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ELECTROCHEMICAL NIODFLS FOR I'IH: DISCHARGE CHARAC"TFRISTICS
OF 'fllh Nl('hhl_-('AI)MIl ► M CELL

INTRODLI(TION

Basic electrochcmical principles were applied to the scale-.1 nickel-cadn)iun) cell in an effort
to describe its behavior and to predict its operating characteristics. An essentially thern)odynan)ic
approach was taken to arrive at several related but different equations describing its discharge.

This investigation represents but one phase in an extensive effort to characterise the
behavior of the nickel -cadmium cell. The study presented here does not incoq)orate such opera-
tional vari.0Ae ,.. as depth of discharge, long-term aging, rereated cycling, preconditioning, rate of
cha-ge, etc, but merely considers the potent i  ! 'ime characteristics of a "prcconditioncd." fully
chart,cd cel l di .charged at constant cUrrev' - . nstant current operation was selected because it is
simpler to describe and to facilitate ,kmipaiison with the lung-tens experimental data which have
been accumulated in that mode (1).

MODEL 1. SIMPLE. THFRMODYNAHIC MOD11

The reaction taking Mace .it the positnc electrode of a nickel-cadmium cell, i.e., the cathode
during discharge, is usually taken to lie (2,3):

NiOOH + H2O + e	 Ni(011), + OW	 (1)

}

i	 The Nernst equation corresponding to this reaction is

o	 RI	 3N0011 '
I
ll I)	 ,

	

F 'pos - Epos + —' In	 (_a)
nF	 aNr(OH), aoll -

^%hcic I? is the gas I,Iw conaeurt, I the faraday, n the number of electrons, and T the absolute
win perattire. Upon rearranging terms,

RT	 3Ni0011	 RT	 RT
IF IV$- IF	 a

+ ^; Qn	 + F, l'n all`O - ^- fn a()II-	 l^h)
Ni(011),

At the negative electrode tllc reaction 1.+(2)

Cd(O111, + 'e V* Ce + 2 011 -	(3)



The corrccpondmg Nernst equation is

	

EE 	
+ RT Qn aCd(0ll),	

(4a)
neg	 neg 1r.	 2

aCd a011-

or, upon rearranging

i'

	

RT	 aCd(OH),	 RT

	

Eneg = E^ eg +	 Qn	 - — Qn aOH-	 (4h)

	

F	 aCd	 F

The Nernst equation for the net cell reaction would then be given by E cell = Epos - Eneg, or

a	 c	 RT	 aNi00H
Ecell -E pos	 - Eneg + F Qn

RT
-

2F

aCd(OH),
Qn

RT
+	 Qn aH20	 (5)

aN1(OH) 2 a(d

Now let is make the following assumptions:

(a)

	

	 The C d and the Cd(OH)-) at the negative electrode appear as separate solid phases

so that aCd - aCd(011 ), = 1

(hl

	

	 The NiOOH and Ni(OH), at the positive electrode are present in a single phase, i.e.,
a solid solution.

Barnard, Randell and Tye (4,5) have presented evidence in support of this second hypothesis. Under
these cons+itions the activities of NiOOH and Ni(OH),_ would not be uni*,y but could be expressed
as their respective mole fractions:

aNi00H = XNi00H and aNi(OH), - XNi(OH),

If NiOOH and ;Ji(OH), are the only species present in the solid solution, then

XNiOOH +X Ni(OH),  - I

Representing the mole fraction of Ni(OH), by X then the mole fraction of NiOOH would be 1 - X.

The quantity X may also represent the state of discharge, e.g., X = 0 corresponds to the fully
charged material and' X = 1 to the fully discharged. In addition, if one combines the terns involving
activity of water and the standard potentials into a formal cell potential, F", then the Nernst
equation has the form

(1,	 RT	 ^1-X)
Ecell - 1 'cell + 1= fn	 (6a)
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ltnder conditions of curxnt flow the c--II resistance mus' t>< taken into account so that the
discharge curer will have the term

	

F = F° I + R1,Qn I,X ^- i R te	 (6h)

where i is the total cui7e111, R 1) is the call resistance and X is the fraction of discharge.

The formal potential for the• Ctl(OH), /Cd system is reported ( 2) as - 0.804 volts vs. llgi I IgO,

and that for the NiOOHiNi(Ol1) , sN stem as 0.395 volts vs. Ht:/HgO ( 2). Thus the formal potential

L	 for the net eels reaction is 0 3 0 5 + 0.8 01 ► = 1. ")4 volts, and the discharge equation Iwomes

IZl 	 / 1-
F - 1,294 + — In 1	 - i R► t	 (7)

I^

A calculated cure haled on equation 7 is shown ni Figure 1. An e\per:ntental curve
obtained during a capacih test in the franc series of nickel-cadmium hatter tests ( 1, is shown for
comparison. The cell resistance w;I% calculated from the experinicnIA potential at i0`'^ discharge.
A.rreinent with the experimental data i'^ not %c n good. Further discussion o' the errors will he
presented later.

MODUL I1. kloDIFI l) Till RMODYNAMIC hIODI I

Barnard, Randell and T\e (5) have described nickel h}droxide electrode,,. hased oil

 of ' life free eneri y of , 	two species ill solid solution. Tile total free energy of the system
is expressed as the sum of the free energy, of reaction and the free energy of mixing. In addition,
a so-c:Illed "excess energy- terns is included to account for inter.ictions het%%een the species in the
solid. As a result of their trc.i1nient, they arrived it an expression for the potential of the nickel
It\ droxide system:

RT	 I -X 1 RT A
ENa - EcNi + -- l'n ^— I + -- ^— ('X_"

	

1	 ll+al
ill'	 \ X /	 rtl=	RT

A value of A!RT = 0 rei-resents -ideal" behavior and, Ili fact, corresponds to the simple thernio-
dN namic approach of Model I. Values of A/RT = I or - I iepresent respectively positive and nega-
tive devi.ition from ideality. file case \\here A RT _ ' corresponds to the borderline iM tween a
sint,le phase and a two-phase s\ste Ili I he reader is urged to consult the original paper for detail..

When this modified t ict-modynanu. approach is included, the equation for a Ni-Cd dis-
chaige curve becomesC.

RT	 1-X ) RT
H = 1.294 + — Cn	 l + — K 2X-1) - i R

ON

M.

I
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Figure I. Calculated discharge curve based on the simple thermodynamic model, equation (7).
The broken curve is experimental data.

where K = AiRT. The %alue of K was determined by a least squares tit using four different dis-
charge turves obtained from the Crane data. The mean 'best fit" value for K was 0.78,). 'Thus,
the discharge equation becomes

KT / I -X	 K^h

	

F = 1.294 + T U 1 ` + 0.7 
89 

1.= t'X-11 - i Ro	 (Q)

A calculated discharge curve based on equation 9 is shown in Figure 2. As before. an  experi-
mental curve is included for coinpanson. It is immediately apparent that the calculated curve is in
much closer agreement with the experimental cure than is that k I f \1OtIrl I. The effect Of LIitTerenI
\.clue+ of current mid temperature O"ing ekluation' t is shown ill 	 ?.
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Figure 2. Calt:ul,ited discharge curve haled oil 	 modified thermodynamic model, equation (9).
The broken c urve is experimental data.

i

MODFI III. NWDIFII-D THER\IOI)1'NANIIC MODEL WITH VARYING RESISTANCE

In the previous model it %kas assumed that the call resistance remains constan, throughout
the discharge. However. it has teen shown that Ni(OH), in the pure state is a poorly conducting

p-type semiconductor (6-9). Oil charging. n-tyre conductivity can be developed ( 8). It seems
reasonable that the cell resistance would vary with the extent of discharge, reaching the lowest
resistance when full y charged and the highest resistance when fully discharged. To this end. it

was assumed a / p riori that the resistance takes the form R = Rod I - x) where X is the fraction of

discharge. I hus R,, represents the cell resistance when fully discharged. The discmirge equation

then becomes

5
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Figure 4. Calculated discharge cur v e basal on Model III, equation (10).
The '.)roken cur v e is exherimcntal data.

t = = 1.294 + FT N ^ I- /X + f K (-, X-I) - i Ro E:xp(- (I-X )I 	 (10)

As before, K was treated as an adjustable parameter and evaluated by a Ieast stlUares fit. The mean
"best tit' K = 1,973. The calculated discharge cure based on equation 10 is Shown in Figure 4
As Ixfore, an experimental cure is included for comparison.
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MODEL IV. CHRONOPOTENTIOMF.TRIC MODEL

"Chronopotentiometry" refers to an experimental technique in which electrolysis is carried
out at controlled current and the potential is monitored as a function of time (10). The simples,
and most common approach involves electrolysis at constant current. Under these conditions, the
electrolysis reaction proceeds at a constant rate. If the reaction at Mme of the electrodes is the
limiting factor, i.e. if one electrode is much smaller or if it has much less electroactive material
available, then the shape of the potential-time curve will depend primarily on the reactions at 'fiat
electrode. The potentia', assumes values characteristic of the redox couple and varies with time as
the oxidized/reduced concentration ratio changes at the electrode surface. Eventually, after the
concentration of reactant drops to zero at the electrode -,urface its flux is insufficient to consume
all of the electrons which cross the electrode-solution interface. In the case of a reduction, the
potential will then rapidly shif' toward more negative value: until a new second reduction process
can start. The time required for this potential transition to occur is called r, the transition time.
A typical chronopotentiogram is shown in Figure 5.

I IM I — ---ti

Fieure 5. A typical chrono pot-:ntiogram. De quarter-wave potential.
F r 4 . corresponds to the potential it a time t = 1 4 r.
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If elcetron transfer is rapid, the Nernst equation apples. It can he shown (1 1) that the
potential-°ime curve has the form

r/4	 nF

Rearranging the terms within the logarithm one obtains

/ t l '/2

RT 	 1 ; r /
E = E r/4 + nF an	

( l
^/^	 I 1 1 e )

\ T /

Since electrolysis is being carried out at constant current the amount of charge passed at :,ny time,
t, after the start of electrolysis is given by the current time product, q = it. In addition, tl. , charge
corresponding to the total capacity of the electrode is given by the current and the transition time,
Q = iT. Thus, the fraction discharged X = q/Q = t/T. In addition, E T/4 = E°' ( I I ). T . y en the
.,ischarge equation is

RT	 1-X^'=
E - 1.294 + F Qr.	

'/2	
- i

^X

A calculated discharge curve based on equation 12 is shown in Figure 6. An experimental curve is
included for compar son.

(12)

10 
0	 10	 :0	 10	 b	 10	 60	 10	 V	 RI	 IOU

It (11111 TIA1111

Figure G. Calculated discharge curve based on Model IV, equation ( 12).
Pie broken curve is experimental data.
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MODEL V. MODIFIED CHRONOPOTENTIOMETRIC MODEL

In the nornlal chronopotentiometry experiment the current is held constant thus forcing
reaction to occur at a fixed rate. The presence of a finite capacitance, which might arise from the
double layer at the electrode-solution interface or within the deposit of active material, introduces
a non-faradaic charging current, i c , proportional to dE/dt. Thus, only a portion, i f , of the total

current goes to the faradaic reaction

	

i= if+ic	
(13)

Even though i is constant, i. and i f vary with time. This effect leads to a distortion of the potential-

time curve. de Vries (1 2) has shown that the charging contribution is represented by the dimen-
sionless parameter

R (RT	 Cd

	

nF, nFC ar 'h	 (14a)
0D

	

(	 )

where Cd is the capacitance, C* the bulk concentration and D the diffusion coefficient. Also

	

n F A D 1/2 n`h ('0	 (141))
if r - _	

2

which is known as the Sand equation ( 13). Rearranging equation 14a one obtains

C
n F D^/: r ' Co = R,̂	 d /'	 (14c)

K T -

and from equation 141)

it T = n F D2 n : C0A

Then,

2 if T	 RT	 C{

A	 nF Kr/2

(14d)

(14e

i,

10



s

^a
0

Solving for 1 /r,

1(2RT

nF 	 K

T 	 CdA if

and

t	 2nF	 K	 2nF	 K

r	 RT	 CdA if t	 RT	 CdA X
	 (15)

where X = i f   is the fraction of discharge. Substituting equation 15 into equation 122 and letting

(K/Cd A) = K one obtains

'/	

i RO	 (16)

2

	RT 	 1 - (RT 
K X

JE = 1.294 + F Qn	 - 

\RT KX)t/2

The value of K was evaluated by a least squares fit of the experimental discharge curves. The mean
best fit value for K was 0.01208. The equation for the discharge curve then becomes

^'h
`	 _	 + RT	 1 - (0.02416 RT X^

E	 1.294	
F 

Qn	
/	

- i RO	 ( 17)

10.02416 F Xl ^^Z1
i,	 The calculated discharge curve based on equation 17 is shown in Figure 7.

(14f)

Figure 7. Calculated discharge curve based on Model V, equation (17).
The broken curve is experimental data.



COMPARISON OF THE MODELS

The equations corresponding to the models discussed in this report are summarized in
Table 1.

For each model, an error distribution was calculated with respect to each of the four experi-
mental discharge curves. A tvpical set of error curves is shown in Figure 8. A summary of the
respe(-tive standard deviations is shown in Table 2. As might be expected, Model I is in p-.or agree-
ment with the experimental 6ata (see Figure 1, Figure 8 and Table 2). None of the calculated
discharge curves is in complete agreement with experiment for the full discharge. For Models II,
111 IV and V, agreement seems quite good for 50- 1007c discharge (see Figures 2, 4-8 and Table 2).
Standard deviations calculated for the full curve, 0-50% discharge and 50 - 100% discharge are
included in Table 2. In each case, however, agreement is poorest in the initial portion of the dis-
charge curve.

Table 1. Summary of Equations for the Five Models

Model Equationa

RT
I	 Simple Thernodynamic E = 1.294 + ^XQn {

J - 
i Ro

RT
11	 Modified Thermodynamic E = 1.294 +

L_X—)

X
	

RF
Qn
 (

+ 0.789	 (2X -1)

- i Ro

RT (1-X 1	
RTIII	 Modified Thermodynamic E = 1.294 +

Qn	
+ 1.973	 (2X-1)

)with Varying Resistance nF ` X	 nF

- i Ro e-(I _X)

R '/z
IV	 Chronopotentiometric E =	 1.2294 + 1X̂X—Qn j	 I - i R0

V	 Modified
\^2

1 -(.01208	
T 

X
RChronopotentiometric F	 =	 1.294

RT
+ — fn J - i Ro

nF 2nF	
^'2

(.01208	 X )
RT

a X is the fraction of discharge, Ro is the cell resistance

12
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Figure 8. Typical error curves for the five models.
The curves shown are all with respect to the same experimental discharge.
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Table 2. Comparison of Errors for the Models

Standard_Deviation b, millivolts
Modela	0-100%	 0-50%	 50-100010

1	 14.4 13.9 14.8

11	 8.1 9.5 5.7

111	 9.7 11.1 7.6

IV	 13.2 14.0 12.0

V	 10.8 14.0 6.4

aCorrespond to the equations listed in Table 1.

bEach standard deviation is the mean for the four experimental discharge curves

None of the models accurately represent the initial portion of experimental discharge
curves. The disagreement may be the result of an artifact in the experimental procedure used to
collect the discharge data or perhaps the models neglect some fundamental process which occurs in
the early stages of discharge. This problem certainly warrants further investigation.

Models If and III appear to agree more closely with experiment than do the others. Best
agreement in all regions of the discharge curve is found with Model II.

14
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