Ao/4 and 
can therefore be conne'cted to pass, as would a directional coupler, radiation coming 
from the earth, while rejecting that which is earthbound. 

One of the candidate receiving antennas in Figure 6, the slot, or "credit­
card ll receiving antenna, has been built and sweep-tested. It consists of a 
1.75" x .062" teflon-glass microcircuit board shorted around three edges to fom a 
low-impedance waveguide cavity. 

4.0 ANTENNA EFFI CI ENCY .:~EASURH1ENTS 

The antenna pattern will be measured on one of the six antenna ranges at Boeing. 
Besides observing the far-field rule R> 2D2/A ~ 180 ft., high paths and sharp-bealu range 
illuminators will be employed to minimize mu1tipath errors. For the ranges at the Boeing 
Developmental Center, mu1tipath errors at beam-center are estimated to be well under 
! .1 db. Gain is measured using a Scientific Atlanta SA-1740 Precision Amplifier-Receiver, 
and SA-12-l/70 Standard gain horn. Measur~ment accuracies are estimated as follows: 
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Standard-gain Horn (~ gain) 
Match 
SwHch mi smatch di fferences 

between twa positions 
Receiver/mixer linearity 

+ .2 db 
+" .2 db 
! .2 db 

+ .2 db 
Total RSS Value : ! . 4 db or ! 9% in power 

By hardwiring the SPS array to the standard gain horn. with their beams pointed near 
90% apart to avoid crosstalk. the rf switch and its inherent uncerta~nty can be elimi­
nated. 

The antenna efficiency is obtained from.the experimental measurement of gain. 
with respect to a reference horn, and directivity:,' 0;-' Since the directivity .is the gain 
of a lossless antenna, the ratio of these values represents the efficiency of the antennf 
The gain is obtained from the measured value of incrementa~ gain above a calibrated stane 
ard horn. The dfrectivity is expressed ~s the ratio of the mAximum radiation intensity. 
Umax to the average rad'iation intensity U, which is given by U = 1/41TI lU(g,~)dQ. 

The directivity measurement is carried out separately by rotating the antenna 
continuously through selected azimuth and elevation angles and integrating the far field 
contributions over a solid sphe~e, thus obtaining the directivity with reference to an 
isotropic radiator as 0 = Umax/U. ' 

The efficiency is obtained from the ratio of two separately measured experi­
mental values, n = G/D. With currently available antenna range accuracy, this measure­
ment is typically determined to ~ .4 db accuracy. The resulting efficiency value will 
give an indication of ohmic losses in the waveguide feed system and in the radiating 
sticks. In the SPS baseline design, this loss is estimated to be less than 0.1 db, and 
the antenna range measurement will thus provide a crude verification only. 

TABLE: I ITERATIVE DESIGN PROCEDURE FOn RADIATING STICK PARJlJ1ETERS 

NO. OF SLOTS 1 
STICK FOR BEST HATCH SLOTl SLOT 

NUMBER OFFSET 
COf'tIENT 

SINGLE STICK WITH2 LENGTH 

NE,GBOR 

1 22 20 .IS- RESO~jAljCE @ 2300 Mliz 2.04" 
SLOT TOO LO~iG 

2 16 14 .20· RESOUNICE 0 2880 11Hz 
1.94" SLOT TOO SHQRT - TOO MUCH CO:iDUCTAlICE PER SLOT 

l IB 16 .lS7" 1.9S" RESONANCE AT 28iSMHz 
4 18 18 .lS0" 2.00· EXPECT 2860 MHz. 

1. SLIDING SHORT MEASURErIENT: VSWR AT RESONANCE <'1.1 

2. NON-DUPLICATE STICKS ARE USED TO APPROXIMATE MUTUAL COUPLING EFrECT 
l. AFFECTS PRIIMRll Y SLOT CO,'!DUCTANCE 

•• OESIRED FREQUENCY FOR FEEO GUIDE TO BE ICnlTICAl TO RAOIATHlG STICK GUIDE (WR240) 

~ •. --.-. __ A _._"_ .... -_ ....... _.~_ ...... _, .... , .... j 
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2.1 

INTRODUCTION 
~ 182 -12556 

The fundamental theory of MW antenna operation and basic array technology 
development status was used ~n the design of the l-km diameter 5-Gw SPS 
microwave antenna. However, the aperture size and the high efficiency 
requirements make the MW antenna extremely complex. Studies have shown 
that. the slotted waveguide array is one of the most efficient radiators 
for the antenna. Subsequent analyses have shown that the temperature 
interface between waveguides and dc-RF conversion tubes can cause severe 
thermal design problems on the array. An alternate design, the Resonant 
Cavity Radiator, is described here. 

RADIATING ELr.M~T DESIGN 

Basic RCR Principle 

Conventional waveguide designs such as the TEla mode waveguide slotted 
array make tube installation fairly complex. TO solve the resultant 
temperature interface problem and possibly increase the RF efficiency of 
the radiator, Rockwell developed the resonant cavity radiator (RCR). The 
RCR is a resonant cavity box excited with the TE mode. Physically, 
the RCR is a conventional standing waveguide rad'itor with the common 
walls removed,. The RCR has three significant potentials. They are: 

1. Improvement in efficiency. 

2. Lighter weight. 

3. Simpler structure which allows the RCR to be 
integrated with the RF tube to alleviate the 
thermal interface problem. 

2.2 RCR Theoretical Attenuation Estimates 

The loss mechanisms of the RCR can be bes" p.xp1ained by comparison to 
conventional arrays. The typical flat plate antenna array is formed by 
placing side-by-side several sections of rectangular waveguide as shown 
in Figure 1. 

Figure 1. Typical TE10 SWR Array 
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The mode that propagates down each waveguide is the dominant TE o' 
The mode designation simply describes a particular electric-mag~etic 
field configuration that satisfies Maxwell's equations. A portion 
of the top wall in waveguide No. 2 in Figure 1 is cut away to show 
the current flowing in the side wall. Not shown is the adjacent 
currents flowing in waveguide No.1. These current~ (waveguide No.1) 
are flowing in the opposite direction and because the system is 
symmetrical, they are of equal magnitude. If the side walls are 
removed as in the RCR, these two equal and opposite currents cancel. 
Since conduction los,ses are simply I2R losses, any reduction in sur­
face currents will make the antenna array more efficient. 

The closed-form analytical expression for conduction losses for a 
silver-plated RCR supporting the TEm,o modes is given as: 

-4 _ 2.8738 x 10 
a -

C 

b~ -(*j 
1 + 2b m).2 dB 

a 2a meter 

For an "a" dimension of 4.460 inches and a lib", dimension of 2.130 
inches (ll.319 cm by 5.40 cm) the loss calculated from the above 
equation is tabulated in Table 1. This shows that for a typical 
array length of 2.5 meters, a TE70 RCR has the potential of saving 
4.3 x'l06 watts of power. Weight savings in the MW antenna is 
achieved by two design featurps: (1) the RCR is deSigned with 
no side walls with the exception of the cavity walls, and (2) it can 
be designed to be structurally integrated with a magnetron or klystron 
heat dissipator because of the simplicity of the structure. 

2.3 Typical Integration Between RCR and Tube 

Figure 2 shows a typical anode heat radiator integrated with :he RCR 
bottom. The area required for heat diSSipation computed by Rockwell 
indicates that the RCR has more than sufficient area to dissipate 
the excess heat. In the aperture high-densi~y area, only 0.76 per­
cent of the total RCR area is required to replace a 48-cm magnetron 
anode. The RCR bottom wall can be constructed of pyrolytic graphic 
composite, or equivalentj and plated for high RF conduction .. The 
plating technique of pyrolytic graphite to operate at extremely high 
temperatures should be investigated in future studies. The pOltential 
weight savings of the RCR is then the removal of the side walls and 
the weight reduction achieved by incorporating heat uissipation in the 
waveguide bottom wall. The integrated assembly also provides techniques 
for solving the high-temperature interface problem. It should be noted 
that the RCR may offer other advantages for ease of maintenance and 
assembly. 
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Mode 

TE1,O 

TE2,0 

TE3,0 

TE4,0 

TE5,0 

TE6,O 

TE7,0 

TE8tO 

TE lO ,O 

Table 1: Theoretical Power Saving of RCR Over Conventional 
Standing Wave TE10 Slotted Arrays • 

Loss Differential Power Savings 
(ac) dB/Meter for 2.5m (dB) 

8.068 x 10-3 

7.193 x 10-3 

6.901 x 10-3 

6.755 x 10-3 

6.668 x 10-3 

6.609 x 10-3 

6.567 x 10-3 

6.530 x 10-3 

6.490 x 10-3 

-
.00218 

.00291 

.00328 

.00350 

.00364 

.00375 

.003845 

.00394 

PYROLYTIC 
GRAPHITE 

5-GW/Base 

2.51 x 106 

3.35 x 106 

3.77 x 106 

4.02 x 106 

4.19 x 106 

4.3 x 106 

4.42 x 106 

4.53 x 106 

RFIN ~_ 
--.-L...-.-. ... FILTER 
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Measurement Results 

One of the primary uncertainties with the RCR is the suppression of 
higher order modes. One of the easiest ways of detecting higher order 
mode existence is by observing radiation patterns. Higher order modes 
will collimate in off-boresight locations, causing null filling and 
higher side10bes. Rockwell developed special feed techniques which 
led to the reduction of higher order modes. To prove the technique 
does suppress higher order modes, scaled tests were conducted. A 
TE70 RCR shown in Figure 3 was fabricated and tested with results 
shown in Figures 4 and 5. The RCR was uniformly excited for -13 dB 
peak sidelobe level. Measured side10be levels in the E and H planes 
were -13 dB for good correlation. Off-axis patterns also were taken 
at predicted higher order mode locations. No existence of higher 
order mode propagation was found. These tests were performed on a 
limited scale; however, it definitely proves that the RCR has a 
potential for a major breakthrough in array technology. Efficiency 
verification tests will be performed by Rockwell to verify theoretical 
predictions. 

3. SUBARRAY DESIGN 

Rockwell IS design of the MPTS transmit array consists of 6993 subarrays, 
each 10 meters square. The optimum size of the subarray is a function 
of the electronic scanning range of the antenna. A small subarray allows 
more electronic scanning range: however, the total number of electronic 
scanning circuits increases with the increased number of subarrays. With 
a subarray larger than 10 meters square, the pointing requirements of the 
subarray ;s extremely tight, therefore undesirable. The baseline subarray 
size of 10m by 10m requires the subarray to be pointed to within ± 1 arc 
minutes for less than 0.5-percent loss. Typical power plots in dB and 
percent of the subarray is shown in Figures 6 and 7. A typical subarray 
may consist of 20 to 50 RCR's, depending on the power density of the 
subarray. 
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Figure 3. Experimental RCR 
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4. TUBE SUBARRAY INSTALLATIONS 

One of the prime advantages of the RCR is its adaptability to numerous 
magnetron or klystron tube installations. Rockwell has studies various 
tube/RCR integrated and non-integrated concepts to determine potential 
solutions to the weight and high-temperature interface problem. Figures 
8 through 11 illustrate various magnetron and klystron mounting techniques 
to the RCR. Figure 8 which shows magnetron mounting, illustrates the 
configuration where the back face of the RCR is integral to the magnetron. 
It should be recognized that these techniques are advanced and unproven; 
however, it offers the MPTS antenna designer alternative instal1iJ.tion 
concepts. The simplicity of the RCR for maintenance also is shown in 
Figure 8. The RCR modes for various installation concepts will vary as 
a function of the power density or structural integrity. In the low 
density areas such as shown in Figure 9, a TE10 RCR may be used. In 
the higher density areas of the array a TE30 RCR can be used. The 
interconnecting feed lines of the RCR as shown in Figures 9 through 11 
represent implementation of the old verSlon of Rockwell's phased array 
retrodirective network. Separate pilot and reference pick-up antennas 
are used in the new phase control system, similar to the one described 
in connection with the solid-state concepts. 

Figure 8. RCR Element Maintenance 
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SPS ANTENNA ELEMENT EVALUATION ~ IVB 2 -125 57 
The SPS transmitting aray requires an architecture which will pro low 

eight, high efficiency and high structural rigidity. Se'/eral candid:lte an .! '., config'J­
;!tions include the parabolic dish, the parabo~ic cylincu, the lens end the . .:/2guide s~c· 
>.~y. As discussed below, the waveguide slot array is preferred over the ot;her options. 

;; Parabolic dishes are widely used on earth. FOt" SPS application, they could be 
.~ ,.:adilylaid up in six-foot diameters with lightweight graphite-epoxy materials. On 
;' :r.~ other hand, the. area efficiency of such an ~1rray is relatively 10\,1. Moreover, a 
ze~ spillover feed configuration is not presently apparent. 

An .array otparabolic cylinders with line-source feeds could give better area 
efficiency than an array of dishes, but would suffer from feed blockage. 

A lens, using lightweight waveguide structures, with zero blockage behind-the,.. 
l~ns feedhorns can have high efficiency and little spillover, but the SPS center-to-edge 
illumination tapers ~'iould give a spatial "lumpiness" which would produce undesirable 
rating lobes in the far-field pattern. 

As noted above, waveguide slot arrays constitute the most dpsirab1e option. 
~nsequent1y, such an array has heen chosen for the SPS. Waveguide slot arrays offer 
high efficiency, uniform illumination, and are fairly lightweight. Bandwidths of such 
arrays are narrow, typically 1/2-2%. Although this does not directly impact the SPS, 
which transmits power at a single frequency of 2.45 GHz, the narrow bandwidth does 
constrain the thermal and mechanical tolerances of the antenna. 

2.0 SLOTTED ~JAVEGUIDE r~ODULE DESIGN VERIFICATIOt' 

2.1 EXPERIf4ENTAL PROGRAM 

The purpose of this program is to better define the electronic aspects of 
an SPS specific waveguide slot array. The specific aims of the program are as follows: 

o To build a fu'd-sca1e half-module, 10 stick, array, the design parameters 
for which are to be determined by analytical considerations tempered by 
experimental data on a single slotted radiating stick. 

o To experimentally evaluate the comp·1eted array with respect to antenna 
pattern, impedance and return loss. 

o To measure swept transmission amplitude and phase to provide a data base 
for design of a receiving antenna. 

2.2 ARRAY CONFIGURATION 

The first step in module design is to fix the gross dimensions, including the 
module length and width, and the dimensions of the radiating sticks and the feed wave­
guide. Because the feedguide is a standing wave device in which the coupling slots must 
be spaced by Ag/2, where AJ is the guide wavelength, and because Ag is a function of 
waveguide width, the radiating stick and feedguide dimensions are not independent. 

The SPS baseline d~sign calls for a half-module of ten 1.6 m long sticks of 
6,cm x,9 cm cross-section. i=or these dimensions, at th~ SPS frequency, the feedguide 
d~mensl0ns are also 6 em x 9 cm. To assess the desirability of the baseline configura­
tlon, the ohm~c losses of several alternative configurations of equal area were calcu­
lated. The I2R losses for these are plotted in Fiuure 1 as functions of radiating stick 
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sticks were fed in-phase using home built four-hole directional couplers machined in 
one end of each stick, pennitting swept return-loss/coupling measurements without 
interference by guide flanges. 

2.4 FEED GUIDE OESIGP 

The radiating waveguide sticks ar~ fed in-phase by a feed \,/aveguide whose axis 
is perpendicular to those of the radiating sticks. lik~ the radiating stick$. the feed- • 
guide supports a standing wa\te. The power is coupled from the feedguide to each radiating" 
stick through a resonant (length - >-0/2) coupling slot \'/hich is inclined to the feedguide 
axis. The transformed radiating stick impedance seen by the feedguide is proportional to 
sin2 29. where 9 is the inclination angle. The phase of the power coupled to the St.ick is 
inverted as the coupling slot is reflected in the feedguide axis. For maximum power trans­
fer to the 10 radiating sticks, each stick must present an impedance to the feedguide of 
one-tenth the feedguide characteristic illlpedance. This dictates a rather small coupling 
slot inclination of about 7°. To maintain proper phasing of the radiating sticks, the 
coupling slots are alternately reflected in the feedguide axis. 

Tentative feed stick dimensions in WR-284 6061 aluminum waveguides for the 
1/2-modu1e are: 

Slot Spacing 
Slot Length 
Slot ~J;dth 
Slot Offset Angle 

3.0 
2.0 

" 125 
7. 

inch 
inch 
inch 

3.0 RECEIVHlG TECHNIQUES EVAlUATIOfJ 

Slot Nannal ized Resistance 
Slot Number 

• 11') 
10. 

The receiving antenna receives a pilot signal from earth with phase infor'mation 
to keep all modules in-phase. Symmetry considerations argue for the pilot signal to 01";9i­
nate from the center of the SPS earth receiving array. Ionospheric phase shift and Faraday 
rotation call for the pilot signal to be centered on the SPS power frequency with the phase 
information in symmetrically disposed sidebands. The purposes of the receiving techniques 
evaluation were to: 

o Conduct a shared antenna versus separate receiving antenna analysis to deter­
mine feasible pilot beam budget and receiving antenna constraints due to pcr~er 
module. 

o Design and select a pilot-beam receiving antenna techniques compatible with a 
power beam array which must allow simultaneous transmission of an S-Band 
carrier and reception of the anticipated pilot-beam spread-spectrum signal. 

j 
1 

j 

I 
J 

The pilot beam link analysis established that very small low gain pilot receiv­
ing antenna elements imbedded in the transmitting array are significantly superior to 
any scheme of diplexing, because: (1) The total system power losses are two orders of 
ma~nitude lower with a separate antenna than with any state-of-the-art diplexing device; 
(2) The small antenna, due to its inherent broad bandwidth, is fully compatible with a 
spread spectrum signal; whereas the transmit array is not, (3) The small, low gain 
antenna represents a mllch lower development risk than a diplexing device. 1 

Also from the pilot beam link analysis, fonna1isms have evolved from which to I 
determine values of pilot transmitter power and antenna aperture, as well as pilot rec€'iv- 1 
1ng antenna aperture. The transmitter power and aperture depend fore~~st upon the requis- ~""'I' 
ite pilot link effective radiated power, ERP. The ERP, in turn, depends upon the sigrlal-
to-noise requireme!1t of the pilot link receiver; and hence, the noise environment in \'illic:, 
the receiving system must operate. Consequently, the ERP requirements were found to b2 
extremely sensitive to the cut-off "frequency of a required receiver I.F. notetl filter. 

:\ 

J 
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The- rel~t;onship between transmHting antenna dhmeter a"d system power loss 
(efficiency) is shm·Jn in Figure 4. This relationsMp is not monotonic due to the fact 
. that inc reas i n9 the antenna d i o1rneter produces. two oppos i n9 effects. 1 t reduces the 
amount of pi'iot transmitter power' required to produce the requisite ERP, while simul­
taneousiy increasing the degree of rectenna blockage. At low diameters, the transmitter 
power effect dominates, and the loss decreases with increasing didmeter; whereas, at 
larger diameters, rectenna blockage becomes most important, and the system loss increases 
with increasing diameter. Thus, for a part.icu1ar ERP, there is a rather limited set of 
pilot transmitter power/aperture combinations which gives minimum system loss. 

The relationship between system losses and pilot-link receiving aperture is shown 
in Figure 5. Fo:' small apertures, an increase in aperture reduces system losses due to a 
decrease in the required ERP. At large apertures, the system losses increase with increas­
ing aperture, due tD receiving ~fltenna blockage of the spacetenna. The specific nature of 
this relationship depends on th,:. required signa1-to-noise ratio, S/U, in the pilot receiver 
and also on the band~'/idth, fe, of the intermediate frequency notch-filter. As SIN is 
increased, the pilot ERP must increase, and so also must the system losses. As fc ;s 
decreased, more of the power transmitter noise spectrum is passed by the receiver I.F. 
This incr~ase in noise must be overcome by an increase in pilot link transmitter power. 

As shoYIn in Figure 5, the optimum receiving aperture, under any foreseeable 
conditions, is quite small. Consequently, the pilot-link receiving antenna requirement 
can be satisfied by a simple dipole or slot antenna. Adaptations of these to the SPS 
array are shown in Figure 6. The ~lot antenna is inserted in a notch cut in the outer 
portion of adjacent waveguide narrow walls. The dipole is positioned at a distance 
)'0/4 above the D.rray by a small rigid coax feed, which like the slot, is slipped through 
a hole in the waveguide walls. These antennas may be dimensioned either to be resonant 
or non-r~sonant, The aperture of the resonant structure is larger, but so also is the 
effect on the impedance of the neighboring transmitting-antenna radiating slots. To the 
extent that the lower aperture can be tolerated, the non-resonant structure is preferred. 

An important consideration in the pilot link design is the isolation of the 
pilot receiver from noise inherent to the high-power down-link signal. With the di­
pole, isolation can be improved by rotating the antenna so that it is cross-polarized 
to the power transmitting antenna. An alternate noise-cancelling scheme utilizes two 
dipoies per receiving antenna. as shown in Figure 6. These are separated by Ao/4 and 
can therefore be connected to pass, as would a directional coupler. radiation coming 
from the earth, while rejecti~g that which is earthbound. 

One of the candidate receiving antennas in Figure 6, the slot, or "credit­
card" receiving antenna, has been built and sweep-tested. It consists of a 
1.75" x .062" teflon-glass microc~rcuit board shorted around three edges to fonn a 
low-impedance waveguide cavity. 

4.0 ANTENNA EFFICIENCY ::EASUREMENTS 

The antenna pattern will be measured on one of the six antenna ranges at Boeing. 
Besides observing the far-field rule R> 202/A ~ 180 ft., high paths and sharp-beam range 
illuminators \'/i11 be eml-'loyed to minimize multipath errors. For the ranges at the Boeing 
Deve10proenta1 Center, multi path errors at beam-center are estimated to be well under 
~ .1 db. Gain is measured using a Scientific Atlanta SA-1740 Precision Amplifier-Receiver, 
and SA-12-1/70 Standard gain horn. Measurement accuracies are estimated as follows: 
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Standard-gain Horn (6 gain) 
Mat~h 
Switch mismatch differences 

between two positions 
Receiver/mixer linearity 

+ .2 db 
+' .2 db 
+' .2 db 

+ .2 db 
Total RSS Value : ! . 4 db or ! 9% in power 

By hardwiring the SPS array to the standard gain horn, with their beams pointed near 
90% apart to avoid crosstalk, the rf switch and its inherent uncertainty can be elimi­
nated. 

The antenna efficiency is obtained from the experimental measu~~ment of gain, G, 
with respect to a reference horn. and directivity, O. Since the directivity is the gain 
of a 10ss1ess antenna. the ratio of these values represents the efficiency of the antenna. 
The gain is obtained from the measured value of incremental gain above a calibrated stand­
ard horn. The directivity is expressed as the ratio of the maximum radiation intensity, 
Umax to the average radiation intensity U. which is given by U = 1/4wIIU(g.~)dn. 

The directivity measurEment is carried out separately by rotating. the antenna 
continuously through selected azimuth and elevation angles and integrating the far field 
contributions over a solid sphe~e. thus obtaining the directivity with reference to an 
isotropic radiator as 0 = Umax/U. 

The efficiency is obtained from the ratio of two separately measured experi­
mental values. ~ = G/O. With currently available antenna range accuracy, this measure­
ment is typically detennined to + .4 db accuracy. The resulting efficiency value will 
give an indication of ohmic losses in the waveguide feed system and in the radiating 
sticks. In the SPS baseline design. this loss is estimated to be less than 0.1 db, and 
the antenna range measurement will thus provide a crude verification only. 

TABLE: I ITERATIVE DESIGN PROCEDURE FOR RADIATING STICK PARAMETERS 

NO. OF SLOTS 1 
~TlCK FOR BEST HATCH SLOT3 SLOT 

NUMBER OFFSET 
COfIIENT 

SINGLE STICK WITH2 LENGTH 

N£IGBOR 

1 zz 20 R[SO~IAIICE ~ 2800 MHz .J8" 2.04" 
, SLOT TOO lOllG 

2 16 14 .20" 1.S4· 
RESOIWICE 1I 2880 MHz 
SLOT TOO SHORT -- TOO HUCH CO;mUCTAlICE PER SLOT 

3 18 16 .197· 1.98" RESONANCE AT 287S~z 
4 18 18 .J80· 2.00· EXPECT 2860 MHz4 

~ 
1. SLlDItlG SHORT MEASUREIIiNT: VSWR AT RESOIIA/ICE <.1.1 

2. NOlI-DUPLICATE STICKS ARE USED TO APPROXIMATE MUTUAL COUPLING EFFECT 
3. AFFECTS PRlloIARIL Y SLOT CONDUCTANCE 

4. DESIRED FREQUEIlCY FOR FHO GUIDE TO BE IDENTIcAL TO RADIAW.G STICK GUIDE (WR240) I 
.~ 
1 
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METHOD FOR PRECISION FORMING OF LOW-COST. THIN-WALLED SLOTTED WAVEGUIDE 

ARRAYS FOR THE SPS 

WUlinl!' C. Brown 
Raytheon Company 

Ne., Product. Center 
Waltham ....... chu .. U. 02154 

Pre .. nted at the RADIATING ELEMENTS SESSION OF 'fHE SPS MICROWAVE SYSTE~.S WORKSHOP 
.January 15-18. 1HO. Lyndon B • .John eon Space Ctlnter, Houston, Texas 

ABSTRACT 

A method for the precision-fo!'ming of thin-walled, .Iotted-waveguide array. has been deviaed. Modela have 
b .. n constructed with temporary tools and evalusted. The appUcation of the method to the SPS requiremonts ia 
discussed. 

Introduction 

The method for forming thin-walled slotted 
waveguide arrays that will be described grew out of a 
necessity to narrow down the broad range or estimated 
cost for slotted waveguide arrays in ground based 
arrays. In most items that are designed for automated 
production the cost of the material is the dominant 
element of cost. Therefore the use of thin material is 
attractive because of the large reduction in material 
cost. Then. if a rapid. inexpensive method of 
fabrication can be devised. the cost of the slotted 
waveguide arrays wUl be low and can be accurately 
estimated. 

Such a fabrication method had been devised in 
principle by the author. An opportunity then aroae 
to build working models of the design as part of a 
contract with JPL for the improvement of microwave 
beamed power technology, using a sUght modiftcation 
of their electrical design for such an array. 

The working models that were made from 
0.020 inch material were mechanically so strong and 
the fabrication technique 110 well adapted to even 
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thinner material that the potential for a .lotted wave­
guide array made from 0.005 inC!h or even thinner 
material for the SPS appUcatlon. is very s-:,,)d. 

Early estimates of the mas. of a slotted w .. veguide 
array for the 1 kUometer diameter transmitting antenna 
for the SPS were ba.ed on the use of 0.020 inch thick 
aluminum material and the .. estimate. may .till peni.t 
and show up in current estimates of mas. for the SPS. 
An array based on the uae of 0.005 inch material ~ 
place of the 0.020 inch would save nearly 2.5 x 10 
kUograms of material. Savlnp in transportation cost. 
alone would be 250 mUUon dollars if transportation 
COllts were only $100 per \'_dlogram. 

The fabri(;cltion of thin-walled guides can also be 
accompUshed with great preciaion. Tolerances of 
:t2- 3 mils should be possible. 

Finally it appeara, as shown in Figure 1, that the 
arrays can be relatively easUy fabricated in space 
from rolls of aluminum foil which represents an ideal 
packing factor for transportation purposes. 
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Figure 1. Proposed Method for Precision Forming and Assembly of Low-Cost, Thin-Walled, Slotted Waveguide 
Arrays for the SPS. 
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The lott d w8veguid hown in Figur 
con I ts b ically of a fold who 
C<l rrugatloJ'l contribut th of th wov -
guld and a bottom plat into whic h th I ' dia ling lot 

I' punched, Th two section t h n now tog th I' and 
r j Jin d to ach other elth I' by r ist lIlC pot 

weldirlg or by laser b am widing to fo r m th finished 
a embly hown in Figure 2, 

Fig-u r 2, Fmished Assembly, 

The hoi s whic h ure punched into the material 
a r > s paced accurat Iy from each other and serve to 
accu r ately locate the mat erial in the bending fixture 
whic h is al . o accurately machined and ground, The 
hoI s also se rve to jig the top and bottom halves to 
each other for accura te assembly, 

The method as ol' iginally proposed by the author 
ut ili z d a third piece in the assemb ly that joined the 
t op and bottom at their end, An Improvement to 

imp ly eliminate th nd pla te by the upward fold of 
t h end of the top and bottom piece 8S s hown in 
Figure 1 i the uggeslion of R , 1. Dickin son, 

It is possible th,, ! the broad face of th wave­
gould memb rs. both top and bottom. may need orne 
tlffening to avoid bending and "011 canning". The 

th in n ut channels that are proposed to house the phase 
and a mplitude refel'ences and auxilia r y power Unes 
pCI' fo l'm thi s function on the s lott ed ul'face. The 
u n lotted s urfaces could be embossed to s tiffen th em. 

The inriividua l s lott ed waveguide in t he arl'ay 
fr d from a feed waveguide s hown in Figu l'e 3 as 

I t rA ns ve r s wav guide. T r ans fe l' of enel'gy i 
I lllde throu gh d iagonal lot s bet we n th feed wave­
g uid and I'adi atlng waveguide, The feed 
waveg uide is a tt ached to the arr a y by means of pop 
r i ve ts. 

Con s truction and Evaluation 

Two x 8 (8 slot s in 8 wa veguides) a rrays were 
con stl'uc ~ ed from 0.020 inch alumi num with the u se of 
t mpot'ar tooling of a simple natur . The, inch 
separation between wa eguides that is necessary in 
the formin g process and which have become attract ive 
liS a r egion in which to mount solid s tate devices and 
thl'ough which to run cab les made it necessary to 
adjust th e dimen sional speci fi cations of the JPL des ign 
which was designed for a different fabrication ma thod . 

The s lott ed face p la te . folded wa veguide sec tion . 
lind the end channels were assembled to eac h othe r 
Ily s pot we lding. Back a nd front vie w of the 
l in i hed as embly are s hown in Fig ures 3 And 4. 

in the Ab nce o f a ny an tenn a tes t in g I'an ge a 
m' t hod WR S evolved to tes t the a l'l'ay b y I c tl'ica lly 
pI'ob in g each s lo fOf' a mp litud e and phase . as s hown 
. I Figl ... ·e 5 . T hl al' l'lIngement ga v th phase an d 

Figure 3, Back View of the 8 x 8 Slotted \ R': e g uide 
Array as Constructed from 0.020 Inch Aluminum ~ heet 
Throughout and Assembled bv Mean of Soot 'W Iding, 

Figul'e 4. Front View 
A rra y as Con s t f'u cted 

hee t Th l'ou g hout and 
\' e ldin g. 

of the x 8 Slott ed Wa veguide 
from 0.020 Inc h Al uminum 
Assen ,bl d by Mea ns of Spot 

Finally. th e an t enna I'!lllge dat il t a ken b y JPL on 
t h 3rt'lly t ha t IV a mad fol' th III as a portion of the 
con t r ac tu al wOI' k ffo rt fol' th OJ IS p l'esent d in 
Fi g ul'es 6 li nd 7 . 

d 



Figura 5. Probe Arrangement .or Measuring Phase 
and Amplitude of Microwave Power Radiated at 
Individual Slots . The Phase and Amplit ud e Sensed by 
the Prob were Comtlarcd by Means of a Hewlctt­
Packard etwork Analyzer with the Aw plit ude ,~.nd 
Phase of the Power Input to t he Sing.(, " 'ave guide Feed 
to the Slotted IV . eguide Arr ay. 

TAB I.E I 

Matrix Ar ray of Amplitude and PhaBe In formation 
on Th in Metal Slott d Array U 

Col 

110w I l 1 

1 Ph. d" 105 100 I U) 
AllIp . 53 .57 . (,7 

2 Ph ase 104 H4 MO 
An' p . (01 . 51 . 5'1 

3 Ph" 'H': '1 4 HO HH 
Amp . 45 • ~H . (. ) 

4 Phas e 105 7? KO 
Amp • (.I . 56 . 60 -

5 Pha se IlO HI 11£. 
Amp • . 0 . 00 . 5'1 

6 Phaac 9 (. HO 74 
Amp . 611 , 53 . 57 

7 Phil . " 119 73 H3 
AIlI? .4 '1 . 60 . 07 

8 Phas e 100 H6 90 
Amp .5'1 . 60 . 53 

Overall array ie an 8 x 8 matrix 

"Internal" array is s 6 x 6 matrix 

4 5 (, 7 

11 0 101 '/0 ') 3 
.70 • (01 • " I . (,2 

Ml 1)1 94 7') 
• (,7 . 7 1 . 72 .5') 

H9 K5 ~5 '1 4 
.71 • (, 4 . 5M . 5(, 

73 HO H9 72 
.7 3 .7 3 .6'1 . (,5 

70 70 M5 H ~ 

.72 . 611 . 52 . 5M 

Il) ?l 90 7,) 
. 6K .7 l . Le) . 60 

M2 HO H(, ? I 
.69 . 6 1 . (,0 . 5·1 

93 'J{, HK 
.63 . 70 . 57 

T .. t data obtained by dipole probe placed in (ront of each 
radiating slot. 

RMS of phaBe deviation of inte rnal ar r ay is 6. 22°. 
RMS of phase deviation of ove"nll arr ny is 8. 89°. 

R 

105 
. 62 

90 
.40 

l Ob 
. 56 

94 
.40 

120 
. 50 

9 1 
.39 

104 
. 55 

160 
.4 5 

RMS of an,pUtude variat ion of int ernsl array is 0.0628 from a 
mean value of 0 . 627. 
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Figure 6 , Antenna Pattern for 8- SIot x 8- Stick Slott~d 
Waveguide Antenna, 
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Figure 'I. Antenna Pattern for 8- S10t x 8-Stick Slotted 
Waveguide Antenna. 
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HIGH ACC1JRACY RADIATION EFFICIENCY 

MEASUREMENTS FOR THE 
SOLAR POWER SATELLITE (S~S) SUBARRAYS 

D. J.Kozakoff, J. M. Schuchardt and C. E. Ryan 

Georgia Institute of Technology 
Engineering Experiment Station 

Atlanta, Georgia 30332 

lNTRODUCTION 

The relatively large apertures to be used in SPS [1], small half-power 
beamwidths, and the desire to at.curately quantify antenna performance dictate 
the requirement for specialized measurements techniques. The subject matter 
presented herein is under investigation 3S part of a program at Georgia Te~h 
to address the key issues •• 

The objectives of the program include the following: 
1) For 10-meter square subarray panels, quantify considerations for 

2) 

3) 

4) 

measuring power in the transmit beam and radiation efficiency 
to + 1% (+ 0.04 dB) accuracy • 
Evaluate -measurement performance potential of far-field elevated 
and ground reflection ranges and near-field techniques. 
Identify the state-of-the-art of critical components a~d/or unique 
facilities required. 
Perform relative cost, complexity and performance tradeoffs for 
techniques capable of achieving accuracy objectives. 

The precision required by the techniques discussed 
obtained by current methods which are ~pable of + 10% 
formance. In virtually every area associated w~~h 

measurements, advances in state-of-the-art are required. 

below are not 
(+ 0.4 dB) per­
"these planned 

ERROR SOURCES 
In general, the RF and physical environment and the electronic 

instrumentation all contribute to the overall measurement error. Ideally, 
the RF source is stable in amplitude and frequency, the transl1itted wave 
arrives at the receiver as a true plane wave free of obJectionabln 
reflections, and the atmo~pheric effeets are negligible. The receiver must 
be ideal and error free, and the gain antenna reference is accurately known. 
In the real world, one must deal with the errors which occur as the 
instrumentation departs from the ideal performance listed above. 

For SPS subarray antenna pattern measurements, the critical error 
sources hove been quantified into four categories shown in Table 1. n~e 
objective of this investigation is controlling these error sources to yield 
an overall gain uncertainty of + 0.04 dB. Because of the large size of an 
SPS subarray (8l.67-wave1engths at 2.45 GHz), antenna range effects are given 

• CO)J~tract NAS8-33605 
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the largest allowance in the error budget. The errors alloea~ed to 
transmitter/receiver E:ources requite advances in state-of-the-art of 
associated microwave electronics. However, even with currently available 
equipment, because of single frequency operation, and the fact that receiver 
and transmitter are phase-locked and thermally stabilized, errors can be 
accurately controlled. Use of a microcomputer will permit error compensation 
of such factors as the nonlinearity of receiver and detector. 

Controlling the antenna structure for measurement will require 
developing a cradle assembly that will hold the antenna rigid. Preliminary 
weight estimates indicate approximately 2.5 tons for a prototype subarray 
assembly. Ambient temperature, solar energy and wind effects can be 
controlled somewhat by selecting the measurement time period. However, since 
several thousand 10-meter apertures may need to be measured during the course 
of the SPS program, unique test facilities are anticipated. For instance, 
shielding from the adverse external parameters listed above ean be achieved 
through use of a large dome radome. 

Antenna measurements can be ~ade with the test antenna either receiving 
or transmitting because of the reciprocity theorem. However, in the ease 
where the SPS array is transmitting and the goal is to de~ermine power in the 
transmit beam via beam integration, unique problems arise. Figure 1 
illustrates one measurement concept being considered. 

FAR-FIELD MEASUREMENT CONCEPTS 
The predominant error contributors for far-field measurements are 1) 

field nonuniformity due to ground reflection, 2) gain loss due to quadratic 
phase error (near-fbld effects), and extraneous reflections. The National 
Bureau of Standards has investigated error budgets associated with far-field 
measurements [2]. For SPS, an adopted far-field error subbudget is shown in 
Table 2. The large size of an SPS subarray dictates a far-Held eriteria of 
greater than 6 D2/~ to maintain quadratic phase error loss below 0.01 dB. 

Field nonuniformity can be controlled via an elevated range concept 
where the receive antenna null is placed at the midpotnt reflection point as 
depieted in Figure 2. Tradeoff calculations indJ,.:ate the required tower 
heights for ehvated range distances grea.ter than 6 .~\2/~ are not pract1.eal. 
however, consideration for a mountain top to mountain top range wl~h an 
elevation of 600 feet and a measurement r.ange of '7 miles appears very 
attractive. 

Consideration was given to use of a ground reflection range facility. 
Here, transmit and receive tower heights are selected so that the reflection 
from the ground adds in phase to the direct ray path. A negative feature is 
that a relatively large range is required to obtain a sufficiently flat 
amplitude wavefront over the vicinity of the test antenna. Figur'e 3 relates 
the transmit and receive tower heights as a function of range. Under the 
constraint of a minimum and maximum tower height of 20 and 100 feet. 
respectively, and minimum range of 3 miles based on near-field criteria; the 
shaded ar.ea indicates regions where satisfactory operation may be obtained. 
The criteria for a suffiCiently flat amplitude wavefront over the test zone 
is currently under investigation. Initial calculations indicate the 
performance of a 4-mile ground ref1eetion range with receive and transmit 
tower heights of 30 and 70 feet, respectively, provided a wavefront within 
0.1 dB over a 10-meter zone, but only with use of high efficieney absorber 
barricades at the midrange point. 
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POSITIONER CONSIDERATIONS 
The large weight handlblg requirement (2.5 tons minimum)., and small 

angular accuracy requirements, indicate that the positioner is a potential 
problem area based on units currently available. It has been determined that 
the positioner must be able to resolve a sample withi,n 0.0016 degrees 
corresponding to a 19 bil encoder to resolve the beam power within a + 0.04 
dB accuracy. 

A survey was made of available antenna positioners, and is summarized in 
Table 3. The positional accuracy of off-the-shelf positionerp is on the 
order of 0.005 degrees. Available positioner data indicate posi~ioning of 
anything larger than the 10-meter subarray will not be possible based on the 
weight projections. 

The fractional power in the beam based on a uniformly illuminated 10-
meter square aperture is plotted 1.n Figure 4 q Here, it is seen that the main 
beam (+ 0.312 degrees) encompasses approximately 79 percent of the 
transmitted energy. 

Based on these results, a concept was devised providing desired scan 
performance as illustrated in Figure 5. Here, a small angl.,! positioner 
(SMAP) provides very accurate scan capability over a + 1.5 degree sec~or for 
t~e purpose of beam integration. The larger gimbal arrangement provides 
coarse positioning over the complete + 20 degree sector. Positioner 
hardware providing greater angular scan does not currently exist. From the 
plot of fractional beam power (Figure 4) approximately 89% of the total 
radiated power is accounted for within + 1.5° scan; over 99% of the power is 
radiated in the ± 20 degree sector. 

NEAR-FIELD MEASUREMENTS 
Near-field techniques utilize a calibrated pr.obe antenna to measure the 

amplitude and phase of the field close to the antenna aperture. Two 
orthogonally-polarized probes, or. a single linear-polariz.ed probe oriented in 
the vertical and horizontal directions are used, together with a probe 
compensation technique (8, 9] to obtain the complete radiation character­
istics of the antenna under test (AUT). This measurement procedure requires 
an automated facility capable of reading the measured data in digital form 
foe the required computer processing. The planar near-field measurement 
technique is particularly attractive for SPS since the SPS subRrray does not 
have to be moved during the measurement, t.e. only the pr"be antenna is 
moved. 

Recent work at Georgia Tech has demonstrated that accurate antenna 
patterns can be obtained via near-field techniques [4, 5]. The National 
Bureau of Standards has shown that for planar near-field scanning, the near­
field derived patterns are more accurate than far-field measured patterns 
when considering all error sources involved [6]. 

Martin Marietta (3] has implemented an indoor planar near-field 
measurements facility capable of mea~urement of antennas up to 50-foot 
diameter. The benefits of this facility include all weather operation, a 
thermally controlled environment (maintained within 2°F), and an RF anechoic 
environment. RCA has also implemented an indoor planar near-field facility 
for accertance testing of the AN/SPY-l phased array antenna for the AEGIS 
system [10] • 

• This weight estimate is based on using either conventional aluminum 
waveguide (without klystrons) or ultra-thin aluminum waveguide with 
klystrons included. 
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Near-field measurements ~an also be implemented by employing ~ylindrie.l 
or spheri~al probe s~anning. However, in the spheri~al teehnique it i. 
neee •• ary to move the AUT while holding the probe fixed. In the ~ase of SPS, 
spherieal near-field s~anning ~annot be used be~use of the diffieulty of 
glmbaling the heavy subarray in order to s~an over a full sphere. However, 
planar and ~ylindrieal s~anning ~on~epts are appli~able. A planar sean 
eon~ept Is shown in Figure 6 and a ~ylindri~al ~on~ept in Figure 7. Either 
system has potential to be implemented outdoors, however, the effeet. of 
thermal ~hanges on s~anning me~hanism and instrumentation and t~e faet that 
an outdoor fa~ility is subje~t to environmental ~onditions, makes an indoor 
near-field fa~ility far more attra~tive and praetieal. 

Tradeoff studies at Georgia Te~h have suggested that the planar near­
field ~on~ept has potential for array measurements of an SPS me~hani~al 
module (30 square meters). Problem arees to be resolved in~lude eomputer 
requirements and the eomplexity of s~anning over a mu~h larger surfaee with 
aeeeptable pre~ision. A previous study performed by Georgia Te~h for NASA 
indi~ated that the eylindri~al near-field teehnique is attra~tive for the 
measurement of eleetri~ally and physieally large ground station antennas 
[11] • 

Previous studies at Georgia Teeh have eonsidered the ~ost tradeoffs of 
far-field measurements versus a near-field measurement [8, 11]. The results 
of these investigations for both large phased array and large refleetor 
antennas demonstrate that eosts are less for the near-field faeility, and 
that the proje~ted measurement aeeuraey is superior to that whieh ~ould be 
obtained on a high quality far-field antenna measurement range. 

However, the capital investment and operating eosts of the near-field 
facility are funetions of the required measurement aeturaey. For example if 
the on-axis antenna gain is to be determined to within 0.01 dB, the 
measurement probe axial position accuraey must be within 0.1 wavelength, i.e. 
0.048 in~hes for the SPS. Also, the scan width-to-diameter ratio must be at 
least 1.5. Thus, this requirement has a direet cffeet on the meeh&nieal 
design of the near-field measurement system. 

In order to obtain a ~omplete representation of the antenna pattern from 
a planar or cylindrical near-field scan, the field is normally sampled at 1/2 
wavelength intervals along the linear s~an dimension. If the AUT is 
electrically large, the required Fourier transform proeessing ean be~ome 
burdensome. However, it has been shown that the sample spacing ean be 
increased by almost an order of magnitude if only the main-beam and first 
sidelobes are to be defined [4, 111. 

In order to obtain aeeurate polarh:ation information on the antenna 
pattern, the polarization charaeteristies of the measurement probe must be 
carefully ~hara~terized over the maximum possible dynamie range. 'Work at RCA 
[7] has also indi~ated that eareful probe polarization design is neeessary 
too if a very accurate gain determination is required. For instance, 
assuming an SPS antenna polarization ratio of 30 dB, a probe polarization 
ratio of 20 dB will result in a gain measurements error of approximately 0.25 
dB. Thus, a very stringent requirement is placed on probe polarization 
ratio; a requirement of 30 dB, or better, is anticipated. 
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CONCLUSIONS 
Be~ause of the large ele~trieal size of the SPS subarray panels and the 

requirement for high aeeuraey measurements, speeialized measure~nt 
faeilities are required. Most eritieal measurement error sourees have been 
identified for both ~onventional far-field and near-field techniques. 
Although the adopted error budget requires advanees in state-of-the-art of 
mierowave instrumentation, the requirements appear feasible based on 
extrapolation from today's teehnology. 

Additional performanee ana eost tradeoffs need to be eompleted before 
the ehoiee of the preferred measurement teehnique is finalized. 
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TABLE 1 

MEASUREMENTS ERROR BUDGET 

ERROR AlLOWABLE VALUE 
EMOR SOURCE ~ 16 ,B828 aUD~tJ ~ 

ANTEIIIA RANGE FIELD UNlr;;limy 
QUADRATIC PHASE ERROR 
EXTRANEOUS REFLEC- .037 DB TlONS 
STAHDARD GAIN AlITENflA All ADEQUATE GAlli ST/.NIlAAD HAS ;IOT 
UNCERTAINTY YET BEEtI IDEllTIF I ED 

ATPIOSPHERIC EFFECTS REFEREflCE RECEIVER MUST BE USED TO 
NORMALIZE EFfECTS OF ATf'\OSPHERE 

STRUCTURAL! SPS ANTENNA 
ENVIRONMENTAL REGIDITY ISTAB ILITY 

POS IT! ONER ERROR .0111 

WIND LOADI~G WIND LOADINGITHERf'AL CAN lIE COII-
THERMAL TROLlED BY RADM OVER TEST ANTENNA 

TRANSMITTER Al'i'L1TUDE STABILITY PllASE LOCI([!) TECHNIQUES AND T£l!PERATURE 
STABILlZATlOfI MUST YIELD Nt'L1TUDE 
STABILITY OF 0,007 DB 

FREQUENCY STAB I LI TY .01 DB 

'RECEIVER PRECISION AnENUATOR AnENUATOR CALIBRATED TO 0,005 DB 
UflCERTAINTY 
r.iFERENCE INPUT PHASEI • 
AlflLlTUDE ERRORS 
SIGNAL TO 1I0ISE RATIO ,01 DB SIN RATIO 'lUST EXCEED 40 III 

FREQUEtlCY STABILITY 
DYNMI C RAN.GE THROUGH ENVIRD1If"iNmL CONTROL 

DETECTOR CALIBRATION CAlI EXCEED 
0.005 DB 

DETECTOR LINEARITY 
VSWR VSWR I(£PT BELO~ 1.05 

TOTAL RSS •• Q/j DB 

0.25 GU. IU!ference 

r-- --

I All"n. 
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TATILE 2 

ANTENNA RANGE MEASUmmNTS 
ERROR SUR-BUDGET 

ERROR C(MPONINT 

Field Unlforaity 

Quadratic Pha.e Error 

Standard Gain Antenna 
Uncertainty 

Atmospheric Effect. 

VSWR 

Extraneou8 Reflections 

ALLOWABLE VALUE 

0.015 dB 

0.010 dB 

0.020 dB 

0.005 dB 

0.005 dB 

0.025 dB 

COMMENTS 

Haximua a.plitude taper at 
edge of SPS .ubarray 
approx. 0.04 dB 

Require. range ar.ater than 
6 D2/A . 

Gain .tandard need. to be 
developed 

At.aspherlc effect. 
cancelled by reference 

VSWR loss calibrated out 

Extraneous reflection. 
-57 dB down 

ISS Subtotal 0.037 dB 
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L 
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Figure 5. Antenna Positioner Mechanism V"\ 
For Far-Field Patterm Measuremen.ts·, 
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TABLE J 

sm1MARY OF POSITIONER PEltFORMANCE 

Scientific Haximu. Estimated I 

*** Atlanta Moment Moment Maximum Subarray Wt. Cost 
Series"'* (Kft-lb) Arm* (ft) Klbs Tons Elev./Az. Sf'W' Total 

85 150 9.5 15.8 7.9 $ 440K $400K $ 840K 

45 75 7.5 10 5 $111K l$lOO.K $21lK 

* Elevation over azimuth plus SMAP configuration .. 

** NOTE: the series 85 has a maximum vertical load limit of 25 tons • 

••• NoveDber 1979 estimates. 
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ABSTRACT 

The hiat'3ry or the development of the rectenna is first reviewed through its early conceptual and 
developmental phues in which the Air Force and Raytheon Company were primarily involved. The intermediate 
period or development which lnvolved NASA, Jet Propulsion Laboratory, and Raytheon is then reviewed. SOllie 
selective aspects or the current SPS rectenna development are examined. 

Introduction 

The chairman or this session belleves that the 
perspective given by a history of the development of 
the rectenna would be of value to thos~ now becoming 
involved with the application and further development 
of the rectenna for the SPS. He has askad me to 
present this history because he is aware that I hlive 
been closely and continu(lusly involved with the 
development of the rectenna since its inception in 1963. 

The concept and development of the re<:tenna 
arose in response to the need for a device that could 
be attached to a high altitude atmospheric platform and 
absorb and rectify microwave power f::-om a microwave 
beam pointed at the vehicle. After the initial develop­
mant of the rectenna under Raythoon and Air Force 
sponsorship for this purpose the rer.:~enna development 
was carried on further and in a different direction by 
the author himself. In 1968. NASA became interested 
in the rectenna and its development in the context of 
transferring power from one space vehicle to anot~er. 
This was followed by NASAls interest in the device 
for the receiving end of a system that would transfer 
electrical power from geosYl'.chronous orbit to the earth. 

Throughout this time period of 17 years. the 
development of the l"ectenna has been heavily disci­
plined by the variou!; applications for which it has 
been considered. The result has bcen the accumulation 
of a large amount t\~ experience which covers many 
facets of interest. including electrical design and 
performance. various physical formats. methods for 
accurate efficiency measurement and VII,lldation. life 
test data. and other items. Its development has also 
been characterized by contributions from many individ­
uals whose involvement has been in two different areas. 
The first area is related to technical contributions. The 
sacond area is related to sponsorship. The develop­
ment of the rectenna could not have proceeded very 
far without the encouragement and support of individ­
uals within and outside the I!:overnll'lent who have 
understood the significance ;;\' free space power trans­
mission by microwaves and the relevance of the 
rectenna development to this concept. 

In presenting this history the author is h'eating 
the early conceptual and developmental phase as an 
interaction between many technological forces and 
developments, and people, which is the true nature of 
history. The history of the intennediate period is 
identified with the work supported by MSFC, JPL, 
LeRC and that was Ifu'gely carried out by Raytheon. 
It is presented in a more summarized fashion with the 

presentation focused on technological improvements and 
refinements. A final section is devoted to what might 
be considered as tec~lnological forecasting Which is 
a projection of the past history combined with the 
subjective view or the author as to the impact or 
current and futUre technological and SOCiological events. 

Early History. or the Recterlna 

The early developmf!nt of the rectenna must be 
examined in the context that its conception and 
development grew out of the needs for a satisractory 
receiving terminal 1'01' a microwave power transmission 
system. In this context W~\ must take into account 
the ractors which gave rise to an interest in the 
concept '\f microwave power transmiBsion itself. 

The first serious thought about power transmission 
by microwaves grew out 01 the development of 
microwaves for radar in which power was concentrated 
in relatively narrow beams as contrasted to the 
"broadcast" mode associated with low frequency radio. 
However. the e16ment that really gave substance to the 
concept !lnd distinguished it rrom the situation that 
eldsted when Hertz first demonstrated wireless power 
transmission with narrow beams using parabolic 
reI lector .. and spark gap generators. were newly 
developed electron tubes that could generate relatively 
large amounts of power at high efficiencies. 

Still, there WIlS no active postwar activity on 
microwave power transmission until it became recognized 
that with new approaches microwave generators could 
be developed to produce levels of OW microwave power 
about 100 times greater than from generators then 
available. 1. 2.3 Concurrent with this recognition was 
the inference that one of the potential useful 
applications of microwave power transmission would be 
microwave powered high altitude atmospheric platforms 
for communication and surveillance purposes. 

This recognition stimulated Raytheon, under the 
g,uidance of Ivan Getting, Vice President for 
Engineering. to perform an in-depth study of such a 
platform in a helicopter format and to make a proposal 
to the Department of Defense in 1959 to develop such 
a vehicle. 4 The reason why this is important in the 
development of the rectenna is that for the first time 
it became widely recognized that there was no 
efficient means of converting the microwave back into 
DC 01' low frequency electrical power at the receiving 
end of the system. This stimulated the Air Force to 
award several contracts to study this problem. One 
of these investigations that was to become a key ele­
ment in the development of the rectenna was awarded 
to Purdue Uni versity and involved the use of 



f'mictmd 'tor diodes Ih pOl\' l' I' t i iel' 5 

\\ hill· thi<. d v lopol nt at Purdu IVU PI'OC ding. 
t ill' dt!\elopl"ient of .,up I' power m crowav tub h d 
1J(,(!11 "I'u'ted UI Hnythcon und r t h spon ol'shlp of 
the UPI IlI'tlllent of 0 f n e nd had achiev d IV pow I' 

tJutp t ., of 0\' I' 00 kl\' t lin effici ncy xc ding 70\ 
ti t I I t l'(,<PWIlCY of 3. 0 Gll z, H cognizing t h pot ntial 
upplica ticJIl to fre sp c pow I' transmission th 
II Ih 'H' hud p 'rsuncled Hlly th on Company to up port 
t he <I v lopment of 1\ clo.,e pac d thermionic diod a 
II I' 'ctifie r and th d monstr tion of a cO'llpl t mic ro-
WIlV pow I' trunmis ion system. 6 Such d mon-
" trillion u.,ing t he close s paced th r mionic olode and 
th phy&icnl nl' ron g m n t of Figur I wos s ucce fully 
made in !\l ny 1963 wi t h II pow I' output of 100 watts 
which was used to drive a 0 'motor,l mong those 
witnebsin g t he demons trat ion was John 0 ul'g s , 
Chie Sci ntis t III the Home Air Development C nter. 
who snw the pOI nli nl of a microwove pow I' d ntrno­
spheric platfol'm for line of s ight communication over 
long d ls t unces, 

Figure I. Fh's t exp ('imen t in t be efficien t trun fer 
of pOWCl' by mans of mic rowavcs at t he ~ pencer 
Labor ntory of Hay theon Compan in ~ I ay 1963, In this 
xp t'im nt micl,,.wav power gen l otcd from a mag-

n tl'OIl WII S t I'nn,,; 1'1' d 5, 48 meters and t h n converted 
with 0 POIV I' wit l) 'Ifl ove l'a il efficiency of 16%, A 
ron ventionul py rn lida l hOl'n lVas used to coli ct the 
cncl'gy a t th I' ceiving nd an d a c lose- spaced ther­
miuni' d!ode was used to C(:"nverl the microwaves into 
U pOlVer of 100 lValt s . The coil c lion an d 
I'ec tifi cation a rran gement IVa dir clive and not ver y 

fficien t , 

To encoul'llge th c hief scientis t 's interes t the 
uut hor pl'ivatel} con truct d a sm ull helicoptel' whose 
l'otQ[' IVa ' d r iven by a conventional lec tric dl'ill motor 
upplied with power by a cable and demons t ra t d t hat 

it could arTY aloft on o f th e c lo ly paced ther­
mioni c diodes. Thi demonstra tion wa a majol' fActor 
ill m() li villing th chief scien t is t to se t II ide 

it h d b com viden t t h t t h 
d in Fi ure 1 had riou fl aw u e 

pow red platform. Th horn 
collecting el m nt wa much too directive fo r th 

xpected roll and pitch of vehicl and it oil lion 
effic oncy wa I 0 poor, Th close- p ced th l'mi nic 
diode rectlfi l' I 0 proved to b a very short lived 
devic . It wa t thl point that the author m t by 
chance a colleg friend. Thoma Jone . in th Do ton 
irport, Jon had become the heed of th EI c tricol 

Engineering Department at Purdue niver Ity nd 
told the author about. th work going on th re on the 
use of semiconductor diodes as microwave pow l' 
rectifiers, Th author immediately mad a trip to 
Purdu and met Ro coe George. who had been carrving 
out most of th re earch activity. Profe SOl' G rg 
has b en using dense arrays of closely s paced diodes 
within an xpanded waveguide and had achiev d as 
much as 40 watt s of DC power output from microwav s 
in the 2 to a OHz range of frequency with respect able 
efficiencies. Although he had not made any 
measurements with free space radiation. he had shown 
how the microwave semiconductor diode. previ usly 
ignored as a power rectifier because of its very low 
individual power handling capability. coul(i, b combined 
in large numbers to produce reasonable amounts of DC 
power. In the absense of any other successfully 
developed microwave power rectifier the author WAS 
obviously drawn to the semiconductor diode approach, 
However. the use 0 George's dense arrays with:n n 
waveguide attached to a receiving horn would not 
sol ve the low collection efficiency and directivity of 
the receiving horn itself. 

It was from this dilemma that the conc pt of the 
rectenna arose. The proposed solution was to t ake the 
individual full wave rectifiers out of the waveguide . 
attach them to half wave dipoles. and put a ref1ecting 
plane behind them. Unce conceived 9 the development 
of the rectenna. driven by its need for the proposed 
microwave powered helicopter. proceeded rapidly, 
Professor George was employed as a consultant to 
proceed with this approach and to make meas urement s 
on the characte.'\stics of such a device. 

With the hrrang\'!menl of 28 rectennfl elements 
shown in part in Figure 2 a power of 4 watt s of DC 
power at an estimated collection and rectification 
efficienr.\· of 50% and a power of 7 watt s at on es timated 
efficiend~ of 40% were achieved. 10 Of primary impor­
tance was the highly non - directive nature of the 
aperture (Figure 3) that had been anticipated bl!cause 
of the termination of each dipole antenna in a r ec tifier 
which effectively isolated the elements from each other 
in a microwave impedance sense except for thc 
secondary effect of the mutual coupling of the dipoles , 
This feature of the rectenna that dis tinguishes it from 
the phased array antenna is of the greates t practical 
importance. 

Although this achievement may be considered as 
the first major milestone in rectenna development the 
very small power handling capacity of the diod s 
limited the power outp ut per unit area to val ues un ­
suitable for a helicopter experiment. For t he 
helicopter experiment George suggested vertical s trings 
of diodes separated by approximately a half wavelen gth • 
but t he power density was still much too low, Placed 
close to each other in a plane to obtain the necessa r y 
power density. the impedance of the diode plane wa s 
very low and most of the power was ref1ec ted, The 
author solved thi s problem by placing a ma tc hi ng 



n twork In front of It con I tirol' . f plan al'ray of 
rod sp c d t an appropriat UI t nc from th pi no 
of th dlod arr y. Th fin I h I copter r ctenna is 
s hown in Flgur 4. It was comprl d of 4480 I 2G 
diode. nd had a m ximum power output of 270 
w tt which w mor th n enough to power th 
h \lcopt r rotor. Th weight of the err y w s about 
thre pound or about II pound per kilowatt of DC 
output .11.12 

Figure 2. The first rectenna. Conceived at Raytheon 
Compmy in 1963. it Wit built and tested by R. George 
of Purdue University. Composed of 28 half-wave di­
poles spaced one- half wave- length apart. each dipole 
tenninated in a bridge- type rectifier made from four 
IN 82G point- contact semi-conductor diodes. A re­
flecting surface consisting of a sheet of aluminum was 
placed one- quarter wavelength behind the array. 

Figure 3. Directivity of the Half- Wave Dipole Array 
Shown in Figure 2. Directivity was essentially the 
same about both axes of rotation. Array has slightly 
less directivity than single half- wave dipole. 

Figure 4. sp cial rect nnn mad for the fi rst 
micl'Owav - powered h licopter . The arr ay is 0.6 rleter 
sq uat· and cont ains ~480 I 820 point- contact r ctifipr 
diodes. Maximum DC power output was 270 watts. 

A microwave power helicorter flight with this 
strln g t YJ: _ rectenna was made on July 1. 1964 prior 
to the s tart of work effort on ar. Air Forc contract. 
to demons trate continuous flight for ten hours . The 
Air Force contract was the basis for needed r efinements 
and s v ral notable demonstrations. including the 11 12 
specified ten hour con tin uous flight of the vehicle. • 
Figure 5 shows the helicopter in flight. It was neces­
sary. of course. to use laterally constraining tethers to 
keep the helicopter on t he microwave b am but this 
limitation was later removed by a s tudy and experimen tai 
confirmation that the microwAv beam could be used 
successfully as a position reference In a cont rol system 
in an automated helicopter which would keep itself 
positioned over the center of t he beam. 12 

Figure 5 . Microwave powered helicopter in flight 18.28 
meters above a transmitting Antenna. The receiving 
array for collecting the microwave power and converting 
it to DC power was made up of several thousand point 
contact silicon diodes . DC power level was app roxi ­
mately 200 watts. The date of the demonstration 
was October 1964. 



c lop m nt o f t he trin t yp r ec t nna 
,) is of mOl'e than hi t orical s ignificance 

IJ ca '> it r prescn t !. a n approach in \'I rUch la r ge 
numb ' 1'<;' of l' t ifyin g d iod scan b ' P ~' ad ove r a 
"ur luc to Jlccom modate high pow l' d nsi t y in fl ux 
of OIle l'owll vC r lldill t ion or to op rat e in t h vacu um of 
!'pac' wh 1'0 i t may b desi r .:! t o d ec r ase to a mini­
mum t h mo!'!' I' qui I' d to tr lln s port heat from the 
diad' ,>o urc !, t o t he heat s inks. in a ll probabili t y 
jlll'>sivc rodia tor!., Th curl' n t s t atus of mic rowave 
diod ,!, ( 1979 t hnology) is s uch as tn minimize the 
l1e d fa I' t he "s t rin g typ .. or equivalent a rrays , 1\los t 
lI(JpliclJ tion!' (' u r ren t ly envisoged do not call for 
:ncidcn t mic rowave rodia t ion of II dens ity Jevel beyond 
\ h,l t III ha lf wave di pol array with the g r eatl y 
imp l'o ved diodes can handle, 

Q-__ ~ ____ ~ __ ~ ____ ~ __ -oLO.O 

Fi g ul'o 6, Schema tic Dr awin g Showin g Arran gemen t of 
Dipo les fi nd I n l!~rcon n cc tion s within a Oio(\e ~Iodule 
us ed in He licopte r I'ectenna, 

As the nrs t ai rborne vehicle to s t ay a loft from 
powe r d r ived from :my kind of an electl'omagnetic 
bea m. it xcite d considerable inter.()s t, A demons1 r a tion 
to the mass medill in October 1964 res ulted in con­
s ldel'able exposure both in the press and on TV, 
Proba bly as u res ult of this • • he a uthor received a 
I tt e r fmm a rep r esent a tiv e of Hewlett Packa rd 
Associates ~ n e losin g some newly developed Schottky 
bat' r i I' diodes whic h we re indica ted to be a s ubstantia l 
im p l'ovelllen t over the point cont act diodes th a t had 
been used , Tes t s made on the individual diodes 
(T y p 2900) ir. d ieated tha t indeed they were much more 

ffi c ien t an :i would have more power handlin g cap­
I1 bili t y , This coml:.iined wit h their s maller size made 
t hem of a g l'eat deal of pote n tial ir, terest. 

nrOl' t u na te ly , th e Ail' Force elec ted not to 
fU l' t h I' deve lop the mic rowa ve powet'ed pla tform, It 
di d , how vel' , s up port the s ueeess fu ~ development and 
d emons tra tion of a helicopter which would a utom atica lly 
pos it ion it se lf over the cen te r o f a mic row a ve beam,1 2 

In th tim e period f rom 1965 until 1970 there was 
no el il'ec t s upport of rectenna de velopment from either 
gov ' I'nment or industry, However. a substantial 
amou nt of devclopment work on the rcctenna was 
co n ied out by the a uUlor using personal fund s and 
t ime du r ing th c 1967 to 1968 time pe r iod, Pus work 
WI1S p r im ol' ily ,limed 'It incorpor a tin g t he Improved 
' c hott ky - barr ic r d iodes into a v r y li g ht weig ht 
I' c tcnnn s tr uct ure t hA t r e verted bACk to the for mat o f 
hn ll' wave dipoles tel'minated in a full - b rid ge r<:!ctifier, 
T he I'cs ultin g a rray is shown in Fi gu re 7, The a r ray . 
WIt h II mus s of onl y 20 g r ams. p roduced 20 watt s of 
pOlVcr ou tpu t f(. r an imp rov emen t in the power to mass 

l'ut io 0 a rec t nna b a fac tor of five, H \ vel', t h 
I' c tenna of Figur 7 lY as a lso Important in t ha t it IVIl 

U a d IT,onstratio n o f mic rowllve p ->wer trll n -
mi s ion t h t may ha v b e n an imPort ant faclm' in t h 
d c is ion by ~ I FC .tn continue with th develop ment of 
mic l'owa v pOW Cl' t ran mi s ion a nd the r c t e nn a , 

Figu r e 7, Greot1y improved rectenna made in 1968 
from imp ro ved diodes (HP2900) which became 
cOlllm I'cially available in 1965, The 0,3 meter squarc 
s tr uc t ur e wei ghed 20 grams and delivered 20 walt s of 
o out put power, 

De ve lopmc n t U n.d::::::e.:..r_M=S:!.F~C::......:x~~~~ 

T h interest in the rectenna a t MS FC is believed 
to ha ve gro lV n out of an interest of Associate 
Oil' CtOl' EI' ncs t Stuhlinger in some kind of free s iJacc 
po wc r transmission within a s pace based community 
t hat \~o uld conta in a collection of physically se parated 
satellites, A country wide s urvey of technical 
ujJprouches to this problem made by William Robin son 
o f ~ ISFC iden tified the work that h ad been done on 
microw ave power trans mis sion at Raytheon , At his 
and Dr, S tuhlin ge r' s s uggestion a denlon s tra tion was 
given to Dr, We rner von Bra un and his entire s t a ff. 
In the kin d of demon s tration that would probably not 
be pe l'missible today the author set up a three foot 
pa r abolic l'eflector at one end of the lon g t able as til t! 
source of a microwave beam of about 100 watts , At 
the other end of the table the author held the r ectenna 
of Fi g ure 7 now attached to a s mall motor with a s mall 
propellor on it. The microwave beam was used to 
s upply power to the motor and the author would 
interpose his body between the source and the r ectcnn a 
to demons trate tha t the power was coming from the 
microw a ve bea m, 

Interes t within MSFC res ulted in settin g up a 
small in - house facility for labora to!'y effort ur:cl e r 
IV, J, Robinson and a contract wit h Rayt heon for a 
s ystem s t u dy in 1969, Initia lly the sys tem s tudy did 
not in vol ve any s upportive technology developmen t, 
It 5 00:1 became evident . however. that a ba rrier to 
any furthe r interes t a t MSFC in microwa ve power 
tran s mission lay in demons tra!in g a minim al overall 
sys tem effic iency , The contract was has tily amended 
to permit Ray theon to cons truct the hardw ar e for a n 
ove r fl ll effi ciency mcas urement to be made a t ~ 1 5 FC , 

The s ys tem . s hown in Figure 8 , was has ti..ty put 
toge t her a nd demon s trated a t MSFC in September 
197 0, ~ he sp e~ified minimal overall effi ciency of , 19% 
was achIeved wit h a meas ured efficien cy of 26 %,1 3 
T his d emon stra tion foc us ed interes t u pon fu rthe r 
in c l'cag in g t he e fficiency o f the rect enn o a nd o f the 



overall system. Over the next four years there was a 
succession of improvements in overall system efficiency. 
primarily because of improvements ill both the col- 1 
lection and rectification efficiency of the rectenna. 5 
The focus in this time period was upon the development 
C'f the to!chnology rather than upon an application. 
However. it is believed that the emergence of the solar 
power satellite concept in the 1968 to 1974 time frame 
and its need for high efficiency exerted considerable 
influence upon tho! drive for better efficiency from all 
perts of the microwave power transmission system. 

Figure 8. Test set-up of microwave power transmission 
system at Marshall Space Flight Center in September 
1970. The magnetron which converts DC power at 
2450 MHz is mounted on the waveguide input to the 
pyramidal horn transmitting antenna. The rectenna 
in the background intercepts most of the transmitted 
power and converts it to DC power. Ratio of DC power 
out of rectenna to the rf power into the horn was 
40.8%. Overall DC-to- DC efficiency was 26.5%. 

ThE: MSFC demon at ration of Septcmbel' 1970 
indicated e number of deficiencies in the system 
including a rectenna collection efficiency of only 74% 
versus t: '! theoretical maximum of 100%. This low 
collection lfficiency was associated with imp"Oper 
spacing of the rectenna elements from each other in 
the rectenna array. The elements were therefore 
spaced more closely to cach other in a hexagonal 
fcrmat. (Figure 9) and. in addition. the DC output of 
each rectenna element was terminated in a sepal'ate 
resistor to obtain a much greater range of data on the 
behavior of the rectenna. With the changP.d geometry 
the collection efficiency was increased to about 93%. 

The decision to terminate each rectenna element in 
a separate resistor involved a change in the manner in 
which the DC power was collected and instrumented. 
The output of each rectenna element was brought back 
through the reflector plane where it could be directly 
monitored with DC meters. This arrangement provided 
such an enhanced capability to st udy and understand 
the performance of the rectenna that it was retained in 
the further development of it (See Figure 10 for an 
adaptation to a later MS FC rectenna.) T he construction 
however is not economical and is not recommended for 
most applications. 

It was during this period that an arrangement to 
separate the measurement of the collection efficiency 
from the rectification efficiency of the rectenna was 
developed. The individual rectenn8 element was placed 

at the end of a section of waveguide that was expanded 
into a small t.orn with an aperture of about 100 square 
centimeters. A metallic reflecting plane was placed 
behind the rectenna element and ·this plane also was 
used to seal the end of the waveguide so that no 
microwave power could leave the closed system. This 
made it possible to accurlltely measure the DC output 
power and the microwavo power absorbed by the 
element and thus to accurately measure an efficiency. 
defined here as : ~ a rectification efficiency. S uc h an 
efficiency. of course. includes any circuit losses in 
the rectenna element itself. The test fixture environ ­
ment in which the rectenna element was placed s imulated 
to a first approximation the environment of the s ur ­
rounding rectenna into which the rectenna element 
would eventually be placed. This test arran gemept 
was a key factor in reducing costs for the development 
of the rectenna. 

Figure 9. Close up view of rectenna used in measure­
ments of overall system (DC to DC) efficiency. There 
were 199 elements in a four foot diameter hexagonal 
array. Rectenna was illuminated with a near gaussian 
shaped beam with a power density at the center about 
forty times that at the edges. The probe in front is 
used to measure the standing wave pattern in space. 
Probe measurements indicated that after suitable ad­
justment of DC load reswtance and spacing of elements 
from the reflecting plane a reflection of less than 1 % 
could be obtained. indicating an absorption efficiency 
approaching 100~. Although overall rectenna efficiency 
is generally difficult to measure beca use of ed ge 
effects and difficulty of measuring power density in 
the beam the unique aspects of the test facility made 
it possible to estimate overall capture and rectification 
efficiency of 82% for the rectenna within a ±2% error. 

The collection efficiency of the rectenna has 
always been difficult to measure. The termination of 
a large aperture horn with a large number of rectenna 
elements. an arrangement which would seem to logically 
follow the test arrangement for a single element. loses 
its validity for collection efficiency because many modes 
are set up within the horn if there is any dissymmetry 
~t all in the rectenna arrangement. Most of the power 
In these modes gets absorbed in the elements them­
selves and very ilttle flows back into the throat of the 
horn and into the waveguide where any measurement 
of reflected power could be made. The best way to 
measure collection efficiency is to measure the standing 
wsve pattern directly in front of the center of freely 



cxposcd rec t en n a of s ufficient area to mlnlmlze dif­
frac tion effec t s from the edge. The measurement is 
made more valid if the impinging beam has a gaussian 
dis trib ution . the reflection factor is small and the re­
flected wove a lso assumed to be gaussian. These 
conditions pre vail in the arrangement of fo·igure 11. 
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Figure 10. Sketch of the Marshall Space Flight Center 
rectenna which was constructed in spring of 1974. 
C ul.away section of rectenna element shows the two 
s ection input low pass filter. 1 he diode. and a com­
bination tuning element and by - pass capacitor. 

Because the diode recti~ler is such an important 
element in the collectio!l anc, rectification process. a 
search for diodes which wou~d improve the efficiency 
and power handling capability of the rectenna has been 
II con tin uing procedure. In 19'j). Wes Mathei suggested 
that the Gallium Arsenide Schottky- barrier diode that 
had reached an advanced state of development for 
lmpatt devices might be a very good power r,Ij;tifier 
and provided a number of diodes for testing. Thes!! 
devices were indeed much better. Their revolutionary 
behavior in terms of higher efficiency and much greater 
power handling capability rapidly became the basis for 
the planning of improved rectenna performance. 

The knowledge of the superior performance of this 
device was coincident with the advancement of the 
concept of the Satellite Solar Power Station by Dr. 
Glaser of the A.D. Little Co.17 The earliest investi­
gation of a rectenna design for this concept indicated 
that the economics of its construction would be crucial 
and that mechanical and electrical simplicity of the 
collection and rectification circuitry would be of para­
mount importance. This factor. combined with the 
fact that no harmonic filters had existed in previous 
I'cctenna element designs but would be necessary in 
any I.lcceptable microwave power transmission system. 
motivated a completely new direction of rectenna 
element development. This new direction was the 
development of a rectenna element employing a single 
diode in a half- wave rectifier configuration with wave 
filters to Attenuate the radiation of harmonics and to 
store energy for the rectitT~dtion process. 

The construction of such a rectenna element and 
it s in sertion into a DC bus collection system is shown 
in Figure 10. This rectenna element was used in the 
: s t phase of the MSFC sponsored work at R:lytheon 
to construct a rectenna 1.21 meters in diameter which 
was ill uminated by a gaussian beam horn (Figure 9). 
The combined collection and rectification efficiency of 
thi s rectenn a wus measured at 82 ± 2%. The 
overall DC to DC efficiency was rneasured at 48%. 

Figure 11. Photo of 24.5 Square Meter Rectenna 
erected in 1975 at the Venus Site of the Goldstone 
Facility of the Jet Propulsion Labor'atory .. Power was 
transferred by microwave baam over a distance of 1.6 
km and converted into over 30 kW of cw power which 
was dissipated in lamp and resistive load. Of the 
microwave power impinging upon the rectenna. over 
82% wus converted into DC power. The rectenna 
consisted of 17 subarrays. each of which was instru­
mented separately for efficiency and power output 
meilsurements. Each rectenna housed 270 rectenna 
elements. each consisting of a half- wave dipole. an 
input filter section. and a Schottky-barrier diode 
rectifier and rectification circuit. The DC outputs of 
the rectenna .,1ements WE're combined in a series­
purallel arrangement that produced up to 200 volts 
across t he output load. Each subarray was protected 
by meuns of a ,elf-resetting crowbar in the event of 
excessi ve incident power or load malfunction. Each 
diode was self-fused to clear it from tlhort-circuiting 
the array in the event of a diode fallure. 

Development Under JPL Sponsorship 

By 1973 the solar power satellite concept (then 
the SSPS) had become an important enough consi.!;::-..a ­
tion to interest t he Office of Applications within NASA 
to support the development 01 the microwave power 
transmiss ion portion of the system. Although it would 
have been logical to continue the effort l t MSFC be­
cause of their initial involvement. MSFC indicated that 
the subj .~ct matter was outside of their maln interests 
and that they did not wish to pursue its deveiopment 
further. As a res ult both JPL and LeRC became 
involved in efforts that involved the demonstration and 
lurther development of the rectenna. and the rectenna 
became incl'ea!'; in giy identified with the SPS. 

. The JPL activity was involved with the demonstra-
tion of the transfer of power over a dist ance of one 
mile and at a DC p<;>wer level of 30 kilowatt : . nearly 
two orders of magmtude greater than hr1.been accom­
plis hed in the laboratory. (Figure 11) .!1 This work 
effort was carried out in the 1974 to 1975 time period 
and has undoubte dly been the most imp:."tant contri ­
bution to the establis hment of confide!lce within the 
NASA and ae rospace community in the feasibility of 
microwave powe r transmission. Although the emphasis 



wu upon demonstration rather than technology develop' 
ment It did provide lIOIDe opportunity lor additional 
dewlopment. those .spects Involving the Interface with 
the unlut load on the output aide of the array. life test 
data and Improvement I.nd certllication of overall 
efficiency. An unfortunate aspect of the demonstration 
wu that for risk minimlzinr purposes the uneconomic 
thHe level construction of dipoles. ret"iecUng plane. 
DC power and busaing wu retained. However. later 
work with LeRC featured the development and testing 
of the economic two level construction. 

From the rectenna development point of view the 
.JPL activity Included the following acoomplishments: 

• Demonstrated the parallel-series connection of the 
DC output power from parallel rows of rectenna 
elements. 

• Developed plated-heat-sink GaAs Schottky-barrier 
diodes with carefully controlled thicltneas of 
epitaxial layer to maximize efficiency. 

e Demonstrated "fail-safe" nature of the diodes. If 
a diode should short out the adjacent parallel 
connected diodes force enough current through 
the ".>ackage of the shorted diode to burn out a 
one mil diameter wire which acts as a fuse in the 
package. 

e Demonstrated the value of crowbars in protecting 
diodes from load faults and from excessive incident 
microwave power but also the desirability of 
complementing them with capacitors placed across 
n.;! output terminals of the diode array to absorb 
short duration spik.es of output power from any 
cause. 

e A mechanical design of the rectenna element itself 
that was much improved over the olement developed 
under MSFC sponsorship. 

e The initiating of life test on 199 rectenna elements 
and diodes arranged in groups that were exposed 
to different values of incident microwave power. 

e Improved the setup in Raytheon's laboratory to 
demonstrate high overall (DC to DC) system 
efficiency and then provided certification of the 
data upon which the calculation of an overall 
efficiency of 54% was based. 20 The rectenna that 
was used in this experiment is shown in Figure 
9. The overall collection and rectification 
efficiency of the rectenna was found to be 82 ± 2% 
in this experiment. 

Development Under LeRC Sponsorship 

Lewis Research Center carried out two activities 
for the Office of Applications having to do with the 
rectenna. One, carried out in 1974 and 1975 was a 
broad study of the entire microwa1,'e power transmission 
system for the SPS. Various approaches to the col­
lection and rectification problem were investigated. 
Investigation included an examination of all rectifier 
approaches and all receiving antenna approaches. Tile 
reetenna approach was found to be unique in the 
solution of this problem .21 

The other LeRC activity dealt exclusively with the 
improvement of the rectennaj2 and made important 
contributions as follows; 

Improvements in Efficiency 

Improvements in rectenna element efficiencies to 
values slightly in excess of 90% were achieved. These 

efficiencies were with DC outputs in excess of 4 watta. 
which is above that currently planned for the SPS. 
However, notable improvements were made in efficiency 
at low power densities with improved diodes and hilber 
impedance rectenna elements. T he results aN ahown 
in Figure 12. Further. directions in which to obt.n 
higher efficiency. particularly at the lower power 
levels, were discovered. 
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Figure 12. A summary of the efficiencies achieved with 
new diode in various new rectenna configurations 88 
a function of power level, compe.~d with performance 
of a standard element used in the JPL Goldstone 
re~tenna and shown as the lower curve. 

Improvement in Confidence In CoUection and 
Rectification Efficiency Measurements 

A considerable improvement in the confidence of 
efficiency measurements on the rectenna element WBB 
established by equating the microwave power absorbed 
by the rectenna element to the sum of the DC power 
out.put, the losses measured in the diode. and the 
circuit losses as measured experimentallY and by 
computer simulation. The losses in the diode were 
meBBured by a unique substitution method developed 
at Raytheon and explained in reference 22. The 
balancing of microwave power input and total power 
output. as shown in Figure 13, is a good check on the 
measurement of microwave power input which Is trace­
able to a 100 milliwatt microwllve standard at the 
Bureau of Standards through a secondary standard 
sent there for calibration, and a calibrated 20 dB 
directional coupler with which the secondary standard 
is applied to the test set for the rectenoa element. 

Mathematical Modeling and Computer Simulation 

The mathematical modeling of the rectenna element 
and simulating its performance on a computer was 
successfuUy carried out. Although other cCftputer 
modeling had been successfully c,arried out, this was 
the first time that the computer program modeling was 
for the same rectenna element on which accurate 
experimental measurements of circulI', and diode losses 
had been made. 

The computer simulation generally gave results 
that confirmed the experimental results, as may be 
seen from an examination of Figure 13. but upon 
occasion indicated differences which have led to 
investigations to resolve the differences. For example. 
the diode losses were first computed on the basis of 
the theoretical design of the diode and found to be 
less than those measured, It WBB found that the 
forward voltage drop as measured by DC voltage 
measurements was greater than that predicted from 
theory leading to the conclusion that the ohmic contact 
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Is not purely ohmic but retain •• ome Schottky barrier 
charaClterietic8 which contribute to the volta .. drop. 
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Figure 13. The DC power output. losses in the 
microwave diode. and losses in the input filter circuit 
are shown as a percentage of the microwave power 
absorbed by the rectenna element as a function of 
incident microwave power level. The sum of all of 
these is then compared with the absorbed microwave 
power. Comparison with computer simulation 
computations is also shown. 

A typical set of d.iode losses as obtained from the 
computer simulation may be of interest. Total losses 
were 13.03% of the input power of which 2.08% was 
skin loss. 2.52% loss in the diode series resistance 
in the forward conduction period, 1. 23% loss in the non­
conducting portion of the cycle, and 7.22% loss in the 
Schottky junction itself. The total losses observed 
experimentally were 12.8%, an agreement that is 
probably better than can be justified. 

Development of Improved Diodes 

The power loss represented by the voltage drop 
in the Schottky barrier is an important loss in the 
diode. and it is the major one when the operating 
power level is low, even when the impedance level of 
the circuit is raised to minimize these losses. OaAs 
Schottky barrier diodes commonly use platinum as !l 
barrier metal because it behaves better than other 
materials for use of the diode as an Impatt device. 
Tungsten has a lower work function that platinum and 
would be preferable in a rectenna element. Such 
diodes were developed and indeed found to have lower 
loss and to be ml)re suitable for rectenna element 
appUcation. 

Suppress,ion of Harmonic Energy 

A means of reducing harmonic energy radiated 
from the dipole antenna was investigated. A shorted 
Une • w.'1velength long placed across the terminals of 
the dipoll1 appears as an open circuit to the funda­
mental but as a short cir(:uit to the second harmonic. 
The power in the second harmonic is therefore re­
flected back into the rectenna element. It was found 
that this technique will reduce the second harmonic 
level by as much as 25 dB but the impact of the 

harmonic reneeUon upon the overaD efficiency need. 
more evaluation. The technique can be incorporated 
with no additional cost into the reetenna element in the 
two-plane format. The third harmonic ma', be treated 
in a similar fashion but it is necessary to compUcate 
the physi~r format of the rectenna element to incor­
porate it. 

Development of a Rectenna DeSist that is Both 
Environmentally Sound and is S ted to Low eost 
High Speed Production 

The development of basic technology for the 
rectenna for the full scale SPS is well advanced, but 
the adaptation of this basic technology to a rectenna 
that is environmentally sound and that can be made 
at low cost in large volume production WIlS recognized 
as an area of special study. Effort on this' part of 
the program resulted in the outUne of a mechanic~ 
design based upon the two-plane rectenna system 111 
which all of the important elements of the rectenna, 
including the bussing of DC power, are carried out 
in the foreplane. This foreplane is ahown schematically 
in Figure 14. In effect this design reverts back to 
some of the earliest rectennas but with gr.,atly 
improved components I\nd better understanding. A 
mechanical deaign of the entire rectenna coupled with 
the fabrication and electrical testing of a portion of 
the foreplane was carried out. The overall mechanical 
design is shown in Figure 15 while the electrically 
operative foreplane portion is shown in Figure 16. 

HALF-WAVE DIPOLE COLLECTING BUS 

Figure 14. Interconnection arrangement of half-wave 
dipoles, wave filters, rectifier circuits, and collecting 
buses in the foreplane of a two-plane rectenna system. 

VERTICAL 
SUPPORT 

DC 
POWER 

BUS --I-llDlh 

Figure 15. Proposed design of Rectenna motivated by 
environmental protection and cost considerations. In 
this design the environmental shield becomes an 
important load-bearing member of the structural design. 

The foreplane shown in Figure 16 was thoroughly 
evaluated for performance. A special arrangement made 
it possible to test each of the five foreplane elements 
in the single rectenna element test fixture whOe all 
five remained within the foreplane assembly. The 
average efficiency of the elements was 88%. To deter­
mine its compatibility within a large array of elements 
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the foreplane of figure 16 was in serted into the 199 
e lement array shown in figl're 17. A careful c~eck 
lVa ~ made on any p.ffeet it might have had on t lJe 
performance of the rectenna as a whole, by means of 
reflection measurements of the kind shown in fig ure 9 
:,nd by comparison of the power obtained from the five 
c lement arr ay with the sum of the powe r from the 
fi ve s tandard rectenna elemen t s it replaced. from the 
almos t imperceptible impact that wa s noted, it was 
concl ud e d tha t the rectenna design depic ted in 
Figures 15 and 16 is e lectrically satisfactory . 

Fi gure 16. Basic core structure design of the fore ­
plane illus tratin g the joining of individual rec tenna 
e leme nt s to each other to form a linear, easiiy­
fabri cated s tructure performing the functi01.l s of DC 
power bussing and microwave collection ami rectification. 

Assessment of Life of Rectenna Element 

figure 18 provides a summatilln of the life tes t 
dat a t a ke n up to a total of s lightly over 800,000 diode 
hours . It is noted that there wel t:: no failure of diodes 
in rectenna elements operated at DC power levels below 
6 watt s. Even those failing at higher power levels may 
hav e been associated with infant or operator - induced 
failures. There was only one unequivocal self-induced 
life failure of a diode and that occurred in the group 
operating at 6 to 8 watts of DC power output. 

All of the diodes that were used were the plated­
heat - s ink GaAs Schottky barrier diodes that were made 
as part of the effort under the JPL s upervised program 
at Ray theon. The life test was made possible because 
of th e availability of the complete microwave power 
tran smi ssion system and the 199 element rectenna 
show n in Fig ure 9. With this arrangement there is 
Il distribution of power density over the rectenna by 
a factor of about 40. 
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figure 17 . The test set-up for checking the foreplane 
type of rectenn"l array. The five element forep b ne 
structure is placed at the center of the larger rectenna 
array as shown. The DC output is dissipated in a 
resistive load. The collected power from the foreplan e 
can then be compared with the power that would have 
been collected from the five elements that it replaced. 
Reflected power measurements were also made with the 
probe a rrangement shown in Figure 9. 
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Figure 18. Diode Life Test Results Using Rectenn a 
shown in Figure 9. Rectenna contains 199 r ectenna 
elements which are subjected to a wide r ange of 
incident power. 

Recent Developments and future Trends 

The SPS re '~tenna design approach of Figure 15 
was structurally " nalyzed in cllnsiderable detail by 
the author. 23 Mllterial requirements and costs w er,~ 
estimated. To save on material, which is the c hief 
element of cost, airframe design practices s hould be 
used. and extensive scaled wind tests should be per­
formed in the early design stages to fore s t a ll excf! s s ive 
design sa fety factors for wind loading. 



A set of studies leading to additional under­
standing of the rectenna have been aponaored by 
Johnson Space Center, with R.J. Gutmann of RPI 
being i~e principal investigator for a number of 
these. 

The most recent trend in rectenna development 
la the thin-film printed-circuit reetenna for high 
altitude atmospheric platform and space use. It is 
not believed to be suitable for the SPS rectenna 
because of its fragility and higher cost per unit area 
than the rigid construction of Figure 15. Its 
application to the high altitude platform. however. 
may lead to a better general understanding and 
acceptance of microwave .power transmi~sion in the 
SPS. 
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N82-1 
RECTENNA SYSTF.M DESIGN 

G. R. Woodcock. Boeing Aerospace Company 
R. W. Andryczyk. General Electr1c 

IN'I'RODUCTION 

The function of the ~ectenna in the solar power satellite system is to con­
vert the downcoming microwave power beam to electrical grid power. Due to its large 
physical size (a typical rectenna site 1s a 10 KM x 14 KM ellipse) and element composi­
tion (many repetitive components), the projecte~ cost savings of automatic mass productio 
are of prime importance. Control of the satellLte power beam and its distribution also 
takes place at facilities on the rectenna site. These critical functions have minor cost 
impacts and are not treate.d in this document. 

The fundamental processes at the rectenna consist of rectifying the incident 
r.f. field into d.c. current ~t:;;ing Schottky barrier diodes, filtering the rectified out­
put, combining it and processing it to higher '~oltages for distribution. Hierarchial COl 

bination and processing of currents is done several times to integrate the relatively lOt, 

power per diode to electrical grid power magnitudes. Provisions for power control for 
equipment protection and load management exist at each step in the hierarchy. 

RECEIVING ANTENNA OPTIONS 

Figure 1 illustrates the basic design choices based on the desired microwav. 
field concentration prior to rectification and on the ground clearmnce requirement for t' 
rectenna structure. For an optimized system, these parameters depend on positions withi 
the site, local terrain and incident r. f. field. For purposes of the present study, a n 
concentrating inclined planar panel with a 2 meter minimum clearance configuration was 
selected as representi~tive of the typical rectenna. 

3.0 RECEIVING ELEHENT OPTIONS 

Figure 2 illustrates some of the options that have been considered for rec­
ing antenna elements. Dipoles in various implementations represent the most straigh:fc 
way of receiving a linearly polarized incident field compatible with the slotted wavegu: 
transmitting array, and are relatively easy to analyze. However, other options, includL 
elements that receive circularly polarized fields, have been conside:,:ed. 

Figure 3 shows capture area as a function of element width and length for a 
number of different types of elements. A trade study of diode power for maximum rectifi­
cation efficiency (5-10 watts per diode) as opposed to long life with passive cooling 
«5 watts per diode) suggests a power level per diode of somewhere between 1 and 5 watts. 
(See Table 1). 

TABLE 1: SINGLE DIODE RECTENNA (DIPOLE) ELEt-IENT' 

Element Equivalent Power* Achieved Element Projected Element 
Power Level Density Efficiency Efficiency 
(Watts) m'W/CM2 % % 

8 160 91 91 
1 29 88 90 
0.5 10 86 88 
0.2 4 84 86 
0.1 2 82 85 

*Proposed Power Density at SPS R~ctenna Center - 23 mW/CM2 

Proposed Powc'!r Density at SPS Rcctenna Edge 1 mW/Ot2 
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The baseline!! modified half-wave dipole, with a capture area of 70 0'&2 (typical; 
will provide between 1-2 watts of power per diode at the center of the rectenna (23 mW/CM2) 
indicating good efficiency. More directional elements or dipole arrays must be used a. we 
go out to the rectenna edge (~l mW/CW2); for instance, a 4 x 4 dipole array would again 
provide 1 watt per diode. Can: must be exercised not to select too large an array which 
would pose problems of directional reception and increased losses in the r.f. collection 
lin·:·s. The de:;ign chosen integrates the dipoles and their associated power and w.licrowave 
circuitry inside an aluminum environmental shield and support structure which readily lend 
themselves to m~ss production methods. 

4.0 BASELINE RECTENNA DESCRIPTION 

A representative rectenna design at a 35° latitude is described, characterized 
by G 5 GW Gaussian tapered beam with a peak incident microwave power of 23 mW/CM2. Power 
is colleded out to the point where the interception efficiency is 95%. The basic recelv-· 
ing el(:,nent of the baseline rectenna is a dipole above (fL ground plane. The dipole assembly 
also contains a filtering and matching circuit to match the dipoles to the incoming wave 
with a reflection coefficient of better than -20 db. It is assumed that all dipoles are 
identical throughout the rectenna. The number of dipoles in the rectenna is approximately 
1.3 x 1010 in a 7.9 CM = .64 A triangular array format. 

Component designs for the rectenna are varied to most effectively match the 
incident power flux in ten rings. Basically, all microwave system components of a given 
type are similar within a ring. However, power bussing and control segmentation at the 
5-10 mW power level and above extends across ring boundaries. Local d.c. voltages on the 
panelr. are desi~ned not to exceed ±3.25 KV. 

Due to the power density variation over the rectenna aperture, a single type 
of radiating element or a single type of rectifier cannot provide optimum conversion effici 
ency. Either a number of radiating element types or a number of diode types must be pro­
vided. Presently, one single type of diode is assumed which is operated with four differeD 
types of antenna elements. It is assumed that besides the dipole element already described 
these antenna elements are formed by using the basic dipoles in arrays containing 2, 4, or 
8 dipoles. The corresponding assemblies are called Type 1,2,3, and 4 receiving arrays. 
There are approximately 7.654 x 109 arrays (diode assemblies) in the overall anterl'f.a. 

The array assemblies are combined into panels which are the smallest assembly 
units from the fabrication point of view. 10 m2 was selected for the panel area, with a 
N-S plane dimension of 3 m and E-W plane dimension of 3.33 m. Figure 4 shows a typical 
panel assembly in the center of the rectenna. It is assumed that all panel sizes are identi­
cal. This requires 7,060,224 panels in the rectenna. There are four different types of 
panels, corresponding to the four different types of receiving arrays. Although the dipole. 
and diodes are identical for all panels, the combining-matching-filtering circuits and the 
diode wiring represent four types. Table 2 summarizes the characteristics of the panels. 
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Units are combined from panels in such a manner that nominally 1,000 panela 
are in one unit and the N-S dimension of a unit is always 32 x 3.662 • 117.18 ., wbich 
means that the number of panel rows in the N-S plane is always 32. This allows a standard, 
zation of the unit layouts to a minimum of seven types. Figure 5 shows the overall layout 
of the rectenna with the ring boundaries and the number of units within each ring. Note 
ti\at the N-S dimension of the units are standardized to 117.18 m everywhere within the 
rectenna and only the E-W dimension of the units varies fJ:om ring to ring. 

The last assembly which is formed at DC is called "group". This brings the 
power output into the 5-l0MW range. In order to keep the voltage levels relatively low, 
groups are formed from the units by parallel connections only. The power from the unit 
output is brought to group centers, or blocks. where the DC to AC inverters are located, 
by relatively long transmission lines that are parallel-connected at the group centers onl: 
Blocks handle approximately 70 MW of power each. 

Selection of the layout for tne rectenna AC system between the indiviJual 
DC/AC converters and the bulk power transmission system ~epends on the location and the 
power levels of the DC/AC converters as well as on the needs of the bulk power transmissic 
system. A one-line diagram for the rectenna AC system in which the DC output from the' di­
poles is collected into 40 MW DC/AC converter stations is shown in Figure 6. The 40 ~ 
converter station output is transmitted by underground cable to 200 MW transf.ormer station 
where the voltage is stepped up to 230 kV. then collected in 1,000 MW groups and transfor~ 
to 500 kV for interphase with the bulk transmission system. The switchyards are shown 
arranged as reliable "breaker and a half" schemes where single contingency outages may be 
sustained without loss of power output capability. The selection of the voltage level fo' 
the ultimate bulk power transmission interface with the utility grid. as well as the 
possibility of interconnecting two or more of the 1,000 MW switching stations together 
should be optimized based on detailed information about the connecting utility system. T 
solution, shown in Figure 6, integrated in a utility system with a control structure, as 
indicated in Figure 7. is one of several possible choices. 

Availability calculations for the baseline rectenna design (Figure 8) were 
performed. the re.sults of which are that 80% of the rated satellite power is available 
96.8% of the time. and that scheduled no-power periods total only 208 hours per year. 

To define the requirements for a given l;',tiecific situation, load flow and 
system stability studies are required. It is likely, however, that the SPS power system 
would be far more stable than a conventional power plant of the same rating. This would 
mean that the transmission distances could be increased for a given line loading without 
need for ~s much series compensation as in conventional power plants. 

When substantial amounts of power are to be transported for distances of 400 
miles or more, the consideration of a high-voltage DC (HVDC) as the transmission load is 
often indicated. The HVDC system is ideally suited for long distance bulk power transport 
a!nce it does not suffer from stability effects and can even be used to improve the stabil­
ity of the AC system to which it is connected. The DC system is asynchronous and can easily 
transmit power between independent power systems such as those of the E~stern and the 

• Western United States. HVDC technology is advanced and the systems have been well received. 
A 6,300 MW system in Brazil is currently in the proposal stages with full scale operation 
8cheduled for 1985. It appears that a DC system or a combination of DC and AC systems 
could be applied to the Solar Power Satellite system with few difficulties. 

5.0 SCATTERING ~~D RADIO FREQUENCY INTERFERENCE 

The microwave transmission link must meet a stringent standard of electro­
magnetic cleanliness which states that out-of-band power must be more than 150 db down 
from the link power. Even though stray power reflected from and/or radiated by the 
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rectenna generally travels in an upward direction, there are enough scatter!lIg .. chant ... 
for harmonics from the diode rectifier and associated noise to warrant the serious question 
of meeting this requirement. Some of the approaches and their implications are suaaarlaed 
in Raytheon data of Table 3 below. 

TABLE 3: APPROACIl£S TO DECREASE HARMONIC RECTENNA RADIATION 

Approac.h 

o More filter sections 
of current design 

o Stub lines to short 
higher harmonics at 
dipole terminals 

o Incorporate stub 
lines as part of 
filter sections 

o Full wave 
rectification 

Expected Improve­
ment in 2nd, 3rd 
and 4th Harmonics 

Approx. 14 db per 
section 
"'30 db 

"'60 - 80 db 

"'15 db 

Implications 

o No physical room, 1% loss for each sectiOD. 
o Mechanical tolerance problem. 
o 2nd harmonic reduction ea~ily added. 
o 3rd and higher harmonics require added width 

to core section. 
o Less than 1% decrease in circuit efficiency. 
o Could degrade the electronic efficiency 

o Mechanical tolerance problem. 
o Requires additional width of cor~ section. 
o Some circuit efficiency degradation. 
o Could degrad.e the electronic efficiency. 

o Doubles or quadruples number of diodes. 
o Greatly complicates electrical circuit and 

mechanical construction. 

In the baseline design, two low pass filter sections which attenuate the second 'l.l. 

and higher orde~ harmonics by over 25 db separate the rectifier from the outside world. 
More filter sect.ions add approximately 17 db more suppression, each at a cost of approxi-
mately 1% efficiency loss. Other alternatives, also with an efficiency penalty, are to us' 
stub line filters or full wave rectification.. All of these approaches have mechanical cor~ 
figuration problems that, while solvable, will increase rectenna diode array assembly cost, 
Given these difficulties, it may become necessary to seek SPS-assignecl, bi,mds at the first 
few harmonic frequencies. 

Another type of scattering which affects system design is Fresnel edge diffracti 
from the rectenna panel edges. A slight overlapping of panels can reduce these losses but 
does .lncrease total panel area and cost. The expected capture loss and r~sultant efficienL 
108s is estimated at between 1 to 2%. 

6.0 RECTENNA SYSTEM OPTIMIZATION 

Optimization of a rectenna system design to minimize costs is carried out at 
several levels. It is always desirable from t.he cost per unit power stanrlpl'lnt to tran.mit 
aS,much power through the transmission link as the ionospheric medium an~ beam pattern con­
straints will allow. The rectenna should be increased in size until the incremental rate 
of return from sales of the intercepted power are marginal. Such a procedure is illustrated 
in Figure 8 where the incremental revenue per square meter is balanced by the incremental 
cost per unit rectenna area at the optimum. 

Much of the cost of the rectenna is in the structural support material required 
to support it against wind deag and snow- loads. Different types of reclenna panels were 
considered. The baseline design chosen is an intermediate between the inexpensive but 
draggy flat panels and the more expensive, low drag panels which have circuit topology 
proc,lems. The present rectennLl panel support structul'C! evolved from stiff edge-supported 
panels to a hierarchial more centrally supported frame which uses much less material • 
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7 • 0 RECTENNA CONSTRUCTION 

Construction of the rectcnna Is, by necesslty, hl~hly automated. Starting with 
prefabricated dipole assembly components, a dipole machine (Figure 9), manufactures 
co.pleted dipole/diode assemblies at a high rate. These are then combined with other 
prefabricated parts to manufacture receiving element sticks. The sticks,metal fra .. and 
around plane are then tack-welded together to form panels (Figure 10). 

The completed panels are then taken to the rectenna site where specialized 
equipment, shown on Figure 11. prepares the site through the emplacement of panel support 
arches. The panels are then lowered on the support arches, fastened and connected 
electrically, 

There must, of necessity. be some rather conventional construction at the 
rectenna for the grid power system and the pilot beam transmitter(s), but these consti­
tude only a small fraction of the construction cost. 

8.0 RECTENNA COST 

The rectenna investment and maintenance cost breakdown for the baseline design 
is indicated in Table 4. 

TABLE 4: SPS RECTENNA COST BREAKDOWN PER MAJOR TASK 

Initiate Site Preparation 503 

Complete Site Preparation 1,400 

Foundation and Supporting Structure 24,550 

Manufacture and Install Panels 24,296 

TOTAL ($'5 in Thousands) 50,752 

301 

1,047 

64,093 

145.134 

210,575 

Material 

'4,479 

18,780 

182,842 

928,664 

1,088,247 

Freight 

255 

884 

32,181 

3,455 

36,775 

3,4( 

'·15,4 

303,6 

1,101,5 

1,386, ;' 

Land costs are excluded, but are typically less than 5% of the anticipated cost 
for typical sites considered. If desired, the land underneath the rectenna may be used fo;­
factories or intensive ag~iculture. 
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Figure 4: Typical Panel Configuration at Rectenna Center 
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Figure 5: Rectenna Ring and Unit Boundary Map 
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Rectenna Session: Micro Aspects 

Dr. Ronald J. Gutmann 
Rensselaer Polytecbnic Institute 

There are two micro aspects of the rectenna design which will be 
addressed in this presentation: evaluation of the degradation in net rec­
tenna RF to DC conversion efficiency due to power density variations 
across the rectenna (power cOnDinitlg analysis) and design of Yagi-Uda 
receiving elements to reduce rectenna cost by decreasing the nUnDer of 
conversion circuits (directional receiving elements). The first of these 
micro aspects involves resolving a fundamental question o~ efficiency 
potential with a rectenna, whne the second involves a design modifica­
tion with a large potential cost saving. These tasks were investigated 
under contract with JSC during 1978. 

Power COnDi ni n9 Ana lys is, 
In the rectenna, numerous rectifier circuits share a common DC load 

to achieve useful power levels. The rectifier outputs can be combined in 
series and/or parallel to enhance the voltage and/or current level res­
pectively, with previous rectennas designed with first stage parallel 
combining followed by series co~ining. 

A fundamental question in this receiving, rectification and power 
combining process is caused by the power taper of the incident microwave 
beam. The incident power density can vary by 10 dB over the rectenna 
area since a high percentage of the transmitted microwave power needs to 
be collected and the power beam sidelobe level must be kept reasonably 
low. Since the output (DC terminal) characteristics of the rectifier are 
power' dependent, rectifiers at different power levels that share a common 
DC load cannot be operated at optimum conditions. With individual recti­
fiers near 90% maximum efficiency, the resultant efficiency degradation 
could be significant. In this work the efficiency degradation that results 
when an array of microwave power rectifiers shares a COl1'll1On DC load was 
evaluated for the first time~ 

In analyzing the degradation, we assume that the output load line or 
volt-ampere (V-I) characteristics of each of the rectifying circuits to be 
combined are known. This V-I characteristic can be determined by either 
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a circuit analysis of the rectenna element, by a computer simulation or 
by direct measurement of the output voltage and current for several load 
resistances. It is assumed that the V-I characteristics are a function 
of some parameter e of the rectenna element tin our case incident RF 
power). Given the V-I characteristics, it is possible to determine the 
operating point for maximum power output. 

In Fig. 1 we show the V-I characteristics of two dissimilar rectenna 
elements as well as the points at which each of th,em deliver maximum power 
if opera t i ng independently. The same fi gure shows that if the e'l ements 
are operated in parallel (common output voltage) or in series (common 
output cu~rent), they wi 11 not operate at thei~r optimum power output and 
their combined power output will be less than if operated independently. 
We have developed expressions for the power combining inefficiency ere­
duction in output power compared to co11~cted power assuming each recti­
fier operated in its own optimum DC load) for both series and parallel 
cOnDi ni ng. (,1,2) 

In order to evaluate the pOWtlr coni>ining inefficiency an accurate 
output equivalent circuit model of the conversion circuitry is needed. 
This was obtained using two independent approaches. First, an approxi­
mate closed form circuit model of the rectifier was developed assuming an 
ideal diode and 10ssless circuit elements. The output load line was then 
obtain~d an~lytical1y. Second, a more precise computer simUlation model 
was used, and the output equivalent circuit was obtained by varying the DC 
load resistance and plotting the resultant output load line. 

We have shown that assuming an ideal diode, the circuit indicated in 
Figure 2A has yielded 100% conver.sion efficiency if L3 - C3, LS - Cs etc. 
form odd harmonic parallel resonant circuits, C1 series resonates the 
resultant inductive impedance at the fundamental frequency and,RL = 
ei/8) Rs .(1,2) Figure 28 indicates the more exact computer si,mulation 
model, a reasonable representation of the actual circuitry used in experi­
mental rectennas. The models and the resulting load lines will be dis­
cussed further in the presentation. 

When using these models and various assumed power density variations, 
we find that parallel combining is marginally better than series combining 
and that the closed form analytical model slightly underestimates the power 
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con'bining inefficiency compared to the computer' simulation results. ~sslJming 

a uniform power density distd!'ution. the power con'bining inefficiency is 
1.0% when the ratio of maximum to minimum power density is 2.0 to 1.0. re­
ducing to 0.3% if the ratio is 1.4 to 1.0. This has an important effect on 
the design of the rectenna DC power combining network. favoring ring co~ 
bining rather than row con'bining particularly near thp, rectenna edge. 

Directional Receiving Elements 
A principal advantage of the rectenna concept for the reCeiver in free­

space microwave power transmission systems ;s that the effective receiver 
pattern is sufficiently non-directional (i.e. beaJ1lltidth s\-,fficient1y large) 
that receiver steering is not r"!quired. However in evaluating the require­
ments for a sol ar power satell1 te (SPS) with a small orbit eccentri city 
in a near zero inclination geostationary orbit, it became apparent that the 
ha 1 f wave di po 1 e s epa ra ted by ~ 0.2 ). from a conducti ng ground p la.ne has a 
more non-directional pattern than needed. That is the beamwidth of the 
receiver pattern at which 1% of the incident power is not received (O.04 dB 

* beamwidth) is much larger than the off normal incide~ce due to orbit con-
siderations. Since the rectenna cost is projected to be ~ 25% of the total 
system cost, consideration of more directional'receiving elements is clearly 
desirable. 

In most applications fewer RF to DC conversion circuits (favoring 
directional elements) and power beam pointing requirements (favoring non­
di recti onal el ements) are expected to dom; nate the direct'; ,:\ (I a 1 i ty issue. 
An additional factor with the present GaAs Schottky diode iectifiers and 
present SPS design values is that higher RF to DC conversion efficiency is 
possible at higher power levels (power density limited by nonlinear inter­
actions in ionosphere and possibly biological factors), thus favoring some­
what more direct~onal elements. An additional disadvantage to directional 
receiving elements are more stringent requirements for astable rectenna 
structure and preci se element tolerances. 

In considering alternate receiving elements at the modest gain enhance­
ment cons i dered des'; rab k; we focused on the Yagi-Uda el ement because of 

* Since efficient power transmission is paramount in the SPS application, 
a 1 % beamwi dth is more app 1; cab 1 e tha n ei ther the ~!j dB or 1 dB beamwi dth 
used in many microwave applications. 
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its simplicity. Including proximity effects in an actual array configura­
tion.was beyond the scope of our program. Instead we utilized antenna 
perfonmance of isolated Yagi-Uda arrays in arriving at the expected elec­
rical pe',·formance depicted in Table 1. (1,3) 

Based upon this electrical performance we designed three and six 
element Yagi-Uda arrays, with and without ground plane reflector, in 
both conventional baseline construction and in printed circuit form. De­
sign of three element Yagi-Uda elements without ground planes are depicted 
in Fig. 3. These designs will be discussed further in the presentation. 

The resultant costs obtained are in our investigation presented in 
Table 2, the trend toward lower cost with increased rectenna element 
gain being apparent. As expected, the cost reduction per unit rectenna 
area varies between the ratio of element densities (dependent upon effec­
tive area of each receiving element) and the square root of this ratfo 
(dependent upon linear density of element rows). The net result is 
clear: THERE IS A LARGE RECTENNA COST SAVING POSSIBLE BY UTILIZATION OF 
MORE DIRECTIONAL RECEIVING ELEMENTS LIKE YAGI-UDA ELEMENTS. In a typical 
SPS rectenna there would be 'V 75 km2 area, so that a cost reduction of 
Sl/m2 is equivalent to a 75 million dollar reduction in capital costs. 
Thus savings of 300 to 450 million dollars per rectenna may be possible 
\'lith the more directional Yagi-Uda element (cap; ta 1 costs in 1978 dollars). 

The :omparison between conventional construction and printed .circuit 
implementation is less apparent. The printed circuit estimates are 
based upon less detailed design, but these results do not indicate a sub­
stantial reduction with printed circuit implementation. Only if socket 
and DC buss bar cost can be reduced will a large cost advantage result. 
These may be possible with careful structural designs requireing less 
material usage and low cost manufacturing, 5 mm diameter aluminu~ buss 
bars being assumed in our work. However'~ the convenion efficiency of 
printed circuit implementations win be somewhat lower, so baseline con­
struction definitely seems preferred. 

We have shown that more directional receiving elements are expected 
to lower rectenna costs in free-space microwave power transmission sys-
tems such as the SPS ",here the microwave power beam is relatively stationary 
with respect to the rectenna. Yagi-Uda receiving elements are considered 
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most desirable when noderate gains of perhaps 8 to 14 dB (with respect 
to an isotropic radiator) are optimum. Yagi-Uda antennas become un­
desirably awkward at higher gain. and alternatives such as short back­
fire antennas should be considered. However it is ~elieved that higher 
gain may result in unreaHstically stringent power beam-rectenna align­
ment requirements in the SPS. 
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Table' 

Expected Optimal Performance of Yagi-Uda Re~eiv1ng Elements 

gain (vrt Isotropic) dB FIB Ratio 4B 

3 Element-Low FIB ratio 11 5 

3 Element-MOderate FIB ratio 10 15 

3 Element-1I1gh FIB ratio 8.5 25 

6 Element-Low FIB ratio 14 5 

6 Element-MOderate FIB ratio 13 15 

6 Inemeut-High FIB ratio 11.5 25 

, -"F~'{~"""--'" 

Receiving Ile.ent~ 
Reduction Factor· 

2.82 

2.24 

1.58 

5.62 

4.47 

2.82 

J( Helntive to 6.5 dB Ha1:r-Wave Dipole Separated by .20~ from a Conducting Ground Plane ' 
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A. Printed Circuit Board Implementation 

::lement Density (elem. ) 
m2 

Socket 

D: buss bar 

Printed Circuit Board 

Ground Flane 

cost/r;;?' 

~~odes at $.01 each 

Total cost/m2 

::lement Density (e1em. ) 
m2 

?crepla:1e CO.re 

,L.1';""; num Shield/ 
structural Member 

Yagi-U~a Additions 

Ground Plane 

cost/!:l2 

:iodes a~ $.01 ~ach 

'I'Otal cost/m2 

(costs are gi ven in $/m2 , 

Half-wave 3 el~nt Yagi 
Dipole with with ","ithout 

Eound Elane ground plane ground plane 

192 81 123 

$ .92 $ .39 $1.12 

2.78 1.81 2.23 

.24 .24 .4~ 

.1:.91 1.21 .00 

$5.85 $4.35 $3.77 

$l.9? $ .81 $1.23 

$7.77 $5.16 $5.00 

B. Conventional ~ Construction 

(costs are given in $/m2) 

lip.lf-wave 3 element Yagi 
Dip~le 'r.I th wi th "'~ th.::>ut 

ground plane ground plane ground plane 

192 81 123 

$3.13 $1.47 $2.09 

2.14 1.40 .92 

.00 .30 .71 

1.91 1.91 .00 

$7.18 $5.08 $3.72 

l.~ .81 1.23 

$9.10 $5.89 $4.95 

6 element Yali 
","i thout ground plane 

(average size) 

57 

$ .52 

1.55 

.44 

.00 

$2.51 

$ .57 

$3.08 

6 element Yag1 
",~thou~ gr~'~d ,1E 

57 

.64 

.76 

.00 

$2.49 

.57 

$3.06 

Table '2 Rectenna Cost Estimates (exc:luding rectenna frame) 
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A THEORETICAL STUDY OF MICROWAVE BEAM ABSORPTION BV A RECTENNA 

James H. Ott 
James S. Rice 

Donsld C. Thorn 
Novar Ele"tronics Corpora lion, Barberton, Ohio 

~BSTRACT 
The results of a lhllOreticsl studv of microwave beam absorption by a Rectenna is given. Total absorption of the power 

beam is shown \0 be theoretically possible. Several improvements in the Rectenna design are indicated as a r,~sult of 
analytic model mg. The nature of Rectenna scattering and atmospheric effltCts are discussed. 

I NTROP 1;;TI.ill! 

A workable Solar Power Satellite system will 
depend upon the efficient free-space transmission of 
rnergy to earth via an e:lvironmentally benign micro­
wave beam. The "Rectenna". a large array of dipole­
diode devices which cuptures and rectifies microwave 
power from satellites. embodies an emerging techno~ogy 
pioneered by Wi:liam C. Brown l of Raytheon. Brown 
and Richard Dickinson3 of JPL have reported tests on 
experimental Rectenna arrays which have achieved 
microwave to dc conversion efficiencies exceeding 80%. 
However, classical antenna theory tells us that an 
isolated dipole must re-radiate as much energy as it 
delivers to a properly matched load. Because of a 
frequently expressed concern over whe.ther or not 
this antenna theory was in contradiction with experi­
mental Rectenna results, Novar Electronics Corporation 
undertook the task of developing a theoretical model 
whie.h describes the absorption of a microwave beam 
by a very large Reetenna. In view of the size and 
scope of the SPS program, it is important to theoret­
ically determine whether a rectenna array 0': the 
reference system design can totally absorb the power 
beam--that is, produce no scattering. In addition, 
it is desirable to study the microwave absorption 
process in order to provide a theoretical model 
for the simulation of design improvements and, because 
of concerns about possible electromagnetic inter­
ference from the rectenna, to obtain additional in­
sights into the rectenna's scattering properties. 

Novar's work demonstrates not only that the 
theoretieal absorption limit is in fact 100% but that 
·the number of elements required for total absorption 
per unit area can be greatly reduced, significantly 
reducing the cost of the Rectenna. Results further 
indicate that Rectenna panels can be made to totally 
absorb at any angle of incidence by adjusting reflec­
tor and element spacing ~nd load impedance. This 
suggests a flat or terrain conforming Rectenna 
eliminating the need for the "billboard" or "Venetian 
blind" design and esseptially conforming to the 
terrain. Also, the screen reflect~r should be 
able to be replaced by parasitic reflector dlpole 
elements. 

Deviations irom conditions required for total 
absorption give t'! ~ to scattering, and the re.sulting 
losses due to variations from design center values 
for several parameters are shown. The directionality 
of fWldamental and harmonic scattering from a Rectenna 
is described. Among the factors causing scattering 
t.hat were studied are microwave beam depolarization 
amd ampli tude fluctuations caused by disturbances in 
the atmosphere. Included in this category is "dif­
fracted signal enhancement", the diffra( tive effects 
of large objects flying over the Rectenna, which can 
be expected to cause transient signal increases as 
large as 9 dB which must be taken into account in the 
rectenna design. 

Because of the difficulty in trying to analyze 
a large array of interacting dipoles using mutual 
impedance analYSis, it was necessary to develop another 
type of mathematical model descriptive of the microwave 

power absorption process. Two such .adels were derived 
from Maxwell's equations. These .odels quantify con­
ditions for total absorption of the power beam by a 
Rectenna and provide values for scattering losses due 
to deviations in each cond1tioh. 

CURRENT SHEET REC~ENNA MODE~ 

The first model is based on the current sheet equiv­
alency of a large planar array above a reflector as shown 
in Figure 1. The current sheet has the properties of 
reaistive absorbers described by Jasik4 and KrausS. The 
model is mathematically characterized by an expression 
for the fraction of an incident plane wave's power that 
is re.flected from the sheet. 

Incld<ont Power 

\ CUrretll 

~ • Sh .. ~ 
~--------, 

FIGURE 1 
CURRENT SHEET REC1'ENNA MODEL 

Infinitelv 
Conductl ... 
Reflector 

This expression, which agrees with Jasik, and for 
which no derivation could be found in the literature, 
is determined as follows. First, Maxwell's equations 
are solved to obtain general expressions for the elec­
tric and magnetic fields in the region above the cur­
rent sheet and in the region between the current sheet 
and the reflector surface. 

Next, the botmdary conditions are satisfied at 
the inf:l.nitely conductive reflector surface and then 
at the current sheet as the thickness of the current 
sheet is allowed to bec(,me very thin. This yields 
expressions for the wave.s at: the surface of the cur" 
rent sheet. The expressions are then solved simul­
taneously for the power reflection coefficient, the 
fracUon of power reflected by the current sheet. It 
is expressed by either Equation la or lb, follOWing, 
depending upon the polarization of the incident wave.~ 

*Polarization is defined by the relationship of the 
lncident wave's electric field vec.tor, E, to the plane 
of incidence, the plane determined by r~ys in the 
directions of propagation of the incident and reflected 
waves. When E is parallel to the plane of incidence, 
the wave is ~id to be parallel polarized. \<lhen ~ 
is perpendicular to the plane, the wave is said to be 
perpendicularly polarized. (Any other polarization 
can be decomposed into a combination of parallel and 
perpendicular polarization.) 
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/arallel Polarization 

./11/£ 2 2 
(21!d cosO) 

2 (--r- eos8 - 1) + cot 
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Perpendicular Polarization 
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(-R-- seca - 1) + cot (-),- cos6) 

? 0 

IP11- fillE' 2 2 21!d 
(-R-- seeD + 1) + cot (-.- eosO) 
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(lb) 

where: 
Ro is the resistance of the current sheet in obms 

per square* , 
a is the angle of incidence of the received wave 

as measured from the normal, 
d is the separation between the current sheet and 

reflector. 
A is the wavelength. 
€: and IJ are the permittivity and penaeability, 

respectively. 

lbe expressions above demonstrate that total 
absorption is theoretically possible fo~ormal in­
cidence (6 = 0) when d = )'/4 and So • ./II/r; • 377 ohms 
for free space. The power reflection coefficient and 
reflected power as functions of deviations in Ro ' d, 
or 0 from those value,s required for total absorption 
at nor.mal incidence are shown in Figure 2. 

The model further predicts that a Rectenna can be 
desi.gned for total absorption for beam angle'" off nor­
mal lncidence.t This leads to the possibility of a 
Rectenna that can be built to lie flat on the ground 
and be essentially "terrain conforming". This type of 
Rectenna array has several advantages over the "bill­
board" or "venetian blind" construction of the refer­
ence system': 1) much less excavation is required, 
2) there is the potential to suspend the elements 
and reflector screen above farms, buildings. etc., 
and 3) less scattering is anticipated because ther~ 
are no "billboard" edges to cause diffraction of the 
power beam. 

This current sheet Rectenna model provides a 
"macroscopic view" of the microwave absorption pro­
cess. Novar has developed a second model which pro­
vides an insight into the role played by the i.ndividual 
Rectenna elements. Moreover it provides an independ­
ent theoretical confirmation of the ability of the 
Rectenna to totally absorb the power beam. 

WAVEGUIDE RECTENNA ~fODEL 

lbe second model quantifies the electromagnetic 
modes (field configurations) in the immediate vicinity 
of a Rectenna element in the Rectenna array and gives 
limits for the element spacing which permit total 
power beam absorpt.ion by preventing unwanted modes 
from propagating (scattering). This model is based 
on the properties of a special waveguide describ~d 
by Whel'lero in his analysis of certain aspects of a 
large planar array. Specifically, the waveguide has 

, .... 4A¥Z M, 

special "i .. ging" characteristics and has the ability 
to allow only plane wave propagation. The waveguide 
1. rectangular in shape with a probe (monopole) in­
serted through the middle of one of the walls. How­
ever unlike "conventional" waveguides, the two walls 
p.raUel to the mnopole are nonconductive and "mag­
netic" (II • -, 0 • 0), with the other two walls being 
perfectly conductive (0 • ~). When we Bolve the 
equations d •• cribing the nature of wave reflections at 
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POWER REFLECTION COEFFICIENT AND REflECTED 
POWER LEVEL OF THE CURRENT SHEET RECTENNA 
MODEL AS A FUNCTION OF VARIOUS PARAMETERS 

·Resistance per square is the resistance between 
opposite edges of a square slab of resistive material 
and therefore is independent of the size of the square. 

tWith ), fixed. and given any a, there is an Ro and 
d such that Ipl2 = O. 
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the walls, it is found that a monopole in this type of 
waveguide, which we 101111 Cl'.U a "uxed-waU" waveguide, 
produce. an infinite array of image dipoles with cur­
rents of identical magnitude and phase as depicted in 
Figure 3.'* Conversely, an infinite array of identical 
dipoles with currents of identical magnitude and 
phase can be replaced by a single monopole in a mixed­
wall waveguide to analyze the behavior of a dipole as 
illustrated by Figure 4. Since the power ~~am is 
nea'cly uniform in power density over quite a large 
area, dipoles within a fairly large arbitrarily 
selected area of the Rectenna will have currents 
nearly uniform in magnitude and phase which can be 
closely approximated for that area by an infinite 
array. Thus the behavior of a dipole which defines 
the center of this area can be accurately IOOjeled by 
the behavior of a monopole in a mixed-wall waveguide. 
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IMAGING PROPERTIES OF MIXED-WAll 
WAVEGUIDE WITH MONOPOLE 

The first step in analysis of this monopole's 
behavior is to determine what modes can propagate in 
the mixed-wall waveguide t and under wha t conditions. 
We want the TEH mode to be the only mode that can 
peopaga te. This TEH mode is the same field configur­
ation as that of the power beam, i,e., a plane wave. 
If other modes propagate. scattering is taking place. 
Since the side walls of a mixed-wall waveguide as 
shown in Figure 3 are non-conductive and "magnetic", 
the mixed-wall waveguide is similar to a strip-line 
for the TEH modes. Thus this waveguide will support 
the TEM mode at the pOWE.r beam frequency independent 
of the waveguide dimensions. 

Next, the properties of the mixed-wall waveguide 
for the higher order modes are deri'/ed in order not 
only to determine the conditions required for their 
evanescence but also to allow us to describe the near 
fields around the monopole. To do this, Maxwell's 
equations are solved to obtain wave equations which 
are then modiUed by mathemaHcal decomposition to 
put them into an el'ficient form for solution. The 
wave equations are then solved to obtain general 
equations for the magnetic ~nd electric fields in the 
mixed-wall waveguide. These equations are functions 
of pairs of integers, one integer of which is associ­
ated with the "a" dimension in Figures 3 nnd 4, and 
the other with "b". Specific values for the inte-

J 
1 

gees in a pair defines a mode. The higher order 
modes have either transverse magnetic or tranlverse 
electric fields.* These are respectively designated 
the THfg and the TEmu modes, where f and n are 
0,1,2,3, ... ; g and mare 1,2,3, ... _ 
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SECTION OF INFINITE ARRAY OF DIPOLES MODELED IY 
A MONOPOLE IN A "MIXED-WAll" WAVEGUIDE 

Inspection of the mode equations shows that the 
lowest cutoff frequency for higher order TH modes is 
associated with THol and that for the TE modes is 
the TEIO- This means that at a given frequency the 
smallest c,ritical dimensi.ons for propagation are 
associated with those two IOOdes. The next larger. 
critical dimension is associated with the TE20' 

The TElO mode is actually non-exist.ent in O'lr 
mixed-wall waveguide/monopole configuration because 
it is not generated when the monopole is located in 
the center of this special type of waveguide"· This 
results in the critical dimensions fo~: higher mode 

1 
J 
1 
J 

-Analogous to the study of optical reflections from 
mirrors, the "method of images" shows that the fields 
within the mixed-wall waveguide boundaries are the same 
as though there was no waveguide but only the monopole 
and an infinite number of identical magnitude and 
phase images. 

tModes, which are the various field configurations 
that can exist within a waveguide, have the property 
that for a given frequency they are evanescent (non­
propagating) for waveguide dimensions less than certain 
critical values, w:lich are called "cutoff" dimensions, 
and can propagate for any dimensions greater than those 
values. EliCh mode has its own set of cutoff dimensions. 
Conversely, for a given set of waveguide dimensions, 
there is a critical frequency for each mode (called 
the cutoff frequency) below which the mode is evanes­
cant and above which it can propagate. 

+Tra.nsverse means no component in the + z di rection 
in Figure 3. 

"*No te that "mode-hopping", the generation of modes 
due to waveguide imperfections, is not a problem here 
because the waveguide is assumed to be ideal. 



propagation being determined by the THol and the 
TE20' Specifically, for evanescence of all higher 
modes, those critical dimensions restrict the wave­
guide dimensions to be less than one wavelength in 
the "a" direction and less than one half wavelength 
in the "b" direction, (This is equivalent to a 
Rectenna element spacing of just under one wavelength.) 

The total electric field, E, and tae total mag­
netic field, H, in the mixed-w-lll waveguide are each 
sums of the various field configurations or modes that 
exist in the waveguide. Now ~ and ~ are vector sums 
of respective field components in the x, y, and z 
directions of Figure 3. Thus· for" + z directed" 
field components, E and H can be represented by the 
equations given in'-Table-I, where Arnn and Bf are 
respectively the maximum amplitudes of Hz an§ Ez ' 
Koo is the maximum amplitude a f the H field of the 
TEH wavE.. The a's and S' s at t.he bottom of the 
table are respectively the real and imaginary parts 
of the expressions shown for the y's. The terms 
involving double summations represent the "sums of 
the higher order modes". The leading terms in the 
equations for Ey and Hx are the equati,)ns for the 
TE~l mode. If the higher order modes are evanescent, 
then the double summation terms are components of 
the fields associated with reactive power. 

If a reflector or shorting plate is inserted in 
the waveguide behind the monopole, as shown in Figure 
5, the situation is equivalent to the infinite array 
of dipoles in Figure 4 being backed by a reflector. 
A set of equations analagous to those in T,'ble I can 
then be generated for the "-z directed" field corn­
ponE: .. ~ ~ of the waves reflected from the shorting plate. 
Summing the +z and -z directed field components in the 
neighborhood of the monopole gives rise to a set of 
equations of the same form as those in a conventional 
waveguide backed by a shorting plate. These equations 
establish matching requirements on the monopole and 
loud impedances and spacing of the monopole from the 
shorting plate so that the non-evanescent wave does 
not propagate back up the waveguide toward the source. 
Since it is well known that a probe in a conventional 
waveguide backed by a shorting plate can totally ab­
sorb all power flowing dOlm the waveguide 7, it is 
therefore expected that a probe (monopole) in a mixed­
wall waveguide can also totally absorb all power 
flowing down that type of waveguide. Therefore total 
absorption of the plane wave power beam by a dipole in 
a Rectenna is expected when the separation between 
dipoles is within limits dictated by the mixed-wall 
waveguide model's dimensions which restrict propa­
gation in that waveguide to the TEM mode. 

Since the waveguide dimensions which restrict 
propagation to the TEM mode is less than A in the 
"a" direction and less than 'A/2 in the "b" d~.i.ection 
of Figures 3 and 4, and since the separation between 
the cen tel'S a f the dipoles is "a" by "2b" as can be 
seen from Figure 4, then the ma](imum allowable sep­
aration of the centers of dipoles for total absorp­
tion of a plane. wave, for the rectangular grid 
configuration of Figure 4, is just under one wave­
length. 
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TABLE I 

ELECTROMAGNETIC r-IELD EQUATIONS 
FOR A MIXED·WALL WAVEGUIDE 

Equations shown are for total" + z directed" portion of the field 
components in a mixed-wall waveguide. With appropriate sign changes, 
equations express the" - z directed" components. 
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FIGURE 5 

MONOPOLE IN MIXEO·WAll WAVEGUIDE 
BACKED BV SHORTING PLATE 

ELEMENT DENSITY 

The existence of non-evanescent higher order 
modes corresponds to the existence of grating lobes. 
Analysis of the generation of grating lobes indi­
cates that the maximum separation between dipole 
centers for avoidance of grating lobes with the lIJ= 
angular grid configuration used in the Reference 
System is just under 1.lsX. It is understood that 
the present separation between di.pole centers in 
the Reference System is just unver O.6X. The 
number of Rectenna dipole-diode elements needed 
for total power beam absorption can be signifi­
cantly reduced over the number needed for the 
Reference Systems as shown below. 

NUMBER OF DIPOLE-DIODE 
ELEMENTS REQUIRED 

(NORMAL INCIDENCE) 

Reference System Design 18 billion 

Triangular Grid Configu­
ration With Maximum Allowable 
Dipole Spacing 4.5 billion 

Rectangular Grid Configu­
ration With Maximum Allow-
able Dipole Spacing 5.2 billion 

In additon, greater diode efficiency is indicated when 
the number of Rectenna dipole elements is reduced 
since the power density per diode is higher. 

pARASITIC REFLECTING DIPOLES 

Total absorption of energy by the monopole in a 
conventional waveguide requires that the shorting 
plate in the waveguide by approximately a quarter 
wavelength behind the monopole. This distance is also 
expected to be proper for the mixed-wall waveguide. 
Sin~e the shorting plate corresponds to the Rectenna 
reflector, and since it is expected that the shorting 
\llate can be replaced by a parasitic renec ting mono-

44 

pole as can be donI! easily in a conventional wave­
guide and atill totally abaorb the energy traveliDI 
down the waveguide, then the Rectenna reflector 
should be replaceable by parasitic' dipole ele.nu, 
as depicted in Figure 6 • 

FIGURE. 
RECTENNA WITH 'ARASITIC REFLECTING 

DIPOLE ELEMENTS 

HARMONIC FILTER 

None of the preceeding analysis permits the dipole 
terminals to see a non-linear load for total absorp­
tion. What is required in a Rectenna element for 
total absorpt:l.on is a harmonic filter, as depicted 
in Figure 7, that presents a linear load to the 
dipole terminals at the fundamental frequency such 
that the load voltage and current seen by the dipole 
are pure sinuaoids not in phase quadrature, i.e. 
that the linear load has a real component. 

Non:l 
10 ... ) I 

------' 

FIGURE 7 
RECTENNA ELEMENT HARMONIC FILTER 

FUNDAMENTAL SCATTERING 

Specular scattering of the power beam, depicted 
in Figure 8, is expected to result from most deviations 
in the Rectenna' s parameters. The smaller the devia­
tion anomaly, the brnader will be the specular lobe. 
Single, isolated element failures (short or open 
diodes) will appear to radiate aI:', isotropic sources 
above a reflector. 

..~ 
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FIGURe I 
DEPICTION OF SPECULAR ICAnER.NG 

FROM FACE OF RECTENNA 

,F,equency il .... powe, bee," fu""""'''' 

HARMONIC SCATTERING 

The Rectenna'dipole-filter-diode assembly and 
power bus are expected to be most significant sources 
of harmonic scattering. The harmonic energy will be 
concentrated in grating lobes, as shown in Figure 9. 
Random Rectenna imperfections will broaden the lobes. 

ATMOSPHERIC EFFECTS 

Atmospheric phenomena cause polarization shifts 
and amplitude fluctuations in an electromagnetic wave 
at microwave frequencies 8,9,10,11,12,13. However, 
only i~irequent depolarizing events up to 20 dB (1% 
scattered power) have been observed in microwave down­
link transmissions with great~r than 10 meter aper­
tures. Based on these observations, depolarization 
is not expected to be a significant source of scatter. 

Amplitude fluctuations cause scattering by dis­
rupting the uniform illumination of the Rectenna. In 
addition, this disruption of the RF power level from 
design values for the diodes causes impedance mis­
matches resulting in furth~r scattering. Existing 
earth-space propagation measurements to date 13 

__ . Element \ 

C_,-~ -1 ~'A 
fiGURE 9a 

EXAMPLE U ELEVATION Of HARMONIC RADIATION 

Figu,e depict. 2nd ha,monic Kattering fo, 
normal incidence of powa, beem when the 
.lement lpacin{1 I. ""ual to A at the 
fundamental "1tI1I .. ncy. 

FIGURE 9 

indicate a I18ximum of 0.1 dB amplitude fluctuations 
for 2-3 GHz at;: elev.!I.tion anllea above 200 (which 
would cause insignificant scattering). 

There are factors which impair the ap,llL .ltion 
of previous earth station measurements to Lhe SPS. 
In all studies found, there is silnificant arll.'rture 
averaging. 'The minimum aperture area for tho!;.:! 
studi.es is about 5000A2 as compared to ab,ut 1,2 
or PoD of each "independent" receiving element in 
the Rectenna. This indicates that the amplitude 
fluctuation8 may be appreciably greater than 0.1 dB 
for the Reetenna. Another factor is that the 
measurement data, taken at C and S banda, were 
obtained from modulated liIDala. Host deep fades 
are frequency senaitive. Therefore for modulated 
silnals, which have their power spread over a 
spectrUII of frequencies, the observed amplLtude 
fluctuations would be expected to be less dU:I!'. 

tho8e of the monochromatic SPS power beam. 

As of this writing, Navar El.ectronics Corporation 
intends to receive, at its earth station located in 
Summit County, Ohio, special monochromatic calibration 
signals from RCA's new F3 Satcom* in order to observe 
aperture averaging effects and monochromatic signal 
fading c~aracteristics. Aperture areas of approximate­
ly l200A and on the order of 1~2 will he used to com­
paratively receive the signals (whic.d <l.re transmitted 
for satellite installation test purposes tn determine 
EIRP countours). 

*Scheduled to be s,;7;tioned in orbit at the end of 
L~cember, 1979 
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fiGURE 9b 
AZIMUTHS OF HARMONIC RADIATION 

"D"IU1l'.l" lobe due to powe, bu •. 

GRATING LOBE NATURE OF HARMONIC 
SCATTERING FROM A RECTENNA 
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DIFFRACTED SIGNAL ENHANCEHINT 
A large object flying through the power beam over 

the Rectenna causes diffraction patterns to be gener­
ated at the Rectenna as depicted in Figure 10. Pre­
liminary experimental evidence has been obtained. 
D .. pending pn the size and shape of the object, in­
creases in signal levels as large as 9 dB are poasible. 
Therefore, Rectenna diodes should have tolerance to 
the resulting spot-transient slgnal enhancement to 
protect against overvoltage transients from fast air­
craft and also against diode overheating from slower 
objects. 

/ 

/ 
, 

/ 

FIGURE '0 
DIFFRACTION ENHANCEMENT AT RECTENNA 
CAUSED BY OBJECT FLYING THROUGH THE 

POWER BEAM 

CONCLUSIONS 

Pouible 6·9 dB 
Sign.' Inc_ .. 

Analytic modeling shows that it is theoretically 
possible for a Rectenna to totally absorb microwave 
energy, i.e., produce no scattering. The number of 
elements required is significantly less than indica.ted 
in the Reference System. The Rectenna can be desig(led 
for total absorption at off-normal angles of incidence 
and it is expected that the Rectenna's reflecting screen 
can be replaced with parasitic reflecting dipoles. 

Further space-earth transmlssion studies are 
required. The application of existing data to the 
SPS is impaired because these were from measurements 
of modulated signals received by large aperture antennas. 
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ABSTRACT 

The measured perfonnance characteristics of a rectenna array are reviewed 
and compared to the performance of a single element. It is shown that the 
perfonnance may be extrapolated from the individual element to that of the 
collection of elements. 

Techniques for current and voltage combining have been demonstrated. 
The array perfonnance as a function of various operating parameters is char­
acterized and techniques for overvoltage protection and automat~c fault 
clearing in the array have been demonstrated. A method for detecting failed 
elements also exists. 

Instrumentation for deriving performance effectiveness is described. 
Measured hannonic radiation patterns and fundamental frequency scattered 
patterns for a low level illumination rectenna array are presented. 

INTRODUCTION 

Prior to a definite commitment for a significant application of Beamed 
RF Power, performance characteristic data must be obtained for use by design 
engineers and systems analysists. The operating performance of a rectenna 
array under various conditions of load, RF power input level, temperature, 
polarization, angle of incidence, state of maintenance, and frequency is 
required. Fundamental performance factors are the transfer efficiency, relating 
dc power output to available RF power input, and the level and distribution of 
scattered fundamental and emitted harmonic radiation from the array. Sfcondary 
perfonnance factors are the output voltage and converter temperature. lhe 
existing measured perfo,~nce data on rectenna arrays will be reviewed and 
recent results will be discussed. 

MEASURED RECTENNA ARRAY PERFORMANCE 

High efficiency (greater than 50%) rectenna array characteristics were 
documented in Ref. I, for the condition of highest collection-conversion 
efficiency perfonnance associated with a demonstration of overall system end 
to end de transfer efficiency. The array consisted of 199 half wave gallium 
arsenide Schottky barrier diodes connected to half wave dipoles through a two I' 
section low pass filter projecting through a flat solid ground plane. The • 
elements were arranged in a triangular lattice whose outline configuration was . 
a hexagon. The collecting area per element was about 52 cm2 • The incident 
flux density ranged from 203 mW/cm2 to 2.5 mWicm2 in a gdussian distribution .1 
over the aperture of the array. (A 19 dB taper.) The dc lOad collection 
consisted of 21 separate concentric rings of adjustable resistances tailored 
to the ring radius. A one tenth wavelength dipole probe in front of the 
array measured about 1.11 to 1 VSWR on axis under matched conditions. ! 

PRECEDING PAGE &lANK NOT f1UIIED 
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The peak collection-conversion efficiency of an individual element was 

measured IS 87 ~ 1.51, whereas the average efficiency of the entire array at 
approximately 0.5 KW output dc power was 82.71 of the Ivailable RF power 
incident upon the array (not counting the estimated 4% spfllover energy). 
The array transfer efficiency decreased less than 2% for a 16.71 decrease 
in RF input power level. 

The next large rectenna array was tested at Goldstone, CA (Ref. 2) and 
consisted of 4590 elements arranged in 17 subarrays of 270 elements each 
arranged in a triangular grid pattern. The subarrays were grouped in a three 
column arrangement with the top center subarray absent, as shown in Fig. 1. 
Fig. 2 and 3 are of the array performance characteristics and capabilities 
for use of the instrumented output data. The measured performance can in 
general be accurately predicted from general transmission line reflection 
coefficient theory as concerns the load variations, and the polarization and 
angle of incidence performance follows array theory. Computer models (Ref. 3, 
4) for the diode and associated RF circuitry are able to predict the element 
perfonmance as a function of the input RF amplitude, however, the array per­
formance is poorer than predicted in most cases, by a few percent. This may 
be due to the effects of mutual coupling in the array, which are not modeled 
in a single element analysis. Nevertheless, over a 10 dB range of input 
power density, the rectenna array performance may be adequately predicted 
within a few percent, based upon measured diode characteristics. 

Figure 4 compares the transfer efficiency performance of a single element, 
the average element in a subarray of 270 elements, and the average element in 
and array of 4590 elements over a 6 dB range of RF power density input. The 
perfonmance of a large array may be extrapolated with confidence from the 
single element. 

~URRENT AND VOLTAGE COMBINING AND PROTECTION 

Figure 5 shows the wiring diagram of one of the 270 element subarray!. 
By insulating the dc buss from the subarray frame the paralleled rows of 
rectenna element outputs may be seriesed in order to raise the output voltage, 
while still presenting an adequate output impedance level to the individual 
element. 

The subarray rows are self-clearing of short circuited diode faults by 
the fusing open of the one mil diameter gold bond wires in the packaged diodes 
under the combined short circuit current developed by 45 rectennas in parallel. 
The failed elements may be detected while operating by the increased reflected 
power at a VSWR probe over the element, or alternatively while the array is 
inoperative, by briefly individually illuminating each element while monitoring 
the dc output (termed "sniffing ll

). 

Overvoltage protection from loss of load, excessive RF input level or 
interruption of input, was accomplished in the Goldstone tests by the self 
actuated crowbar in Fig. 5. A voltage limiter would be less traumatic for 
the load than a crowbar however. 

INSTRUMENTATION 

Fig. 5 also shows the isolated load central element for a subarray, 
that is used to provide a measure of the input RF power flux density. An 
RF shielded thermistor is employed to measure the temperature of the central 
buss bar in the subarray. Calibrated shunts and precision voltage dividers 
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were employed to sar.ple the output current and voltage levels. A fixed track, 
.,vable probe positioned in front of the subarray to .asure the reflected 
power would be an expensive, but useful instrument to monitor the subarray 
perforMance under various operating conditions. It could be integrated into 
a. sniffing and .. intenance positioning ass8lbly perhaps, that travels over 
the array surface. 

SCATTERED FUNDAMENTAL AND RADIATED HARMONIC CHARACTERISTICS 

Figure 6 shows a 42 element rectenna array undergoing pattern recording 
of its emitted harmonics as a function of various operating parameters. Fig­
ures 7 andB show the measured harmonics and the scattered fundamental patterns 
for certain conditio,,,,. These patterns are typical for a wide range of para­
meters. The signif~{~',nt facts are that the scattered fundamental 15 distributed 
over a broad range of angles, and that the fourth harmonic is of higher magni­
tude than the third harmonic. The array was underexcited due to equipment 
limitations, with the peak RF to de conversion efficiency being only 35~. 
however the results are expected to be applicable toa normally functioning 
array. Future designs will probably require more filtering of harmonics in 
order to control them and pe~it the array to meet applicable radio regula­
tions (Ref. 5). The scattered fundamental frequency radiation may be con­
trolled to a degree by varying the dc load value, the incident flux density 
level, or the dipole to ground plane spacing, each of which affects the 
impedance match of the array, and thus provides a potential parameter for 
control of the reflected fundamental magnitude. Figure 9 shows the variation 
in efficiency and dc power output for a particular subarray as the spacing is 
varied. 

The RF frequency could also be varied to effect an impedance match. Fig­
ure 10 shows the bandwidth measurements for the 42 element array for two 
different illumination conditions. Such a design characteristic would have 
to be integrated with the harmonic filter deSign also. 

CONCLUSIONS AND RECOMMENDATIONS 

Adequate theory and design info~tion exists that has been compared with 
full scale measurements, to provide engineers and systems analysts with the 
characterization of rectennas performance to within the order of a couple of 
percent. Particularly for high power level of incident flux (Jens', ty applica­
tions. The data for scattered fundamental and emitted harmonics could use 
some theoretical modeling to gauge the preliminary measurements. Also. band­
width analysis and modeling for degraded modes such as partially obscured 
apertures and inadequate maintenance or repair need to be undertaken to round 
out the rectenna complete characterization. 

Refinements such as automatic feedback control of rescattered fundamental 
by changing the ground plane spacing or load, frequency, or incident power 
density should be studied to evaluate their effectiveness and life cycle cost 
in meeting applicable radio regulations. 

It should be stated that the above conclusions are based principally on 
measured results of half wave dipole arrays, and some of the conclusions are 
applicable to other elements such as yag1s, only if the same array character­
istics can in practice be achieved. The stipulation applies to any high gain 
element array. 
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Better ha~n1, filtering and active dc load .. naleMent within a tapered 
density array along with an efficient and effective overvoltage li_iter need 
to be developed, along with rapid repair techniques also. Long life environ­
.. ntal protection is s .ill a continuing requirement for certain applications, 
along with ltght weigh. and waste heat dissipation for space and high alti­
tudes. 
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MICROWAVE POWER "'- ~ 

TRANSMISSIOl\ SYSTEM 
WORKSHOP 

SESSION ON SOLID STATE 

INTRODUCTION 

"Why should we study a solid state SPS" is a valid question and one 

that w~ do not have a complete system answer for at this time. The first chart 

is an attempt to list some of the reasons a solid state SPS should be investigated. 

Solid state is no magical solution to SPS de,signs but it does attack three very 

important aspects of SPS - the potential for low cost through mass manufacturing 

technique s that are well established I rel1ability I and essentially maintenance 

free operation. Solid state was not considered in the original Ra,ytheon study 

I for LRC in 1975 on the microwave system. Low efficiency and power levels of 

a kilowatt or larger made them unatrractive for SPS. NASA decided to investigate i 

the possibility of a solid state design that incorporated a much lower device power 

requirement. A design was developed requiring 120W devices or amplifiers which 

appeared more reasonable but still very difficult for S-band. 

The next step was to determine if solid state devices could potentially be 

highly eff.!:.:.. ;,~. nt. An analytical approach was selected to investigate this potential. 

Dr. Roulston of Waterloo University performed the analysis and indicated there were 

no fundamental limitations en the efficiency of solid state devices. Further study 

by the systems contractors and NASA has produced two concepts that will be 

given a more detailed systems analysis. These concepts produced amplifier power 

requirements of 5 to 30 watts. One concept simply substituted a solid state 
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antenna for the reference Klystron antenna. The other concept produ~e:l an 

entirely new SPS conceptual de sign and wa s called a solar cell solid state 

sandwich design. Both of these designs will be discussed by other summaries 

in this section. However, it should be noted that all solid state designs have 

thus far been characterized by larger antennas, smaller rectennas, and less 

delivered power than the SPS reference concept. There Is no solid state 

reference concept at present because of the systems analysis on solid 

state concepts is not complete. Much data ha s been generated by numerous 

sources on the solid state concepts. The following summaries in this section 

are just representative of the study effort. Thus far Rockwell, Boeing, Raytheon 

and RCA have been directly involved in the solid state studies. The last two 

charts list the preliminary con.clusions and issues related to this solid state 

study effort. Solid state continues to be a viable alternative to the reference 

Klystron concept and is included in the six year planning document (Ground 

Ba sed Exploratory Development - GBED) now ·being finalized. 

i 
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C,\ -I/I""""~ "'-.~~ 
>.; , ..... '.r"'1: "~". ~ I.A>, '. '~.~ .~ ~"1 

& 

MSFC SOLID STATE ACTIVITY 

WHY SOLID STATE 

0 HIGHER RELIAB~rrY THAN TUBES 
( - 106 HOURS VS. 104 HOURS) 

0 TECHNOLOGY BASE 

0 POTENTIAL FOR LOW COST 

0 SYSTEM COSTS OPTIMIZES AT LOWER POWER OUTPUT 
AT UT~ITIES (1.0-1.5 GW) 

0 POTENTIAL FOR REDUCING FRONT END COST 
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SOLID STATE CONCLUSIONS 

1. Solid state SPS concepts have not had the same depth of systems definition 
as the reference concept; however, preliminar.y results indicate the 
following. 
t. The system sizing parameters optimize such that lower power is 

delivered to the utility grid. 
b. The transmit antenna is larger primarily because of the thermal 

rt 1"m1tations. 

i c. The rectenna land requirement is smaller. 

1 d. Weight per delivered kilowatt 1s projected to be more. 
, 

Maintenance projections are better because of the higher reliability. e. 

2. ~ of Power Amplifier - Based on studies to date, the GaAs fET is the 
pre erred solid state power amplifier. ' 

3. Antenna Unit Costs - Solid state antennas will have h1gh parts count 
slmilar to the solar array. and therefore unit costs are a critical it~. 

4. Mitigating Designs - Conceptual designs have to some degree mitigated the 
fssues of thermal and low voltage power distribution. , 

5. Items of Concern - Techniques of phase distribution. (possibly to more I points on the array), and power distribution (on the end mounted con-
figuration more DC-to-DC converters are required) are major items of 
concern in the solid state concept. 

6. Technology - Associated technology development is more l1kely for so11d I 
~ state due to the advancing technology base. 
1 

7. Continued Investigation - Based on current f1ndings. continued investi- ; 

gation ot solid state concepts and issues is warranted. 
1 
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SOLID STATE ISSUES 

, 0 Efficiency 

0 Operating Temperature 

0 Low Voltage Distribution 
, 
~\ 

Harmonic Noise Suppression Ii> 0 , 

0 Power Combining 

0 Subarray Size 

0 Monolithic Technology 

0 Life Time 

0 Mutual Coupling 

0 A mpl!fier gain 

0 Input to Output Isolation 

0 Charge Particle and· ~·VV Radiation Effects 
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MODIFIED REFERENCE SPS WITH SOLID STATE TRANSMITTING ANTENNA 

G. R. Woodcock, B. R. Sperber. Boeing Aerospace Co. 
INTRODUCTION 

The motivations for considering solid state microwave power amplifiers for 
the solar power satellite transmitting antenna have been the possibilities of greatly 
increased system reliability due to elimination of electron tube cathode~, a lower 
mass per unit power and transmitting array area due to the high power densities ob­
tainable in semiconductors (the active region of a power GaAs fET has a power density 
exceeding 1015W m- 3!), and, probably, cost savings due to develop~nt of small hardware 
items that can be handled by individuals instead of organizations. 

In order to provide a fair assessment of where we stand today with regard to 
solid state SPS technology, the design described here is close to that of th~ NASA/DOE 
reference and is implemented using today I s soli d state technology wi th only a small 
"push." The small push is raising the efficiency of DC-RF conversion from the .68 
obtained by RCA in 1975 to somewhat over .8 of the solid state SPS. This is generally 
considered feasible by semiconductor industry representatives. 

Other solid state SPS configurations can yi~ld somewhat better performance. 
However, these generally do not provide as fair a vehicle for comparison with the 
reference and usually also incorporate somewhat more advanced technologies. 

2.0 SOLID STATE MICROWAVE POWER AMPLIFIER TECHNOLOGY 

Currently a wide variety of solid state devices suitable for use as microwave 
amplifiers exist. These include bipolar and field effect transistors, many types of 
two-terminal devices (tunnel, Gunn, IMPATT, BARITT and TRAPATT diodes) and electron 
bombarded semiconductors (E8S). (EBS have been included as being solid state since 
the electron beam only supplies a small control current, with the bulk of the supply 
current staying in the seniconductor.) For those active devices with over two 
terminals, there are several classes of circuit configurations that the active devices 
may be used in. Finally, there is a growing number of commonly used solid state materials 
out of which components may be fabroicated, using several types of process at each step 
of the fabrication. 

State of the art power-added eff~ciency, gain and single device power as a 
function of frequency for various types of CW microwave output solid state devices are 
~hown on Figures 1 through 3. As technology evolves the curves will move towards the 
upper right-hand corners of the graphs. 

Given the results of Figure 1, it would appear that there is no hope of achiev­
ing efficient solid state DC-microwave conversion in the near fut~re. All the two 
terminal devices have efficiencies less than .36, which is so low as to make their use 
for SPS impractical. Most of the three terminal devices are not much better. However, 
in the case of three-terminal devices, the classes of amplifiers presently used 
(Classes A and B for GaAs FETs and Class C for bipolar transistor amplifiers) inherently 
limit their efficiency. Other classes of amplifiers, summarized on Figure 4, can have 
efficiencies approaching unity. 
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In fact, to achieve the desired efficiencies of .8 or greater requires that the 
devices be used in "switched mode" types of ampli fiers. which attain high efficiency 
by minimizing the I-V product time integral over the operating cycle. This generally 
require device switching times about a f~ctor of ten less than the RF period. Experi­
mental amplifiers with efficiencies of over 90% have been built at frequencies aLQVe 
100 MHz. NASA-sponsored microwave amplifier studies have recently been initiated to 
determine the feas'ibi1ity of high efficiency at microwave frequencies. 

Because of the many high frequency con.,'.>nents in the wavefo\"IIIs characteristics 
of fast switches, efficient switching amplification devices must have large bandwidt!:ts, 
This leads to different device noise properties than those at the narrowband SPS reference 
system klystron tubes. While the switching an.,lifiers do have frequency selective ~"t­
put circuits that transform the switched waveform into a sine wave, these will not be 
nearly as selective as a 5-cavity klystron. However, the solid state design will benefit 
due to its small module size giving a larger ground footprint than that of the larger 
klystron module. 

Achieved devic~ gains vs frequency are shown on Figure 2. There is a striking 
difference between small-signal and power gain for FETs. At the SPS frequency of 2.5 
GHz bipolars have about 8 db gain while GaAs FETs yield around 10 db. In general, 
GaAs FETs have several db more gain than bipolars throughout the spectrum. As for the 
other devices, IMPATTs can have gains of over 20 db and electron beam semiconductors 
are projected to yielcl about 20 db. The low gain of Static Induction Transistors (SITs) 
at 1 GHz eliminates them from consideration at present, although they appear to have 
great potential for further development due to their high power bandwidth product. 

The power per device is an important SPS parameter since the number of devices 
which can be efficiently combined in a modu1e is limited by circuit losses and the 
power per module determines the RF power density per unit transmitting array area. The 
sing1e device power chart (Figure 3) shows that silicon bipolar transistors, GaAs FETs 
and multi-mesa IMPATTs can all handle powers above 10 watts, which is an adequate power 
level for SPS application. Of the devices considered here. only E-beam semiconductor 
devices are capable of generating ~ power 1evel of 100 watts per deVice which would be 
adequate for one device per radiating element. For the other devices, power combining 
will be necessary. 

The fundamental failure modes in semiconductor devices are wearout failure 
modes that tend to be concentrated at surfaces, both internal and exposed, and are 
generally electrochemical in origin. In the case of ~he internal surfaces, transport 
of species to and away from interfaces eventually degrades cont; :ts. In the case of 
external surfaces, impurities can come in from outside to form compounds, and high electric 
fields can cause breakdown. 

EBS Cathodes presently have an expected lifetime of 2x105 hours, over an order 
of magnitude less than that required for a 30-year satellite, so they appear unsuitable. 
The two remaining solid state amplifier candidates are GaAs FETs and Si bipolar transis­
tors. Si bipolar lifetime;; are limited by electromigratio'n of emitter finger metalli­
zations due to localized high curr'ent densities. This gives relatively sudden and 
complete hard (open or short circuit) failures, whereas GaAs FETs seem to suffer from 
contact. degradation which decreases performance gradually. 

~"'W~."'~:., :' 
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Of the three terminal devices, GaAs Field Effect Transistors (FET's) 
and Si-bipolar transistors provide approximately equal power capability at 2.45 
GHz and appear potentially feasible for SPS use. GaAs FET's were selected as 
the preferl,"ed OC-RF conversion devices because they have higher gain than silicon 
bipolars, Migher power added efficiencies, roughly equal power capabilities at 
2.5 GHz and 101l/er device metallization current densities leading to better 
expected reliabilities. GaAS FET's for SPS application could be fabricated 
separately and mounted in hybrid fashion or combined with other components on larger 
GaAS chips in integrated circuits. The latter alternative is preferred because of 
its significant)y lower costs in mass production, although it does entail somewhat 
more development. For conservatism and in consideration of the fact that efficient 
"switched mode" ampl ifiers requi re gai n at frequenci es hi gher than the fundamental, 
the maximum single device powers in the solid state baseline design satellite were 
chosen to be 7.5 watts. For devices like this, a reasonable operating voltage is 
15 volts. 

A current small signal GaAS FET lifetime versus temperature-curve is shown 
on Figure 5. There is currently no 1 ifetime d;lta on power GaAS FET' s in the 1 itera­
ture. When it appears, it is likel.v to be somewhat worse than Figure 5. but Figure 5 
probably represents lifetimes achievable with development of the relatively new GaAs 
FET technology. It should be noted that solid state devices fail with log-normai 
statistics. Since the SPS failure criterion is loss of 2% the transmitting array with 
no maintenance, the mean time to failure required for the device is about a factor 
of ten more than the SPS life. Thus the average junction temperature for SPS GaAS FET's 
should be no higher than 140°C. 

Figure 6 shews current and projected GaAS FET costs with an estimated 70% 
pr:Jduct'ion rate improvement curve (i .e., units produced at the rate of 2n per year 
cost 70% as much as units produced at the rate of n per year). For the anticipated 
projected rates, the cost per unit power for GaAS FET's are nearly the same as the 
projected cost per unit power for klystrons. In practice, integrated circuits with 
sevf)ral stages of driver amplifiers and other circuitry will be incorporated with 
the power amplifier. Since production costs are roughly equivalent to chip size and 
the output FET is anticipated to use approximately 70% of the total semiconductor 
area, the above cost estimates are adequate to first order. 

3.0 SOLIO STATE ANTENNA MOOULE INTEGRATION 

Cost effective integration of the low power, low voltage solid-state 
devices into mass producible antenna array elements represents the prime challenge in 
solid-state microwave power transmitt.er design. The "natural" array element size ' 
of about a wavelength squared and radiative cooling considerations for the p~ak jl 

microwave density are~s at the transmitting array center yield 11 devices per A2at an 
anticipated 5.5 kw m- radiated microwave power per unit area. For central array " i 
modules of the modi fied reference sol id-state SPS both a small module size and 
combining of several devices were used to get the 4-FET .6A x .6A microstrip cavity 
combining module shown in Figure 7. 

To avoid the power combining losses associated with circuit hybrids, the 
power from 4 solid-state amplifiers is combined by direct coupling of each ampli­
fier's output to the radiating antenna structure. The resulting savings in tran~­
mitter efficiency range from 4% to 10%, depending upon the configurations being 
compared. The selected power-combining antenna consists of a printed (metalliz,ed) 
microstrip circuit on a ceramic type dielectric substrate which is backed by a 
shallow lightweight aluminum cavity which sums the power of four microwave sources. 
The antenna behaves like two half wavelength slot-line antennas coupled together via a 
common cavity structure. Feedback is taken from sampling prubes in the module 

;21.(; 
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cavity and used to correct for amplifier phase err0rs. This insures that the in­
sertion phase of each module is identical even though the power amplifiers are fab­
ricated to relative"ly loose (low cost) insertion phase requi rements. 

The modules are fabricatf'd by starting with metallized (microstrip) 25 mil 
thick alumina dielectric cards wllich are attached to a 7.5 mil thick alullinum sileet 
metal carrier. A 7.5 mil thick :,tamped aluminum back plate is then uttached, covering 
the substrate and all circuit cOllponents. This back cover defines the altenna cavity 
as well as shielding the otherwbe exposed electronic components on the substrate. 
The high thermal conductivity of the aluminum components and of the alumina substrate 
allows the module's waste heat to spread to all surfaces as evenly as possible. 

For the lower power density areas of the array an alternate dipole radiator 
module cont;.guration is proposed. (See Figure 8.) This module design is approxi­
mately a third the mass per unit area of the 4-FET cavity radiator module because it 
has nearly no ceramic and significantly less metallization. 

4.0 ANTENNA INTEGRATION 

Variations of the basic cavity radiator and dipole radiator modules have been 
used to define a 1.42 km diameter transmitting antenna with a 9.54 db 10-step Gaus­
sian taper similar to that of the reference SPS. Since its peak transmitted power 
per unit area is ~ that of the reference satellite, its grid output power is half 
that of the reference, or 2.5 Gw. 

Antenna quantization scheme specifications are summarized on Figure 9. There 
are seven basic module types of varying mass. As the 4~FET cavity radiator and 2-FET 
dipoie module powers are reduced the module masses may also be reduced by removlng 
superflous metal not required for lateral thermal conduction. The 2-FET cavity radi­
ator can also take advantage of reduced :diel:ettric mass. No claim is made that these 
designs are optimized; they represent hopefully conservative estimates for likely 
module configurations. 

To reduce I2R power bussing losses the 15 volt modules must be connected in 
a series-parallel arrangement. The connection hierarc~y selected for the (.6A by .6A) 
cavity radiator modules has four modules in parallel to form units called rows. 
Twelve rows are connected in series to form strings. Three strings in parallel make 
up a panel, which is the least replaceable u.,'it. One hundred forty-four panels in a 
12 x 12 series-parallel matrix form subarrays of the same size (lOrn x -) m) as in-the 
current baseline, with a subarray voltage drop of 2.16 kv. Two subarrays a;'e 
connected in series to give a 4.32 kv distribution voltage. 

In the case of subarrays using the slightly larger (.6A x .SA) dipole moduler 
the hierachy is the same except that the rows only have three modules in parallel. 

A reHabil ity assessment of the described cavity radiator module subarray 
hierarchy as a function of probability of amplifier failure, Q, is summarized 
in Figure 10. In case only one amplifier failure per row is permitted, string 
failures will cause 2% rf gower reduction (with 50% probability) in 22 years for an 
amplifier MTBF of 3.5 x 10 hours. The random failures at this time cause an 
additional 0.8% of amplifiers to have failed so that the total rf power reduction 
at this time is 2.8%. If two amplifier failures per row are allowed, the power 
loss due to string failures of 2% and random amplifier failures of 3.2% together 
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result in a subarray power loss of 5.2% after 63 years. These results indicate that, 
for the SPS requirement ,r less than 2% rf converter failures in a 30 year perio~, 
the objectives of maintenance-free operation are achievable. This provides 
encouragement for further effort to address the hsues of series-parallel ing such 
large strings. 

An addjtional reliability feature beyond those considered in the assessment 
of all the module designs for string protection 1S the use of an external high 
temperature resistor which is shunted in to dissipate the nominal module power when 
the power amplifier in a module becomes open-circuited. By n~king the resistors 
small filaments a visual indication of failure is provided. 

Although the failure rel iability asp£:.:ts of the above series -parallel 
configuration appear workable, other valid questions remain. The modules each have 
separate inputs that must be kept from coupling to neighboring outputs over the 
power supply lines. This is believed feasible but has not yet been experimentally 
demonstrated. Also, in a real system startup and shutdown transients are experienced. 
There must be kept from "rattl ing around" in the ser.ies -parallel matrix and selecthely 
blowing out modules. Protection against these transients is believed assured if 
all the modules present simi1ar impedances to the power line and have some over­
voltage protection. 

5.0 SATELLITE CONFIGURATION 

A trade study done to decide on the preferred power distribution system to 
the 4.32 kv subarraypairs from the solar array compared directly bussed DC, high 
voltage AC and high voltage DC with DC-DC convertors. The results are shown on 
Figure 11 in the form of conductor and power loss make-up array mass as a function 
of conductor temperature. Direct DC won out despite a low power bussing efficiency 
of .73. However, it should be noted that should power convertor technology 
improvements result in 25% power·convertor mass reductions, high voltage DC with DC-DC 
convertors would be the preferred option. 

Satellite efficiency and sizing, done in a fashion similar to the NASA/DOE 
reference SPS design, clearly shows the impact of the buss losses on Figure 12. 

The completed 2.5 GW modified reference SPS configuration is shown on 
Figure 13. The technology of the non-microwave subsyst~ms is the same as t.he 
reference except for elimination of the antenna yoke by using linear actuators 
between the antenna edge and the rotary platform a.nd the use of a pentahedral main 
satellite bay structure. Both changes reduce satellite mass somewhat. 

Figure 14 gives a mass and cost sUl1ll1ary. Total mass per unit transmitted 
power is up 30% from the reference because of DC bussing and DC-microwave conversion 
inefficiencies, with costs tracking. A second pass through the design, concentrating 
on increasing power bussing efficiency to achieve mass reduction~,might reduce this 
difference but it is unlikely to erase it. . 
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Figure 5. Small Signal GaAs FET Lifetime 
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OUl SIDE Sl(P NUMBER OF MDULE MODULE (r/A)RF (M/P)RF snp MODULE NO. FETS 
STEP RADIUS AREA SUBARPAYS lYPE POWER MASS 

(m) (M2) (W) (Kwm-2 (kg kin-I) (T) (M) 

I 124.8 48.970 456 Htgh Power 28.7 5.50 .742 200 37.82 
4-FET. Cavt ty 
Radiator 
(4.06 kgM-2) 

2 249.6 146.830 1.360 • 24.0 4.45 .917 600 111,.80 

3 Z22.4 130,820 1,208 Reduced Power 19.2 3.56 1.006 468 100.20 
4-FET Cavity 
Radiator 2 
(3.58 kgm- ) 

4 384.8 138.640 1,280 • 16.0 2.97 1.207 496 108.17 

5 457.6 192,680 1,784 2-FET Clvity 12.8 2.37 1.289 590 73.99 
Radiator 
(3.06 kgm-2) 

6 520.0 191.680 1.776 2 rET Dipole 
(1.47 kgm- ) 

12.8 1.78 .826 582 55.24 

1 561.1i 141,390 1,312 • 9.6 1.33 1.101 208 40.81 

8 582.4 74,795 696 • 8.5 1.18 1.244 110 21.65 

9 644.8 238,950 2,208 1 FET Dtpole 
(1.47 kg .-2) 

6.4 '.89 1.652 351 34.34 

10 707.2 264.880 ~1448 '. 4.3 .59 2.476 I !!t 38.07 
TOTALS 14.528 3.694 621.09 

Figure 9. Solid State Transmitting Antenna Quantization 

tlrjElliUllAII!III : • NV'lIFIERS PER ROIl, ONE OR TVO MY FAIL (11-1.2) 
12 ROIlS PER STRING 1j32 STRINGS PER SUBARRAY 
UIG IIOHIW. DISTRIBUTIOII 
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!3 ... 
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Figure 10. Solid State SPS Array Center Subarray Rel'li;\hility 
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Figure 11. Power Distribution System Analysis 

ITEM EFFICIENCY MEGAWATIS 

Array Mismatch 
Array Mismatch .965 6050 Ideal Array Output 
Main Bus I?R • 729 5333 
Antenna Distr .97 4256 Total Antenna InP!Jt 
DC-RF Conversion .8 4128 
Waveguide 12R N/A 3303 Total RF Radiated Power 
Ideal Beam .965 3303 
I nter~S ubarray losses .976 3187 
Intra-Subarray losses N/A 3110 
Atmosphere loss .98 3110 
Intercept .95 3048 
Rectenna RF -DC .89 2896 I ncident on Rectenna 
Grid Interface .97 2577 

.413 2500 Net to Grid 

TOTAL ARRAY OUTPUT 6050 MW 
TOU,:. SOLAR ARRAY AREA - 33.8 km2 

Figure 12. Solid State SPS Efficiency and Sizing 
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Figure 13. 2.5 Gw Solid State SPS Configuration 

MASS (MT) ESTIMATING BAS IS 
1.1 SPS 35,204 

1.1.1 ENERGY CONVERSION 22,087 
1.1.1.1 STRUCTURE 2,851 Deia i led Es ti mate 
1. 1. 1.2 CONCENTRATORS (m Not f, eq LI i red 
l.1.1.3 SOLAR BLANKETS 14,409 Scaled from Reference 
1. 1. 1. 4 POWER DISTRIB. 4,400 Detailed Estimate 
1. l. 1.5 THERMAL CONTROL (0' Allocated to Subsystems 
1.1.1.6 MA I NTENAN CE 427 Scaled from Reference 
l. 1. 2 POWER TRANSMISSION 6,365 
l. 1. 2. 1 STRUCTURE 460 Scaled from Reference 
1.1. 2. 2 TRANSMITIER 4,480 Detailed Estimate 

SUBARRAYS 
1. 1. 2. 3 POWER DISTR. & CONDo 1,262 Scaled from 1.1. 1.4 
1. l. 2.4 PHAS:: D I STR. 25 Scaled from Reference 
1. l. 2- Ij MA I NTENANCE 20 Docking Ports Only 
l. 1. 2. 6 ANTENNA MECH. POINTING 118 Scaled by MaSS x Area 
1. l. 3 INFO MGMT & CONTROL 145 Scaled from Ref. 
1. 1. 4 ATT. CONT. & STA. KP. 146 Scaled From Ref 

0.2 Same as Ref. 1.1. 5 COMMUNICATIONS 
INTERFACE 113 . Est. Based on $ i mp lifi cation 1. 1. 6 

61348 1.1. 7 GROWTH & CONTINGY. Same" as Reference 

Figure 14. Solid State SPS Mass and Cost Summary 
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SPS SOLID STATE ANTENNA pmlER COMBINER 

G. W. Fitzsimmons. Boeing Aerospace Company 

1. INTrWDUCTIOi~ 

Solid state dc-rf converters offer potential improvements in reliability, 
mass and low voltage operation, provided that anticipated efficiencies in excess of 
80% can be realized. Field effect transistors offer the greptest potential in the 
SPS frequency band at 2.45 GHz. To implement this approach it is essential that 
means be found to sum the power of many relatively low power solid state sources 
in a low-loss manne~and that means be provided to properly control the phase of 
the outputs of the large nllmber of solia state sources required. 

To avoid the power combining losses associated with circuit hybrids it WclS 
proposed that the power from multiple solid state amplifiers be combined by 
direct cou·pl ing of each ampl i fier' s output to the radiating antenna structure. 
The resulting savings in transmitter efficiency ranges from 4% to 10% depending 
upon the configurations being compared. The selected power-combining antenna 
consists of a unique printed (metalized) microstrip circuit on a ceramic type 
dielectric $ubstrate which is backed by a shallow lightweight aluminum cavity 
which sums the power of four microwave sources. The antenna behaves like two 
one-half wa"elength slot-line antennas coupled together via their conmon cavity 
structure. A significant feature of the an::enna configuration selected is that 
the radiated energy is summed to yield a single radiated output phase which 
represents the average insertion phase of the four power amplifiers. This 
e~ergy may be sampled and, by compariscn with the input signal, one can pha~e 
error correct to maintain the insertion phase of all solid state power combining 
modules at exactly the same value. This insures that the insertion phase of each 
SPS power co~~inin9 antenna module is identical even though the power amplifiers 
are fabricated to relatively loose (low cost) insertion phase requirements. 

The concept, illustrated in Figur'e 1, shows two solid state power amplifier 
modules \'Iith two outputs each at 5 watts delivering power to the antenna. The 
power amplifiers derive their input from an integrated circuit which performs 
the function of phase error correction so that 0:ch module has the same insertion 
phase. 'Thf.~ phi!.se error correction circuit employs two probes to samj)le the 

, phase of' the of the radiated power. This phase is thC'n compared with that 
at the module input. A ceramic substrate is propn:;ed to dissipate the heat of 
the po\'!er amplifiers via radiation. The high th!;',rmal conduc.tivity of tne ceramic 
substrate and of the a1umlnum cavity and ground plane will spread the heat so 
that all surfaces will participate in the cooling process. 

The material that follows describes an initial program to verify the suita­
bility of this concept for SPS. An appr~pr;ate microstrip antenna is being 
deve'oped which will be evaluated \'Ihen driven from four soHd state power ampli­
fiers. 

2. EXPERIMENTAL VERIFICATION PROGRAM 

The; objective of the program is to demonstrate the suitabil ity of a 2.45 
GHz power combining microstrirslt.lt-line antenna~whel\ fed by four solid ;:tatp. 
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amplifiers,to the needs of a solar power satellite. The program entails the 
design and fabrication of a four feed microstrip antenna and a stripline antenna 
phasing network which will be integrated with four transistor amplifiers to 
demonstrate that the total solid state module (amplifiers plus antenna) will 
operate as an efficient power combining-radiating system. The antenna developed 
will be evaluated for gain. pattern and efficiency on the antenna range with and 
without the amplifiers. The amplifiers will be connected directly to the antenna 
wHhout benefit of isolators so that their interaction via the antenna will be 
unimpeded. The combined output power of the amplifiers will be approxim~tely 
1/2 watt. 

Figure 2 contains a sketch of the power combining micros trip antenna to 
be evaluated. The dielectric substrate is metalized on both sides. The under­
side. within the cavity, contains the four microstrip feed lines which are 
coupled to the two radiating slots on the top side via two narrow slotlines. 
In order to feed the antenna. two of the rf inputs are required to be 180 0 out 
of phase with the remaining two. An antenna feed network is thus required 
which will provide the four 0°-180° equal amplitude outputs. 

The antenna feed network, the power amplifiers and the microstrip antenna 
will be connected as indicated in Figure 3a. The four cables connecting the 
amp1 Hiers and the antenna are required to have equa.l electrical lengths as are 
the cables connecting the antenna feed network and the amplifiers. This is 
necessary to retain proper phasing of the antenna. 

3. EXPERmENTAL PROGRAf1 STATUS 

3.1 FEED NETWORK 

Three solid state antenna module feed networks have been assembled and 
measurements on all have been made. Two of the feed networks are needed to 
accomplish the antenna range tests. The strip1ine feed network. (Figure 4a), 
consists of two 0°-180° rat race ring hybrids fed by a single in-phase two-way 
power divider. The circuit meta1ization pattern was etched into the top cir­
cuit cover plate as a label for the finished feed. Figure 4b contains a 
photograph of the automatic network analyzer being used to measure the feed 
network performance. 

The insertion loss and insertion phase measurements over a 500 MHz band­
width indicate (Figure 5) that at the design prequency, the insertion loss of 
all ports is nearly equal. The insertion phase error window at 2.45 GHz 15 
1.5 0 wide/Qr ~ .75°. The measured results for all feed networks at 2.45 GHz 
are as follows: 

Seri a 1 No. Phase Balance Loss Balance Insertion Loss Isolation & 
Return loss 

001 ! .730 + -.03 dB .154 dB 25 dB 
002 !.39° + -.03 dB .189 dB 25 dB 
003 !.81° + -.015 dB .172 dB 25 dB 

-,,'--
GOAL ! 1° + -.05 dB .2 dB 20 dB 

'I· 

! 
i 
i 

,At1 i 
j 



r ...... -"!"'·· .... · ------~--.;~,--.,--------

~ r 

r • 

~ 

".,. 

The measured insertion phase to all ports of each network deviate from a 
mean value by less than one degree/whlch was the design goal. The measured 
loss was less than 0.2 dB for each of the units over and above the 6.02 dB 
that results from the four way power div;sion. This va,ue will be used again 
when the antenna efficiency is calculated. A more important parameter is loss 
balance,which is so small that it is hardly mea~urab1e (+ .03 dB). Thus. the 
power delivered to all ports is within 0.7% of the mean value . 

The isolation between the feed network output ports is greater than 25 dB 
for all units. This minimizes the interaction between amplifiers in the final 
configuratior,by preventing reflected power from the input of each amplifier 
fr~m reaching the input of one or more of the other amplifiers. Thus, the 
amplifiers are operated as if they were each driven from an isolated source. 
This is a particularly good operating procedure where one is primarily inter­
est.:d in how well the power combining antenna performs, and in how well the 
solid state amplifiers interact with each other within the antenna circuitry. 

The impedance match realized at each port results in a VSWR <1.12. with 
a return loss greater than 25 dB. In actual operation, a low output VSWR and 
good isolation is only available if the input power to the feed network is 
derived from a well-matched source. 

3 • 2 POUER Ar4PL I F I ERS 

The four 2.45 GHz power amplifiers have been supplied by Tron-Tech. Inc. 
of Eatontown, N. J. and, to date, have only beert evaluated under small signal 
conditions. (Table 1) As can be seen, the amplifiers meet many of the speci­
fications and are out on others. More tests are scheduled to determine how 
the amplifiers perfonn under the required drive condition needed to yield 1/8 
watt of output power. Until these additional tests are completed, it is pre­
mature to speculate on the degree of suitability of the four amplifiers. 

Table 1. AMPLIFIER SPECIFICATIONS & SMALL SIGNAL MEASURED VALUES 

Parameter 

Frequency 
Power our @ 1 dB 
gain compression 

Gain 
Gain match 
VSWR in: 

out: 
Phase match 
Phase control 

Gain Control 

Speci ficaticr. 
-,-,------
2.4SGHz 

+21 d8m 
6 dB min. 
+ -.5 dB max. 
2.5:1 max. 
1.5:1 max. 
+ 0 - 5 max. 
+ 100 . - mln. 

by varying e+ 

Infinite VSWR save at full power 

Measured by Boeing 
<small signal) 
2.4SGHz 

Jot measured 
1.76 dB - 8.18 dB 
,#, 

~.21 dB 
3.65:1 (one unit) 
1.66:1 (two units) 

! 2.4
0 j1 

! { by varying B+ according .,' 
to Tron-Tech. 
Installed sep~rat~ loss cont. 
which yields - 1.5 dB 
according to Tron-Tech. 
verified by Tron-Tech. 
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The amplifiers were specified to be fail-safe under conditions of 
infinite VS~IR at all phases. Thh was required to insure that the amplifiers 
wouldn1t fail during test. Su,h a failure would preclude the collection of 
antenna data with the amplifiers attached. Since the amplifiers are designed 
to operate Class A, the small signal data exhibited in Table 1 may not chan~e 
very much under large Signal tests. 

3.3 RADIATING ELEMENT 

A four feed microstrip antenna has been developed which appears suitable 
for the task at hand. It evolved through a series of steps which began with 
a microstrip to slot-line coupler and graduated from a Single feed slot line 
antenna to a dual fed slot-line antenna and finally, the four feed design 
illustrated in Figure 3b. Figure 3b shows the metalhation pattern (actual 
scale) on each side of the micros trip dielectric substrate. The four micro­
st~ip lines (shown shaded) cross under and couple their energy to the four 
narrow slotlines which transport the Signal to the wide radiating slots (shown 
in black). The antenna substrate is 2.6 inches square and is backed by a 
2.5" x 2.5" x 0.30" cavitY"which couples the radiating slots together. 

The antenna, when fed by the feed network described earlier, exhibits 
a bandwidth at the 15 dB return loss points of approximately 100 MHz. A 
preliminary pattern taken with the antenna on the range is shown in Figure 6. 
The ryeak gain as measured is approximately 8 dB; howe.ver. not accounting for 
0.43 d8 of feed network and cabling losses. The pattern is well behaved with 
the first sidelobes approximately 23 dB down. A second "cleaned-up" model 
will now be fabricated to initiate full range testing with and without the 
power amplifiers. 

4. TEST PLAN 

The primary purpose of the antenna range testing is to determine the 
efficiency of the four feed antenna with and without the amplifiers. The 
efficiency is derived by dividing the antenna gain G by the antenna directivity 
D. The antenna gain will be determined by a 3-antenna method in which antenna 
spacing is measured to better than 1/2~L This method is expected to yield gain 
accurac i es of !. 0.3 dB. 

The antenna directivity D is defined as the ratio of the peak radiated 
power to the average i sotropi c radiated power (avel'age power radiated over the 
unit sphere). To arrive at the average isotropic radiated pm<ler, one must meas-
ure and total up the radiated power over the spherica~ surface with the un-
known antenna at its center, and average that value by. Jividing by the number 
of measurements. Typically, a 2° x 2v cell is employed which requires 16,200 
measurements. The error associated with the directivity measurement is approximately 
!. .25 dB. 

The antenna feed system insertion loss will be measured on the automatic 
network analyzer (HP 85428). which is periodically certified by Hewlett-Packard 
using standards traceable to NBS to an accuracy of + 0.15 dB (+ 3.51%) for 
devices of low insertion loss. TI1us. when the feed-system insertion loss is 
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subtracted from the measured gain, the feed system measurement uncertainty will 
be added to the previousl~~d uncertainties. The RSS value of the cumbined 
efficiency 15 thus • .:t ,,1(:""30)' + (.25)2 + (.15)2 • + .42db • + 10% . V' &. , - - Cross-
polarized radiation f"r the SPS appl ication is considered wasted power, and 
therefore. it will also be measured and .included when determining the antenna 
effi ci ency • ' 

With the basic antenna characterized for gain, pattern and efficiency, 
antenna range measurements will then be made with the solid state power' 
amplifiers inserted and operating with a combined output power of approxi­
mately one-half watt. The measurement of interest is the difference betwe~)\'1 
the range received power with and with~ut the inclusion of the solid state 
power amplifiers. The difference should be equal to the gain of the ampli­
fiers. This difference will verify the degree in which the antenna sums the 

'available power of the four amplifiers. Pattern measurements will also be 
taken to compare with those taken without the power amplifiers. As a final 
test to verify the entire procedure, the integrated amplifier-antenna system 
will be tested for directivity and gain,and the overall efficiency will be 
ca 1 cu 1a ted. 
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FI'GURE 3a POWER COMBINING ANTENNA, FEED NETWORK & POWER AMPLIFIER 

BLOCK DIAGRAM 

x .30" x .015" brass cavity. . , 

\

.6 11 X 2.6" ground plane metalization 
ring for attachment of the 2.5" x 2.5" 

r ' >" '; , > '." 

Wrap-a-round foil 
ground employed at 
all edges. '~ 

. ~' \ ... :">r.'''''-;'.''~'''T~ ~~ .. ; ...,- M1crostrip input 
~.,---, •• ,*,,' .,!!o ..... _._... K (four places) 

-"",'I:J " r -~~ 
.1 

- Radiating slot:; 

.u,~~ .,1. ... " ... ,. 

L i ' 

FIGURE 3b COPPER METALIZATION PATTERN FOR FOUR FEED MICROSTRIP ANTENNA 



~. i 
L 

;- . (, IJ~ t.' "l - ) 

• !l 

t . .--

' , ' 4 ~. ,. 

, " 1 L 

=:PAG£IS 
QUAIJI'Y 

. , . 
, t l i d ):) ' · 

• r- -
, ~ : , ' 

'" " 
" ',- 1. ( • 



, .. _ .... ca. •• ".'E._E. ". '1'1 ,. _ .... ce ... 

••••• 'I'. 

•••••• 

,.. '~'_-""E .. , ........ LE r"1 
.. ,.... • ••• •• z 

"1-"", II ••••• 
••••••••• ~ •• -~ •••••• - •••••••••••• # ••• ~ ••••• - •••• · . · · . . .. .. .. .. .. .. . .. .. .. ....•.... ,-.. ~ .. -.. -...•••..•. -..•... ,.-...... -. .. .. .. .. . · · . ····i·· .. . : ...... :-.- .. i·· .. . ; .... : ..... : ........ : ..... , ..... , 

.. ..... .. . . .... . ...... .. 
- ••• ~ ..... -:- .... ~. --- ~-.- .. t ...... "'!" ...... ~ .... ~ ••• - ! ..... ! · .. 

.... ..:..:.. .. 
........ ~ ...... -7"" .. --:- ...... :- ...... : ........ : ....... ~ ...... -.: ....... ! ........ : 

"'11';1&51,,1 • ~ . 

. . . 
' •• ".l.50t.1 ••• . . . 

----~----7---~-·--~-·--:---·:···-~---J----!----· 

...... ,"" 11' .... 

""tI' • 

INSERTIO~ lOSS 

. " 
a ..... ,". 

•••• ~ •• -.,.,c "'E'" ~. r"1 
.. ,.... • ••• •• z 

"1-"". _, •.••• 
......... _ .... ". ...... -.- ................................ .o' .... .,. ........ - ...... .. 

.. .......: .. . .. .. .. .. " .. .. .. .. .. 
9''''' _ .. _ ..... _, ...... ~ .............................................................. .. .. .. .. .. .. .. .. . . . .. 
····:··· .. :·_~ .. ·_~!,iii;~··· .. :··· .. ·:·~ , too ••• : : : : ~I,,,," : ~ : : 
• ••• \. ••••••••• .1 ••••••••• '""'-•••• " .... a~ ••••••••.• .. .. , .. . .. ,.. .. .. , . 

• ••• '~~~::~~~~~~~~~--~~~1f~~ . .. .,. . . . . .. . 
.... ~ ...... :.. ......... ~-~ ..... :- ... ; ...... ~ ... ..: ... ! ...... : 

~. . . , . 
".~~ .. -: ... .... i ......... i ........ ~ ... --: ... -.. -:- ..... i .. · .. ·~ ,. . . . .. . .. . . , . . , .. ~ . .. . .. . 

, ...... : ...... -;- ...... -:- ....... : ...... -K"'''' ": -.... -: ........ -:- ........ :- .. " ... : 
: : : : ~I."': : : : .. --·~----~--·~-·-·!····:·- .. -:-· .... i---~·--·~---·: . . . 

.Ii' '--...;-.-...:..-.:....-.-:-~-.;....-~-.-;-~-J,.... S' •••• ,". a' .... 
~."UI.CY 1 ... 11 

INSERTION PHASE 

• 

FIGURE 5 INSERTION lOSS AND INSERTION PHASE VERSUS FREQUENCY FOR 
THE STRIPlINE FEED NETWORK. 
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N82-12568 
SOLID-STATE RETRODIRECTIVE PHASED ARRAY CONCEPTS FOR MICROWA~i 

POWER TRANSMISSION FROM A SOLAR POWER SATELLITE 

I NTROOUCTI ON 

This paper describes two p~ototype solid-state phased array systems 
concepts for potential u~\" in the Solar Power Satellite (SPS). In 
both concepts, the beam it;; centered on the rectenna by means of phase 
conjugation of a pilot signal emanating from the ground. Also discussed 
is on-going solid-state amplifier development. 

The basic systems concepts are now described in more detail. 

2.0 OVERVIEW OF SOLID-STATE ARRAY CONCEPTS 

Two different solid-state array concepts are being developed at this 
time: The End-Mounted Space System (Figure 1) and the Sandwich 
(Figure 2). Both concepts use the same element and spacing, but in the 
end-mounted system 36-watt amplifiers are mounted on the ground-pl~ne, 
whereas in the sandwich the amplifiers are elevated to the dipoles, 
and their waste heat is dissipated by beryllium oxide discs. The feed 
lines are underneath the ground-plane, and a coaxial transmission line 
is carried all the way to the amplifier "input. (See section on RF 
Signal Distribution). Figure 4 in Section 4 shows the sandwich dipole 
laynut ir close-up view. 

3.0 SOLID-STATE PHASE CONTROL 

3.1 REFERENCE PHASE DISTRIBUTION 

Phase conjugation at the 10 meter by 10 meter subarray is used to steer 
the beam. The reference phase signal is distributed over the spacetenna 
aperture via a radio link. Figure 3 illustrates this method giving a 
perspective view of the top of the aperture. Two important features 
are: (a) the phase reference signal originates from a single transmit 
location at the rear of the aperture; and (b) phase reference and pilot 
antennas are orthogona ny pol arized wi th respect to the power' di poles 
to avoid feedback loops. Instead of an endfire (e.g., IICigarll) array, 
broadside arrays can be used for reference and pilot ~1c~-up. Both 
configurations shall be considered in more detail in future studies. 

The phase reference signal is distributed as follows: 

From the shaped-beam illuminator antenna an RF signal is distributed 
over a cone with maximally 90 degrees beamwidth. All reference pick­
up antennas see approximately the same signal strength. The local 
oscillator and driver amp1ifer is redundant. Large variations in 
aperture flatness can be compensated modulo 2 TI since bandwidth 
is of no concern for the reference phase signal. The phase at each 
subarray pick-up pOint is normalized with respect to a perfectly flat 
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FIGURE 1. END-MOUNTED SOLID STATE CONCEPT (REF. 1) 

END-MOUNTED SOLID-STATE CONCEPT CHA~~CTERISTICS 

o GaAs SOLAR ARRAY 
o GEOMETRIC CR = 2.0 
o DUAL END-MOUNTED MICROWAVE ANTENNAS 
o AMPLIFIER BASE TEMPERATURE = 1250C 
o AMPLIFIER EFFICIENCY = 0.8 
o ANTENNA POWER TAPER -, 10dB 
o ANTENNA DIAMETER = 1.35 km 

o POWER AT UTILITY INTERFACE = 2.61 GW PER ANTENNA 
(5.22 GW TOTAL) 

o RECTENNA BORESIGHT DIAMETER = 7.51 km PER RECTENNA 

Ref. 1) After: G. M. Hanley, SPS Concept Definition Study (Exhibit D), 
First Performance Review - 10 October 1979. 
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FIGURE 2. SOLID STATE SANmaCH CONCEPT RECOfI4ENDED FOR POINT DESIGN 
(REr. 1) 

PHASE DIST. TIWISMITTEI 
(lASEIt SENSING SYSTEM) 

RECOMMENDED SOLID-STATE SANDWICH CONCEPT CHARACTERISTICS 

CHARACTERISTIC PRIMARY SECONDARY 
SOLAR ARRAY TYPE GaAs MUL TI -BANDGAP 
EFFECTIVE CR 6 5 TO 6 
SOLAR ARRAY TEMP. (oC) 200 200 
AMPLIFIER BASE TEMP. (oC) 125 125 
AMPLIFIER EFFICIENCY 0.8 0.8 
ANTENNA TAPER RATIO (dB) 0 0 
ANTENNA DIAMETER (Km) 1.77 1.64 TO 1.58 
POWER AT UTILITY INTERFACE (GW) 1.26 1.47 TO 1.54 
RECTENNA BORESIGHT DIA. (Km) 5.10 5.39 TO 5.68 
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FIGURE 3. PHASE REFERr.~CE SIGNAL DISTRIBUTION SYSTEM AND 
REFERENCE SIGNAL CONTROL LOOP 
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unifo~ aperture by means of a servo loop shown in the bottom part of 
Figure 3. For each subarray center location, a phase delay differential 
("reference standard") is complJted which occurs for the two generating 
frequencies fRl and fR2 if the receiving antenna is located on a perfect 
plane. These delays Cln be calculated, and tuned in the lab to fractions 
of a degree. The output of the phase bridge then drives a phase shifter 
until the path delay differential equals that of the reference standard. 

Since this circuit is used at every subarray, the subarray center points 
are electrically normalized to show ¢ = ¢ constant across the entire 
array. This provides the conjugation cir~uit with the required reference 
phase. 

3.2 RETRODIRECTIVE BEAM CONTROL 

3.3 

A retrodi recthe control ci rcuH whi ch compensates for pilot-generated '1' 
beam shifts (without ionospheric effects) i~ the Chernoff circuit, with 
additional isolation added by (a) separating the pilot and power frequency 1 

paths, (b) u~ing orthogonally polarized radiating elements; and (c) 1 
providing the remaining isolation in separate bandpa~~ filters. The " 
total required filter isolation is 70 dB, according to preliminary pilot 
system calculations. 

This pilot system is predicated on IV 100 dBw pilot po~~er. The proposed 
implementation of this pilot system consists of a circular array of low 
to medium-gain elements placed at the periphery of the rectenna, on top 
of utility poles if necessary to avoid interference from the power 
collection ana transmission system. 

The system provides vastly improved reliability over a single-dish, con­
centrated amplifier pilot system, and also provides such a wide power 
tube when the near-field beam enters the ionosphere that certain 
ionospheric effects will be mitigated. If ionospheric tests show that 
delay compensation through the ionosphere is ~~quired, a three-tone 
pi lot system wi 11 be used as described i n th~ Phase Control Session. 

RF SIGNAL DISTRIBUTION SYSTEM 

The current baseline distribution system for the conjugated RF signal is 
the same for both solid-state concepts. 

Seven levels of corporate divisions provide equiphase fee~ing to the 
16,384 elements in each 10m x 10m subarray. 

The salient features of this distribution network are: w8ight of 0.67 
million ki110grams for the total array USing UT-47M; 250 C temperature 
capability; approximately 10dB ohmic loss (in addition to 42dB splitting 
loss). All layers of coax are pressed together behind the ground-plane, 
and very little thermal resistance is presented to the heat being radiated 
rearward from the ground-plane in the end-mounted concept, and toward the 
ground-plane (from the solar cells) in the sandwich concept. The com­
pOSite heat transfer will be established by the spacing between the 
ground plane and the solar cells in the case of the sandwich. 
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4.0 SOLID-STATE RADIATORS 
A number of elements have been considered for the reference phase 
pick-up and pilot-tone pick-up elements: Helices; disc-on-rod 
antennas; yagisi dipole arrays; slot arrays; patch-type microstrip 
arrays; and arrays of various other strip-type radiators. 

For the power radiators, all of the above array elements (except for 
high-gain end-fire arrays) have been considered but thin dipoles were 
selected because a) they lead to a minimum power requirement for 
the amplifier module; b) provide the necessary heat removal character-
istics, and c) yield maximum reliability. 

Figure 4 shows the dipole layout selected for the sandwich concept. The 
pilot pick-up slots are interspersed, but the power dipoles can be removed 
from this section if additional isolation is required, and/or space is 
required for the conjugation circuit. 

FIGURE 4. SANDWICH ANTENNA WITH DIPOLES OVER GROUND PLANE 
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s.o SOLID-STATE POWER AMPLIFIERS 

The assessment of solid-state devices for r-f conversion in the SPS micro-

wave power transmission system has included to date both an analytical effort 

and an amplifier developmerlt program. 

5.1 Analytical Studies 

The analytical study was carried out for Rockwell International at the 

University of Waterloo, Canada. The first phase of the study consisted of a 

computer simulation of bipolar transist~rs, in Class C and Class E type 

circuits. Both silicon and GaAs bipolar transistors were modelled. In the 

second part of the study, GaAs MESFETs were modelled in Class B and Cla~s C 

circuits. Work is currently in progress to obtain Class E results. 

The study was undertaken as an evaluation of transistors for the micro-

wave space power system. The goal was the determination of transistor fabrication 

parameters suitable f01' power conversion efficiencies of at least 80% with power 

gains of at least 10 dB. 

5.2 Bipolar Transistor Simulation 

The simulation is carried out by using two basic programs. The first 

program generates a circuit model of the transistor, from inputs consisting of 

the impurity profile and lifetimes, plus geometry data. The second program 

is a circuit analysis program where the device model is incorporated into the 

desired external circuit. The results of the bipolar transistor analysis in-

dicated that GaAs devices perform better at high temperatures with respect 

to efficiency than Si devices of similar geometrical parameters as shown in 

Figures 5 and 6. A comparison of Class C with Class E operation for the silicon 

transistor at 27°C, shows that at high power levels (20 watts) the saturated 

Class-C mode gives the best results (Figure 7), while at lower power levels 

(10 watts) Class C gives better results at gains below 13 dB and Class E 

performs better at higher gains, (Figure 8). 
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FIGURE 5. Results of High Temperature Study 
for the Silicon Transistor at 2.45 GHz 
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FIGURE 7. Efficiency vs Power Gain at 2.45 GHz 
and High Power Level for Silicon 
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Results of High Temperature Study 
for the GaAs Transistor at 2.45 GHz 
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FIGURE 8. 
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Efficiency vs Power Gain at 2.45 GHz 
and Low Power Level for Silicon 

• 8'5" if '-drs em r nt .4 



III.' 

,~--: 
' __ .... L'!ii" .. 

S.3 GaAs MESFETs Simulation 

1his study, currently in progress, fOllows the procedure used for the 

bipolar transistor simulation. A circuit model is generated by an appropriate 

program and is fed into the circuit analysis program. The devices modelled, so 

far, were basic one-cell structures, with low overall power output capability. 

The power output, power gain and efficienc,y obtained for the five structures 

modelled so far are shown in Figure 9. This figure shows plots of power 

added efficiency versus P tIP for each device, where the three values shown ou max 

correspond to conduction angles of 800
, 1200 and 180\). The dashed lines in-

dicate a mode of operation which cannot be attained physically, because the 

gate source voltage exceeds the breakdown voltage for that transistor. 

6.0 POWER AMPLIFIER DEVELOPMENT 

The goal of the power amplifier development program is to demonstrate 

that efficient operation at a 5 to 10 watt power level can be achieved with 

off the shelf GaAs power FETs and to show that the performance can be improved 

with optimized devices of similar type. The high efficiency power amplifiers 

are being developed for Rockwell International by RCA and will be discussed in 

a subsequent pr~sentation. 

GaAs devices were selected because of clata showing that GaAs performs 

better than silicon at the temperatures likely to be encountered in the SPS 

environment. Several transistor structures should be investigated to establish 

possible trade-offs with respect to power level, comparative efficiencies and 

reliability. Schottky barrier FETs are the first choice for'testing at the 

experimental level in view of the high degree of activity in their development 

due to their use as power devices at microwave frequencies. 
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* SOLID-STATE DEVICE TECHNOLOGY FOR SOLAR POWER SATELLITE 

NASA, Johnson Space Center sponsored a program, "Analysis of S-Band 
Solid-State transmitters for the Solar Power Satellite," based on the assu.p­
tion that a high-efficiency solid-state SPS transmitter may be feasible. 

The objectives of the study were to: 

o expand the understanding of the SPS transmitter concept 
and relate it to the possible utilization of solid-state 
(rather than thermionic) elements in the antenna array; 

o explore the need for technology development in the areas 
of devices, circuits, and interface configurations for a 
solid-state antenna array; 

o recommend specific technology advancement programs that 
could impact future SPS designs. 

An additional task, added to,ward the end of the program in agreement with 
the Technical Monitor, was to construct a sample solid-state amplifier, based 
on existing gallium arsenide FET devices, so that power, gain, and efficiency 
relationships could be experimentally explored. 

The study Was designed to explore independently aspects of the devices, the 1'1;, 

circuits, and the overall antenna system. Only toward the end of the inves­
tigations were these three elements brought together to provide an overall 
view of the solid-state antenna concept and to recommend follow-on technology 
investigation programs. 

DEVICE INVESTIGATIONS 

For any system configuration, devices providing the maximum pos~ible 
power at the highest possible efficiency would obviously be desirable. In 
practice, however, power must be traded off against efficiency, with efficiency 
the paramount parameter. When these factors are considered, gallium arsenide 
rather than silicon appears to be the favored material for the SPS application; 
the device used would be some kind of field-effect transistor of the type that 
combines high effidency and relative ease of fabrication. 

Thermal and electrical designs for both Schottky-barrier and junction-type 
FETs were presented at the conclusion of toe study,' Their purpose, rather than 
serve as device designs to be actually developed, was to highlight the considera­
tions likely to influence the choice of future programs. No clearcut prefer­
ence of one over the other was discerned at that point in the study. Devices 
providing 4 watts at greater than 80% power-added efficiencies were considered 
feasible. 

*RCA presentation at NASA, Johnson Space Center, Houston, TX, 17 January 1980. I 
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An actual amplifier stale was constructed with co.aercially available de­
vice.. It provided 3 watts of output p.')wer at an effic·i.~ncy of 58% -- results 
considered very good indeed. The unit was delivered to JSC at the conclusion 
of the study. 

One of the important reco .. endations of this part of the study was the 
undertaking of a follow-on experimental and theoretical program to ascertain 
the factors contributing to high-efficiency operation of microwave FETs. Pre­
vious experience with specialized large-signal computerized equipment pointed 
to the benefits of using this apparatus for the rec~~~~'lded follow-on study 
program. 

ANTENNA SYSTEM INVESTIGATIONS 

The Reference System (DOE/NASA Report, October 1978) served as a basis 
for the first phase of the antenna system investigations. 

If it is attempt~d simply to replace the thermionic devices contemplated 
in the Reference System by clusters of solid-state devices whose power is com­
bined to form equivalent transmitting elements, penalties in voltage-distribu­
ti.on losses, power combining losses, and thermal problems must be seriously 
cl~nsidered. From detailed analyses performed during our study, it soon became 
apparent that a solid-state replacement program of this nature, while it may 
contribute toward the overall reliability of the system, would fall short in 
terms of the operational parameters -- particularly in terms of a Factor of 
Merit measured in watts per kilogram. 

SPS design nomograph - lO-db taper. 

At that point in the study, again with the concurrence of the Technical 
Monitor, emphasis was placed'on a concept that considered direct conversion of 
sunlight into microwave power-generating modules, thereby obviating the need 
for voltage distribution altogether and essentially solving the thermal prob­
lems. Some specific problem areas peculiar to this approach were addressed in 
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the study -- e.g., the relative orientations of the solar array and the aicro­
wave antenna, the spacing of the antenna elements and, most importantly, the 
near-field properties of such an antenna. 

o,~ 
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SYSTEM POWER (MWl 

SPS design nomograph - uniform distribution. 

It was concluded that this type of system has Factor of Merit (W/kg) ad­
vantages over the Reference System, and that a tubular beam can indeed be 
created; a judicious choice of phase tapers made it possible to smooth power 
variations over the rectenna. Computer simulations of this type of antenna 
beam were performed at the conclusion of the study. Recommendations for adapting 
this approach, after further study, were made. 

We recommended that studies aiming at a fuller understanding of the factors 
affecting high-efficiency operation of microwave FETs and the circuitry associ­
ated with them be vigorously pursued. Large-signal waveform analysis of FET 
operation was identified as a necessary factor of these studies. 

MODULE INVESTIGATIONS 

The module study quickly yielded the (not unexpected) notion that the 
efficiency of the power module is the most important de~ign parameter, since 
it impacts very strongly the overall SPS cost in terms of dollars per watt of 
output power. Here again power combining iosses and primary power distribution 
problems pointed toward the concept of the solar-powered module; an analysis of 
the practical power limits placed the module somewhere between 0.5 and 30 watts, 
with the po~er-vs-efficiency tradeoff pointing toward an optimum value of 1.5-3 
watts. 

Two design concepts were shown in which modules were placed on a 1.3-X x 
1.3-X grid, with 16-module clusters controlled by a single receiv~r module and 
providing SO watts of transmitter power per cluster. As was the case with the 
device desiglls, both module design\> (a "high Q" version and a "patch resonator" 
approach) were meant to represent the approach rather than be specific. 

:~ 
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Patch - resonator design. 

The most important recommendation resulting from the module study was a 
strong inaication that any future efficiency optimization attempt should con­
sider the device-module interface as part of- the problem. Thus the large­
signal waveform analysis recommended for the device studies should be combined 
with similar analyses for the module circuitry. 

CONCLUSIONS AND RECOMMENDATIONS 

The JSC study program yielded the following conclusions: 

o It does not appear prudent to simply replace the thermionic microwave 
power converters in the Reference System by equivalent clusters of solid-state 
devices. 

o On the other hand, real benefits can be obtained if the system architec­
ture takes full advantage of the operating parameters of solid-state microwave 
devices. This leads to a concept of direct utilization of the solar-panel­
generated power by low-power microwave amplifiers (the so-called SMART concept). 

o The postulated 80% power-added efficiency of the microwave amplifiers 
appears ultimately achievable. Gallium arsenide FETs are the logical device 
candidates for this service. 
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i SPS SOLID-STATE AMPLIFIER 

NASA, Marshall Space Center through Rockwell In.ternational, is presently 
sponsoring the "SPS Solid State Amplifier Development Program." 

This program represents an extension of the effort perfo,.ed as part of 
the JSC study: its main purpose is to gain a better understanding of the fac­
tors contributing to the high-efficiency performance of GaAs FETs. Large­
signal waveform analysis techniques are a major investigative tool in the pro­
grail. 

The program is divided into two consecutive tasks, with present effort 
still under Talk A. This calls for the demonstration of an amplifier having an 
output power of 5 watts, a gain of 8 dB, and a power-added efficiency of 50,. 
In Task B the power output, gain, and efficiency to be demonstrated are in­
creased to 10 watts, 10 dB, and 65~, respectively. To date a survey of avail­
able devices froll a total of Sik domestic and for~ign manufacturers of GaAs 
FETs was made, and circuits using various device$ are being built and analyzed 
as the transistors are received. While "Class· E" operation was and continues 
to be of interest for the SPS application becausl.'" of its potential for very 
hi,h efficiency, it is by no means certain that such mode of operation can be 
obtained at microwave frequencies, and the work under the program is not re­
stricted to multipole operation of the FETs. 

As previously mentioned, computer-aided analysis techniques are used ex­
tensively in the program, not only in the normal small-signal device character­
ization mode, but also to define the available tradeoffs under large-signal 
operating conditions. Examples of such techniques are the automatic plotting 
of circles of constant efficiency, constant gain, constant power output, and 
constant intermodulation distortion on special instrumentation which exists at 
RCA Laboratories. 

Microwave CAD large-signal analysis. 
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In addition, we have demonstrated a technique for synthesizing current and 
voltale waveforms under FET amplifier full operatins power. This approach is 
also a powerful analytic tool in our investilation. 

Full-power-measured voltage and current waveforms. 

While the effort is still in progress and any attempts at projections of 
final results (even in Task A) are still considered premature, some very signif­
icant findings have already been made. When optimized for maximum efficiency at 
the SPS frequency, a power amplifier stage u~ll:'! a transistor designed for 12 GHz 
operation yie1de" 71% power-added efficiency, a very impressive figure that ex­
ceeds the requirements of Task B. 

This result was obtained at a power')utput close to 1 watt and a gain in 
excess of 11 dB. The mode of operation may be described as an inverted Class 
AB, since the drain current is highest at low rf drive and lowest at full rf 
drive -- the rf voltage turns off the device during a substantial fraction of 
the rf cycle, hence the high efficiency. However, when t.he same type of opera­
tion was attempted "lith a transistor of the same manufacturer (but rated at 
some~hat lower power output at 12 GHz), low efficiency was observed at 2.45 GHz, 
hut at a power output much closer to the rated value. These results are presently 
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under intensive investi.ation. The current and volta.e wavefo~ analyses are 
expected to sbed scae ligbt on the hitherto unexplained aspects of tbis type of 
FET perfor.ance. 

80th Task A and Task 8 will aake use of power-combining circuits in tbe 
final amplifier confiluration. A stud~' of such circuits is included in tbe 
program. 
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§.f!L~p-STATE ~PS TECHNOLOGY FORECAST 

Solid-State Technology is in a period of rapid growth in bott> the •• icro­
wave and the signal-processing areas. Specific applications of this technology 
in a variety of Ipaceborne systems occur with increasing frequency and effec­
tiveness. The roots of this great interest in solid-state devices, components, 
and integrated circuits have b~en, on the one hand, the commercial computer 
industry and its integrated-circuit logic components and, on the other, the 
military-systems interest in microwave solid-state devices. This trend is 
quite independent of the SPS concept. Thus the SPS will reap trem~ndous bene­
fits from the very large investments made in this technology, investments that 
are certain to continue in the future. 

I 

The directions of technology research pertinent to the SPS concept span 
the entire gammut of fields familiar to the solid-state industry--materials, 
devices, circuits, processing methods, and automated test procedures. In the 
~~miconductor materials area, gallium arsenide is presently the most important 
·',mpound for microwave applications, while ternary and quarternary materials 
are being investigated for use, particularly a~ the higher microwave frequen­
cies. The silicon-on-sapphire technology is lik~ly to provide the SPS solid­
state antenna wit~ an excellent technology base for substrate materials. 

New device concepts, in addition to the FET which presently appears to be 
the best candidate for amplifiers at t~e SPS frequency, are the vertical FET, 
the power HOS transistor, the SIT, and matrix transistors, all of which are in 
advanced stages of exploration at the present time. 

The most important area in circuit development is the teturn, after 
hiatus of some years, to t.he concept of microwave lumped-circuit design. 
circuits designed for microwave frequencies extend FET operation to very 
microwave frequencies. At 2.45 GHz, they permit extreme miniaturization 
amplifiers, making large distributed antenna arrays feasible. 

a 
Lumped 

high 
of the 

Finally, modern processing Methods -- e.g., ion-beam milling and plasma 
etrhing -- are likely to extend the techniques of the integrated-circuit chips 
to microwave circuits, while the selective impJantation of impurities by means 
of ion implantation and laser annealin" techniques point toward the fabrication 
of monolithic components directly on semi-insulating gallium arsenide. 

These comments are not intended to imply that the SPS components -- both 
for signal-processing and for conversion to microwaves -- will not require 
specific and vigorous development. The attached diagram is a rough indication 
of the various microwave components which require study, development, dnd re­
finement in manufactur.ing techniques. We feel that the two most important 
areas requiring immediate attention are the following: 

o THE CONFIRMATION THAT A SMART-TYPE SOLID-STATE ANTENNA IS INDEED 
WORTHY OF SERIOUS CONSIDERATION AND SHOUI.D THEREFORE FORM PART OF THE MAIN­
STREAM OF SPS STUDIES. 



, .. I 

o THE INITIATIO~: OF A SOLID-STATE POWER AMPLIFIER DEVELOPMENT PROGRAM 
AIMED SPECIFICALLY AT HIGH-EFFICIENCY SPS APPLICATION. THIS EFFORT SHOULD 
INCLUDE THE ACTIVE DEVICE AND THE MICROCIRCUIT HATCHING, INCLUDING ANTENNA, IN 
A SINGLE PACKAGE. 
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The presentation material herein wal ulld in 
the General Session lSetlion of the Sol .. Power 
Satellite Workshop on Microwave Power 
Transmillion and Reception held at the 
Lyndon B. JohnlOn Space Center, January 
15-28, 1980. The workshop wal conducted 
as part of the technical aaessment 
process of the DOE/NASA Solar Power 
Satellite Concept Evaluation Program. 
All aspects of Solar Power Satellite 
microwave.transmission and reception Were 
addressed including studies, analyses, 
and laboratory investigations. Conclu-
sions from these activities were pre-
sented as well as recommended follow-on 
work. The workshop was organized into 
eight sessions as follows: 

• G",.,./ 
• MicfOM'IB Syrtwm PlrforfTIIIIICl 
• Ph •• Control 
• Powr AmplifiBn 
• Rlldi.ting EIIfTI,nts 
• RBCtllnfIB 

• Solid StlltII ConflgufBtionl 
• Pl8nnld Program ActivitilJl 

The material contained herein~~P£le­
ments the workshop papers which were 
published and distributed at the time of 
the workshop. Together they are a com­
prehensive documentation of the numerous 
analytical and experimental activities in 
the field of microwave power transmission 
and reception . 

• Additional information 
r8(Jarding till workshop 
may bl obtainld by 
contBcting: A.H. Dietz 

EE4/SPS Microwave Systems 
National Aeronautics & 
Space Administration 
Lyndon B. Johnson Space Center 
Houston, Texas 7705B 
713 483-4507 
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NI\SI\ Solar Power 
Satellite 

Chronology 

Activity 18 18 70 71 72 73 74 75 71 77 78 78 80 

Concept presented A 
Initial system study 

NASA assessment 

Congresslc,nal study 

NASA In-house studies 

DOE assessment 

-

DOE INASA evaluation program 

• 
I 

-
II 
~ 

NI\S/\ Evolutionary program phasing 

Tim e 

Exploratory 
research 

--.--.--.--. 
PREC£DING PAGE &lANK NOT fUJIEp 
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NI\SI\ 

Objective 

Funding 

Program 
MII .. ton .. 

SOlar Power 
Satellite 

Concept Evaluation 
Program 

Tot! ..... .., ....... .,1_. _In ..................... _Ie........, 
.. til 8k' ........................ ~., ....... Power ........ cancepI. 

Program component. 77 7. 71 • T .... 
NAIA .,..... "."".", .. 1700 1_ _ .. 

DOE £ .. ",. ...... .-.. • ..,." 220 1_ 2010 1740 5110 
..,.,., ........... , . 114 137 137 _ 1_ 
eo.".,.".. ........... , 15 371 714 _ 1710 -----

Program Initiation 
a.Hllne concept selection 

77 

• 
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~-.. ~ . F...., 0 
Program recomm.,ndatlon 

",."". .. ~ 
updated 
F' .. el 

TECHNICAL WORKSHOP 

OBJECTIVES 

71 

o 
o 

• 

o 

ASSESS AND CRITIQUE: 

• THE ASSUMPTIONS 1 METHODOLOGIES AND CONCLUSIONS OF THE STUDIES 

• THE IDENTIFIED CRITICAL ISSUES AND THE FOLLOW-ON WORK BEING 
RECOMMENDED. 
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SPS CONCEPT EVALUATION PROGRAM 

SCOPE 

• COLLECTION AND CONVERSION OF SOLAR ENERGY IN SPACE 

• 'POSITIVE' TRANSMISSION OF ENERGY TO EARTH FOR COLLECTION AND CONVERSION. 

• SPACE CONSTRUCTION MATERIALS FROM EARTH - USE OF NON-TERRESTRIAL MATERIALS 
STUDIED OUTSIDE OF PRESENT PROGRAM 

• SPACE-BASED SOLAR REFLECTOR CONCEPTS NOT INCLUDED - 'SOLARES' CONCEPT STUDIED 
OUTSIDE OF PRESENT PROGRAM. 
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SPS OVERVIEW 
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t 
\ 

• SUM~ARY OF MAJOR CONCLUSIONS REACHED TO DATE 

. ~,"':?"'" -.. ~--~ 

SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON 

• PRESENT DISCUSSION LIMITED TO BASIC SPS CONCEPT: 
- SOLAR ENERGY COLLECTED AND CONVERTED TO ELECTRICITY IN GEOSYNCHRONOUS 

ORBIT (GEO) 

t ~ 
~ 

- MICROWAVE TRANSMISSION OF ENERGY TO EARTH 

I 

I: t 
• ALTERNATE CONCEPTS nOT CONSIDERED: 

- LASER TRANSMISSION 
I. !I 
~ 1 ..... 
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- LOW ALTITUDE SOLAR COLLECTORS 
- ORBITING MIRRORS 
- ETC .. 
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SPACECRAFT DESIGN DIVISION SPS SYSTEM 
L. E. LIVINGSTON 1 

• SPS CAN BE BASELOAD SOURCE OF ELECTRICAL POWER 

- CONTINUOUS SOLAR ILLUMINATION EXCEPT FOR OCCULTATIONS UP TO 
75 MINUTES DAILY FOR 6 WEEKS AT EQUINOXES (99%) 

- MINIMUM LOSSES DUE TO WEATHER EFFECTS 
- MOST FAILURE MODES RESULT IN GRADUAL OR PARTIAL POWER LOSS RATHER 

THAN ABRUPT, TOTAL OUTAGE 

• MAXIMUM POWER PER MICROWAVE LINK -5 GW 

- CAN BE AS LOW AS 3 GW WITH MODEST COST PENALTY 
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SATELLITE SIZING 

• 10 dB TAPER 
• 2.45 GHz 
• NOMINAL EFFICIENCY CHAIN 
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NOMINAL EFFICIENCY CHAIN 

~. 

---- SOLAR DISTANCE .9675 

• SEASONAL VARIATION .91 

SOLAR ARRAY 
SOLAR --J I I I I I I 
ARRAY 

{ 
.1455 (51, CR1) 
.1437 (GaAs, CR2) 

I I I I~ I I ARRAY POWER DISTRIBUTION .9368 

I ANTENNA POWER DISTRIBUTION .963 

___ OC-RF CONVERSION .85 TRANSMITTING 
ANTENNA .~ ANTENNA .9653 

A OOSPHERE .98 

4\ ENERGY COLLECTION .88 

...., RF-DC CONVERSIC:~ .89 

._---- GRID INTERFACE .97 

POWER GRID =: A 
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ENERGY CONVERSION - SPS MASS 
SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON I 
r-MASSCOMPARISON INDICATES ELIMINATION OF THERMIONICS 
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ENERGY CONVERSION - ~YCLE TEMPERATURE RATIO 

BRAYTON 

" TURBINE - 0.92 
1) COMP. 8'75 

CYCLE PhESS. RATIO· 2.30 
RECUP. EFF.· 0.66 

• 1~ KW SHAFT POwER PRODUCED 

• 1242 K (17760 Fl "~AX. TEMP 
• RADIATOR AREA IS "BOTH $IOES" 

COOLER lIC. SIDE EFFECTIVENESS· 0.92. 
COOLER GAS SIDE EFHCTIVENESS· 0.90 

RAfJKINE InDo 
""000 ! 

1·" ; 
~IOO ~ 
I ~ 

AREA. RADIATOR '700 $. 
106M2 EFfeCTIVE 1 ~ , L TEMPERATURE J 2 

50 15'0~ (00 ~ 
40 14.0 ~500 ~ 

fI ,., I '! TURBINE· 0.10 I e 
I I < 

lO ,3.0 r "'1400 -

I I ~ J ~ 20~2.0l- ~ 'I 300 II: 

o 0.25 O.lO 0.l5 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.10 0.15 

MINIMUM WORKING FLUID TEMPERATURE 
MAXIMUM wORKING FLUID TEMPERATURE 
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ENERGY CONVERSION - CAPITAL COST 
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CELL MATERIAL AND CONCENTRATION RATIO 

I I 
I 

I I 
I 

@ I ~ t 

CRI CR2 CR>2 

SIMPLE CONSTRUCTION LOWER MASS COMPLEX CONSTRUCTION 
HIGHER CELL EFFICIENCY FEWER CELLS LOW EFFICIENCY 

SILICON - CRl~ 

EFFICIENCY LOSS FROM INCREASED TEMPERATURE NEGATES 
ADVANTAGES OF CONCENTRATION 

GALLIUM ARSENIDE - CR2: 
SMALL EFFICIENCY LOSS MORE THAN COMPENSATED BY MASS 
AND MATERIAL SAVING 
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POWER DISTRIBUTION SPAC£CRAF~D£SIGN DIVISION 

L. E. LIVINGSTON 

• HIGH-VOLTAGE DC SYSTEM HAS MINIMUM MASS FOR PHOTOVOLTAIC SPS WITH 
SEPARATE ANTENNA 

- OPTIMUM VOLTAGE DEPENDS ON DC-RF CONVERSION SYSTEM 
- PLASMA INTERACTIONS MAY LIMIT VOLTAGE 
- ORDERS-OF-MAGNITUDE IMPROVEMENT IN SWITCHING SPEED OF 

STATE-OF-THE-ART DC SWITCHGEAR REQUIRED 

• AC SYSTEM MAY BE PREFERABLE FOR THERMAL ENGINE CONVERSION SYSTEM 

- AC GENERATORS 
- ROTARY TRANSFORMER INSTEAD OF SLIPRING 
- COMPONENT STATE-OF-THE-ART CLOSER TO REQUIREMENTS 

• LARGE DISTRIBUTION SYSTEM MASS PENALTY FOR SOLiD-STATE DC-RF CONVERSION IN 
SEPARATE ANTENNA 

• ROTARY JOINT WITH SLIPRINGS IS FEASIBLE 
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MICROWAVE POWER TRANSMISSION SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON 

• MICROWAVE POWER TRANSMISSION AT MULTI-GW LEVEL IS FEASIBLE 

• 2.45 GHz FREQUENCY DESIRABLE 
- PROPAGATION THROUGH ATMOSPHERE 
- ISM BAND UTILIZATION 
- ANTENNA, RECTENNA SIZES 
- HARDWARE TECHNOLOGY PROJECTIONS 

• PLANAR, SLOTTED-WAVEGUIDE PHASED ARRAY IS MOST EFFICIENT TRANSMITTING ANTENNA 

• 10 DB, 10-STEP GAUSSIAN TAPER OPTIMUM FOR RECTENNA COLLECTION EFFICIENCY 

• SUBARRAY SIZE 10M X 10M 
COMPROMISE BETWEEN MECHANICAL, ELECTRICAL REQUIREMENTS 

- 1 ARC MIN ANTENNA FLATNESS, 3 ARC MIN SUBARRAY ALIGNMENT 
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MICROWAVE POWER TRANSMISSION (CONTINUED) 
SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON 

• POWER AMPLIFIERS: 
- KLYSTRON FEASIBLE: HIGH GAIN, HIGH POWER, LOW NOISE: HEAT PIPE COOLING 
- AMPLITRON LESS SUITABLE: PASSIVE COOLING: LOW GAIN, LOW POWER, HIGH NOISE 
- MAGNETRON WARRANTS FURTHER INVESTIGATION: LOW NOISE, HIGH EFFICIENCY, 

SIMPLE DESIGN 

• PHASE CONTROL: 
- ELECTRONIC FOCUSING AND STEERING REQUIRED 
- CODED SIGNAL CAN PROVIDE SECURITY 
- RETRODIRECTIVE SYSTEM:. FAST RESPONSE: POSSIBLE CALIBRATION PROBLEM 
- GROUND-BASED SYSTEM: SELF-CALIBRATING: SLOW RESPONSE 
- HYBRID SYSTEM POSSIBLE 

• INDIVIDUAL RECTENNA ELEMENTS FEEDING RECTIFYING CIRCUITS IS MOST EFFECTIVE APPROACH 
BASED ON ANALYSIS AND RESEARCH 

• SOLID STATE SYSTEMS: 
- MAXIMUM POWER ABOUT 2.5 GW 
- LARGER TRANSMITTING ANTENNA, SMALLER RECTENNA 
- LESS MAINTENANCE 
- ADVANCING TECHNOLOGY BASE 
- FURTHER INVESTIGATION WARRANTED 
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~PACECRAFT DESIGN DIVISION 
STATIONKEEPING AND ATTITUDE CONTROL 

L. E. LIVINGSTON 

• SOLAR RADIATION PRESSURE IS PREDOMINANT ORBIT PERTURBATION 

- CONTINUAL CORRECTION NECESSARY TO AVOID EAST-WEST MOTION 
THROUGH ADJACENT ORBIT POSITIONS 

- ANNUAL PROPELLANT -60 TONNES 

• GRAVITY GRADIENT TORQUE IS PREDOMINANT ATTITUDE DISTURBANCE 

- SOLAR RADIATION PRESSURE ALSO SIGNIFICANT FOR ASYMMETRICAL 
CONFIRMATIONS 

1 

- BOTH DISTURBANCES CONTROLLABLE WITH DIFFERENTIAL THRUSTING DURING 
CONTINUOUS ORBIT CORRECTIONS; VERY LITTLE ADDITIONAL PROPELLANT 
REQUIRED 

• ANTENNA POINTING CONTROLLABLE BY MOMENTUM EXCHANGE DEVICES 
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STRUCTURE/CONTROL/MATERIALS SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON 

• BECAUSE LOADS ARE LOW, STRUCTURE REPRESENTS A SM.~LL PART OF THE SPS MASS 

• STRUCTURAL DESIGN IS GOVERNED BY STIFFNESS REQUIREMENTS FOR DYNAMIC STABILITY 

• TRANSIENT THERMAL ENVIRONMENT IS MAJOR CONSIDERATION 
- DAILY OCCULTATIONS AT EQUINOXES 
- MPTS DAILY SOLAR CYCLE DISTORTS ANTENNA 

• GRAPHITE COMPOSITE MATERIAL WITH LOW CTE ATTRACTIVE FOR STRUCTURE 
- THERMAL OSCILLATIONS MINIMIZED WITHOUT ACTIVE CONTROL 
- HIGH ELASTIC COEFFICIENT ENHANCES STIFFNESS 
- SIMPLIFIED DESIGN 
.. 3D-YEAR LIFE NOT YET ESTABLISHED 

• ALUMINUM USABLE 
- MUCH LARGER THERMAL DEFLECTIONS 
- HIGHER THERMAL STRESSES 
- INCREASED STRUCTURAL MASS 
- MORE COMPLEX DESIGN 

• PERFORMANCE VERIFICATION IS ONLY POSSIBLE BY ANALYSIS 
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SOLAR/THERMAL AND NUCLEAR CONFIGURATION CONCEPTS 
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LEO/GEO CONSTRUCTION 

• CONSTRUCTION IS POSSIBLE IN EITHER LEO OR GEO 

• LEO CONSTRUCTION: 

AERODYNAMIC AND GRAVITY GRADIENT LOADS MAKE CONSTRUCTION 
OF COMPLETE SPS IMPRACTICAL 

- MODULAR SECTIONS OF SPS CAN BE CONSTRUCTED IN LEO AND 
TRANSPORTED INDIVIDUALLY TO GEO fOR FINAL ASSEMBLY 

MOST PERSONNEL AT LEO 

POSSIBLE SELF-POWERED TRANSFER TO GEO 

• GEO CONSTRUCTION 

MONOLITHIC STRUCTURE 
FEWER PASSAGES THROUGH EARTH'S SHADOW 

- REDUCED COLLISION HAZARD FROM DEBRIS 
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MAINTENANCE SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON 

• MAINTENANCE OF OPERATIONAL SATELLITES WILL BE NECESSARY TO KEEP 
TRANSMITTED POWER AT REQUIRED LEVELS 

• MAINTENANCE FACILITIES CAN BE INCORPORATED IN CONSTRUCTION BASE 

• 60-SATELLITE FLEET WILL REQUIRE ROUGHLY 1000 MAINTENANCE PERSONNEL 
ON ORBIT 
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SPACE TRANSPORTATION 
EARTH - LEO 

SPACECRAFT DESIGN DIVISION 

L. E. LIVINGSTON I 

• TRANSPORTATION, PRIMARILY EARTH-TO-LEO CARGO, REPRESENTS ABOUT 1/4 
OF SPS CAPITAL COST 

• BALLISTIC HLLV 
- SMALLER, LIGHTER 
- LOWER DEVELOPMENT COST 

• WINGED HLLV 
- EASIER RECOVERY AND REUSE 
- LOWER OPERATING COST 
- OSABLE FOR PERSONNEL TRANSFER 

• CHOICE INFLUENCED BY LAUNCH RATE REQUIRED 

• DEPRESSED TRAJECTORY CAN PREVENT DIRECT INJECTION OF HLLV EXHAUST INTO 
IONOSPHERE 
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SPACE TRANSPORTATION 
LAUNCH SITES 

'>~~~~ 

- COULD SUPPORT CONSTRUCTION RATES UP TO 10 GW PER YEAR 

- SONIC OVERPRESSURE AND NOISE CAN BE KEPT WITHIN ACCEPTABLE LIMITS 

• EQUATORIAL: 
MORE FREQUENT LAUNCH WINDOWS 

- LESS PLANE CHANGE BY OTV 
- OFFSHORE SITES PRACTICAL IN WATER DEPTHS OF AT LEAST 600 FEET 

TERRESTRIAL TRANSPORTATION COST AND TRANSIT TIME (LOST REVENUE) 
ARE SIGNIFICANT CONSIDERATIONS 
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• SOLAR-POWERED ARGON ION ENGINE SYSTEM (EOTV): 

LOWER OPERATING COST 

LONG TRIP TIMES SUITABLE ONLY FOR CARGO 

- DEGRADATION FROM RADIATION IN VAN ALLEN BELTS 

• CHEMICAL SYSTEM: 

- COST ABOUT SIB MORE PER 5 GW SATELLITE 

- USABLE FOR BOTH CARGO AND PERSONNEL 
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Early Concepts 

1968 G .. .., 

1973 ADL/Grumm.n/R.ytheonl 
Spectrol.b Study tor 
NASA LeRC 
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Configuration COllcepts Circa 1972-4 
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SOLAR.BRAYTON POWER SYSTEM CONCEPT BRAYTON-PHOTOVOL TAlC COMPARISON 

·'THEREFORE, WHILE RECOGNIZING THAT SOLAR CELLI MAY ULTIMATELY 
'ROVE TO BE THE BElT SOLUTION. WE EXAMINED THE ALTERNAnVE OF A 
SOLAR CONCENTRATOR AND HEAT ENGINE." 
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ComllarisOll of Power Satellite Option Sizes 
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PHOTOVOLTAIC 
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SPS System Dermition Study 
Design Evolutions 

· .",""11--

PHOTOVOLTAtC 
SPS .. 

THERMAL EHGIHE 
. srS'S 

ORIENTATION 

10 GW BRAYTON 
MSFCltUOY 

'ART 1 MIDTERM 

IILICON CRI 
10GWEOL 

'ART 1 FINAL 

100l'TIONS 
SILICON GeA, 
CR Z CR' 
VARIOUS POWlR 

'A"T Z MID TE .... 

SILICON CR 1 
10GWEOL 

ANNlMAlL.1 
II MAINTENANCE METHOOI . -

'" 
'O. r .-• 

• • 1 
f ,:. , . 
r 

~ ~ ~ ~ ~~ 
~ D ~ 0 0 

... - INOT TO SCALI' 
BRAYTON WITH RANKINI 

ENLARGED -coNSTRUCTIONIZEo- PIP 
CONCENTRATORS BRAYTON 

Z» TON HLLV ON 'ROM 'IlSA .00. TON HLLY"I IIL'.fOWIR Oft 
HLLV STUDY CI:r;D SZOIICG! .'II .. IIODUUJ 

SPACE 13311(0 ~ •• TONHLL.Y ~ t ~ 
TRANSPORTATION I, A ~ ~ 

~ 0 A 
CONSTRUCTION IOUWMEHT ·CR·2 
CONe'."1 ~ CONSTRUCTION BAlI CR·' 
~ ClMTRUCTIGII 

CONSTRUCTIOH • - ~ -

BASES ~J . ~ 

R.K.HI PI, 
NON·DIGRADING 
CONCEHTRATOA 

CHIW PLASTIC 
.~FlUII DATAl 

· .~·f·~ ~.'" . 

CR-' taNlTlaUCftON MIl 
WITH ANTINNA fACIUTY 
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INTEGRATED SPS PROGRAM OPERATIONS " 
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SPS ~INT£NANC£ OPS 
fhJN • 

rl\~':~ -'-.." 
~ ~ ~ !!,[O Iqr 

:/ V SPACE /. SPS r .n. oPs 
/' TAMSPORTATlOII • ~=s L .iUAC UPS 

~_~ OPS '" • DE~:~' ST""N6 

~ ... , M ./ 

~~----~--------~~ 
/., • UU'ICIIIIf.ct1fER'I~// LEO lASE t. _: OPS y · EOTY COIIST '_ ____ I - --- · STAliI- ~OTOPS . .. __ "_ ~Ji - -- lIPS /~' ~"". _}j .. ...:~._ :..~ ~SS~OII COIITIOL OPS 
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COMPLEI CPS 

• IECTEnHA 
CONSTRUCTICII OPS 

• SURfACE TIWISP OPS 
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SPS RECURRING COST SUMMARY 

(1979 Dollars) . 
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, .11",.,# -
SPS HARDWARE AS COSTED 

LESS IMPLICIT AMORTIZATJON 
OF INVESTMENT 

S PACE TRANS PORTATI ON 

CONSTRUCTION OPERATIONS 

GROUND TRANSPORTATION 

RECTENNA 

MISS ION CO~'TROL 

PROGRAM MANAGEMENT & 
INTEGRATION 

COST ALLOWANCE FOR MASS 
GROWTH 

TOTAL DIRECT OUM Y 

4946 

473 
44i3 

3120 

961 

35 

2578 

10 

495 

76& 

12,432 

(Half of 10.61 .. per annum on 
8924 M for fadories and 
production equipmenU 

Based on SPS mass with growth' 

Includes-to support peopt~ on 
the ground per space worker as 
well as mnstruction base spares 

Equivalent to 14,000 direct people 

17ft 01 net SPS hardware emt 
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AMORTIZATION OF NONRECURRING COST 
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NI\SI\ Solar Power 
Satellite 

Outline 

• Concept EvaJuation Program 

• Historical Background 

• Reference System Overview 

• Solid State Configurations 

• Conclusions 

-:J4-
/ 

! 

-----------------------------------------------------------------

NI\SI\ 

Objective 

Funding 

Program 
Milestones 

Sola'r Power 
Satellite 

Concept Evaluation 
Program 

To develop by the end of 1980, an Initial unde,.tendlng of the economic practicality 
and the social and envlronmentel acceptebility of the Sola, Power 88telllte concept. 

Program components 77 78 79 80 Totel 
NASA Sy.tem. definition 2500 1700 1300 800 8300 
DOE En,'ronment, health, .a'ety 220 1940 2050 1740 5950 

Socleta' a •• e.sment 184 537 537 322 1580 
Compara",e a •• e .. m.nt 95 378 754 585 1790 -----

2979 4553 4841 342715800 
.-----. 

77 78 79 80 
Program Initiation • 
Baseline concept selection 

Preliminary • Flna' 0 
Program recommendation 

Preliminary 0 
Updated 0 
Final 0 

U'.JfY rr11'f.N't' ~,:~" t I") r / . Ilvn,;.l,·.! I.;., .n 
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48 

Early Concepts 

19680 ...... 

1973 ADL/Orumman/Reytheonl 
Spectro .. b Study for 
NASA LeRC 
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NI\S/\ Solar Power 
Satellite 

- 1 1964-MW Transmission Experiments -
Brown 

2 1969-1974/0rbit to Orbit Feasibility­
MSFClRaytheon - S130K 

3 MPTS feasibility - ADLlLeRC -
SZ50125K 

- 4 Lab DC-DC "1IGoldstone rectenna -
JPLIRaytheon - S785K 

5 Complete MPTS Study -
LeRCIRaytheon - S408K 

- 6 Rectenna improvements -
LeRClRay,heon - 98K 

7 Initial Technical/Env/Econ SPS Eval -
JSC 

8 SPS Engineering/Economic Analysis -
MSFC 

9 SPS Concept Evaluation -
MW System Trades - JSC 

-10 Phase 1 Technology development 
of CFA-LeRCIRaytheon - S235K 

~""'''.,'''''-~_ .. _~ .•. h .. ,_,',''_'._H_ .. ",_''~ I sNit:' {r1'ttw_M:..."""",,"""_~_\, __ ~._. 
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Studies/Experiments Microwave Power Transmission and Reception 
9H 11971 119.0 CY 11973 r. 975 1976 1 1977 11971 ························(·······················r····· ......•..........•••••....•••••••••••••.•• 

-Indicates 
laboratory 
investiqations 
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NI\S/\ Solar Power 
Satellite 

21 Solid State Device/Circuit Analysis -
RilWaterloo - S15K 

-22Thin waveguide/magnetron exp,­
JPLlRaytheon - $129K 

23 Electrostatic Protection of 
the rectenna - MSFClRice $53K 

24 Pointing Control Accuracy 
Analysis - MSFCIU of Tenn, - $10K 

25SPS Systems Definition Study (II) -
JSClSoeing - S1358K 

26 Class E Solid State rf amp -
MSFClDesign Auto - S14K 

27 Pilot beam xmtr sizing/ionosPheric 
effects - MSFClRaytheon - S25K 

28 S-8and Solid State xmtr analysis -
JSCIRCA - S30K 

29 Phase ContrOl Hardware Sim (III) -
JSCILincom - $185K 

30 Solid State Sandwich Power 
Transmission - MSFClRaytheon S50K 
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Studies/Experiments Microwave Power Transmission and Reception 
C1 1973 

1
1974 L 1975 11971 

~···········r···········1 ..••.......•••••••.•• 

-Indicates 
laboratory 
investigation 
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NI\S/\ Solar Power 
Satellite 

11 lonospheric/MPTS cost effects -
MSFCIEconlRaytheon - S26K 

12 SPS Systems Definition Study (I) 
JSCIBoeing - $1357K 

13 Ionospheric/beam interactions-
JSCIRice - $60K 

,I .14 VKS-7773 Klystron evaluation -

'I JSC Varian - $15K 
! 15 SPS Concept Definition Study -! 
i MSFCIRI - $7351113K , 

16 MPTS effects on rectenna I' 

performance - JSCIGutman 
17 Phase ContrOl Hardware Sim (1/11) 

JSClLincom - $145K 

~ ! 18 Rectenna directional elementsl 
! combining - JSCIRPI - S35K 

19 Subarray Alignment TechniQues-
UI JSCIAutomatic - $35K ... 20 SPS Concept Definition Study -

MSFCIRI- S572162K 

~_""~ ...... ~_,.,"-",-",.,",,,' mrg-f", t, hI:1!O:.a __ ~_.....,._", __ 

,.,,..~~ ... ...-, ........ ....,. ...,... •.. ., 
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Studies/Experiments Microwave Power Transmission and Reception 
CY IH73 1974 975 1978 1977 1971 !1971 1810 .. · · · · · · · ... , ..... · . · · . · .,. · · · · .. · · · .. , ......................... re···········r··········· .. ··········· 
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I· tndicates 
laboratory 
investigations 
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NI\S/\ Solar Power 
Satellite 

31 Offshore rectenna study -
MSFCIRice U - $68K 

032 Fiber Optics Evaluation/Phase Dist -
JSCIBoeing - $30K 

Cy 

033 Retro Phase Control Breadboard Tests -
JSC - $170K 

34 SPS Concept Definition Study -
MSFC/RI - $5001130K 

<15 Solid State Amphlifier Investigation -
MSFC/RI/RCA - $3001100K 

36 Solid State Device/Circuit Analysis -
R/lWater/oo - $15K 

37 Anlenna waveguide evaluations -
JSCIBoeing - $100K 

038 Solid State Power Combining Module -
JSCIBoeing - $50K 

39 Antenna Pointing ContrOl Study -
(JI MSFC/U of Tenn - $20K 
N 040 Phase Error Measurements 

on a-element array - JSCIJPL -
$100K 

~~-.... .............. ~-,.~.,--,._ .. ~_..- t' 9"") _~""'"~' 

~~~ 
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Studies/Experiments Microwave Power Transnllsslon and Reception 
1973 11974 11975 11971 11977 11971 11971 ~910 I 
........................ ~ ....................... ~ ..... ··················r···········r··········· 
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NI\S/\ Solar Power 
Satellite 

41 High Accuracy rf Measurement 
Techniques - MSFCIGIT - S20K 

-42 Magnetron Tube Assessment -
MSFC/Raytheon - S150K 

~ F 'W"-~""""""~" _. __ ._.~ ... _ ... rl""" ... "' __ ...... ~~_ 
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• TRANSMITTER DIAMETER - 26 m • RANGE (TRANSMITTER TO RECEIVER ) - 1.5 km 

• MiCROWAVE FREQUENCY - 2388 MHz • SYSTEM EFFICIENCY - 82 .5% 



NI\S/\ Solar Power DOE/NASA Reference System 
Satellite Report Oct. 1978 

• Data drawn from NASA & contractor studies 

• 5,000 megawatt SPS, one transmitter 
Silicon and gallium arsenide solar cell options 

• Klystron transmitter 
Magnetron & solid state recognized as potential options 

• GEO construction with independent electric OTV 

• TWO-stage verticaitake-off, horizontal landing 
rocket HLLV 

55 





~
~
~
~
~
=
=
~
~
=
=
~

~~~t-~
~
~
~

PAii;Ats~
~
~
~
~
~
~
"
"
"
"
 

O
f PO

O
R

 Q
U

A
LITY 

5
7 



! 
( 

j 

" , 

" ,"_~_e ________________________ --' 

NI\S/\ Solar Power 
Satellite 

:. ~ 
. 23mW/~ . . 

. 
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Characteristics 
of System Elements 
Sat."". and ".ct.nna 

Soler ,.,... Satel.1te 
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NI\S/\ SPS L'ilerowave System Terminology 

SPS Microwave System , , , 
Rectenna Transmit Antenna Array 

• , I , 
Rectenna Antenna Subarray Reference Phase Inverter 

7220lArray Dlstr System Blocks 

r 
, , • ~ PhaBe Control Power Module Centers 

Rectenna Arrays, Power 4 to 361Subarray 
Panels, Units, Combining 101 , 5521Arra y Distribution 
and Groups Networks J 

"Cables" 

• L Power Transponder 
Rectenna Radiating Module 
Element One/Power Mudu/e 

One/Power Module 

101,5521Array Microwave _ 101,5521Array 

~ AntelVl8 Elemanl Power t Pilot Recovery Rectifier ~ Feed Guides Amplifier 
& Conjugation Filters Diplexer J I Termination Cross Guides 70kW - Klystron Receiver 

One/Power Xpdr PIA Phase Control 

Solid State 101.5521Array & Noise 

• Suppression 
Thermal Control loop 
tHeat Pipe 

Radiators 

NI\S/\ Solar Power Microwave Power 

\ ... ~--,-.......... --,.,. 

70-kW 
heat-pipe­
cooled 
klystron 

Satellite 

Subarray 

Power module 

60 

Transmission Design 
Concept 

Main structure 

Transmit 
antenna array 

Power processing 
& distribution 
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Solar Power 
Satellite 

... 

Solar Power 
Satellite 

Step 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Tot ••• 

Transmitting 
Antenna 
Power Taper Integration 

Number 
Subarrays 

276 

632 

644 

628 

784 

900 

664 

612 

1,052 

1,028 

7,220 

Number 
Klystronsl 
Subarrays 

36 

30 

24 

20 

18 

12 

9 

8 

6 

4 

Array Pattern 
Roll-Off 
Characteristics 

Number 
Klystrons 

9,936 

18,960 

15,458 

12,560 

12,544 

10,800 

5,976 

4,896 

6,312 

4,112 

101,552 
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Power aeam Solar Power 
Satellite Formation and Steering 

a phase control concept 
Transmit 
antenna 

Phase Conjugator Reference cos [2 wot-80] 

+8(t)-80] 
:II!!I.~"-T---;;'~:"'" 

" Phase surface 
"~ pilot signal 

"" "'" Ionospheric Electron 
\ \ ",density irregularities 

\\ ,,/ Pilot signal 
)<'" transmitter 

.:.:.:.~ .~.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.' .. :.:.' .. :.:.:.:.:.:.:.:.:.:.:.:.' ,'.:.:.:. cos 'w t) ••••••• ::~ •••••••••••••••••••••••••• " ••••. ,............. •••••• • •••••••• ~................ ,', ••••• \I. 0 ....... :;:.:.\: ...............................••.•.••• '.'.' . .•.... ........•.......... ....... '.' 

Power beam / '\ / ~ 
cos [wot - 80] ~ /J /J /J /I /I /J ;&;f~ /I /11'11'11'1 /1 ~ 

Rectenna 

Solar Power 
Satellite 

Phase Control System 
typical 

~--------------------------~r-----------------, I Reference pha.e dI.trlbutlon .v.tem I I aeam forming and microwave I 
I I I eo!f!!.~"!'!t~_.!..~'! - - - - - -, I 

480 MHz reter.,nca I I ~",,~~;t~¥~ center SS RCVR 4 'I 
11"l! 1'1 

W,rl : "'~~ DIP +K< 
r- MSRTS-' r---'--' r----' II I tt: LPF .. VCO+HPA ~ 'I 

MSRTS 1 MSRTS 4t--+ MSRTS I ' I 
I I· I I 

: MSRTS + MSRTS +t+. I I ! r-L. s~;;i;:;':' -ss -;~;R ~ --~ =-l ! 
: MSRTS+ MSRTS+ • MSRTSmr· If DU'J.~ 
1 I !. II t.... LPF + VCO+HPA .",.,. :1 

MSRTS f MS~TS +j+ MS:TS.,. • IlL J II 
I • 1 • • • • I. I 880 MHz : 2450 MHz II 
I • 1 • I I r----- --- .!.-- - .,. ---,11 

MSRTS "'1 MSR"f~ H MSRTS H • I' Power tranaponcler III 
I :. I: CSSRCVR. I :11 

1 MSRTS.4 MSRTS H ... MSRTS I I , DIP .!.!a! 
I I I I' ~ I I-=" 

IL • I~ ... LPF "VCO+HPA~ : I 
1 MSRTS.4 MSRTS ~ I I • 111 
1 I· I' t 'II 

MSRTS I L MSRTS l MSRTS J,. • ILL.::. -- =..--= -:... -: - -~ == ~ : 
... 

L -L;vell-J L"81 2'.J L Levera-J· .. I f" Subarra;-7220 _G - - - - - -, II 

------------~------------- • I I 
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NI\SI\ Solar Power 
Satellite 

Phase Distribution 
System Building Block 

r.----------------------------, I MSRTS (maater alave returnable timing a,atem, I 
I Direct- r 1 
I lonal 480 MHz coup I I oupl ·Cable- r.1:~ I 
I r-------- -I I I r.- -, 
I " I I I 
I '2 LPF VCO I I x2 1 
I .hlft I 1 I 
I I I 1 
I I I 
I I 1 4 wa, 
I liPS 

L ____ I 

to 
4MSRTS 
packages 

480 MHz 880 MHz 

NI\SI\ 

Power splitter and 
x2 multiplier 

De. · MSRTS 

Solar Power 
Satellite 

Item Amplltron 

Power 5 kW with 10' tube. 

Efficiency 85 - 90% 

Features of 
Power Amplifiers 

Klystron Solid State 

50 - 250 kW with 10' tubes 1 - 3 W (5-10 W, 

80 - 85% 80% 

Cathode Cold pure metal Thermionic oxlde/matrlx 
(avail lite data 10,000 hfS.) (avail lite data 50,000 hrs.) 

Gain 7 dB 40 dB 20 dB 

Voltage 20 kV 40 - 65 kV 12 to 20 V 

Spurious Signal -100 dB/kHz 10 MHz -125 dBI kHz 5 kHz unknown 
AM (Typ.) from carrier awey from carrier 

M TBF 

Thermal dissipation 

Comparable to klystron 

Concentrated Interaction 
region 

Comparable to amplltron 

Distributed, collector can 
run 500-700'C, require 
heat pipes 

approx. 100 years 

100-125' C pa •• lve 

~ 
}; 

L
'~··· f: 

~!; , 

-"' , ~. 

Specific cost 
Specific weight 
Array Inter'ace 

'20/kW 
0.4 kg/kW 
Series operation 
no feed waveguide. 

'20 to '40 IkW 
0.4 to 0.8 kg/kW 
Power adjust s to voltage 
change., corporate feed 

63 

unknown 
0.01 to 0.03 kg/kW 
Device to antenna 
elemAnt 
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NI\SI\ Solar Power 
Satellite 

Electrical 
Power Out 

NI\SI\ Solar Power 
Satellite 

Half wave 
dipole antenna 

2 section low pass 
microwave filter 

Typical Configuration 
Rectenna 

Rectanna 
Elamant - typical 

Half wave schottky 
barrier diode rectifier 

DC buss bar 

\ 
~B . ypass (';,tpacltance 

Inductance and output filter 
to resonate 
rectifier circuit 

64 
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NI\SI\ Solar Power 
Satellite 

Typical Low Voltaga 
Reetanna Group 

,.--- ---- ------------------------- ---- -- ---------., ..- _____________________________________ -, Group 1 

> 
~ ,.... 

Diode 
string 
no. 1 

1 2 3 4 Unit 1 

g' 
'0:::: -(I) 
Q) 
c: 
to 
a.. 

> 
CD 
(') 

• 10 ... 

> 
10 
II'i ... 
t") 
N 
I 

eX) 

07' 
t") 1 .85V 5174.8V -30874V I j 

2315.6V 

+ . .... I L.. ____________________________________ .J 

N 

~ _________________ +_::O!!~~ ________ ... ---- _________ _ _____ oJ 

+3087.4V • -3087.4V 
Group 1 Output power 

._----_._-----

NI\SI\ Solar Power 
Satellite 

Microwave System 
typical parameters 

Frequency 2.45 GWz 

Output power to power grid 5 GW per antenna 

Transmit array size 1 km in diameter 

Subarray size 1004 m x 10.4 m (7220 per antenna) 

Power radiated from transmit array 6.85 GW 

System efficiency 63% 

Array aperature illumination a 10-step. truncated Gaussian amplitude dis­

tribution with 10dB edge taper 

Error budget Total rms phase error for each subarray = 10· 

Maximum mean phase error at edge of transmit array := 2· 

Amplitude tolerance across subarray = ± 1 decibel 
Failure rate of DC-RF power converter tubes = 2% (a maximum of 

2% have failed at anyone time) 

65 
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NI\SI\ Solar Power 
Satellite 

Microwave System, 
typical parameters 

Antenna/ subarray mechanical alignment ±3 arc minutes. with the grating lobes 
constrained to <: .01 mW Icm2 for a 
108 m2subarray 

Power density levels cente, of reet.",. 23 mW/cm
2 

edge of reete,.". 1 mW/cm2 

tlrst sid,.. lobe .08 mW/cm2 (approximately 9 Km from 
center of rectenna) 

Out-of-band noise <CCIR requirement of -1r,OdBW/m2Hz for arrival angles greater 
than 25· 

aeam formation and steering retrodirective phased array 

DC-RF power amplifier Klystron 

RF radlato,s aluminum slotted waveguide 

NI\SI\ Solar Power 
Satellite 

Solid State 
Sandwich Concepts 

---~----------~--------

1 2 3 4 

Flat primary I Flat secondary I Inclined RF reflector I Multi-antenna 
'aceted 'aceted antenna/single single multi- concept 
secondary primary 'aceted reflector faceted reflector 

---
66 
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NI\SI\ Solar Power 
Satellite 

SoI8r Array Structure 
Anten~l Out. Slip Ring 

. ,bZV.2 
Inn. Slip Ring 20m 

2.5 GW Solid State 
Configuration 
Separate Antenna 

. ' 
I 

t-7342•5m --t 

NI\SI\ Solar Power 
Satellite 

Thickness 6 cm 
Weight 3.58 kg/m2 

+Coax weight ~'""'" 

3cm 

:r"~ 
" 

'~ 

Truss / 
structure 

Alum. panel 0.4 mm 
(16 mil) thick 

.... r ArraYI 
Supported by 
Tenllon C.ten." 

Electric Propuilion 
for Attltud. Control 

I /" 
,/' 

Structure 0' Or.phlt. 
ComPOllt. Tri a.ml 

Solid State Dipoles 
Over Ground Plane 

Amplifier (4 per dipole 
""""iii:::~ In one housing) 

~~: I 

~ 3 layer$ of RF 
" linea (sub-min) 

-7.81 em 

I 
I 
I 
j 
I 
1 

I 

'< j 
-----------------------------,! 
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Antenn. Circuit .----...~ 

NI\S/\ 'Solar Power 
Satellite 

RF Converter Antenn. mounted 

SPS KIyItrOn 
Design orCFA Solid .tete 

Power output 
to grid SOW ,t.s OW 

Spece .ntenna 
dlemeter 11un 1.41un 

Rectenn. dlem .. er 
at 23mW/cm' 101un 7.1km 

Antenna 10dB teper 10 dB te ... 

:A ___ _ 

- , 4 

Solid stite 
Combiner-Radiator 
Module 

~-=------C.vIty 

K-____ Redletor 

-_ ......... ---.... Plete 

Microwave System 
Options 

SoI8r cell mounted (concentr.tlon r.tlo = 3) 

Optlcel r,rlfleclDr RF .. bator 

<P1! 
SoIId ... te Sold .... 

0.70W 0.2 OW per Iun' aoIer cella 

2.7 Ion H;gh pow_ w.vegulde 

3.1 Iun Not ......... lned 

Unllann AcIY.nced hom feb .... boIoId 
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NI\SI\ Solar Power 
Satellite 

Sandwich Concept CA2 
/,1 GW to Grid 

ConceptI, 
Size Comparison 

4.6 km 
, '\ ... "", 

NI\SI\ Solar Power 
Satellite 

Solar cell mounted 
(no taper) ~ 

Cost Trends 

-
Antenna mounted 

.( 10 dB taper) 
~ 

~ 10,000 CR=1- Approximate limit 
without 

-" 
o 
Q) 8,000· 
Q) 

"-
Q) 
Q. 6,000 -en 
0 
0 

4,000 Q) -'" E 
)( 2,000 0 
"-
Q. 
Q. « 

° 

selective 
reflector 

Solid state DC- ;-i 
RF converter limit 

1 2 
DC output to grid, GW 

~ Rectenna 
diameter 

Solid state 
Solar Power Satellite 

t f 300-500oC ... A 

69 

Thermionic DC­
RF converter limit 

3 4 

-1O 

-8 
E 
-" 

-6 '-
Q) -Q) 

-4 E 

'" 1J 

'" -2 
c: 
c: 
Q) -0 
Q) 

° a: 
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Solar Power 
Satellite 

Microwave System 
Conclusions 

1 Mlcro •• ve Po.er Tr.n ....... 1on Tr.nsferrlng glg .. watt power levels 
between two pOints using microtttaves Is fe.llble. 

2 One Antenn. WI Multiple Antenna. e.ch SPS microwave power 
transmission system should use one transmit .ntenna with contiguous 
radiating subarrays rathe, than multiple separate antennas. 

3 Frequency The power trarsmlsslon frequency of 2.45 GHz has been 
determined to have advantages for power transmission and reception based 
on system traaeoffs Including (1) transmit antenne and rectenna sizing, (2) 
propagation effects through the atmosphere, (3) hardware technology 
projections, and (4) ISM band utilization. 

,II Microwave SYltem Sizing Transmit antenna size (1 km), rectenna size (10 .. 
km minor axis) and power delivered to the utility grid (5 GW) have been 
determined based on the minimum cost of electricity per kilowatt hour. The 
tradeoffs assumed a maximum thermal limit on the transmit antenna of 21 
kW/m2, (tube configuration), maximum power density through the ionosphere 
of 23 mW/cm2, and the current projections of "'Icrowave system efficiencies. 
A microwave system using solid state power amplifiers will have a different 
thermal limit and different system efficiencies, resulting In different system 
sizes. 

Solar Power 
Satellite 

Microwave System 
Conclusions 

5 Type of Tranlmlttlng Antenna The transmitting antenna should be a planar 
phased array in order to meet thG requirement of maximum power transfer 
efficiency. 

6 Type of Receiving Antenna An SPS rec"".na concept thE/oretically capable 
of recove'ring all RF energy impinging on Its ,. f'· .... with direct RF-to-OC 
conversion provides the required maximuw, (J' .'(:' lon efficiency. 

7 Antenna Conltructlon and Sub.rr.y A'kI1T~!?, ~ons~ruction of a 1 km 
diameter antenna array with a ± 1 minut,,·/-::,··t:I.a tolerance appears to be 
within the state of the art if low eTE (coefm •. :lnt ot thermal expansion) 
materials are used. Antenna subarray alignments, both initially and realtime, 
can be maintained to ± 3 minutes by the use of Azimuth-Elevetion mounts 
and laser measurement techniques. 

8 Power aeam Stability Based on analytical simulations and experimental 
evaluatiol'ls it appears feasible to automaUcally point and focus the power 
beam with minimum beam wanter (~;.> l) and IJIJtomatic fail safe operation 
(rapid beam defocusing), 

70 



NI\SI\ 

.we 

Concept Development 
and 
Evaluation Program 

Assessment 
Information 
Organization 

f3,r";,ic Information reports from analyses, experiments 
.y;~" workshops 
• DOE/NASA • Universities • Industry 
• National Laboratories • Governmental Agencies • Consultants ... .. .. 
Reference Environmental Social • Comparative 
System Assessment Assessment Assessment 

Report Definition Report Report 
Report .. .. 

L • SPS Assessment ._---... 
Report 

• Ground Based Exploratory Development Program 

NI\SI\ Solar Power 
Satellite 

DOE/NASA GBED 
Program 

Overall • To provide information required to make a rational decision 
Goal on whether to proceed to a technolog'y verification phase 

of the SPS program 

Approach • Information generated through experiment, demonstration, 
and analysis, and would include: 

• Further development of system concept 
• Test/Demonstration of components necessary 

to construct and operate the system 
• Analysis of environmental effects and their mitigation 
• Assessment of economic f·9ctors including financing 

options 
• Programs to understand and solve problems in the 

international, institutional, and public concern areas 

-
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Program 
R •• ult. 

Solar Power 
Satellite 

" 

DOE/NASA GBED 
Program 

• Data base that specifies/reduces uncertainty in all critical 
areas so that a decision can be made for or against 
a commitment to a technology verification program 

• Selection of preferred system(s) 
• Definition of a technology verification program, 

including required space projects 

Ar,ea. • Systems analysis and technology 
to be 
addre •• ed • Environmental research and assessment 

NI\S/\ 

• International affairs, institutional relations, and 
public concerns 

Solar Power 
Satellite 

GBED - Systems Analysis 
and Technology 
Qbjectives 

• Resolve technology issues that affect decision to proceed 
to technology verification phase 

• Conduct carefully planned, critical experiments/ 
demonstrations in ground laboratories and in space 
as necessary 

• Reduce uncertainty with respect to 

• Performance 

• Reliability 

• Feasibility of production, construction, 
opera tion, and ma intenance 

• Costs, while conforming to onvironmental! 
societal constraints 
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Solar Power 
Satellite 

GBED - Systems Analysis 
and Technology 
Objectives 

• Support environmental, societal, and comparative 
assessments by providing analytical and experimental data 
as required 

• Define preferred overall system concepts, including 
alternate cOfnpatible subsystems 

• Define plans and projects that would be required in a 
post-GBED technology verification phase 

,-.------.--,..~-.. -.,-. ------------------
NI\SI\ Solar Power 

Satellite 
GBED - Systems Analysis 
and Technology 
Technical Areas 

• System definition studies 

• Solar energy conversion 

• Electrical power processing and distribution 

• Power transmission and reception 

• Space structures, controls, and materials 

• Space operations 

• Space transportation 
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Issue Trees 

1.0 System 
Definition 

Solar Power 
Satellite 

Milestone/Flow Chart 

1.0 System 
Definition 
Studies 

NI\S/\ Solar Power 
Satellite 

OBED Plan Format 

Project Summary Sheets 

1 .0 System definition 
studies 

1 .1 Reference system 

1 .2 Alternate conceptd 
1 .3 Technology impacts 

1.4 Environmentallsocietal 
and comparative 
assessment impacts 

1 .5 System analysis 
and planning 

GBED Plan Format 

Issue Trees Milestone/Flow Chart Project Summary Sheets 

4.0 Power 
Transmission 
and 
Reception 

4.1 Microwave 
Systems 

~ 

4.0 Power 
Transmillsslon 
and 
Reception 

4.1 Microwave 
Systems 

75 

4.0 Power transmission and 
reception 

4.1 Microwave systems 
4.1.1 Power amplifier 

performance (tubel 
sOlid-state) 

4.1.2 Microwave system 
performance (tubel 
solid state) 

4.1.3 Phase control system 
performance (tubel 
sOlid-state) 

4.1.4 Transmit antenna 
performance (tube I 
sOlid-state) 

4.1.5 Rectenna element 
performance 

NI\SI\ 

NI\SI\ 

Solar Power 
Satellite 

GBED - Power Transmission 
and Reception 
Key: Questions 

• Can the required performance be attained 
for SPS viability? 

• System efficiency 
.. Focusing and painting control 
• RFI 

• Can required long life and/or maintainability 
characteristics be achieved? 

• Can manufacturing techniques be devised to 
provide systems and components of required 
performance, production rates, and costs? 

Solar Power 
Satellite 

Microwave GBED 
Key Features 

• Provides quantitative data for microwave system 
• feasibility nnd performance verification 

• Uses existing speciai:zed facilities including 
anechoic chamber, EMC laboratory, antenna 
range, electronic systems test laboratory and 
environmental chamber 

• Includes microwave system integration and 
testing at full scale antenna subarray level 

• Integration and testing will provide data which 
can be extrapolated to the full scale SPS system 
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Solar Power 
Satellite 

GBED - Power Transmission 
and Reception 
Key; Questions 

• Can the required pei~formance be attained 
for SPS viability? 

• System efficiency 
• Focusing and pointing control 

• RFI 

• Can required long life and/or maintainability 
characteristics be achieved? 

• Can manufacturing techniques be devised to 
provide systems and components of required 
performance, production rates, and costs? 

Solar Power 
Satellite 

Microwave GBED 
Key Features 

• Provides quantitative data for microwave system 
• feasibility nnd performance verification 

• Uses existing special!zed facilities inchJding 
anechoic chamber, EMC laboratory, antenna 
range, electronic systems test laboratory and 
environmental chamber 

• Includes microwave system integration and 
testing at full scale antenna subarray level 

• Integration and testing will provide data which 
can be extrapolated to the full scale SPS system 
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NI\SI\ Solar Power 
Satellite 

Microwave GBED 
Key Features 

NI\SI\ 

General 
objectives 

• Includes decision point for solid-state versus 
power tube 

• Continue with solid-state, drop power tube 
project 

• Continue with power tube, drop solid-state 

• Continue with both solid-state and power tube 
development 

• Microwave subsystem development continues 
throughout program after supporting system 
integration and test phases 

Solar Power 
Satellite 

Microwave GBED 
Summary 

• Investigate critical technology areas 
• Phase control 
• Power amplifiers 
• Power tubes 
• Solid-state 
• Radiating module 
• Rectenna 
• System integration and performance 

• Develop microwave system and subsystem hardware 

• Verify system performance through subsystem and 
system ground testing 

• Obtain required data for predicting performance of the full 
scale SPS microwave system 

• EstabUsh SPS microwave system f.:rlterla and guidelines 
for continued development 

• Investigate potential microwave system/environmental 
impact areas 

", ___ c,'_,,,.-''' ______________________________ _ 
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NI\S/\ Solar Power 
Satellite 

" ........... ,-,~~---. 
~ -. ..,... 

Microwave GBED 
Summary 

Approach • Early test/facilities requirements definition phase 

NI\S/\ 

• Microwave system integration and test 
• Subsystem projects 

• Establish system Integration and testing project 
• Coordinate aU microwave activities 
• Progressive system integration tests 

• Power amplifier/phase control 
• Power module using low power klystron 
• Power module environmental (high power 

klystron with heat-pipe radiator) 
• Transmit subarray (10.4 M JC 10.4 m) using 

up to 36 power modules 
• Rectenna panellsubarray 

Integrated microwave system 

Solar Power 
Satellite 

Microwave GBED 
Summary 

Approach • Establish subsystem projects 
• Klystron 
• Klystron thermal control 
• Solid-state power amplifier/SPS system 
• Phase control system 
• Radiating module 
• Rectenna 

• Utilize existing specialized facilities 

• Obtain quantitative performance data 
at system/subsystem levels 

• Extrapolate performance to full scale SPS 

• System feasibility assessment and 
performance verification 
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Satellite 

The Shuttle provides transportation for space 
experiments and projects 

NASA-JSC 
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NI\SI\ 
Nattonal Aeronautics and 
Space Adr.1inistration 

Lyndon B. Johnson Space Center 
Houston. Texas 77058 
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Microwave 
Syatem 
Performance 

NI\S/\ Solar Power 
Satellite 

Workshop on 
Microwave Power 
Transmission 
and Reception 
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The presentation material herein was used in the 
Microwave System Performance Session of 
the Solar Power Satl?lIite l1forkshop on Microwave 
Power Tr::!llimission and Reception held at the 
Lyndon B. Johnson Space Center, January 
15-2B,19BO. The workshop was conducted 
as part of the technical assessment 
process of the DOE/NASA Solar Power 
Satellite Concept Evaluation Program. 
All aspects of Solar Power Satell ite 
microwave transmission and reception were 
addressed including studies, analyses, 
and laboratory investigations. Conclu­
sions from these activities were pre­
sented as well as recommended follow-on 
work. The workshop was organized into 
eight sessions as follows: 

• General 
• Microwave Syste", Performance 
• Phase Control 
• Power Amplifiers 
• Radiating Elements 
• Rectenna 
• Solid State Configutations 
• Planned Program Activities 

The material contained herein supple­
ments the workshop papers which were 
published and distributed at the time of 
the workshop. Together they are a com­
prehensive documentation of the numerous 
analytical and experimental activities in 
the field of microwave power transmission 
and reception . 

• Additional information 
regarding the workshop 
may be obtained by 
contacting: R.H. Dietz 

E E 4/SPS Microwave Systems 
National Aeronautics & 
Space Administration 
Lyndon B. Johnson Space Center 
Houston, Texas 77058 
713 483-4507 
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Microwave Performance Session 
contents 

1 Reference System Conclusions 
D. Arndt, Lyndon B. Johnson SPilCl' Center 

13 Reference System Description 
Gordon Woodcock, Boeinn 

27 Initial MPTS Study Results 
O. Maynard, Raytheon 

115 Antenna Illumination and Beam Shaping Studies 

~ Dr. Erv Nalos, Boeing 

135 Antenna Construction Techniques 
R. Ried, Lyndon B. Johnson Space Center 

155 Subarray Alignment Techniques 
R. Iwasaki, f\.xiomatix (xl 

193 Ionospheric Power Beam Studies 
W. Gordon, Rice University 

205 Ionospheric Pertubations on Uplink 
Pilot Beam Signal (Experimental) 
BilSll and Basll, Emilnllal University 

217 Ionospheric Pertubations on Uplink 

~ Pilot Beam Signal (Theoretical) and 

~~ 
Plattville Heating Test Results 
K. Davis, Sat toile Northwest Lahs 

~ 
and D. Arne! t, Lyndon S. Johnson Space Center 
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Transmit antenna power distribution 

~ 
DC-RF conversion 

~ 
Transmitting antenna 

~ 
Average atmosphere 

~ 
Rectenna energy collection 
(Includes 1() phase error. 
1 dB amplrtude error. and 
2percenr fat/ure rare) 

~ 
RF-DC conversion 

• DC power interface 
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1. Random 

4. Line Strips-
Center to Edge 

7. Radial Cuts 

Antenna Startup/Shutdown Configurations 

2. Concentri~ Rings­
Center to Edge 

5. Line 

" , -.. \ ,. , , 
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- I 
/ 

Strips 
Edge to Center 

, _.- - -, 
t 
t 
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• • 

8. Incoherent Phasing 

3. Concentri~ Rings­
Edge to Center 

6. Line Strips 
Edge to Edge 

I , 
• • • 
t 

( After antenna is radiating 
incohet'ently, subarrays are 
properly phased In a random 
sequence.) 

Noto: Increments of 10% power are used for all sequences. Antenna illwnination 
is a 10 dS gaussian taper. 
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SOLAR POWER SATELLITE PROGRAM 
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RELATED WORK - SYSTEM STUDIES AND TECHNOLOGIES 
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Feasibility Study of SPS ~ 

Mfc~ve Power Transmission Sy;tem Studies ~ 

Recept1on-Conversion SubsysteM (RXCV) fo~ --t:.. 
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TASKS 

• PRELIMINARY ANALYSIS 

• CONCEPTUAL DESIGN 

• TECHNICAL AND ECONOMIC 
EVALUATION OF SYSTEMS 

• DEVELOPMENT OF GROUND 
TEST PROGRAM 

• DEVELOPMENT OF ORBITAL 
TEST PROGRAM 

• REPORTING 
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MICROWAVE POHER TRANSMISSION SYSTEM SrUDIES 
- INTRODUCTION -

MAJOR VARIABLES 

• GROUND POWER OUTPUT 

• OPERATING FREQUENCY 

• DC-RF CONVERTER POWER LEVEL 

• DC-RF CONVERTER TYPE 
AMPLITRON 
KLYSTRON 

• TRANSMITTING ANTENNA 
SUBARRAY SIZE 

• TRANSMITTING ANTENNA POWER 
LEVELS 

• TECHNIQUES FOR COOLING 
TRANS~llTTER TUBES 

• BEAM CONTROL TECHNIQUES 

• TRANSMITTING ANTENNA 
ILLUMINATION PATTERN 

• PEAK RECEIVING ANTENNA 
Po\~ER DENSITY 

CO~~SIOERATIONS 

• SOCIO-ECONOMIC CONSIDERATIONS 

• POWER S(\URCE 

• OPERATIONS AND MAINTENANCE 

• FLIGHT OPERATIONS 
- TRANSPORTATiON SYSTEM 
- RE-SUPPLY 
- SPS FLIGHT MECHANICS 
- ORBITAL ASSEMBLY SYSTEM 

• ASSURANCE TECHNOLOGIES 
RELIABILITY 
SAFETY 
ENVIRONMENTAL IMPACT 

~ ___ . .. J 
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NOMINALCHARACTERtSTICS 

BOL POWER OUTPUT: 5375 MW 
MASS: 27,200,00 kg 
ORBIT: GEOSYNCHRONOUS 
LIFE: 30 YEARS 
OPERATING FREQ.: 2.45 GHz 
DC-TO-DC EFFICIENCY: 58~ 

SOLAR ARRAY EFF.: 9.2~ BEGINNING 
OF LIFE 

CONC. RATIO: 2 
ANTENNA TAPER: 10db 
SOLAR CELL MATERIAL: S; 

The Satellite Solar Power System 
Configuration Used in this Study 
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CONCLUSIONS AND RECOMMENDATIONS 

PLANAR PHASED ARRAY -1 KM DIA~1ETER OF AL OR COMPOSITES WEIGHING -6 X 106 KG. 

IBM X IBM SLOTTED WAVEGUIDE SUBARRAYS ELECTRONICALLY CONTROLLED TO DIRECT POWER BEAM AT 
GROUND WITH Rf.1S ERROR OF.., 10M. 

5 KW CROSSED FIELD DIRECTIONAL AMPLIFIERS IN SERIES OR 50 KW KLYSTRONS IN PARALLEL. 

• RECTENNA (-10 KM DIA) OF DIPOLES EACH INTEGRATED \HTH A SOLID STATE DIODE AND FILTERS 

• 
• 
• 
• 

WHICH CONVERT MICROWAVE BACK TO DC POWER. 

REC~1MENDED OPERATING FREQUENCY: 2.45 GHZ. 

RECOMMENDED GROUND POWER OUTPUT = 5.0 GW WITH 20 MILLIWATTS/CM2 POWER DENSITY PEAK. 

MPTS EFFICIENCY IS-60%. 

MPTS COST INCLUDING ORBITAL ASSEMBLY AND TRANSPORTATION IS-500S/KW. TRANSPORTATION COST 
ASSUMED TO BE 200$/KG. 

• CRITICAL TECHNOLOGY ITEMS OF MPTS NEEDING EARLY DEVELOPMENT ARE: 
- DC TO MICROWAVE CONVERTERS 
- MATERIAL 

ELECTRONIC PHASE CONTROL SUBSYSTEMS 
TRANSr1ITTING ANTENNA WAVEGUIDE INCLUDING INTERFACE WITH MICROWAVE CONVERTERS 
STRUCTURE 

• SIX-YEAR, THREE-PHASE CRITICAL TECHNOLOGY DEVELOPMENT PROGRAM RECOMMENDED AT ROM S2~1. 

• ORBITAL TEST PROGRAM OBJECTIVES DEFINED WHICH RELY ON SHUTTLE TRANSPORTATION SYSTEM TO DEVELOP 
AND DEMONSTRATE nRBITAL ASSEMBLY TECHNIQUES AND TO ESTABLISH LEARNING FOR COST AND SCHEDULE 
PROJECTIONS AT R .~ $3,50Qt,1. 
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SUMMARY AND CONCLUSIONS 
INITIAL MPTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

ISSUES/CONSIDERATIONS 

ENVIRON~1ENTAl EFFECTS- PROPAGATION 

RESOLUTION/STATUS 

• RECENT DATA INDICATE THAT IONOSPHERIC 
EFFECTS ON PILOT BEAM STABILITY AND PHASE 
MEASUREMENT ACCURACY WIll NOT BE 
INCONSEQUENTIAL. SEVERAL THREE-FREQUENCY 
APPROACHES ARE POTENTIAllY SUITED TO THE 
SOLUTION OF THE VARIOUS PROBLEMS. 

• FARADAY ROTATION HAS SMALL EFFECT. DURING 
AMBIENT CONDITIONS, ~0.5% lOSS; DURING 
DISTURBED CONDITIONS, -3~; LOSS. ORIENTATION 
OF RECEIVE ANTENNA TO AMBIENT ROTATION 
REDUCES lOSS FOR DISTURBED CONDITIONS TO 1% 
TYPICALLY 3 TIMES A YEAR. ANALYSIS OF TEC 
AS A FUNCTION OF TIME FOR EACH LOCATION I~ 

NEEDED. 
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ENVIRONMENTAL EFFECTS - PROPAGATION 
- FOR FREQUENCIES IN 1 TO 3 GHZ RANGE -

• ABSORPTION AND SCATTERING EFFECTS ARE SMALL EXCEPT FOR WET HAIL. 

• REFRACTION CHANGES AND GRADIENTS: 
CAUSE NEGLIGIBLE DISPLACEMENT OR DISPERSION OF THE HIGH POWER BEAM 

- DO NOT DEGRADE SIGNIFICANTLY A GROUND BASED PILOT BEAM PHASE FRONT AS SEEN AT 
TRANSMITTING ANTENNA 

• RECENT DATA INDICATE THAT IONOSPHERIC EFFECTS ON PILOT BEAM STABILITY AND PHASE MEASUREMENT 
ACCURACY WILL NOT BE INCONSEQUENTIAL. 
- SEVERAL THREE-FREQUENCY APPROACHES ARE POTENTIALLY SUITED TO SOLUTION OF THE VARIOUS 

PROBLEMS AND COULD BE ADOPTED TO MAKE THE PILOT BEAM CAPABLE OF OPERATING WITHIN 
RATIONAL PERFORMANCE SPECIFICATIONS IN EXPECTED CONDITIONS OF IONOSPHERIC BIAS AND 
STOCHASTIC FLUCTUATIONS. 

• FARADAY ROTATION HAS ONLY SMALL EFFECT FOR A LINEARLY POLARIZED RECEIVING ANTENNA. 

• 

• 

CHANGES IN ELECTRON DENSITY CAUSED BY POWER DENSITIES OF 20 mw/cm2 AND ABOVE AT 2.45 GHz 
NEED TO BE INVESTIGATED FOR POSSIBLE EFFECTS ON OTHER IONOSPHERIC USERS. 

POSSIBILITY OF HARMONIC RADIATION FROM THE IONOSPHERE (RFI EFFECTS) SHOULD BE INVESTIGATED. 
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1 KM ARRAY AT GEOSYNCHRONOUS 
(37.500 KM) ORBIT 

(
i1el ARC SECOND ELECTRONIC) 
STEERING ACCURACY 

L, POWER BEAM 

_-----PILOT BEAM 

-IOKM 
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GROUND 

10KM 

Schematic Rcpreaentation o( Power Beam and Pilot Beam 

ztttinnt"'fW _~=--N_' --., ............ --,----, ... -•.. ~ ...... ----. ........., ...... ,._ .. 

, -C'--l 
j: 
I' 



l.°r----~PI_!!II..... 

0.8 

\ 
0.6 , 

NTl , 

0.4 A 
0.2 SEVERE ~ \ 

THUNDERSTORM \ 
(40'" , 

P;:, " 

5 mm/HR 
UNIFORM RAIN 
PI> 5 mm/HRI - 1% 

ELEVATION PATH 
ANGLE LENGTH 

(50·' 4kM 
(20·' 10 kM 

O~_~ ______ ~I~ ____ ~I __ '~,~\_20_U_'_"~';~kM __ ~1 
1 3 6 9 16 30 

FREaUE'~CY (GHzI 

Transmission Efficiency - Molecular Absorption and Rain 

37 



i '~."-~~_~~~ .. _________ 1.".6 .. £ ..... an ...... ----az-.--------------------------

f f , 
P 

" 

;~ 
~ 

in 
1.\1 
1.\1 
a:: 
(!) 
1.\1 
0 

c:: 
Z 
0 
~ 
~ 
O 
a:: 

~ 
0 
4 
a:: 
it 
ILl 
~ 

en 
~ 
ell 
4 
1.\1 
:l: 
t-a:: 
0 
Z 

4.4 

3.52 

2.64 

1.76 

0.81' 

4.4 

3.52 

2.64 

1.76 

FREQUENCV : 2 .45 GHz 
NORTHEAST SITE 

JAN-JUNE 

~ ·-r--~r_t--It-~--to- 'tx-···-tC· .. ' i (, 
U • T • (HOURS) 

J LJ L. Y " D l:. C /' o 

"" 

\ 

. 
\Ie 
. ~ .- .... ~.) .. -. 

; 4 • a t. < 

.. '/ , . or1 

"-
.. / ... 

.. c 

~, . 
.' J 

,..,~ 

.. ··-t- .. t .... ·-t'+-t-· -tf,+-tZ'·, \14," \1 6 ' --'+-8 .. ··)0 ~ );.> • }.j 
U. r • (HOURS) 

0.6 

0.4 

0.2 .... 
ell 
1.\1 
1.\1 
a:: 
(.!) 
1.\1 
0 

0.1 a.. 
s::-
Z 
0 

~ 
N 

0.02 a:: 
4 
..J 
0 
a.. 
0 
t-
1.\1 
;::) 
0 
ell 
en 
0 

0.6 
..J 

~ 
U 
Z 
ILl 
U 
iA: 
IA. 

0,4 ILl 
ILl 
t: 
ell 

~ 
ell 

'"' 0.2 
ILl 
:l: 
~ a:: 
0 z 

0.1 

0,02 

Diurnal and Seasonal Variation in Faraday Rotation 0. 
and Polarization Mismatch II Loss" Tl 

P 

38 

, 

1 

I 
1 
1 

'.~ 



"*~"",,,,-,.",,~~~ __ m~ ~ '-. 

J 
~ 

FARADAY ROTA nON FOR NORTHEAST SITE 

• K 
Q -<. :2 (TEC) 

f 

• DATA BASE TEC DATA FROM H~~ILTON, MASS. (42.6oN, 70.8oW) (1967-1973 TIME FRM~E) 

• FOR AMBIENT CONDITIONS FARADAY ROTATION PRODUCES'< 0.5% LOSS @ 2.45 GHz 

• DURING DISTURBED CONDITIONS TEC INCREASES AND FARADAY ROTATION 
(FOR TEC OF 8.47 x 1017 ELECTRONS/M2) PRODUCES ~3.0% LOSS. 

• COMPENSATE FOR OISTURBED CONDITIONS - (ORIENT RECEIVE ANTENNA TO AMBIENT 
ROTATION) REDUCES LOSS FOR DISTURBED CONDTIONS TO 1% TYPICALLY 3 TIMES A YEAR. 

• WHERE LOSS IS IMPORTANT A STATISTICAL ANALYSIS OF TEC AS FUNCTION (TIME, LOCATION) 

WOULD BE REQUIRED. 
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SUiv-fMAR Y OF PK';'SE: I PILOT BEAM STUDY 

r-------------,------------------------------------~--------------------------------------------~ I _ 
';'.lU.~\ RESULTS OF STUDY RECO:-'.!!'.'!ENDATIONS 

1- h' jl0nOSp erIc 
ilnteractions 

I 
I 

Ipilot Beam 
.System 

"

communication 
5ystem 

Baseline concept not valid in ?resence 

of unstable transmission path. 

Alternate approaches recommended. 

Mitigating strategy to reduce phase 

fluctu2tions presented. 

Pilot System sized. 

Levels, of RFI from pilot beam 

provided. 

(Depends on freq. separation from 

carrier and size of 8ubarray). 

Requirement established. 

OfI-the-sheU standard comma gear. 

Low Power - 25 mW data links. 

1 W TV links 

Investigate alternate approaches vis-a-vis 

ionospheric interactions. 

Investigate mitigating strategies to reduce 

RMS phaae error. 

Investigate impact of t;ime fluctuations of 

power on interface to power grid. 

Develop experimental prograrn for GBER 

(powe r beam hea tin.Kl. 

Utilize approach which maximizes CI. This 

might conflict with ionospheric effects and 

ahould be atudied. 

Study implementation of alternate 

approachea described abcve. 

RF vs IF phase COt~jugation still r~uires study. 

Study decentralized vs centralized conce?:s 

(n~t a high priority item). 

, 
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IONOSPHERE INTERACTION REGION 

To PUot Beam Receiving Antenna. 
On Board SPS (37,000 km Height) 
Total Aperture s::: 1 km Dia. 

IONOSPHERIC INDUCED 
PHASE FRONT V ARIA TIONS 

PILOT BEAM PHASE FRONT 

Ionoapherlc Re8lon 
Perturbed 1& Modified > 

by Dowucoml .. Power 
Beam 

Pllot Beam 
Tranamltter 

Ground- Baeed 
~Monitor. 

Expanded view of ionospheric interaction region for both pilot 
beam and power beam 
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H~-tS SPATIAL PHASE ERROR 
AS OnSERVED BY 1 KM ARRAY 

TO SPS It 1 KM PHASED ARRAY 

IBM 500 KM 

r / ~ 50 M/SEC OR CHANGE ON ORDER 
OF O. 1 SECOND FOR PHASE 

SCINTILLATIONS 

.... * IRREGULAllrrIES 

100 KM 

I~ 1.5M 

2 -5 .7 X 10 KAU_ 

, __________ , __ GROUND 

PILOT BEAM XMTR 

E>;pandcd view of ionospheric interaction region (or pi''lt bt'am 
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METHOD 

SPATIAL 

DIVERSITY 

TEMPORAL 

DIVERSITY 

FREQUENCY 
DIVERSITY 

INCOHERENT 

COHERENT 

MITIGATING STRATEGIES TO REDUCE IONOSPHERIC INDUCED - . 

PtL:\SE FLPCTUATIOr--: 

:J .. ~PLEMENT ATZON 

TWO OR MORE .X),i',i'J1S ON 

GROUND SO PILOT BEAM 

TRAVERSES DIFFERENT 

IONOSPHERES 

AVERAGE PHASE FLUCTUATIONS 

IN TIME ·PERIOD LONG COMPARED 

TO STABn.ITY OF PROPAGATION 

PATHS 

~:-:':':".i.' APPLICABLE 

TRACK PHASE FLUCTUATIONS ON 

TWO FREQUENCIES 

OR 

THREE FREQUENCIES 

IMPROV EMENT 

( 
... .J/Z 

"NO. OF TRANSMITTERS) 

( 
INTEXlRATION TIME ,lIZ 

IONOSPHERE TIME CONSTANT) 

PHASE FLUCTUATIONS TRACK 
mCOHERENT AVERAGE DOES 
NOT SIGNIFICANTLY IMPROVE 
PERFORMANCE 
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IONOSPHERIC COLUMNAR ELECTRON DENSITY 
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o This function is a random proc~ss in the time domain. It has a ·non-zero 

o 

o 

o 

mean. 

This m~an value is called the ionospheric "bias." 

The "bias" is slowly ~hanging with time (1 sample every 15 minutes is an 

appropriate sampling rate). 

Superimposed to the "bias" there are random fluctuations (ionospheric 

scintillation phenomenon). Typical scintillation rates are between 

O.l/minute to lO/minute, requiring sampling rates of approximately one 

every 3 minutes to one every 2 seconds respectively. 
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The dashed line is a model spectrum used by Costa and 
Kelley (1976) to characterize the breakup of density 
gradients in upwelling structures. The Aolid line is a 
spectrum used by Basu and Basu (1976) to typify 
extended topside irregularities. 
(From Basu and Kelley, 1977) 
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• CORflECTEO 'Ofl 'HASE • 
SCINTILLATIONS ON I-lAND 3 
AEfEflENCE CHANNEL ',." .... , 

I :I 

2.45 GHz 

0.01 LL_ 
0.1 1.0 1O 

'flEQUENeY - GH. 

Frequency dependence of phase- scintillation index, during 
two 20 sec periods of the pass above Poker Flat, 29 May 
1976 compared with an f- dependence. 
(from Fremouw et ai, 1978) 

10 I III1iI I 1 
ANtON 
16 DECEMIEfI 1171 -a 

1 UNCEftTAINTY DUf TO .00 .r 
'HASE SCINTILLATIONS 

I 1.0 ON S·,IAND ftVUENCE co I .- CHANNEl •• -- .. -~ .. --- 30 

CORRECtED 
2a 

ftAW~ .... -- ---- 10 

0.1 ill.-1LL I 
0.1 1.0 10 

'ftEOU[NC,( - GH. 

Frequency dependence of phase scintillation index during 
two 20 sec periods of pass recorded at ."ncon on 16 Dec. 
1976, compared with an f~ 1 dependence arbilarily passed 
th rough the 413 ~1Hz data point. 
(from F'rcmouw et al, 1978) 
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Schematic Concept of the Doppler-Cancelling System. 
(Vessot and Levine, 1977) 
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ISSUES/CONSIDERATTONS 

DC-RF CONVERSION 

SuMMARY AND CONCLUSIONS 
INITIAL MPTS STUDY RESULTS - SUBSYSTHtS AND TECHNOLOGY 

RESOLUTION/STATUS 

• OPERATING FREQUENCY.RANGE OF INTEREST IS: 

PO~JER INTERFACE AND DISTRIBUTION CONTROL 
KL YSTRON: 1.0 GHZ TO 30 GHZ & 2. 45 r~pz I S GOOD 
CFDA: 1.5 GHZ TO 3.06 GHZ & 2.45 GHZ IS PREFERRED 

• POWER ADDED PER TUBE IS: 
KLYSTRON: 4.8 KW 
CFDA: 5 TO 10 KW 

• EFFICIENCY FOR TUBE IS: 
KLYSTRON: 80% GOAL 
CFDA: 85% WITH 90% AS REALISTIC GOAL 

• CONFIGURATION 
KLYSTRON: PARALLEL RF FOR DRIVE & 5 STAGES 
eFDA: AMPLITRON - CASCADE RF FOR DRIVE 

MAGNETRON - PARALLEL RF FOR DRIVE 

• VOLTAGE 
KLYSTRON: 40 KV 
CFDA: 20 KV 

j 
! 
1 , 
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DC-RF CONVERSION 

GENERAL 

• COLD PURE r~ETAL CATHODES FOR LONG LIFE. RECENT INVESTIGATIONS INDICATE HEATERS FOR START -UP 
OF CFA DEVICES CAN BE DESIGNED FOR LONG LIFE. 

• PYROGRAPHITE RADIATORS FOR EFFICIENT WASTE HEAT DISSIPATION. HEAT PIPES NEEDED FOR KLYSTRON 
TRANSFER OF HEAT TO RADIATORS. 

• SAMARIU!'l COBALT PERMANENT MAGNET FOR LIGHT WEIGHT AND LmJ COST. 
RECENT STUDIES INDICATE ELECTROMAGNETS MAY ALSO BE DEVELOPED FOR NOMINAL \~EIGHT AND COST 
PENAL TIES. 

• OPERATING FREQUENCY 1.5 GHZ TO 3.0 GHZ FOR CFA ~JITH 2.45 GHZ PREFERRED. FOR KLYSTRON FREQUENCY 
IS 1.0 GHZ TO 3.0 GHZ wi th 2.45 GHZ CONS I DERED AS "GOOD". . 

• OPEN TUBE CONSTRUCTION, POSSIBLY ~JITH CONTAMINANT BAFFLE, FOR HIGH RELIABILITY, SIMPLE 
THERr4AL CONTROL AND LOW ~JEIGHT. 

• FOR AMPLITRON. CASCADE CONFIGURATION REQUIRED BECAUSE OF LOW GAIN CHARACTERISTICS. 
FOR MAGNETRON AND KLYSTRON, PARALLEL CONFIGURATION REC0Mr4ENDED. 

FOR CFA 

• POWER ADDED 5 KW TO 10 KW PER TUBE WITH 5 KW PREFERRED. 

• EFFICIENCY WITH RF NOISE AND HAR~lONIC FILTERS IS CONSERVATIVE 85;;; IMPROVEt4ENT TO 90r
; IS 

REALI STI C GOAL. 

• REGULATION OF CONSTANT CURRENT OR CONSTANT PHASE BY MOVABLE POLE PIECE OR IMPULSE MAGtJET 
TECHNIQUE FOR HIGH EFFICIENCY. 

FOR KLYSTRON 

• SOLENOID FOCUSING AND POWER OUTPUTS OF 48 KW OR GREATER, WITH OUTPUT POWER DIVIDERS 
TO THE WAVEGUIDE. 

• COLLECTOR DEPRESSION NEEDED FOR HIGHEST EFFICIENCY: REQUIRES FURTHER STUDY TO DETERmNE 
PRAC1ICALITY OF REACHING 80% EFFICIENCY. 

• FIVE-STAGE DESIGN INCLUDING A SECOND HARMONIC BUNCHING CAVITY TO REDUCE NOISE BANOIHDTH. 

'~. __ M_~_.,.~,,"",--,",_, __ ~ __ ,,,,,,,,, ____ ~,_,_~_,,,,,~._-........-,,,--~_,,,",,,-._,""-•..•••. ~ ___ , __ 
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pm'IER INTERFACE AND DISTRIBUTION (ORBITAL) 

GENERAL 

I RECYCLING SWITCHGEAR (CROWBAR) NEEDED FOR PROTECTION AGAINST TUBE ARCING. 

FOR CFA 

I CONSTANT CURRENT REGULATION AT THE CONVERTER TO MAXIMIZE POWER OUTPUT AND MINIMIZE 
PHASE SHIFT VARIATIONS WITH VOLTAGE CHANGES. 

I POWER SOURCE VOLTAGE SHOULD BE 20 KV DC 

FOR KLYSTRON 
I UNREGULATED OPERATION TO MAXIMIZE POWER OUTPUT. 

I POWER SOURCE VOLTAGE SHOULD BE 40 KV FOR PRIMARY POWER. 
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RF OUTPUT 

WITH FILTER 

RFINPUT 
CONNECTION 

PURE METAL 
SECONDARY EMITTING 
CATHODE 

€: 
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MOV ABLE MAGNETIC SHUNT 

/ FOR REGULATION 

.;-SMCO MAGNETS 

SECTION A-A 

PYROL YTiC GRAPHITE 
ANODE AND CATHODE 
RADIATORS 

17 V ANE ANODE; 

Amplitron Assembly 
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100 

i90 

HU 

70 

Lv (.PEHATU'.G 

EFFICIENCY 1'.1 
50 

40 

30 

20 
0.,--1 fW' 

" 
l.u 1.S :l.4S 3.t' L (s 

FHEQUENCY lGHZ, 

Amplitron weight/ 
cost/Efficiency Vs. 
Frequency 

ANODE 
ANODE RADIATOR 

CATHODE 
CATHODE RADIATOR 

f.,V.GNET 

POLES 
"~PUT AND OUTPUT 
;.10TOR A'"O DRIVE 

SPEClrlC WEIGHT 
SPECIFIC COST 

108 GRAMS 

1000 
9 

71 

260 
100 

40 
30 

1618 GRMIS - 3.56 LB 

0.33 g.'w 

0.D18 Sfw 

NPTS 5 k~1 
!\;npli tron parameters 

.~~_¥.",~ . t __ ' ..... za:;w.~ 

~ 05 t- GO'.) 
... I 

FREQU[NCY = 2.5 "''', 
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::; g OOJ OJ ... 1 :r 
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~02 e 002 

\.. .,,"" -
COST 

~ 
~ --<3 S 001 '" 0 I "-.. 
'" :.::: 

0 0 
5 lQ 

POWER. t_WI 
1', 

Amplitron weight and 
Cost Vs. Power 

RF POWER ADDEO 5000 WATTS 

371 ANODE ELECTRON BOMBARDMENT 

ANODE CIRCUIT LOSSES 
CATHODE DISSIPATION 

DC INPUT POWER 

GROSS EFFICIENCY 

OUTPUT FILTER (JISSIPATION 

NET EFFICIeNCY 

171 
199 

57"7'1J,\TTS 

87% 

125\'IATTS 

55°,c 

MPTS 5 kW Amplitron 

power Budget 
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fo = 2450 MHz 
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fo 
• 

5 DB f.
, 

I. '- 9 ~TAGE 
i 1 STAGE 

-IO~--~~~~--~--~----~--~---+----~ 

LOW FREQUENCY ----l ~ -~v 9 STAGE (30 DB/OCTAVE) 

ATTENUATOR I i= 18~o BANDWIDTH 
(18 DB/OCTAVE) ~ 1.1/1 VSWR 

I ffi -30 1--; 
f: 1 t STAGE (30 DB/OCTAVE) 
< 20~o BANDWIDTH 

1.1/1 VSWR 
-404---~----~~~--~----~--~---r----~ 

.. -50 Ii STAGE~ J I ~~~ VSWR \ 

I" , , I , , ;'",' , I I. .. 604----t--,--,.-t-r,.-rt+---+---r-..,.-+,...,...,.,,-+---,i"!"i 
-1000 5 7- -100 5 2 -10 I +10 2 5 +100 2 5 +1000 2 5 

fc 
FREQUENCY FROM CENTER - MHz 

Am.plitron Equivalent Filter Characteristics (f = 2450 MHz) o 
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REF"LECTOR 
AND HEAT 

ELD 

BODY RAOIATOR 
87 CM RADIUS 
LINED WITH 
HEAT PIPES 

."LL OIMENSIONS ARE IN CENTIMETERS 

outline of 48 kW Klystron with Solenoid Focusing 
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o Ie 20 30 40 50 60 70 80 

OUTPUT POWER, KW 

A-ASSUME 84 PERCf.lH ELECTRONIC EffiCIENCY} I KW CONSUt.'ED 
B -ASSUME 75 PERCENT ELECTRONIC EfflCIENry BY SOLE-NOID 

• AND HE A Tt.H 

• 

Efficiency Vs Output Power for Solenoid-Focused Klystron 

ELECTRICAL 

VOLTAGE 38.9 KV OUTPUT POWER 48362 WATTS 
CIRCUIT 1.54 A OUTPUT CAVITY LOSSES 
GAIN 31 dB SKIN LOSSES 2038 
MICROPERVEANCE 0.2 INTERCEPTION 384 

OTHER INTERCEPTION 461 
WEIGHTS HEATER POWER 60 

MAGNET PLUS POLE PIECES 16300 GRAMS SOLENOID 1000 
TUBE 32374 COLLECTOR OISSIPATION 8755 

TOTAL 48674 GRAMS TOTAL BEAM POWER 60000 WATTS 

SPECIFIC WEIGHT 1.01 g/w OTHER POWER 1060 

TOTAL INPUT 61060 WATTS 
COST NET EFFICIENCY 79.2% 

SPECIFIC COST 0.039 S/w 

MPTS 48 kW Klystron MPTS 48 kW 
Parameters Klystron Power 

Budget 
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I Ito KLYSTRON EQUIVALENT J 
FILTER CHARACTERISTIC _ 
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\ • CAVITY TUBE 

I I I \. STAGGER TUNED AND 

-10 5 CAVITY TUBE 
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I 'I 
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l J \ 
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I J \ 
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I I / III \ I I 9 \. 

i/ 
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I ~ 

-50 ~ 
I V < '\ j • CAVITY TUBE _ 

~ z \ 
III (2. DB/OCTAVE) , 

I J ~ -60 , 

/ ~ \ \ I < 
V \ 

/ 
-70 
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.- f--

I ESTIMATED 5 CAVITY TUBE 

I I (2' DB/OCTAVE) i\ I ... -80 . 
I ' / \ I' 

V I \ 1 
~T 

V 
-90 

1\ \ , 
-100 

\ T 

j 
700 -500 -300 -200 

'i 7, i r 3, 21 
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70 50 30 20 to 7.0 5.0 4.0 3.0 2.0 
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1.0 1.0 
fO=2450 MHZ 
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FREQUENCY FROM CENTER - MHZ SCALE" FOR 5 CAVITY KLYSTRON 

Klystron Equivalent Filter Characteristic 
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I Constant 
~ No Regulation Constant Current Output Power 

~power Varies as VV2 Varies as V Constant, but 
Part of ava~l- All availab~e power is wasted ·1 

at voltages above 

Focusing 
and 
Efficiency 

Construction 

Phase Change 
at Output 

51-ability 

able power power used design minimum 
unused 

Experimental 
tests required 

Simplest: no 
modifications 
needed to 
constant-power 
tube 

About 22° for 
each percent 
voltage change 

Most stable 

Experimental 
tests required 

Requires a 
gridded gun 

About 22° for 
each percent 
voltage change 

Focusing may be 
unstable at low 
voltage 

Klystron Voltage Control 

Beam Trans­
mission falls 
with solenoid 
power. 
Efficiency is 
greatest at 
minimum voltage; 
least at maxi­
mum voltage. 

Require.s a 
complex and 
heavy collector 

None 

Collector may 
be unstable at 
low voltage 
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ISSUES/CONSIDERATIONS 

TRANSMITTING ANTENNA 

,~~~~-

sur·1f·1ARY Arm CONCLUS IONS 
IrJITrAL MPTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

RESOLUTION/STATUS 

• PLANAR ACTIVE PHASED ARRAY APPROXIMATELY 1 Kr1 DIA. 

• TRUNCATED GAUSSIAN WITH TAPER OF 5 TO 10 DB 
QUANTIZED INTO ABOUT 5 REGIONS OF UNIFO~1 POWER. 

• SECTORED INTO SLOTTED WAVEGUIDE SlJ\:,:',\,<.AYS 
IBM x IBM OR SMALLER DEPENDING ON SIZE, WEIGHT 
AND COST OF PHASE CONTROL, COMMAND CONTROL AND 
DRIVER ELECTRONICS FOR EACH SUBARRAY. 

• ALUMINUt1, GRAPHITE EPOXY AND GRAPHITE POLYIMIDE 
ARE CANDIDATE WAVEGUIDE MATERIALS. 

• INITIAL AND PERIODIC AlIGNt·1ENT OF LARGE 
SUBARRAYS MAY BE REQUIRED. 
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TRANSMITTING ANTENNA 

CIRCULAR, PLANAR, ACTIVE PHASED ARRAY ON THE ORDER OF 1 KM IN DIAMETER. 

ANTENNA ILLUMINATION WILL BE TRUNCATED GAUSSIAN WITH TAPER OF 5 DB TO 10 DB QUANTIZED 
INTO ABOUT 5 REGIONS OF UNIFORM POWER. ' 

ANTENNA SECTORED INTI) SUBARRAYS OF NO~lINAL DIMENSION IBM X 18M. THIS LARGE SIZE 
PRIMARILY DRIVEN BY HIGH ESTIMATES FOR PHASE CONTROL, COMMAND CONTROL AND DRIVER 
ELECTRONICS FOR EACH SUBARRAY INDEPENDENT OF SUBARRAY SIZE. REFINEMENT OF THESE 
ESTIMATES IS REQUIRED. 

SUBARRAYS ARE SLOTTED WAVEGUIDE RADIATORS FOR HIGH OVERALL BEAM FORMATION AND INTf~ 
CEPTION EFFICIENCY OF AT LEAST 95% FOR A CONTIGUOUS RECTENNA WITHIN THE MAIN LOBE. 

WAVEGUIDE WALL THICKNESS NOMINALLY 0.5 MM BUT ADDITIONAL INVESTIGATION MAY SHOW THIS 
CAN BE REDUCED: WIDTH IS 12 CM AND DEPTH IS 6 CM. 

ALUrHNUM, GRAPHITE EPOXY, AND GRAPHITE PLOYHUDE ARE CANDIDATE MATERIALS FOR SLOTTED 
~IAVEGUIDE. 

- ALUMINUM REQUIRES STRUCTURAL SEGMENTING AND VARIATION OF OPERATING FREQUENCY TO 
COMPENSATE FOR LONGITUDINAL THER~1AL DISTORTIONS. 

- GRAPHITE POLYIMIDE OFFERS HIGHEST TEMPERATURE MARGIN WITH MINIMAL DISTORTION, BUT 
ALL COMPOSITES MUST BE EVALUATED FOR STABILITY AND OUTGASSING PROPERTIES. 

- WAVEGUIDE MANUFACTURE AND SUBARRAY ASSEMBLY ON ORBIT IS RECOMMENDED TO ACHIEVE 
FAVORABLE LAUNCH VEHICLE PACKAGING DENSITY, SMALLER SUBARRAYS MAY REDUCE OR 
ELIMINATE THIS NEED. 

- MICROWAVE r'~TERFEROMETERS ARE RECOMMENDED FOR r·1PTS AND SPS ATTITUDE CONTROL AND 
FOR INITIAL AND PERIODIC ALIGNMENT OF SUBARRAYS USING SCREWJACK ACTUATORS ON EACH 
SUBARRAY. SMALLER SUBARRAYS MAY REDUCE OR ELIMINATE THIS NEED. 
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BEAM 

ADV,'NTAGES eCONVERTER MAINTENANCE 

DISADVANTAGES -MODERATE EFFICIENCY (90 _,I 
-ACTIVE HEAT TRANSFER 
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Subarri1y Types 

THERMAL 
"AOIATOR 

CYLINDRICAL ARRAY 

POWER 
BEAM 

AOI/AN'i'AGES eELECTRICAL OESPIN ELIMINATES 
AOTARY JOINT TO POWE" SOURCE 

OISAOIII.NTAGES eHEAVya COSTLY (N" X PLANAR) 
e ACTIVE HEAT Tt:lANSFER 
ePOWER SWITCHING COMPLE)OTY 

Alt8~native Array Types 
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TO GROUNO 
ANTENNA 

LARGE 
SUBARflAYS 

TO GROUND 
ANTENNA ATTITUDE 

ERROR 

PHASE CONTROL ELECTRONICS PHASE CONTROL ELECTRONICS 

OVERALL ARRAV ATlITUOE CONTROL 

TO GROUND ANTENNA 

TO GROUND AlHENNA 

POWER __ ..Jt,--_ POWER---~--T-----­
LOSS 

LOSS 1 

SU8ARRAY DISTOlnlON 

Subarray Size Considerations 



11111 1111 

250 SPS TOTAL COST 

-- - SUBARRAY CONTROLS COST 
;l (TRANSPORTATION AND ASSEMBLY' 200 $/KG) 

'" 0 200 FREQUENCY • 2.45 GHz 
2000 $/KW 

I 

\ r-
VI 
0 

\ \ u 150 
:a1 
101 

\ \ r-
VI 
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VI 

"-
1000 $/KW 

..J 100 
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w 
:a1 
w 50 IX: .......... __ eo')l. u 
~ ......... _ -- _ 50"1. CONFIDENCE 

--20"1. 
0 , , I 

5 10 15 20 25 30 35 

SUBARAAV DIMENSION - METERS 

SPS Incremental Cost vs subarray Size 
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I CONNECTING 
DRIVER 

\ 

AND FIRST 
AMPl.lTROI~ 

~ .~, .. >. CONDUCTORS RESISTOR 
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REF 
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NO, 18 AL POWER 

DISTRIBUTION ' '~.»<'" ,,, \ _ r- ONE USED 
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'-r-IICROWAVE: I CONTROL '. '-POWER LEADS 
CIRCUITRY , 

\ • AMPLITRON ',~. . FOR AMPLITRON 
\ \ • RECEIVING (Al.SO SERVE AS 
- ADJUSTABLE SOLlD-- ANTE~iNA THE FUSIBLE LINK 

SCREW JACK STATE FOR :J'lIVER 
DRIVER AND PHASE 

REF. SIGNALS 

Subarray Layout 
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AMPLITRON TUBES 
ALUM WAVEGUIDE 
WITH SHIELD 
T MAX" 51 0 C(1240F) 

AMPLITRON TUBES 
ALUM WAVEGUIDE 
T MAX: 52°C (126°F) 

AMPLITRON TUBES 
GR/EPOXY W.G. 

, WITH SHIELD 
, TMAX " 1410 C(Z86°F) 

AMPLITAON TUBES 
GA/POL YMIDE W.G. 
WITH SHIELD 
T MAX" 101 C (214' F) 

Subarray Deflection vs Size 
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SUMMARY AND CONCLUSIONS 
INITIAL MPTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

I 
i 

0\ 
\0 

ISSUES/CONSIDERATIONS 

PHASE FRONT CONTROL 
RESOLUTION/STATUS 

• ADAPTIVE (RETRODIRECTIVE) APPROACH NEEDED FOR 
MAXIMUM EFFICIENCY. 

• COMMAND APPROACH NEEDED FOR SAFETY AND BACK-UP. 

• ADAPTIVE PHASE CONTROL MECHANIZATION 

- CALIBRATED TRANSMISSION LINE AND/OR SUBARRAY­
TO-SUBARRAY TRANSFER OF REFERENCE PHASE DATA 

ANTICIPATE ADVERSE IONOSPHERIC MODEL 

- ORTHOGONAL POLARIZATION OF POWER/PILOT 
SIGNAL DESIRED 
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PHASE FRONT CONTROL 

• ADAPTIVE (RETRODIRECTIVE) APPROACH NEEDED FOR MAXIMUM EFFICIENCY. 

• COMMAND APPROACH NEEDED FOR SAFETY AND BACK-UP. 

• CALIBRATED TRANSMISSION LINE AND/OR SUBARRAY-TO-SUB~RRAY TRANSFER OF REFERENCE 
PHASE DATA FOR ADAPTIVE PHASE CONTROL MECHANIZATION . 

• PHASE ESTH1ATION FOR COMMAND MECHANIZATION. 

• INVESTIGATE BIT WIGGLE TECHNIQUE AS DIAGNOSTIC TOOL. 

• DETAILED INVESTIGATIONS SHOULD BE CONDUCTED TO MINIMIZE PHASE CONTROL ELECTRONICS 
COSTS, WEIGHT AND BLOCKAGE FOR EACH SUBARRAY .. 

~-~-.-.",,----. 
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GROUND PILOT CHARACTERI?TICS 

PILOT ANTENNA = 30 FEET DIAMETER PARAROLOID (60"1 • ." I FlO =0.4, GAIN = 63,4 DB 
RECEIVE HORN GAJN ~ 20 DB 
RECEIVEn PILOT SIGNAL = -57 DBM 
TRANSMIT PILOT LEVEL = 132 WATTS CW 

SPACE FED APPROACH (FRONT SIDE) 

ON-oRBIT REFERENCE r TRANSMIT HORN 
" FOR REFERENCE 

REFERENCE 
PICK UP HORN 

I 
~I·-----------IKM------------~·I 

REFERENCE RECEIVE HORN 
PYRAMIDAL OR CONICAL 
(CORRUGATED OR DUAL MODE) 

120 DEGREES 10 DB BEAMWIDTH FOR TRANSMIT 
HORN => I ~ X I ~ APERTURE AND ::: 10 DB GAIN 

RECEIVE HORN GAIN :.:: 20 DB 
TRANSMIT HORN GAIN AT ARRAY EDGE :::: 0 DB 
TRANSMIT HORN TO ARRAY EDGE DISTANCE = 559 M 
REQUIRED REFERENCE POWER = 3,3 KW 

TRANSMISSION LINE APPROACH 

I KM DIAMETER ARRAY 160 LONG PATHS (TOTAL) 

CHECK ON 
LONG PATHS 

BACK SIDE OF TRANSMIT ARRA Y 

5280 SHORT PATHS (TOTAL) 

CABLE WEIGHT = 3700 KG 
POWER LOSS = 424 W 

Ground Pilot and Phase Distribution 

72 
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SUMMARY OF PHASE I PILOT BEAM STUDY 

...., 
w 

\AREi\. 

!IonosPheriC 
/Interactions 

I 
I 

I 
I 
I 

Pilot Beam 
System 

RESUL TS OF STUDY 

Baseline concept not valid in ?resence 

of uns table transmis sian path. 

Alternate approaches reconunended. 

Mitigating strategy to reduce phase 

flucluations presented. 

Pilot System sized. 

Levels of RFI from pilot beam 

provided. 

(Depends on freq. separation from 

carrier and size of subarray). 

RECO~!MENDA TIONS 

Investigate alternate. approaches vis-a-vis 

ionospheric interactions. 

Investigate mitigating strategies to reduce 

RMS phase error. 

Investigate impact of time fluctuations of 

power On interface to powei" grid. 

Develop experimental program for GBER 

Jpowe!' beam he~~i~ . 

Utilize approach which maximizes M. This 

might conflict with ionospheric: effects and 

should be studied. 

Stl.ldy implementation of alternate 

approaches described above. 

r I RF VB IF phase conjugation still requires study.~ 

I 

1 

! 
1 
~ 

l"orrununication 
1_ :"stem 
I 

Requirement established. 

Off-the-shelf standard comm. gear. 

Low Pc',':er - 25 m W data links. 

1 W TV links I 
~ ____ -L ___ _ 

'~'~ .. ~>:!~~~.,~ ..... ~ .;.~ 07 

~..a.._"",,- >*ee W libt. __ ~.r_ ... ,~ .... ",""" _. ___ • __ ......... ~ ,,_-'-'~_, ... _ ...... "'_~~ sinl 

Study decentralized vs centralized conce;>ts 

(not a high priority item). 
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METHOD 

SPATIAL 
DIVERSITY 

T .E.\.iPORALSITY 
...., 
~ 

DIVERSITY 

FREQUENCY 
OIV ERSITY RSITY 

INCOHERENT 

COHERENT 

·.("'~~~ 

MITIGA TING STRA TEGIES TO REDUCE IONOSPHERIC INDUCED 

PHASE FLUCTUATION 

IMPLEMENT ATION IMPROV EMEl'.I7 

TWO OR MORE XMTRS ON 
-1/2 GROUND SO PILOT BEAM 

(NO. OF TRANSMITTERS) 
T RAV ERSES DIFFERENT 

IONOSPHERES 

'-~--J 
: 4 

Ii 

AVERAGE PHASE FLUCTUATIONS ( INTEx:;RATION TIME f/2 
IN TIME PERIOD LONG COMPARED ,IONOSPHERE TIME CONSTA."iT 

II TO STABILITY OF PROPAGATION 
PATHS 

NOT APPLICABLE PHASE FLUCTUATIONS TRACK 
INCOHERENT AVERAGE DOES 
NOT SIGNIFICANTLY IMPROVE 
PERFORMANCE 

TRACK PHASE FLUCTUATIONS ON 

TWO FREQUENCIES 

OR I ! 
t : , 
~ THREE FREQUENCIES , 
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f + 100 MHz 
o 

~i -lOOMHz / 

'~ /. 
V (MUTUAL 
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--- ---------- ~ MUTUAL COUPLlNG ~ 

COUPLED NOISE 

X\ j /' >- NOISE LEAKAGE 

~ ) f + 100 MHz 
o 

f 
o 

f-4 
...l II --. 
::> 
~ -

KLYSTRON 

f - 100 MHz 
o 

MONOPULSE -
COMPARlSON-

'" ~ 

Z 
,~ 

f ~ NEED lNTERFERENCE 
LEVEL :-, HERE o 

KLYSTRON 
LOOP BAND PASS 

FILTER TO 
REJECT 
POWER FREQ f o 

Interference Sources at SPS Subarray 
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NOISE - NOISE 
FLOOR -100 r FLOOR -110 dBM 

-1000 MHz 

(1450 MHz) 

-100 MHz 

(2350 MHz) 

-10 MHz 

(2440 MHz) 

-110 

-140 

-160 

-laO 

-200 

-220 
I 

-2 MHz +2 MHz +10 MHz 

(2450 MHz) {2460 MHz} 
fo 

Total Interference vs Pilot Beam Frequency 

, tp'trw"~~w L~~ __ ~' ~~~ < 

......... -, .... -----~....- .......... < ........ -........ - •. ,.,....~-

+100 MHz +1000 MHz 

(2550 MHz) (3450 MHz) 

j 
I 

\ 
1, 

j 

"d 
1 



r-
IP"'" 

.., 
Q) 

- -- - ----:;-~ - - ,,~ - - -

PILOT TRANSMITTER SIZING 

INTERFERENCE LEVELS 

• RECEIVER THER1.·1AL NOISE :: k t BNr'L 
° 

-23 0 
k :: 1.38 x 10 w-sl k 

t :: 2900
K 

° 
B :: 1.0 MHz 

Nr 

:: -228.6 dBw 

:: 24.6 dB 

:: 60.0 dB 

:: 2.5 dB 

:: 1. 5 dB 

'~'''''~' 

L 
-140. 0 dBw :: -110.0 dBm 

• DIPLEXER LEAKAGE OF KLYSTRON NOISE AT PILOT FREQ 

KLYSTRON CARRIER POWER, 50 KW 

NOISE IN 1 MHz (PASSBAND) 

KLYSTRON ROLLOFF @ 100 MHz ~ F 

DIPLEXER ISOLA nON 

:: 77.0 dBm 

:: -100.0 dBc/MHz 

:: -80.0 dB 

:: -30.0 dB 

-133.0 dBm 

• MUTUAL COUPLING NOISE FROM OTHER KLYSTRONS 

KLYSTRON CARRIER, 50 KW :: 77.0 dBm 

NOISE IN 1 ME.,. :: -100.0 dB 

KLYSTRON ROLLOFF @ ~ F :: 100 MHz :: -80.0 dB 

MUTUAL COUPLING :: -40.0 dB 

-143.0 dBm 
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Based on lSC 

LOSS POWER LOST COST TO SYSTEM SPS production 
cost of $?'2. 98/ SiT !l!L IN POWER (XMIT 7.36 GW) '!'O REPLACE 
10 GW = SZ30lKW -

0 
30 dB 1.8 0.1% 8.07 MW $1.9M 
40 dB oro 

.0 0.010/0 807 KW $186K 

Sil :: io dB ~ S :: -80 dBm :: -110 dBw = 10-11WATTS 

PTGrA. ., -11 7 . 2 
:: 10 WHERE R = 3.8 x 10 m &.A:: 0.5 (10. 2m) (11. b4m) :: 59. 4m 

4n R--

3 
PTGT :: 3.054 x 10 

G
T 

:: -n CT D )2_ A - 45.4 dB FOR D = 10m, A 

P T = 0.089 WATTS @ 6 F :: 100 .1~Hz 

USE FULL SUBARRAY 

= 0.12m, " = 50% 

P T & GT VS. ~F (lO. 2m x B. 64m SUBARRAY) 

Antenna 
~ F (MHz) Dia. m 

1 10 

1 30 

5 10 

5 30 

10 10 

~':?J 10 
" .~!' 10 ,; ..... \ 

G
T 

(dB) p* 
T 

45.4 44.6 KW 

54.9 5.0 KW 

45.4 44.6 KW 

54.9 5.0 KW 

45.4 141 W 

45.4 0.1 W , 

45.4 0.1 W ) 

Pilot T ransm.itter Sizing 

*p T ~ 25 times greater if 

1/50 subarz:ay used (cen~ral 

Klystron module) and 

aperture 11 - 100%. 

Thermal 
Noise Limited 
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SUMMARY AND CONCLUSIONS 
INITIAL MPTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

ISSUES/CONSIDERATIONS RESOLUTION/STATUS 

MECHANICAL SYSTEMS AND FLIGHT OPERATIONS • ALUMINUM, GRAPHITE EPOXY, AND GRAPHITE-POLYIMIDE 
TYPES OF MATERIALS RECOMMENDED FOR FURTHER 
INVESTIGATION 

- LOW THERMAL DISTORTION REQUIRED AND HIGH 
TEMPERATURE OPERATION WITH HIGH POWER DENSITIES 

• OUTGASSING OF MATERIALS AND VEHICLES TO BE 
INVESTIGATED TO ASSURE NO ADVERSE CONTAMINATION 
OF OPEN ELECTRONICS. 

________ ~~~ Y' $; rP't' ,-x Mt,?,t tre 'ttft "S "1« 
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• 

t·1ECHANICAL SYSTEMS AND FLIGHT OPERATIONS 

MP..TERIALS - P .. LUMINUM, GRAPHITE EPOXY, AND GRAPHITE POLYIMIDE - ARE RECOM~'ENDED 

AS CANDIDATES. 

• COMPOSITES ARE ATTRACTIVE FOR LOW THERMAL DISTORTION AND HIGH TEMPERATURE OPERATION 
(POLYIMIDE), BUT ULTRA-VIOLET COMPATIBILITY AND OUTGASSING LEADING TO RF GENERATOR 

CONTAMINATION NEED INVESTIGATING. 

• SEVERAL MORE PURELY STRUCTURAL ORIENTED CONCLUSIONS AND RECOMMENDATIONS ARE INCLUDED 

IN SECTION 1 OF NASA CR-134886. 

J , 1 
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SUMMII.RY AND CONCLUSIONS 
INITIAL t~PTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

ISSUES/CONSIDERATIONS RESOLUTION/STATUS 

RECEIVING ANTENNA • ARRAY OF INDEPENDENT ELEMENTS TO COLLECT AND 
RECTIFY INCIDENT MICROWAVE POWER FOR LOW COST 
AND HIGH EFFICIENCY. 

• LINEARLY POLARIZED DIPOLE WITH GaAs SCHOTTKY 
BARRIER DIODE RECOMMENDED. 

• RECTENNA EFFICIENCY IS 84% WITH 90% GOAL. 

• SUPPORT STRUCTURE REQUIRES IN-DEPTH DEVELOPMENT 
OF CRITERIA AND CONCEPTS FOR LOW COST. 

• POWER INTERFACE TO USER NETWORK ~.£EDS DEVELOPMENT 
TO REACH 92% AND GREATER EFFICIENCY. 
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• 

RECEIVING ANTENNA 

AN ARRAY OF SMALL INDEP.ENDENT ELEMENTS ABLE TO COLLECT AND RECTIFY INCIDENT MICROWAVE 

POWER IS REQUIRED ~OR LOW COST AND HIGH EFFICIENCY. 

• A LINEARLY POLARIZED DIPOLE WITH GaAs SCHOTTKY BARRIER DIODE IS RECOMMENDED. 

• RECTENNA COLLECTION AND CONVERSION EFFICIENCY IS 84% AND A REALISTIC DEVELOPMENT 

GOAL IS 90%. 

• 

• 

SUPPORT STRUCTURE IS MAJOR COST ITEM REQUIRING FURTHER IN-DEPTH STUDY OF TERRAIN, 

SOILS MECHANICS, AND ENVIRONMENTS TO BE ESTABLISHED. 

POWER INTERFACE TO THE USER NETWORK NEEDS DEVELOPMENT TO REACH 92% AND GREATER 

EFFICIENCIES. 
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REOUI~EMEi'-lT FO>:. 
RECEPTION & RECTIFICATION 
OF SPACE-TO-EARTH POWER 
TrANSMISSION 

NO N-DIRECTIVE APERTURE 

t-

t-lIGH ABSORPTION EFFICIENCY 

HIGH RECTIFICATION EFFICIENCY 
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ISSUES/CONSIDERATIONS 
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INITIAL r'1PTS STUGY RESULTS - SUBSYSTErlS Jl.~m TEC~rWLOGY 

RESOLUTION/STATUS 

RADIO FREQUENCY I;lTERFERENCE AND ALLOCATION • 2.45 GHz RECOMMENDED. 

00 
\0 

• HARMONIC FILTERS ARE NEEDED. 

• SENSITIVE RECEIVING SYSTEMS NEED NOTCH FILTERS 

TO PROTECT AGAINST ~1PTS HARMONICS. 

• r~UL TIPLE SPS INSTALLATIONS REQUIRE ItJ-DEPTH 

mVESTIGATION. 
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KADlO FRC:~'JEi;CY rnERFERENCE AND ALLOCATIorJ 

GENERAL 

• 2.45 GHZ IS RECOMMENDED AS OPERATING FREQUENCY. 

• HARMONIC FILTERS AT THE RF GENERATORS ARE NEEDED TO MEET COMMERCIAL SERVICE 

REGULATIONS. 

• RADIO ASTRONor~y AND SmILAR SENSITIVE RECEIVING SYSTEMS I.JILL NEED NOTCH FILTERS TO 

PROTECT AGAINST MPTS HARHONICS. 

• MULTIPLE SPS INSTALLATIONS REQUIRE FURTHER IN-DEPTH INVESTIGATION. 

FOR CFA 

• BANDPASS FILTER NEEDED 10 IMPROVE PERFORMANCE RELATIvE TO RADIO ASTRONOFc'i NOISE 

REGULATIONS. 

• NOISE LEVEL ~IITH FILTER J:.DDED IS ESTI~'ATED TO EXCEED RADIO ASTRONONY ISOTRGPIC 

REGULATIONS BETWEEN 2.3 GHZ AND 2.7 GHZ, AND TO EXCEED RADIO ASTRONOMY 60 DB 

ANTENNA REGI!LATJONS A80VE 1.9 GHZ. EARLY DEVELOPMENT OF CFA AND FILTERS REQUIRED 

TO ESTAB' :.' ~ ·'~E CHARACTERISTICS. 

FOR KLYSTRON 

• NOISE LEVEL EXCEEDS RADIO ASTRONOMY ISOTROPIC REGULATIONS ONLY IN USA INDUSTRIAL 

SAND OF 2.4 TO 2,5 GHI. 
• ';OISr: LEVEL EXCEEDS F-ADIO ASTRONOMY 60 DB /\NTENN,n. REGULATIONS BETWEErJ 2.1 GHZ AND 

285 GHZ. 
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Noise on Earth From SPS Arr~y 
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SUMMARY AND CO~CLUSIONS 
INITIAL ~1PTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

ISSUES/CONSIDERATIONS 

RISK ASSESSr·1ENT 

RESOLUTION/STATUS 

• TOP THREE TECHNOLOGY R?:SY ?REAS 
DC-RF CONVERTERS 

- MATERIALS 
- PHASE CONTROL 

• TOP THREE ENVIRONMENTAL RISK AREAS 

- BIOLOGICAL 
- IONOSPHERE 
- RFI AND ALLOCATION 
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RISK RATING 

1 2 3 4 5 

ONTHF 

IN TECHNOLOGY 

IN USE DEVELOPMENT: FRONTIER CONCEPTUAL ! INVENTION 

STATUS ANTICIPATED TECHNOLOGY FULLY 1 PARTLY KNOWi .. BUT NOT NOT KNOWN. I NOT KNOWN, 

WITH: DEVELOPED DEVELOPED DEVELOPED CHANCE OF IT CHANCE OF IT 

a) SPECIFIC 
BECOMING • BECOMING 

I MPTS,FUNDED 
KNOWN IN TIME KNOWN IN 1'!ME 

FOR MPTS IS FOR MPTS IS 

\ 
PROGRAM GOOD POOR 

b) OTHER 
KNOWN IHAADWAAE OFF-THE- FUNCTIONALLY FUNCTIONALLY NO HARDWARE HARDWARE 

PROGRAMS 
SHELF ITEM EQUIVALENT EQUIVALENT IN USE OR WILL NOT BE 

OR PROTOTYPE HARDWARE 'HARDWARE IN DEVELOPMENT AVAILABLE 

AVAILABLE IN USE DEVELOPMENT BUT DEVELOP, UNLESS A 

HAVING (OPERATIONAL! MENTIS BREAKTHROUGH 

REQUIRED PROBABLE OR INVENTION 

FUNCTION. I 
IS DEVELOPED 

PERFORMANCE I I & PACKAGING I i 

I 

\ VEAYL~ PROBABILITY OF DEVELOPMENT CERTAIN VERY HIGH I HIGH \LOW 

I COMPLETION WITHIN SCHEDULE (ALREADY I i AND COST EXIST) i 

Technology and Hardware Development Risk Rating Definition 
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SUMMARY AND CONCLUSI0:'lS 

I INITIAL r·1PTS STUDY RESULTS - SUBSYSTE~lS AND TECHNOLOGY 

I 
I 

~ 
t 

II 
d 

\() 

~ 

ISSUES/CONSIDERATIONS 

SYSTm ANALYSIS AND EVALUATION 

RESOLUTION/STATUS 

• COST INCREASES INVERSELY WITH POWER 

• COST INCREASES lHTH FREQUENCY 

• POWER DENSITY AT EARTH EXCEEDS 20 MILLl\~ATTS/CM2 
FOR GROUND POWER LEVELS ABOVE 5 GW 

- ALLmJABLE pmlER DENSITY AT GROUND NEEDS TO 
BE DETERMINED FROM IONOSPHEPIC U1PACT AND 
BIOLOGICAL POINTS OF VIEH 

• OVERALL ';'IPTS EFFICIENCY 
CFA APPROACH 

INITIALLY: 54% TO 56% 
POTENTIAL: 63% TO 67% 

KLYSTRON APPROACH 
49% TO 52% 
56% TO 59% 

• ALUMINUM RESULTS IN LOWER COST BUT MORE COMPLEX 
SYSTEMS THAN DO GRAPHITE CO~1POSITES. 
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SYSTEM Ail.A,LYS:S AND EV.A,LUATION 

• CAPITAL SPECIFIC COST DECREASES AS GROUND POWER OUTPUT INCREASES. 

• AT HIGHER Po\~ER LEVELS. COST IS LOHEST NEAR 2 GHZ. 

• FREQUENCY OF 2.45 GHZ IN THe: INDUSTRIAL BAiiD IS THE RECOMr1ENDED CHOICE. 

• SYSTEM COtJFIGURATIONS HAVING GROUND BUS pm:ER LEVELS ABOVE 5 G~~ EXCEED 20 mW/cm2 PEAK GROUND 
POWER DENSITY WHICH IS BEGINNING TO AFFECT THE IONOSPHERE AND SO 5 GW IS CURRENTLY RECOMMENDED 
AS THE MAXIMUM FOR PLANNING PURPOSES. FURTHER IN-DEPTH ANALYSIS AND TESTING IS REQUIRfD TO 
UiWERSTArlD THESE EFFECTS MORE THOROUGHLY A;;O PERHAPS RELAX THE CONSTRAINT. 

• OVERALL MPTS EFFICIENCY IS EXPECTED TO BE ABOUT 54%-56% INITIALLY WITH IMPROVEMENT POTENTIAL TO 
ABOUT 63~~-67:; FOR M1PLITRON CONFIGURATIONS; KLYSTRON CONFIGURATIONS WOULD BE 49%-52% TO 56:~-59°; .. 

• At·1PLITRONS RESULT I N LOl~ER COST SYSTEMS THAN DO KLYSTRONS. 

• ALUMINUr1 RESULTS IN POTENTIALLY LOWER COST BUT t~ORE COMPLEX SYSTEMS THAN DO GRAPHITE Cor4POSITES. 

• DOMINANT COST FACTORS FOR SPS ARE THE POWER SOURCE AND TRANSPORTATION. 

• AS A GUIDE, THE POHER SOURCE PARAt~ETERS SHOULD NOT EXCEED THE COMBINATION OF 350 S/k~~ ~HTH 
1. 0 kg/k~J OR POSSIBLY 250 $/kW WITH 1. 5 kg/kW ~IHERE THE POWER IS AS DELIVERED TO THE 
TRANSMITTING ANTENNA. 

• AS A GUIDE, TRANSPORTATION AND ORBITAL ASSHmLY SHOULD NOT EXCEED 200 S/i<g. 

• AS A GUIDE, BUILD AND DEPLOY CYCLE FOR SPS SHOULD NOT EXCEED 3 YEARS TO LIMIT INTEREST CHARGES. 

• FOR THE ALUMINUM-A~1PLITRON CON~IGURATION, ~;EAR OPTIMUM TRANSMITTING ANTENNA AND RECIEVING 
ANTENNA ~EIGHT IS ABOUT 6 X 10 . kg. 

I 
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INITIAL GOAL NOMINAL 
POWER DISTRIBUTION 96 97 96 
DC-Rf CONVERTER 85 90 87 
PHASE CONTROL 95 97 96 
ATMOSPHEHE 99 99 99 
BEAM COLLECTION 90-95' 90-9u' 90-95-
RECTENNA 84 90 87 
POWER INTERFACE 93 95 94 _.-

TOTAL 54-57 65-68 58-62 

*DEPENlJS ON Tf<ADEOPF Ol~ COSTS, L",ND USC, rm'iF.:R 
DENS ITY LIMI'rs. TAPER Q1.' POV1EH DJSTRl BU'r10N ON 
5 DB LU:.:'':' IS 90'/0, 10 Dn LH1JT J\l'i'RCll\CllES 95/~' 

MP'TS Efficiency Budget 
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MAX 
GROUND XMTR BEAM TRANSMITTING TRANSMITTING RECTENNA POWER GROIJNDPOWER TAPER INTERCEPTION ANTENNA ANTENNA DIMENSIONS· DENSITY GW dB '" WT - KGX10' DIA -kM kM mW/cm' 

5 5 90 6.2 0.8 11 )( 15 11 
10 95 8.3 1.0 10)( 13 22 

10 5 90 11.9 1.2 8)( 10 68 
10 95 14.3 1.4 1)(9 81 

oM' JOR AXIS IS FOR ELEVATION ANGLE. 50 DEG 

Figure 48 Amplitron-Aluminum MPTS Comparison 

POWER ~CUflCE - 1.5 kg/kw 
TAPER'" 5 d8 _ 500 S/kw 

BEAM EFFICIENCY = 90% TRANSPORTATION ASSEMBL l' - 300 $/k 9 

DC·RF CONVERTER 

AMPLITRON 

KLYSTRON 

smUCTURE 80 
WAVEGUIDE 
MATERIAL 

ALUMINUM 
GRAPHITE 

ALUMINUM 
GRAPHITE 

DC·RF CONVERTER 
WT 

KG )( 106 

2.6 
2.6 

1.3 
1.3 

TRANSMITTING 
ANTENNA 
TOTAL WT 
KG X 10~ 

6.2 
5.0 

12.5 
10.8 

Comparison of 5 GW Systems 

105 
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SUM~jARY AND CONClUSIm~S 
INITIAL MPTS STUDY RESULTS - SUBSYSTH1S AND TECHNOLOGY 

ISSUES/CONSIDERATIONS RESOLUTION/STATUS 

TECHNOLOGY DEVELOPMENT AND TEST PROGRAMS • INITIAL TECHNOLOGY DEVELOPMENT NEEDED FOR DC-RF 
- OC-RF CONVERTERS 

-~.~~, .. -~-

- MATERIALS 
- PHASE CONTROL SUBSYSTEM 

• TEST PROGRAM TO PROVIDE DATA ON: 
- CONTROLLABILITY 
- RADIO FREQUENCY INTERFERENCE 

• INTEGRATED GROUND TEST REQUIRES: 
TRANSMITTING ANTENNA PHASED ARRAY 

- RECTENNA 

• ORBITAL TEST NEEDED TO: 
- DEVELOP AND DEMONSTRATE DC-RF CONVERTERS 
- LEARNING WITH RESPECT TO PROJECTED COSTS 

AND SCHEDULE 

• MODIFIED FACILITIES SUCH AS ARECIBO BEST SUITED 
TO DETERMINE EFFECTS ON LOWER IONOSPEERE 

t, 
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TECHNOLOGY DEVELOpr'1ENT AND TEST PROGRAMS 

• TECH~iOLOGY DEVELOPt·1ENT AND GROUND TEST PROGRN·j 

- raTIAL TECHNOLOGY DEVELOPMENT IS NEEDED FOR DC-RF CONVERTER. ~lATERIALS. AND PHASE 

CONTROL SUBSYSTEM. 

TEST PROGRA!,' WILL PROVIDE DATA ON COrJTROLLABILITY AND RADIO FREQUENCY INTERFERENCE. 

_ TRANSMITTING ANTENNA PHASED ARRAY AND RECTENNA ARE REQUIRED FOR INTEGRATED GROUND TESTING. 

_ ROUGH-ORDER-OF-MAGNITUDE COSTS ARE S4M FOR TECHNOLOGY AND S23M FOR THE INTEGRATED 

GROUND TEST. 

• TECmWLOGY DEVELOPMENT AND ORBITAL TEST PROGRAM 

_ ORBITAL TEST IS NEEDED TO DEVELOP AND DEr~ONSTRATE DC-RF CONVERTER STARTUP AND OPERATIOr:. 

ZERO I G I ASSEMBLY AND OPERATIOi~S. AND LEARNIt~G lHTH RESPECT TO PROJECTED COSTS AND SCHEDULE. 

_ REQUIREMENTS ARE SATISFIED BY A GEOSYNCHRONOUS TEST SATELLITE AND BY A SERIES :"IF SHUTTLE 

SORTIE MISSIONS THAT LEAD TO AN ORBITAL TEST FACILITY. 

_ A LOW EARTH ORBITAL TEST FACILITY CAN BE SIZED TO DETERMINE THE EFFECTS ON THE UPPER 

IONOSPHERE OF HIGH MICROWAVE POWER DENSITIES. 

MODIFIED GROUND BASED FACILITIES SUCH AS AT ARECIBO ARE BEST SUITED TO DETERMINE THE 

EFFECTS ON THE LOl~ER IONOSPHERE OF HIGH MICROWAVE POWER DENSITIES. 

TECHNOLOGY DEVElOPt1ENT IS NEEDED IN NOT ONLY THE "CRITICAL" AREAS BUT IN ESSENTIALLY ALL 

t'1PTS AREAS IN ORDER TO SUPPORT A PROGRESSIVE PROGRA~1 TO DHWNSTRATE READINESS TO PROCEED 

T ~IGNIFICANT SCALE FOR A PILOT PLANT OR PROTOTYPE • 

_ ROUGH-ORDER-OF-MAGNITUDE COSTS ARE S318M FOR CRITICAL TECHNOLOGY DEVELOPMENT, AND S96f1 

FOK THE GEOSATELLITE. AND TO ACCOMPLISH ALL IDENTIFIED OBJECTIVES S3052M FOR THE SORTIES 

A\C Of3ITAL TEST FACILITY. 

~ 
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~lission 

Class 

Geo-
synchronous 

Low Earth 
Orbit (LEO) 
Sorties 
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Objectives ~1icrowave Intermediate 
I 

Mandatory Highly ileSlrable Payload Benefits 
--

dc-rf Ionosphere Effects DC-RF C omrnunications 
I • • • • i Converter on Pilot B ,~alll Converter 

Starting and • Bistatic Radar 
Operation • Interferometer • 18 Meter 

Accuracy Interferometer • Ionosphere Data 
l 

• High voltage 
I 

plasma inter- • Orbital Life Test • Particle De- • Observation of I 

action tectors LEO Sorties i 

Effects 

• Zero "Gil • Controllability • Build-up to • Communications 
WJig. and Demonstration IBM x IBM I 

Assembly Power Sub- • Bistatic Radar 
Flow De- • Thermal Cycling arrays - Earth I 

~~ 
r 

velopment Effects - Large - Planetary 
I - Structure Structures • Spares to be 

- Microwave provided along • Orbital Microwcl'\re : 
- Interface • Preprototype with Command- Power Transfer I 

Building Block Control Sub- ! 

• Operations array and Or- • Ionosphere Data i 
and Mainten- • Orbital Life Test bital Support 
ance Devel- Equipment 
opment • Upper Ionosphere 

Heating Effects • Juxtaposition-
\ 

• Initial Veri- ing to be 
fication of possible 
Cost and 
Schedule 
Projections 

I 

Micrm':ave Orbital Test Program 
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lSSUESjCm;SIDERATIONS 

ADDITIONAL STllnIES 
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SUM11AR'{ AND CONCLUS IONS 
INITIAL MPTS STUDY RESULTS - SUBSYSTEMS AND TECHNOLOGY 

RESOLUTION/STATUS 

• ANALYZE TRANSIENT THERMAL EFFECTS 

• ANAL YZE pm~ER BEAM IONOSPHERIC EFFECTS 
- OTHER USERS 
- HODEL FOR PHASE FRONT CONTROL SIMULATIOfi 

• MODEL CLOSED LOOP PHASE FRONT CONTROL TO 
BETTER ESTIMATE ERROR BUDGET AND PERFOR~,A.NCE 

UNDER TRANSIENT CONDITIONS 

• DETERMINE SPECIAL REQUIREMENTS FOR MULTIPLE 
STATIONS 
- CONTROL 

FREQUENCY SELECTION 
- INTERFERENCE 
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ADDITIONAL STUDIES 

RECOMMENDATIONS FOR EARLY IN-DEPTH STUDIES cm~PLEMENTING THE TECHNOLOGY DEVELOPt·1ENT PROGRAt.1S ARE: 

• ANAL YZE TRANSIENT THERMAL EFFECTS ON THE TRANStUTTING ANTENNA STRUCTURE, WAVEGUIDE AND 
ELECTROtJICS AS IT PASSES IN AND OUT OF ECLIPSE TO DETERMINE IMPACT ON CONTROLLABILITY 
AND ~1ATERIALS SELECTION. 

• ANALYZE POWER BEAM IONOSPHERIC EFFECTS TO ESTIMATE IMPACT ON OTHER USERS AND PROVIDE A 
DETAIL MODEL FOR PHASE FRONT CONTROL SIMULATION. 

• MODEL CLOSED LOOP PHASE FRO~',T CONTROL TO BETTER ESTU1ATE ERROR BUDGET AND PERFORMANCE 
UNDER TRANSIENT CONDITIONS. 

• DETERMINE SPECIAL REQUIREMENTS FOR MULTIPLE (100) STATIONS RELATING TO SPACING IN ORBIT 
AND ON THE GROUND, CONTROL, FREQUENCY SELECTION AND INTERFERENCE. 

• DETAIL ALTERNATE USES AND INTERMEDIATE BENEFITS OF MPTS AND POTENTIAL IMPACT ON ITS 
DESIGN AND DEVELOPMENT. 

• INVESTIGATE WAYS OF REDUCING TRANSPORTATION AND ASSEMBLY COSTS BY A BETTER (HIGHER LEVEL 
OF DETAIL) SYNTHESIS OF LAUNCH VEHICLE, ASSEMBLY AND EQUIPMENT TECHNOLOGIES. 
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PROGRESSIVE DEFINITION AND DEVELOPMENT SATELLITE POWER SYSTEM (SPS) 

SOLAR POWER SATC:lllTE PROGRESSI. E 

DEFINITION AND DEVELOPMENT 

TIME PHASED STEPS 

OFTHEDEVElOPMENTPROGRAM 

PROGRESS IN OVERAll 
DC-DC iFFICIENCY 

2 RECEPTION - CONVERSION 
SU8SYSTEM RIICV 

3 MODULAR POWER TRANSMISSION 
(MPTII) PH"SED ARRAY 

• HIGH ALTITUDE MICROWAVE 
POWERED PLATFORM 

5 GROUND 8ASED HEATING 
OF IONOSPHERE (2D MHZ) 

6 SINGLE WAVEGUIDE WIDE 
LINEAR ARRAY 

7 OR81TTOOR81T 
\' "WER TRANSMISSION 

a PREPROTOTYPE SPS PROJECT 

g PROGRESSIVE 8UILDUP 
TO MPTS PROTOTYPE 

'0 MPTS PROTOTYPE IFULL SCALEl 

SUPPORTING EFFORTS-

CONCEPT(S} EVALUATION AND DEFINitiON 

• 8ASIC STUDIES 
b 8ASICTECHNOLOGY 

DEVELOPMENTS 
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POINTS OF FOCUS 

d SPACESTATIONSTUDIES 

• SYSTEMS STUDIES 
SYSTEM MODELING ACTIVITY 
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BEAn PATTEnN STUDIES 

o ARR.~Y SIMULATION PROGRAi'1S 

o RADIALLY SYr~~ETRIC CInCUL~R ARRAY SIMULATION 
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ALTERNATE SPS DESIGNS USING BEAr, DEFOCUSING 
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SGW lKM 22KW/M2 

pmlER 
PE.4K ON AXIS RECTENNA FLUCTUATION EFFIe 
POWER rJW/CM2 DIAM. KM CR. TO EDGE % 

23 ~9KM 23:1 ~~ 5.8 35:1 
2.1 28 48:1 92 
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VARIATION m 

STRUT LENGTH 

JUNCTION 
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TOLERANCE 

MEASUREMENT 
AC~URACY 

TOOLING 

SLOPE 6 ·LINE-oF-SIGHT ARE SENSrrIVE TO 
VARIATION IN STRUCTURAL PARA!tIETERS 

~ MANUFACTURING 
& 

ASSEMBLY 
TOLERANCE 

ERROR 

MANE~VERING <:;::::J 
ENVIRONMENTAL 
ACCELERA TIONS 

THERMAL EXPANSION 

CTE x TEMP & E x X-SECTION 

•• N8 .. AL DVNAMICti 
~DNI.iOII 

FORCES & 
MOMENTS FROM 

ATTITUDE 
CONTROL 

STATION­
KEEPING 

ECLIPSE 
PERTURBA TIONS 

ENVIRONMENT 

VARIATION IN P ~ VARIATION IN 

COEFFICIENT OF THERMAL EXPANSION 

ABSORPTIVITY /EMISSIVITY 

RF SYSTEM HEAT DISSIPATION 

THERHAL ENVIRONMENT 

MODULUS OF ELASTICITY 

STRUT CROSS-SECTIONAL AREA 

j 
'! 

i ~ 
~ 1 

e i Jl 
, I ik "" ~~, __ ~ ~'_L • •.. _ ~~_ L:::lL.,~=~~,.::X: ;;S;;:;;;;::::;::C. __ d==::::OZ::S,:::za::;: ,. ::::tZ:... {,,_ 



~
i 

.. : ...• ~!I' \ >.~., 
;' ' 

." 

I 
~ 
t 
J • 1 
j 

~ ! 
, ' 
! ' 
k-. ; 

! 
~ 
~ 

I 
f 

t 
~ 

I 
~ 
~ 
~ 

I , I 
i , 
f , 

~ 

w 
CD 

~-. ,. __ ... , .. 

'''~~ " '''','..,,-' --.~ .. ' 

,\·y·,··~~ .. 
. ~ . , ~ 

aSN2,.,,&. DYNAMle:s 
CezrwW 0;.,;.;011 

ACHIEVABLE FLATNESS DEPENDS ON !.tANUFACTURING 
TOLERANCE & THE OPERATIONAL ENVmONMENTAL EFFECTS 

ROTATING COORDINATE 
SYSTEM 

SOLAR ENERGY 
INPUT 

GRAVITY t 
GRADiENT 

MPTS SUPPORT ~~~-~ 
NODES (3) 

SPS SOLAR ARRAY 

X'') ~ .... __ ....... ,.., 

SUBARRAVSNONSTRUCTURAL 
MASS, WASTE HEAT INPUT 

UPTS SUPPORT 
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SECONDARY 
STRUCTURE 
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Type of antenna ••••••••••••••••••••• Planar array 
Diameter of aperture. • • • •• • •• ••• •••• 1000 m (3281 it) . 6 
Antenna mass ••••••••••••••••••••••• 8.58 Mkg (18.92 x 10 lb) 
Power transmitted (C\\') •••••••••••••• 5 GW (67 dBW) 
}'requency ••••••••••••••••••••••• ' ••• 2.45 GHz 
Directivity •••••••••••••••••••••••••• 86 dB 
Bcam\\1dth (3-dB) ••••••••••••••••••• 31.4 arc sec 
Mount - Aztmuth range •••••••••••••• 360 degrees 

Elevation range ••••••••••••• + 10 degrees -Slewtng rates (maximum) ••••••••••••• 1 arc sec/sec 
J\ :ch::mlcal poInting accuracy ••••••••• 2 arc minutes 
El(- ~tron1c polntlcg accuracy •••••••••• 6 arc sec 
nlu, :rlnatlon taper •••••••••••• " • • • • •• 10 dB 
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TOTAL BUDGET 

MANUFACTURING TOLERANCE 

PRIMARY ST:~UCTURE 

PRIMARY/sECONDARYINTERFACE 

SECOrJDARY STRUCTURE 

SUBARRAYINTERFACE 

MANEUVERING ALLOWANCE 

PRIMARY D;STORTIOr~S 

SECONDARY DISTORTIONS 

THERMAL ALLOWANCE 

PRIMARY DISTORTIONS 

SECONDARY DISTORTIONS 

ATTITUDE CONTROL SYSTfM 

ACCURACY ERROR BUDGETS 

SLOPE ERROR 
RMS ARC MIN 

2.00* 

1.50 

0.64 

0.06 

1.32 

0.32 

1.10 

0.46 

1.00 

0.70 

0.31 

0.63 

0.00 

· .... '.~. -~--:::J 
~DVI"!~ 

~Cdt •• tM 

LOS ERROR 
MAX ARC MIN 

2.00* 

0.00 -
0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

0.00 

1.00 -
1.00 
0.00 . 

1.41 

* TOTALS BY ROOT-SUM-SQUARE COMBINATION OF UN CORRELATED CONTRIBUTIONS . . 
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Baseline design, Mode 7, f I: 0.0848 Hz. 
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Baseline design, Mode 8; f == 0.0848 Hz. 
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GENERALIZED RMS SLOPE ERROR (ARC MIN) 

RESULTING FROM MANEUVERING ACCELERATIONS 
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TYPICAL y~~4t~0~$~~?K~;;' '"---PRIMARV 
S~CONDARY~~~~JJ~ ,~t~}~('~~'-- STRUCTURE 

~ ~ ... 
~~ 

\! 
\1 

I 
PRIMARY STRUCTU~E 

ACCELERA TION ~'"NF1G. A eU-fIfTG:tl 

10-3 G X 0.668 0.653 

10-3 G Y 0.668 0.653 

10-3 G Z 0.576 0.574 

1. ,',RC SEC/SEC
2 

X 0.302 0.295 

1 ARC SEC/SE- 2 .y 0.302 0.295 

1 ARC SEC/SEC
2 

Z 0.019 0.017 

'tWilii.,1 

SECONDARY 
STRUCTURE 

0.349 

0.349 

. 1.697 

0.055 

0.055 

0.003 

OFFSET CG 
ALLOWANCE 

0.409 

0.409 

0.059 

TOTAL RMS 
SLOPE ERROR 

0.754 

0.754 

1.792 

0.511 

0.511 

0.Q62 

I 

-",,',"0' -,- _. "'" ' m -J 
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TYPICAL WASTE HEAT CALCULATION 

r/Fi. ~ 0.15 

25500 W;M2 INPUT 

500 M RAOIUS ANTENNA 3775 W/M2 
REJECTED FROM 
RADIATOR 

7.94)( 109W INPUT 

1.44 x 109W 
LOSSES 

6.5)( 109W OUTPUT 

/SURfACE 
90~~ 

/ 
4194 W;M2 O.87l-3249 W/M 2 

I 

20880 \VIM 2 OUTPUT 

\ 
101. 

"-419 W/M2 
REJECTED FROM 
Rf S'JRfACE 

426 WIM21POWER RADIATED BUT 
NOT RECEIVED BY 
RECTENNA 

Figure 3-5. Antenna efficiellcy and WilLstc heat assumptions. 

600.-------------------,bOO 

500 

... 400 
~ 
III 
a:: 
:;) ... 
~ 
~ 300 
2 
III ... 

100 

400 --------
200 ~ -

--------------- -200 

-400 

o -460 
o 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

NORMALIZED ANTENtlA RADIUS r/R 

R = 500 m 

----MAXiMUM (WASTE HEAT 
PLUS MAX. SOLAR) 

- - -. - - PRIOR TO EARTH 
SHADOW (WAST~ HI:::AT 
ONLY) 

- • - MINIMUM (END OF EARTH 
SHADOW) 

I1ndiator temrx;l":lture distribution boundnry conditions for thermal analysis. 

146 



~ ! 

! 
t 

I 
t 

I 
i 
I 
f 
} 

J'''''''iOr-:-T--~--'----'--,-,!·,. 't-"~1{ "-i:'\ .;~;i(-~--::.,\ ,...,.--
'. "--------------------

_,..,.AL DYNAM!::S 
CofNIjr OMaioit 

ORBIT CHARACTERISTICS FOR THERMAL ANAL VSIS 

-~ 
~ 

ORBIT ALTITUDE: 19325 NMI 

ORBIT PERIOD: ~24.0 HR 

MAXIMUM EARTH ECLIPSE TIME: ==1.16 HR 

TIME 
18.0 

_.f'.f,.~ .. 

EARTH 

+z / 
t 

,wwy!1SiW ~+X 
TIME 0.0/24.0 

(SUBSOlAR POSITION)-

TIME 
. 6.0 

l 
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THERMAL SLOPE ERRORS ARE SMALL, BUT OPERATIONAL 

TEMPERATURE EXTREMES ARE CRITICAL TO MATERIAL SELECTION 
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MAXIMUM OPERATING TEMPERATURES OF CURRENT RESINS 

• PREDICTED TEMPERATURE EXTREMES IN MPTS ANTENNA (PRIMARY) 

82.SK (-312F> TO 505K (449F>. 

• TYPICAL LONG TERM MAXIMUM O?ERATING TEMPERATURES 

- THERMOSETTING RE'S~NS 

EPOXY 394K (2S0F) 
PHENOLIC 422 - 4361< (300 - 32SF> 
POLYIMIDE 

ADDITION 477K (400F) 
CONDENSATION 533 - 561K (500 - SSOF> 

- THERMOPLASTIC RES1US 

POLYSULFONE 381K (225F) 
POLYIMIDE 5S9K (oOOF) 

• CURRENT SYSTEMS ARE THEREFORE AVAILABLE BUT MORE TESTING 1S 

REQUIRED TO CHARACTERIZE PROPERTIES OVER THE WlDE~ 

TEMPERATURE RANGE. 
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COMPt1rER ANALYSIS OF DATA IS USED TO GENERATE 
STATISTICAL DlSTRIBUTION OF COltIPOSITE PROPERTIES 

GY-70/X-30 PSEUDOISOTROPIC 
(0, 45, 90, 135)S 
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COEFFICIENl' OF THERMAL EXPANSION HAS TEMPERATURE 
DEPENDENCY & RANDOM COMPONENTS-

0.15 -, 

0.10 

0005_111 H +3(1 """ I-

eTE rTflI ! IIIII i IltH 
(p# IF) 0 

l t I f 1 ! I I I ! ! t I rtt! I ! I I i IlTrl u 11-1-1 

-0.05 ~ 

-0.10 ~ I-I-IIII~ II ~$FH-rf E:i-I ER3 
I 

-0.15 'LLi I 

-2t'l Ct 20 40 60 80 

TEMPERATURE (f) 

t ,', 70/X-30 PSEUOi 'SOTROPIC 
~O, 45, 90, 135)5 

100 120 140 

CTE = f(T) = 

-2.29 x 10-8 

+2~ 71 x 10-8 G 

-2.30 x 10-12 (T -70) 

+2.52 x 10-10 (T-70) G 

WHERE G IS A RANDOM 

GAUSSIAN VARIABLE WITH 

ZERO MEAN & UNIT STANDARD 

DEVIATION 

1 
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TYPICAL BEAM WANDER OVER 24-HR ORBIT RESULTING 
FROM THERMAL DISTORTIOf. OF PASSIVE STRUCTURE 

y 

4 
BEAM POINTING ERROR (ARC UIN) START OF EARTH SHADOW 

-0.04 -0.03 -0.02 --=5..01 to.a 

.. NeflllAl. D'V~IC!!I 
r:.-o;, t;.'viMolt 

0.02 
f 1_ t >( I • X 

3 

SuaSOLAR 
POSITION 00 

2~ 
22 

FULL SUPlUGHT lOOP 
(22.6 HR DURATION) 

7 /19 
_ _ HOURS 

NOTES: THERMAL DISTORTION RESULTING 
FROM RANDOM CTE OF MATERIALS -
T'tPICAl CASE 

BEAM POSITION SHOWN IS UNCORRECTED 
BY ATTITUDE CONTROL OF STRUCTURE 

BEAM 
PO~NTING 
ERROR 
CARC MIN) 

-0.01 

-0.02 

-0.03 012.0 
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-0.C4 
012.3 

(~ END OF EARTH 
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INITIAL SLOF'E ACCURACY BUQGET 

ARC ~Jltl, PERCENT. EFFICIEFJCV (lOSS -
itEQU1RED SLOPE ACCURACY ., 98.0 (2.0) 

RMS SLOPE EQUIVALEP!T ) 98.0 (2.0) 

RMS SLOPE DESIGN GOAL 2 99.0 (1.0) 

MANU~ACTURI~lG TOLERANCE 1.5 99.5 (0.5) 
. 

M'\~~EWERlNG ACCELERATIONS 1.1 99.7 (0.3) 

THERMAL DISTORTIONS 0.7 99 .. B (0.2) 

• MANUFACTUmNG TOLERANCE CA~ BE MET \\1TH STATE-oF-THE~RT TOOLING.& ASSEMBl~ 

TDLERANCES .. 

G ACTUAL SLOPE ERRORS ARE 'NSIG~IFICANT EXCEPT FOR POSSIBLE OSCILLA TIOr~S AFTE! . 

OCCULTATION. 

• THER!t!AL DISTORTIONS ARE SUALL FOR STATE-OF-THE-ART GRAPHI1£/EPCXY UATERIAL 

PROPERTIES. 

j 

~:~ .. ~_. _."~..a._.,....,L~tettTt l::::!Hk'u,,,,,.~~~,--~~ 
_______ I _~_ .• _.. _,o,t .,' = J. ~N -va ( 



" r····., 
A1innm,nt T,chniqulS Sub""y "'"r" 

R. Iwasaki 
AxiomBtix 

155 



I 
f 
~ . 
r 

r 
~ ; 

~ t 

: f 
~ 

I 

-(11 

..... 

I 
~ 
It 

i 
! 
I 

w "'_"""~_"'" 

SUBARRAY ALIGNMENTS, BOTH INITIALLY AND REAL-TIME, CAN BE MAINTAINED TO , 

±3 MIN BY THE USE OF Az-El MOUNTS AND LASER MEASUREMENT TECHNIQUES. 
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DESIGN CONCEPTS _ Axiomatix 

I LASER BEAM REFERENCE SYSTEM 

II PHOTOCONDUCTIVE SENSORS 

III VARIABLE LENGTH MECHANISMS 

IV THREE POINT SUPPORT 

j V MONOPULSE POINTING OF ARRAY 
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I LASER BEAM REFERENCE SYSTEM ii!I Axiomatix 

1 • COMMERCIALLY AVAILABLE FOR CONSTRUCTION APPLICATIONS 

2 . ROTATING LASER BEAM TO GENERATE OPTICAL REFERENCE PLANE 

3. VARIABLE SPEED OF ROTATION 

4. PERPENDICULARITY ASSURED BY PENTAPRISM REFLECTOR 
~ 

~ 5 . COLLIMATOR REQUIRED FOR LONG DISTANCES 0 

6. BLOCKAGE "CELLS" 

7. REDUNDANCY 
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II PHOTOCONDUCTIVE SENSORS Ii!! Axiomatix 
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l. HIGH ELECTRICAL SENSITIVITY 

2. LOW POWER DISSiPATION 

3. DIRECTIONAL POLARITY 

4. HIGH DIMENSIONAL RESOLUTION 

5. BEAM CENTERING TO ACCOMMODATE BEAM BROADENING 

6. REDUNDANCY 

7 • FOCUSSING 

8. RFI CONSIDERATIONS 

9. REPLACEMENT AND POSITIONING 
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DIPOLE ON A GROUND PLANE I Ii!! Axiomatix 
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~ , III VARIABLE LENGTH MECHANISM is!! Axiomatix 

1. BASIC DESIGN 

2. REDUNDANCY 

3. REMOTE INDIVIDUAL ACCESS 

... ..., 4. HIGH ALIGNMENT RESOLUTION 
(JI 
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1. BASIC DESIGN I ER Axiomatix 

• WGRM SCREW DRIVE 

• FORWARD AND REVERSE CAPABILITY 

• RELATED TO GARAGE DOOR OPENER 
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REDUNDANT VARIABLE LENGTH MECHANISMS lIB Axiomatix 
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3. REMOTE INDIVIDUAL ACCESS Ii!! Axiomatix 

• 1024 CODED RECEiVER SYSTEMS 
NOW COMMERICALLY AVAILABLE 

• 7,000 INDIVIJ~AL SUBARRAYS 

• 21,000 VARIABLE LENGTH MECHANISMS 

• CAN BE INDEP~NDENTLY CONTROLLED FROM 
GROUND STATIONS IF NECESSARY 
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IV THREE POINT SUPPORT Axiomatix 
,j 

1. SINGLE MOUNTING SUPPORT 

2. REPLACEMENT SIMPLICITY 

3. MISALIGNMENT COMPENSATION 

4. INDEPENDENT ALIGNMENT ADJUSTMENT 

5. SERVICE CORRIDORS 

6. SUPPLEMENTARY ALIGNMENT VERIFICATION SCHEME 
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A POWER J)ENSITY LEVI:L OF 23 ~MlcM2 liAS I.CHIEVFll 

THE S,.A·rUS OF A FIRM DESIGN SPEClfICAT!ON HfI.SH' ON 

THEOrWT I CAL CALCliLAT IONS (W f\ TtIf~EStlOL.O r:ort Nt Cf:OWAVc.­

IONOSPHeRE NONLINEAR IN'·EHI\(~TION (TIIERNAL HlIN~.WAY). 

THERMAL RUNAWAY J~; NO LONGER J\ V/\LJ D lUrORE,. l(:I\L 

CONCEPT AL niOLJGU FOR tOMPAI~/\nLE POWER DENf.\ J Tl [·:s E.NHAN(.rn 

ELECTRON HEAT I NG IS OBSERVI·:n TO CflANGE THE EU'.Cl'RON 

TEMPERI\TURE BY A FACTOR OF rwo OR THREE" BliT Nor Ei'i A~~ 

ORDER OF MAGNITUDE. 

THERE JS~ SO FARJ NO EXPERIMENTAL EVIDENCE TO 

SUPPOf{l 23 MW/cf.'? AS AN UPPER LH-lIT. 

THE QUESTION TO B~ POSED AND ANSWERED IS AT 

WHAT POWER DENSiTIES IS THE IONOSPHERE MODlfIE[) IN A 

WAY THAT PHODUCES UNACCEPT/\IH.E cor"~'UNICATJON EFFECT5 

AND/OR ENVIRONMENTAL IMPACTS? 

115 
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ARECIBO TEST RESULTS 

CASE 1 HEATING NAVE PENETRATED THE IONOSF'HER[ 

O~IMI C HE/\T I NG o iANETER or: UEI\-, f.D CROSS S/:(:'I ION AS A FRACTION OF V0LlJHE REl.ATIVE TO FOR f II~U)"'I\U GIH;) 
FREQUENCY 5 GW SPS BEATING SPS 'tEA TED VOLut~E SCATlER I S LESS TII/I,N 

6-10 NHz 1% 3.00 'L ? 
II ): 10·' ;Jw" 

430 MHz 40% 0.10 "L 2 q x 10- ;J~\_ 

2380 MHz 5% 0.01 lO··3N~! 

f 
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, 
CASE 2 HEATING WAVE REFLECTED BY THE IONOSPHERE 

(NOT THE SPS CONDITION) 

PLASMA INSTABILITIES ARE EXCITED BY THE HF HE'.lTn 

WAVE LEADING TO FIELD-ALIGNr.D STRIATIONS THAT SCATTER RADIO 

WAVES. 

FIELD-ALIGNED RADIO-SCATTERING CROSS-SECTIONS UP 

TO 103M2. 

SINCE THE EXCITATION OF THESE INSTABILITIES REQUIRES 

A MATCHING OF THE HEATER FRf.QUENCY TO THE IONOSPHERIC: PLASMA 

FREQUENCY I A CONDITION THAT IS NOT MET BY THE SPS1 THEY WILL 

NOT BE EXCITED. No OTHER INSTABILITIES ARE PRESENTLY KNOWN 

THAT THE SPS FREQUENCY WILL EXCITE. 

THE SIMULTANEOUS ILLUMINATION OF THE JONOSPHERE n~ 

THE SPS FREQUENCY AND A SECOND FREQUENCY SEPARATED BY ABOUT 

15 MHz OR LESS COULD PRODUCE THE INSTABILITIES DESCRIBED 

ABOVE. 

197 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(1) WILL INCREASE ELECTRON TEMPERATURES BY UP TO A FACTOR OF THREE 

OR MOREl MOSTLY IN THE LOWER IONOSPHERE. 

Power flux = 23 mW/cm2 
Frequency = 2450 MHz 

Standard midlatitude atmosphere 

800 Height 

700-1 ( 80 km 

600-=lI,r 90 km 
Electron 

tempera~ure 500 
(OK) 

300 

j 100 km 

I 110 km 

200-1 i •• 't' I I I I • Iii , I •• , ! I • , I I • , I I I 
o 25 50 75 100 125 150 

Time.(ms) 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(2) IS PREDICTED TO BE DEPENDENT ON THE INCIDENT POWER DENSITY. 

Frequency = 2450 MHz 
t-Ieight = 90 km 

Temperature = 187°K 

30 mW/cm2 

r23mW/cm2 

1000, 

~ 
o 
...., 800 e 
:J .. 
(ll -('J 

a. 600 
>= -e" ..... -.... 
e 400 -~, 
(!j -w 

~ .. --.. ~~--........ ... 
30 mW/cm2 

23 m\V/cm2 

o -I i • i ! i ;--: F ;:. • "F 4 i 200 
o 5 10 15 o 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(3) WILL INCREASE ELECTRON TEMPERATURES IN AND NEAR THE BEAM BY SMALL FACTORS. 
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ENHANCED ELECTRON HEATING BY THE SPS BEAM 

(ll) WILL CHANGE THE ELECTRON DENSITY IN THE BEAM BY SMALL ANOUNTS. 
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OBSERVATIONS OF ENHANCED ELECTRON HEATING AT ARECIBO ARE CLOSE TO I BUT BELOW I 

THE PREDICTED INCREMENTS • 
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~ 

I 

IONOSPHERE IIGrl 0.25 ~ 

NEUTRAL ATMOSPHERE AT 60° ELEVATION ANGLE 90 M'" 100 MW I 
t N , 

0 

t w RAIN (25MM/HR OVER 20 KM PATH IN BEAM) 45 HW 1.450 GW 
I HAIL (1.93 eM DIAMETER HAILSTONES~ 10 KM 0.2 GW 1.7 GW t DRY 

, 
PATH THROUGH THE BEAM) WET 2.7 GW 4.99 GW 
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• Transmission Frequency 3.8 GHz 

• Data Bandwidth 50 MHz 
• Transmit Antenna Beamwidth 0.75

0 

, 
I j • Carrier Loop Bandwidth 25 Hz 

• Link S N 38 dB 
• Link Distance 19.2 KM (Avg) 

• Elevation Angle Range 23'!.27° 

TEST LINK CHARACTERISTICS 
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TELECOMMUNICATIONS EFFECTS EXPERIMENTS 
CONDUCTED BY 

THE INSTITUTE FOR TELECOMMUNICATION' SCIENCES 

• UTILIZE PLATTVILLE HEATER TO SIMULATE SPS HEATING OF D&E REGION 

• DETERMINE EFFECTS OF HEATING ON SUCH SIGNALS AS 
• LORAN C - 100 KHz 
• OMEGA - 11.8 KHz 
• \~WV - 2. 5 MH z 
• WWVB - 60 KHz 
• AM BROADCAST - 650 KHz - 1 MHz 

• MEASUREMENTS MADE USING MOBILE VAN 
• AMPLITUDE VARIATIONS VS. TIME 
• PHASE VARIATIONS VS. TIME 
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EXPERIMENT RESULTS 

• SPS HEATING HAS NO DETECTABLE IMPACTS ON TELECOMMUNICATION/NAVIGATION 
SIGNALS 

• NO CORRELATION BETWEEN AM/PM VARIATIONS AND HEATING 

• NATURAL PHENOMENON (SOLAR FLARE) RESULT IN AM/PM VARIATIONS 
ORDERS OF MAGNITUDE GREATER THAN ANY OBSERVED DURING HEATING 
PERIODS 

• PLATTVILLE MAY BE CAPABLE OF HEATING F REGION TO SPS EQUIVALENT LEVELS 

• SCALING MAY BE PROPORTIONAL TO 1/F3 INSTEAD OF 1/F2 

• EVIDENCE HAS BEEN OBTAINED THAT IONOSPHERIC IRREGULARITIES DO NOT 
FORM I I THE F REGION FOR UNDERDENSE HEATING CONDITIONS 

I 
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STATUS/RECOMMENDATIONS 

• ADDITIONAL TESTS USING THE PLATTVILLE HEATER 

• TESTS PLANNED IN MARCH 1980 

• INVESTIGATE F REGION HEATING EFFECTS 

• BASU AND BASU - SCINTILLATION EXPERIMENTS 

• RECOMMENDED ADDITIONS TO MARCH TESTS 

• APL/UT -. ELECTRON DENSITY MEASUREMENTS 

• REQUIRES FUNDING 30K 

• ITS WILL COORDINATE HEATING EXPERIMENTS FOR 
PROPER NAV. SAT, COVERAGE, ETC. 

", l\"'5'''r''~ 

• INVESTIGATE POTENTIAL TESTING WITH THE VLA (VERY LARGE ARRAY) AT THE 
NATIONAL RADIO ASTRONOMY OBSERVATORY NEAR SOCORRIO, N. M. 

• PHASE VARIATIONS OF RADIO STAR SIGNALS DUE TO 
IONOSPHERIC HEATING 
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The presentation material herein was used 
in the Phase Control Session of the 
Solar Power Satellite Workshop on Microwave 
Power Transmission and Reception held at the 
lyndon B. Johnson Space Center, January 
15-28, 1980. The workshop was conducted 
as part of the technic • .! assessment 
process of the DOE/NASA Solar Power 
Satellite Concept Evaluat.ion PrOtJrarn. 
All aspect.s of Solar Power Satellite 
microwave transmission and receptioll were 
addressed including studies, analyses, 
and laboratory investigations. Conclu-
sions from these activities were pre-
sented as well as recommended follow-on 
work. The workshop was organized into 
eight sessions as follows: 

• General 
• Microw(1v8 System Performance 
• Phase Control 
• Power Amplifiers 
• Radiating Elemel1ts 
• Rectel1l1a 
• Solid State COllfiguratiolls 
• Plalmed Program Activities 

The material contained herein supple­
ments the workshop papers which were 
published and distributed at the time of 
the workshop. Together they are a com­
prehensive documentation of the numerous 
analytical and experimental activities in 
the field of microwave power transmission 
and reception . 

• Additional illformatioll 
regarding the workshop 
may be obtained by 
cOl1tacting: R.H. Dietz 

EE4/SPS Microwave Systems 
National Aeronautics & 
Space Administration 
lyndon B. Johnson Space Center 
Houston, Texas 77058 
713 483-4507 
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liON SYSlEM.,TIlE B[f\MFOIU1ING AND MICROWAVE POWER 
GENE RAT I ON SYSTI:~1 

(1) NUMBrR OF SS HECEIVERS 

-COSTAS LOOPS 
eOESPREADCRS 

(2) Nur·mER OF DIPLEXERS 

(3) NUMBER OF POHER MODULES 

(4) NU~illER OF PHASE CONJUGATOR 
MULTIPLIERS 

101.,553 
101.,553 

101;5S~ 

101.,552 

101.,552 

(5) NUMBER OF 4-WAY POWER SPLITTERS 40.,960 

(6) NUMBER OF MSRTSs 22.,000 
, 

II J) 

(7) APPROXIMATE CABLE LENGTH 
REQUIRED 120 MILES 
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• ANTENNA ELEr~ENT COVAIHANCE MATRIX 

-INDIVIDUAL REALIZATION OF RANDOM PO~/ER PATTERN 

er1EAN FAIR FIELD POWER PATTER~ 

.I~EAN BEAr1 GAIN LOSSES 

eRf1S POINTING ERROR 

eTILT/~lECHArHCAL ERROR EFFECTS ON GAIN 

-EFFECT OF CONJUGATION AT OTHER THAN POW~R 
MODULE LEVEL 

eSIDELOBE LEVELS/NULL SHIFTING 

eMAIN BEAM POWER TRANSFER EFFICIENCY 

eEVALUATE AND PARTITIONING OF PHASE ERROR 
BUILD-UP BUDGET 

.POWER TRANSPONDER INTERFERENCE SIMULATION 

-EVALUATE I ONOSPHERI C EFFECTS* 
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EFFECTS ON FAR FIELD DUE TO: 

eSUBARRAY TILT (MECHANICAL POINTING ERROR) 

eSUBARRAY SIZE 

• SUBARRAY LAYOUT 

.CONJOGATION POINT (LOCATION JITTERS) 
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AN IDEAL SUBARRAV 
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CENTER 
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SU~1MARY OF PILOT TRANS~lITTER 

AND POWER TRANSPONDER DESIGN 

• E.lRP :: 93.3 oBW 

• PN CH I P RATE ,v 10 Mcps 

• RF FI LTER 3 DB CUTOFF FREQUENCY ,v 20 r1Hz 

• rWTCH FI LTER 3 DB CUTOFF FRE!.~UENCY "-I .1 rvlHz 

• NOTCH FILTER DC ATTENUI~T I ON r-J 60 DB 

• PN CODE PERIOD --1 MSEC 

• COSTAS LOOP ~iASE JITTER ~ 0.1 OEG FOR 10 HZ 
LOOP I3MJDW I DTH 

• CHANNEL DOPPLER IS NEGLIGIBLE 

• KLYSTRON PHASE CONTROL LOOP BANDWIDTH 
? 10 KHz 

L..-------JlnCOmJ 
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OBJECTIVES 

e EVALUATION OF MSRTS CONCEPT 

• FEASIBILITY 

• ACCURACY 

• LHlITATIONS 

• EVALUATION OF ~HCROHAVE POHER TRANSPONDER 

• PHASE. CONJUGATION CONCEPT 

• POWER AMPLIFIER NOISE SUPPRESSION 

o EVALUATION OF TOTAL SYSTEM PERFORMANCE 

• PILOT TRANSMITTER 

G CENTRAL PILOT RECEIVER 

I MSRTS 

o POWER TRANSPONDER 
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MSRTS BREADBOARD MILESTONE~ 

• DESIGN 

o FABRICATE THREE PROTOTYPE UNITS 

• TEST THREE-POINT MSRTS 

o FABRICATE SIX ADDITIONAL UNITS 

o TEST SIX-POINT MSRTS 

8 INTEGRATE WITH TOTAL SYSTEM 
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MSRTS ELEMENTS IN SPS DISTRIBUTION NETWORK 
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CONCLUSIONS FROM THREE-POINT TEST RESULTS 

• FEASIBLE IN LABORATORY CONDITIONS 

• ACCURACY LIMITED BY COMPONENT IMPERFECTIONS 
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MSRTS PERFORMANCE LIMITING FACTORS 

• POOR ISOLATION IN CIRCULATORS, COUPLERS, AND MIXERS 

• VCO PULLING AND SELF-LOCKING TENDENCIES 

• INTERMODULATION PRODUCTS IN MIXERS 

• EFFECTS OF TEMPERATURE VARIATION 

• MECHANICAL EFFECTS; STRESS ON CONNECTORS AND CABLES, 
VIBRATION EFFECT ON VCO 
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tlliBOWAVE POWER TRANSPQ~DER (MPTX) 111 LESTor:[S 

• DESIGN 

• FABRICATE MPTX ELEMENTS 

• PILOT TRANSMITTER 

~. • PILOT RECEIVER 

• TWO TRANSPONDERS 

• TEST INDEPENDENTLY 

• INTEGRATE WITH MSRTS BREADBOARD 
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MICROWAVE POWER TRANSEONDER 

• SPLIT-PHASE, SPREAD SPECTRUM PILOT SIGNAL 

• BASEBAND DESPREADER 

• PHASE-LOCKED CARRIER RECOVERY LOOP WITH 
NO PHASE AMBIGUITIES 

o PHASE CONJUGATED RETURN SIGNAL 

o PHASE-LOCKED NOISE SUPPRESSION LOOP, 
AROUND POWER AMPLIFIER 
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Subarray NL8ber of 
Type Klystro."..s 

1 4 
2 6 
3 8 
4 9 
5 12 
6 16 
7 20 
8 24 
9 30 

10 36 

TOTAL 

INTRASUBARRAY PHASE CONTROL SYSTEM 
PRODUCTION COST CHARACTERISTICS 

Subarrays PCR PCR RPDS RPDS length 
of This Mass Cost Mass Cost Cable 
Type ft!ll. ilL lli.l 11L (.) 

1028 4.4 2240 1.0 595 33 
1052 0.6 3360 1.0 595 49 
612 8.8 4480 1.0 595 61 
664 9.9 5040 1.0 595 72 
900 13.2 6720 1.0 595 95 
784 17.6 8960 1.0 595 132 
628 22.0 11200 1.0 595 167 
644 26.4 13440 1.0 595 197 
632 33.0 16800 1.0 S95 232 
276 39.6 20160 1.0 595 296 

7220 112 T $57M 7T $4M 
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Cable CAble 
Mass Cost 
(leg) (I) 

3.7 73 
5.4 108 
6.9 138 
8.0 160 

10.6 212 
14.5 290 
18.2 365 
21.6 433 
26.0 521 Ii 
32.5 649 Ii 
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S'PS' 
INTERSUBARRAY PHASE CONTRQL SYSTEM 

PRODUCTION COST CHARACTERISTICS 

79-318 

Item No. Rug'd. 

Master Reference Receiver and 
R~t-erence Phase Transmitter 3 

Cables 60 

Slave Repeaters 400 

level 2 Cables 380 

level 3 cables are cORlllOn w~th 
area-subarray data harness {$~i WBS 1.1.3") 

Avg. Unit 

424K 

4.6K 

25.1K 

2.5K 

,. ""Y:5""\. ''''''''' _.............,,~ ""'" 
" • - .-f 

Per SPS 
(M) 
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S'PS' 

SPACETENNA AVAILABILITY ESTIMATE 

19-3ti7 

MEAN MA I NTEtfANCE IMPACT 
AVA I LA- HOURS .. SEMI- ON 

ITEM --- _________ ~I BILITY AtfNUAL REP A I R EFFICIENCY 
-- - - --- .. --------

DC DISTRIBUTION I 281 -1% REDUNDANT DC-DC CONVERTERS .995 

PHASE CONTROL iYST~M 
REDUNDANT ST ND LEVEL 6eO - 2.21 RECEIVERS AND CONJUGATORS .989 

~ 
KLYSTRON 25YR. MTBF 

NO REDUNDANCY .98 2544 -q% 'i 
TOTAL MPTS EQUIPMENT .902 7013 
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PHASE CONTROL PERFORNANCE SIMULATION 

CORRELATED ERRORS 

PU:'.[)F ( .. - -
, r'f", '1 ER_\~;\S 

~~ . . 
100 

BEAM STEE;~ING 

4::'i4 BRANCH 
REF- DIST. TREE 

I NDEPEr:DENT OF 
RANDOM ERROR 

CONTROL :£ MODULE 
PHASE > 15 95 

cC LEVEL 
LEVEL ~ 

90 
0 5 10 

PHASE ERROR. DEG. 

15 

DCiOCUS IN5 

U; LOSS/24° OF 
RADIAL PHASE ERROR 
BUILDUP 

EFFECT ON GRATING 
LOBE LEVEL 

-zo~ ~l'nARP.AY 
~ LEVEL 
~ -40 /"HODUlE 

~ ~EL 
-' -60 

0 2000 4000 6000 

RADIUS. KH 

mKORRELATED 
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31 lJSS/lOO Of 
RANCtJM PHASE E~i\('oP' 

EFFECT ON 
SCAN LOSS 
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Q SUBARRAY 
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SPS FIBER OPTIC LINK ASSESSMENT CONTRACT NAS 9-15636A 

• Analyze existing opticdl fitle,As for appl icabH ity for use in the 
test with emphasis on phase change effects. attenuation and bandwidth. 

• Analyze suitable optical emitters and detectors to determine feasi­
bility of operation and usage at 980 "Hz • 

• Select and purchase candidate optical fibers and an emitter and detec~or 
for testing. 

• Test candidate fibers at 60 MHz for phase sensitivity to temperature. 

• Oesign and construct i'apedance matching system for matching the 
optical emitter and detector to ~oeing laboratory equipment. 

-

• Assemble and test a two way opto-electronic link at 980 MHz 
consisting of two selected emitters and detector units and a'jacket 
material 2-fiber cable of minimOm length of 200 meters. 
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~ .. tNOlOGY 

DEVICE UNDER 
CONSIDERATION 

Er·lITTER 

DETECTOR 

DEVICE COUPLING 
NETWORKS 

, 

TYPE 

GAALAs MULTI-MODE 
INJECTION LASER DIODE 

GAALAs S I ~GLE -f'lODE 
• INJECTION LASER DIODE 

SILl CON AVi\LAr~CHE 

• PHOTO DIODE 

RESONANT CAVITY 

• STRIPLINE NETWORK 

" ... "" ·e;;= ~_ -..,..._~_~_ 

FEATURES 

1) LOW COST "'-$0. 
2) H I GI~ POVIER 

1) HIGH POWER 4) LO\-l DISTORT I ON 4'# '1$0 
2) H I Gil COUPLING EFF. 5) NARROW SPECTRAL WIDTH 
3) LOr! THRESHOLD 6) HIGH RELIABILITY 

1) GAIN-BW PRODUCT = 80 GHz 
2) HIGH RCVR SIN 
3) LOW COST ". '00 j 

1) STABLE 
2) HI GH Q 

j 
1 

1) LOW COST 
2) EASY iO HANUFACTURE · 
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CD 
UI 

£GINEERING SPS FiBER INVESTIGATION RESULTS 
TecHNOLOGY « a 

o CRITERIA FOR nUlTI -r10DEI GRADED INDEX FIBERS 

CORNING CORNUJG TInES VALTEC GALl LEO ITT 
IVPO(l) OVPo(2) OVPo(2) IVPO(l) IVPO(l) IVPO(l) REQUIREMENTS FOR TEST 

,-~~--'---'---

BAND~J 10TH :: 1 GHz -KM X X X X 
ATTENUATION ~ 10 DB/KM X X X X X X 
UNIQUE DOPANTI 
M/\NUFACTUR I ~~G TECHN I QUE X X X . X(3) 

--

"-

NIPPON 
MULTI­

COMPONEMT 

X 

X 

l' 

I 

I 
i 

f ' 
AVAlLABllITY X X X X X X X 

.. .--

j 
U~JJACKE lED . X ." X X X X -/\ 

SUGGESTED FOR TEST .t 
. i •• ••• ••• • 

i -

o CRITERIA FOR SINGLE-MODE FIBERS 
o SELECTION WILL BE BASED ON AVAILABILITY OF TEST SAMPLES. GENERALLY SUGGESTED 

THAT A PURE FUSED SILICA FIBER ~'ITH GE DOPED CORE WILL BE. SUPERIOR TO OTHER TYPES. 

(1) lVPO - INSIDE VAPOR PHASE OXIDATIO~ PROCESS 
(2) OVPO - OUTSIDE VAPOR PHASE OXIDATIO~i PROCESS ; 

(3) FIBER HAS TIGHTtV E:R~~ED.:~S~IC JACKET "M- • '" S r..... '. J ---" ... ,-,~-~-
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AHPLIF'IER 
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OSCILLOSCOPE 

~ to 
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__ 1 
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I· · I A , VECTOR 
pr----------------------------------------~~ VOLTMETER 

1 
I 
I 

DIRECTIONAL I ' 
FInER 
UNDER 

TEST 

D 4 
I ' 

COUPLER 

EMITTER 
SYSTEt-f 

BIAS 

COUPLER , COUPLER 

-1/ I I If I I 
ENVIRONMeNTAL j 

DETECTOR 
SYSTEM 

CHAMBER 

DIGITAL 
THERMOMETER 

BIAS 

FILTER 
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980MHz 
SOURCE 

'" 

----;..- -- .'H¥,"W' ' ..... .,.. ~- ""'" ;;::;iiiI .... "~.".~..,.-~: 

SPS 980r-lHz FIBER OPTIC LINK TEST 

410 1->'/4-1 DC BIAS DC ~1/4-f 

I YJV' f I '\IIIV'-4 BIAS.......,..,..,. I i I 

~~ I I r~ ~ 

'?' 

PREN-!P 
G=26dB 

1 
98Ot1Hz 

OUT 

-. 

EHITTER 

f /0 PIGTAIl. 

o NEe INJECTION LASER DIODE 
o 8IAS COUPLED TrlROUGH 

QUARTER-WAVE 1-11CROSTRIP 
o I01AS • 88ma DC 

o OPTICAL POWER • 437 ~watt 
@ EMITTER O!GiAIl 

o V980MHZ c 0.1 VOLTS RMS 

CONNECTOR CONUECTOR 

DETECTOR 
LIGHT PIPE 

fIBER 
o CORNING IVPO. GRADED INDEX 
a LENGTH· 303 METERS 
o ATTEN. t 3.9dB/km 

o BW • 870101Hz-1cm 

o N.A. • 0.218 

I , 
DETECTOR 
o RCA AVALANCHE PtiOTOOIODE 
o BIAS COUPLED THkOUGiI 

QUARTER-WAVE MICROSTRIP 
o VB1AS = 180 VOLTS D~ 

o OPTICAL POWER • 2ZB ¥watt 
~ DETECTOR LIGHT PIPE 

o V9SCMHZ C 135 mv &~S OUT 
OF PREAMP 

__ ..... ~_ .... __ ._ •• _. __ ._·~_" ____ u _._._._ •• ~ ••.• __ •• _ .•• _._ •• ___ •• "W .~ 
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SPS FIBER OPTIC LINK TEST 

• 980 MHz TEST DATA 

I , , , , 
I 

/ 0.7 

0.2 0.4 0.6 0.8 

980 MHz MODUL~TION DRIVE LEVEL, RMS VOLTS 
1.0 

• POWER Btl I TTED FROM EMI TTER HODUlE 
= 437 l1WAiT = -3.6 DBM (NEAS:1PM~lJ) 

• LOSSES DUE TO FIBER ATTENUATION 
= 3.9 DB/KM x 0.303 KH = 1.18 VB 

• COUPLING LOSS AT EMITTER TO FIBER 
= 1.65 DB (MEASURED) 

• COUPLING LOSS AT FIBER TO DETECTOR 
= 1.0 DB (ESTlr~TED) 

. :. PuWER ONTO DETECTOR (AVERAGE) 
= -3.6 DBM - 1.0 - 1.65 - 1.18 
= -;.43 DBM (181 ~WATT) 

• NOISE EQUIVALENT OPTICAL POWER = 331 NWATT RMS :: -34.8 DBM (CALCULATED) 
• AC RMS EMITTER/DETECTOR RESPONSIVITY PRODUCT = 0.211 (MEASURED) 
• AC RMS 980 MHz SIGNAL POWER AT DETECTOR = 0.211 x 181.11WATTS = 38.2 lJWATT 

= -14.2 DEM (PT. A) 

J 

1 

\ 

\ 

j 

I 
1 

• OPTICAL EQUIVALENT SIGNAL TO NOISE RATIO = -14.2 DBM + 34.8 DBM = 20.6 DB i 

• POST DETECTION ELECTRICAL SIN (SQUARE WAVE DETECTOR) = 41.2 DB 1 

,-",,,,,"~.'-_"_. t1!'hr 
~ 
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BASIC SPS POWER FLOW MECHANISM - ACTIVE RETRODIRECTIVE ARRAY 
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r 
r 
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r ! 

..0 
I\) 

371 400 K~1 

REF (tIJ r' f/J r) 

Kth 
SUBARRAY 

IONOSPHERE 

REF (tIJ r' f/J r) 

PUP t IKW 

PDOWN ' 7 GW 

PILOT BEAM 
2.45 GHz 

j 

i 
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ION OS P HER E C H A RAe T E R I Z A T ION S 

1. STEADy-STATE REGULAR (IDEAL STRATIFIED LAYERS) 

c:> HOMOGENEOUS I DISPERSIVE MEDIUM 

2. STEADy-STATE IRREGULAR (LARGE-SCALE WEDGES OR SMALL-SIZE ANOMALIES) 

c:> INHOMOGENEOUS 1 DISPERSIVE MEDIUM 

3. TIME-VARIABLE AND IRREGULAR 

c:> INHOMOGENEOUSI DISPERSIVE AND TIME-VARYING. 
MEDtUM 

" " st ,Pt"f 
" "~"'m'_'_'. _. S t It " ,,1 r * t • 2 
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BASIC ASSUMPTIONS REGARDING IONOSPHERE 

A. STATIONARY OR SLOWLy-VARYING 

B. No SERIOUS PROBLEMS DUE To HEATING OF IONOSPHERE 
By DOWNLINK POWER BEAM 

j . ,~". 
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IONOSPHERIC EFFECTS ON SINGLE-TONE PILOT BEAM 

ASSUME 'U (UPLINK FREQUENCY) ~ 'D (DOWNLINK FREQUENCY) 

THE PATH-RELATED PHASE-SHIFT AT 'U ON ONE PARTICULAR LINK 

·('U) = 2ft' 1-U C 

= 2n' 1-u C 

40.5 X 2ft 

'U C 

~ 
'U 

MULTIPLY BY 'D/'U AND PHASE CONJUGATE , 
.- (fD) = - 2n fD ~ + KU F:Z 

DOWNLINK SIGNAL AT TRANSMIT END 

l 1 Ndl 
o 

f 
sTet) = COS [wD (t +~) - KU~] 

U 

DOWNLINK SIGNAL AT RECEIVE END 
f K 

SR(t) = COS [wDt - Ku b + ~] ; KD :: A CONSTANT SIMILAR TO KU 
U D 

i 

j 
1 
1 
i 

1 , 
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IONOSPHERIC EFFECTS ON SINGLE-TONE PILOT BEAM 
(CONT'D) 

KU AND KD COULD BE DIFFERENT BECAUSE OF 

1. TIME VARIATIONS 

2. UPLINK/DOWNLINK GEOMETRY 

IN GENERAL~ THE PAIR {KU~ KD} WILL BE DIFFERENT ON DIFFERENT LINKS 
BECAUSE OF IONOSPHERE INHOMOGENEITY. A CONSEQUENCE OF THIS IS THAT 
DOWNLINK BEAM IS NOT PHASE-COHERENT AT PILOT SOURCE! 

PROBLEM: NEED TO EVALUATE THE AMOUNT OF PHASE ERROR THAT COULD 
OCCUR DUE TO WORST-CASE IONOSPHERIC CONDITIONS. I 

! 
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FURTHER COMMENTS ON IONOSPHERIC EFFECTS (SINGLE-TONE SYSTEM) 

PROBLEM A: 

PROBLEM B: 

IONOSPHERE - I NDUCED PHASE EiRRORS CAN CAUSE LOSS OF PHASE 
COHERENCE AT SOURCE. 

LARGE-SCALE IONOSPHERIC IRREGULARITIES (E.G.~ WEDGES) CAN 
CAUSE BEAM POINTING ERRORS. 

THE MAGNITUDE OF PROBLEM A NEEDS TO BE EVALUATED UNDER WORST-CASE 
IONOSPHERIC CONDITIONS. 

THE "AGNITUDE OF ,PROBLEM B CAN BE ESTIMATED BASED ON LIMITED AVAILABLE 
KNOWLEDGE ON WEDGES. (LAWRENCEI ET AL.~ PROC. IEEEI JANUARY 1964) 
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FURTHER Cor1MENTS ON IONOSPHERI C EFFECTS (SINGLE-TONE SYSTE~1) 
(CONT'n) 

~ EMERGING PLANE WAVE 

IONOSPHERIC WEDGE 

-x 
~ INCIDENT PLANE WAVE ______ ....c..._ 

T z TILT ANGLE OF REFRACTED WAVEFRONT 

• ~ -Ix (J N dt) RADIANS; b = 1.6 X 103 MKS 

ASSUME TRANSVERSE GRAD lENT = 1: OF J N d lOVER 10 KM 

= 10-6 X J N dl 

ASSUME f N dL = 1019 {WORST-CASE)I CAl :: 2n X 2.5 X 109 

THEN T • 13 ARC SEC. 
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FURTHER C~£NTS ON IONOSPHERIC EFFECTS (SINGLE-TONE SYSTEM) 
(CONT'D) 

• FOR SPS~ IfU - fDI s 100 MHz AND TU AND TD ARE ALMOST EQUAL 

• UPLINK (PILOT) BEAM IS BROAD (eu s 3000 ARC SEC)~ THE BENDING 
ON INCIDENT BEA~ WILL GO PRACTICALLY UNDETECTED AT SPACE 
ANTENNA. 

• DOWNLINK (POWER) BEAM IS NARROW (eD • 30 ARC SEC), THE BENDING 
IS APPRECIABLE BUT IONOSPHERE TOO CLOSE TO RECTENNA (~100 KM) 
TO DO ANY DAMAGE. 
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REMARKS ON IONOSPHERE HEATING DUE TO POWER BEAM 

(REF: PERKINS AND ROBLE (1978), DAVIES (1979» 

100. i i Ii 

lOG 

i 400 
~ ... 
3 
i JOO 

100 

T. ;T. 
, I 
• I 

-! : 
1/ ' ~. r 
:, r .. , 
~I r 
;, ~.r 
;-1 ~I 
0' ':'1 
~I ~I 
~' II) ~1 'I 
~, / 
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" r'" 
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/' ( ., 
4000 

100, ""'" , ,; ""1 ., 'I". 
SPS 

700' 

~ ---::;; 100 I!i::=ci~~, , .... 1 

IV 10 J ~ 
[L£CTftOIIt OENSITY (CII", . 

• AT 2.5 GHZ 1 RESISTIVE HEATING OCCURS IN E-LAYER (DUE TO HIGH COLLISION FREQUENCY) 
AND THERMAL RUNAWAY OCCURS IN ELECTRON TEMPERATURE 2000K + lOOooK. 

• THE ELECTRON DENSITY VS. HEIGHT PROFILE SHOWS ABOUT 3 TIMES INCREASE IN E-lAYER 
DENSITY (DECREASE IN RECOMBINATION RATE AT HIGHER ELECTRON TEMPERATURE). 

• THE INTEGRATED ELECTRON DENSITY COULD CHANGE BY 20%. THIS MAY NOT PRODUCE 
UNACCEPTABLE BEAM REFRACTION. 
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REMARKS ON IONOSPHERE HEATING DUE TO PONR BEAM 
(CONT'D) 

CONCLUSION: 

BASED ON PRESENT KNOWLEDGE 1 THE IONOSPHERE DOES NOT 

SEEM TO HURT THE SINGLE-TONE PILOT BEAM SYSTEM BADLY. 

SOME MORE STUDY IS REQUIRED. 

j 
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TWO-TONE P I LOT B E A M 

-Af-I-Af-

f2 fO fl 

• AVERAGE OF THE PHASE AT fD ± Af IS DESIRED TO DUPL1CATE THE PHASE OF A 
SINGLE PILOT TONE AT fO 

• PHASE MEASURED AT THE SPACETENNA AT fl = fD + Af AND f2 = fD - Af IS 

·1 = 
2n fl D 40 2n J Ndt C f1 C 

·2 = 
2n f2 D 40 .z.n. f Ndt C f2 C 

- .1 + .2 
'D ; I ~f I « 1 • = -2 .... 

D 

D - DISTANCE TO SPS -37,400 KM 

C = VELOCITY OF LIGHT 

N = ELECTRON DENSITY 

~ ... Tt£ t -III 
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TWO-TONE P I LOT B E A" 
(CONT'D) 

PROBLEMS: THE AVERAGING INDICATED TO OBTAIN i CAN SOMETIMES GIVE 
WRONG ANSWERS (OFTEN CALLED n AMBIGUITIES), THIS CAN 
HAPPEN IF 

(I) .1 - .2 = K 2n + A; IAI < 2u AND K IS ODD INTEGER 

AND/OR 

(II) ASYNCHRONOUS DIVIDERS ARE USED 

" . """,.,~., •. , "I' $ t I 1I!iIii" '.. .' , 7~~~~,.: ... ,... ... ~."...... In"t5~Wi riQ rt~_Ii[tc_l1[j'fri'r.f'· itt •• r'.'.f.tt:a,..mflili Ii:,.., .. -._~M~~.'¥J."·_~·,"".~".",-"~""".L..""""", """ • ..,.~~,, ,~-., ... "~.~,.-- )'j'ijjdtf" tau' r ' -
'" .~ ................ _, •. ". • •. _-",.~_ ... "_ "."~,, ..• ~ .•. ~~ •. ',,_.L_., ,;", 'd b'. "_ P' He' rn 7 ' , "... I I I, $11111 Iffill" n liIIl I' ;"'''£''1. M mill. " ,~_~_... '171'71' M 'W' 7 " e ott'73 t .1. 

j 

1 



~
;-, 

- -', "~.' -"." ,­

.. 
i. 

~->-

... 
o 
~ 

~--- - , .. ~~_~ -.-.'f ~. 

,..,~ --:.'",,'v ~,:~~,..:- "'?)/l~.~ 

T H R E E - TON E P I lOT B E A M 

OBJECTIVE: WISH TO CORRECT FOR IONOSPHERE-INDUCED PHASE SHIFTS ON 
(POSSIBLY) ALL LINKS OF INTEREST. NEED TO ESTIMATE 

j[L Ndt FIRST • 
o 

USE COHERENT THREE-TONE TECHNIQUE DUE TO BURNS AND 
A 

FREMOUW TO OBTAIN THIS ESTIMATE N. 
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3-TONE 
GENERATORI f1,f2,f3 

CAUTION: 
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T H R E E - TON E P I lOT B E A " 
(CONT'D) 

fD t1 
f3 

1 t-Af+6f-t FREQUENCY 

Xl
6f 

f2 
f1 

FILTERS I • 
PHASE 

DETECTOR 62• 
SCALING 
CIRCUIT 

'----'f3 

XI 6f 

C f 1 3 IN dt a - 62• X 2n X 81 X (6f)2 

6f NEEDS TO BE CHOSEN APPROPRIATELY SO THAT 62+ CAN 
BE MEASURED WITHOUT 2n AMBIGUITY FOR IN dt s 1019 

ELECTRONS/M2
, 

", ~.:.J 

IN dt 

-.~<--.'-'-'" ,,~-~""~--""~'-" 
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-,,- ., .~.".,<..,.. - .-~-""'~ 

,~ "...,., . - . 

f' 

t.l 
~ ~l I . 

t 
~ 

t 
~ 
r, 

! 
~ 

I 

\ 
f 

I , 
~ , 
~ I , I r 

~ I 
r 

-o 
01 

MOD I FIE D C HER N 0 F F CON JUG A TOR 

, 
vco -f (fn) 

LOOP 
fILTER 

• - DET Tn 

AVD PHASE. J---[ 
40.5 2n N ,-
fj)XYx J 2-PLX 

(1(£1) 

~ 
'llTRACT PHASE 
O.S 21l ") 
~xc- xN 

.1 

.ec! ) 
G D! 

·(~l) 
A.'JTENNA 

.'(f1) r. -----

JL fl • f n+2 0 

cr· {-~;- r--w- L 

f(f J. L 40.5 2n [N dt 

I • 

1 II fill C - ---r;- x C x 0 .0 (f
1

) = Re£ Phase 

LO 40.5 2Jr ito 
CId ---x-x Ndl 

1 C fl C 0 • , 40.5 2n .. 
• (£D)=-. (£D) + --r- x C x N 

D 

• ..lL [2. (f) _ .'(f)] + 40.5 x 2rr x N 
n+2 0 lIfO C 

• Constant at all subarrays 

L 40 5 2n .. f02 fr/ i L 
C const.-IIlO C + -T- x C [N(l- pJ + P N dt] 

o ! 1 0 
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THREE-TONE P I lOT BEAM 
(CONT'D) 

COMMENTS: 

A 

JUSTIFICATION FOR USE OF SAME N FOR UPLINK AND 
DOWNLINK PHASE· COMPENSATION • 

DIVIDER AMBIGUITY PROBLEMS IN THE MODIFIED CONJUGATOR. 
(HAS BEEN SOLVED) 

I 

1 
i 

I 

, 

I 
1 

j 
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REQUIRED AREAS OF FURTHER INVESTIGATION 

A. STATISTICAL ANALYSIS RELATED TO IONOSPHERIC TURBULENCE. 

I i B. THE PROBLEM OF IONOSPHERE HEATING DUE TO THE DOWNLINK POWER 
BEAM AND ITS EFFECT ON OVERALL SYSTEM OPERATION. 

C. PERFORft1ANCE Af~ALYSIS OF THE RAYTHEON SOLUTION FOR AMBIGUITY ,. , 

1 
r , 

RESOLUTION. 

l ~ 

IMPLICATION OF CHANGING DIVIDER RATIO N IN CHERNOFF CONJUGATOR. 0 D. CD 

~. 

E. POSSIBILITY OF SPATIAL AND TEMPORAL FILTERING TO REUUCE J 
t 

IONOSPHERIC EFFECTS. t , , F. EFFECTS OF CHANGING THE FREQUENCIES OF PILOT TONES AND THEIR 
~ 

i SPACING. i 
f ! I ~ ; G. PRACTICAL U1PLEMENTATION OF FIGURE 9. HOW TO INTRODUCE THE r i , I IONOSPHERE RELATED PHASE COMPENSATION? 

I H. EVALUATION OF BROAD PILOT BEAM CONCEPT. 
I 

1. HAVEFORM DEFINITION IN A MULTI-SATELLITE ENVIRONMENT. i 

I 
_'.~:~.:":':~-:,::-':--:: ~:==:::;:=:: .:::~;:;; .. ;; ::; ;~;I J , 
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Power 
Modules Spacetenna 

j 
J 

"' Ea rth' s Surfa ce 1 

Rectenna 

• IF SIGNALS TRANSMITTED BY EACH POWER MODULE ARRIVE 
AT CENTER OF RECTENNA IN PHASE _ 

I POWER BEAM WILL BE PROPERLY FOCUSED 
AND POINTED 

111 

1 

1 



• A PHASE CONTROL SYSTEM is NEEDED TO CORRECT FOR EFFECTS OF: 

I SPACETENNA STRUCTURAL DEFORMATIONS 

I PHASE VARIATIONS WITHIN SPACETENNA CIRCUITRY 

I MOTIONS OF THE SOLAR POWER SATELLITE 

1 
! . 1 , 

I 
1 
1 

112 

U&~:£.~,!!t~~ ... ,.","~':,~~, "d~k~~ ~.:=~",:,==:"~~'_A' __ t>N~~- ... ~ 
-'... ~- _ •• " - .'.' ..... > '" 



~ 

! 
t 

I r 

I 

f 
i . 

[ I , I 

f 

... ... 
"" 

~~.~,-.". ... 

.. --~---- .... ·'.'If_ .=--- .,. .......... '~ -~. 
.->.l"'W , .... '" ,~~.~ ... ", .. ~.,~: ... ",. o •• ' 1J"*~>""'*'-';:t"!l\~ 

\ 

V--- Spacetenna 

,< / Spacetenna Reference Transmitter (SRT) 

Power Module 
Being 
Phase Tuned 
(Calibrated) s2 

Uplink 
Data :> 
Channel 

£ 
1 
[ 

Phase Measurement 
Antenna (Pt-1A) 

Rectenna IE Al ternate Phase 
Measurement 
Antenna (Off-site) 

!Phase E~ror 1;C -Phase Difference Infonnation 
Correctl on .~f----~ 

i Gen~!:ation ; 

INTERFEROMETRIC PHASE CONTROL SYSTEM 
j 

I 
j 
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• PHASE ME.~SUREr1ENT ANTENNA (PMA) RECE I VES SIGNALS n{O~1: 

I SPACETENNA REFERENCE TRANSMITTER (SRT) 

I POWER MODULE BEING PHASE TUNED (CALIBRATED) 

• PHASE DIFFERENCE INFORMATION DETERMINED 

• PHASE ERROR CORRECTION GENERATED 

G PHASE ERROR CORRECT ION TRANSMI TTED TO ON-BOARD POWER MODULE 
PHASE CONTROL CIRCUITRY 

• VIA CONVENTIONAL UPLINK DATA CHANNEL 

114 
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Power Beam 

I Phase Tuning 
Reference Signals 

52 (Power module 
being phase tuned) srl 

------L------'---~IC=----l Frequency ·'-2450MHz 
Af ~ 

• COHERENT SIGNALS TRANSMITTED FROM SPACETENNA (AT THREE 
DIFFERENT FREQUENCIES) 

• TWO FROM SPACETENNA REFERENCE TRANSMITTER (SI & SRI) 

• ONE FROM POWER MODULE BEING PHASE TUNED (S2) 

• BEAT FREQUENCY OF S1 AND S2 SAME AS SI AND SRI 

115 
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S2 5) Srl r Upl ink Oata iii 
t Channel \I/, PhilSC Measuren,cnt Antennd 

.1" (at Rectennd Site) 
~ a-Bit Binary Word Phase ._ .. L -Error Correction 

~~r~~f!iY~n ~~s; -f -. + Phase Ref~~ 
- Difference, Signal 

Phase 
Comparison 

GROUND BASED PHASE CONTROL. CIRCl'iTRY 

• TWO DIFFERENCE FREQUENCY SIGNALS DETECTED AT PHASE 
MEASUREMENT ANTENNA 

lONE DUE TO Sl AND S2 

I OTHER DUE TO Sl AND SRI (PHASE REFERENCE SIGNAL) 

• PHASES OF THE TWO DIFFERENCE FREQUENCY SIGNALS ARE COMPARED 

• PHASE DIFFERENCE IS A FUNCTION OF: 

I Z-AXIS DISPLACEMENT IN pm/ER MODULE BEING PHASE TUNED 

I PHASE BIASES IN PHASE FEED NETWORK OF SPACETENNA 

.. 

1 
lIt: 
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Power Beam 

Phase Tuning 
Reference Signals 

52 (Power' module 
being phase tuned) 51 Srl~ 

___ \~L".l_~. ____ l __ &: L.J LL. _.,~,._l~~ frequency 
"-2450MHz 

~.-. - Af ~~+- Af ~- ~~~~4 

o A SECOND SET OF FREQUENCIES FOR SRl AND S2 PROVIDES A SECOND 
PHASE DIFFERENCE MEASUREMENT 

i DISTINGUISHES FREQUENCY DEPENDENT FROM FREQUENCY 
INDEPENDENT PHASE ERRORS IN S2' 

117 
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• PHASE ERROR CORRECTION IS CALCULATED FROM THE TWO PHASE 
DIFFERENCE MEASUREMENTS 

I 8-BIT BINARY WORD OUTPUT TO SATELLITE 

-- RESULTS IN VERY HIGH POINTING ACCURACY 
(VERIFIED BY COMPUTER SIMULATION) 

118 
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f 

Power Beam 
Reference 
Signal 

NORMAL 

Cummulative 
Correction 

Calibration 
Signals 

CAL IBRATION 

I 
... _-_ .. _ .. _-_., 

., -_.', t 
Accumul ator r------:-.. -.. --
. __ . ___ . _____ ~J 

8-bit 
I :<----

Bi na ry Phase 
Error Correction 

I , 
i 
I 

C~ 

J 
r 

Uplink Data Channel 
from Ground 
Instrumenti3tion 

Phase I 
locked 
Loop 4---

Circuitry 

-r 
1 Power Be.m 

\V 

To Rectenna 

POWER !'10DULE PHASE CONTROL C I RCU I TRY (ON-BOARD) 
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" CHARACTERISTICS OF If~TlRFERorjiETRIC PHASE CONTROL (IPC) 

• GROUND BASED AND CLOSED LOOP 

I CALIBRATES POWER MODULES SEQUENTIALLY 

-- LESS THAN ONE MINUTE FOR COMPLETE CALIBRATION OF 
SPACETENNA 

• C~LIBR.~TES pm~ER MODULE AT SLIGHTLY DIFFERENT FREQUENCY 

FRDr1 POWER BEAM DURING NOR:-tl\L POWER TRANSMISSION 
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o IONOSPHERE MAY BE SUBJECTED TO UNDERTERMINED HEATING 
EFFECTS BY POWER BEAM 

I A HEATED REGION CAN BE AVOIDED BY ~1AKING 
INTERFEROMETRIC PHASE CONTROL MEASUREMENTS 
OFF-SITE FROM RECTENNA 
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Phase / 

/ 
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I 
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I 
I 
I 

~ 

~ Spacetenna 

I 

~.---- Powe I' Beam 

Tuning / 
Ca 1 i bra t ion 
Signa 1 s -_..;:./ 

/ 
I ~ Possibly 

1 .~~- ... --.) Heated Ionosphere t' --- --' I 

-_ .... -.. .!-... ....... .. ... ~---~ _____ ..--- Earth's Surface 

~~-.. ~J .. _-'-==::J ~"'" 
// --- ~. Rectenna ....... ' 

Phase / r- ·C---~~ " 
Measurement --- Approximately lOkm From 
An tenna Cen ter 0 fRee tenna 

OFF-S ITE PHASE MEASURE!1E~T TO HAVE PHASE TUN I NG 
CALIBRATION SIGNALS AVOID POSSIBLY HEATED IONOSPHERE 

1 22 
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, I 
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• 

• A:~V IONOSPHERIC EFFECTS ON PHASE CONTROL CALIBRATION 
SIGNALS CAN BE MINIMIZED USING: 

• STATISTICAL ERROR REDUCTION TECHNIQUES 

• TIME AVERAGING 

A SPATIAL AVERAGING 

-- MULTIPLE PHASE MEASUREMENT ANTENNA SITES 

123 
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~. : 
K' • PRED I CT ION OF SPACETENNA DEFORMA T I ON DYNAM I CS 
~I 

~ ; • LEARNING CURVES~ ADAPTIVE MODELING TECHNIQUES 

• ENTIRE SPACETENNA TUNED BY FREQUENT MEASUREMENT OF 
KEY POWER MODULES 

- OCCASIONAL MEASUREMENTS OF REMAINING POWER MODULES 

• r1APP I NG OF FACE OF SPACETENNA 

I DETERMINES RELATIVE t10TION AND LOC.~TION OF EACH 
POWER MODULE 

• TRANSVERSE MODAL ANALYSIS 

I I DENT I F I ES DEFECT I VE Po\~ER MODULES 

I ONLY TWO ADDITIONAL EARTH MEASUREMENT ANTENNAS 

I SIMULTANEOUS WITH PHASE CONTROL 
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Spacetenna 

r----~-- Spacetenna Reference Transmitter (SRT) 

Power 
~bdule 
Being 
Mapped 

/ 
I 
~ 

I 
~ ~ 

Traveling I~J 
Fringes 

~1APP I NG 

___________ , ~Earth's Surface 

~ 
- Rectenna 

Phase Difference Information 
For Mappping 
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• INTERFEROMETER-BASED PHASE CONTROL AS ADJUNCT TO 
RETRODIRECTIVE SYSTEM 

I MITIGATES PHASE BIASING PROBLEMS 

I POSSIBLE BACKUP IF ATMOSPHERE/IONOSPHERE 
OCCASIONALLY PRECLUDES USE OF RETRODIRECTIVE 
SYSTEM 
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GROUND BASED PHASE CONTROL CONCEPT WITH 
MAJOR FUNCTIONAL BLOCKS 

OMHUNICATION 

SUBSYSTEM 

CONTROL 

CENTER (CC) 

UfTERFACE BUS 

• • • 
, <I 

PHASE REFERENCE 
PHASE DO~lNll NK 
ERROR 

ESTI~1ATE 
UPLINK 

PHASE HEASURHIE.NT 

'---~ PHASE ERROR 

UPDATE ALGORITHM 

SPACETENNA 

• • • 

PHASE OF i!.!!. 
SUBIl.RRAY 

PRECEDiNG PAGE: BlANK NOT fll.MEP I 
P p _-------1 

'--"-~ i,l Lo In 
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GROUND-BASED VS REfERENCE RETRODIRECTIVE 
PHASE CONTROL SYSTEM 

REFERENCE SYSTEM .GROUND BASED SYSTE,4 
'" 

-REQUIRES LARGE AMOUNT OF -REQUIRES LESS SP.ACEBORNE 
SPACEBORNE ELECT~ONICS ELECTRONICS 

_COMPLEX SPACEBORNE -COMPLEX GROUND PROCESSING 
PROCESSING BUT SIHPLE BUT SI~lPLE SPACEBORNE 
GROUND SIGI.AL PROCESSING SIGNAL PROCESSING 

_CORRECTS FOR IONOSPHERIC -CORRECTS FOR IONOSPHERIC 
DISTU~OANCES WITH DISTURBANCES WITH 
CORRELATION TIME ~10RE CORRELATION TIME HORE 
THAN 0.25 sec THAN 1.25 sec 

-REQUIRES PN CODE FOR -SECURITY OF DOlmLINK 
SECURITY 

_INSTANTANEOUS CORRECTION -SENSITIVE TO RATE OF CHANGE 
fOR SPACETENNA "lOTION OF POINT! NG ERROR . 

.PERFORMANCE INHERENTLY .PERfORMANCE ISHERENTlY 
LIMITED BY THE PHASE ERROR LIMITED BY PHASE ERROR 
INTRODUCED BY THE PHASE INTRODUCED BY THE DIGITAL 
REFERENCE DISTRIBUTION PHASE SH J FlER 
SYSTEH 

.OO(S NOT CORRECT FOR DC -NOT AFFECTED BY DC OFFSETS 
PHASE OFFSETS BEYOND THE I NTRODlICED ANy\mERE ALONG 
PHASE CONJUGATION POINT THE SIGNAL PATE 

• fAST S'IART -UP -SlOWEIl START-UP 

----~/l~/'~-----------------------------------------·----
130 



"'~"""'~.' ....." . .....--.-.... I 

4 "*'~,,,, . .,~~ f.,~"" 
I I it-.. ~;~~,:;: .. :;.'l~';~~., 

L t! 1-. 

1 
" 

~\ 
I 

---------------oflnCO", · 
MEASUREMENT WAVEFORM DESIGN CONSIDERATIONS 

CONSTRAINTS CONSEQUENCES (~"J".eNTS 

ePOWER BEAM INTERFERENCE eSUPPRESSED CARRIER -AMBIGUITY RESOLUTION 
AT DESIRED FREQUENCY eMULTITONES 

-MEASUREMENT INTERVAL eOPEN LOOP eTDMA OPERATION 
10 usee/sec 

.SIMPLE WAVEFORM 

_NONLINEAR PHASE SHIFT eTONE SEPARATION .50 MHz -
INTRODUCED BY THE LIMIT w -
IONOSPHERE 

eHPA fREQUENCY RESPONSE .TONE SEPARATION eS - 50 "Hz 
LIMIT 

-SUPPRESSED CARRIER I 
GENERATION CAPABILITY I 

I , , 

1 
t 
i 

\ , 
i 

, ---== L cflnCOm-------

~ -"-'--.~,-.-. ------~-----...... ~ .. ---. --~~: ........ ~ .... MY .. ~.~.'._ .... ~ ... r .. ! ................................ ---------

~ 

1 
i 
J 

j 



...... ..,- ---~ r-' · _ .. ,. --" I~-

~ 
I 
~. 
10 

r . 
t NONLINEAR PIIASE SHIFT EXHIBITED BY 

THE EQUIVALENT FILTER CHARACTERISTICS 
INTROL~ -~ SV THE IONOSPHERE 

NONLINEAR PHASE SHifT IN RAD 

~ 0.6 .. 
;i~ 

i 

0.5 

0.4 

0.3 

-100 ~!iO o 50 

132 

efin Co ,n 

I 

I 

100 

i 

I 
, 
, 

J 



""."..... ijU'!I---~~ '"-'~::C';"~':':=~W'~ -~ ·--...----~.:":: •• .:..:.~-.:..:' ":";:"..;;.." ______ _ 
~ ~.::.~ ... +.~ •• "~ "'. ___ It, ... ..,.,.".~. . .•.• _ ...... . 

N ~,~~~--~~~~~~~~~~~~~~-
f 

~ .~ 

~ ~ 

[ FOUR-TONE PHASE MEASUREMENT 5CHEr1E] 

• 
1 

COMMANOABLE 

x2 

TIMING 

de LEVEL 

r;.;EAsUREr~ENT I __ ~ PHASE ERROR/At~BIGUITY 
CIRCUIT ..-- .. RESOLUTION DATA 

_------4 i 

x2 

133 



, 
~ 

t 

I 
I 
! 
I 

1 
1 
! , 

~ ... ' .";'r.' .w;,lI"" 

... 
w 
~ 

". "'f'~"'~~-~ 

~ ~n~m 

f O·26f 
CHANNEL I 4> + ( 

2 
) + I " I pi 
.. < L..J \-2 

____ ... _+. (2) :+_ (2) 

2 

+ AMBIGUITY 

•• (2)-~_(2) 6--"... 2 
fO-26f 

CHAlmEL ~ I L I .1 t2 

• SAME AMBIGUITY 

f O·6f 
CHANNEL 

.+(1) 

fO -6f I -1 .A L I .. ++ (1)-._ (1) 

___ .... ~...J CHANNEL ._(1) /_ NO AMBlTUITY ~ + .. (2)-+_(2) 
2 -

-AMBIGUITY IN ++(2)++_(2) 
" 

, 
• (2)-. (2) 

RESOLVED BY CC»"iPARING + K-

AND +.(1)-+_(1) 

eilnCorA 

~'~"'A<-""i, 

i 

~.''18''I'" ~k""~,,,~~t1 ....... ~~. rm '.,,*'5 1 .•. 1" In 71.' .7 -A 



1· 

, , 
• , 

----------------onn~m 

, (BASEL J NE SYSTEr" CHARACTER 1ST J cil . 

-SATELLITE BASED FREQUENCY/TIMING SYSTEM 
REFERENCE 

elF AT 490 NHz 

.4-TONE 1'1EASURE~jENT SCHEME 

-2,,450 +9.57 rtHz AND ±. 19.14 HHz 

-HARDLIMITED SIGNAL (AM/PM SUPPRESSION) 

• NEASUREl'1ENT NODE 1 )JS PER SEC PER POHER ""ODULE 

oMINIMUM LOSS IN TOTAL POWER TRANSMITTED 

oDOylNLINK PILOT AT 4j90Q,MHz 

.FREQUENCY ALLOCATION -- 2 DOWNLINK" 1 UPLINK 

iL.---ocfinCont -,-,--,------
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(BASELI lIE )UNCTJ ON AL SUBSYSTEM~ I, 

oSATELLITE 

.TIMING/FREQUENCY REFERENCE GENERATION 

.PROCESSING CONTROL CENTER 

-DISTRIBUTION NETWORK 

.PROCESSING POWER r10DULE 

.DOHNLINK PJLOT TRANS~lITTER 

aGROUND STATION 

~, -CALIBRATION RECEIVER 

.PILOT BEACON RECEIVER 

.COMMAND TRANSMITTER 

.PHASE MEASUREMENT UNIT 

.SYNC UNIT 

.PHASE UPDATE ALGORITHM 

-DATA PROCESSING 

L. ~.a _______ ----' 
ol..illL . .ollt 

136 

1 

! 
I 
I 

! 
i 
i , 

i 
: 

I 
j 
\ 
" 

J 

j 

j 



II.' r 
~ : 
~. 

'. 
,.;~ 

~; 
J 

~""."--

$-4 

-~,t~,n-----------------------------------------------
SPS GROUND BASED PHASE CONTROL FUNCTIONAL BLOCK DIAGRAM SHOWING 

DOWHl INK 
PILOT 
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ReVR 

R f REHCE 

~ r, 

490 HHz R(f[RENCE 

Sf'AC[HNNA 

fRCQUCHCY STANDARD 
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CONTROL 

(ENTU 

TIMING WAVEfORM/fREQUENCY REfERENCE/DATA 
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POWER 

MODULE 
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CHANNEL 
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OVERALL SYSTEM TIMING DIAGRAM 

.START UP 

.STOP START-UP CYCLE AFTER GROUND 
ACQUIRES SYNC 

eCALIBRATION CYCLE 

-DIVIDES INTO f1EASUREMENT MODE AND 
AMBIGUITY RESOLUTION MODE 

.ONLY PERIODIC AMBIGUITY RESOLUTION REQUIRED 

-MEASUREMENT MODE AND RESOLUTION MODE 
IDErnIFIED BY OFFSET FREQUENCY 

------cfJl1~/n---- --------------1 
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START UP I M I M I M [---:---:-.---[~~r R- T~-r---,-M J _ 
f--~-- CALIBRATION CYCLE -I 

r~ = PHASE r~EASUREMENT MODE 

FREQUENCY OFFSET (+r~z) -
R • AMBIGUITY RESOLUTION .tODE 

AMBIGUITY RESOLUTION MODE 
+9.57 

SYNC PMI P~" PMI SYNC I .J 
1 2 , 

101552 

-4-19.14 

PM' PM' P'1' 
SYNC 

.A 
SYNC .. v ------5 

PHASE MEASUREMENT MODE 

L--oLJn(?o'n--------------------------------------------------~ 
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P~1' PM' 
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START UP \'lAVEFORM 
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P~1' PM' pru PM' ... 
101499 101550 101551 101552 
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START-UP WAVEFORM DESIGN 

.PROVIDES r'1EASUREr'lENT TH1E-SLOT SYNC INFORr"'~TION 

81 SEC FRAME DIVIDED INTO 2+101552 TIME SLOTS 

-ALL PM TRANSf'lIT AT 2.,450 r·1Hz FOR 2 TIME SLOTS 

.AT THE START OF THE FRAf'iE TO I DENT I FY PM #1 

.IIIi P~1 TRANSNITS FREQUENCY SHIFTED TONES AT 

THE 1+2 SLOT I OTHERvlISE J TRANSfllT pm'IER AT 

2J450 ~iHz • 

• EVEN NUHBERED Pf" TRANSf'1IT SH IFTED TONES AT 

2.,450 ± 19.14 l1Hz. ODD pr1 AT 2.,450 + 9.57 HHz. 

CtFRAr·iE CYCLES FOR A PREDETERr1INED TIME TO ALLOW 

. SYNC ACQUISITION ON THE GROUND 

",,---cfJl1~/n ----------------
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ACOUSTIC SIMULATION OF ELECTROMAGNETICS 

• "TELEGRAPHER'S" EQUATIONS 

• ACOUSTIC 

ip 
- -- au 

pv -
at 

au 3p 
- - - K 

o \~AVE EQUAT IONS 

-=-

• SH1ULATION VALID FOR 

I BEAM SHAPE AND SIDE LOBE 

I GRATING LOBES 

I SCINTILLATION AND FADING CAUSED By 
A REFRACTION 

• DIFFRACTION 

.. OBSTRUCT IONS 
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StbNIFICANT SONIC SIMULATOR SCALING FACTORS 

SCALE 
SPS FACTOR SIMULATOR 

PROPAGATION VELOCITY 3 X 108 M/SEC 106 3 X 102 M/sEc 

RANGE 3.5 X 107 M 3.5 X 106 10 M 

WAVELENGTH 12 CM 4 3 eM 

BEAM FREQUENCY 2.45 6HZ 2 X 105 12 KHZ 

ONE WAY TRAVEL TIME .1 SEC 3 .03 SEC 

FILTER SETTLING TIME -3 10 MS 10-3 1 ,.'s 
TRANSMITTER SOURCES 105 31 3,,200 

SPACETENNA UPDATE TIME* 10 SEC 3 X 10-2 5 ,.11 N 

* 100 X FILTER SETTLING TIME 

~~~ ............... _ SVS\'W:tsl "'""~~'~_".''''''_' ______ ''<'_ _~ •• _," .... '""'_"" ... _ _e- ct - " m t 77 II' J - __ ./:~..:-~ ~~; _.' ::...-" ••• ,.'ii.. .... ~~::. 
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SONIC SIMULATOR CAPABILITIES 

• KEAL TIME SlMULATION OF SPS PH,L\SE CONTROL SYSTEM 
, 
I 

• SONIC "SPACETENNA" CONTAINS 3200 INDEPENDENT TRANSMITTING ELEMENTS i 

• COf-1PUTER-BASED CONTROL OF AMPLITUDE J PHASE AND FREQUENCY OF 
EACH TRANSMITTER ELEMENT (60 RESOLUTION) 

• ~LEMENT SPACING OF .7A AT DESIGN FREQUENCY GIVES NO GRATING LOBES 

• .~NY ILLur~IN!\TION TAPER CAN BE PROGRAMMED 

• ::LECTRON I C STEER I NG 

• J£r:10NSTRATE GROUND BASED r~ODAL VIBRATION PREDICTING 

o "SPACETENNA" DESIGNED TO PERMIT MECHANICAL FLEXURE AND SHAPE 
JISTORTION 

o SIMULATOR PROBABLY INSENSITIVE TO LAB'S ACOUSTICS 

• ?HQTOSRAPHIC RECORDING OF PHASE AND Ai"1PLITUDE PATTERNS WHERE 
"ErDC'n .t [I L... 
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ORtGINAL PAGE • 
OF pOOR QUALITY 

TBl: llELL SYSTDI TECHNI':.:At. ]OlTRNAL, ]tTLy 1951 

An urly r-ho1o of a 50und field in which 
the Kllnninl ,troke. were too coarse. 

hil er j;rain rd .;cann itl b p ruu uccs :I smoo th pattern 
of lh~ 10' acoustic lens of Fig. 2. f - 9 KC (" - 1.51"). 
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The K.1nning mechani.m .ct up for photo;;raphing 
the &Ound field in front of Iln ncou . tic lcn~ . 

15.l 

-----------------------



SOUND WAVE AI'."D MICROWAVE SPACE PATTERNS 

The beam Crom lbe 6· aperture born' loud speaker 01 Fig, 4 has Cairly fiat wave 
Irontl and a narrow angular coverage. f - 9 KC. 

A divuging :lcousLic lens in the npertllre 01 the horn in Fig. ~I converts the 
st ra ibht line " ':lves into circullr wa\'e~ ..... ith their !; reater anguL1r co\'erage ,J _ 91\.C. 

152 
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OR~Gl".1\L. PAGE IS 
Of "OCR QUALm 

D)' ~ar,ni !1 C II pbne pcrvenuicular to the llxis of radi:llion, the diITraction rings 
around the iOc:ll spot of the lens of Fig . 3 ll re portrayed . f - 9 KC. 
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MODELS WHICH WILL SIMULATE PROPI\GATION EFFECTS 

• SCULPTURED REFLECT I NG SURFACE 

• UNEVENLY TENS I ON ED MYLAR MEMBRANE 

• PERFORATED r~EMBRANE 

• CONTROLLED AIR TURBULENCE (E.G. FANJ HEATER) 
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The presentation material herein was used in the 
Power Amplifiers Ses:;ion of the Solar Power 
Satellite Workshop on Microwave Power 
Transmission and Reception held at the 
Lyndon B. Johnson Space Center, January 
15 2B, 1980. The workshop was conducted 
as part of the technical assessment 
process e"f the DOE/NASA Solar Power 
Satellite Concept Evaluation Program. 
All aspects of Solar Power Satellite 
microwave transmission and reception were 
addressed including studies, analyses, 
and laboratory investigations. Conclu -
sions from these activities were pre-
sented as well as reccmmended follow-on 
work. The workshop was organized into 
eight sessions as follows: 

• Geoeral 
• Microwave System Perfo(,nance 
• PII,1se COl/trol 
• Power Amplifiers 
• Radiatillg Elements 
• Rectelll/a 
• Solid State COl/figurations 
• Plallned Program Activities 

The material contained herein supple­
me'lts the workshop papers which were 
published and distributed at the time of 
the workshop . Together they are a com­
prehensive documentation of the numerous 
analytical and experimental activities in 
the field of microwave power tra"smission 
and recept ion . 

• Additiullal informatiofl 
regarding tile worksllop 
may be obtained by 
contactillg: R.H. Dietz 

EE4/SPS Microwave Systems 
National Aeronautics & 
Space Administration 
Lyndon B. Johnson Space Center 
Houston, Texas 77058 
71 :}t83 -4507 
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Role of Power AmplifieR in Reference System 
Dr. Erv Nalos. Boeing 

Klystron 
A. D. LaRue, Varian 

Klystron Efficiency and Cathode Life 
Dr. Henry Kosmahl, Lewis Research Center 

Progress Report of the Adapting of the Cross·field 
Directiona. Amplifier to the Requirements of the 
Solar Power Satellite 
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PO' i. It 70.G1,w 250kw !i(: ~!;w 

VOLl AGE/CURREN1 421{v/2.23PlPS G~kv l5ahl,)S 3(,!\ viS .2;IlIlJ)S 

PEBVEANCE K x 10' .25 .30 .35 
RF SECTION LENGTH"'" vVO 16.5in 20.5in 22.8i .. 

WEIGJfT,I<g POWER,kw WEIGlfT POWER V'!EfGllT POWER 

TUCE WeIGHT CAVITY, SEALS. BODY 10kg 151(9 16.Gkg 
Elr:. "" 12 \-'\10 

I COLLECTOR WEIGHT (EST.) ..... v 010 7.0kg 13.2kg 18.7!;;, 

, SOLENOID (EST.) @ 3000 C. 1 KGAUSS. 20kg 2kw 24.8Ieg 2.931{w I 27.0!<9 3.mn.w 
P-H 2 0 L-vv;, K 

1.50kw 2.m".., li[ATER AND REFOCUSING COIL 1.0kw . 
ni LC'SSES 4.2kw 14.7kw 29.8kw 

RADIATOR AND HEAT PIPES 0 1m 0 1m 0 1m 

WE IGHT AND POWER DISSIP"N REOn 9.5 14.5 72kw 25.3 38.6 19.2kw 47.3 72.0 35.3 
@3l)OoC 
WEICIIT AND POWER DISSiP"N REOn 4.9 9.3 9.9kw 16.7 32.1 34.1 33.8 64.9 G9.0 
@5000 C -. 
TOTAL WEIGHT KG 51.4 GO.8 9r..O 123.7 144 199.8 
SPECIFIC WEIGHT KG PER KW .7?7 .8rlO .3HO .495 .238 .,,00 
EffiCIENCY ,,,,rC. SOLENOID 80.51% 82.43'1.. 82.67% 
-- -~.---~ 

LEGEND: 
• SOLENOID FOCUSING. FIVE STAGE COLLECTOn, 45% RECOVERY. 
• Rf LOSSr:S AT INPUT. OUTrUT. PLUS 4'X.INTERCEPTION LOSS TOTAL 4.45% OF Volo 
• USEFUL RF OUTPUT = .7629 Volo 
• COLLECTOn THERMAL DISSIPATION = .10!i Volo 
• COLLECTOR POWER BECOVERED = .08GO Volo 
• EFFICIENCY:: 83.4% EXCLUDING SOLENOID 
o HEAT PIPES (I/O METER) + RADIATOR WEIGIIT ESTIMATED @ 2.01/1.32kglkw €.I 300°C (BODY AND SOLEr,jOID) 
• @ .!l4/.t!91cg/kw @!:;OOoC (COLLECTOR) 
o S BAND DESIGN WITH SOLENOID @ 300°C. 10 = 3"00 = 4W' 
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~ '----------'.-------------------------
:»OWER 70.6 K\v II1\S£D ON 1\ rCRVEAt'CE or s., OJ 
lEVEL MAINTAIN IIIGII fFfICIENCYOw\ 

:; • 10-6 • l,.r.l 0 :t12 A'; DCTEU""'J[ D TO I 
X. VOLT ACE OF 42.1 K •• 

:;CllECTOR 5-~E.GI\!~~T RASED ON E)(p[mMc;r.nAll~[::UlT: 
OcT :l[.) •. ! D fJUTAU'JrD {tY UTllIZII':'<'; I\S .. ··U Ll 
COlf.EelOIl • .-' , 

r--------jl------=--- --- t-- --- - .. -.- -----.--

SINGLE 2ND A DrSIGr" or TIC"., I![SUUING IN 1114 

RF DESIGN IIJ\RMONiC BUr-JCHING nJUr: t:OI'JrIGUH.'\TlON_ 
SIX C/\ VJTY DESIGN TO otlTAltJ A G"i:'I-AL~\lUl" 010,111. nE 

J\r.Ju lOW POWER ~.:tl\';r:. ~'lfIr f RlUl 

-otI.~L~'Cl0H ""~~:,vl,nY Of, '-,in", c-. ..1 
.11: FO •• U.~ING (;-';11 I." tilE t;IJU • "TO:' .r:!. fin". , 

------_. --- - --. - --- --
i 

Hj rJA~IC EfflClltJCY IN A COP.,r'ACl umrT I" 

:1 It TlUG IN A SOLID Sl A TE DRIVEn F[ASlfllllTY I 

nmMiNTS f< 10\"JA11$1 

--- --------------1 ~ . -- ----_. - -- - _._----
t SOlfl'o!OID mFF.' TO Ot:TI\IN tllH!H.HIClrr-'l:VWrTl 

FIlCUSIr-.G PMlPr'M (FUTUIlE) Of !tJ':; ('EVHOl'i'.U:'.a r. ,\ IUGIl Pm, 
1'1I0Vf:N WI rn GOOD EffiCIENCY.' 

A lOW RISK A"I'UOACII_ IF IN TItE PIlOC[SS 
rn SAMI\RlUM-COUALT rrM'l'M DESIGN CAN Of 
T SHOULD DE CON:;ID[ICI:D. 

J--~.------I~-----.----- ------ -- -- .------
THERMAL HEAT I'IPE WITII TO OOTAI" Tlrc DESIRED CW LEVEl 

UESIGN PASSIVE flADIATORS RA TlIlIGS. 
1--- ,--- ----------

AUXILIARY MO~JUlI\Tlr,m TO PROVIn€ HArm rROTeCTION SII 
PROTECTION ANODE lEVEL. HOI'ErUll Y onVIA Tlf"G fill 

COATED pm'llof: Po OR - -- .- -_.----- - -- - --- -
CATHODE METAL MI\TRIX "0 OBTAIN A CATlIOr,..: [MISSION (l 

I MEDIUM TO [MIS5Ior~ WE:\UOUT. 
~_ . CONVERGENCE ___________ _ 
I 

I POWER RESULTING IN r!ATING 3!iKw (."W I'll 

_ WITII CO,:SEnVATIVE UCAT DISSU"ATION 

I 

IJT OfF cr\pAnlllTY 1\ r THE INOIVIl'IIAl TUDE ," 
. ''',EO fOil CnOW·UAIC I VI'[ OF TUm., OFF. 

~ :~;;;:':;:2 ;~~r t:;;; ~An LIFE 1 
t [AC.' WAVEGUIIJE om rUT. cr.rl,BLE or 
A TlVE COOLINC ON ... Y A r J, Tl:i\· .. ·lnl\ TUBC ! EXTRAClrON I 2-POHT OUTPUT Ol'CflATlf-lG IN VACUUM WITII RAOI 

BELOW 100"C_ 
- - -~ ---- ----- --- - --- ----

I 
I 
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I r(.lystron r';!:lSS Estinlntc 

-----~_~- ~Ju.:,.V.:; ----

-
ITEM MATERIAL I'::rr ~CIP t'!:!l~r.1rr ::ilor'JS (CfJt) r.','\:;:; (k!)! 

SOLENOID corp En 00 = 11.11, rn :: 1.G, L = ., 1.9 16.4 
\"/IRE (15';{. OF !;OLnKHO VOL UME) 76.0 
INSULATION ALUI\11NA (!.i';~ OF SOlnJOID VOLUME) 0.4 I 

CAVITIES AS3EMOL V COPPEn 0:: 7.G, L '" 41.9, Z = 0.95 7.4 
i 

I 
j 

~ 
POLE PIECES (2) mOfJ o '" ~5.2, d :' 2.5, Z:: 1.02 2.& 

I 
I 

~ 

t SOLENOID IIOtJSlrJG ST[EL ():: 12.7, L = 41.9. z· 0.32 " 4.2 
, 
l 
i 

COLLECTon PLATES 4.G 
. PLATE 1 (LrlO) TUNGSTErJ D = 1!i2, II ;: 5.1, 1-1 = 0.3, t :: 0.53 1.7 

~ , PLATE 2 TUfJGS1Ea o =- 1!i.2. d = 5.1, 1·1:: 1.0, t :: 0.30 1.0 , 
~ I 

~ 
~ 

~ 
'. ..\ , 
I 
I 

t I ~ 

PLATE 3 TUrlGS1HJ 0;: 1~ •. 2, d:: 5.1,Ci == 1.J, t:: 0.15 0.5 
PLATE 4 TUrJGSTri'J u; 1!i.2. d ;: 5.1, J! ;: 1.5. t = 0.03 0.2 
PLATE 5 TlJrJr.!'; ITtJ 0= 15.2, d = 5.1. Ii = 1.0. I:: O.OR 0.2 
PLATE (i (UPP) Tln.JU:ilEr-J 0:: 15.2, d = !t.l, II :: 2.0, t :: 0.23 1.0 
Pr.OOE TUlJ';SiHJ o :: 2.5, d = O. : I ~ 3.3. t =- 0.15 -

COLLECTOR PLJ'.TE ISOLATon ALUi."fJA 00 ;: 13.3. 10 - 15.2. II = 15.5. I ,. 1.~1 2.9 

COLLECTon SECTION COVEn STEEL 0;: 20.3.11;: 19.1. t:: 0.13 2..0 I 
OTIIER COMPONENTS: 7.7 . 

nEFOCUSlrJG COIL, HEAT PIPE:;, III·VOL TAG [ C[nN.nc :;Ef,L:;. r.iOOULJ\TlilG 
ArJODE COrJNECTon, CATr·10DE COrJfllCTon. :'lfATER, OU,i'UT v.-tWEGUIDE!; (2)-

, 
~ i 

VI\C. ION COrJrJECTon, CAVITY TUNIrJG pnOVI:;IO;'JS. ItJTEniJI\L C.,\DlIiJG, 
ETC., ArlO ASSEMDL v Arm INSTALLI\TIOfJ 1-11'.1l0WAnE. (1i3It'l) 

I 

_1ft's;, '~ _ ~m .. __ ~~ titS m" , t' ,.., • ...:.....~\W_-_~~.''''''''''-',,,~~ __ "''~"''''''',~,.'"-<., __ ,,~.:......,.,_ ,'~ • .....,." trrl':fn ...... +_.~,,"- __ ,'"""-"",,,,,,,,-,, ,.'OS" -e- t "11$ t" 
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SOlENt'l!D 
POWfR. 

KW@ l~'!;oC 

COPPER SOLENOID 3"10, 1000 GAUSS, 16.S·· LOr~G o ASSUMES POWER GENERATION 83.5 kg/kw AND PASSIVE HEAT REJECTION @ 6.2 kglkw (l25"C). 

o AS ABove, ?11TH 3.00 kp/kw FOR 3000C HEAT REJECTION. 

3. » 100~- 1 2 3 KW': 3000C 
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KLYSTItON KLYSTRON 
BODY COLLECTOR --

300 C 500 C I 
S.2KW 8KW 

. I - .. ........ ; . 

I , 
HEI\ T PIPE SYSTEf1 . 28 LBS 13.5 LBS 

LIQUID METAL 
j 

PUMPED FLUID SYSTEM 
DOWTIIERJ1 A 10 LBS 18 LCS STEi,(1 

I 5 LBS LIQUID NAK 
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• ITEMS REQUlRltJG MAUiTENANCE 

• LEVEL OF REPLACEMENT 

• nEPLACEMENT COrJCEPT 
• EOUIP REO·O 
• ANTEUN;\ DESIGN IMPACT 

• fAAINTENANCE SCHEDULE 
• ROWOFTEN 
• HownAPIDLY 
• WIIErJ 

• r""ar,aTEI'JAUCE r.~ISSION 
• tlARITAT LOCATIOfS 
• OE FURD LOCA Tlors 
• TRANSPOfCT A Tlor~ 

• REFEREf-J(,E SYSTEM DESCRIPTlOfJ 

• SATELLITE MAINTENANCE orenATION! sur.1MAny 
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• MODULAR R[f'U\CEl-irrn I 
FAILE~ KT~ ~EPLhCED 
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HEPA I n eRa:. 

• KTH REFUP.f.1 ~;II[n AT CEO 
CO:;5 TRueT i Oil 8,\S (.. 

• F I, I LED f,tlll REFlJr.n I SilEO 
::; j'l ~HUTTi J:f) Frni;, CEil 
em!STIWCll C.: t;,i:.: TO 
$/~ TELL I TE CY ::[:<'1 ICE OTV. 

• sr,'mE PI\R1S FOR KLYSTROrt 
REPAIR TRf,:J:iPOii fED G~O 
CONS TRueT I (j~1 BA:;i.: BY ';OTV. 

~ 

$ "~mrtt]· ~ 't*""C" $* 1 '1.t. '? ,.,t*&,,4 _c_ ... _~-,.=.,,~ .. ""~."e.''''',,'~'''''''''~~ "..,. 'fa e% ' m fS "§ £" '$ 



--..... k44W>+ A ( .-'.,... .... *y Ai¥iOS."1 . .', ' . ", , , ''!<, ".~ 
, 
1 
~ 

~ T r-.v.~t of Ver~.l~t't~~~~P! .. t OI)·t:Oll~ ~t ~."1-e!i;:"'~ .-Iv ., _ • .Ii ... \. 1.4 ........ _.l .... _ y I • !i-'&'.:J C.I U..... .~ ~ _ 

. Sr-S\.3l~E;;J" 
__ ,_, __ ,::A: ~1-t __ - e.g ...... ',vG .. 

.. 
~ 

RADIATOR 

(!) COMPLETE KL YSTRO~: MODULE 
It·!ClUDING WAVEGUIDE il 

I! 
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• ESTIMATED TUBE ~~~fOr!b(~( fAILURES PER ~ "J 't, " 
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• CHANNEL NO. .. I ~ 171 8 I 9 110 -
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• DAYS TO REPAIR 4.013.013.9 12.111.41--20 hr/DAY 
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DAY 

3.5 DAY ALLOWABLE 

~-- ::'·3.,::~·;~V:; ~---
I 
j 

I 

I 
1 

I 

1 

l 
1 
! 

1 

1 
.4 

-.:_ T:1:rt~~<."~,;..,..-";;,,,, '$- ·feb ") tf#t'.t·iI~· ~o",o."""""-_""_.,,,,.,..,._~_"-,,,,,,_,"'.-....:i,""'~,,",""""''U-',,",H,...,,,-.,..r,,,, .. ~'"'L~c-t.''cl.''-''':; •••. ".':i.'~w; C' HYm 

n t or "?"1-W'm -'1 t~·)n". oM,. . itO 'j; fi t ttW r 7t 't%fb"-.lII'."IiIiNlillt"IiIiWilIi' IItt __ •• 



~' 1 

, 
~ i J 

~ I . 
l' 
" 
if : 

fl· 
t . 
~ I 

[ 
I . 

t ! 
~ . 

! 
~ J ~ 
~ 
~. 

t 

: I 
II 

-.'~ 

:~"'~::=::::::4:~::::::=~:' 

_ __ ,~ertical Access M:~aten3nce V chide .~.u~h-'.~ ~ 
SUIJARRAY ~ --. -_. __ ~._~ ... ___ .. _ ._._. • .... . r _. . ._. ...•. .-.,. • -. ··----·--;'\!i:\~.: V -:; '~~!". ~~' •.•• '-'- \y ; - - - --\~, 

... 
CD 

ite, 'Wett 

~~ p "~"~.-::-:-;-::.:.:...=.=::;.~ -::::=-:-:----.~, _-::-c=- ~ . .:-~ ••. , ::o:;..:c .-.':. -~ "';"-' _. __ 

-(,1'1-',- hI "',' 

! ~:.-7A.~ . .,; /-'. TUBE RACK-;f/ II CUBIC SECOIIDARY . 
MAINTENANCE r

.. . ... , . ./' /1' /", STRUCTl'RE 
,: ~ - \.~ ..... / II ,.:.) 'I 

VEHICLE I . \'.. :~ ,~/ I , 
t-: ~(' ,.".. .:~_ ': /VERTICAl AdD 

MAI~JTENANCE 
GAr'JTRY 

: I ,~};~. -~x, ... 'f' :1 .: 'HORIZ 'v OIAG,?NAl MEMGERS 

/

't.'. ~; .,,~\. '.1 \MEMDERS ; (TElI;SCOPE) 
'1 y it... .~. \. _ . .' (KrJEE l~ 'I / !.: - '. /JOINTS) . !Ii.:v I \ :. 'f 

;"=~'-;-::"-:"'-~='~:--=-.:~~~~'::' ~ -=:-'- -';,~::..::~.:;: ~---":~L __ ':-:'- .. :':.~ -:~ .. ~.-= = -;)' 
/
.\ .' j.;'> "\ ;; 

.-- . \ ; /) .1" ,I 
".. \. I ~." "1 • .1 

j-J-i~' .. ;2:~\ '. . ~ /~/. ~I ",\ ?/ ' !'~ .. " \~~ -- '; I.:""#'~'.. \_. j;-
,.f' ~.\'. /),,". /I --A' . l#~- -...~ .• ~ , -,/. II .. 

. 1:-" \~ .... "-,/ //-:-." ". . ,. 

'I "I' \.,":!,I" ': /1 /I \ ,. I. " 1/ ,_. ~[I.*/"---==--=-- -- -- ~,". ~:-' 1/ l 
\\ .j, " ~. '/, 'I ~.\ . . . M ~, f. ." rl . i"" ..• -~~~~. 00. '.-.-r-.. ;/ . ., 

" 'f.;. .. ,. .:-" ,. t i,,·- ,~t'; ! 
' ..... 1 •. - .. .. -.. l _.. . .~ \.-;- ,.. 

"-~·I""· . 1!! ...... <-... "'.,........ _+ __ .. __ . ___ ~_-. . 
"""""'-_. - if _.- .. .,. .. r_ - - ' .• ,~~, 'f '-- - __ I - .. . ... 'C ....... -

I ' I . / i PRiMAnv 
y' -' I STnUClUIlE ./. I mOGE U::AM 

I // 1/ 

! -,~ I' 
arh- :--:::---- -.- - _ --:::.:_ : _- .-,}J __ . 

SECTlONA·A 

~I 

I-
~jJ s: 

1 

j 

........ ~~=.~_u • ____ .. CPO •• _n .. ,e' Mo ... 'WO. 'PI' W J 



t 
r o • .-

I 
N 
:r. ... , 
:.>r: I. 
r.n 
0 

I 

l .,;: 
7. I. 

-.~ 

l w 
.-

f 

~ 

=t: 
ltJ 

I ... '-.' 

• .0 rt: 

~ 
a.. 
Vl 

~ i -100 
r 
r 

1 

-200 

1 

~"-",~,,, ~'''i.t·A~'1''''~_.''I'~ '';''., '1':.< "" .;,';~'17/~'· ·~i>'· . • "'r'" ",';.: ··',~~:;1",,' '." co. __ " 
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AlOr~E 

3 PREVIOUS ESTIMATE or 
CIIAIN utTIl PIIASE co::rUtSATlOn loor 

4 POUlntAl CIiMn prRFORf.1AHCE 
UITIt plfASE COHprrlSATlOll lOOP 

5 TUERf·tAl ilOlS[ AT 2930K 

* 100.000 TUDES. 
J5dU • Kl~STROfi "iODUl[2cJ\m 
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VKS·7773 EXPERIMENTAL HIGH EFFICIENCY KLYSTRON CW AMPLIFIER 
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El,.tron CV AaplSt1.r Op.ratlna Charaot.r1.t10. 

VlS-7773 11'M Plllen 

rrequenc" GHz 2.115 2.1t5 
~ 

~ TunS n" tIIz ~5 Fixed 

leam Yol t ... , kV 28 35 

Mod-Anod. Volta,., kV 17 

Gun "pe"eano. 0.5 0.85 

Be.. "perv.ano. 0.5 0.3 

l Be .. Current, A 2.1t 1.96 
" Power Output, leW 50 52 

Ba.e IttSoS.nc" "b' I 74 ':7 

Collector Itt1c1.no" ~o' I 51' 

Total Itt101.no,, ~t' I 85' 

Saturated aa1n, dB 50 50 

BrSllou1n Fi.ld, B, aaUII 465 349 

.WSth depr •••• d ooll.ctor ... eably 

• 

26 



• 
• 
17 ; 

D .. .., 
Ii • II. 
II. .., 

ti .. 
-u 13 

12 

.1 
0 

Q,k 

OL'Go ·1.2 
Vo • •. SkV 
"O·O.25"P 
O' ... for20·C 

'00 200 300 400 

OUTPUT CAVITY TEMPERATURE, ·C 

CIRCUIT EFFICIENCY VI OUTPUT CAVITY TEMPERATURE 

27 

500 



__ kV 

-akV 

'i 
,~ 
t 
t 
~ 
I~ 

'r 
~ 

~ " 

... ~ .. ~,,-........... -.. 

-MkV 

-7kV 

0.0 

- w * . fflIPI' 

ELECTRON IE,\M 
"EFOCUSING 

IXAM'l,E OF MUL TIITAGE 
DlMEIlED ELECT"OITATIC COLLECTOR 

28 

en -)( 
C 



.. 

" e." 

N Po 

.. ':--::.11 ,U. __ 10k. t I .... c .... 

.... ______ ...... ' ,': .~I.·:·:~ :.:: I' : :t·~· .. ~~! ,t: It ',", \ '.:~ -: : :',' I,' :.:":. It I ~~. ,', "'.;' ,,:.;'.:. '.'!'l' •• ~-. 

IIDO"'NODI 
...... " .... LV Yr.. ta.allv 

...... 7A 

•• aULATID 

•••• I '. t. I, •• ___ VI L
" .:~: ... It .' ••••••••• ,: •• ,'II ••• It ••• ,'. \. ,', It: I",:"" • .., ~. ,t' 

+ 

COLLECTOR 

IIAM 
.... " .... LV + Yr.. te.alrv 

••••• 7A 

.laULATID 

IIOWI" lUflf'L V + 
VO ••• lkV I-----------------,...,J '0· ,.I. 

UN"EGULATID 

IIMPLIFIED DIAGRAM ILLUftTRATING THE KL VSTRON MOD·ANODE 

29 
j 
j 

. '-'"'-. __ =~"-.. -_-~-_.-= :-:-::-::-.-.....,.._ .. -.---... -.:-:-_~_.-.~-~" -. -.. ---,-",-.. _ .-.,-... ",,, .... -" _UlIII!!IIII_.II!fI!IIII'~I.IJ.: 



..., 

.... 0 

+20 

o 

-20 

i-lO 
1-10 

-100 

-120 

-180 

-180 

-200 

CARRIER 

~'. t ,
:_', ", ':.,': '"., .: :' :.t -,; ·::'THERMAL NoisE':: ... :.::' ........ :; -':':: :,.'~~' I';:· 

1'1 'f,: '.' . '.' ." . " . .. It • •••••••• • '.. •••••• It. • " ••• t' '" 

-100 fo +100 
FREQUENCY FROM CARRIER, MHz 

COMPUTED KLYSTRON NOISE POWER SPECTRAL DENSITY 

30 

1 
.. t 

I 
j 
j 

1 

j 



; I 

100 

T-JOOOC 

'D-3INCHES 
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TOTAL ELECTROMAGNET WEIGHT, fIOUNDS 

S" KLYSTRON ELECTROMAGNET: ESTIMATED WEIGHT VS POWER TRADE.OF F 
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E.ti.ated Attenuation of' Harmonic Filters 

3 f't Lo.sy Reactive 
H, ... onSg L"ky Wall Lossy "I,," Stub Array 

2nd 60 etB 8 dB 40 dB 

3rd 40 dB 10 dB 30 dB 
11th 15 etB 12 dB 20 etB 
5th 10 dB 1" dB 10 etB 

6th 5 dB 16 dB 5 dB 

Estimate Qf' Klystron Coolin! Requirements 

(Po = 52 kW~ Ko = 0.3 ~P) 

Klystron Element Power, Watts Maximum Temperature 

Heater 100 
Electromagnet 750 
P.F Driver Cavities 887 
RF Output Cavity 1758 

Subtotal 3495 < 300°C 
Colleotor Plates 6938 ) 600°C 

-
Total 10433 
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VA-8112 Kl,atron Life Data 

Lona-Lived VA-8.2 Kl,strona 

Statu. --b.~ 

1108 StUl Runnlns , .... ,883 16.5 
393 SUll Runnin, 139,993 16.0 
31" Stnl Runnina 133,"69 15.2 
511 SUll Runnln, 123,38" '''. 1 
311 raned 12115 121,303 13.8 
332 raned 8116 108,771 12.11 
505 raned 1211" 102,259 11.1 

Caloulated MTBr (68 tubes) .• 37,7"8 hours 

Data trom USA' "Eleotron Inventory Report", 30 June 1979 

Advantases of HiSh Effioiency Klystron CW Amplifier 
for Spaoe Applications 

1. HiSh Gain amplifier, 110 to 50 dB 

2. HiSh Power Output, 50 kW or more 

3. Hilh Efficiency, ~5J with collector depression 

II. Low Noise Output Narrow bandwidth klystron 

5. Low Harmonic Output Typically -30 dB or more from carrier 

6. Lons Life Pote~tial.-16.5 years on record with one klystron 
type 

7. Ease of Control and Protection with Hod-Anode 
Electron Gun Des1sn 
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EFFICIENCY VS OUTPUT VOLTAGE G • VIVO' WITH 
OUTPUT GA PANGLE 80 AS PARAMETER 

PHASE ADJUSTED FOR HIGHEST EFFICIENCY 

.7 I • 1. 64 Io (MIHRAN, ET AU 
JlP • 0.5 
18 • O. 75; bla • O. 6 
OP1'IMUM PHASE 
a • 2.5 BaR 

&0, 
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E F Fie lEN C Y v S Pe a WIT H VOLTA G E S WIN G a AS PA R A METE R 

CURRENT INTERCEPTION IS LISTED IN "POINTS 

.80 

.75 

'II .70 

.65 

a 
LI0-' 
L05-' 
1.0-' oj 

" 

a 
1. 10 J"'~;>-O 
1.05-'" 

il -1.81 0; pP - 0.5 
eo -42'»: B • 2. 5 BaRt c. F. 

,r13 

OPTIMUM PHASE 

il - 1.64 !o 
eo -~: B - 2.5 BBR' C.F. 
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TYPICAL AXIAL AND RADIAL SPACE CHARGE FUNCTIONS 
OF THE BEAM IN THE OUTPUT GA P 
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z = CONSTANT, wt = CONSTANT 

.5 
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WR( r, zi = Hr) a: aVSe(r, z) 

!~z(r, z) = f(r) a: av Se(r, z) 
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INTERNAL CONVERSION EFFICIENCY COMPUTED WITH LEWIS PROGRAM 
FOR Gf AND VARIAN HIGH EFFICIENCY DESIGNS 

.85t 

.m 

11 .75 

.70 

LIEN COMPUTED 
~ea = 0.485 .......... :, 

MIHRAN COMPUTED FOR ~ 
ZM6813 WITH ~ea = O. 75 -' 

... 

~ea = 0.485 

.-, 
/~ ., 

/ \ 
/ \ 142 

" 

pPerv - 0.5 
B -2.5 BBR 
bla - 0.6 
0-1.10 

eo. 
DEG 

--~42 

il -1.81 10 
(LIEN-VARIAN BUNCHING) 

il -1. 825 10 
(MIHRAN, ET AL - GE BUNCHING) 

" \ \ 32 ZM6813 COMPUTED WITH 
lEWIS PROGRAM 

6-; I I • 
200 250 300 

PHASE 

~_'r_ ~ 

1 
I 



_ .11 ........... 111(4 1_ "'*,l1li1. " •• .• \'I'~"I""'''''Et~.<-., '" 
",,,,:-.",, 

-,-- :,~.~",,~:p~""IWi§[ _ 

# 

TYPICAL TRAJECTORY OF OUTER RING WHICH HAD TWICE A VELOCITY 
REVERSAL AND BECAME ULTIMATELY INTERCEPTED 

TUNNEL WALL 
r 1.0 DEG 
• 300 t 
~ 270 j" , , 
t 320 

\ '-INTERCEPTION 

1-~ "'83 , 
\ 

\ 

umO-300O 
, 

\ . 
}z-O 

DECELERATING PHASE i<O , 

1 ~ 
, 

OF RF I 
I 

r • , 3f11J-llJO ... , 
~ ria .5 

ACCElERATING PHASE i 

t 
I 

OF RF I , , 

r rACCEl I ! 
I 

! 
390 

" ; 0-1.1 , 
~ 360 

270 
rCENTER OF GA P rRIGHT EDGE OF 

I 
.,' AT z: -3.0 r' GAP AT -2. 5 

0 
-3.0 -2.5 -2.0 

z/a 
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EFFIC IENCV VS PERVEANCE AS SUMING 
CONSTANT BUNCHING- LEVEL 

INTERCEPTIONS 11 VELOCllY REVERSALS ARE 
LISTED AT COMPUTED POINTS 

." 

INTERCEPTION, ~ea - O. 485 
" =J\ ~ - 4tJ ~"'I \ vu .85 3~ I a-1.10 

( \ B-t'BBR 
-0 0" '1 - 1. 81 l() , 

6.3 
.80 2 

• 75 

Z REVERSALS 

.5 
,",Perv 

1.0 
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ELECTRIC FIELD SHAPE BETWEEN ~EENTRANT TUNNEL TIPS 

A - CONSTANT FIELD; B - "KNIFE EDGE" FIELD: C - ACTUAL FIELD 
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COMPARISON BETWEEN MEASURED & LEWIS COMPUTED. 
, EFfiCIENCIES & INTERCEPTIONS FOR A VARIAN DESIGN 

i 1 = 1. 81 Io; ~ea = O. 485; I1Perv = O. 5 

a MEASURED (LIEN) lEWIS COMPUTED 

" 

11 I NT, ." - I NT, 

" .. 
1.08 0.751 1.9 0.775 1.5 

0.953 0.705 1.6 0.700 0.5 

0.903 0.681 1.4 0.679 0 
J' L 

, 
, ~ 

, 
1 

I 
1 
~ 

#"~tth' ~~._" __ ' 'X .... , .... ;O'~ •• ~ __ .~~~ __ m!Wi'ffiW .e ww <ft 



i 

i 
,I 
1 , 
I 
d :i 
i , 
I 

~ 

:1 

, ~I' 

.. 
~ 

CATHODE 
CURRENT 

AT REF 
"OLTAGE, 

mA 

.68 

.64 

. -- -""....,..,. .4(*>,,;::: 2 ~. -- ---, -_~ 

,>; .• -~)t...-z;..~'~~$,4!iMb;t .... t'4ll!~!I?J1lMIUd' $ IJ ,Wi _~"If'" 
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OUTLINE OF PRESENTATION 

• CROSSED-FIELD DEVICE FEATURES OF INTERESl IN SPS 

• OPERATING PRINCIPLES OF AMPLITRON AND MAGNETRON 
DIRECTIONAL AMPLIFIER 

• ARCHITECTURAL INTERFACE OF MAGNETRON DIRECTIONAL 
AMPLIFIER AND SYSTEM 

• CONTROL OF THE PHASE AND AMPLITUDE OF THE 
MICROWAVE OUTPUT 

• SIGNAL-TO-NOISE RATIO PERFORMANCE 

• DISCUSSION OF POTENTIAL FOR LONG TUBE LIFE 

• DISCUSSION OF EFFICIENCY 

• AREAS OF CONCERN NEEDING ADDITIONAL ATTENTION 
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OUTLINE OF PRESENTATION 

• CROSSED-FIELD DEVICE FEATURES OF .INTEREST IN SPS 
. , 
, 

• ,OPERATING PRI!"CIPLE,S OF AMPLITRON AND MAGNETRON I 11 

UI 
N 

DIRECTIONAL AMPLIFIER 

.~ 

• ARCHITECTURAL INTERFACE OF MAGNETRON DIRECTIONAL 
AMPLIFIER AND SYSTEM 

-
• CONTROL OF THE PHASE AND AMPLITUDE OF THE 

MICRO\VAVE OUTPUT 

-

o SIGNAL-TO-NOISE RATIO PERFORMANCE 

• DISCUSSION OF POTENTIAL FOR LONG TUBE LIFE 

o DISCUSSION OF EFFICIENCY 

o AREAS OF CONCERN NEEDING ADDITIONAL ATTENTION 
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• HIGH EFFICIENCY 

• HIGH SIGNAL TO NorSE RATIO 

• POTENTIAL LIFE OF 50 YEARS OR MORE 

• LOW RATIO OF MASS TO MICROWAVE POWER OUTPUT 

• ACCURA TE CONTROL OF THE PHASE AND A~1PLITUDE OF 
THE MICROWAVE POWER OUTPUT 

• POTENTIAL TO PERFORM THE BULK OF THE SYSTEM POWER 
CONDITIONING REQUIREMENTS 

• MIN IMAL X-RAY RADIATION 

• ONLY ONE VOLTAGE AND TWO TERMINALS REQUIRED FOR 
NORMAL MICROWAVE TUBE OPERATION 

• SIMPLICITY OF CONSTRUCTION 

• HIGH DEGREE OF MATURATION IN PRODUCTION AND COST 
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• High Efficiency: Overall efficiencies in excess of 
85% have been demonstrnted in nn off-the-shelf 
magnetron used for industrial microwave heating and 
in certnin laboratory models of the nmplitron. An 
efficiency in excess of 80% at power levels (3 klV) 
low enough to utilize passive cooling hns nlso been 
obtained. 

. • High Signal to Noise Ratlo: Random noise level in 
a 1 MHz band down 100 dB or more at frequencies 
above and below carrier frequency by more than 10 
MHz. The noise"level may be lower because 
instrumentation is the limitation. 
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• Potential Life of 50 Years or More: Such life is 
possible by operntin g at low emission current 
densities that allow the low operatin g temperatures 
that have a proven association with extremely long 
life of carburized thoriated tungsten cathodes. 

• Low Ratio of Mass t!l Microwave Power Output: 
The current estimate by the n:tthor is 0.4 kilograms 
per kilowatt of microwave power at the tube output. 
This includes the weight of the passive radiator but 
not the buck-boost coils w hie h are considered a 
power eonditionin g function. 
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• Accurate Control of the Phase and Amplitude of the 
Microwave Power Output: By use of a set of phase 
and amplitude references and a set of phase and 
amplitude sensors the phase can be controlled to 
within ±1 degrees and amplitude to within ±3%. 

• Potential to Perform the n ulk of the System Power 
Conditioning Requirements: The buck-boost coils 
necessary for output amplitude control of the 
magnetron can tuke on the added function of 
adjusting the input of the microwave system to 
operate at the optimum output voltage for the solar 
array. 
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• l\Unimal X-Ray Radiution: The crossed-field tube 
energy conversion mechanism generates negligible 
radiation, permitting maintenance functions during 
operation of the SPS. 

• Only One Volta B"C and Two Terminals Re(IUired for 
Normal l\licrowave Tube Operation: A uxiliary power 
is required for 8 few seconds to hent up the cathode 
and initiate emission. 
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• Simplicity of Construction: The crossed-neld device. 
particularly in its _ magnetron form, is very siolple 
in construction. 

• High Degree of t.laturation in Production and Cost: 
Currently, more than two million magnetrons that 
closely resemble a similar tube for the SPS are 
manufactured annually ior the microwave oven. 
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OUTLINE OF PRESENTATION 

• CROSSED-FIELD DEVICE FEATURES OF .INTEREST IN SPS 

• OPERATING PRINCIPLES OF AMPLITRON AND MAGNETRON 
DIRECTIONAL AMPLIFIER 

• ARCHITECTURAL INTERFACE OF MAGNETRON DIRECTIONAL 
AMPLIFIER AND SYSTEM 

- • CONTROL OF THE PHASE AND AMPLITUDE OF THE 
MICRO\YA\'E OUTPUT 

• SIGNAL-TO-NOISE RATIO PERFORI\1,\NCE 

• DISCUSSION OF POTENTIAL FOR LONG TUBE LIFE 

• DISCUSSION OF EFFICIENCY 

• AREAS OF CONCERN NEEDING ADDITIONAL ATTENTION 
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ELECTRO" F.MI TTING 
CATHOOE 

OUTPUT COUPLI NG 
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DIAQRAM ILLUSTRATINQ THE BASIC DIFFERENCES C'F CONSTRUCTION 
AND OPERATION BETWEEN THE AMPLITRON AND THE MACNE'TRON 

(a) AMPLITRON 

(b) MAGNETRON 
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PROBABLE ELECTRONIC EFFICIENCY DATA ON RCA 86811 115 MHz ------,r-: MACNETRON OF MICROWAVE OVEN 
- { I EL£C~RONI MAGNETRON 
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IOVERALL' 

MEASURED OVERALL EFFICIENCIES OF 
MICROWAVE OVEN MAGNETRONS 
(PROBABLE ERROR INDICATED) 
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OUTLINE OF PRESENTATION 

• CROSSED-FIELD DEVICE FEATURES OF .INTEREST IN SPS 

• OPERATING PRINCIPLES OF AMPLtTRON AND MAGNETRON 
DIRECTIONAL AMPLIFIER 

• ARCHITECTURAL INTERFACE OF MAGNETRON DIRECTIONAL 
AMPLIFIER AND SYSTEM 

-. CONTROL OF THE PHASE AND AMPLITUDE OF THE 
MICRO\YAVE OUTPUT 

• SIGNAL-TO-NOISE RATIO PERFORMANCE 

• . DISCUSSION OF POTENTIAL FOR LONG TUBE LIFE 

• DISCUSSION OF EFFICIENCY 

-

• AREAS OF CONCERN NEEDING ADDITIONAL ATTENTION 
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AREAS OF CONCERN NEEDING ADDITIONAL ATTENTION 

• COMPATIBILITY OF OPERATION AT HIGH EFFICIENCY AND LONG CATHODE 
LIFE WITH HIGH SIGNAL TO NOISE RATIO. 

• PHASE AND AMPLITUDE CONTROL ARE CURRENTLY BEING INVESTIGATED 
WITH USE OF FERRITE CIRCULATOR. FOR SPS APPLICATION EITHER A 

FERRITE CiRCULATOR THAT WILL OPERATE AT HIGH TEMPERATURES IS 
REQUIRED, OR PHASE AND AMPLITUDE CONTROL MUST BE ADAPTED TO 
THE "MAGIC-·c· ARRANGEMENT. 

• A FRICTIONLESS PHASE SHIFTER THAT WILL OPERATE IN A HIGH TEMPERATURE 
ENVIRONMENT AT THE 50 WATT LEVEL MUST BE DEVISED. 

,.. 
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SOLAR POIER SATELLITE 

RELATED ACTIVITIES 

PHOTOKLYSTR«Jf 

o OSCILLATES AT RADIO FREQtErcCIES WK£JI ILLtI4lHATED 8Y LIGHT. 

o NO EXTE.AL ACCELERATING alAS V(l.TAGE IS NECESSARY TO CCIITlfU OSCllLATUIi. 

. 0 .. ENERGY TO SUSTAII OSCILLATION IS DERIVED SOLELY FIOt PHOTG-EL£crr.orcs. 

0) 0 EFFICIENCY OF 11 HAS 8EEN DEMONSTRATED. ULTIMATt EFFICIEICY OF 101 

APPEARS POSSI8LE. 

o MOMS OF OStlLlATlCICS II THE FREQlENCY RANGE FROM 8 TO 240 IItI HAVE lUI 

REACIED. 

o OUTPUT VOLTAGES ARE 2.0 VOLTS RMS ACROSS A 50 'rJtM Lc.D. 

o BeCAUSE or THE UNIQUE SOlAR (:fEAGY TO PMR COrtVEISICIt, TIlE PHOTI*LYSTm-J 

IS A POSSIBLE CANDIDATE FOR rURiHER INVESTlGATlCIt. 
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NI\S1\ Solar Power 
Satellite 

Power Module 

Driver 
Klystron Thermal Radiator Conjugator-Phase Receiver 

J3 Junction 
Receiver 

/ Receive Horn 
Receive Filter 

Telemetry 
Control RxlT x 

Monitor 
cable to 
c ~ ,jugator 

Cable to TT & C 
"7'--- Arc Detector 

Waveguide Sticks 55 
Monl.er Coupler 

Waveguide coupling line 2 
To main power distribution 

NJ\SI\ Solar POVver 
Satellite 

Power Amplifier Conclusions 
Klystron 

A The klystron power amplifier ha::; the attractive features of 
high gain (40·50 dB), low drive power required from the 
phase control system, higt'. power (50·70 k'.v), low noise 
characteristics, and fewer tubes per antenna requiring phase 
control. 

B Cathode lifetime and Its maintenance Implications is a major 
concern for the SPS. 

C. Efficiencies of 75% at S-band and a power output ot 50 kW 
have already been recorded . The application of depressed 
collectors have Incr~ased tube f!!fficiencies. It appears likely 
that 85% can be achieved. 

o A heat pipe cooling system is required for heat rejection. 

----------
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NI\S/\ 

Solar Power 
Satellite 

HI.tory of Power 
Amplifier Actlvltle. 
Contract Efforts 

• SYltem level conllderatlons of the amplltron for the 
microwave power tranlmlllion system studies were 
examln6d by Raytheon for the NASA Lewis Research 
Center. 

• The study of the klystron for the microwave power 
tranlmlssion system studies was conducted by Shared 
Applications, Inc. for Raytheon. 

• The VKS-7773 CW klystron evalu"tion program was 
undertaken by Varian for the NASA Johnsv" Space Center. 

• Various deSign features of the klystron were studies 
by Varian for Boeing, these Include: 

A Klystron design for the SPS 
B Characteristics of the 70 k W deSign 
C Klystron failure modes 
o Space tube factory and facilities 

Solar Power 
Satellite 

Power Amplifier Conclusions 
Amplitron -----------------

• Projected performance of amplltrons Is less attractive for 
SPS applications because of low power (5kW), low gain 
(7dB), higher noise levels high drive power required from the 
phase control system, and more tubes per antenna requiring 
phase control. The amplitron is less complex and passive 
cooling techniques appear to be within the state - of - the -
art. 

Magnetron 

• Because of recent projections In performance characteristics 
(low noise, high efficiency, and moderate gain), magnetrons 
warrant continued investigation. The magnetron is also less 
complex and hence the maintenance implications appear to 
make It more attractive. 
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NJ\SI\ 

SOlar Power 
Satellite 

HI.tory of Power 
Amplifier Activities 
Contract Efforts 

• Varian served as a consultant on klystron applications to the 
SPS system for Rockwell. 

• The development of a possible SPS amplitron was 
undertaken by Raytheon for NASA Lewis Research Center. 

• The study and design of the magnetron for possible 
application to the SPS was preformed by Raytheon for JPL. 

• The exploration of the possible Integraton of the magnetron 
with SPS microwave system was completed by Raytheon for 
Marshall Space Flight Center 

Solar Power 
Satellite 

Remaining Issues -
Power Ampllfler~ 
tube 

1 High dc- rf conversion effic'ancy (85%) . 
2 Reliability 
3 Amplifier rf (noise, harmonics, filtering requirements) 
4 Other operating parameters (temperature, gain) 
5 Thermal cooUng capability 
e Specific weight 
7 High volume manufacturing techniques 
8 Precision manufacturing 
9 Design for ease of maintenance 

10 Desl9t' for power ~upply/PA for stable operation 
11 Depressed collectors 
1 2 Investigation of circuit protection devices 
13 Package consideration during launch and. transportation 
14 Metals and materials research: magnets, cathodes 
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NASI\ Solar Power F •• ture. of 
Satellite Power Amplifier. 

... A ... pUt,.n """ron .olld ..... 

". .. , IIlW wltft to' .u .... 10 - 110 IlW wl.h to' .u.... 1 - 3 W CI·tO W, .",.,. .. , II - .. " 10-"" 10 .. 

C .... H. Cold pure ... "., Th" ... 1on1c o.ld., .... t". 
, ... 11'11 • • ", '0,000 ",.., ("all'lIa .". '0,000 ",.., 

0". 7dl 

Velta" 10 tV 

.,,,,,Iou •• """ -100 d./IlH. 10 MH. 
All ",,,., from .. " .. , 

II'.' Comparabl. '0 1I1,.,,0n 

,,.."",, "'"'P'''O'' Cono.n,,, •• d In.".ollon 
t .. 1on 

.,..,,,. eo.' '20/IIW 
."..1111 w.',,,, 0.41&g/1lW 
A"" ,,,,.,,, •• ,." •• op.ratlon 

no f.ed waveguld •• 

NI\SI\ Solar Power 
Satellite 

Internal collector 
heatpipe/evaporators 

Collector 
plates 

Collector 
heatpipe (2) 
to radiator 

o inches 

4Od. 20d. 

40·IIIlV 1210 20 V 

-12. dIlIlH •• 11Hz unknown 
aw., f,om 0.",., 
Compar.bl. to ampillrOn .,r\"o •• 100 , •• ,. 

Dllt"buted. ClolI,c'n, o.n 100·121' C pel" 
,un 100·700'0. requl,. 
h ••• pip .. 

'20'0 '40 IIIW unllnown 
0.4 to 0.' IIg/'W 0.01 to 0.03 kg/kW 
'ow., .dlu,', to volt.,. 
.ltlng.l,oo,po"" f .... 

D.vlc. to .nllnnl 
".m.nt 

70 kW Klystron 

Cavity/solenoid 
heatplpe 
evaporators RF Input from 

solid state 
control device 

ter 

/solenold heatplpes (4) 
to thermal radiators 

I i .\ , t i " , it, j', i I j i \ i I 
Ocm Output waveguide 

----------------------------------------------------------
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Solar Power 
Satellite 

·-"' ....... i·. 

Power Amplifier Conclusions 
Power Ampllflerl 
Microwave System Tradeoffs 

A aaaed on presftnt aaaumptlo"a of microwave ayatem 
requlrementa and projected performance of varloua 
microwave power empllflera, the klyatron offera a feaalb .. ; 
approach for SPS mlcroweve power generation. The 
amplltron appear. to he less .ultable, and the magnetron 
ahould continue to be Inveatlgated to better understand Its 
performance characterlatlca relative to SPS applications . 

a aased on SPS microwave system applications, It Is 
de.lrable to have maximum power output and gaIn 
conalstent with other microwave system parameters. 
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Satellite Microwave Power 
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The p..-ntation mlltlrilll herein w. ulld In the 
Rldietl", Elements s-Ionof the SOW POMI' 
51telUte Worklhop on Mlcroweve POMI' 
Trlnlmllllon Ind RlCIPtlon held It the 
lyndon B. John.,n SPICI Center, JinullY 
16·28, 1880. The worklhop Wli conducted 
• pert of the technical .-ment 
prOClll of the DOE/NASA SOI.r Power 
51tellite Concept Evalultlon Progrlm. 
AIIISPKtI of Solar Power 51tellitl 
mlcroWiva trlnsml.lon Ind rtctptlon were 
Iddres.d Including stud Its, 1",ly., 
Ind liboritory Invtstigltlonl. Conclu· 
Ilonl from theIe activit I .. were pr. 
tented II Will II recommended follow-on 
work. The worluhop Wli organized Into 
light _10m 81 folioWl: 

• 0""", 
• MicroMVI Syrttm PtrfOI'mlJlla 
• ",.. Control 
• PDWII Amp/ifi", 
• RM/Mti", EI""."" 
• R""nIM 
• Solid S,." Conf;,ufltionl 
• P/."",d""m Activitia 

The material contained herein IUpple· 
ments the workshop paperl which were 
publilhed and distributed at the time of 
the workshop. Together they are a com· 
prehenllve documentation of the numeroul 
analytical and experimental activlti .. In 
the field of microwave power transmlaion 
and reception . 

• Addition" informltion 
rt(JMdi", ",. workshop 
mlY III ob,.i",d by 
cootleti",: R.H. Diett 

E E4/SPS Microwave SYlteml 
National Aerona"tiCi & 
Space Administration 
lyndon 8. Johnson Space Center 
Houston, Texas 77058 
713 483-4507 
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........ E ...... t" 
Dr. Erv Nalos, Boeing 

AIIonInt Clvlty Rldlltor 
K. Schroeder, Rockwe" International 
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W. Brown, Raytheon 
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SUEARRAY LOSSES DUE TO DIr.fJJSIO:I!,L TOLERAt~CES --

CO~PONENJ-DJ~ENSION IOLERAtlC.E £EEECI 

SUBARRAY SURFACE UNIFORMITY ±SO MILS RMS SCATTER I r.G FROM 
PHASE VARIANCE 

St!9l\RRAY TILT 0.1" AVERAGE SUBARRAY PATTERN 
GAIN REDUCTIO~ 

G~P BETWEEN SUBARRAYS of· • 25· AVERAGE ?RRAY FILLI~G LOSS 
AREA LOSS 

RI,D I AT I NG WAVEGU I DE LENGTH ±30 MILS MISMATCH LOSS 
RADIATING WAVEGUIDE ~IDTH +3 MILS MISMATCH LOSS 
FEE~WAVEGUIDE LENGTH ±30 MILS MI SMATC •• LOSS 
FEED WAVEGUIDE WIDTH ±3 MILS MISMATCH LOSS 
RADIATING .SLOT OFFSET ±6 MILS SCATTERING FROM 

AMPLITUDE VARIANCE 

. TOTAL 

~~GEND: ALL LOSSES ARE ADDITIVE. 
(1) INDEPENDENT OF SUBARRAY SIZE. 

f~ rN I'rJ\r r'C"I'-n :J. .I _ • I. L \ 

-.lli.fJ" IH} ill (i.' I· • ::.aL:' _ .~ 

O.SOl (1) 

.. 0.50% (1) 

0.13% 

0.02% (2) 
0.12 
0.02% (2) 
0.03% 
0.10 (II) 

1.112% 

i
~~ If~DEPENDERT; OF' ST-ICK· LENGTII. . . 
~ R[FERRED TO AVERAGE 5TICK lENGTfi OF 16.7 1~:2.76 M[T[R~. 
'I ASSUMES MEAN SLOT OFFSET ElmOR I S ZERO. 
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SPS AU1Ir:NA [lEr~Ef~T EVl\lUi'TIOiI CO;iTPl,CT HAS 9-J5636C 

TASKS: 
• R[CEIVING TECHNIQUES EVALUATION 

• Conduct shared antenna versus separate r~c~1vin9 antr.nna analysis 
to detentlinc feasihle pilot beam bud'Jet and receivin.} antenna cnn~tt"aints 
due to powe." RlOdui e. 

• . Oesi9n and select a pilot beam rp.ceivin9 antenna COIIlp;)l1ble wi th '1i\ve­
guide atTay havill~J lIIinilllum inqlact on power bea .. radidtion effl'ciency. 

• . Eval"at~ pilot-beam receive-antenna techniques cOIIPatible with power 
beclal array to all(A'I s inlultanC(tus tt"anslliission/reception of an S-Band 
carrier and the anticipated pilot .. beaM spread-spect". signal. 

• POWER MODULE ANTENUA EVALUATION 

• Define and apply mechanical and structural asssly lltethods to .'ni.ize 
IlCchanical tolerance ert·ot"s and disLurLions in the power MOdule antenna 
eVil 1 ua ti on. 

• Ouild full-scale half-nlOtlult' JO-stick ar,-ay. utl11zh'!J sfnqle ~tick 
Rk'ilS",'CI,"!nLS I.ased un analylic4Jl and eXIJf!."imental slot dr~"ign Pd'"d.!lers. 
Iterate single stick design untn d(;;;1t'cd illlp(!dance charactcri~tics .''"e 
obtained. OP.velOI) and experimenLally v~riry feed-line sl.,t design 
using '!ariable geOlllPtry slof.s. tit i1 il(' this b!chni'1ue lG bllild a -ree!d 
line with n.inin .... reflertions \1hen connected to wavcguicl,! slick • 

• Measure (1) antenna patterns. (2) in,ICda,:ce and retunl loss. and (3} 
swei)t transnliss ion anl(,11 tilde' and pha:r. on 200-foot dntellll:' '"dll!J'! 1.0 
provide daLa bd!>4! for d~:; ign of a t'eceive "Iltentla sy:aLc..... Cuult'oJ .. ,lu,.1 
COtll)1i1l9 wilh \,dge lIit"rot"s and sh."., by vat'ying .1r,·m'" C!xlt: .. t. val idiLy of 
the t~chnh,ue for el illilldtillg edge ef .... :~ls on iltlpeddliCC dltd Ikille ..... 
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ORIGINAL PAGE IS 
OF POOR QUALrrv 

Matrix Arr.,· A ~ 
on '::aIft {,Ie 

. .1 Pha.. Jnfol"lUtlon 
• Array '1 

Cell 

Row I Z 1 - J •. 
.. 

1 Ph~IJU 105 100 IO~ 
Alnp .53 .57 • (,7 

Z J'l"u" 104 R4 . KO 
Ami) • (, I .51 .5C) 

3 I Ph .. IJe 94 KO HH 
Amp .45 • ~as .(,3 

.. I Phase lOS 79 110 
Anlp • (,I .56 • (,0 

5 Phasc 120 HI 8(, 

Amp • SO • (,0 .59 

6 Phase 9(, 80 74 
Amp • (,8 .53 .57 

7 Phasc II? 73 83 
Amp .4'1 .60 • L7 

" l"hasc 100 86 90 
Amp • 59 • 60 .53 

Overall array is an 8 x 8 matrix 

"Internal" array is a 6 x 6 matrix 

~ '10 
.iO 

8Z 
• (.7 

K9 
.71 

73 
.73 

76 
.7Z 

.... 83 
.611 

HZ 
.69 

93 
• (,3 

5 (t 7 

103 96 ')3 · (, .. .(,1 . (,~ 
cH 94 7',' 

.71 .7Z .59 

H5 85 c, .. 
• (.4 .58 .5( • 

140 ~Q .. ., , , .. 
.73 .69 • (.5 

70 85 Mol 
• (,8 .5Z .58 

elZ 90 79 
.7Z • C)9 .60 

HO 8l, cH 
.61 • (,0 ~ S4 

9(' tiS 
.70 .57 

R 

105 
.6Z 

90 
.40 

10(, 
• St, 

94 
.40 

IZO 
.50 

91 
.39 

104 
.55 

160 
.45 

Test data obtained by dipole probe placed in front of each 
radiating slot. 

R~lS of phase deviation of internal array is 6.22°. 
R:.1S of phase deviation of overall array is 8.89°. 
R:.iS of amplitude variation ot internal array is 0.0628 from a 
r.:ea.:'1 value of 0.627. 
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DEFINITION OF RADIATION EFFICIENCY 17 

It 
L 
Y 
S 
T - I ,.. 
0 
N 
S 

S 
P 
S 

S 
U 
B 
A 
R 
R 
A 
v 

.. P rad 

P rad 
-P ; where Pd· RF Power In Main Beam DC ra 
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OBJECTIVES OF STUDY 

QUANTIFY PROBLEft AREAS IN ftEASURIN!G SUBARRAY POVER IN THE TRANSIIIT 
BEAft AND RADIATION EFFICIENCY TO 1% (O.04 DB) ACCURACY GOAL. 

EVALUATE PERFORftANCE POTENTIAL OF FAR-FIELD ELEVATED AID GROUND 
REFLECTION RANGES, AND NEAR-FIELD TECHNIQUES, TO ACHIEVING 
ftEASUREftENT OBJECTIVES • 

IDENTIFY STATE-OF-THE-ART PERFORnANCE OF CRITICAL CORPONENTS OR 
DEVICES ASSOCIATED WITH VIABLE ftEASURERENT TECHNIQUES. 

IDENTIFY SPECIALIZED AND/OR UNIQUE fACILITIES REQUIRED. 

Iw". """ ttl. pm , ; I TI PRI! _1!11. m ,IUISE H!I!!! WIII .. J"''' ILL L 7 F 5 



I , I .~ 

I , J , 
=-e - .... =

 
::» 

,Il: 

r 
\D

 

-
, 

"'" =-e u >-c G
Il: 

G
Il: 

C
 

ca 
::» 
en 
c :z

 
~ 

:z
 

L.tJ 
.... Z

 
C

 

en 
Q

. 
(
I)

 

'
-
'
~
'
 

.
.
 "
-
"
"
"
,
,
,
-
,
 

, 

... J I 
.. J ... 

.:: 
-! ~ 
:. 

J 
I 

U
 I 

:1 
!: 

... :: 
a 

:J 
... 
~
 

I! 
M

 t 
.s 

•• 
i 

... / 
a .... 
... 

0 • 
• 

/ 

L
 / 

I I 

"
r
--

I 

• ~ 

---L
-______ L-

~
.
~
-
-
~
-
-
-
-
-
~
~
 

I.. 
~ 

4
4

 

t---
• 

I 
~ 

~
 

.1 .1 , j I J 1 

. 1 , 

~
~
~
.
-
·
~
,
~
~
_
.
'
U
.
_
~
~
_
,
_
 .... ii~.~.aiO .. «lI"', 

... 
! 

M
 
&
W
~
.
_
~
~
_
.
~
.
 __ 

~
~
~
.
,
'
,
 '''-'-'---------m

. 



Ihlrr. :k';;I(~;;_~UI.;~lt; .-;.~~., 

r r 
~ 

t 
l 
f 

i I 
q 
~ I 
: I , 

• VI 

[RROR 
AlIT UNA IAN.E 

STRUCTURAL! 
£'VIIO_RE_TaL 

lRA_SRITTER 
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"EASURE"ENTS ERROR BUDGET 

II~ II Iflllill ~ VALlIE '-'-1115 1 

FIELD OIIFORR'TY 
.j 

QUADIATIC PHASE EIROR 
EXTRANEOUS !EFLECTIOMS 

0.036 DB STANDARD 6AIN ANTEN.A A_ ADEQUATE 5AI_ STA_"'I 
U.CERTAI_TY HAS .oT YET lEE_ IIE_TIFIEI 
ATROSPHERIC EFFECTS REFEIE_CE RECEIVEI RuST IE 

10IRALIZE EFFECTS OF 
AT""HElE 

AX!Al IATIO 

SPS ANTE __ A RIGIDITY! . 
SUI IL ITY 
PO$ITIO_EI ERROR 0.01 .. 
VI_D LOADI_./THEIRAL VI_D loADIHnHEIfIAL CA_ IE 

Co.TROLLEI IY lalORE OvER 
TEST A_tE ... 

,"PLITUDE STABILITY PHASE lacKED TECH_IQUES A.I 
TERrEIATURE STAB.LIZATI .. 

0.01 .. RuST YIELI ARPLIT,DE 
STAlILIlY OF 0.00 .. 

FREQUE.CY STABILITY 

PRECI$IO_ ATTE.UATOR ATTE.uATOI CALIIIATEI To 
""CERTAINTY 0.005 .. 
REFEIE.CE I.PdT PHASE! 
,"PLITUDE ElROIS 0.01 .. 
SIG_AL To IoISE RATIO SII laTiO "'IT EXCEEI ..... 
FREQUE.CY STABILITY 
DYNARIC IA.GE 
DETECTOI LI.EAIITY DEneoa C~Ia;~T:r 

CA. CEEI • 
YSVR YSIII KEpt IELOW 1.05 .. 

TOTAL RSS • O.CM .. 
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REg U IRE MEN T S FOR FAR - FIE l D 
ANT E N N A RAN G E S 1 

MINIMUM QUADRATIC PHASE ERROR 

MINIMUM EXTRANE1US REFLECTIONS 

UNIFORM WAVEFRONT 

ADEQUATE GAIN REFERENCE 
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GAIN LOSS DUE TO QUADRATIC PHASE ERROR 

Gain Looo 
41 

1.0 

0.1 

10 Meter Square 
SPS Subarray 
at 2.45 GHz 

OoJOl 

Q.OOl f . 
0.5 1 

e $ o 4 

10K 

I 

2 4 8 

47 

' ltangc Lcngth (ft) 
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Multlr1cs of D2/A 
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EDOlt COMPORERT 

Field Unifor.1ty 

Quadratic Phaae Error 

Standard Gain Antenna 
Uncertainty 

At.o.pheric Effects 

VSWlt 

Extraneous Reflections 

-,-
--'~~"~lP'iI* +>. qM .. ,.~?I" it{ =::::: :1 
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ANTENNA RANGE MEASUREMENTS 
ERROR SUB-BUDGET 

ALLOWABLE VALUE ~IITS 

0.015 dB Mai .. aaplltude taper at 
edae of SPS .ubarra, 
approz. 0.04 dB 

0.010 dB lequire. ranae ,rater than 
6 D2/'1 

0.020 dB Gain .tandard DHda to be 
deftlec~ 

0.005 dB At.oapherlc effect. 
cancelled b, referaDCe 

0.005 dB VSWR 10.. calibrated out 

0.025 dB Iztra .. oua reflectioaa 
-·57 dB down 

ISS Subtotal 0.037 dB 
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GROUND REFLECTION RANGE RELATIONS 

hr(ft) 

120 

100 

80 

60 

40 

,!) 

0 
2 

h • Receive Antenna Height r 

4 

ht - Transmit Antenna Height 

h • 20 t 

Range (Hiles) 

6 8 

11 b"'" ,t '$'" i;'.'i'b'jt(V ;'",-,'.~_. "._~~'>"~""""".~_''''-> 

- -'-·-.r;,'·~4 )44' +;;WS£'('" 2 _~"!ft~ 

h • 4S t 

h • 60 t 

h • 100 t 

..... -."- "-"'-"~' .... ~ .. -" ... ""'"'''''' ." .-l 

lfOT!: Darkened 
area i. allowable 
operatina·reaioa 
for SPS .ubarray 
pattern .... ur ... nt •• 
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Antenna Height 
h (feet) 
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ELEVATED ANTENNA RANGE RELATIONS FOR 
EQUAL TRANSMIT AND RECEIVE ANTENNA HEIGHTS 

Half Power 1st Hull Required 
Antenna Diameter BeallWidth Position Range 

(feet) (degrees) (degrees) R (ai1es) Co_nts 

4 ';.0 9.3 0.23 ''h'' is Highest Practical 

8 3.5 4.7 0.46 Towel!' Beiaht 

12 2.3 3.1 0.70 

15 1.85 2.5 0.87 

4 7.0 9.3 1.39 Mountain Top to Mountain 
8 3.5 4.7 2.76 Top laDae 

12 2.3 3.1 4.20 

IS 1.85 2.5 7.04 

1 

" 

I ~ 
1 
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ANTENNA POSITIONER FACTORS 

ANTENNA WEIGHT/LoADING 

POSITIONING ACCURACY 

POSITIONER SCAN LIMITS 
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WI 340 (RG 112/u) 
2.2 - 3.3 GHz 

Haterial 

Copper 

Aluainua 

b.,_ --...... --'""~-.--

'-,-

--'-~ ~'~::::.:",7~:",~~~ ~=~.~~::. @~~:., 

WAVEGUIDE WEIGHT ESTI"ATES 

Density Waveaulde 
Vaveptde 

lbs/in3 
in3 per ft lb. per ft 

0.3180 10.915 3.1818 . 
0.0979 10.915 0.9795 

~~~. 
,~~~.~ __ . _.~ tf rM 
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ESTIMATES OF "INIMUM SUBARRAY WEIGHT 

, 

t 

I 
~ I 
i 
~ 

t 

I 
~ 
l 
t 

ell 
ell 

Subarray 
Size 
(M) 

1 

3 

7 

10 

30 

70 

100 

I 

Sub .... :'"1"ay 
Size 
(ft) 

3.281 

9.843 

22.966 

32.808 

98.425 

.~ 

J :U9.6S9 

328.084 
-

Total 
No. of Length Total Aluain_ 
WR340 of WR340 Waveguide W~" 

Waveguidest (ft) (tons) 

11.059 36.273 0 •• 

33.177 326.546 0.16 

77.413 1.777.859 0.87 

110.590 3.628.284 1.78 

331.770 32.654.560 15.99 

774.131 177.785.936 87.07 

1.105.901 362.828.441 177.69 
-- -- --- _ .. - -_. - -_ .... - --

* Outer width - 3.56 inches - 0.2961 ft. 

Put '41 M ·"N~_·· e • at ga i ,&iitr61' -~ .... "'"'-, .~-
",-~,"<~ ___ ._._. , ... ~,~~....,.-c~~. ___ ~. __ ""'~, .... ~-.... ~ .......... ~'".-.'" ,db 

Total Eat. Total .. ~. 
Aluain_ To~al Copper Copper 
Array Wt. Va_pi_ Vt. ArraJ Ve. 

(tons) (~OM) (tou) 

0.025 0.051 0.01 

0.225 0.520 0.73 

1.225 2.121 3 •• 
I 

2.5 5.772 1.0 
I 

22.5 51.95 73.09 I 
I 

122.5 282.84 397.92 i 

250 571.22 112.01 _ 
-_.. - -
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QUANTIFICATION OF RDP SA"PlE ACCURACY REQUIRED 

Elevation Angle 
Respect to Peak 

Cross Section Throulh 
Hain Beaa 

Azmuth Male 
Respect to Peak 

AssWlina power in the .un beaa is proportional to beaa area, the 4 cone.po-ina to 
1% power change is: 

Tr(HP:V + 6)2 _ 1.01Tr(HP:V)2 

or 

4 - 0.005 (BP2BW) 

ke'7 -MrN 'fn'» 'i w" .... " - t mM remiet± 't ",,,-,~~- , ,-~,,,"----

• 
1m stat n:to 5 J 
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SUBARRAY PATTERN "EASURE"ENT CRITERIA AT 2.45 6Hz 

Data Array 
Size for 

Subarray Subanay Pattern IS EHCODER ± 1.5 Dear- Total Data 
Size Size Subarray for 1% Power Requlre.ent Square Array S1ae 
(M) (wavelengths) HPBV* (del) tbanle (del) (Bits)** _ter*** (von.) 

1 8.167 6.24 0.016 16 188x188 35.344K 

3 24.502 2.081 0.0052 18 577zS77 332.929K 

7 57.172 0.892 0.0022 19 1. 364x1.364 1.86K 

10 81.67 0.624 0.0016 19 1.875x1.875 3.51611 

30 245.02 0.208 0.00052 21 5. 77OD. 770 33.29311 

10 571.72 0.0892 0.00022 22 13. 637x13. 637 185.96811 

100 816.7 0.0624 0.00016 23 18. 750x18.7SO 351.56211 
- --.----~.--- ~-~ _ .. _--

* Uniform i11uaination 
** Quantification to approxt.ate1y a/2 
*** Sap1ed at a/2 

eo-nta 

j 
j 

IDcoder QuaDtlflcat~ 
to 0.00097 ..... ,1 

i 

lDcoder GOt AYallable 

1Dc:04.r GOt Aft11abl. 

IDcoder GOt Aft11aItle 
: 
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Definition of Antenna Be .. 'ara .. tera 

Antenna Voltage 
'attern 

~-----""--t---~"'-__ -I~ ____ ..-;;_ .... 8 ( •• 900 plane) 

a t •• 00 plane) 

e 21f o 
Jr Jr £2(e,.) sine d.dO 

Fractional Beam Power • 0 0 n72 '~~2~1f-------------------- X 100 

I I £2 (e,.) sin8 d.dO 
o o 

.. , 

1 
• 1 

j 
I 
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FRACTIONAL BEAM POWER FOR SPS SUBARRAY PATTERN 

100 

i 80 .. 
~ a 60 
.... 
0 
u 
I 
~ 40 : 

20 

°0~--------------~S--------------~l~5--------------~20 
Angle from Peak of Beam (degree.) 

• Approximately 89% of Total Power Within ± 1.5% 
• Over 99% of Radiated rower Within t 20% 

59 
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1 
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ANTENNA POSITIONER REQUIREMENTS 
FOR 10 - BY 10- METER SUBARRA YS 

FOR SUBARRAY CONSTRUCTED OF STANDARD 
WR-3qO ALUMINUM WAVEGUIDE (0.98 LBS/FT), 
NO KlYSTRONS 

FOR LIGHT W~IGHT PROTOTYPE WAVEGUIDE 
(11.8 LBS/M ), PLUS 50 VARIAN QK3SK 
KlYSTRONS AT 85 LBS EACH 

TO PROVIDE 0.0018 - DEG, RESOLUTION 
REQUIRED fOR 1% POWER MEASUREMENT ACCURACY 
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2.5 TONS 
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STATE-OF-THE-ART POSITIONER CONCEPT 
SPS at ... 
Saban., 

Positioner Perfor.ance 

Sdentlftc Ma .... 18tl_tei 

I:uail~. IIoMBt IIoMnt ~ Subanay Wt. 

Serl •• •• ,Ut-l1») Am· (ft) Ilb. To .. 

I 

as 150 9.S IS.' 7.9 

45 75 7.5 10 5 

~\ '\ /7 
~. AD&le aJAZ \' /,' / 
Positioner (+l.S·~ ~ .1' 

aJAZ PoBitiaRer \ j. 
19 Bit &acocl s 
Supplied in ...... ~..,...~----I +.f----

£LandA! 1\ 
,. 

• El.vation .over aat.atb plUII SIIAP cOIlftpratloD. . 

• *IIOl'E: the _rl .. as .... a .... _ wrtlca1 load l1II1t of 25 toM • 
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Structure 
Atop RASA 
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Tower 
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MEA SUR E MEN TEL E C T RON I C S S 

FACTORS 

STABILITY 

LINEARITY 

ACCURACY 
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ERROR SUB-BUDGET FOR RECEIVER ELECTRONICS 

UROR STATE-OF-THE-ART SPS ERROR 
SOURCE PERFORRANCE (1) BUDGET COME.TS 

LINEARITV 0.05 DBI10 DB 0.005 DB RICROCOMPUTER CALIIRATIOII REQUIRED 

IF AMPLIFIER 0.05 DBrc 0.002 DB TEM'. STAIILIZATIOII AIID MICROCOMPUTER 
DRIFT CALIIRATIOII REQUIRED 

CAlLE lOSSES O.2I/·C 0.002 DB PRECISIOI AMPLITUDE REFEREIICE WILL IIORMALIZE 
CAlLE LOSS YARIATIOIIS 

CROSSTALK 0.1 DB FOR 0.003 DB RICROCOMPUTER COMPEIISATION REQUIRED 
40 DB DIFFERENCE 
BETWEEN CHANIELS 

A,.PLITUDE 0.1 DB OYER 0.001 DB 17 liT 'ARAhLEL ICD RECEIYER OUTPUTS REQUIRED 
RESOLUTION 80 DB DVIIAMIC FOR 0.001 D RESOLUTIOII , 

RaIlGE (2) 

~ 
w 

SIN RATIO 0.01 nB FOR 
SII • 60 DB 

0.005 DB IARROW IF BM REQUIRED TO EXTEIID DYIIAMIC RAII5E 

LIIIE VOLTAGE 0.02 DB FOR n 0.001 DB VOLTAGE REGULATIOII AIID MICROCOMPUTER COMPEII-
VARIATIOII CHAIIGE II LIIE SA TI 011 REQU I RED 

VOLTASE 

PRECISION IFI + 0.2 DB FOR 0.005 DB RICROCOMPUTER COMPEIISATION MAY IE REQUIRED 
RF ATTEIIUATORS 10 DB STEPS 

VSWR 0-15 DB FOR 0.002 DB ALL VSWR's MAINTAIIED IELOW 1.05 AII./oR 
VSMR OF 1-3:1 CALlIRATED OUT 

RSS TOTAL 0.01 DB 

NOTES: U) DATA lASED 011 
SIA 1711 10110 1770 
RECEIYERS 

(2) DATA lASED 011 
SIA 1832A 
A,.PLITUDE DISPLAY 
UIIIT 
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ANTENNA MEASUREMENT EQUIPMENT BLOCK DIAGRAM 

2.45 GHz 

Precision 
Calibrated 
~t~.!!.~~ ___ .!~II2!~a.!.u.I,.e_SJ.a.!t.l!.~ ____ , 

Calibrated I I 

Stability I 
AC Volt.,. Antenna +hI Predslon Blah I 

A8plttude T-.perature, 
I Reference Phase ...... r;..;.i-__________ " 
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KEY D EVE LOP MEN T 

I T EMS 

PRECISION ATTENUATOR 

GAIN STANDARD 

STABLE OSCILLATOR (AMPLITUDE AND PHASE) 

COMPUTER I ZED tjORMAL I ZAT I ON 
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N EAR - FIE L D RAN G E 

USEFUL FOR TESTING AT INTERMEDIATE POWER LEVELS 

PLANAR SCANNER APPROACH CAN BE IMPLIMENTED INDOORS 

TECHNIQUE MAY BE APPLICABLE TO FULL 30-METER MODULE TESTING 
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REQUIREMENTS FOR NEAR-FIELD RANGES 

PRECISION ScANNER MECHANISM 

CALIBRATED FIELD PROBE 

MuST MEASURE AMPLITUDE AND PHASE OF BOTU 
POLARIZATIONS 

COMPUTER PROCESSOR 

67 

f 



l I 

N E A P - FIE l D MEA SUR E MEN T S 
E Q U 1 Q MEN T 8 L 0 C K D I A G RAM 

••• M,."A ;;.~ ..... ,. .""",- e:==' "'fill 
~'NM' ,,_ 

t=:I c::::J 
c::::::J 

.. -IlleItY'1 

==--
"AWl' PL-aI leA I ---. 

AIII ..... Y 

68 

I 
! , 



o 

- -10 
Ol 

" -0: 

~ 
L&J 

~ -20 Go 

L&J 
> -
~ 
..J 
L&J -30 0: 

• 

NEAR FIELD DERIVED AND FAR FIELD MEASURED 
SUM PATTERNS OF A MONOPULSE ANTENNA 

NEAR FIELD DERIVED 
••• SUM 

FAR FIELD MEASURED 
- SUM 

18 12 6 o 6 12 18 

ANGLE (DEGREES) 
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CON C l U S ION S 

ELEVATED RANGES CAN MEET ALL KNOWN REQUIREMENTS 

MANY POTENTIAL SITES HAVING RANGES GREATER THAN 3 MILES 
ARE AVAILABLE 

FULL HIGH POWER TESTING CAN BE PERFORMED 

THE ELECTRONICS REQUIREMENTS HAVE BEEN FULLY INVESTIGATED. ERROR 
BUDGETS INDICATE ACHIEVABLE ADVANCES IN STATE-OF-THE-ART ARE REQUIRED 
IN SEVERAL AREAS 

NEAR-FIELD TECHNIQUES ARE APPLICABLE FOR TESTING AT INTERMEDIATE 
POWER LEVELS 

INDOOR TESTING OF FULL 30 BY 3O-METER MECHANICAL MODULES ARE 
POSSIBLE j 
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Th. pr.-ntltlon ""twill herein WIt UIId In 
the Rect.n"' .... ,. 
SlttUiti Worklhop on MlcfOWlVl POWII' 
T,.nsml"on _ RlCIPtlon held It the 
Lyndon 8. JohnlOn SPICI ~tIr, J.null'Y 
15-28, 1.0. The wortllhop WIt conducted 
II ptrt Itf the techniCiI ~ 
pl'oce. of \!" DOE/NASA Sol.r pOWIf' 
s.teIUti Concept EVitultlon Progrlm. 
All llpectt of Sollr Power Satllllt. 
microWlVl tr.nsmlulon Ind I'ICIPtion Wlrt 
addr .... Including stud ... , 1",ly., 
and Iltx"r.tory In¥lltlgatlonl. Conclu­
llonl from th .. activit I .. wert pr.-
sented II w.1I II recommended follow-on 
work. The workshop W.I organized Into 
.Ight _Ionl II follows: 

• rw..11 
• MicrDWWI Syrtfm PtrfDrmlflct · Ph,. CDntrD/ 
• PDWII' Amp/If;'" 
• Rllli,tl", EI""",,, 
• RlCtlnlll 
• SDlld Stitt CDnf/tJu"tlDn, 
• PIIn",d "Dgflm ActlvltIfI 

The m.teri.1 contlined herein supple· 
ments the workshop Pipers which wer. 
publilhed .nd distributed at the time of 
the workshop. Together they are I com­
prehenlive documentation of the numeroul 
InalytiCiI and experimental rctivitita In 
the field of microwlve power trensmiuion 
and reception . 

• AdditiDM//nfD,,,,,tJDn 
",,,din, til, WDrklhDP . 
""Y III Dbttiflld by 
CDntllCtJ",: R.H. DiltZ 

EE4/SPS Microwave System,; 
National Aeronautics 81 
Space Administration 
Lyndon 8. Johnson Space Center 
Houston, Texas 77058 
713 483-4507 
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I Potential Rectenna Confi~ra.tions 
for Efficient Rectification 
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-1-
CENTER 
(23mW/cm2) 

o 
1x2 

I 

EOGe 
(0.85 mW/cm2) 

-
Cal 

-
6x6 

(b) 

3x12i 
I 

. NUMBER OF (15 2 ~ACH) 

I MODULES em I,;" 

PANEL SIZE. m ~ y V'Jx 
L-x Vly 

J\REA.m:! A 
porlER PER DIODE P 
OPTICAL CONC£NTRATfOf-J I MA TCHI!'JG LOSSi;S 

S r t.Bf UTV Or- Ly 

2 
0.0~1 

0.11 
0.015 
3A5 
r:o 
LOW 

o 
o 

~l LOSS FOR ORBIT Lx 

O.r. C'!fl x 0.1 ci.!g ~T-o-r-A-L--+--r-, --it 
L___ ---I 

36 
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0.52 
0.21 
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NO 
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• DEVELOP BASIC FUNDAMENTALS FOR PARALLEL-SERIES 
COMBINING OF DC POWER FROM RECTENNA ELEMENTS 
(INTO BASIC 10 KW TO 300 KW POWER MODULES) 
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KEY ACCOMPLISHMENTS - POWER COMBINING EVALUATION 

• COMPUTER MODEL OF BJ\SELINE TYPE convERsIori CIRCUITRY USING 
AVAILABLE NON LINEAR PROGRAM 

• CLOSED FORM MODELS OF CONVERSION CIRCUITRY DEVELOPED 

• POWER COMBINING INEFFICIENCIES FOR SERIES AND PARALLEL 
COMFINING EVALUATION 
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COMPUTER SIMULATION OF BASELINE RECTIFIER CRUCIAL 
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ApPROACH TAKEN 

• USE OF SPICE 2 TRANSIENT. ANALYSIS PROGRAM 

• DEVELOPMENT OF BASELINE TYPE POWER RECTIFIER MODEL 

• DEVELOPME~T OF CLOSED FORM RECTIFIER MODEL 
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Proposed design of Rectenn .. motiv .. tec by environment .. l pro­
tection and cost considerations. 

Pl.ysical construction o( two-plane rectenna. With the excep­
tion or cov~.I'S (white teClon sleeves in photograph) this is the same five 
element (ore plane that was electrically tested . _ 0 Reflecting 
plane ma.de from hardv.oare cloth is representative of what cocld be used in 
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Close 2 
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Close 3 - ,-.,._, 3.04 2.86 
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A) BASELINE EDGE TAPER: 

BASELINE RECTENNA: 

Row DC COMDf~~NG: 

B) BASELINE MIDDLE TAPER: 

BASELINE RECTENNA: 

Row DC COMBINING: 

1!tI!: lJj!!f11l !tUIlIIi 7 m 7 

-,- -=-~'=:··===:t.:::::::::J 
• 

EXAMPLE OF 'MPACT ON RECTENNA BuSSING 

1 MW/CM2 AT 4.1 kH RA91US 
3 MHlcM2 AT q.O KH RADIUS 
OR 3:1 IN rOWER DENSITY OYER 100 " 

50 CH2/RECTENNA ELEHENT 
1.8 c., BETWEEN ELEMENTS 

9000 ELEMENTS YIELDU'G 900 H NOfUNAlLY 
POWER COMBINING INEFFICIENCY 2.5% 

3 HNI C.12 AT 4-.0 k'1 

9 I1W/Ct,2 AT 2.1 KH 
OR 3:1 IN POWER DENSITY OYER 1300 ., 

SAME AS ABOVE 

16,700 ELEtIErns YIELDING 5000 II NOMINALLY 
POWER COHDINING I"EFFICIENCY 2.5% 
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o 

BASELINE D(CTENNA DE~mNSTRATED CAPABILITY OF ADeQUATE 
ELECTRIAL PERFORMANCE 

PRO~cCTED ~Eq ELEMENT COST SIGNIFICANT AND LARGE UNCERTAINTY 

PROJECTED RECTENNA STRUCTURE COST LARGE 

o GAAs SCHOTTKY RECTIFIER CAPABLE OF INCREASED POWER LEVELS 

o 

o 

ORBIT CONSID~RATIONS INDICATE MORE DIRECTIONAL RECEIVING 
ELEMENT POSSIBLE 

PRINTED CIRCUIT IMPLEMENTATION HORTH CONSIDERING IN DEPTH 
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ApPROACH TAKEN 

o DELINEATE LIST OF DESIItABLE CHARACTERISTICS 

o FOCUSED ON THREE BASIC DESIGNS (HALF-WAVE DIPOLE, 
YAGI, HOGLfNE) 

o EVALUATE PERFORMANCE PENALTY WITH PRINTED CIRCUIT 
IMPLEMENTATION 

o COMPARED 5 ALTERNATIVES USING CHARACTERISTIC LISTED 

o 

o 

ARRIVED AT PRELIMINARY DESIGNS OF YAGI AND HOGLINE 
DIRECTIONAL kECTENNAS 

INITIATED CONSIDERATION OF ARRAYING HALF WAVE DIPOLES 
AND YAGI 
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MOre ~lrectlona1, 
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F.lclII(ml~n S-.l~er Errecti ye Recci ver ne ..... ldt .. 

\ 
Hi8her Operating Ibver 7'.Y ..,r Dlod. 

MOre Strln8ent Pblntlns 
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Higher OperaUnr. MOre St.able Closer Ele.ent More Accurate 
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Rectenna Element Beamw1dth Requirements 

Orbit Considerations 
Zero inclination orbit 

£ • .02 • :2.75° in azimuth 

£ • .04 --... :5.14° in azimuth 
elevation angle variations appreciably smaller 

Small but finite inclination orbit 
azimuth angle variations relatively unchanged 
elevation angle variations increase 

Conclusion (subject to quantification of orbits and 
more detailed analysis) 

azimuth angle variat,ion :3° 
elevation ~ngle variation 

to 5° 
:0.5 to 1.0° 

(assuming no refraction effects nor rect~nna 
misalignment or settling problems) 

Baseline Rectenna (Data from R.M.Dickinson JPL) 

For small variations in £ plane I power pattern -cos g 

±5.73° -0.5~ power reduction (-.022 dB) 

:8.11° -1.0: power reduction (-.044 dB) 

±11.48° -2.0~ power reduction (-.088 dB) 
H plane pattern similar 

Conclusion 

If 1% power reduction permitted under worse ca~es, 

azimuth beamwidth can be reduced by factor of 2 and 
elevation beamwidth by a factor of 10. 
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a.re cot s~own. 

Scale 4.0:1 

P.r1Dtec Ci:-c:uit F~-Wave Di~le 
f.ectecna Element (Re~. 5) 
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Inserticn Less vs. FrequenCj ~er n-, Cbe::~·!~ev Filters. J..:rows in 
4!rect!c~ ct increasing rir,le ~actor. 
(A) 

Note: 

Lcssless tlements 

or 

Coacept c~ Cbebysbev !n~~t Filter Design 
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! I Expected OpUIIIIll rerforlllftnce of lasl-Utla Receinl16 F.le.ent. 

f I 
t I 
t I t 
r I 
~ I 
r I 

~ I 
r I 
h 1 
t I 
~ i 

~ , 

r 

I 

G\ 
(II 

r.ln {vrt lootro~ic) dO 

3 F~e.ent-Lov FIn ratio 11 

3 Ele.ent-Mbderate Flo ratio 10 

3 Elelftent-1118h Flo ratIo 0.5 

6 Element-Low Flo ratio I', 
6 Element-Mbderate Flo ratio IJ 

() Element-JlJ~'h Flo ratio 11.5 

• nelnt1ve to 6.5 dD l1n:;ellne "Rlr-Wave DIpole. 

~~--.,.~ .... , ,,'..,..'-~ .. -~,~.-.---

F lo Ratl~ dt! 

5 

15 

25 

5 

15 

25 

Recei.ing Ele~nt· 
Reduction Factor 

2.02 

2.2" 

1.50 

5.62 

..... 1 

2.02 

I 
I 
i __ p.-J 
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~1nte~ Circuit ~e=entat1c: 

:5&l.t-vaft Ilipcl. 

3 ele.=e:t Ya.;:i v1 ~ G:-c= l'l&:le 

3 ele.=e:t !a.;i 1t-i thc~t Grc= 1"...&:. 

6 elect !&;i ,,-i =~t GrCU!l4 Pl&ne 

-=, , ... -" ... ft ~ :?el. 

3 ele=e:t !&;1 v:. t: G:-CU!lc! rl&:le 

3 ele:ect 1&;1 ,,-i thc\:t Grc~c! ::la.:le 

6 ele:e:t !&ii ,,-i ~~t G:-CU!l~ :l.a.:le 
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:Rec:t~1!r.&. nement Density Used in Cost lsti_tes 

H&l1'-vave 3 element Yap 5 element Yal! 
Dipole wit!; lo.-:ltb without vi Utcu't ~ pl.&1'JI! 

ground plane g:'c1!na plane &:,"ounc phne sal1.er size larger s1~e 

Gaia vi til respec:t 
to isotropic: (43) 6.5 1.0.2 8.4 

GaLa ra' io vith 
reE~et to isotropic: ~.~ 1.O.1l f.B 

E1'feeti ve Are .. , J. 
2 e 

81 (c:m /e1e1fJl!nt) 52 1.23 

D.ement Dells! ty 2 
192 81 ,~~ {:lc. or el~DtS/1l ) ~-

Density Red1!etioo 
laetcr 1 2.37 ' ct: --.,-

Demeo"; Sp .. c:ing (em) 
7.8 Co: tri .. nsulu gr16) 1l.9 5.7 

Revs 01' Elements/m 14.9 9.7 " C -., 

G is the 81.in ratio ,dtb res~-E:::t te isotropic. 
A is the e1'fect1 ve are .. ct the reeo:enn ele_ut. e 

ll.ll 12.7 

~.7 le.1l 

150 ... 'c c._v 

£7 J,6 

2.87 la.17 

13.2 ,c c -,,-;' 

e.s 7.3 

from the elel:lent spatir:S, t."!e reverse of ,.-hat is ac.ne here 1'or the Yag1 eleJlll!nts. 



A. PC! Icple:e:tatioa 

(COltl aze pvea 1a $/::.2) 

Halt-vave 
Di;egle ~ ele:eat Yagi 6 element YaS1 

w1th ,,"1 thout ... -i t.~ut groWld plane 
sroUD4 plane ground plane (averase lize) 

rJ.ement J)ena1 t)' (el;m. ) 192 81 123 57 

• Socket $ .92 $ .39 $1.12 $ .52 

DC bUll ba:r 2.78 1.Sl. 2.23 1.55 

PCI (le •• 4104e) .24 .24 .42 .44 
OroUD4 J'l.aDe J.:..2! ~ --=.Q2 --:,QQ 

:{'. 

COlt/=2 I'" $5.85 $4.35 $3.77 $2.51 
,t 
I, 

D10del at $.01 each ~ $ .81 $.l..23 $ .57 -
Total. COlt/m2 $7.77 $5.16 $5.00 $3.08 

~ 
B. Baseline ~ Censtruct10a 

(costs e.re si vea in $/m2) 

Bal.r-wave 
N.;E!21e ~ e1e:ll!nt YaS1 6 ele:nent Yae: 

with witbout ... 1. tbout 
r-oWld pla.De s::o!U'd l'l&ne ground pl..~Jl~ 

Ele=ent Density (el:=.) 192 81 123 57 
m 

Torepla:1e Core $3.13 $1.47 $2.09 $1.09 

'. Aluminum Sh1eJ.d/ 
Structural Member 2.14 1.40 .92 .64 

Yap-Uda ,\d41 t10llS .00 .30 .71 .76 

Ground l'J.a.ne 1.91 1.91 .00 .00 -
, cost/m2 $7.18 
~ , '" $5.08 $3.72 $2.49 

Diodes at $.01 each 1.92 --:.§! 1.23 -:11 
Total cost/m2 $9.10 $5.89 $4.95 $3.06 

Table 2-10 Over~ Cost !sti:ates 
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REFLECTOR '1 
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FOREPLANE CORE 
CONTAINiNG 
RECTIFIER CIRCUITRY 
AND DC Buss 
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1111 
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1111 
I, I, 

- !!I~ 

. 'L DIRECTOR 

DIRECTOR ----- ~I 

DRIVEN FOLDED DIPOLE ~n~ 

REFLECTOR 

Three Element Yagf-Uda Receiving Array 
(A) Baseline Construction 
(0) Printed Circuit Construction 
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toItCWSIOHS 

• HORE DIRECTIONAL YAGI-UDA RECEIVING ELEMENTS CAN REDUCE RECTENNA COST 
SIGNIFICANTLY 

RECEiviNG ELEMENt AECTEHNA CoST (BASELINE TYPE CONSTRUCTION) 

IIALF-WAVE DIPOLE $710 X 106 . 
3 ELEMENT Y-U NITH GROUND PLANE $'160 X 106 

3 ELEMENT Y-U WITHOUT GROUND PLANE $390 X 10& 
6 ELEHENT Y-U WITHOUT GROUND PLANE $2QO X 106 

• PRINTED CIRCUIT IMPLEMEHTATION DOES NOT APPEAR TO LOWER COST APPRECIABLY 
AL n.OUGII MORE STRUCTURAL WORK NEEDED 

• POWER COMBINING INEFFICIENCY SIHILAR FOR SERIES AND PARALLEL COKBIHING 
• POWER COMBINING INEFFICIENCY HILL AFFECT DC BUSS NETWORK (AND POSSIBLY POWER 

BEAH TAPER AND/OR EDGE RECTENNA ELEMENT DESIGN) 

• CLOSED FORM HODEL CAN BE USED FO~ ACCURATE POWER CDr1BINING CALCULATIONS 

• j"$ r ~~.~. letf'j t6 D" 
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CLASSIFICATION APPROACH 

CLASSIF:CATION BASED UPON 
SEVERITY OF THE IMPACTS 
DEDICATED LAND AREAS 
SEVERE CLIMATIC CHARACTERISTICS 

CHARACTERIZATION OF THE VARIABLES 
ABSOLUTE EXCLUSIO~ VARIABLE 
POTEI~TIAL EXCLUS.IDrI VARIABLE 
DES I Gi~ VAR I ABLE 
ADJACENCY VARIABLE 
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CLASSIFICATION OF THE VARIABLES 

ItiOIA ... RESERVATIOIfS POT~'TIAlEXClUSION OLD VARIABLE iMTlo..AL FOREST POTENTIAL EXCLUSION OLD VARI!lBLE w RARE II i. 

OLD VARIABLE 
~ PRIME AGRICULTURAL POTENTIAL EXClUSIOf. I 

i FLYWAYS OF WATERFOWl POTENTIAL EXCLUSION BETTER VARIABLE 
! 

~ SE I SI1I C HAZARDS DESIGN 1 OLD VARIABLE t. 

QU DEGREE LATITUDE DESIGN OLD VARIABLE 
r 
~ 

. DAYS OF HAIL PER YEAR DESIGN OLD VARIABLE 
[ 
~ 

SHEET RAIIfFALL 
OLD VARIABLE 

~ 

DESIGN , .. ACID RAI •• FALL DES I'" OLD VARIABLE 
i 
• N 
~ alRO I1IGRATO~Y CORRIDORS POTENTIAL EXCLUSIOn NEW VARIABLE 
i 
f· 

SrfOWFALL DESIGN NEW VAP:ABLE 
~ 

" t MATER AVAILABILITY POTE.n I Al EXClUS I ON NEW VARIABLE 
~ 

; 
RAILROAD ADJACENCY NEW VARIABLE 

l 
r LI GHT Ii II~G DEI.S I rt DESIGN HEW VARIABLE TI HBERED AREAS POTE~TIAL EXCLUSION NEW VARUBLE WETlArID AREAS POTE~TIAL EXCLUSION NEll. VARIABLE WILO AtfU SCErflC RIVERS DESIGN NEW VARIABLE • CLASS I AIR QUALITY AREAS POTENTIAL EXClUSI~" NEW VARIABLE , IC IIi6 DESIGN NE'~ VAR I ABLE f 
.I 

! • • 
i-Me 3Ft nOn? rOb 1W) tit . t q eM >w . ,~,_.'_""-"~~"'""" ~~,_.,",-.<" *'" v' "" 3 $ f K . " j' Wi... ;0 K 7Ft*'6MYn #" ;,. 11 « 
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CLASSIFICATION- OF VARIABLES 

VARIABLE CLASSIFICATIOif REFINEr£HT STATUS 

LA,~D AREAS I NFORHA T IONAL BETTER RESOLUTiOn 
WATER AREAS (1liLA.m) ABSOLUTE EXCLUSION BETTER RESOLUTIOH . 
dATIO,iAL RECRE.4T10ti AREAS ABSOLUTE EXCLUSION BETTER RESOLUTIOft 
MILITARY RESERVATIOftS ABSOLUTE ~XClUSION OLD VARIABLE 
STA.iDARIl METROPOLITAN 

STATISTICAL AREAS ABSOLUTE EXCLUSION OLD VARIABLE 
CD POPULATlO.~ (,iOli-SMSA) ABSOLUTE EXCLUSION BETTER RESOLUTION 
w WETLA,iDS ABSOLUTE EXCLUSION OLD VARIABLE 

TOPOGRAPHY U.iACCEPT ABLE ABSOLUTE EXCLUSION OLD VARIABLE 
.~AVIGABLE WATERWAYS ABSOLUTE EXClUS I Off OLD VARIABLE I 

J 
ADJACEr~CY 

I IIHERSTATE HIGHWAYS ABSOLUTE EXCLUS I or. OLI> VARIABLE/BETTER RES. 
ADJACENCY 

HABITATS OF E.S. ABSOLUTE EXCLUSIon OLD VAQIABLE/EXPANDED 
EMC (KOTIIO ABSOLUTE EXCLUSlrn~ lim VARIABLE i 

1 
j 

POTE;n I AL EXCLUS I or. I 
I , 

lew t 1 r 7 . , i' 5 I ,. m rll.IJiUlllf'lJJlIIIIU._ .. II.Jl'W'i 
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l CLASSIFICATION OF VARIABLES - OFFSIfORE 
I 

VARIABLE 
CLASS I FI CA TI or. REFINENS.T ~T\TUS 

I 
I 
! 

CO,HfNE,HAL SHELF 
INFOR~TIONAL NEW VARIABLE 

ABSOLUTE EXClUS IOij 
~ 14AVfGATlOI~ LAliES ABSOLUTE EXCLUSION NEN VARIABLE • 
t DEm CATED OCEA,. AREAS ABSOLUTE EXCLUSION r.EW VARI.\BLE OCEA,4 HALARD AREAS ABSOLUTE EXCLUSION NEW VARIABLE 

, 
I ; 

U,KOI~SOL I OATED MUD ABSOLUTE EXClUSfO~ NEW VARIABLE 

r 
~ \ 

SA.liJY BOTTOf1S DESIGN NEW VARIABLE 
t: 

f : 
IRREGULAR BATHYMETRY ABSOLUTE EXClUS I or~ NBI VARiABLE 

f , 
CD t c 

(II lJES I G.iATED MAR IliE SMCTUARY ABSOLUTE EXCLUSION NEW VAR I ABLE 
JiOMf,~ATED MARI,~E SANCTUARY POTENTIAL EXCLUSION NEli VARIABLE 

f, 
f ' 

B I Rtl MI GRA TI Oil ROUTE., POTENTIAL EXCLUSIOn NEW VARIABLE NAJOR Fl SH I J~G AREAS POTENTIAL EXCLUSION NEW VARIABLE OFFSHORE PRODUCTlOli AREAS PoTENTIAL EXCLUSION? NEW VARIABLE I' 
HURRIC~.E CORRIDORS ABSOLUTE EXCLUSION NEW VARIABLE 

I 

, , RECREATlO ... AL AREAS POTENTIAL EXCLUSION? NEW VARI.\BLE j HEIGHT AI~D FORCE OF TIDES POT5'TIAL EXCLUSION NEW VARIABLE TSU,.AMI RISK DESIGN 
r~EW VARI~BLE EXTREME ICI,.G CONDITIO,.S DESIGN NEW VARIABLE SHEET RAlliFALL DESI&i NEW VARIABLE 

~ ."".--.-.... ~"--"--.-~.-----,, 



STATUS OF OFFSHORE VARIABLE COLLECT!ON , 

DATA IN HAND AND READY TO MAP 
CONTII~ENTAL SHELF 
I~AV I GAT I ON LANES 
OCEAI~ HAZARD AREAS 
U~CONSOLIDATED MUD 
SANDY BOTTOMS 
BIRD MIGRATION ROUTES 
DEDICATED OCEAN AREAS 

DATA IN HAND BUT NEEDING ADDITIONAL STUDY 
FISHING AREAS 
HURRICANE CORRIDORS 
IRREGULAR BATHYMETRY 

DATA FORTHCOMING BUT NOT IN HAND 
OFFSHORE PRODUCTION AREAS 
DED·ICATED MARINE SAj~CTUARIES 
;WMINATED r'1ARINE SANCTUARIES 

PROBLEM AREAS 
RECREATIONAL AREAS 
HEIGHT A~D FORCE OF TIDES 
TSUNAMI RISK 
EXTREME ICI~G CO~DITIONS 

SHEET RAINFALL 

J 

1 
( 

j 

j 

·A b '''~'''''''''''*_t """Ill :II ill ~,~_t .Q"'H_' ' __ 1M. jI_;fIfil ,_., _____ -___:1 
. _ .. _"~'~~".""~~~_-'~_' __ ""'_..c..~.~~~.~ __ ~(~ .......... ,._ ,.~ 
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DATA ANALYSIS 

1. DETERMINATION OF VARIABLES 

ABSOLUTE EXCLUSION 
POTENTIAL ExCLUSION 
DESIGN 
ADJACENCY 

2. DATA GATHERING 

DESCRIPTION OF METHODS AND SOURCES 

3. VALIDITY CHECK ON VARIABLES 

~GGREGATI8N PROBLEMS 
OUNDARY . ROBLEMS 

I CD .TEMPORAL PROBLEMS I .... 

·1 4. DATA PROCESSING 
I 

! ~aAPPING 
: I ENCODING 

I STORAGE/DISPLAY 
I 5. SPATIAL ANALYSIS 

VARIABLE COMBINATIONS 
EXCLUSION AREAS 

6. VALIDITY CHECK ON E>:CLlISJON AREAS 

OVER-DBTERMI NAT ION 
UNDER- ETERMINATION 

7. DOCUMENTATION 

J"rtitw ",'tt" "~ .,4 n :-t tr" '_r " .. _ ....... ~... '--......... o.'-",'.c .. , .• ~ " ... M.~._~"~'""'_.·.. .. rttC'u • ".':11", " ,...tI 
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OFFSHORE ·RECTENNA 

ASPECTS OF THE STUDY AND TENTATIVE CONCLUSION 

• SITING RESEARCH 
ENVIRONMENTAL IMPACTS ON DESIGN 

~ ;. 

DYNAMICS OF PANELS 
*;1' 

• .... .. ~~ 
.~ . 

• CONSTRUCTABILITY OF SUPPORTS ~ '; .::.. 
-,,:;. -." 

10 ICING STUDIES 
... ;,. 1/1 

0 • •. , ~ 
~~ y 

• MULTIPLE USE - FISH FARMING -: ~~ 
• •• l;.,.. 

· BRUTE FORCE OR TRADITIONAL STRUCTURAL TECHNIQUES ARE TOO COSTLY COMPARED 
TO LAND SITE 

· INNOVATIVE CONCEPTS ARE BEING STUDIED 

I 
i 
~~,. .-""'.;.a...:....-.:...""""--_ 

~ 
j 

. I 
'., . ".J 
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OFFSHORE RECTENNA 

STUDY OBJECTIVES 

TO ESTABLISH A PRACTICAL PRELIMINARY DESIGN ANn COST £STH~ATE FOR A 

5 GW OFFSHORE RECTENNA • 

THE STUDY \~ILL BE CONDUCTED JOINTLY BY RICE UNIVERSITY AND BRmlN 

AND ROOT DEVELOPMENT INC. AND ARTHUR D. LITTLE.INC. 

THE STUDY \-lILL TAKE 7 MONTHS STARTING MAY 19) 1979 • 
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SITE SELECTION GUIDELINES 

l. CAPABLE OF SERVING NEW YORK AND BOSTON METROPOLITAN AREAS (APPROXI-
MATELY 200 MILES OUTER lIMIT). 

2. AVOID SHIPPING LANES. 

3 · ~lAX HlI ZE D I STANCE FROM SHORE BUT DO NOT EXCEED LtO MILES OUT. 

Lt. AVOID RECREATIONAL BOAT TRAFFIC AREAS. 

S. AVOID HEAVY FISHING AREAS. 

6. AVOID HAZARDOUS AREAS SUCH AS SHOALS OR RIP TIDES. 

- 7. STAY ON HIE CONTINENTAL SIIELF. 

8. AVOID PETROLEUr~ EXPLORATION AND \1i\STE DISPOSAL AREAS. 
I 
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SITE III (FAVORED SITE) 

GENERAL DATA 

• LOCATION: 40· 59' N~70· 44' W 
~ DISTANCE TO N.Y.: 280 KM 

• DISTANCE TO BOSTON: 121 KM 

• DISTANCE TO MARTHA'S VINEYARD: 30 KM 

• SEABED: COARSE SAND AND SCATTERED GRAVEL 

• WATER DEPTH: 50 M 

• TIDAL CURRE~~TS: ABOUT 1 KH/HR 

• ANNUAL TIDtS: 1.1 M 
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SEVERE ENVIRONMENTAL DESIGN DATA 

STORM WINDS: 

• EXTREME WIND SPEEDS: 67 MlsEC (150 MPH) 
(SUSTAINED HURRICANE STORM WIND 1 MINUTE) 

• WINTER STORM WINDSPEEDS: 31.3 MlsEC (70 MPH) 

• THREE SECOND GUST VELOCITY: SS MlsEC (ISS MPH) 

STORM WAVES: 

ICING 

SNOW 

• 100 YEAR RECURRENCE MAXIMUM WAVE HEIGHT: 
26.5 M (S7,0 FT) 

• SIGNIFICANT STORM WAVE HEIGHT: 
13.6 M (44.6 FT) 

• STORM SURGE TIDE: 1 M 

• AVERAGE MONTHLY FREQUENCY OF MODERATE SUPERSTRUCTURE 
ICING: DECEMBER I 12.5%; JANUARY 1 22~5%; FEBRUARY 1 15X. 

• ESTIMATED ICING 1 LESS THA~ 1.3 CM 

--. ViE I GHT : 65KG/M2 

iMIi.. --.. ~~.---.-----... - .... ~ .. -~---....... ---. ~-.....,- ----.---~-.--~--,-----
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DIODE PANELS 

TOWER 

14-- BUOYANCY TANK 

ANCHOR 
LIt.ES 

~ GRAVITY ANCltOftS 

OFFSHORE RECTENNA STRUCTURAL COMPONENTS 
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ICING TEST RESULTS-MONOPOLE 

oWl Tii NO COVER THE Ri;FLECT ION COEFF I C lENT ASYMPT01·1 CALLY APPROACHES 

O.S AT AN ICE THICKNESS OF ABOUT O.S CM. 

o A 1 CM RADIUS COVER ON THE ACTIVE ELEMENT REDUCES THE REFLECTION 

COEFFICIENT TO 0.1 - THICKER COVER YlfLDS NO SIGNIFICANT 

ADVANTAGE. 

RAINWATER fS AS BAD AS ICE. 

, 
. ' 

1 

~ 
·1 
; I 

, 
i 

i j 
1 
1 



I 1 
w

 
I-

1 
au 
..J 

1 
<

 
a. 
:E

 
i 

(I) 
0 

l 
w

 
u 

>
 

. 
-

"'" 
I-

(!) 
w

 
0 

>-
W

 
1 

Z
 

u.. 
I-

<
 

0 
0 

..J 
Z

 
a. 

I-Z
 

Q
 

Q
 

W
 

W
 

Z
 -

0:: 
j 

U
 -

0 -
j 

a::: 
"-

C3 
~ 

(!) 
"-

W
 

w
 

a::: 
w

 
0 

:%
: 

U
 

a::: 
I-

W
 

Z
 

>
 

Z
 

0 
0 

0 -
U

 
I-

W
 

U
 

u.. 
U

 
W

 
0 

-
_J 
u.. 

(I) 
:e: 

w
 

l-
E

: 
a::: 

(I) 

w
 

N
 

t
-

1
0

0
 

jIr .. 
~
.
_
.
 _

_
 '
~
 
J
,?

, 

_
_

 '·""",:',Jk 
\lI; 

l' 
',I 

;tT
 

• 
Iii,. 



r r 
, 

I 
I 

I 



g 
I 
I 

I 

f ' .. 

,,' 

-' .. ' 

\ 

102 

, , 
\\ ", 

\ 

" • 
\ 
\ 

\ 
\ 

\ 
\ 

. .... 

. 
\ 
\ 

\ 

'. .. 

.. 

j 
1 

1 
j 

, 
" .. 



-....--

"JJM.I!!_IIi!~~'1li!4 ~\'!~';' ' 
---~~"'~~.'f"'fI .~~~;''!''!r: J 

.'11'- ,.',_<c.~. ~" -~'lP'~~ ~"-''''''''':~'''''''';,~'''w:':~: 

... 
o 
w 

• 

RECTENNA-RELATED METEOROLOGICAL EFFECTS OF SPS OPERATION 
WORKSHOP HELD CHICAGO 23-25 AUGUST 1978 

PROBLEM AREAS CONSIDERED 

RECTENNA WASTE HEAT 

MICROWAVE PROPAGATION 

ATMOSPHERIC ELECTRICITY 

REF: LEE~ J. L'I D. M. ROTE~ AND H. D. ORVILLE1 WORKSHOP ON METEOROLOGICAL EFFECTS 
OF SATELLITE POWER SYSTEM RECTENNA OPERATION 1 BULL. AM. METEORO. SOC.~ 60~ 
1333-13371 1979, 
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RECTENNA WASTE HEAT 

ESTIMATED WASTE HEAT 6.5 - 9.5 W/M2 

COMPARE TO MAXIMUM SOLAR FLUX 850 W/M~ OR MAXIMUM NET FLUX 75 W/M2 
PERTURBATION -10% 

COMPARE TO OTHER MAN-MADE PERTURBATIONS 
CITY (CINCINNATI IN 1971) 25 W/M2 

ALBEDO CHANGES 

SMALL 5% CHANGE IN ALBEDO PRODUCES MAXIMUM SOLAR FLUX ABSORBTION CHANGE 
40W/M2 

CONCLUSIONS: ALBEDO CHANGES ARE OF GREATER CONCERN THAN WASTE HEAT AND 
EFFECTS ARE COMPARABLE TO OTHER LARGE-SCALE HUMAN ACTIVITIES. 
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MICROWAVE PROPAGATION 

REFRACTIVE TURBULENCE IN THE BOUNDARY LAYER. NO SERIOUS DELETERIOUS EFFECTS. 

SCATTERING AND ATTENUATION BY THUNDERSTORMS AND SQUALL LINES. 
AN AREA THAT REQUIRES ADDITIONAL RESEARCH • 

REFRACTIVE TURBULENCE ASSOCIATED WITH JET STREAM~ 
ADDITIONAL RESEARCH INDICATED. 

REFRACTIVE TURBULENCE AT STABLE LAYERS WITH HI GH GRADIENTS IN HtlUDITY. 
ADDITIONAL RESEARCH INDICATED. 
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ATMOSPHERIC ELECTRICITY 

DIRECT MICROWAVE INTERACTION WITH NORMAL ATMOSPHERIC ELECTRICAL PARAMETERS. 
NONE EXPECTED BELOW IONOSPHERE. 

RECTENNA MODIFICATION OF ELECTRODE LAYER WILL HAPPEN BUT MAGNITUDE AND 
CONSEQUENCES UNKNOWN. 

RECTENNA INTERACTIONS WITH ELECTRICAL STORMS. POSSIBLE ENHANCEMENT OF CLOUD 
TO GROUND LIGHTNING OVER INTRACLOUD LIGHTNING. POSSIBLE ENHANCEMENT OF 
CLOUD ELECTRIFICATION VIA ION ENTRAINMENT. 

MICROWAVE INTERACTIONS WITH CLOUD MICROPHYSICAL PROCESSES. POSSIBLE BUT 
PROBABLY SMALL. 
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OBJECTIVES 

The objectives of Part II of this study is to evaluate the hazard posed 

by lightning flashes to ground on the SPS rectenna and to make recommendations 

for a lightning protection system that will provide sufficient protection 

to the rectenna. For purposes of this study, the SPS rectenna design is 

based upon the data supplied to us by Rockwell International in July, 1978. 
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LIGHlNIMJ DISJRIBUIION 

1. OBTAIN CUM4.TOLOGICAL 
DATA 

2. FORfw1A T DATA FOR 
ea.'PUTER USE 

3. ~OGRAM C,a.,pUTATION 
OF LIGHTNING·DENSITY 

., 4. ~OPUCE CoNTOUnR f'1Ap 
OF LI GHTN I NG ENS I TY 

f{C1ENM EtEC1RQSTATIC PfPlECTION 

LlGIillUMl INJEMCTIONS 

1. REvI&I AND W-1PILE 
DATA ON LIGHTNING 
PAIW1ETERS 

2. PROGRAM 1tlE W-1PUTA­
TIONS OF r I ELDS AND 
CURRENTS IN lliE 
RECTENNA PLANE FRON 
PAfw.\I\ TER I ZED 
LIGHTNING 

3 . EVALUATE ENHANCE­
MENT fACTORS (UX~­
PUlER OR lABoRATORY 
OR lhlli) 

4. lABoRATORY SIMULA­
Tl00S 

I ' we:: I' 

REcmm IWV\GE ESTlf:1ATES II RECmm POOlfECTI<Ji 
1. 

2. 
3. 
4. 

I 

I 
I 

~ 
I 

DIODE FA I LURE MlDES Ill. 
(ScALE AVAIlABLE 
DIODES?) 

INSULA TION BREAKDOWN 
112. 

DowN LINE EFFECTS 11 3. 
DIRECT STR IKE DAMa.GE II 4 
ESTIMATES • 

." 
/, 

, .., ~ 
-' 

, , 
,'7'/ 15. 

" 

"."" 
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~EL TRANS} BIT 
rKUTECTORS 

BILLBOARD SuRGE 
PROTECTORS 

If'NERTER 
PROTECTORS 

LI GHTN I t¥3 Roo 
SYSID1S 

~OUND SYSTEM 
DESIGN 

HL\llARD EVAWA TI ON 
STATISTICAL EVALUATION 

OF LI GHTIHNG EFFECTS 

FEEDPliK 

,f\ 

REOENNA DESIGN REC(M~TIONS 

FOR ELECTROSTATIC pmlECTION 

FINAL RffURT 
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~.; Recommendation and Conclusion Summary 
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o 

I. The very high lightning flash density in many parts of the United 
States and the large size of the SPS rectenna require us to 
incorporate lightning protection systems in the rectenna design. 

2. 

3. 

A distributed lightning protection system is described in this 
report that will protect the rectenna'components from direct 
lightning strike damage and \#ill, in addition, provide reduced 
induced lightning effects in the power and control circuits. 

The proposed lightning protection system should be incorporated 
as -a structural member of the rectenna support system; viewed 
as such the lightning protection system will not appreciably 
increase the total material requirements for the rectenna unless 
materials are used that are incapable of safely conducting 
lightning currents . 

4. The lightning protection design places the conducting elements 
so that the microwave shadow cast by protection systems falls 
along the upper edge of the billboard on which it is mounted 
(and the lower edge of the next billboard to the north); these 
areas are highly marginal with respect to collection efficiency 
so the protection elements produce very little, if any, additional 
power loss to the rectenna as a whole. 

S. Individually the microwave diodes are self-protecting with respect 
to "average" lightning and those near the center of the rectenna are 
safe from extreme lightning. llowever, the series connection of the 
diodes to form 40,000 V strings creates a protection requirement 
for the string. Standard surge protection practices are necessary 
for the string. 

6. Electric po~er industries usually attribute 10\ of the cost of 
power transmission equipment to lightning protection requirements. 
If this factor is not already included in cost-estimates, it should 
be added. 
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TWO MATHEMATICAL MODELS DEVELOPED 

• DERIVED FROM MAXWELL'S EQUATIONS 
• QUANTIFY SEVERAL CONDITIONS FOR TOTAL 

ABSORPTION 
• PROVIDE VALUES FOR SCATTERING LOSSES 

DUE TO DEVIATIONS IN EACH CONDITION 

RESULTS OF STUDY 

• TOTAL ABSORPTION (NO SCATTERING) IS THEORETICALLY POSSIBLE 

• SEVERAL IMPROVEMENTS IN THE RECTENNA DESIGN ARE INDICATED 

• THE NATURE OF RECTENNA SCATTERING AND ATMOSPHERIC EFFECTS 
INVESTIGATED 
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• 

1ST MODEL 

• BASED ON CURRE~T SHEET EQUIVALENCY OF A LARGE 
PLANAR ARRAY ABOVE A REFLECTOR 

Incident Power 

\ Current 
Sheet 

----'---------- _.---'> 

CURRENT SHEET RECTENNA f10DEL 

12'3 

Infinitely 
Conductive 
Reflector 

~ 
1 

.J 
1 
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• MAXWELL 'S EQUAT IONS SOLVED TO GIVE GENERAL EXPRESS IONS FOR 
THE FIELDS ABOVE AND BELo\~ THE CURRENT SHEET 

• BOUNDARY CONDITIONS SATISFIED AT 

I REFLECTOR SURFACE 

I CURRENT SHEET 

• EXPRESSIONS FOR "/AVES AT SURF.~CE OF CURRENT SHEET SOLVED 
FOR PONER REF[ECTION COEFFICIENTS 

J7x II = d' E -+ J"I.oJE'E = )'4) ~~.,. ~ ) E ... - - jl...t --

= j t..J f: E (£ = IE ~ j E" ) 
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POWER REFLECTION COEFFICIENTS 

~10DEL PRED I CTS 

• CONDITIONS FOR TOTAL ABSORPTION AT NOR~1AL 

INCIDENCE OF POWER BEA~ (6 = 0) 

I IMPEDANCE OF CURRENT SHEET MATCHED TO 
FREE SPACE (Ro =~= 3770) 

I QUARTtR-WAVE SEPAR4TION BETWEEN CURRENT 
SHEET AND REFLECTOR (d = t) 
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Ip I 

\ 0.002 

• • % 
-10 0 5 10 

Impedance Mismatch (0/0) 

Ro-377 
377 

2 

IPI 

0.01 
\ 

0.005 

A 
.• 22 .23 .24 .25 .26 .27 .28 

Current Sheet (Dipole)/Reflector 
Separation 

0.0002 

0.0001 

--~--~--+---~--~~e 

Angle of Incidence From Normal 

. 

. &. 

MW 

10 

Reflected Power 
5 @ 5 GW Incident 

0 

MW 

50 

25 
Refl ected Power 
@ 5 GW Incident 

0 

MW 

1 

Reflected Power 
0.5 @ 5 GW Incident 

o 

POWER REFLECTION COEFFICIENT AND REFLECTED pm~ER LEVEL 
OF THE CURRENT SHEET RECTENNA MODEL AS A FUNCTION OF 

VARIOUS PARAMETERS 
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MODEL FURTHER PREDICTS 

• TOTAL ABSORPTION FOR BEAM ANGLES 
OFF NORMAL INCIDENCE 

CONDITIONS FOR TOTAL ABSORPTION FOR 
BEAr·1 ANGLES OFF NORr1AL I NC I DENCE 
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CONFORMAL RECTENNA 

• CONFORMS TO TERRA I r~ 

• MUCH LESS EXCAVATION RE~UIRED 

• POTENTIAL FOR BEING ABLE TO BE SUSPENDED ABOVE FAR~SI 

BUIl.DING1 ETC. 

• ANTICIPATE LESS SCATTERING THAN t~ITH BILLBOARD DESIGN 

2ND MODEL 

• QUANT 1 F I ES THE ELECTRot1AGNET I C MODES IN 
THE 1f1t1EDIATE VICINITY OF A RECTENNA ELEMENT 

• GIVES LIMITS OF ELEMENT sp·cn~lj WHICH PERMIT 
TOTAL BEAM ABSORPTION 

• PREDICTS A SUBSTANTIAL ht..':JCiiON IN THE 
NUMBER OF ELEMENTS NEEDED FOR TOTAL ABSORPTION 

130 
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2ND MODEL WILL DESCRIBE A 
WAVEGUIDE WITH SPECIAL PROPERTIES 

• MIXED-WALL WAVEGUIDE 

1 
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• MONOPOLE IN MIXED-WALL WAVEGUIDE PRODUCES AN INFINITE 
ARRAY OF IMAGE DI:POLES WITH CURRENTS OF IDENTiCAL 
MAGNITUDE AND PHASE 

• CONVERSELY: 

• AN INFINITE ARRAY OF IDENTICAL DIPOLES WITH CURRENTS 
OF IDENTICAL MAGNITUDE AND PHASE CAN BE REPLACED BY 
A MONOPOLE IN A MIXED-~/ALL WAVEGUIDE 

I CURRENTS OF IDENTICAL MAGNITUDE AND PHASE ARE 
GENERATED BY A NORMAL-INCIDENCE POWER BEAM 

A IN A LARGE AREA ABOUT A DIPOLE 

-ALLOWING THE PORTION OF THE 
RECTENNA ARRAY IN THAT LARGE 
AREA ABOUT THE DIPOLE TO BE MODELED 
BY AN INFINITE ARRAY 

2.32 
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SECTION OF INFINITE ARRAY OF DIPOLES MODELED BY 
A MONOPOLE IN A "MIXED-\~ALL" WAVEGUIDE 
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fllIXED-WALL WAVEGUIDE WILL SUPPORT TEr1 t10DE 

• DOWN TO ZERO FREQUENCY (D.C.) 
(SIDE WALLS ARE NON-CONDUCTIVE) 

• flIXED-WALL WAVEGUIDE IS EQUIVALENT TO 
STRIP LINE FOR TEM 
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HIGHER ORDER MODES 

• WANT HIGHER ORDER r10DES TO BE NON-PROPAGATING (EVANESCENT) 
SO THAT ONLY TEM rs PROPAGATED 

• SO THAT THE PROPAGATING FIELD IN THE ~/AVEGUIDE IS 
THE SAME J\S THAT OF THE POWER BE.t\M - A PLANE (TE~1) 
t/AVE 

• ALLOW US TO DESCRIBE NEAR FIELDS AROUND DIPOLE IN ARRAY 

• IF OTHER MODES PROPAGATE1 THAT IS SCAiTERING 

• SOLVING r1AX\~ELL'S EQUATIONS AND RESULTING \4AVE EQUATIONS IN A 
f'lIXED-~IALL ~/AVEGUIDE GIVES r'10DE EQUATIONS IN TERr1S OF "a" AND 
"b" DIMENSIONS OF WAVEGUIDE 
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IMAGING PROPERTIES OF r'lIXED-\~ALL 

WAVEGUIDE WITH r'10NOPOLE 
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SECTION OF INFINITE ARRAY OF DIPOLES MODELED BY 
A MONOPOLE IN A "MIXED-WALL" WAVEGUIDE 
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• FOR HIGliER ORDER MODES TO BE NON-PROP,l\GATING: 

a < >. 

b < >./2 

• j 
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ELECTROMAGNETIC FIELD EQUATIONS 
FOR A MIXED-WALL ~/AVEGUIDE 

Equations shown are for total "+z directed" portio'n of the field 
components in a mixed-wall waveguide. With appropriate sign changes, 
equations express the "-z directed" components . 
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+z (:>1rection of energy 
flow down waveguide) .. 

~-~~ Monopole 
Fr-r-~~..M-.r'9' 

HONOPOLE IN r1IXED-WALL WAVEGUIDE 
BACKED BY SHORTING PLATE 
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TOTAL ABSORPTION OF PLANE WAVf IN MIXED-WALL WAVEGUIDE 
WITH MONOPOLE AND SHORTING PLATE IS EXPECTED BECAUSE: 

• TEM MODt IS PROPAGATED IN MIXED-WALL WAVEGUIDE 

• MIXED-WALL WAVEGUIDE DIMENSIONS ARE SUCH THAT ALL OTHER 
MODES ARE BEYOND CUT-OFF (EVANESCENT) (REACTIVE) 

o IDEAL SHORTING PLATE IN WAVEGUIDE GENERATES A REFLECTED 
WAVE 

• FIELDS IN NEIGHBORHOOD OF MONOPOLE ARE SUM OF ALL MODES OF 
THE WAVES TRAVELLING TOWARD IT FROM BOTH DIRECTIONS 

o EQUATIONS DESCRIBING FIELDS IN NEIGHBORHOOD OF MONOPOLE 
ARE OF SAME FORM AS THOSE IN CONVENTIONAL WAVEGUIDES WITH 
PROBE AND SHORTING PLATE 

• THESE EQUATIONS ESTABLISH MATCHING REQUIREMENTS ON THE 
MONOPOLE AND LOAD IMPEDANCES AND SPACING OF MONOPOLE 
FROM SHORTING PLATE SO THAT NO TEM WAVE TRAVELS BACK UP THE 
WAVEGUIDE TOWARD THE SOURCE 

• MONOPOLE TO SHORTING PLATE DISTANCE EXPECTED TO 
BE APPROXIMATELY >.. /4 

• IT IS WELL-KNOWN THAT A PROBE IN A CONVENTIONAL WAVEGUIDE 
BACKED BY A SHORTING PLATE CAN ABSORB ALL INCIDENT POWER 
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IMAGING PROPERTIES OF MIXED-WALL 
WAVEGUIDE WITH HONOPOLE 
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SECTION OF INFINITE ARRAY OF DIPOLES MODELED BY 
A MONOPOLE IN A "MIXED-\~ALL" WAVEGUIDE 
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o FOR PROPAGATION OF ONLY A PL4NE WAVE IN WAVEGUIDE 

a.<~ 

b < ~ z. 

~ SEPARATION OF CENTERS OF DIPOLES IN RECTENNA 
ARRAY (RECTANGULAR GRID CONFIGURATION) 

a.X2.b 

D THEREFORE EQUIVALENT ALLOWABLE SEPARATION OF 
CENTERS OF DIPOLES (RECTANGULAR GRID CONFIGURATION) 
IS < ?\ 
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TRIANGULAR GRID CONFIGURATION 
-REFERENCE SYSTEM 
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• EXISTENCE OF NON-EVANESCENT HIGHER ORDER MODES = 
EXISTENCE OF GRATING LOBES 

• GRATING LOBE ANALYSIS SHOWS -

~~XIMUM SEPARATION OF DIPOLE CENTERS FOR TRI­
ANGULAR GRID CONFIGURATION TO AVaID GRATING 
LOBES: 

< 1.15>. 

NUMBER OF DIPOLE-DIODE 
ELEMENTS REQUIRED 
(NORr1AL I NC I DEi~CE) 

REFERENCE SYSTE~l DES I GN 18 BILLION 

TRI.~NGULAR GRID CONFIf,IjI{ATIO:i ~IITH 
MAXIMUf'1 ALLmlABLE DIPOLE SPACING 4.5 BILLION 

RECTANGULAR GRID CONFIGURATION I'IITH 
f1AXIMUf1 ALLOV1ABLE DIPOLE SPACING 5.2 BILLION 

• GREATER DIODE EFFICIENCY IS INDICATED WHEN TilE Nur1BER 
OF RECTENNA DIPOLE ELEMENTS IS REDUCED SINCE THE POWER 
PER DIODE IS HIGHER. 
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TOTAL ABSORPTION OF POHER IN 
MIXED-WALL WAVEGUIDE WITH PARASITIC REFLECTING MONOPOLE 

IS INDICATED 

Rectenna Array 

/1( 

/ 

Driven Dipole Element 

RECTENNA ~II TH PARAS I TIC REFLECT I NG 
DIPOLE ELEMENTS 
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Dipole --« 

-

Hannonic 
Filter 

~I~ 
E~ 

Non-
Linear 
Load 

(Diode) ----.:... 

RECTENNA ELEMENT HARMONIC FILTER 

G PRESENTS LINEAR LOAD AT DIPOLE TERMINALS 

o AS LONG AS CURRENT AND VOLTAGE i'\T DIPOLE TERrlINALS 
ARE SINUSOIDAL AND NOT IN QUADRATURE1 RECTENNA CAN 
BE TOTALLY ABSORBING 
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Ray of Scattered 
Power 

Ray of Incident 
Power 

--__ --3:. _______ ~.Edge View of 
Rec tenna Panel 

DEPICTION OF SPECULAR SCATTERING FROM RECTENNA 

• SPECULAR IS THE PREDOMINANT FORM OF SCATTERING 

AT THE FUNDAMENTAL FREQUENCY OF POWER BEAM 
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SPECULAR REFLECTION 
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POWER REFLECTION COEFFICIENT AND REFLECTED POWER LEVEL 
OF THE CURRENT SHEET RECTENNA MODEL AS A FUNCTION OF 

VARIOUS PARAMETERS 
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C'le~nts ~ 

"Dotted" lobe due to power bus. 

GRAT I NG LOBE NATURE OF HARf10N I C 

SCATTERING FROM A RECTENNA 

(AZIMUTH EXAr1PLE) 
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ATMOSPHERIC EFFECTS 

• DEPOLARIZATION PRODUCES SCATTERING IN A RECTENNA 

I DEPOLltRIZED SIGNAL ~.AY PASS THROUGH SOME REFLECTOR DESIGNS 

• DEPOLARIZATHIG EVBUS UP TO 20 dB (1% SCATTERED) HAVE BEEN OBSERVED AT 
C-BAND WITH 13 METER APERTURES 

• AMPLITUDE FLUCTUATIONS CAUSE SCATTER: 

• BY CAUSI~G DISRUPTION IN THE RECTE~NA ILLUrUNATION 

I BY RECTENNA TERMI~AL IMPEDANCE CHANGES FROM CH~~~INl RF LEVELS AT 
THE DIODES 
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EXISTING EARTH-SPACE PROPAGATION ~EASUREMENTS 

~ DATA TO DATE SHOWS A MAXIMUM OF O.IDB AMPLITUDE FLUCTUATIONS 
(WOULD CAUSE INSIGNIFICANT SCATTERING) 

o FACTORS WHICH IMPAIR APPLICATION OF PREVIOUS EARTH STATION MEASUREMENTS TO SPS 

~ 

o SIGNIFICA.NT APERTURE AVERAGING IN ALL STJDIES FOUND 
(5000 ~ 2 MIN FO~ DATA VS I;) 2 FOR SPS) 

Q DATA AT C & S BAND FROM MODULATED SIGNALS 
(PANCHROMATIC VS MONOCHROMATIC FOR SPS) 

o PRESENT SOLAR MAXIMUM PROVIDES OPPORTlJf1ITY TO EXAMINE WORST-CASE 
NATURAL IONOSPHERIC EFFECTS 
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Possible 6-9dS 
Signal Increase 

DIFFRACTION ENHANCEMENT AT RECTENNA 
CAUSED BY OBJECT FLYING THROUGH THE 

POWER BEAM 
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DIFFRACTED SIGNAL ENHANCEMENT 

e RECTENNA DIODE ~HOULD HAVE TOLERANCE TO SPOT-TRANSIENT SIGNAL ENHANCEMENi 
CAUSED BY LARGE OBJECTS FLYING OVER RECTENNA 

o POSSIBLE SIGNAL INCREASE UP TO 90B DEPENDS ON SIZE, HEIGHT, SHAPE 

e FAST AIRCRAFT HAZARD TO RECTENr~A DrODES FROM OVERVOLTAGE TRAtlSIENTS 

o SLOWER OBJECTS MAY CAUSE DIODE OVERHEATING E.G. HELICOPTER 



" .... 

L"" A",y MIBSuflment Results 

• 

R. Dickinson 
Jet Propulsion Lab 



~ 

~, 

t 
\ . 
• "\i 

} 

" , 
! . 
• !;' 

t 
it 
! SUM~1ARY OF STUDY 
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• THEORETICAL ABSORPTION = 100% (NO SCATTER) 

o SIGNIFICANT REDUCTION IN NUMBER OF ELEMENTS 

• GROUND CONFORf1ING PANELS 

• PARASITIC REFLECTORS 

• CHARACTER AND CAUSES OF SCATTER I NG 

• ATMOSPHERIC EFFECTS 

./' 

s .-", ' ;~ 

" ... 
~ 
t 
" PRECEDING PAGE BLANK NOr "_ 



..... 
0-
N 

DC POWER OUTPUT FOR EACH RO\;\! IN T .. JE SUBARRA Y 
80 

75 

70 

65 
~·1 

.: 3: 60 
~ ... 
-"5: 55 
-0 

c::: 50 
~ 
LLJ 
0- 45 
l-
:::> 
a. 40 
t-
:::> 
0 35 
~ 
L:.J 30 ~ 
0 
"- 25 
(J 

c 20 

15 

IG I-

+ I 0' 
0 1 

I I I 
2 3 4 

1.29; 
eN 
E -~ 
~ 

... 
>-

- l-
V') 

Z 
L:.J 
Q 

c::: 
LLJ 

~ 
0 
c.. 
LL.. 
,.~ ...... 

J t-
~ 
a.. 
z 

I , I! I I I , I , I I ,- I 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

RECTENN~ ROW NO. 



i 
I 

'j 

w. ~" 

.... 
~ 
w 

• n 
~~rsll' b~~ 

CQ 
"0 .. 
e::: 
LLJ 

3: 
0 
a.. 
LLJ 
> 
r-
~ -LLJ 
e::: 

10 

o 

-10 

-20 

I 
-30 ' 

~,:~, 

-,..--
--.,_..", ~~. +. :;:s:u; UtA ~~ ':P; iCP"!!lf' . I'M ". . , . . .. .. -:; " .~ 

't"J-'~ ~,~~" .. _ .... u,-.,_.,~ ,.. """"'l 'il~··~~t~.wt'.*I<-~*?'i";~,:~f'~··.~ __ 4L~ 

• 

BEAMED RF POWER TECI'~NOLOGY 
RECTENNA BISTATIC PATTERNS 

RANGE CONFIGURATION 
ROTATOR 
G 

T ~RECTENNA 1 \ 

5.5m 1 \ _ 

.1. IT' ~RECEIVER 
HORN 

TRANSMITTER 
HORN 1-0 .. 11. 9m 

RECTENNA OPERATU~G CONDITIONS 
de OUTPUT BUSS SHORTED 
POWER OENSITY<O.OlmW/cm2 
FREQUENCY = 2450 MHz 
H-PlANE PAn-ERN CUTS 

(A):I VERTICAL POLAR!ZATION 
r. (S) = HORIZONTAL POLARIZATION 
: ~(B) SIDE 
-, (A) SUPPORTS REAR 

COVER 

-~. 1', V' ' , , I~ i 

' I~~ "'11 ~ ~~!' I', , 

'1-: . ' 
fi:tr~~l " " n 

· \ t'l/:if II ·1 I, I I , 

I :: ~: :\1:r~ f~: I ~ II I I ' .. 
• I. I I I, 

' I • I I 
II I r! " 'I 
I! I I: '" I. I :, 
I! I , • 

~ I I 
, I I 
I I, 

I , 

~I 

11~1:' i,' 
II •• , I :, 

I' ,11'\1 11 

" " I' " If I flo I Ii I I , , 
~ 'I ,I I , i I' 

Ii If J 
f 

~A A" I vi ,: Va J 
I' 'y ,'" 'I ~ II ,lUll 

I I " , : ~ ~ , ' ' 
,I 

" 1 

- " - . 
ulil' ',,' 
:1 II II If .1 I, i! ; I 
~ U i .1 I, 
~ 3 i ~ II 
1 V 1 II 
I , I , 
1 I • 

CCW, I CW 
1800 1500 1200 900 60'J 300 0° 3CP 600 900 1200 15(P 1800 

ANTENNA POSITIONER ROTATION ANGLE, deg. 

'it .. "Ed' -'<"Pyi' 'fYnt" .. ~ Milllfflf:".ii;"'·;,;..~~.M_~r'~ u_""'_"" __ ,"'_ ... d ..... ~c"'-'.,.; --'.< ___ :,,, .... ,'"'-,,,.w,_.-tt~~~,~<..... 7'1 'M±r'tM ttit "')$ ...... tiy'V-t tax ftc" A 



_ ... ___ .,.....,.----c~- c--..,..--,~.', -,-, 

:.. 

~ 

r 

.... 
en 
-'='" 

ffi2 
1:0 
:!: 
::l 
Z 
:=3 
0 a:: 
LAJ ..... 4 
0 
a.. -Q 

~5 
z 

. I=! 
(.) 

~6 

7 
0 

~,,--

_. ~~~:...:::~~::~~~~:] 

BEAMED RF POWER TECHNOLOGY 

.. , RECTENNA DC OUTPUT DISTRIBUTIONS 
~ ,~, 
\'.~ " ,~, , 
~ .. • • • 
= • • • 

0.5 1.0 1.5 2.0 2.5 3.0 
DC POWER OUTPUT PER ROW, W 

..... &ARRAV OPERATING CONDtnONS. PERFONIAl'CE AT 2.. GHz 
LOAD cou.£CTtON -

ILLUMINATOR RESISTANCE PEAIC FLUX lOTALDC CONVERSION 
CURVE SPACING._ n DENSITY "*,,.,2 I'OIIIEA OU""". W EFFICIENCV. 

1 10 15 2 1.21 1.4 

2 40 7.5 • 2.1 11.1 

3 40 15 • 3.13 21 
4 20 15 14 3.51 Z1 

5 20 1.5 32 U7 ,. .. -, 
l 

• 20 15 3Z U 3& I 

~ .. 

3.5 

1 

'1 

.1 

I , 
l 
I 
l 
" ~ 

""17OO1t'"'"1"* ii Qi>":.F.il;,,..,d'"'' fJ3S1ft* irtrr ~f& Ntt"'''''h· t !",.~",_.""-_-~",",-,"'L_:"'''''"''''':'''''7.·'''''''~'..r..~.,;.'-~·'-'''-

.~,,",, __ .,.,,,.".~~.' ? .It ',.~.,~ . 17' rtp'r'. !I ''ibstitk "$'ts' It W n t :r etdt sta" 



~t , - ,-. . ,. 

~ . ., __ "",._-""" '_.".~ .....• """'f. ~~. "' ........ . 
:ti" ~~~ ... :~~. ~;~'lI .' I. ., '" ' 

~. 

'" 

~ 

i tf!. 
I 

I >-

I 
u z 
UJ 

u 

I u. 
U. 
LL.I 

I 
-" z en 
U1 0 

Vl 
i a::: 
i • LL.I 

4 > 
1 

z 
0 

I u 
1 

I 

l Z 
0 
f-

h3 
--I 
...J 
0 
U 

ee~w. t~ 'K'''lilil:f~ ~""'''~'h<' 

-;-~ -. --'-..::,~.~¥ ~ =-:;-: . '. ~.. '.:. _=::~: . '. . . ~= :==::z. _;£~ 
• 

BEAMED RF POWER TECHNOLOGY .. 
RECTENNA ELEMENT, ROW AND ARRAY 

100 

80 

60 

I 
401-2 

I 

20 

I 
8 
I 

EFFICIENCIES 

., 

!NDIVIDUAL RXCV 
ELEMENT-FIXED __ RU = 120 11 
TUNED _ - -.,.-------- ",._-....... 120 

#I' 

-,. TOTAL RXCV 
,.-' ARRAY 

#I' 
",. 

CENTRAL ROW IN 6x7 SUBARRA Y 
AT 40 em SPACING TO ILLUMINATOR 
RL = 90n 

l2 -. PEAK FLUX DENSITY mW/em2 
I 

#1'. 

#I' #I' -90n ~
#I' TOTAL 6x7 SUBARRAY 

-' ' #I' .. INTENSE, PEAKED 
#I' -' , .... ' ILLUMINATION 

~ , 

.,/; ~ORM, WEAK y- PLN~~MI NATION 
Or I I I IIIII I", 

0.10 1.0 
PEA K ElE MENT INPUT POVVE R, W 

. ~~._ ~,".~~,.",,, __ """'::".' _ ''''''7%tlZ? _ .. _ C 



F
····'···· .-,~, 

..

..•... ""--'"'''''''.,;''' 
,I I 
~- 1< 

r" , 
~ ~. i<. 

0 

-u-

~,-

~ , --'-.. , ~~. +% Gil 2 _---:""'~~ 

"r' " ~ ",_ .. ,1' ._. ~v.J ~,,",_,~ .... _ ~,._, .• j 

BEAMED RF POWER TECHNOLOGY 
RECTENNA BANDWIDTH 

-- x sw 

/- " _ {\ RECTENNA ARRAY 

; 

I 
I 
l 

.j 

1 
I 
I 
I , 

M ~ PEAK de OUTPUT 

~ -2~ I / ~\ ../ 

" ~ - 5 -3 \ CLOSE SPACED 
en 

0 

\ 
~ en 
I 

0:: 

IllUMI NATOR 
i' 

L&.I 

\ rn)::a. ~ -4 
Q.. 

\ 
\ 

DISTA1r'~(~ • 

I \ 

IllUM I NATOR 
-7 
2.0 2.2 2.4 2.6 2.8 3.0 3.2 FREQUENCY, GHz 

R. M. DICKINSON SPS ASSESSMENT REVI EW 

.. 
tiL ..... , 

--.~~,,----.~-- _ t '5 ~L •• _~ .... ",..,("-"'<.~~., ··if r rtc it __ , ~ __ ~ ____ ........ • ... " .J\~ "rifW1r#_ 



u.s. Patent March J 4, 1978 Sheet I or 3 4,079,268 

~ ., 
1 
j 

1 
I 

J I ) 
J l, 
t i 
f i t 1 

U 
11 

• 
" , 

/ 

12 

j ,. 

, 

". 
:,' 

167 



I 

u.s. Patent March 14; 1978 Sheet 2 of 3 4,079,268 
I' 

I 

'l 
30/ 

I , 

I' -; . 
1 

I' 

' 1 ~ ( 
\ 

1 
-1 

~ i 
/ l 

t 
ea " / j 
, 57', ""'--J. 

~S6'" / f I 
~ 

~ '. ,'~,,~ 
• 

,-
55 

.? 

5'0/ 

168 



!i 
I 
r 
I 
I 

., 

u.s. Patent March 14, 1978 Sheet 3 of 3 4,079,268 



--",....-.-.~,. ~~ . ....;~.;.;.. ... .;....;...:..-:;... .. ....; ... ;.;;;' ;;;;';;;~.--........... - =.'·I· .... iii·liiii.·"""'iiii·I_II·.· ii~· ... ~_·£iiiT.I' •• li.""_iiif1 ...... -.i·iIi. ·.·'·.'lid .11111 .:ilJ.1ii _; ;;D i.' ;;;;;;;' ;;: :;;::= .. :.:::= =::=: =:_:.. - •• - 11111 II .. I I. • •• _. ... • _ 

i 

I 

U.S.Patent 

I 

J 

S1l8~ 'RAy 
/)11M 

CtJI LtCT/(),(I 

1/ 
I 

! 

: , 
! 
i 

! 
I 

1..-______ ." .•.. "_""~ 

-

May 9, 1978 Sheet I of 2 4,088,999 

II 

/I 
/ 

"'" J/ 

-

170 

1--, ....... T() IITI' 1~IIT!tJA/ 
I¥//ICES 

~/ 

IJ' 

~ ., 
1 

~l 
;! 

• 



I t 
, " 
l ~ I 

; , 
If , ; 

I,' 

·, .. 

V
.S.Patent 

M
a, 9, J "

8
 

S" .. t 2 or 2 
4,088,999 

5l ~
~
 

~! 
: I ~ ~ 

t
-
-
-
-
-
+

-
-
-
+

-
..,..-

-
*
-
_

+
-
-
-
+

_
-
-
' ~ 

~ 

~
 . 

" 
"-

I' 
" 

~
 

\§ 171 

"'~ 
,. 

N
A

S
A

'J5C
 



I, 

r 

I\U\SI\ 
National AeronautICS and 
Space Administration 

Lyndon 8. J--" .... Cent. 
Houston. Texas 77058 

• 7 

, 

Solid 8tate 
Configuration. 

NI\SI\ Solar Power Work. hop on 
Satellite Microwave Power 

Tran.ml •• lon 
and Reception 

S ••• lon 
Pr •• entatlon. 

.~ 

Jan 
15·18 
1980 

1 



~_>v _ @ 

Th • .".., ... Ion ..... 111 hlreln WII UIId In thl 
Solid Stitt Conflgur.tlona "'on 9f the Sol .. 
Power Satellite Worklhop on Microwave Power 
Tr.nsml .... and RlCIptlon held It thl 
Lyndon B. Johneon Space Center, J.nuary 
16-28, 1180. The worklhop WIt conducted 
• part of the technical ........ t 
prOClll of the DOE/NASA Solar Power 
Satellite Concept Evalu.tlon Program. 
AIIIIPIctI of Sol .. PfWNIr Satellite 
mtc.·oWIVI trlMm'lIIon and flClption VIII,. 
~ Including 1tUd1lt, .naly_, 
and labor.tory Investlgatlom. Conclu-
.Ion. from the. activit I .. went pr. 
IIntid •• Will • recommended follow-on 
work. The worklhop w. orpnlzed Into 
.lght .. om .. follows: 

• SIIIIfII 
• MIC'IrIttww SYIffm ""DfInIIIfI 
• """ ContrDl 
• I'owtI Amp/I"'" 
• RlKliltInf EI""",,, 
• RIc""", 
• Solid S,." ConfitJufltlo", 
• PIIn",d ".,m .~ctlvlliII 

Th. materl.1 contained herein suppl.­
ment. the workshop paper. which were 
published .nd distributed .t the time of 
the worklhop. Together they .re a com­
prehen.ive documentation of the numerous 
analytical and experlmentalactivltle. In 
the field of microwive power transml.ion 
and reception . 

• Addido",' info,,,,,don 
. "",di", till Vi.:"klhop 
""y bI obt,iflll1 by 
cOIItlCtin,: R.H. Dietz 

EE4/SPS Microwave Sy.tem. 
National Aeronautic. Be 
Space Administration 
Lyndon B. JohnlOn Space Center 
Houston,Texn 77~9 
713 4n3-4607 



Solid at... Conf .... ratIons ""on 
contlnt, 

1 .FC Solid StItII ActIvity 
W. Flnell, Marshall Space Flight Center 

23 R.fINn. SV ... m with Solid StIa Antln~.1nd 
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K. Schroeder and Petroff, Rockwell International I 
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WHY SOLID STATE 

HIGH~ RELIABILITY THAN TUBES 
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TECHNOLOGY BASE 

POTENTIAL FOR LOW COST 

SYSTEM COSTS OPTIMIZES AT LOWER POWER OUTPUT 
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DIMENSIONS: 
4" (DIAM) X 
I .S" (HEIGHT) 

FIVE TO TEN 
SAPPttlRE MIC 
SUBSTRATES 

ALUMINUM 
HOUSING WITH 
SAPPtilRE POWER 
OJVIDER/COMBINERS 
AT BOTTOM. 

MSFC SOLID STAlE ACTIVITY 

MODULE AMPL1FIER CONFIGURATION 

TO SECOND 
COMBINER OR 
ANTENNA 

TRANSISTOR 8EO 
PACKAGE MOUNTED 
ON ALUMINUM 
8ASE. 

~ POWER MODULE' 
STRUCTURE. 

POWER MODULE BASE TEMPERATURE: 27SoC TO 2850( (GAUSSIAN) 
(PRELIMINARY CALCULATIONS) 160°C TO 1700C (UNIFORM-LARGER ARRAY) 
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MSFC SOLID STATE ACTIVITY 
SOLID-STATE MASS PROPERlY IMPACTS 

6MASS. 106 
KG 

MINIMUM MOST liKELY 

(40 KV TO 40 V CONVERTERS) 4.0 8.0 

THERMAL 
(RADIATORS) 

SOLAR ARRAY 

~MASS 

30% GROWTH 

TOTAli:l.MASS 

LARGE MASS INCREASES 
DR IVE TOWARD NEW 

SOLI D-STA TE CONCEPTS 

5.5 (lSOoC) 

1.0 -

10.5 

3.1 

13.6 

13.0 160°C) 

1.0 

22.0 

6.6 -
28.6 

I 
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MSFC SOLI 0 STATE ACTIV lTV 
SOLID STATE SOLAR CEll SANDWICH 

(CANDIDATE CONCEPTI 

20 P"A~02 

INTERCONNECTS 
• TOP GRID CONTACTS 

.03·.05 ,. .. 
GaAiA. 

- 1.5 p" , TYP£ G.As t 
-... 4-a ,. .. N·TYJIE G.At' IpM 

0.5·1 ,.. 
OHMIC CENTACT 

13 p" fE' 

25 ,,""APTON 
(BLANKET) 

THERIIALCONDUCTOR 

SOLID STATE DEVICE 
'GROUND PLANE 

PHASE CONTROL C.HCUIT 

RfRADIATOR 

THERMAL RADIATOR 
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SOLID STATE CONCLUSIONS 

1. Solid state SPS concepts ~ave not had the same depth of systems definition 
as the reference concept; however, prelimina~ results indicate the 
following. 
I. The system sizing parameters optimize such that lower power is 

delivered to the utility grid. 
b. The transmit antenna is larger primarily because of the thermal 

limitations. 
c. The rectenna land requirement is smaller. 
d. Weight per delivered kilowatt is projected to be more. 
e.- Maintenance projections are better because of the higher reliability. 

TyPe of Power Amplifier - Based on studies to date, the GaAs FET is the 
preferred solid state power amplifier. . 

Antenna Unit Costs - Solid state antennas will have high parts count 
slmilar to the solar array, and therefore unit costs are a critical item. 

Mitigating Desions - Conceptual designs have to some degree mitigated the 
issues of thermal and low voltage power distribution. 

Items of Concern - Techniques of phase distribution, (possibly to morP. 
pOlnts on the array), and power distribution (on th~ end mounted con­
figuration more DC-to-DC converters are required) are ~ajor items of 
conc~rn in the solid state concept. 

Technology - Associated technology development is more likely for solid 
state due to the advancing technology base. 

Continued Investigation - Based on current findings, continued investi­
gati~n of solid state concepts and issues is warranted. 

~ 
I 
I 
I 
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SOUD STATE ISSUES 

Efficiency 

Operating Temperature 

Low Voltage Distribution 

Harmonic NOise Suppression 

Power CombIning 

Subarray Size 

MonoUthic Technology 

We TIme 

Mutual CoupUng 

Amp1ff1er gain 

Input to Output Isolation 

(;harge Particle and.W RadJat10n Effects 

i . 
• ·1 , 
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Why Solid-State? 
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I 

• RELIABILITY 

• LOWER MASS/AREA 

~ • DEVELOPMENT ON SMALL HARDWARE ITEMS fT. 
0 

'" N 0 
en Z 

G) 

~ BUT 
" ", 

CD 

~ 
o TEMPERATURE LIM-ITS 

~ 

Z 
~ 

• LOV'I VOL TAG E, LOrI POV'/ER 

... -j • EFFICIENCY? 

• COST?? 

• COMPLeXITY11 
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/a>7(1/7Ui7#Y@ SPS mCROWAVE POWER AMPLIFIER P.EQUIREMENTS 
Gil'S' 

-----------------------------------------------------._. -----------------------------------

I\) 

01 

1) ADEQUATE EFFICIENCY (TYPICALLY > .8) 

2) ADEQUATE GAIN (TYPICALLY > 10 DB) 

3) LOW COST/POWER (TYPICALLY Z .1 $/WATT) 

4) LOW MASS/POWER (TYPICALLY < .1 KG/leW) 

5) ACCEPTABLE NOISE CHARACTERISTICS 

A) CLOSE IN SPECTRUM (SHOULD HAVE MINIMAL SPREAD~ RAPID FALLOFF) 

B) WIDEBAND NOISE (MUST MEET CCIR REQUIREMENTS) 

ARY SPS MICROWAVE POWER AMPLIFIER MUST SATISFY THESE 

. NECESSARY BUT NOT SUFFICIENT REQUIREMENTS. 

-~-.. -~.-- .- .... -~-------- .-----.------.--.-------.---.------------~-~------------------. 
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Gil'S' 

DEVICE ~ 

PROPERTY 

g 

POWER fCW) 
VOLTAGE> 
EFFICIENCY 
MTBF (1995) 

NO. OF OUTPUT DEVICES 
PER ANTENNA 

TEMPERATURE 
CATHODE 

SATURATION GAIN 

- --,-- , - -"-"" ~i"""·""'~I'l"'lII"IPI!""_. 

DC-RF Converter Features 

KLYSTRON 

5O-70KW 
40Kv 
>80% 

>10 YEARS 
105 

300-S000c 

THERMIONIC 
40db 

CROSSED FIELD 
AMPLIFIER 

INJECnON 
AMPLITRON I LOCKED 

MAGNETRON 

5KW 
<2OKv 
>85" 

>10VEARS 
106 

300-S000c 

COLD OR THERMIQNIC 
<10 db 

SOLID STATE 
TRANSISTOR 

FET 

... 

1·5 WATTS 
1o-20Y 
75" 

»100VEARS 
>109 

l00-13QOc 

NONE 
106 

, ' ';'&1l'4Jj$.llJ.i.~ 
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N 
10 

IPI@Lffi'i7#Y@ 
S'PS' 

MAXI..." 
POWER-ADDED 
EFFICIENCY 

AMPLIFIER FOR SINE WAVE 
C~ OUTPUT 

A .5 

B .785 

C .&96 
(unsatura te,,!) 

D 1.0 

E 1.0 
Switched 
Mode F 1.0 

Ampl1- S 1.0 

fiers 
Multivoltage 1.0 

G .&1& 

tael wee". ;,. Io!' • tit : trW ct Km:'wpi'!' A_'._,.M .. , ........ ~~."r •.. _ 

-~ - - -~·-"""""""'1I'P\11!111111~1IIi*_ ••.• ,IU~ 
, ,_ d'~'.""""'4"-,_~."-';~."'·~-'''1' U",q", • ,Ta J II 

CHARACTERISTICS OF VARIOUS AMPLIFIER CLASSES 

DUTY ACTIY~ 

TYPICAt CYClE ACTIVE DEYIC~ 
EFFICIENCY TYPICAL AT DEVICE cur 
VAlUES FREQUENCY MXI .... SAiURATED OFF 
ACHIEVED USED EFFICIENCY ? ? 

.3 4 GHz 1.0 No No 

.5 4 GHz .5 No Yes 

.6 2.5 6Hz .3 No Yes 

.g 10 tIIz .5 Yes Yes 

.9 100 till .5 Yes Yes 

.9 10 rtIz .5 Yes Yes 

.& 100KHz Variable Yes Yes 

j 
«1 

.& 10 ttlz Variable Yes Yes 

.7 100KHz Variable No Yes 

-- »,."'!> "~ 

I 

._ _ _ J 
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Solid State Device Lifetime 

. '1 , 
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____________ ~ ________ ~ ______________________________________________________ Ar~~I~~-------
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fit 
a: 

w ::3 
1061 0 0 X . 

u. 
.23 
;-
::: 

• SMALL SIGNAl GaAs FET Pci 
.(J 

105 • RF POWER ON DURING TEST s: • LOG NORMAl FAILURE DISTRIBUTIOK LU 
Q 0-' 

104 

,03' ' 
100 120 140 160 180 200 250 

JUNCTION TEMPERATURE. ·C 
. REFERENCE: LUNDGREN AND lAUD, PROCEEDINGS OF 

IEEE 1978 RELIABILITY ~tSICS SYMPOSIUM 

Mw ,'-iABMe': ".,., '",<ttl " t1t hI t'ttfp-- iMnW;~ --~,~ ~- '~"-
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Solid State Device Mature Industry Costing 
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103 .j i 
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10.1 I .»»»>A ............. ~ 

10.2 , 10
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104 106 108 1010 

NUMBER OF DEVICES PER YEAR 
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COMBINER MODULE CONCEPT FEATURES 

, .. ,,..----
• ADAPTABLE TO ANTENNA-MOUNTED SYSTEM 

• THERMALL V EFFICIENT 

- GOOD HEAT PATHS 

- RADIATE FROM BOTH SIDES 

• EFFICIENT COMBINING OF LO\Y-POWER (-5-WATT) DEVICES 

_ ATTAINS ADEQUATE POWER DENSITY 

• HIGH GAIN. PHASE.·STABILIZED 
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~~~ HIGH POWER COMBINER-RADIATOR MODULE MASSES/AREA 

COMPONENT 
7.5 MILS ALUrUi~UM (FRorn SIDE AVERAGE) 

20 MILS ALUMIUA 

7.5 MILS ALUMINUM (BACK SIDE AVEP~GE) 

5 MILS AL EQUIVALENT FOR RADIATIOif SHIELDHIG 

MASS PER UtllT "REA 
(KG M-2) 

.52 

1.99 

.52 

.35 

5 MILS AL EQUIVALENT FOR PHASE FEED .35 

5 HILS AL EQUIVALEfiT FOR INTERSUBARRAY STRUCTURE .35 

TOTAL 4.07 

II 
li 
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CD 

L. / 

SOLID STATE DIPOLE RADIATOR MODULE 

.8 A .1 
I 

•• ".11----

40 :nil Ceramic 
GaAs I CIS); Radiation Shield. 

,. i -10 mil AI 
Dipole 

40 mil Dielectric Plugs 
10 mil Outer 

. Conductor 
B+ -- ~ '10 mil AI 

Adhesive Backed Fiber Ground 
Flat Tape Power Pigtail Optic Plane 

Cable 

=*:!l! ~!!!'L . .1L2Ll.1I111U·tt''!!lltt2Ii'U'!.lf'L'" !.!".l1U . .:. tf)P!IIJrM~!"~ 17'.E§! " 1: IurCf: :: gfJ :c::: ~:~=~: : ?;;; ;:; r • ;;;: ;=;-:; 
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LOW POWER DIPOLE RADIATOR MODULE MASS STATEMENT 

Col 
.0 

ITEM 

10 MI L AL GROUND PLANE 

CERAMIC SHIELD 

DIPOLE AND SUPPORT: 10 mil AI 

DIELECTRIC PLUG 

CHIPS, METALLIZATIONS, BENDING, ETC. 

TOTAL 

• .6 A x .8A 

~~'~-~"'"';-'~~''"'.''''-

MAS S PE~2MODULE· 
(kg/m ) 

4.93 

.7 

3.75 

.7 

.5 

11.08 

•• ',NIlf1-

MASS/AREA 
(g) 

.686 

.097 

.522 

.097 

.010 

1.472 
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a.y UIU_t I tblt' , IliRIIiM." •• -;, ~1l~_."'"'' 
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SOLI 0 STATE TRANSMIITING ANTENNA QUANTIZAT!ON 

•• ',61; OUTSIDE STEP NUMBER OF WJDUlE fIlDUlE (P/A)RF (M/P)RF ISTEP MOOOlE I NO. fETS STEP I RADIUS AREA SUBARRAYS TYP~ POWER . MASS (M) 
em) (m2) (W) ( ... -2 (kg .-1) I (1) 

1 124.8 48.970 456 I High Power 28.7 5.50 .742 200 37.82 , 
4-FET, Cavity J 

1 Radiator 

j 
(4.06 kgm-2) 

2 249.6 146.830 1,360 I • 24.0 4.45 .917 600 112.80 

130.820 1.208 I Reduced Power 19.2 3.56 1.006 468 100.20 3 322.4 
.1 4-FET Cavity. 

Radiator H ~ I (3.58 ~gor21 I~ '1 0 
! 'J 4 384.8 138,640 1,280 16.0 2.97 1.207 496 108.17 

11 5 ! 457.6 192,680 1.784 I 2-FET Civi ty 12.8 2.37 1.289 590 73.99 Radiator Ii (3.06 kgm-2) .. 
1 ~ 
i 1 6 520.0 191.680 1,776 I 2 FET Dipole 12.8 1.78 .826 582 55.24 (1.47 kgm- ) 

7 561.6 141,390 1.312 " 9.6 1.33 1.101 208 40.81 
',8 582.4 74.795 696 • 8.5 1.18 1.244 110 21.65 
9 644.8 238.950 2.2J8 1 FET Dipole 

(1.47 kg 111-2) 
6.4 .89 1.652 351 34.34 • 1 

11 
10 707.2 I 264.880 2,448 -. 4.3 .59 2.476 389 38.07 , 1 

TOTALS 14,528 3,694 621.09 j 

I I 
I 

Ii 
l . 

• 
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SOLID STATE TRANSMITIING ANTENNA COSTS 

~- I •• ~N. 

.. ... 

ITEM -
MODULE MASS 

MODULE POWER 

HOOKUP 

TOTAL MODULE ASSOCIATED COSTS 

SUBARRAY, STRUCTURE 

MASTER REFERENCE RECEIVER 3X 
SLAVE REPEATERS (800) 
LEVEL 1 CABLES (112) 

LEVEL 2 CABLES (760) 
LEVEL 3 CABLES (58,112) 
PCR's (58.112) 
QUADRANT - PANEL CABLES (81 x 58,112) 
PCV's (58,112) 
PANEL PHASE SLAVE REPEATER (81 x 58,112) 
PANEL CKT BREAKER (81 x 58,112) 

TOTAL NON-MODULE COSTS 

COST ESTIMATING 
RELATION 

$70 kg- l 

$ .1 w- 1 

$ .15 FET- I 

$65 kg-1 

500K ea 
25K ea. 
9.2K ea 
5.0K ea 
$800 ea. 
$560 ea. 
$45 ea 
$350 ea 
$15 ea 
S10 ea 

TOTAL SOLID STATE TRANSMITTING ANTENNA -RF SYSTEM- COSTS 

J=::_,"., ... ....-.~ 

COST ($M) 

258.6 

330.3 

!Ll 
682.1 

47.2 

1.5 
20.0 

1.1 
3.8 

46.5 
32.5 
21.2 
20.3 
7.6 
4.7 

206.4 

888.5 

I 

j 
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Solid . State Power Supply Options 

• DIRECT HIGH VOLTAGE DC 

REQUIRES SUBARRAYS IN SERIES 
CONNECTION TOPOLOGY ~'PROBLEM 

HIGH E·FIELDS NEAR ADJACENT SUBARRAVS 
MAY CAUSE ARcs. WILL SUSTAIN THEM 

• DC-DC CONVERSION ON MPTS 

. PERFORMANCE PENALTIES 

SOLAR 
ARRAY· 

t ________________________ ~ 

--

• • • • • • • 

~[)c'oC CONVERTERS :: 1kglkw 
POWER LOSSES IN CONVERTERS 

SOLAR ' 
ARRAY I II I DCIDC tt!1A1'1 

• • SERIESJPARALLEL CONNECTIONS WITHIN 
SUBARRAY~-STILl. REQUIRED 

• AC POWER DISTRIBUTION 

CONVERT 
DC/AC ON SOLAR- ARRAY: 
ACIDC AT SUBARRAY 

'. REGUtRESSIP T8 SOME EXTENTON SUBARRAY 

:~~ IIDC/AC I ( 

• 
,,--~ .. ~ .... ---,-----.--~--~-"-~-'.~'-'~.--'-- .,,~ .-"~ -.- ~'"-~~--,-~ ~.-,~- .. 

f 

• • • • • • • 

tI • • 

AC/DC 

ACIDC 

J 
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POWER BUS S IZ ING 

, 

W • Plate Width in em 
t • Plate Thickness in em 
I • Current in Amperes 

ASSUMPTIONS 
Aluminum Plate 
E = 0.9 
Solar Panel Temp. • 3210K 

I I I I I I I I I 

~ ~ ~ ~ ~ ~ ~ ~ ~ 
I !Wit - AMPS/CM 3'2 

I 
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AC POWER DISTRIBUTION SYSTEM FREQUENCY OPTIMIZATION 

j 
I 

1 
~ 
1 
1 

lOL'--------~----~ ,,-----,-I , I 'I i , 

1 2 3 4 5 10 20 3.0 40 50 
CHOPPING FREQUENCY IN KILOHERTZ 
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AC POWER DISTRIBUTION SUMMARY 
2.5 GW SATELLITE, FREQUENCY = 10 KHz, T c :I: lL'()OC 
Operating Voltages Array 11 KV, Main Bus 100 KV 

S VSTEM ELEMENT MASS (MT) 12R LOSS (MW) 

Non P-Max Power Loss Penalty 
Acquisition Buses 19.7 46.0 

DCIAC Converters 4,146.5 135.2 

Main Buses 257.2 115.0 
Switchgear 203.3 
AC/DC Converters 5,175.9 164.4 

TOTAL 9,802.6 406.6 

Array Power = 4, 7f:IJ. 6 MW 
System EfficienLY = 90.3'1» . 
System losses = 9.7Ofo 
Array Area = 28. 53 km2 

Array Mass = 12, 119.0 

Mass (Array + Pwr Dist) = 21,921. 6 MT 
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POWER DISTR IBUTION SYSTEM ANAlYS IS FOR 2"15 GW SPS 

5,500 V Power 
Distribution System 
Des ign Curve 
(No Power Processing) 

AC Power -.1). Distribution System 
"''--Design Point, Wc • 7.2 M 

--- -"'0 
~ 

Minimum Mass System 
Conductor Width, Wc = 255 M 

50 75 100 

44 KV Pcwer 
Distribution System 
Design Point, Wc • 17.3 M 

I 
r,ONDUCTOR OPERATING TEMPERATURE _oC 
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Antenna Array Angular Adjustment Concept 
I 2.5 GW Solid-State SPS .1I~iN.--

ADJUSTABLE ANGLE 
REQUIRED FOR 
SPECIFIC LATITUDE V POINTING 

". A. 
I 

PERSPECTIVE 
SKETCH OF SPS 

DETAIL SCHEMATIC. 
OF ROTARY JOn~T. 
(8US BARS It SLIP 
mNG NOT SHOWN) 

FIXED MEMSER TO 
ANTENNA ARRAY 

(TYP4) ,. 
TELESCOPING 
MEMBER FOR 
ANGULAR 
ADJUSTMENT 
(TYP2) 

CIRCULAR TRACK. 
SURROl:"NDING 
STRUCTUkE \ 
NOT SHOWN STRUCTURE' TO SPS 

ARRAY STRUCTURE 

\ 

" "'. 

j 

l 

I 
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NI\S/\ Solar Power 
Satellite 

Solar Array Structur. --¥o;:;r Rk1g 

Inn. Slip Ring 20m 
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2.5 GW Solid State 
Configuration 
Separate Antenna 

Hi tittiitt1 - T-
5340m 

L 
1 r-7342.5m--1 

SoIar~ 
Sa ....... .., 
T ........ cat.ary 

ElectrIc Propulsion 
for AttIIucIe Contral 

Structure of Graphite 
Com ... 1te Tri ....... 
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SOLID STATE SPS EFFICIENCY & SIZING 

.. ,,'''. 
ITEM EFFICIENCY MEGAWATTS 

Array Mismatch 
Array Mismatch .965 6050 Ideal Array Output 
Main Bus 12R .729 5838 
Antenna Distr .97 4256 Total Antenna Input 
DC-RF Conversion .8 4128 
Waveguide 12R N/A 3303 Total RF Radiated Power 
Ideal Beam .965 3303 
I nter-Subarray losses .976 3187 
I ntra-S ubarray losses N/A 3110 
Atmosphere loss .98 3110 
Intercept .95 3048 
Rectenna RF-DC .89 2896 I ncident on Rectenna 
Grid Interface .97 2577 

.413 2500 Net to Grid 

TOTAL ARRAY OUTPUT 6050 MW 
TOTAL SOLAR ARRAY AREA = 33.8 km2 
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SOLI 0 STATE SPS MASS & COST SUMMARY 

.',ING 
MASS (MT) ESTIMATING BAS IS (COST ($M) 

l.1 SPS 35,204 4,541 -l.1.1 ENERGY CONVERSiON 22,087 2,350 
1. 1.1. 1 STRUCTURE 2,851 Detai led Esti mate 275 
1. 1. l.2 CONCENTRATORS (0) Not Required (0) 

1.1.1.3 SOLAR BLANKETS 14,409 Scaled from Reference 1,355 
1.1.1.4 POWER DISTRIB. 4,400 Detai led Esti mate 530 
1. 1. 1. 5 THERMAL CONTROL (0) A I located to Subsystems (0) 

1.1.1.6 MA I NTENANCE 421 Scaled from Reference 190 
"''1 1.1. 2 POWER TRANSMISSION 6,365 1, 134_ 5 N 

1.1.2. 1 STRUCTURE 460 Scaled from Reference 38 
1.1.2.2 TRANSMITIER 4,480 Detailed Esti mate 888.5 

SUBARRAYS 
t1.2.3 POWER DISTR. & COND. 1,262 Scaled from 1.1.-l4 124 
1. l. 2. 4 PHASE 0 I STR. 25 Scaled from Referenc"e 51 
1.l. 2. 5 MA I NTENANCE 20 Docking Ports Only 20 
l. l. 2.6 ANTENNA MECH. POINTING 118 Scaled by MaSS x A rea 13 

. 1. l. 3 INFO MGMT & CONTROL 145 Scaled from Ref. 73 
1. l.4 ATI. CONT. & STA. KP. i46 Scaled From Ref no 
1.l. 5 COMMUN ICATIONS 0.2 Same as Ref. S 
1.1.6 INTERFACE Ii3 Est. Based on Simplification 46.3 
1.1.7 GROWTH & CONTINGY. 6,348 Same" as Reference 819 
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2.5 GW SOLID STATE SATELLITE SYSTEM 
RECURR ING COSTS 

Sf'S.3011 
.111, •• 

ITEM COST ($M) 

SATELLITE 3,722 
LESS IMPLICIT AMORTIZATION 327 

3,395 

CONSTRUCTION AND SUPPORT 664 

SPACE TttANSPORTAT ION 2,154 
en 
t.I 

GROUND TRANSPORTM ION 20 

RECTENNA 1,290 

MISSION CONTROL 10 

MGMT AND INTEGRAT ION 385 

MASS GROWTH (l~ Net Hardware) 511 

TOTAL D I REeT OUTtA y 8,505 

bm !!II 1!!!ll!':!!!!!! 5 7m.MIl I P'!7 ; .," '!' no~' •• ,~_. .!W".,,_ tEl 11 __ .• '1-1.. 1M d 
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SOLID-STATE RECOMMENDATIONS 

---------------------------~'------------------------------------------------------------.. •• ".1/;----

, 
0 EXAMINE BEAM TAILORING 

j . Square Up Beam 
• Open Power Constraint , 

1 
.~ 

0 TRY FOR HIGHER DISTRIBUTION VOLTAGE '1 
~ UI 
~ • . 

0 INVESTIGATE "INTERMEDIATE" POWER MODULE OF I LOWER MASS/POWER 

0 CONDUCT NOISE & HARMONICS ANALYSIS 

0 INCREASE DESIGN DETAIL t 
I 
I 
I 

:0 PROVIDE SYSTEM DESCRIPTION/COST DOCUMENT I I '\ j , 
Ii 

I ; 
l 

l 

c 
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CJI 
CJI 

TASK';: 

SPS SOLID STATE ANTENNA POWER COMBHIER \:ONTRACT NAS 9-15636B 

• Specify. purchase and bench test four solid state power amplifiers for 
adequate phase ana amplitude response to verify suitability for poWer 
combiner module test. 

• Incorporate f(\ur power aOlpl tfiers ihto a four-feed cod)iner lM)dule .. 
Refine the four combining antenna design in terns of substrate 
size. cavity size. slot width. slot spacing and slot feed mechanis. 
to properly match the amplifiers to the lIIOdule. The designed lIini_ 
combined power output will be one-half watt. 

• Demonstf~~~ via antenna range !,&a~uretlellt_J~ effic,iency of the pcwer 
c0l001ning ar,:?enna utilizing a 0 - 1800 feed systelll.. Demonstrate via 
antenna range measurement the efficiency of the power combining antenna 
driven by the ~lur solid-state amplifiers. Range of accuracies of approx­
imately !. .5 dB will be applied. 

WES j; ~ . 

~.~--: .. ~ .. ~ .t,,: 1J1l1r~r"IJ.'[l.t tJQ IIT_nft M." J ,1'1. "~" ".0'1.1; '.',"'if"< c~ ....... ,\ }f.. 
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POWER 
AMPLIFIER 

POWER 
AMPLIFIER 

HICROSTRIP 
ANTErmA 

POWER 
AMPLIFIER 

....... \. 'r't,....· , ,. 
: .... 1., '. • :... ' ~ , 

ANTENNA FEED 
NETWORK 

,,) It ~" 0('" -r-:::~ ('f ... ,:, ,11'1 
~~ • ,~ \ .. : i ~', ... ~' j~.. ..,.' ., ., f 

1 
INPUT' 2.4SGHz 

lao 

POWER 
ANPLIFIER 

~', " .... ,...' ....... ,1 
j ," I 

POWER CO~SWING ANTENNA. FEED NETWORK & pm~ER A:·IPl !FEr:: 
SiOCK, 0 I M2Af.j-··· -

56 
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OUTPUT POWER VERSUS H~PUT POWER FOq nONTEr.H ~MPLIFIERS 
(As riclhld) f 0 • 2,450 MHz 3 

(12611W) --.---
L

l- 13.7 dam [rlput 

I 13.2 dBm Input 

4 ... Serial Number 
3 ...... --=-.a..;._"'"-_'-, __ .c., _ ........ - ....... -......L-----a-.-I.~-.-'----J,......--. 

6 7 8 9 10 11 12 13 H 15 16 17 

INPUT PO\~ER (dam) 
Zt)r.;w 

U
r 

.• ! .. 0;_"_-
~ U._ "' .... I~t_". aMIItiJ'" .,..*~..,-."" .... ~"".w_m. 
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8 
6 
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RELATIVE ~ r:::::::=~~~:.:.=:.~ 
INSERTION (, 

· ~:~~:EES) -2 
-4 ~-----------------------+-
-6 t------.. -.-.-----.-
-8 ~-----------------.--------~---J----.------
-12 t---------------- _. ----. _.- .... 

(125mw) 

AMPLIFIER 
GAIN (dB) 

9 

8 • 

7 

6 

,4 

2 

o 
2400 

. • 

• • 

• • 

. . . 

• • • • .- - • • • 

~:-,~~. 

. 
Serial No. 

. . • • . • . 

. . . . . . . . 

. . . 

• 

· • • 

• . • 

• '" 

. . • 

. . . 
2420 2440 2450 2460 

FREQUENCY ~!Hz 

- • 

. • . . .. • 

· • • . . • 

. . . . . . 

· . . . • 

2500 

LARGE SICNAL GAIN Arm RELATIVE INSERTION PHASE FOR ii.O:·m:CH M·;PUFrEi\S 

(As Received) Pin· +13 dem (~ 20m~) 
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ORIGINAL PAGE • 
OF pOOR QUAIJIY 

;.", J 

COAXIAL OUTPUT PO~TS (fcur: 
• I 

50 OHM ISOLATION RESiSTORS ~--'7'-""'I.. 
(pill) t .. 

(:;. 
180° 

Of. ~ I !.~. ,., .... =" ..... , ~ ". .. ~'.. .. .. 
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SOLID STATE SANDWICH COtlCEPT 
COMPARISON OF 0 DB AND 10 DB ANTENNA Po\£R TAPER 

.., 
CD 

I 

TYPE OF SOLAR ARRAY 
MAXIMUM EFFECTIVE CONCENTRATION RATIO 
AMPLIFIER EFFICIENCY 
MAX. ANTENNA POWER DENSITY (W/M2) 

ANTENNA DIM1ETER (KM) 

TOTAL TRAtlSMITTED padER (GW) 
pmlER AT UTILITY INTERFACE (GW) 
RECTENNA BORESIGHT DIAMETER (KM) 

TOTAL SATELLITE MASS (106 
KG) 

COST DATA (If) 

-SATELLITE 
. -CONSTRUCTION OPERATIONS 

• TRAnSPORTATION 
• RECrEtINA 
-TOTAL COST (iNCL. MGMT & CONTINGENCY) 

INSTAlLATIOfl COST (S/KW)UI 

o DB 

r'lBG 
-

6.0 
0,.8 

1,235 
1.578 
2.lI18 

1.591 
5.600 
10.13 

0.796 
0.079 
0.598 

j. 0.935 
2.789 
1,759 

10 DB 
. 

,.,BG 

6.0 
0.8 • 

1,235 
2.0lJ9 
1.588 
1.127 
".929 
13.30 

0.963 
0.096 
0.798 
0.763 
3.030 
2,689 

~-----.---

i:" 

~ : 
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RECOt1MENDED SOLID-STATE SANDtllCII CONCEPT CHARACTERISTICS 

CHARACTERISTIC SECONDARY PRIr1ARY 

I SOLAR ARRAY TYPE MULTI-BANDGAP GAAs 

r EFFECTIVE CR 5 TO 6 {; 
i, 
I 

SOLAR ARRAY TEMPERATURE (oC) 200 200 !, 
~ 

i .." AMPLIFIER BASE TEJ1PERATURE (oC) 125 125 I ~ 

AMPLlFIER EFFICIEUCY 0.3 0.8 I ANTENNA TAPER RATIO {DB} 0 0 r . 
" ArlTErINA DIAMETER (Kl-t> 1.64 TO 1.58 1.77 
• 
~ 

pm/ER AT UTILITY IrJTERFACE {Gt/} 1.47 TO 1.54 1.26 

RECTENNA BORESIGHT DIANETER (KM) 5.39 TO 5.68 5.10 

...A , '. "-._j'! i""""';:-__ ,":~..-=---..:::_*~ ....... *. ________________ _ 

i 
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CD 
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SOLID STATE SANDWICH CONCEPT 
EFFECT OF AMPLIFIER EFFICIENCY ON INSTAlLATiON COST 

3000 -

r 
1.09wPU,(GW} • GoAl ARRAY 

1.18 • 

1.38.PUI(GYv? i MULTI~BANDGAP Id.RAY 1~4 . 2000 l' 1.26' 

1.49 , 
1.59 

• CRE • 6.0 
1.69 

• OTHER FACTORS #S BEFORE 
1000 -

• BASELINE VALUE 

o I ii, 
0.6 _ 0.7 0.8 0.9-

AMPLlAEIl EFFICIENCY (71AMP) 

, 

j 

j 

l 
I 
1 
~ 
~ 
i 

I 

1 
1 

~ 

] 
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I 
~, 

f 
I 
k 
~ 

J 

l 
I CD t ... 
J 

I , 
r 
~ 
~ 

~~.-.-,. 

3)()() ., Pur 
(GVi1 

Pur 
(GW)-

-L I 

(KW)ur 2000 

SOLID STATE SANDWICH CONCEPT 
EFfECT OF CRE ON INSTALLATION COST 

GoAl SOLAR ARIA Y 

1.4» 1.52 
MULTI-BANDGAP SOLAR .ARIAY 

1.59 
1.79 1.96 

1000 -I - AMPLIFIER 7'J AMP • 0.8 
• A~'TENNA ." A • 0.96 

- VIEW FACTOR • 1 FROM FRONT OF SOLAR ARRAY (E. 0.82) 
-VIEW FACTOR • 0.67 FROM REAR OF SOLAR ARRAY (E • 0.8) 
• FILTER FACTOR • 0.59 (GoAs) OR 0.70 (MULTI-BANDGAP) 

o i' iii iii-, 
o 1 2 4 5 6 7 8 9 10 

EFFECTIVE CONCENTRATION RATIO (CRE) 

---- ~-,~zYr " . 5 "- ... 
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1 

·300 

ARRAY 
TEMPERATURE 200 

(Ge) 

100 

SOLID STATE SANDWICH CONCEPT 
EFFECT OF CRE ON ARRAY TEMPERATURE 

MULTI-BANDGAP 
SOLAR ARRAY 

- AMPLIFIER 'lAMP· 0.8 
_ ANTENNA '1A • 0.96 

-VIEW FACTOR • 1 FROM nooN(' 
OF SOLA!t ARRAY (E • 0.82) 

-VIEW FACTOR • 0.67 FROM REAR 
OF SOLAR ARRAY (E • 0.8) 

-FILTER FACTOR • 0.59 (GoAl) 
OR 0.70 (MULTI-BANDGAP) 

J o Iii i' iii I • • I 
o 1 2 3 .. 5 6 7 8 9 10 

EFFECTIVE CONCENTRATION RATIO 

r 
~ 

~ 
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SOLID STATE SANDWICH CONCEPT 
IMPACT OF SOLAR AR~'Y THE~1AL RADIATION CHARACTERISTICS 

INST ALLATION 
COST 

(~UI) 

CELL 
3OOO! TEMP. 

2000 

1000 

) 

• GoAs SOLAR ARRAY 
." A}g • 0.8 

NO RADIATION THROUGH REAl 

,259 <~2 ,,339 

23" . 265 

..L~ 
VIEW FAcroR 

01 iii iii i i 
o 1 2 3 .. 5 6 7 8 9 10 

EFFECiIVE CONCENI'RATION RATIO (CRE) 

I 
....... e'. • .... " .... - •.• ~~..~. _~ .. ~_.~ .. c' •. ~_ ... ,, __ .:'-:'~',,:,:-'~'T' n] 
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r~OMH~AL CHARACTERISTICS OF GAAs SANDWICH CONCEPT 

UNIFORM ILLUMINATION 
I EFFECTIVE (CR ) = 6.0 I ~ SOLAR CELL TERPERATURE = 200°C 
! SOLAR CELL EFFICIENCY = 0.151 l 

, 

t 
AMPLIFIER EFFICIENCY 

j 

= 0.8 i 

N1PLIFIER BASE TEMPERATURE = 125°C 0, 
I , ANTENNA OHHIC EFFICIENCY = 0.96 t, 

SOLAR CELL PACKAGING FACTORS = 0.3547 
CD POWER TRANSMITTED/UNIT AREA = 773.9 WI';' • ANTENNA DIANETER = 1.77 KM 

~ 
Af'JTEfIr4A AREA :I: 2.lt6 KH2 

I TOTAL TRANSMITTED POWER = 1.92 GW 

I POWER AT UTILITY INTERFACE == 1.26 GW 
RECTEUNA DiAMETER = ".99 KM : 

= 19.6 ~ RECTENr4A AREA 

, 

I 

Mitr'trtem i""& b:et,rt'trM m **_),)fH; .. _ .. .....ow" • 

. 'M $; "'I! -= _ ...... ___ ~" Hb.t!;"f;- i6'r'>+4- .. ,... .. err It" #'t"t 
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P~ELIMINARY ~tASS PROPERTIES OF 
RECOf-1MENDED SOLID STATE Sru~DWIOI Cor~CEPTS (C~ = 6) 

SU8SysTH-l GAAs ARRAY (106 KG) 

PRI MARY Af~D SECor~DARY STRUCTURE 3.n 

,.11 CRO~IAVE ARRAY AND SOLAR CELLS 4.674 

REFLECTORS 1.24 

INFOR~mTIOH MGMT & Cm~TROL 0.68 

ACS 0.11 

25% CONTINGENCY 2.87 

TOTAL 14.3 

• ! " 

! 

i 
f 
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SINGLE PILOT CIRCUIT DIAGRAM 

SIMPLIFIED CONJUGATOR FOR ;DEfI)NSTRATION 
(AFTER CHERNOFF) 

r--------, 
I ..* I ...--..... YCO. 1-'-"'-

I . I PA 

I I 
I * I I tn. I 

LOW 
PASS -

--

I J 
.0 I ~ t 2 ""+--01 

• REFERENCEI I 
HIGH 
PASS -

PHASE L _______ .J -70 dB 

n>4 f pILOT > fO 

>, .'.,.~.~~-~~ 

'. . . " .... ~" ' .. ,,' , .. "., ,-.~ 

'0 ~ 

-SOdB 

'PILOT • :s 
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PHASE REFERENCE SIGNAL DISTRIBUTION SYSTEM 

fRl fR2 

'R • 'R1.'R2 ~ 
.4fR -100 tIIz 

Ill== 6 em 1 
==0.5 AO 
== ISO- @ fO 

8 i < 90 DEGREES 

o - EQUAL AMPLITUDE.' ~ 
(_ ~N~N!!H~ !!!,UM..!!!.A!!...ON __ .I 

~~R PICK·UP ANTENNAS (-14.000) 
(ONE PER 10 METER SUBARRAY) 

4'~ ID£GREE 
(9-8IT ~IlATION) 

NOTE: PICK-UP ANTENNA ORTHOGONALLY POLARIZED WITH RESPECT 10 POWER BEAM 
TOTAL ISOLATION IT > 40 + 60 dB > 100 dB 

-I ,,= 
CROSS POL FRONT·TO-BACK RATIO (CAN BE MADE>l00 dB) 

• 
-.~"-'-"-

.-,-_"':iibW¢ .. ,~ -haM. 

" '$1 rrwT 

1 
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. !/I-DELAY 
(CHARACTERISTIC 

FOR EACH SUB-ARRAY) 
PHASE DETECTOR 

PHASE BRIDGE 

-r-
"""' .• ff"~ ~""'~"".'!!'!:-' PM Wi 1 

,""h' ~."",,,,;",:~ ' ... ,,:~ ... " 

REFERENCE SIGNAL CONTROL lOOP 

REF. SIGNAL RECEIVE ANTENNA 

ARRAY UPPER SURFACE --- ---

f R2 . 

t/J 

TO COMPUTER 

PREAMPLIFIER (fR1 • f R2) 

DIPlEXER 

fRl 
PHASE SHIFTER 
(DRIVES· BRIDGE 

OUTPUT TO ZERO) 

DIRECTIONAL COUPL~R 

ii"UU'hU CONTROL PHASE SHIFTER 

f Rl (.,. CONST.) • f 0 

,-------.. ___________ .... - ..... f ... "' ... _"'.~~~~'::r._::.";_::."_.;:.~c:."7J·-:_:;.;::_=,.=.;;;~..a.:;:~"* <Iff tit' t "1$ I ~,:, ... ",,",,; 
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PILOT SYSTEM LINK BUDGET 

• GROUND SIGNAL ERP 
• SPACE: LOSS 
• POI'IER AT SPACETENtJA 

• PILOT ANTENNA RECEIVE GAIN 
• ISOLATION TO POWER DIPOLE 
• POWER.DIPOLE OUTPUT 
• CROSS POLARIZATION ATTENUATION 
• 'PILOT TO POtiER SIGr'AL RATIO 

• NOTCB FILTER ATIEtIUATION (RELATIVE TO 

100 DBw 
-192 DB 

- 92 DBw 

18 DB -14 DBw 
20 DB (INCLUDES DIPOLE GAIN) 

-10 DBw 
30 DB 

-34 DB 

nlO PILOT SIGNALS SYMMETRICAL TO CARRIER) +70 DB 
• NET PILOT SIGNAL TO POWER SIGNAL RATIO +36 DB 
• P I LOT -TO-THERt1AL tlO I SE RA TIO 

(ASSUMING 3nB NOISE FIGURE ArID 
3DB NOTCII FILTER LOSS) 

~31 pB 

(THERMAL NOISE ~ = 1l7DBw 
FOR SOOMHz PILOT WIDTH) 
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PILOT GROUND SYSTEM SUMMARY 

• CIRCULAR ARRAY OF LOW-GAIN ELEMEfITS AT 3.14 METER 
( ~ 25 1) SPACING; ElEMENTS FED IN PHASE 

• 101 000 PILOT ARRAY ELEMENTS OF 10 DB GAIN EACH 

• MINIMUM SODB ARRAY GAIN 

• 10 t/ATT SOLID-STATE TRAr~SMITTER AT EACII ElDENT 

• PHASE DISTRIBUTION USING FIBER OPTICS 

• BEAM STEERED Tv SATELLITE LOCATION BY TIME DELAY COMPENSATION 
AT EACH ELENENT 

• TOTAL ERP: 100 DBw 

-
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PILOT BE~1 GROUND SYSTEM LAYOUT 
• 

NO BEAM SYPftETRY BEAM SYff£TRY 
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SPACETENNA 

RECTENNA 

1 
500 KM 

! 

CIRCULAR 
ARRAY 

~ 
Y 

BROAD PILOT BEAM 

y y 

'Y,V y~ 
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10NOSPIIERIC EFFECTS 

RANDOMLY FLUCTUATHtG PERTURBATIONS 

o DISTURBANCES (LOCAL VARIATIONS IN ELECTROri DENSIty) MOVE LATERAllY 

THROUGH IONOSPHERE1 PERPENDICULAR TO BEAMS 

o "DISTURBArtCES RAtlGE IN SIZE FROM 5 TO 100 METERS-) 
" AnD MOVE AT RATES OF UP TO 100 f1ETERS/SEC.-) 

o REGION OVER WHICH SUCH VARIATIONS OCCUR CAN BE AS LARGE AS 5KM 
WIDE AT 500 KM ALTITUDE 

o 5 METER DISTURBANCE MOVING ACROSS 5 METER PILOT BEAM IN 0.1 SECONDS CAlI 

CAUSE BEAf1 JITTER. MULTIPLE PILOT LOCATlorlS ON GROUND CAN OVERCOME THIS 

PROBLEM1 BUT "INCREASE COMPLEXITY DURIt~G ormoARlJ PROCESSING. 

o BROAD NEAR-FIELD PILOT BEMi (I.E. USING SIMILAR APERTURE AS RECTENtIA) 

PRODUCES UP/Do\~NLHIK BEAM SYMMETRY1 ELIMINATES PROBlEM 

*) SPECIFIC PARAMETERS VARY GREATLY FROM SITE TO SITEI MAKInG RESEARCH PROGRAM 
r1AUDI\TORY 

~---.- -'."-"-'-' 'Si' "",. ,-..... .' ...... m __ ~ "" ;:; t! Xi rie,*rt ,iriSt;'· DR: $) en" 2 rr inn '; 77 it J 
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ALTERNATE BEAr1 STEERING SYSTEMS 
(BACK-UP TO RETRODIRECTIVE BASELINE) 

• • ON-BOARD P~~SE MONOPULSEI USING ~ 24 METER PORTION OF TOTAL 
ARRAY; Of I-BOARD COMPUTATIDrJ; PHASE SHIFTERS AT DISTRIBUTIOf. 
SYSTEl1 I r~PUTS. 

• ON-BOARD AMPLITUDE MONOPULSE 

• ON-BOARD cornCAL SeARl AVERAGING PILOT DIRECTIOn OVER· A HilmER 
OF SCANS. (THIS ~1AY BE GOOD SOLUTION TO ELIMINATE SHORT-TERM 
BEAr" J lITER) 

1 
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ALTERNATE APERTURE SENSING SYSTEtlS 
(BACK-UP TO RF DISTRIBUTION LINK) 

• DUAL 8-tlICROf! LASERS SCANNING TOTAL ARRAY STRUCTURE SURFACE 
ONCE A SECOND TO DETECT STRUCTUP.AL DEFORMTIONS AND/OR . 
VARIATIONS IN REFERENCE SIGtlAL TRA"S~lITTER LOCATIOfh CALCULATIOn 
OF REQUI RED PfiASE COft'aPEriSATION (HODULO 2 • ) 

• NEON/HELIUM LASER WITH .nDEBAND MODULATOR; PERFORMING 
SA~~ FUNCTION AS ABOVE 

• MIRRORS AT EAcn SUBARRAY CEtlTER TO ENHAr~CE lASER SIGrlAL RETURN, 
AND PROVIDE PRECISE TItE REFERENCE FOR SCAtHIING RASTER 

• OTHER OPTICAL APPROACHES: ·STARING SYSTEM-

'-1ri tlntt ."..""""'..:...... eN 'Wit .. , ... ..: ... ~...::>"'_>~.= 
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BASIC SOLID STATE CONCEPT 

• 10M X 10M SUBARRAY I CONJUGATED + GROUrm CorlTROl 
• ALL E[EMENTS WITHiN 10 X 10 SUBARRAY ARE If' PHASE 

• TRANSPORTATIOrl MODULE SIZE: 5" x 5M 
• FIRST lEVEL RF SIGtiAl DISTRIDUTIOtl (FROM COfIJUGATIor. flElVORK> INTER­

CONNECTED IN SPACE AT JUtiCTIOrl OF 5M x 5M P10DULE 
• FIRST & SECOND LEVEL DISTRIBUTION (NON-ISOLATED) • -REAR- LAYER 
• THIRDI FOURTH & FIFTH LEVELS = SECOND LAYER 

.• SIXTH & SEVENTH LEVEL (ISOLATED) HYBRID DIVIDERS • THIRD LAYER 
• GROUND PLANE BETWEErl THIRD LAYER & MPllFIERSlDlPOLES 
• ALL RF DISTRIBUTIOtI LINES USE HI-TEftP SUB-f1Hf •• mAX 
• D.C. DISTRIBUTION IN BACK OF REAR RF DISTRIBUTION LAYER 

I 
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LEVEL . 

SPLITTING 
LOSS (DB) 

"ELEMHlT" 
Nur·mER 

AMPLIFIER 
GAIN (DB) 

"CABLE"-) 
LENGTH (M) 

EMtlG9~s 

COUJUGJ\T~ SIGNAL DISTRIBUTION SYSTEt1 PARAF-1ETERS 

1 2 3 4 5 6 7 

6 12 18 24 30 36 425-

4 16 64 256 1024 4096 16~384 

43 

3.54 1.77 0.885 .44 .22 .11 .055 

14.14 28.23 56.57 113.14 228.27 452.55 905 

-) FROM CENTER TO fJEXT DISTRIBUTIDrJ POINT 
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ANTENNAS FOR Pl ~.OT & REFERENCE SIGNAL RECEPTION 

o HELIX 
ADVANTAGE: SIMPLE" DEPLOYABLE; HIGH-GAIN" SMALL DIAMETER 
DIS,1\DVArHAGE: CI RCULAR POLARIZATION 

o DISC-ON-ROD: 
ADVANTAGE: DEPLOYABLE; HIGH-GAIN; SMALL DIAMETER; ANY POLARIZATION 
DISADVANTAGE: MORE COMPLEX THAN HELIX 

o YAGI: 
ADVANTAGE: SIMPLE" HIGU-GAIN; DEPLOYABLE 
DISADVANTAGE: NARROW BAND 

o DIPOLE ARRAY: 
ADVANTAGE: ARBITRARY GAINS" BANDl'IIDTH; NEEDS fJO DEPLOYI1ENT 
DISADVANTAGE: SHADOWING/INTERFERENCE FROM PO~{R SYSTEM 

o SLOT ARRAY: 
ADVANTAGE: EASIER TO FEED THAN DIPOLE ARRAY 
DISADVArHAGE: ?IARROtl BArm; REDUCES THERr-IAL EMISSIVITY 

o MICROSTRIP ARRAYS: TOO HARROW BAND; TOO MUCH AREA 
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END-MOUNTED ANTENNA WITH DIPOLES OVER GROUND PLANE 

THICKNESS 6 em 
WEIGHT 3.58 kg/m2 

+COAX WEIGHT 

I t, 

'lIFIER 
(4 PER DIPOLE 

IN ONE HOUSING) 

-o 
(II I 

t 
l 
1 , t , r ". 
~. 

"" 3 LAYERS OF 
RF LIt~ES 
(SUB-~nN.) 

j 

ALm4. PANEL 0.4 mm 
(16 MIL) THICK , 

. ~ j 
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SANDWICH ANTENNA WITH DIPOLES OVER GROUND PLANE 

... 
o 
(1\ 

THICKNESS - 4 CM 

RF & DC lines 

USE .05 x .05: IN 
BAR (SILICA FIBERS) 
FOR ALL 'ENIERS 

GROUND PLME 
(0.4 "') 

PILOT 
PICK-UP 
ELEf£NT 

NOTE: BAR JOINING TO BE 
ULTRASONIC BY MACHINE THAT 
AUTOMATICALLY FABRICATES TRUSSES 

1 
! 
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D I POLE AND STRI PUNE FEED DETAIL 

BERYLLIUM OXIDE DISC HEAT RADIATOR 

DIPOlE AAII~ 

~ :J. 

PRINTED 
CIRCUIT 
GND PLANE 
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ANTENNA DETAIL FOR GAAs SANDWICH CONCEPT 
-,.' 
-~. 

I f 
TYPE-DIPOLE WITH DIPOLE ~10ur~TED AMPLIFIERS 

> I ELEMENT SPACI t~G = 7.81 CM l I 
f i NO. ELEMENTS/M2 = 164 ElEMENT/M2 
t OUTPUT POWER/DEVICE = 4.95 WAlTS . , 

I 
HEAT DISSIPATED/DEVICE = 1.24 WATTS .. GROUND-PLANE TO DIPOLE LENGTH = 3.05 CM 0 

CD 

BERLOX DISC DIAMETER = 3.26 CM 
r 

BERLOX DISC AREA = 8.4 CM2 ~ 
f~ 

t BERlOX DISC THICKNESS . = 0.0254 CM j 
J 

f BERLOX DISC VOLUME = 0.213 CM3 

1 DISC/ANTENNA AREA RATIO = 0.138 
1 
1 

L ~ 
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BERYlLIUM 
OXIDE DISK 
HEAT RADIATOR 

~, I 
0.40 em 

r 
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DIPOLE AND HEAT RADIATOR DETAIL 

3.26 eM 

J 0.62 1-

em 
- - 1-

'~' 

uOem 

, H~d"~(~:"" ~~;;: ;:;3 

0.25', r-
mm 1f_lrZSllm 

DIPOLE ALUM 
METALIZATION 

~l I 

AMPLIFIER 
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SOLID-STATE COST TRENDS 
HYBRIDS VS. MONOLITHICS 

~ 

" " 

~ 

ACTUAL COST HISTORY FOR 
lOW-COMPLEXITY HYBRID CIRCUITS· 

./' , ~ ---- --- --- ..",., , 

'" " ORIGIrIAl PROJECTIOrJ FOR 
- ~ lOW-COMPlEXllY HYBRID CIRCUITS 

-......... 
....................... ---,/ ORIGINAL PROJECTION FOR 

", 

~UNCTIO"Al r'!)fiOlITHICS . J 

ACTUAL COST HISTORY ::: -. lifE 
( EOR rlQtlr[.mUJ;S - : .. . s 1 
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SOLID STATE POWER AflPLIFIER ANALYSIS 

OBJECTIVE 
• DETERMINE DEVICE F.~BRICATION PARAMETERS FOR POWER CONVERSION EFFICIENCY ~ 80% 

APPROACH 
• DEVICE rDDELING AND CIRCUIT SIMULATION 

RESULT TO DATE 
• SILICON AriD GAAs BIPOLAR TRANSISTORS IN CLASS C AND E CIRCUITS OPERATING IN 

A TEMPERATURE RANGE OF 27·C TO 2OO·C 

• SCHOTTKY BARRIER GAAs FETs IN CLASS C/B CIRCUITS - CLASS E ANALYSIS IN PROGRESS 

NOTE: STUDY DonE BY·D. J. ROULSTON I UNIVERSITY OF WATERL001 ONTARI01 CANADA 
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TRANS I STOR MODELS USED IN TH I S STUDY 

. CPIC 
D.l 

.CIC 

lSI -
_ ICEIT 

R.I. 
J 

IlU 
VV\; t : I I _IC 

r ~c 

II/IT 

1 

CaE;;; .1$ ~ i IFIIII 

iii OF-III 

EBERS-MOLL 

(EXn':OED & "ODI~IEDI 

"c2 

GU •• EL-POON 

•• 00IFIEO) 

---6'" 
, IC• 

R _ i. rt.;'1 
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EXTERNAL CIRCUITS USED WITH TRANSISTOR MODELS 

R.S 

SPZSZE r-- - - D.U2 -r. 
I 
I 
I 

: R.BE I rtBA 

® --@ 

L_ .... --. ____ _ 

--=:-' 

~, ' 
,.-------

0."2 

@ 

C.L 

ClASS C CIRaJlT 
!'lV.cC 

lei' '" • '::I 

v.cc CLASS E CIRCUIT + 
R.L 
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EFFICIENCY vs. GAIN AT 2.45 GHZ AND 27-C 
SILICON HIGH POWER (=20 WATTS) DESIGN 
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EFFICIENCY vs. GAIN AT 2.45 GHZ AND 27°C 
SILICON LOW POWER (~lO WATTS) DESIGN 
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RESULTS OF HIGH TEMPERATURE STUDY FOR THE SILICON TRANSISTOR AT 2.45 6HZ 
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RESULTS OF HIGH TEMPERATURE STUDY FOR THE 
6AAs TRANSISTOR AT 2.~5 6HZ 
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EFFICIENCY OF CLASS CAMPS VS CONDUCTION ANGLE 
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90 r- SILICON -- L =- 1 pm 
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RESULTS OF BIPOLAR TRANSISTOR STUDY 

• POWER CONVERSION EFFICIENCY OF 80% APPEARS FEASIBLE 
• GAAs ACHIEVES HIGHER EFFICIENCIES THAN SI AT HIGH TEMPERATURES 
• GAAs EFFICIENCY lESS SENSITIVE WITH RESPECT TO MODE OF OPERATION 
• DESIRABilITY OF CLASS C VS CLASS E CIRCUIT NOT CONtlUSIVE 

COMMENTS: 

__ ,'.fie 'Hm ...... -t..._L~.,.,~_--'--...:.,_ 

EXPERiMENTAL VERIFICATION REQUIRES SUBSTANTIAL DEVELOPMENT OF GAAs 
BIPOLAR TECHNOLOGY. 
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FET MODELS USED IN THIS STUDY 
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I· f(Vqs V~J 

I 
C.SUB. 
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SUB • 

G 

C.GR 

ReGS (NON-LINEAR) 

t s 

R.O 
o 

r· f (V~S,V:d) 

I 
C.SUB. 

R.SUB. 

SUB. 

CONSTANT CHANNEL RESISTANCE NON LINEAR CHANNEL RESISTANCE 

G 

R.S 
.C.GR 

R.D 

T C,SUB. 
5 It SUB. 

6 suo. 

MULTISECTIorf NON LINEAR CHANNEL RESISTANCE 
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TOTAL EFFICIENCY vs POUT/WMAX FOR SINUSOIDAL DRIVE 
AT 2.45 6HZ FOR FIVE DIFFERENT FETs 

4.7 dB 
j 

I 
I 

10 dB 

DEVICE 

-'-SP41 

10 dB ... <4 SP47 

60 1 d I I 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
POUT/WMAX 
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'.\ INTERNAL DISTRIBUTION OF POWER LOSSES 
... 

DEVICE: SP41 

Qe BOO 120° 180° 
Go , , bI • • I--OD 

No 87.6 92 81.2 

Nt 72.2 84.6 80 

Gp (dB) 6.1 10.3 18 t ... ;. 

r N 

i vC/PIUX .37 .55 .77 

(PlIPt~% 60 2.3 3.4 

(P2/ Pt)% 11.1 5.5 1.6 

T I t 
N 

'" ~ 
t 
f 

~ S 

~, 
" 

(P3/P )% 
t 11.1 14.1 9.5 

(P4/P )% 
t 

17.7 57.6 85.5 
-~ 
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RESULTS OF GAAs FET STUDY TO DATE 

• Po\iER CONVERSION EFFICIENCY OF 80% APPEARS POSSIBLE 

• TRADE-OFF BETWEEN EFFICIENCY AND OUTPUT POWER MAY BE REQUIRED 

• POWER OUTPUT DEPENDS ON ACHIEVABLE TRANSISTOR BREAKDOWN VOLTAGE LIMITI 
AND ABILITY TO CONSTRUCT MULTI-CELL DEVICES 

~~l __________________________ , ___ "''''"ri'''~_~~~, 

1 
'~ 

J 

I 

I 
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PROGRESS OF POWER GAAs FETs AS A FUUCTION OF TIME* 
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POWER AT" 3 dB GAIN AT 4 GHZ 
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*IEEE TRANSAcnONS VOL MTT-21. NO.5. MAY 1919 PP. 367-378 
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CONCLUSIONS 

• EFFICIENCIES OF 80% APPEAR POSSIBLE FOR WIDELY DIFFERENT TRANSISTOR 
STRUCTURES 

• VARIATIONS ON STANDARD CLASS C AND'E HIGH EFFICIENCY CIRCUITS SHOULD BE 
INVESTIGATED 

I\) 

~ • SEVERAL ADDITIONAL TRANSISTOR STRUCTURES (BIPOLAR HETEROJUNCTION, VERTICAL 
FETs> SHOULD BE INVESTIGATED TO ESTABLISH AVAILABLE TRADE-OFFS W.R.T. 

POWER LEVELS OBTAINABLE, COMPARATIVE EFFICIENCIES, GAIN lEVELS 

• EXPERIMENTAL VERIFICATION CAN BE STARTED WITH PRESENTLY AVAILABLE TRANSISTOR 
TYPES 

1 
1 

! 

, ,...si 



POWER AMPLIFIER DEVELOPMENT OUTLINE 

OBJECTIVE: 
• DEMONSTRATE THAT HIGH EFFICIENCY OPERATION CAN BE ACHIEVED WITH OFF 

THE SHELF GAAs POWER FETs 
• SHOW THAT OFF THE SHELF PERFORMANCE CAN BE IMPROVED BY OPTIMIZING THE 

. 
DEVICE WITH RESPECT TO EFFICIENCY LIMITING PARAMETERS 

: GOALS: 
• OF~ THE SHELf GAAs FETs 

POWER ADDED EFFICIENCY: 50% 
POWER 5 WAITS 
GAIN 8 DB 

• OPTIMIZED FETs 
POWER ADDED EFFICIENCY: 65% 
POWER 10 WATTS 
GAIN 10 DB 



POWER AMPLIFIER DEVELOPMENT OUTLINE (CONTINUED) 

• TRADE-OFFS BETWEEN EFFICIENCY~ POWER LEVEL AND GAIN WILL BE STUDIED 

• SUBCONTRACTOR FOR rOWER AMPLIFIER DESIGN AND FABRICATION -- RCA 

SCHEDULE: 
• DEVELOPMENT TO BE COMPLETED JUNE 1980 INCLUDING TESTING AND FREE 

SPACE TRANSMISSION DEMONSTRATION 



AntIyll, of Solid S"" S·B,nd 

O. WlI, 
RCA 
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SOLID STATE DEVICE TECHNOLOGY 
for 

SOLAR POWER SATELLITE 

• ANALYSIS OF SOLID STATE S-SAND TRANSMITTERS FOR SOLAR POWER 
SATELLlTf 

o RESULTS OF liSPS SOLID STATE AMPLIFIER" WORK FOR ROCKWEll 
INTERNATIONAL 

o SOL I 0 STATE TECHNOluCY FORECAST 
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DEV ICE CONS I DERATIONS 

I Two device types were considered: MESFET and JFET. 

o Power output versus efficiency tradeoff: size, conduction an9,le. 

e Power saturation: SChlltlky barrier breakdown limits voltages. 

Q Designs: 4 watts; 80% efficiency: 450 conduction angle . 

Q Thermal Analysis: Device Mounting - JFET: 140CIW: MESFET: 70C/W 

o Device Mounting: Thermal anslysis. -impedance matching, mounting costs. i 

l 
e Ufe Expectancy: Thermal, radiation, test results, indicate positive. 

G Experimental Results: Power out!)ut 3 W, 580/0 efficiency, 6.8 d3 g~in. 
~ 
1 

j 

J 
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REFERENCE SYSTEM - SOLID STATE VERSION 
~ 
j 
~ 
I 

• ASSUMPTIONS: 
A 
l 

2.45 GHz - Geostationary Orbit - maximum 23 mW/cm2 i 10 dB taper - Goal: 5 GW to power grid 
1 
. J 

e LIMITING PARAMETERS: J 
~ 

S S device operating voltages - power distribution weight vs. O\'i; all eff. .. ~ 

c.a 
j 

• .. Power per device - ~ower density vs. eft. (combining losses) I 
Thermal constraints - nfe forecasts required 

• DES IGN APPROACH 

Parametric - Nomograph I , SAMPLE OES IGN FOR OPTIMUM 
, , 
j 

3 GW: 1. 2 KM: 7 KM: 123 W 71..2: Passive Cooling 
J 

I CONClUS IONS 

Wh ile potentially feasible, not superior to tubes;(specific power) \V/Kg 
, 

i 
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Hen II SMART" 
MICROWAVE SYSTEM DESIGN 

o ASSUMPTIONS: 2.45 GHz - Geostationary Orbit - 23 mW/cm2 max. 
Goals: Maximize Walts/KG vs. Reference System 

Minimize $/Wafts vs. Reference System 

a 

o 

o 

SOLID STATE DEVICE lIMITING PARAMETERS SAME. 

APPROACH: 

Build sofar collector and microwave transmitter back-to-b(lck. 
Design for uniform illumination. 
Parametric - Nomcgraph. 

SAMPLE DES IGN: 

Fam ify of designs possibfe. 
Reflectors used to gather and direct solar energy. 
Additional designs possibre if solar concentrator used. 

o CONClUS fONS: 

Optimized for solid state devices. 

. . 

n t 1 
: i 

1 

limiting parameters no longer impact system design. 
The Question: reflecfor system complexity vs. SS design simpficiiy. 

j 
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Hen II SMART" 
MICROWAVE SYSTEM DESIGN 

o ASSUMPTIONS: 2.45 GHz - Geostationary Orbit - 23 mW/cm2 max. 

o 

Goals: Maximize Watts/KG vs. Reference System Minimize $/Wafts vs. Reference System 

SOLID STATE DEVICE LIMITING PARAMETERS SAME. 

APPROACH: 

Build solar collector and microwave transmitter back-to-back • Design for uniform illumination. 
Parametric - Nomograph. 

o SAMPLE OES IGN: 

Family of designs possible. 
Reflectors used to gather and direct solar energy. Additional designs possible if solar concentrator used. 

o CONCLUS IONS: 

Optimized for solid state devices. 
limiting parameters no longer impact system desi9n. The question: reflector system compJexity vs. SS design simplicHy. 
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MICROWAVE SYSTEM DESIGN 
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Hen II SMART" 
MICROWAVE SYSTEM DESIGN 

o ASSUMPTIONS: 2.45 GHz - Geostationary Orbit - 23 mW/cm2 max. 

o 

Goals: Maximize Watts/KG vs. Reference System 
Minimize $lWatts vs. Reference System 

SOLID STATE DEVICE LIMITING PARAMETERS SAME. 

APPROACH: 

Build solar collector and microwave transmitter back-fo-back. Design for uniform illumination. 
Parametric - Nomograph. 

o SAMPLE DES IGN: 

Family of designs possible. 
Reflectors used to gather and dir~ct solar energy. Additional designs possible if solar concentrator used. 

o CONCLUS IONS: 

Optimized for solid state devices. 
limiting parameters no longer impact system design. The Question: reflector system complexity vs. SS design simplicHy. 
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MODULE CO~JSIDERATIONS 

" \' o MODULE DESIGN & TRADEOFF LIMITED TO SMART CONCEPT. 

c POWER PER MODULE LIM ITED BY SOLAR INTENS ITY: 

c 1. 3 .i\ GRID, 3 W/MODULE, 50 W CLUSTER (16), 30 dB - SINGLE REFERENCE. 

o HIGH Q DESIGN - BEITER EFFICIENCY. 

o PATCH DESIGN - MECHANICAL SIMPLICllY. 

o CONClUS IONS: 
I Gram/Watt Possible - Compared to I. 56 GramlWatt for Tube. 

CONS IDERABLE FREEDOM IN OES IGN OF ANY ARRANGEMENT. 

I 
! 
l 
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MODULE CO~JSIDERATIONS 

" \' o MODULE DESIGN & TRADEOFF LIMITED TO SMART CONCEPT. 

c POWER PER MODULE LIM ITED BY SOLAR INTENS ITY: 

c 1. 3 .i\ GRID, 3 W/MODULE, 50 W CLUSTER (16), 30 dB - SINGLE REFERENCE. 

o HIGH Q DESIGN - BEITER EFFICIENCY. 

o PATCH DESIGN - MECHANICAL SIMPLICllY. 

o CONClUS IONS: 

I Gram/Watt Possible - Compared to I. 56 GramlWatt for Tube. 

CONS IDERABLE FREEDOM IN OES IGN OF ANY ARRANGEMENT. 
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Conclusions 

• A Solid State Transmitter for SPS Appears Viable. 

• While a "Reference System" Type Solid State Transmitter is Possible, 
Numerous Advantages can be had by Considering a Sola r/M icrowave' 
I ntegrated Approach. 

e Solid State Device and Module Projections fit the So'ar/Micro~':avc 
Integrated Approach. 

o Solid State offers longer life, Greater Reliability, and Consiti2r;:bIe 
Flexibility in System Design. 
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Conclusions 

• A Solid State Transmitter for SPS Appears Viable. 

• While a "Reference System" Type Solid State Transmitter is Possible, 
Numerous Advantages can be had by Considering a Sola r/M icrowavc­
I ntegrated Approach. 

e Solid State Device and Module Projections fit the Solar/Microwave 
Integrated Approach. 

o Solid State offers longer life, Greater Reliability, and Consid2r;:bie 
Flexibility in System Design. 



;;:< 

~" 

~J 

I 
! 

... 
Col 
C» 

:\ 

'*-"':" ~,!,," "";-<~., "': ~, 

Hen 

~--~~'\:_.::..",.~..;.lr." ttY! " b 'WI!&!=~ .... :,.~":" 

,.~ .......... """.,.. t _ .. ~~-.~ 

R ecom mendation s 

o Further System Studies are Required to Develop and Establish 
a Reference Design Oriented Toward Solid State 

e Uniform Illumination Beam Systems Should be Included 

o large Signal Analysis of Microviave Circuits at SPS Frequency 
Including Waveform Examination is Required 

o Ultimately Special New SPS Devices Win be Needed to Meet 
the SPS Efficiency Requirements 
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R ecom mendation s 

o Further System Studies are Required to Develop and Establish 
a Reference Design Oriented Toward Solid State 

e Uniform Illumination Beam Systems Should be Included 

o large Signal Analysis of Micro\vave Circuits at SPS Frequency 
Including Waveform Examination is Required 

o Ultimately Special New SPS Devices Win be Needed to Meet 
the SPS Efficiency Requirements 
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PROGRAM SUMMARY 

SPS Solid State Amplifiar 

Rock".".'ell International. Electronics Systems Group 

A9EA-766939-910 

RCA laboratories, Princeton, NJ 08540 

15 Sept 79 - 15 May 80 

$100K 

Optimize SPS t}'Pe performance from existing GaAs devices. 

DeveJop better understanding of device parameters 
affecting efficiency. 

II 
1 

o Deriver c~~rating ampliHers for test. 
~ 
j 
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NAME: 

SPONSOR: 

CONTRACT NO. 

- CONTRACTOR: . 
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PER 100: 

SIZE: 

SCOPE: 0 
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PROGRMA SUMMARY 

SPS Solid State Amplifier 

Rock-.o:ell International. Electronics Systems Group 

A9EA-766939-910 

RCA Laboratories, Princeton, NJ 08540 

15 Sept 79 - 15 May 80 

$100K 

Optimize SPS type performance from existing GaAs devices. 
Develop better understanding of device parameters 
affecting efficiency. 

o Deliver c~~rating ampliFiers for test. 
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APPROACH 

o Sample b~sf available CaAs FET devices. 

o Optimize performance using large signal computer-aided design routines. 

o Develop understanding of device and circuit operating modes and parameters 
using automated large-signal waveform sampling system • 

o Compare performance in different circuit configuration: 
Single Pole Multi-Pote 

3~ 
Combine power a'!P liners as required to achieveAfor deliverable ampliiicrs: o 

j 
1 
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APPROACH 

o Sample b~sf available CaAs FET devices. 

o Optimize performance using large signal computer-aided design routines. 

o Develop understanding of device and circuit operating modes and parameters 
using automated large-signal waveform sampling system • 

o Compare performance in different circuit configuration: 
Single Pole Multi-Pote 

3~ 
o Combine power a'!P lifiers as required to achieveAfor deliverable ampliiicrs: 



LOAD CONTOURS OF 
POWER TRANSISTOR AMPLIFIER 
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Technology InvestJgatfons Needed to SUpport SPS 
. 

o Totar rntegrated Energy Conversion Chain 

., System Studies in Solid State 
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.0 Alternate Device Studies 

o Reliability & Space Environment Studies 
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Goars: $lWatt-Years For Total SPS System 

Microwave Transmitter Portion 
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Totally Inic-grated Energy Conversion Chain 
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Phase Reference 
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Advances in the Microwave Solid-State Technology and the 

continued steep rate of innovation within this technology (materials, 

devices, circuits) point increasingly toward its utilization as a principal 

ingredient in the Solar Power Satellite. Sppcific exPloration studies 

of the soli~-state antenna array and its functional elements should be 

vigorously pursued. 
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PRELIMINARY ESTIMATES OF POWER TRANSMISSION AND CONVERSION EFFICIENCY CHAIN 
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ISSUES/CONSIDERA nONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND ~IOISE SUPPRESSION 

• SUBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• MUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDEP~TIONS 

• SIDELOBE SUPPRESSIO~ 
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ISSUES/CONSIDERA nONS 
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• MUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDEP~TIONS 

• SIDELOBE SUPPRESSIO~ 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

•. MONOLITHIC TECHNOLOGY 

• LIFETH1E 

• ~1UTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 
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RESOLUTION/STATUS 

FURTHER REFINEHENT REQUIRED TO ~HNIMIZE 
WEIGHT AND CONTROL THERMAL LEAKAGE 
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ISSUES/CONSIDERATIONS 

I LOW VOLTAGE DISTRIBUTION 

I HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

I. MONOLITHIC TECHNOLOGY 

I LIFETH1E 

I ~1UTUAL COUPLING 

I INPUT TO OUTPUT ISOLATION 

I CHARGED PARTICLE RADIATION EFFECTS 

I TOPOLOGICAL CONSIDERATIONS 

I SIDELOBE SUPPRESSION 

RESOLUTION/STATUS 

FURTHER REFINEHENT REQUIRED TO ~HNIMIZE 
WEIGHT AND CONTROL THERMAL LEAKAGE 
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DC POWER CHARACTERISTICS OF SANDWiCH 

• DC POWER FR~~ PHOTOVOLTAIC BLANKET (PVB) TRANSMITTED TO POWER DISTRIBUTION LAYERS 
(+ GRID. - GROUND PLANE) (CONJUCTOR LENGTHS <20 eM}. 

• NEAR-UNIFORM VOLTAGE DIFFERENTIAL IS AVAILABLE CLOSE TO ALL USING EQUIPMENT ACROSS A 
SUBARRAY ('S V NOMINAL). LOCAL POWER CONDITIONING PROVIDED AT EACH AMPLIFIER MODULE. 

• DC CONDUCTnR INCLUDING GROUND PLANE CROSS SECTIONS AND WEIGHT KEPT_SMALL TO MINIMIZE 
"UNCONTROLLABLE" HEAT TRANSFER TO RF DEVICES HAVING LOWER CRITICAl JUNCTION TEMPERATURES 

THAN THOSE ASSOCIATED WITH PHOTOVOLTAIC PORTION OF SANDWICH. 
_ TRANSFER OF POWER BETWEEN SUBARRAYS IS LIMITED BY GENERAL HEAT TRANSFER LIMITS 

AND ~~OCKAGE FR~~ HASiE HEAT PADIATION POINT OF VIEW. 
_ TRANSFER OF PO~tR FROM POWER GRID AND GROUND PLANE TO USING EQUIPMENT IS BY SHORT 

(DESIGN CONTROLLED) CONDUCTORS WITH BUILT-IN FUSES TO ISOLATE EQUIPMENT OVER-(':tJRRENT 

FAILURES FROM THE POWER GRID AND GROUND PtANE. 

• SP£CIFIC ~lEIGHT OF GROUND PLANE IS .005 GM/WATI AND OF GRID is .002 GM/WATI 

(WATIS ARE DC FROM PVB) FOR A SUBARRAY. 
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DC POWER CHARACTERISTICS OF SANDWiCH 

• DC POWER FR~~ PHOTOVOLTAIC BLANKET (PVB) TRANSMITTED TO POWER DISTRIBUTION LAYERS 

(+ GRID, - GROUND PLANE) (CONDUCTOR LENGTHS <20 eM}. 

• NEAR-UNIFORM VOLTAGE DIFFERENTIAL IS AVAILABLE CLOSE TO ALL USING EQUIPMENT ACROSS A 

SUBARRAY ('S V NOMINAL). LOCAL POWER CONDITIONING PROVIDED AT EACH AMPLIFIER MODULE. 

• DC CONDUCTJR INCLUDING GROUND PLANE CROSS SECTIONS AND WEIGHT KEPT_SMALL TO MINIMIZE 

"UNCONTROLLABLE" HEAT TRANSFER TO RF DEVICES HAVING LOWER CRITICAl JUNCTION TEMPERATURES 

THAN THOSE ASSOCIATED WITH PHOTOVOLTAIC PORTION OF SANDWICH. 

- TRANSFER OF POWER BETWEEN SUBARRAYS IS LIMITED BY GENERAL HEAT TRANSFER LIMITS 

AND (;~OCKAGE FRCJ-t HASiE HEAT PAnIAnON POINT OF VIEW. 

- TRANSFER OF PO~tR FROM POWER GRID AND GROUND PLANE TO USING EQUIPMENT IS BY SHORT 

(DESIGN CONTROLLED) CONDUCTORS WITH BUILT-IN FUSES TO ISOLATE EQUIPMENT OVER-(':tJRRENT 

FAILURES FROM THE POWER GRID AND GROUND PLANE. 

• SP£CIFIC WEIGHT OF GROUND PLANE IS .005 GM/WATT AND OF GRID IS .002 GM/WATT 

(WATTS ARE DC FROM PVB) FOR A SUBARRAY. 
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ISSUES/CONSIDERATIONS 

• Lm4 VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• r·lOtIOLITHIC TECHNOLOGY 

• LIFETIHE 

• HUTUAl COUPLING 

• HIPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSIO!J 

RE?OLUTION/STATUS 

FREQUENCY ALLOCATION NEEDS AT HARMONICS 
SHOULD BE CONSIDERED OR CONSIDER SPREAD 
SPECTRUM AND ACTIVE SUPPRESSIDN 
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ISSUES/CONSIDERATIONS 

• Lm4 VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• r·lOtIOLITHIC TECHNOLOGY 

• LIFETIHE 

• HUTUAl COUPLING 

• HIPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSIO!l 

RESOLUTION/STATUS 

FREQUENCY ALLOCATION NEEDS AT HARMONICS 
SHOULD BE CONSIDERED OR CONSIDER SPREAD 
SPECTRUM AND ACTIVE SUPPRESSIDN 
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HARMONIC NOISE GENERATION, SUPPRESSION AND TRANSMISSION CHARACTERISTICS 

• NOISE FILTERS ARE PROVIDED AT THE ELEMENT MODULE lEVEL ON TRANSMIT AND AT THE SUBARRAY 
CONJUGATING ELECTRONICS LEVEL ON RECEIVE. 

• RESIDUAL NOISE IS NON-COHERENT BETWEEN SUBARRAYS. 

• RESIDUAL HARMONICS MAY PERIODICALLY BE COHERENT OVER TOTAL T~~SMITTING ARRAY . 

• NOISE AT EARTH IS ESTIMATED AS -181 DBW/M2/4 KHZ. 

• HARt·tONIC POWER DENSITY AT EARTH IS ESTn~ATED AS -66 D8W/M2 AT 3RD HARMONIC AND LESS 
AT HIGHER HARt10ruCS. GRATING LOBES FOR LOWER HARMONIrs 00 NOT INTERSECT THE EARTH. 

• FREQUENCY ALLOCATION AT 3RD AND HIGHER HARMONICS SHOULD BE CONSIDERED. SPREAD SPECTRUM 
AND ACTIVE SUPPRESSION CONCEPTS SHOULD BE INVESTIGATED AS POSSIBLE MITIGATING APPROACHES. 
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HARMONIC NOISE GENERATION, SUPPRESSION AND TRANSMISSION CHARACTERISTICS 

• NOISE FILTERS ARE PROVIDED AT THE ELEMENT MODULE lEVEL ON TRANSMIT AND AT THE SUBARRAY 
CONJUGATING ELECTRONICS LEVEL ON RECEIVE. 

• RESIDUAL NOISE IS NON-COHERENT BETWEEN SUBARRAYS. 

• RESIDUAL HARMONICS MAY PERIODICALLY BE COHERENT OVER TOTAL T~~SMITTING ARRAY . 

• NOISE AT EARTH IS ESTIMATED AS -181 DBW/M2/4 KHZ. 

• HARt-tONIC POWER DENSITY AT EARTH IS ESTn~ATED AS -66 D8W/M2 AT 3RD HARMONIC AND LESS 
AT HIGHER HARt10UICS. GRATING LOBES FOR LOWER HARMONIrs 00 NOT INTERSECT THE EARTH. 

• FREQUENCY ALLOCATION AT 3RD AND HIGHER HARMONICS SHOULD BE CONSIDERED. SPREAD SPECTRUM 
AND ACTIVE SUPPRESSION CONCEPTS SHOULD BE INVESTIGATED AS POSSIBLE MITIGATING APPROACHES. 
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ISSUES/CONSIDERATIONS 

• lOW VOLTAGE DISTRIBUTION 

• HARr.,ONIC AND NOISE SUPPRESSION i' SUBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• HUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 

RESOLUTION/STA~US 

3,., X 3f, MAY BE CLOSE TO OPTIMUM. FURThtR 
STUDY OF U'PLEMENTATION REQUIRED 
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ISSUES/CONSIDERATIONS 

• lOW VOLTAGE DISTRIBUTION 

• HARr.,ONIC AND NOISE SUPPRESSION I' SUBARRAY SIZE 
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• LIFETIME 

• HUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 

RESOLUTION/STATUS 

3,., X 3f, MAY BE CLOSE TO OPTIMUM. FURThtR 
STUDY OF U'PLEMENTATION REQUIRED 
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SUBARRAY CHARACTERISTICS 

THE FOLLOWING HAVE BEEN CONSIDERED IN SIZING OF THE SUBARRAY: 

• TOPOLOGICAL CONSIDERATIONS !O MINIMIZE ELEMENT SPACING (MAXIMIZE TRANSMITTED 
POWER DENSITY), MIrHMIZE DIVISIONS OF DRIVE POWER (MAXIMIZE EFFICIENCY) AND 
PROVIDE FOR OTHER FUNCTIONS WITH MINII-ruM LAYERING crUNIMIZE INTER-LAYER 
CONNECTIONS) RESULTED Itl A BASELINE SIZE OF3.2."t X 3.2M. 

.SUBARRAY STEERING AND POINTING CONSIDERED SATISFACTORY. 

• ARRAY FLATNESS CONSIDERED TO IMPOSE NO OVER-RIDltfG ISSUES. 

• REMAINING COMPLEXITIES ARE PRIMARILY IN PACKAGING, THERMAL AND INTERFACING 
BEllJEEN SUBARRAYS. 

• KNOWN SPECIFIC WEIGHT (- 3 KG/M2) FOR 3.2M X 3.2M SUBARRAY ~1AY BE REDUCED BY a 
FOR 6.4M x 6.4M SUBARRAY WHILE POSSIBLE COMPLEXITY, HANDLING AND LOSSES NULLIFY 
THE KNOWN ADvrunAGE. 

• LOSSES UNIQUE TO n:E SUBARRAY ABOVE THE ELEMENT CELL LEVEL (ELEMENT SPACING 10 CM) 
KAVE BEEN ESTIMATED TO BE.< 0.5%. 

• NEAR-IN SIDELOBE INCREASES DUE TO THE SUBARRAY HAVE BEEN ESTIMATED TO BE <0.2 DB. 

._r-i 

, 
. 
I' 
" , ~ 
r 

.--.-" .... ,.--.. ~~ ... ". "~~~---............. - $ •• , .. '., • j 

SUBARRAY CHARACTERISTICS 

THE FOLLOWING HAVE BEEN CONSIDERED IN SIZING OF THE SUBARRAY: 

• TOPOLOGICAL CONSIDERATIONS !O MINIMIZE ELEMENT SPACING (MAXIMIZE TRANSMITTED 
POWER DENSITY), MIrHMIZE DIVISIONS OF DRIVE POWER (MAXIMIZE EFFICIENCY) AND 
PROVIDE FOR OTHER FUNCTIONS WITH HINII-ruM LAYERING crUNIMIZE INTER-LAYER 
CONNECTIONS) RESULTED Itl A BASELINE SIZE OF3.2."t X 3.2M. 
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• ARRAY FLATNESS CONSIDERED TO IMPOSE NO OVER-RIDltfG ISSUES. 

• REMAINING COMPLEXITIES ARE PRIMARILY IN PACKAGING, THERMAL AND INTERFACING 
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BEllJEEN SUBARRAYS. 

• KNOWN SPECIFIC WEIGHT (- 3 KG/M2) FOR 3.2M X 3.2M SUBARRAY ~1AY BE REDUCED BY a 
FOR 6.4M x 6.4M SUBARRAY WHILE POSSIBLE COMPLEXITY, HANDLING AND lOSSES NULLIFY 
THE KNOWN ADVruHAGE. 

• LOSSES UNIQUE TO n:E SUBARRAY ABOVE THE ELEMENT CELL lEVEL (ELEMENT SPACING 10 CM) 
KAVE BEEN ESTIMATED TO BE.< 0.5%. 

• NEAR-IN SIDElOBE INCREASES DUE TO THE SUBARRAY HAVE BEEN ESTIMATED TO BE <0.2 DB. 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• 5UBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• HUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 
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RESOLUTION/STATUS 

MONOLITHIC APPROACHES APPLY MIO REQUIRE 
TECHNOLOGY DEVELOPMENT FOR 
HINUUZATION OF COST AND WEIGHT 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• 5UBARRAY SIZE 
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TECHNOLOGY DEVELOPMENT FOR 
HINUUZATION OF COST AND WEIGHT 
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MONOLITHIC TECHNOLOGY FOR THE SANDWlCH 

• THE GENERAL CONCEPT OF MONOLITHIC TECHNOLOGY TO INCORPORATE MULTIPLE FUNCTIONS INTO 
ONE SERIES OF PROCESS AT BOTH THE AMPLIFIER LEVEL AND AT THE ~~ENNA LAYER LEVEL IS 
THE SELECTED APPROACH FOR HIGH PRODUCTION RATf AND LOW COST PURPOSES . 

• TOTAL SANDWICH Cm!CEPTS INCUJOE INTERCONNECTIONS BETWEEN LAYERS Arm BETWEEN 

SUBI.RRAYS. 
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MONOLITHIC TECHNOLOGY FOR THE SANDWlCH 

• THE GENERAL CONCEPT OF MONOLITHIC TECHNOLOGY TO INCORPORATE MULTIPLE FUNCTIONS INTO 

ONE SERIES OF PROCESS AT BOTH THE AMPLIFIER LEVEL AND AT THE ~~ENNA LAYER LEVEL IS 

THE SELECTED APPROACH FOR HIGH PRODUCTION RATf AND LOW COST PURPOSES. 

• TOTAL SANDWICH CONCEPTS INCUJOE INTERCONNECTIONS BETWEEN LAYERS AND BETWEEN 

SUBI.RRAYS. 
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ISSUES/CONSIDERATIONS 

• LO~! VOLTAGE DISTRIBUTION 

• HARrlDNIC AND NOISE SUPPRESSION 

• SUBARQAY SUE 

• ~mNDLITHIC TECHNOLOGY 

• L!FETIHE 

• t·1UTUAl COUPLING 

• WPUT TO OUTPUT ISOLATIGrI 

• CHARGED PARTICLE RADIATIO~l EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIOElOSE SUPPRESSION 

.~".~ 

RESOLUTIONlSTATUS 

LIFETIME AFFECTED BY JUNCTION TEMPERATURE 
Ln'U-rS AND CHARGED PARTICLES RADIATION 
REQUIRING TECHNOLOGY OEVElOPHEHT IN B01~ 
AREAS. 
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ISSUES/CONSIDERATIONS 
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--



~; 
~ ~ \. 

~'1 
~{ 

I 

f 

I 
r , 
t 
t 

~ 
~ 

. . ........-- . ..---~ ----~-- . $,.,7"01'.....,.. 

uhr;;~~~ CONSIDERATIONS 

• LIfETIME GOAL IS 30 YEARS W!TH lOW PROBABILITY OF FAILURE. 

• PRIMARY FAILURE MEOfANISMS RELATE HOST DIRECTLY TO JUNCTlOfi TEMPERATURE. 

• RANGE OF INTEREST FOR JUNCTION TEMPERATURE IS 100°C TO 150°C REQUIRING ADVANCED 
TECHNOLOGY DEVELOPMENT FOR LONG LIFE. 

• HEAT GENERATION AT AMPLIFIER DEVICES IS PRIMARY CONTRIBUTOR TO HIGH JUNCTION 
TEMPERATURE. ADVANCED TECHNOLOGY DEVELOPMENT REQUIRED FOR HIGH EFFICIENCY_ 

• HEAT TRANSPORT FROM DEVICE TO WASTE HEAT RADlATOR IS A MAJOR SANDWICH DESIGN 
CONSIDERATION INVOLVING: 

HIGH CONDUtTIVITY MATERIALS 
- DEDICATED REGIONS FOR WASTE HEAT RADIATION TO COLD SPACE 
- HIGH EMISSIVITY AND LOW ABSORPTIVITY THERMAL CONTROL-SURfACES-TO MAXIHIZE W1~TE 

HEAT DISSIPATION WITH~JT EXCEEDING LONG-LIFE JUNCTION TEMPERATURES 

• MATERIALS AND COATINGS MUTUAL TECHNOLOGY DEVELOPMENT GOALS HAVE BEEN ESTABLISHED 
- MATERIALS SUCH AS PYROLYTIC GRAPHITE, HAVING HIGH THEm~AL CONDUCTIVITY, IN 

CONJUNCTION WITH HIGH PERfORMANCE THERMAL CONTROL COATINGS NEED TECHNOLOGY 
DEVELOPMENT TO ASS~RE INTEGRITY AND PERFORMANCE OF HlaH {}1ISSIVITY AND LOW 
ABSORPTIVITY SURFACES. 

- WHERE WEIGHT IS NOT A SIGNIFICANT FACTOR COPPER MAY BE SATISFACTORY. 

o OPTnnZATION TOOLS HAVE BEEN CONCEIVED TO MAXIHIZE THE ABILITY OF THE TOTAL 
SANDt·IICH TO TRANSHIT HIGH POt-lER DEtJSITY. 
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AMPLIFIER JUNCTION TEMPERATURE VS WASTE HEAT 
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a:: 0.05 Coating Wt = 1.59 gm 
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Thennal 
Conductor 
\oIt. (gm) 

Aluminum 6.35 -------
Copper ______ 20.9~ 

Pyrographi te ---- 5.29 

T1 = Amplifier Junction Temperature 
'" PA = Uaste PO\'Jer Generated at Amplifier Junctior. 

P B = Haste Pm-ler \.,/m2 - Uni form Over Thermal 

Radiator. 
Conditions - Ps :: Incidp.nt Solar Power 

(1300 H/m2) 

Radiation Cooling - To Absolute Zero 
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AMPLIFIER JUNCTION TEMPERATURE VS WASTE HEAT 
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ACCELERATED LIFE DATA AND PROJECTIONS 

FOR SOLID STATE SPS MPTS STUDY 
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POWER PER ELEMENT CELL (10 CM X 10 eM) RELATIONSHIPS 

o PYROGRAPHITE RADIATORS {B.66 eM DIA} 
o At1PLIFIER EFFICIENCY = O.B 
o DC TO RF EFFICIENCY:: 0.7377 

PA 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARHONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETH4E 

• HUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIO;JS 

• SIDELOBE SUPPRESSION 
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RESa~UTJ()N/STATUS 

IHPLEMENTATION BY PRINTED DIPt)LES SPACED 
FROf>1 GROUND PLAt!E ~/ITH BALUN IN 
CIRCUITRY AND CLOSE ELEMENT SPACING TO 
f>UNIMIZE DETRmENTAL r",UTUAL COUPLING 
EFFECTS 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARHONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 
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RESa~UTJ()N/STATUS 

IHPLEMENTATION BY PRINTED DIPt)LES SPACED 
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MUTUAL COUPLING CONSIDERATIONS 

• ELEMENT SPACING (O.S A) TO SUPPRESS G~\TING LOBES. 

• PHYSICAL IMPLEMENTATION OF DIPOLES SUPPORTED ABOVE (0.25 A) GROUND PLANE 
TO PREVENT SURFACE WAVE RESONANCES ,""ND PROVIDE BALUN ACTION. 

• DIPOLES AND TRANSFORMERS INCORPORATED IN CIRCUITRY USED FOR IMPEDANCE MATCHING 
IN PRESENCE OF MUTUAL COUPLING AMONG ELa~ENTS. 

iIoL ---------- ----~--.-~-,~~~ ~~"", j' ... ...,..- ~, _--0 J 

co o 

MUTUAL COUPLING CONSIDERATIONS 

• ELEMENT SPACING (0.8 A) TO SUPPRESS G~\TING LOBES. 

• PHYSICAL IMPLEMENTATION OF DIPOLES SUPPORTED ABOVE (0.25 A) GROOND PLANE 
TO PREVENT SURFACE WAVE RESONANCES AND PROVIDE BALUN ACTION. 

• DIPOLES AND TRANSFORMERS INCORPORATED IN CIRCUITRY USED FOR IMPEDANCE MATCHING 
IN PRESENCE OF MUTUAL COUPLING AMONG ELa~ENTS. 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SlIBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• MUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOG I CAL CONS IDERA TI orlS 

• SIDELOBE SUPPRESSION 

RESOLUTION/STATUS 

ORTHOGONAL DIPOLES, OFFSET FREQUENCIES 
AND FILTERING PROVIDE SATISFACTORY 
ISOLATION OF TRANSMIT FROM RECEIVE 
SIGUALS 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 
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• SlIBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• MUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOG I CAL CONS IDERA TI orlS 

• SIDELOBE SUPPRESSION 

RESOLUTION/STATUS 

ORTHOGONAL DIPOLES, OFFSET FREQUENCIES 
AND FILTERING PROVIDE SATISFACTORY 
ISOLATION OF TRANSMIT FROM RECEIVE 
SIGUALS 
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INPUT TO OUTPUT ISOLATION 

• TRANSMIT AND RECEIVE DIPOLES ARE ORTHOGONAL 'TO MAXIMIZE INPUT/OUTPUT ISOLATION. 

• SEPARATE PILOT FREQUENCIES FROM FUNDftMEIUAl (OUTSIDE HIGH rmISE BAND). 

• FILTERING PROVIDED O'~ PILOT RECEIVER WIll BE I~PlEMENTED AT THE PHASE 
CONJUGATION NETWORK AT THE SUBARRAY lEVEL. 
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INPUT TO OUTPUT ISOLATION 

• TRANSMIT AND RECEIVE DIPOLES ARE ORTHOGONAL -TO MAXIMIZE INPUT/OUTPUT ISOLATION. 

• SEPARATE PILOT FREQUENCIES FROM FUNDftMEIUAl (OUTSIDE HIGH rmISE BAND). 

• FILTERING PROVIDED O'~ PILOT RECEIVER WIll BE I"PlEMENTED AT THE PHASE 

CONJUGATION NETWORK AT THE SUBARRAY lEVEL. 
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ISSUES/CONSIDERATIONS 

• LOW Vat TAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• MONOLITHIC TECHNOLOGY 

• LIFETIME 

• r·1UTUAL COUPLING 

• INPUT TO OUTPUT ISOLATI)U 

• CHARGED PARTICLE RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 
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RESOLUTION/STATUS 

GaAs IS CURRENTLY BEST TECHNOLOGY 
(REQUIRES MORE ADVANCEMENT IN 
"HECHANISMS" OF FAILURE) 
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CHARGED PARTICLE RADIATION EFFECTS/CONSIDERATIONS 

I VAN ALLEN BELT DISTRIBUTION OF ELECTRONS GEOMAGNETICALLY GO OUT TO 40-50K NAUTICAL 
MILES. NO SINGLE PEAK BUT VARIES IN TIME. 

I 11 YEAR SOLAR SUNSPOT CYCLE RESULTS IN CHARGED ELECTRONS AND PROTONS HAVING POSSiBLY 
SIGNIFICANT EFFECTS. 

• SOLAR WINOS RESULT IN LOW ENERGY ELECTRONS HAVING MUCH SMALLER EFFECTS THAN CHARGED 
PARTICLES TRAPPED IN VAN ALLEN BELTS. 

I GaAs MESFETS TEND TO BE HARDEST OF EXISTING TECHNOLOGIES. 

I TEST RESULTS ARE NON-CONCLUSIVE RE FAILURE OR DEGRADATION "ECHANISMS AND EFFECTS OF 
PROTECTIVE SCHEMES. 

I SELECTION OF GaAs TECHNOLOGY AND SHIELDING APPEAR TO BE MOST EFFECTIVE APPROACH 
AT PRESENT. 

I ADVANCED TECHNOLOGY DEVELOPMENT REQUIRED TO ADDRESS t·'ATERIALS, FAILURE MECHANISMS 
Arm PROTECTIVE SCHEMES. 

'-~--l 

I 

..... 'tt tm .~_ _ ___ ~ ~ ___ ~ m '" n J t' 

CHARGED PARTICLE RADIATION EFFECTS/CONSIDERATIONS 

I VAN ALLEN BELT DISTRIBUTION OF ELECTRONS GEOMAGNETICALLY GO OUT TO 40-50K NAUTICAL 
MILES. NO SINGLE PEAK BUT VARIES IN TIME. 

I 11 YEAR SOLAR SUNSPOT CYCLE RESULTS IN CHARGED ELECTRONS AND PROTONS HAVING POSSiBLY 
SIGNIFICANT EFFECTS. 

• SOLAR WINOS RESULT IN LOW ENERGY ELECTRONS HAVING MUCH SMALLER EFFECTS THAN CHARGED 
PARTICLES TRAPPED IN VAN ALLEN BELTS. 

I GaAs MESFETS TEND TO BE HARDEST OF EXISTING TECHNOLOGIES. 

I TEST RESULTS ARE NON-CONCLUSIVE RE FAILURE OR DEGRADATION "ECHANISMS AND EFFECTS OF 
PROTECTIVE SCHEMES. 

I SELECTION OF GaAs TECHNOLOGY AND SHIELDING APPEAR TO BE MOST EFFECTIVE APPROACH 
AT PRESENT. 

I ADVANCED TECHNOLOGY DEVELOPMENT REQUIRED TO ADDRESS MATERIALS, FAILURE MECHANISMS 
Arm PROTECTIVE SCHEMES. 
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ISSUES/CONSIDERATIONS 

• LOW VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• r·10NOLITHIC TECHNOLOGY 

• LIFETIHE 

• r1UTU.~L COUPLING 

• INPUT TO OOfPUT ISOLATION 

• CHARGED PARTICLE RADIATION EFFECT5 

I • TOPOLOGICAL CONSIDERATIONS 
I 

• SIDELOBE SUPPRESSIO~ 
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RESOLUTION/STATUS 

i 

I 

Ii REQUIRED FUNCTIOr4S CAN BE IMPLEMENTED 
IN SANmHCH CONCEPT. FURTHER DETAILS 

I ' AT SUBARRAY BOUNDARIES REQUIRED. 
j 
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ISSUES/CONSIDERATIONS 

• lOW VOLTAGE DISTRIBUTION 
• HARMONIC AND NOISE SUPPRESSION 
• SUBARRAY SIZE 

• HONOLITHIC TECHNOLOGY 

• UFETINE --co 
tJ'I 

• HUTUAl COUPLING 

• INPUT TO nrrpUT ISOLATION 
• CHARGED PARTICLE RADIATION EFFECT5 I. TOPOLOGICAL CONSIDERATIONS 

I 
• SIDELOBE SUPPRESSIO~ 

RESOlUTIOH/STATUS 

REQUIRED FUNCTIONS CAN BE IMPLEMENTED IN SANmUCH CONCEPT. FURTHER DETAILS AT SUBARRAY BOUNDARIES REQUIRED. 
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TOPOLOGICAL CONSIDERATIONS 

TOPOLOGICAL CONSIDERATIONS HAVE BEEN GIVEN AT THE TOTAL ARRAY, PHASE DISTRIBUTION SYSTEM, 
SUBARRAY AND ELEMENT MODULE LEVELS. 

• STRUCTURAL SUPPORT FOR THE ARRAY IS CONSIDERED TO BE PROVIDED BY MAJOR STRUCTURAl 
RING AT PERIPHERY WITH TENSION GRID ASSURING RELATIVE FLATNESS. GRID MEMBERS ARE 
CONSIDERED TO BE SMALL WITH RESPECT TO SANDWICH tHICKNESS AND DO NOT SHIELD RF OR 
WASTE HEAT RACIATION. 

• MECHANICAL SUPPORT AT SUBARRAY BOUNDARIES ARE REQUIRED lARGELY FOR HANDLING, 
INSTALLATION AND REPLACEMENT PURPOSES. DETAILS OF HOW SUBARRAYS WILL BE HATED TO 
PRECLUDE ADVERSE DISCONTINUITIES ARE YET TO BE DEVELOPED. 

• RF TRANSMIT ELEMENT LATTICE IS MAINTAINED IN REGION OF SUBARRAY EDGES TO MINIMIZE 
SYSTEMATIC ERROR SIDELOBES. 

• FREE RADIATION OF WASTE HEAT FROM RADIATOR:' NEAR SUaARRAY EDGES IS COMPROMISED 
REQUIRP!u CUSTOMIZED EDGE TREAn'ENT TO f4AX1:dZE THE EFFICIENCIES OF THE THERMAl 
RADIATO~~ AT THE EXPENSE OF WEIGHT AND COST. FURTHER INVESTIGATION IS REQUIRED. 
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ISS~ES/CONSIDERATIONS RESOLUTION/STATUS 

• Lm~ VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• ,-tONOLITHIC TECHNOLOGY 

• LIFETIME 

e NUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTIC~E RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION SINGLE STEP EDGE TAPER rtw BE REQUIRED 
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ISS~ES/CONSIDERATIONS 

• Lm~ VOLTAGE DISTRIBUTION 

• HARMONIC AND NOISE SUPPRESSION 

• SUBARRAY SIZE 

• ,-tONOLITHIC TECHNOLOGY 

• LIFETIME 

e NUTUAL COUPLING 

• INPUT TO OUTPUT ISOLATION 

• CHARGED PARTIC~E RADIATION EFFECTS 

• TOPOLOGICAL CONSIDERATIONS 

• SIDELOBE SUPPRESSION 
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RESOLUTION/STATUS 

SINGLE STEP EDGE TAPER rtW BE REQUIRED 
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SIDElOBE SUPPRESSION CONS:DERATIONS 

• UNIFORl·1 VERSUS 10 DB GAUSSIAN ILLUMINATION AT SPACETENNA RESULTS IN THE FOLLOWING: 

ADVANTAGES FOR UNIFORM 

- SMALLEST TRANSMIT ANTENNA 

- ALL Ar·1PLIFIER ~'ODtlLES OPERATE AT SAME 
POWER LEVEL 

- EASY TRANSFER OF DC VOLTAGES FROM SOLAR 
ARRAY (IF DENSITY TAPERING IS EMPLOYED 
TO APPROXIMATE GAUSSIAN ILLUMINATION 
THEN DC DISTRIBUTION AND SOLAR ARRAY 
ARCHITECTURE BECOMES -1MPLEX AND HEAVIER) 

DISADVANTAGES FOR UNIFORM 

- LOWER. ~OWER BEAM EFFICIENCY 

- HIGHER SIDELQBES (-17 DB. -24 DB. -28 DB 
BELOW 23 mll042 AND MORE LAND REQUIRED TO 
FENCE RECTENNA 

• SINGLE STEP TAPER VERSUS UNIFORM (CONSTANT POWER DENSITY AT EACH LEVEL) 

ADVANTAGES FOR STEP 

- LOWER SIDELOBES (-28 DB BELOW 23 "'W/CH2) 
ALL At~PLIFIERS OPERATED AT SAME POWER 
LEVEl 

DISADVANTAGES FOR STEP 

- LESS POWER AVAIL~BLE 
LARGER SPACETENNA 
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SIDElOBE SUPPRESSION CONS:DERATIONS 

• UNIFORl·1 VERSUS 10 DB GAUSSIAN ILLUMINATION AT SPACETENNA RESULTS IN THE FOLLOWING: 

ADVANTAGES FOR UNIFORM 
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POWER LEVEL 

- EASY TRANSFER OF DC VOLTAGES FROM SOLAR 
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TO APPROXIMATE GAUSSIAN ILLUMINATION 
THEN DC DISTRIBUTION AND SOLAR ARRAY 
ARCHITECTURE BECOMES -1MPLEX AND HEAVIER) 
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- LOWER. ~OWER BEAM EFFICIENCY 

- HIGHER SIDELQBES (-17 DB. -24 DB. -28 DB 
BELOW 23 mll042 AND MORE LAND REQUIRED TO 
FENCE RECTENNA 

• SINGLE STEP TAPER VERSUS UNIFORM (CONSTANT POWER DENSITY AT EACH LEVEL) 

ADVANTAGES FOR STEP 

- LOWER SIDELOBES (-28 DB BELOW 23 "'W/CH2) 
- ALL At~PLIFIERS OPERATED AT SAME POWER 

LEVEL 

DISADVANTAGE~ FOR STEP 

- LESS POWER AVAIL~BLE 
- LARGER SPACETENNA 
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SIDElOBE COMPARISON j OF UNIFORM POWER DISTRIBUTION 
WITH TWO EXAMPLES OF SINGLE STEP EDGE TAPER 1 
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SUMMARY AND CONCLUSIONS 
SOLID STATE SANDWICH CONCEPT I.SSUES AND RESOLUTION SUMMARY 

ISSUES/CONSIDERATIONS RESOLUTION/STATUS 
LOW VOLTAGE DISTRIBUTION FURTHER REFINEMENT REQUIRED TO MINIMIZE 

WEIGHT AND CONTROL THERMAL LEAKAGE 
HARMONIC AND NOISE SUPPRESSION FREQUENCY ALLOCATION NEEDS AT HARMONICS SHOULD 

BE CONSIDERED OR CONSIDER SPREAD SPECTRUM 
AND ACTIVE SUPPRESSION 

SUBARRAY SIZE 3M X 3M MAY BE CLOSE TO OPTIMUM. FURTHER 
STUDY OF IMPLEMENTATION REQUIRED ~ 

MONOLITHIC TECHNOLOGY MONOLITHIC APPROACHES APPLY AND REQUIRE 
TECHNOLOGY DEVELOPMENT FOR MINIMIZATION 
OF COST AND WEIGHT 

LIFETn~E LIFETIME AFFECTED BY JUNCTION TEMPERATURE 
LIMITS AND CHARGED PARTICLE RADIATIOn 
REQUIRING 'TECHNOLOGY DEVELOPMENT IN BOTH AREAS 

MUTUAL COUPLING IHPLEMENTATION BY PRINTED DIPOLES SPACED FROM 
GROUND PLANE WITH BALUN IN CIRCUITRY AND CLOSE 
ELEf-IENT StACING TO MINIMIZE DETRIHENTAL ~'UTUAl 
COUPLING EFFECTS 

INPUT TO OUTPUT ISOLATION ORTHOGONAL DIPOLES, OFFSET FREQUENCIES AND 
FILTERING PROVIDE SATISFACTORY ISOLATION OF 
TRANStUT FROH RECEIVE SIGNALS 

CHARGED PARTICLE RADIATION EFFECTS GaAs IS CURRENTLY BEST TECHNOLOGY (REQUIRES 
MORE ADVANCEMENT IN "MECHANISr·,S" OF FAILURE) 

TOPOLOGICAL Cor~SIDERATIONS REQUIRED FUNCTIONS CNI BE H4PLEMENTED IN 
SANDWICH CONCEPT. FURTHER DETAILS AT 
SUBARRAY BOUNDARIES REQUIRED. 

SIDELOBE SUPPRESSION SINGLE STEP EDGE TAPER HAY BE REQUIRED. 
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SUMMARY AND CONCLUSIONS 
SOLID STATE SANDWICH CONCEPT I.SSUES AND RESOLUTION SUMMARY 

ISSUES/CONSIDERATIONS 
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HARMONIC AND NOISE SUPPRESSION 

SUBARRAY SIZE 

MONOLITHIC TECHNOLOGY 

LIFETn~E 

MUTUAL COUPLING 

INPUT TO OUTPUT ISOLATION 

CHARGED PARTICLE RADIATION EFFECTS 

TOPOLOGICAL Cor~SIDERATIONS 

SIDELOBE SUPPRESSION 

RESOLUTION/STATUS 
FURTHER REFINEMENT REQUIRED TO MINIMIZE 
WEIGHT AND CONTROL THERMAL LEAKAGE 
FREQUENCY ALLOCATION NEEDS AT HARMONICS SHOULD 
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AND ACTIVE SUPPRESSION 

3M X 3M MAY BE CLOSE TO OPTIMUM. FURTHER 
STUDY OF IMPLEMENTATION REQUIRED 

MONOLITHIC APPROACHES APPLY AND REQUIRE 
TECHNOLOGY DEVELOPMENT FOR MINIMIZATION 
OF COST AND WEIGHT 

LIFETIME AFFECTED BY JUNCTION TEMPERATURE 
LIMITS AND CHARGED PARTICLE RADIATIOn 
REQUIRItlG TECHNOLOGVDEVELOPMENT IN BOTH AREAS 

IHPLEMENTATION BY PRINTED DIPOLES SPACED FROM 
GROUND PLANE WITH BALUN IN CIRCUITRY AND CLOSE 
ELEf-IENT StACING TO MINIMIZE DETRIHENTAL ~'UTUAL 
COUPLING EFFECTS 

ORTHOGONAL DIPOLES, OFFSET FREQUENCIES AND 
FILTERING PROVIDE SATISFACTORY ISOLATION OF 
TRANStUT FROH RECEIVE SIGNALS 

GaAs IS CURRENTLY BEST TECHNOLOGY (REQUIRES 
MORE ADVANCEMENT IN "MECHANIsr·,s" OF FAILURE) 

REQUIRED FUNCTIONS CNI BE Ir4PLEMENTED IN 
SANDWICH CONCEPT. FURTHER DETAILS AT 
SUBARRAY BOUNDARIES REQUIRED. 

SINGLE STEP EDGE TAPER HAY BE REQUIRED. 
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The presentation material herein was used in 
the Planned Program Activities Session of the 
Solar Power Satellite Workshop on Microwave 
Power Transmission and Reception held at the 
Lyndon B. Johnson Space Center, January 
15-28, 1980. The workshop was conducted as 
part of the Technical assessment process of 
the DOE/NASA Solar Power Satellite Concept 
Evaluation program. All aspects of Solar 
Power Sat~lite microwave transmission and 
reception were addressed including studies, 
analyses, and laboratory investigations. 
Conclusions from these activities were 
presented as well as recommended follow-on 
work. The workshop was organized into 
eight sessions as follows: 

• General 
• Microwall8 System Performance 
• Phase Control 
• Pow" Amplifiers 
• Radiating Elements 
• Rectenna 
• Solid State Configurations 
• Planned Program Activities 

The material contained herein supple· 
ments the workshop papers which were 
published and distributed at the time of 
the workshop. Together they are a com · 
prehensive documentation of the numerous 
analytical and experimental C1ctivities in 
the field of microwave power transmission 
and reception . 

• Additional information 
regarding the workshop 
may be obtained by 
contacting: A.H . Dietz 

EE4/SPS Microwave Systems 
National Aeronautil:s & 
Space Admini'itration 
Lyndon B. Johnson Spal."e Center 
Houston, Texas 77058 
713 483-4507 
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The presentation material herein was used in 
the Planned Program Activities Session of the 
Solar Power Satellite Workshop on Microwave 
Power Transmission and Reception held at the 
lyndon B. Johnson Spaat Center, January 
15-28, 1980. The workshop was conducted as 
part of the Technical assessment process of 
the DOE/NASA Solar Power Satellite Conatpt 
Evaluation program. All aspects of Solar 
Power Sat~lite microwave transmission and 
reception were addressed including studies, 
analyses, and laboratory investigations. 
Conclusions from these activities were 
presented as well as recommended follow-on 
work. The workshop was organized into 
eight sessions as follows : 

• GBnBral 
• Microwave SystBflI Psrformaf)CB 
• Phase Control 
• Pow" AmpliliBrs 
• Radiating EIBmBnts 
• RBctenna 
• Solid State Configurations 
• Planned Program ActivitiBs 

The material contained herein supple· 
ments the workshop papers which were 
published and distributed at the time of 
the workshop. Together they are a com · 
prehensive documentation of the numerous 
analytical and experimental activities in 
the field of microwave power transmission 
and reception . 

• Additional information 
rBflllrding tIIB workshop 
may bB obtained by 
contacting: A.H . Dietz 

EE4/SPS Microwave Systems 
National Aeronautit:s & 
Space Administration 
lyndon B. Johnson Spal."e Center 
Houston, Texas 77058 
713 483-4507 
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NASI\ Solar Power 
Satellite 

.~.~~.~-- ... _----.----------:--::------
Planned Actlvltle. 

• 1 880 funded effort* 
• Addltlone' funded effort. 
) Ground Based Exploratory Development (GBED) 

• Program overview (DOE/NASA) 
• Microwave systems 

• Reference system 
• System alternative (solid-state) (budgeted) 
• Sub-system alternatives 

• Magnetron (not-budgeted) 
• Ground based phase control (budgeted) 
• Rectenna e/eme"'s (budgeted) 

• Flight .ultca.e experiment. 
• Power module - power amplifier, phase control, 

waveguide, cooling, etc. 
• Advanced technology candidate. 

• Photoklystron 
• Gyrocon 

• Summary/Discussion 

Solar Power 
Satellite 

1 980 Funded Efforts 

• Phase control system definition phase IV 
- JSC/LINCOM SeOK 

• Ground-based phase control system 
breadboard - JSC S50K 

• RF/harmonlc measurement techniques 
and systems - JSC/JPL S50K 

• Solid state amplifier MSFC technology S 50K 

• Systems definition studies 
• Complete solid state system studies 

(Boeing/RI) $50K 
• Magnetron powered SPS antenna study 

(RI) $50K 
Note: Funding levels are approximate 
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NASI\ Solar Power Planned Actlvltle. 
Satellite 

• 1 880 funded effort* 
• Addltlone' funded effort. 
) Ground Based Exploratory Development (GBED) 

• Program overview (DOE/NASA) 
• Microwave systems 

• Reference system 
• System alternative (solid-state) (budgeted) 
• Sub-system alternatives 

• Magnetron (not-budgeted) 
• Ground based phase control (budgeted) 
• Rectenna e/eme"'s (budgeted) 

• Flight .ultca.e experiment. 
• Power module - power amplifier, phase control, 

waveguide, cooling, etc. 
• Advanced technology candidate. 

• Photoklystron 
• Gyrocon 

• Summary/Discussion 

Solar Power 
Satellite 

1 980 Funded Efforts 

• Phase control system definition phase IV 
- JSC/LINCOM SeOK 

• Ground-based phase control system 
breadboard - JSC S50K 

• RF/harmonlc measurement techniques 
and systems - JSC/JPL S50K 

• Solid state amplifier MSFC technology S 50K 

• Systems definition studies 
• Complete solid state system studies 

(Boeing/RI) $50K 
• Magnetron powered SPS antenna study 

(RI) $50K 
Note: Funding levels are approximate 
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Solar Power . ·--~~··-·R.ct.nn./Ph ••• Con£roll 
Satellite RFI T.sks 

• Adapt sonic simulation techniques to evaluate effects 
of the disturbed Ionosphere on the SPS phase control 
pUpt signal's phase 

• Ionospheric scintillation characteristics associated with 
small aperture receivers 

• Model rectenna system and evaluate radio frequency 
Interference levels and patterns resulting from 
scattering, harmonic generation, and fundamental 
reradiation 

• Investigate/evaluate multiple 8PS system Interference 
and environmental effects due to radio frequency beat 
slgnalgeneratlon 
Estimated funding - .50K 

S I 
« ."<" < .... <--_ ...... -..... ---... < ..•. - ... ------.----.. ---.. -«.--.,,< ... -<-.-. -< 

< 0 ar Power Metal Matrix Waveguide' 
Satellite 

Primary requirements for waveguide 
material 

• Good surface e'ectrlcal conductivity 
• High resistance to thermal distortion 
• Preliminary tolerance requirements for waveguide 

• Length +30 mils 
• Width ±3 mils 
• Slot offset +0.5 mils 

Thermal distortion can significantly 
decrease waveguide efficiency 

• Waveguide will alternately expand and contract 
during thermal cycling 

• Waveguide will tend to bow due to thtlrmal 
gradient between faces 
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• Ionospheric scintillation characteristics associated with 
small aperture receivers 

• Model rectenna system and evaluate radio frequency 
Interference levels and patterns resulting from 
scattering, harmonic generation, and fundamental 
reradiation 

• Investigate/evaluate multiple 8PS system Interference 
and environmental effects due to radio frequency beat 
slgnalgeneratlon 
Estimated funding - .50K 

Primary requirements for waveguide 
material 

• Good surface e'ectrlcal conductivity 
• High resistance to thermal distortion 
• Preliminary tolerance requirements for waveguide 

• Length +30 mils 
• Width ±3 mils 
• Slot offset +0.5 mils 

Thermal distortion can significantly 
decrease waveguide efficiency 

• Waveguide will alternately expand and contract 
during thermal cycling 

• Waveguide will tend to bow due to thtlrmal 
gradient between faces 
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'NI\Sl\--Solar 'Power 
Satellite 

- T •• k D •• crlptlon 

NI\SI\ 

• Evaluation of waveguld. requlrem.nt. and fabrication 
proc ••••• to g.nerat. a graphlt./metal matrix 
wav.gulde de.lgn 

• Fabrication .tudle. and development to "erlty ability to 
hold tol.ranc •• and e.tabll.h tooling d •• lgn 

• Verification of compo.lte prope,tl •• on t •• t .p.clmen. 
• Fabricate wav.gulde. to demon.trate r.produclbility 

and provide t •• t artlcl •• 
• P.rform phy.lcal and mechanlca' property te.tlng (J8C, 

LU8e) 
• RF performance (JSC) 
• Thermal distortion measurements (LMSC) 
• Thermal cycling effects (JSC) 

• E.tlmated co.t of program 
• FY1979/1980 $175K .. 

--- '-~"'-'-.-------------------

Solar Power 
Satellite 

DOE/NASA GBED 
Program 

Overall • To provide Information required to make a rational decision 
Goa. on whether to proceed to a technology verification phase 

of the SPS program 

Approach • Information generated through experiment, demonstration, 
and ~nalysis, and would Include: 

• Further development of system concept 
• Test/Demonstration of components n"cosssry 

to construct and operate the syste,m 
• Analysis of environmental effects and their mitigation 
• Assessment of e'conomlc factors including financing 

options 
• Programs to understand and solve problems In the 

international, institutional, and public concern areas 
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'NI\Sl\--Solar 'P-o-w-e-r ---- T •• k D •• crlptlon 
Satellite 

• Evaluation of waveguld. requlrem.nt. and fabrication 
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LU8e) 
• RF performance (JSC) 
• Thermal distortion measurements (LMSC) 
• Thermal cycling effects (JSC) 

• E.tlmated co.t of program 
• FY1979/1980 $175K .. 
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NI\SI\ 

Overall 
Goa. 

Approach 

Solar Power 
Satellite 

DOE/NASA GBED 
Program 

• To provide Information required to make a rational decision 
on whether to proceed to a technology verification phase 
of the SPS program 

• Information generated through experiment, demonstration, 
and ~nalysis, and would Include: 

• Further development of system concept 
• Test/Demonstration of components n"cosssry 

to construct and operate the syste,m 
• Analysis of environmental effects and their mitigation 
• Assessment of e'conomlc factors including financing 

options 
• Programs to understand and solve problems In the 

international, institutional, and public concern areas 
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Progr.m 
R •• ult. 

Solar Power 
Satellite 

DOE/NASA OIED 
Program 

• Data baae that apeciflea/reducea uncertainty In all critical 
areaa ao that a declalon can be made for or agalnat 
a commitment to a technology verification program 

• Selection of preferred ayatem(a) 
• Definition of a technology verification program, 

including required apace projecta 

Ar... • Systems analysis and technology 
tob • 
• ddr •••• d • Environmental research and assessment 

• International affairs, Institutional relations, and 
public conCElrns 

-"--,-,-,-- -------------------------

·NASi\·~" Solar Power 
Satellite 

GBED • Systems Analysis 
and Technology 
Technical Areas 

• System definition studies 

• Solar energy conversion 

• Electrical power processing and distribution 

• Power transmission and reception 

• Space structures, controls, and materials 

• Space operations 

• Space transportation 

,. 

NI\SI\ Solar Power 
Satellite 

DOE/NASA OIED 
Program 

Progr.m • Data baae that apeciflea/reducea uncertainty In all critical 
R •• ult. areaa ao that a declalon can be made for or agalnat 

a commitment to a technology verification program 

• Selection of preferred ayatem(a) 
• Definition of a technology verification program, 

including required apace projecta 

Ar... • Systems analysis and technology 
tob • 
• ddr •••• d • Environmental research and assessment 

• International affairs, Institutional relations, and 
public conCElrns 

-"--,-,-,-- -------------------._-----

·NASi\·~" Solar Power 
Satellite 

GBED • Systems Analysis 
and Technology 
Technical Areas 

• System definition studies 

• Solar energy conversion 

• Electrical power processing and distribution 

• Power transmission and reception 

• Space structures, controls, and materials 

• Space operations 

• Space transportation 
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-~'-NI\Si\" ." --·Sol~ifpower 
Satellite 

." "GBED ; Power Traum' •• lon 
and Reception 
Key Questions 

• Can the required performance be attained 
for SPS viability? 

• System efficiency 
• Focusing and pointing control 

• RFI 

• Can required long life and/or maintainability 
characteristics be achieved? 

• Can manufacturing techniques be devised to 
provide systems and componeW'lts of required 
performance, production rates, and costs? 

NI\SI\--Solar Power-·~---·-·-··- Microwave GBED 
Satellite Summary 

Oeneral • Investigate critical technology areas 
objectives • Phase control 

• Power amplifiers 
• Power tubes 
• Solid-state 
• Radiating module 
• Rectenna 
• System integration and performance 

• Develop microwave system and subsystem hardware 
• Verify system performance through subsystem and 

systAm ground testing 

• Obtain required data for predicting performance of th6 full 
scale SPS microwave system 

• EstabUsh SPS microwave system criteria and guidelines 
for continued development 

• Investigate potential microwave system/environmental 
I,npact areas 
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Satellite 

." "GBED ; Power Traum' •• lon 
and Reception 
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• Can the required performance be attained 
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Satellite Summary 

Approach • Earl, te.tlfacilitle. requirement. detlnltlon pha.e 
• Microwave system integration and test 
• Subsystem projects 

• E.tabll.h .,.tem Integration and t •• tlng project 
• Coordinate all microwave activities 
• Progressive system Integration tests 

• Power amplifier/phase control 
• Power module using low power klystron 
• Power module environmental (high power 

klystron with heat-pipe radiator) 
• Transmit subarray (10.4 M x 10.4 m) using 

up to 36 power modules 
• Rectenna panel/subarray 

Integrated mlcrowlJve system 

__ ." __ ~C_,_~_'_. ._._.,~." ___ . _________ . __________ . 
NI\S/\ Solar Power Microwave GBED 

Satellite Summary 

Approach • E.t.bli.h .ub.,.t.m proJ.ct. 

to j .. ", 

• Klystron 
• Klystron thermal control 
• Solid-state power amplifierlSPS system 
• Phase control system 
• Radiating module 
• Rectenna 

• Utlliz •• xi.ting .p.cl.liz.d faclliti •• 

• Obt.ln quantltatlv. p.rformanc. data 
.t .,.tem/.ub.,.t.m I.v.la 

• Extr.pol.t. p.rform.nc. to full.c.l. SPS 

• S,.t.m f ••• ibllit, •••••• m.nt .nd 
p.rform.nc. v.rlflc.tlon 
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Satellite Summary 

Approach • Earl, te.tlfaclllt'e. requirement. detlnltlon pha.e 
• Microwave system integration and test 
• Subsystem projects 

• E.tabll.h .,.tem Integration and te.tlng project 
• Coordinate all microwave activities 
• Progressive system Integration tests 

• Power amplifier/phase control 
• Power module using low power klystron 
• Power module environmental (high power 

klystron with heat-pipe radiator) 
• Transmit subarray (10.4 M x 10.4 m) using 

up to 36 power modules 
• Rectenna panel/subarray 

Integrated mlcrowlJve system 

__ ." __ ~C_'_~_'_. ________ '._._.'~." ___ . _______ _ 
Solar Power Microwave GBED NI\S/\ 
Satellite Summary 

Approach • E.t.bli.h .ub.,.t.m proJ.ct. 
• Klystron 
• Klystron thermal control 
• Solid-state power ampllfier/SPS system 
• Phase control system 
• Radiating module 
• Rectenna 

• Utlliz •• xi.ting .p.cl.liz.d faclliti •• 

• Obt.ln quantltatlv. p.rformanc. data 
at .,.tem/.ub.,.t.m I.v.la 

• Extr.pol.t. p.rform.nc. to full.c.l. SPS 

• S,.t.m f ••• ibllit, •••••• m.nt .nd 
p.rform.nc. v.rlflc.tlon 
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NI\S/\ Solar Power GBED Plan Format 
Satellite 

leeue Treee Mlleetone/Flow Chart Project 8Ult{.wmary Sh.ete 

4.0 Pow.r 4.0 
Tranemleelon 
and 
Reception 

4.1 Microwave 4.1 
Syeteme 

~ 

Power 
Traneml.elon 
and 
Reception 
Microwave 
Syeteme 

~ 

4.0 Power transmisSion and 
reception 

4.1 Microwave systems 
4.1.1 Power ~mpllfler 

performance (tube I 
solid-state) 

4,1.2 Microwave system 
performance (tubb/ 
solid state) 

4.1.3 Phase control system 
performance (tubel 
solid-state) 

4.1.4 Transmit antenna 
performance (tubel 
solid-state) 

4.1.5 Rectenna element 
performance 

''''-'~-i\II\Sj\----So'l arPower~'-#'-~-­

Satellite 
Power 'Amplifier ' 
Project (Tube) 
Objectives 

Design, manufacture, test and analysis of 
a high power, high efficiency power 
amplifier tuba to verify SPS performance 
requirements (remaining Issues) 

• Demonstrate thermal control capability 
• Establish rf.'lIabllity data 
• Establish cost data 
• Verify detailed performance parameters 
• Establish criteria and guidelines for continued 

development 
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NI\SI\ Solar Power 
Satellite 

GBED Plan Format 

I •• ue Tree. Mlle,tone/Flow Chert Project 8ult{.wmery Ih.et, 

4.0 Pow.r 4.0 Power 4.0 Power transmission and 

Tren.ml,.lon Tren,ml.,lon reception 

end end 4.1 Microwave systems 

Reception Reception 4.1.1 Power amplifier 

4.1 Mlcroweve 4.1 Mlcroweve performance (tube I 

Sy.tem. Sy.tem. solid-state) 
4,1.2 Microwave system 

~ ~ performance (tubb/ 
solid state) 

4.1.3 Phase control system 
performance (tubel 
solid-state) 

4.1.4 Transmit antenna 
performance (tubel 
solid-state) 

4.1.5 Rectenna element 
performance 

''''-'~-N7\Sj\----So'l arPower~'-#'-~-­

Satellite 
Power 'Amplifier 
Project (Tube) 
Objectives 

Dellgn, manufacture, test and analysis of 
a high power, high efficiency power 
amplifier tuba to verify SPS performance 

requirements (remaining Issues) 

• Demonstrate thermal control capability 

• Establish rf.'lIabllity data 

• Establish cost data 
• Verify detailed performance parameters 

• Establish criteria and guidelines for continued 
development 

7 



.' 

r 
II 

F . 

~.- '*'"*' .... lII<""""""-"~~~-T"'t, APIf't .... !" -+ .. -~::- --::.:..... "- "~"'-------..rIIA_-

.~ •• - ........ -<"',~. 
-~ .~-",~, ",~. ._*--_.. ,~--. 

NI\SI\ 

NI\SI\ 

Solar Power 
Satellite 

Power Ampllflel' 
Thermal Control 
Objectives 

Design, manufacture, test and analysis of 
an efficient heat-pipe/radiator s,stem to 
dissipate wast. heat from the SPS 
configured power tubes 

• Demon.trate heat-pipe operation at temperat .. , •• 
0' 200·C - 300·C 

• A ••••• re.tart capability 
• Eetabll.h h.at-plp. op.rationailifetim. date 
• D.v.'op Int.grated h.at-plp. radiator .y.t.m 
• E.tabll.h op.ratlonal efflcl.ncy 
• E.tabll.h .ff'c'.ncy/w.'ght trad.-off. 
• E.tabllsh h.at-plp./radlator crlt.rla and guld.lln •• 

for contlnu.d d.velopm.nt 

Solar Power 
Satellite 

Solid State 
Power Amplifier Project 
Objectives 

Design, manufacture, test and anal,sls of 
a 'solid-state power ampllfler(s) and power 
module to verlf, SPS performance 
requirements (remaining Issues) 

• D.mon.trat. th.rmal operating capability 
• E.tabll.h r.llabillty/op.rating t.mp.ratur. 

trad.-off. 
• D.t.rmln. no I •• charact.rl.tlc. 
• E.tabll.h co.t data 
• V.rlfy performance param.t.r. 
• Int.grat.d .y.t.m. d.flnltlon .tudy 
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Solar Power 
Satellite 

Power Ampllflel' 
Thermal Control 
Objectives 

Design, manufacture, test and analysis of 
an efficient heat-pipe/radiator s,stem to 
dissipate wast. heat from the SPS 
configured power tubes 

• Demon.trete heet-plpe operetlon et temperat .. , •• 
0' 200·C - 300·C 

• A ••••• re.tert cepebility 
• Eetebll.h h.et-plp. op.retioneilifetim. dete 
• D.v.'op Int.greted h.et-plp. redletor .,.t.m 
• E.tebll.h op.retlonel efflcl.ncy 
• E.tebll.h .ff'c'.ncy/w.'ght tred.-off. 
• E.tebllsh h.at-plp./radlator crlt.rla end guld.lln •• 

for contlnu.d d.velopm.nt 

Solar Power 
Satellite 

Solid State 
Power Amplifier Project 
Objectives 

Design, manufacture, test and anal,sls of 
a 'solid-state power ampllfler(s) and power 
module to verlf, SPS performance 
requirements (remaining Issues) 

• D.mon.trat. th.rmal operetlng capebility 
• E.tebll.h r.llabillty/op.rating t.mp.retur. 

trad.-off. 
• D.t.rmln. no I •• charact.rl.tlc. 
• E.tabll.h co.t data 
• V.rlfy performenc. param.t.r. 
• Int.grat.d .,.t.m. d.flnltlon .tudy 
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NI\SI\ 

Solar Power 
Satellite 

,. _ '_'''~ ______ <H_->'''_~~''_·, __ · ~ _. __ ., 

Solid State Microwave 
Power Amplifier Project 
Approach 

• Establish device concepts to meet requirements 
• Develop the lumped element power module using 

highest efficiency amplifier 
• Establish requirements for peripheral subsystems, e.g., 

phase control, power distribution, power proceSSing, 
etc. 

• Establish m.nuf.ctur.blllty r.qulr.ments 
• P.rform a •• p.r."el It.r.tlv. proc.ss .n SPS 

Int.gr.tlon •••••• m.nt 
• Ir.tcgr.te power .mpllfl.r proJ.ct/SPS system studl.s 

to provide d.ta for programm.tlc dl,clslon 

, __ ·~._._,. __ ,e_ .,, ____ •• __ 

Solar Power Power Amplifier 
Satellite Project 

Key criteria 

A Tube power amplifier performance 
• rf power> 50 kW 
• de to rf conver.lon efficiency > 80% 

B Solid .tate amplifier performance 
• rf power > 4 W 
• de to rf conversion > 80% 

C T.ube power amplifier and electronic. module performance 
• Nol.e .uppre •• lon > 20dB (within 1 MHz of carrier) 

D Power module perfoh __ """ce 
• P / A efficiency > 80% 
• rfl < CCIR guideline. 

E Subarray/rectenna performance 
• P / A efficiency > 80% 
• rfl < CCIR guideline. 
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NI\SI\ 

Solar Power 
Satellite 

Solid -SiatefJilcrowave" _.--., 
Power Amplifier Project 
Approach 

• Establish device concepts to meet requirements 
• Develop the lumped element power module using 

highest efficiency amplifier 
• Establish requirements for peripheral subsystems, e.g., 

phase control, power distribution, power proceSSing, 
etc. 

• Establish m.nuf.ctur.blllty r.qulr.ments 
• P.rform a •• p.r."el It.r.tlv. proc.ss .n SPS 

Int.gr.tlon •••••• m.nt 
• Ir.tcgr.te power .mpllfl.r proJ.ct/SPS system studl.s 

to provide d.ta for programm.tlc dl,clslon 

Solar Power-·~-·-,·-_e- ··----Power Amplifier 
Satellite Project 

Key criteria 

A Tube power amplifier performance 
• rf power> 50 kW 
• de to rf conver.lon efficiency > 80% 

B Solid .tate amplifier performance 
• rf power > 4 W 
• de to rf conversion > 80% 

C T.ube power amplifier and electronic. module performance 
• Nol.e .uppre •• lon > 20dB (within 1 MHz of carrier) 

D Power module perfoh __ """ce 
• P / A efficiency > 80% 
• rfl < CCIR guideline. 

E Subarray/rectenna performance 
• P / A efficiency > 80% 
• rfl < CCIR guideline. 
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1 NASI\ Solar Power 

Satellite 

.,.... ..; 

Ph.se Control System 
ProJect· 
Objectives 

De.lgn, manufactur., t •• t and analy.l. of a pha.e 
control .y.t.m to v.rlfy p.rformanc. r.qulrement. 
(remalnlngl •• u •• ) 

• D.flnltlon of ground-bas.d/hybrld .y.tem 
• A ••••• m.nt of dlsturb.d lono.ph.rlc .ffect. 
• D.t.rmln. phase nol •• r.ductlon by pha •• control 

loop around power ampllfi.rs 
• Establish rll characteristics of pow.r tran.pond.r 

for DOE envlronmentalstudles 
• Obtain .ngineerlng data for future systam 

performance analysis using full scal. SPS 
comput.r simulation 

• Identify hardware limitation and establish system 
p.rformance criteria 

NI\S/\ .. c .. ···~SOla·r Power' 
Satell;~n 

. " 

Phase Control System 
Project 
Approach 

• Early definition of ground based/hybrid system 
• Early asseasment of disturbed Ionospheric effilcts on 

all phase control systems In conjunction with DOE 
• Early solid state system configuration and phase error 

analysis 
• Br.adboard/prototype hardware testing and 

environmental tests 

• End-to-end system model maintained/updated to 
pr.dlct full- scale SPS performance capabilities as 
hardware development matures 

• Provide engineering support to Integrated sy~'tem tests 

1 1 
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NI\SI\ Solar Power 
Satellite 

.---" .. --.".~ '"Pha •• Control S,.tem 
Project Criteria 

A Pha.e control.y.tem performance 
• Reference dl.trlbutlon pha.e error < 5· rm. 
(referred to 2450 MHz) 

• Power tran.ponder pha.e error < 5· rm. 
(referred to 2450 MHz) 

8 PIA· Pha.e control .y.tem performance 
• Pha.e nol.e reduction < 20 dB [within + 1 MHz 
of carr.er) 

o Pha.e error < 5° rms (referred to 2450 MHz) 
C Power module .yatem performance 

o Phase error < 1 0° rms 
o rfl < CCIR guidelines 

D Subarray ayatem performance 
o Phaae error < 12° rms 
o rfl < CCIR guidelines 

:--------."--------.-.. --~-----"-.----- .... -.. ------'-----
NI\SI\ Solar Power Radiating Module 

Satellite Project 
Objectives 

Design, manufacture, test and analysis of the radiating 
module to verify perforlnance requirements (remaining 
Issu,es) 

• Determine maximum radiating efficiency 
achieveable - SPS goal is 96% 

• Develop measurement techniques for measuring rf 
radiated power levels to the accuracy required 
for SPS components 

• Evaluate low eTE composite materials for 
applications in the expected SPS environment 

13 j 
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NI\S/\ Solar Power 
Satellite 

Radiating Module 
Project 
Objectives 

• Define and characterize performance of potential 
pilot .Ignal receiving technique. 

• Define mechanical alignment. and tolerance. 
In term. of efflclenc; requirement. and ma •• 
production 

• Develop trade-off. between efficiency, tolerance., 
co.t and ma •• manufacture 

• E.tabll.h radiating module criteria and guideline. 
for continued development 

NI\S/\ .... --. SolarPower 
Satellite 

Radiating Module 
Project 
Approach 

• Analytical model develo,pment 
• Verification of efficiency as a function of 

tole,ances and design detaUs 
• Radiating module development 

• Optimize detaU de.lgn for maximum efficiency 
• Develop dlplexlng technique 

• Test hardware fabrication 
• Supply test hardware for power module and 

suba"ay test . 
• Suba"ay efficiency te.t 

• Evaluate a"aylng effects: GAP spacing and 
positioning tolerance 

14 
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NI\SI\ Solar Power 
Sateliilcl 

• Material. evaluation 

Aadl.tlng Module 
Project 
Approach 

• Vlabillt, of low CTE compo.,te. 
• Manufacturing technique.' anal,.,. 

• Anal,.le of fabrication technique. available v •• 
tolerance allowed 

• De.'gn definition 
• Integration of total effort 

• Mea.urement technique. development 
• Te.t technique. 
• Data anal,.I. technique. 
• FacUitle. 
• T e.t equipment 

-'-"" ....... _._" .. _---_._---------- ._----
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( NI\S/\ Solar Power 

Satellite 
Radiating Module Project 
Key criteria 

A Prototype ant.nna p.rformanc. 
• ItR 10 •••• <5% 
• Dlm.n.lonal tol.ranc •• < 30 mill 
• Combining 10 •••• < 2% (.olld .tat. configuration) 

B Prototype ant.nna .nvlronm.ntal performance 
• Th.rmal .ff.ct. < 2% 10 ••• fflcl.ncy 

C Pow.r modul •• y.t.m t •• t. 
• Surface tolerance < 30 mil. 
• ItR 10 •••• < 5% 
• Thermal effect. Ie •• than 2% 10 •• 
• Solid .tate combining 10 •••• < 2% 

D Subarray .y.tem te.t. 
• Tra"amlt efficiency >83% 

,------------------------------------------------------

NI\S/\ Solar Power 
Satellite 

Rectenne Project ....--~­
Objectives 

Design, manufacture, test and analy.l. of an SPS rectenna 
subarray of sufficient size to verify performance 
requ'rements (remaining I.sues) 

• Demon.trate high efficiency antenna - rectifier 
de.lgn. which have potential for low co.t ma •• 
production 

• Determine efficiency level. achleveable - goal of 
approximately 89% 

• Develop detailed under.tandlng of each component, 
element, and array for predicting performance and 
coat. 

• Determine environmental and failure mode 
protection requirement. and Impact. 

• Develop technique. for predicting off-nominal 
performance Including EMI effect, of scattering 

.,,---------------------- ----------------_.-
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--- NASI\-*-~-'Solar p'-o-w-e"r-----~--Rectenn. Project --~--

Satellite Approach 

• Indepth anal,tlcal evaluation of the available 
alternatives at the component, element, a"ay and pane' 
levels 

• Development of anal, tical m06el to assist In evaluating 
design options, predict nominal efficiency, predict 
failure mode effects and evaluate manufacturing 
tolerances 

• Optimize the rectenna deslgn(s) Includlngexperlmentae 
effort 

• Evaluate the effects of Integ,atlng rectenna elements 
Into panels, units, and ,roup. 

• Provide hardw.,e fo, pane"suba"ay test 
• Determine nominal and off-nominal efficiency and 

reradiation characte,lstics for rectenna pane"sub."ay 

18 
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NI\SI\ 

NI\S/\ 

Solar Power 
Satellite 

A EI.m.nt performance 
• Lo •••• < 11% 

B Manufacturing proc ••• 

-------
Rectenn. Project 
Key Criteria 

• Co.t .ft.ctlv. manufacturabillt, d.mon.trat.d 

C Subarra, p.rformanc. 
• Conv.r.lon .ftlcl.nc, > 85% 
• rtl < CCIR guld.lln •• 

-'. -~~ .. -~--~-~~---------------
Solar Power 
Satellite 

Microwave Systems 
Project 
Objectives 

• Eftectlve manag.ment and t.chnlcallnt.gratlon of the 
varlou •• ,.tem .I.m.nt. 

• Experimental verification of critical mlcrowav •• ,.tem 
parameter. (remalnlngl •• u •• ) at .ubarra, l.v.1 

• Verlf, Integrated .,.tem compatlblllt, 
• Performance of mlcrowav. refer.nc •• ,.tem 

configuration 
• Interaction of ke, .ub.,.t.m./element. 

• Determine .pace envlronmentaleff.ctl (remaining 
I •• ue.) 

• Determine rtl characterl.tlc. and effect. for .,.t.m 
performance evaluation and DOE environmental Impact 
.tudle. 

• Tran.mlt antenna rtl characteri.tlcs 
• rli effect. on .elected hardware 
• Rectenna reradiation characterl.tlc. 

20 
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NI\SI\ Solar Power Mlcrow.ve S,stem. 
Satellite Project 

Approach 

• Eerl, te.tltecilitle. requirement. end te.t technique. 
definition phe.e 

• Co.t-effectlve utllizetion of e.l.tlng fecilitle. 
• All ground te.t. (u.e thermel vecuum chember for 

.pece envlronmentel te.tlng end entenne 
renge/.necholc chembe.r for rf redletlon te.tlng) 

• Obtain quenU~etlve performence dete et 
.,Item/.ubl,.tem level. 

• Supported b, component contrector. 
(herdwe,e'englnee,lng) 

---- -----"_ .. 

NI\SI\ Solar Power 
Satellite 

Remalnlnglssu •• 
Microwave Systeml 
En vironmen ta lIy Re/a ted 

1 Validity of the present ionospheric transmission limit 
of 23 mw/cm2 

• GBED evaluation - DOE prime 

2 Effects of heating/disturbing the ionosphere on 
communications 

• GBED evaluation - DOE prime 

3 Effects of heating/disturbing the inosphere on performance 
of microwave system 

• GBED evaluation - NASA/DOE 

4 Electromagnetic compatibility 
• Radiated nolse/harmcnlcs at SPS 
• Reradiated noise/harmonics at rectenna 
• GBED evaluation - microwave systems project 

21 
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NI\SI\ 

NI\SI\ 

I 

~ 

Solar Power' 
Satellite 

4 .. 

---.~-~ '" .-.. -" 

Microwave S,atema 
Project Criteria 

. -~ .. '~-~.~--
--~-'~ 

-----:«,,,--------
A Power ampllfler/pha.e control .y.tem. performance 

• Pha.e .rror < 5% rm. (ref to 2450 MHz) 

• Conver.'on efficiency 80% 

• Nol.e suppre •• 'on > 20dB 

• rfl < CCIR guideline. 

S Power module pe~fc, ~mance 

• Pha.e error < 10% rms 

• Transml.slon efficiency> [de Input to rf radiated) 

• rfl < CCIR guideline. 

• Cooling, corona, multlpactlng test. (after 
component environmental tests) 

-------------,----.~--,--""-"'~ ..... , .. " .. _--
Solar Power 
Satellite 

Microwave S,stems 
Project Criteria 

C Solid state vs tube power module configuration decision 
point 

o Subarray/rectenna system performance 

• Phase error < 12% rm. 

• Overall efficiency > 55% [de Input to recovered 
de output] 

• rfl < CCIR guidelines 

• Safe startup/shutdown 

23 
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NI\SI\ 

8y project 

" ,; - .... ~ .. 

Solar Power 
Satellite 

Microwave System 
GBED 
Cost Summary 

Mlcrow.ve .y.tem. Integ,.tlon .nd te.t 
Power .mpllfler tube/.olld-.t.te 
Ph •• e control .y.tem 
Tr.n.mlt .nten ... (r.dl.tlng module) 
Rectenn. 

113.1 M 
15.7M 

8.3M 
4.7M 
4.0M 

ay oper.tlng Oper.tlng (Include. contr.ctor m.n-hour., 
c.tegory .Imul.tlon., m.n.gement) 128.3M 

ay fl.cal 
year 

Equipment (Include. te.t .rtlcle •• nd te.t 
equipment) 

Facilitle. (Include. modification. and 
operating co.t.) 

11.8M 

8.8M 

YR1 YR2 YR3 YR4 YR5 YR6 TOTAL 

S3.7M S8M S10.7M S10.3M S8.7M S4.4M S48.8M 
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NI\S/\ Solar Power 
Satellite 

Flight ·Sulte •• e' 
Experiment. 

Candidate flight experiment. 
(low Earth orbit) 

• Single power module-redletlng 
• Tube-require •• pece power .uppl, > 50kW 
• Solid .tete-Ie •• power required 
• Pettern could be mepped ~f .eperete co-orbiting 

.etellite evelleble 
• Sube"e, performence 

• Phe.e control-mepplng .eteilite required 
• Thermal control 
• Varleble conflgur.tton If both ph ••• and thermal 

control verified 
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NI\S/\ Solar Power 
Satellite 

System Development 
Test Project 

-,-------------------------------------------------

.... 

NI\S/\ Solar Power ----Gyrocon Power 
Satellite Amplifier 

Potential/ • High power level - multl-megawett 
capabilities • High efficiency N theoretically approaching 100% 

History/status , Ru •• 'an Inventor - O. I. Budker - 1987 
• Development/statu. 

• Russians demonstrated operating gyrocons - 1978 

• 1 MW power, 75% efficiency, CW oppration, 
181 MHz frequency 

• 50 MW power (peak), pulsed operation, 
430 MHz frequenc y 

• Los Alamos scientific labs - 1979/1980 
(P. J. Tellerlco) 

• Design/develop/test - first American gyrocon 
• 650 kW power, 450 MHz frequency 
• Calculated efficiency = 85% 

32 
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... -~ NI\S/\ --Solar Powelr 
Satellite 

T.chnology R •••• rch 
C.ndld.t •• 
Photoklystron 

• O.clll.t ••• t rf wh.n Illumln.t.d b, light 
• rf I. g.n.r.t.d n •• r .ol.r Incld.nc. 
• rf prop.g.tlc)n vector .t right .ngl •• to .ol.r Incld.nc. 
• SPS conflgur.tlon would r.qulr. rf or .ol.r r.fl.ct'on 
• High volt.ge .ol.r .rr., •• r. ellmln.ted 
• de bu. b.r. r.duc.d/.llprlng •• r •• llmln.t.d 
• Proof-of-conc.pt mod. I d.v.lop.d 
• 1 % .fflcl.nc, d.mon.tr.t.d, 10% .ppe.r. po •• lbl. 
• Efflcl.nc" gain, op.r.tlng volt.g •• , ph •••• t.blllt, 

param.t.r. not w.1I und.r.tood .t SPS frequ.ncl •• 
• App.ar. to b. a good t.chnolog, r •••• rch c.ndld.t. 

-.---'---- ----.-""-, .. ~--------
NI\SI\ Solar Power Planned Actlvltle. 

Satellite 
• 1 980 fund.d .ffort. 
• Additional fund.d .ffort. 
• Ground Sased Exploratory Development (GBED) 

• Program overview (DOE/NASA) 
• Microwave systems 

" Reference system 
• System alternative (solid-state) (budgeted) 
• Sub-system alternatives 

• Magnetron (not-budgeted) 
• Ground based phase control (budgeted) 
• Rectenna elements (budgeted) 

• Flight .ultca ••• xp.rlm.nt. 
• Power module - power amplifier, phase control, 

waveguide, cooling, etc. 
• Advanc.d t.chnolog, candldat •• 

• Photoklystron 
• Gyrocon 

• Summary/Discussion 
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