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EXECUTIVE SUMMARY

The purpose of this study is to select the "best" technologies for the
envirormental control subsystem (ECS) in electric and hybrid vehicles. The
"best" technology must be selected from technologies that are available in
the near term. The selected technology will serve as a basis on which
development of a prototype ECS could start immediately.

The technology selected as "best ECS for the electric vehicle is the
combination of a combustion heater and gasoline engine (Otto cycle) driven
vapor compression alr conditioner. A1l of the major ECS Components. j.e.,
the combustion heater, the small gasoline engine, and the vapor compression
air conditioner are commercially available. These technologies have good
cost and performance characteristics. The cost for this "best" ECS is
relatively close to the cost of current ECS's. At the same time, its
effect on the vehicle's propulsion battery is minimal and the ECS size
and weight do not have significant impact on the vehicle's range.

The required technology also minimizes risk for the vehicle manufacturer
because little new capital investment will be needed to produce the ECS.
Since electric vehicles are 1ikely to be in limited production for several
years, the technology 1s appropriate for the market size.

The "best" ECS for the hybrid vehicle also uses a combustion heater.
The vapor compression cooling system can be driven electrically or, if
conditions permit, mechanically from the main propulsion system. Again,
the main characteristics of this choice are reasonable cost, good perfor-
mance, and minimal financia) risk to the vehicle manufacturer.

In the design of both ECS systems, ventilation loads are reduced by
restricting the level of ambient makeup 27r used in the ECS. Most of the
inter{or air will be recirculated through a charcoal filter bed to provide
odor control. Solar radiation loads through the windows will be reduced by
use of tinted glass and rear window louvers. Waste heat from the propulsion
system will be recovered to minimize fuel consumption in the heating mode.
For the hyorid vehicle, waste heat from the heat engine will supply all the
heat on longer trips when there is significant heat engine operation.
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How the “Best" ECS is Selected

Selection of the "best” ECS s an important part of the vehicle's
design because the ECS 1s an energy intensive subsystem. It must provide
heating and cooling of the passenger compartment, defrosting and defogging
of the windshield, and temperature control of the battery pack. These
services must be provided under extreme climate conditions which place
high energy demands on the vehicle's energy sources.

In order to select the "best" ECS, the study 1s organized into several
key steps. First, the functional requirements for the ECS are determined.
Next, a rating scheme is devised to evaluate the ECS alterratives. About
thirty potential ECS elements are identified. Descriptions and character-
izations are prepared for each element to serve as the basis of the evalu-
ation procedure.

The actua) evaluation s carried out as a multi-step process. Initially,
inappropriate ECS elements are eliminated. Separate heating and cooling
elements are combined to produce total ECS's. These are ranked and 2 "best"
ECS selected. Separate evaluations are made for the electric and hybrid
vehicles.

Development of the Functional Requirements

Separate functional requirements are developed for each of the following:

Passenger Compartment Heating and Cooling
Windshield Defrosting and Defogging
Battery remperature Control

Simple steady-state models are developed for calculating each set of loads.
The passenger compartinent model accounts for conduction, ventiiation, solar
radiation and interior heat loads. Calculations for the windshield defroster-
defogger loads cover the requirements of Federal Motor Vehicle Safety Standard
103, as well as dynamic deicing and defogging conditions. The passenger com-
partment and defroster loads are used to determine the heating and cooling
capacity of the ECS. Battery heating and cooling loads are found to be
relatively small, unless rapid battery charging is involved.
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One important result from development of the functional requ!rements
s the understanding gained regarding techniques to reduce the ECS loads.
Two means of reducing the ECS load are by use o recirculating ventilation
system and by 1imiting the solar radiation Yoad: Reduced ECS loads allow
for the use of smaller and less cos:ly ECS e'ements, reduction of ECS energy
requirements, and reduction of ECS impact on vehicle range.

Evalustion Methodology

The evaluation of the altermative ECS technologies depends on the
following four majocr factors:

- The rating score

- The range penalty

- The status of technical development
- Appropriateness for market size

The rating score is devised as an overall guantitative measure of how
well each ECS compares to a hypothetical baseline technology. The ideal
system will have a rating score of 100, while real systems are somewhat lower.
Relative cust 1s the most important factor in the rating score. Weight, size,
ard energy use are also utilized in this calculation. Energy use is based on
the use of liquid fuels by the ECS.

The range penalty is a measure of how much the vehicle's range will be
reduced by the ECS. For the electric vehicle, range penalty reflects the
ECS's electrical energy use, size, and weight. For the hybrid vehicle, only
energy use is reflected in the range penalty.

Status of technical development is an important criteria in selection
of the "best" ECS. Only existing or near-term technologies can be selected
for the "best" ECS. Potentially superior technologies available in the mid-
term can be recommended for extenfive development. Very long-term technolo-
gies are not considered.

Finally, the technology selected must be appropriate fo. the market size.
Technologies for vehicles 11kely to be in limited production, juch as near-
term electric and hybrid vehicles, should be available from other markets
where they are already in large scale production. This reduces the risk and
requirements for capital invistment by the vehicle manufacturer until the
market justifies such an {nvestment.




8 1 RINEIRERNETINEN T TRe e e o -

ECS Elements Considered

A wide range of technologies are considered in the ECS element evalu-
ation. The largest group of ECS elements are those involving energy con-
version. This includes direct conversion technologies, 1.e., combustion
and resistance heaters. It also involves a large number of heat pump
cycles, including the more familiar vapor compressionr and reverse Brayton
cycles. The heat pump options also include the less well known Ericsson
and hydride cycles. The hea: pumps can be driven electrically, by direct
heat (e.g., absorption cycle) or by a heat engine (such as the Otto,
Stirling or Ericsson cycles).

Energy storage systems are also considered as ECS elements. Energy
can be stored thermally for heating or cooling purposes. Energy can also
be stored in reversible chemical reactions or in heat of solution.

A variety of other ECS elements; are also examined. These include the
use of charcoal filters to provide odor control with a recirculating venti-
Tation system. Tinted window fiims and rear window louvers are also
examined as means of providing control of solar radiation inputs.

Elimination of Inappropriate Elements

A number of technologies are simply inappropriate for the vehicle require-
ments. Some technologies, such as the hydride and jet compression heat pump,
require very long development times. Most of the energy storage techniques
are efther too heavy or too expensive for vehicular applications. For the
electric vehicle, none of the ECS's can be electrically ¢perated without
range penalties of over 20 percent. Technologies eliminated as inappropriate
are not included in the detailed evaluation process.

Evaluation of the "Best" ECS

There are several strong contenders for the "best" ECS in the electric
vehicle. Among the contenders is the combination of the combustion heater
and the gasoline engine (Otto cycle) driven reverse Brayton cycle (ROVAC).
The principle reason for selecting vapor compression over the ROVAC is that
vapor compression is already in widespread automotive application. Although
the ROVAC s sliyghtly more favorable in terms of cost, the difference is
not sufficient to justify a major changeover in technology.
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For the hydrid vehicle, EfS's based on the ROVAC cooling cycle are
potentially competitive, but not sufficiently attractive to warrant
changing to a iew technology. Huwever, there are several approaches to
driving the cooling system which are essentially equivalent. The direct
mechanical drive appears to be the best, assuming there is no negative
fmpact on the main propulsion system. An arrangement could be provided to
“declutch" the ECS under conditions of maximum Yoad on the propulsion system.

ECS Prototype Development

The development of a piototype ECS should emphasize three key points.
First, the components selected for the ECS must be "qualified" for auto-
motive service. Next, the detailed system design must be integrated so the
components work properly in all possible modes of system operation. Finally,
the ECS must be extensively tested to make sure it actually meets its
operational requirements and market acc.ptability criteria. It will also
be desirable to test the ECS for reliability over the expected vehicle
Tifetime.

The development process would be done in several stages. Most likely,
new designs for the ECS would be prepared for a specific vehicle or vehicle
type. A bench test ECS would be constructed and extensively tested in the
Jaboratory environment. When this is completed, a final ECS desian would
be "repackaged" and the vehicular ECS built. The vehicular ECS wnuld be
extensively tested in the vehicle and modified until a satisfactory design
was obtained.

Since the electric and hybrid vehicle ECS's are very similar, it would
be best to concen.rate on the electric vehicle ECS development. The exist-
ing electric vehicle market is growing and is likely to remaind larger
then the hybrid vehicle market for the next several years. Most of the
hybrid vehicle ECS features, such as the recirculating ventilation system
and control of solar inputs, could be integrated into the current hybrid
vehicles ECS design. The current (Phase 11) hybrid vehicle design already
has provisions for a combustion heater and a mechanically driven vapor
compressiot cycle air conditioner. (See Reference 9-2).
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The ECS prototype s estimated to require about a year to develop.
The basic labor costs for the development wili be about $250,000.
Additiona) costs for components, materials, and test facilities are
not estimated but potentfally can ada significantly to the total
program costs.

More Extensive Prototype Development

Certain technologias potentially offer ECS designs that would be more
efficient, as well as smalier and lighter. Based on the data aviilable to
this study, the Ericsson Ericsson and Electric Ericsson cycles, unaer
development by Energy Research and Generation appear to be the most
attractive. However, because of the uncertainty surrounding vehicle
technology from factors such as:

- Improvements in battery technology
- Future fuel and electricity prices
- Relative market penetration of electric and hybrid vehicles,

a specific program of technisal development cannot be recommended.
Research efforts should be focused on obtaining detailed characterizations
of attractive advanced heat pump technologies. Data from such c aracteri-
zations would allow clearer decisions to be made about specific yroduct
developments utilizing these technologies at a future date.
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1.0 INTRODUCTION

1.1 PWRPOSE

The purpuse of this report is to provide a complete summary of the
Electric and Hybrid Vehicle Environmental Control Subsystem Study. The
intention is for this document to provide complete documentation of
the study. However, occasional reference to the interim reports of this
study may be required (References 1-1, 1-2, 1-3, and 1-4).

1.2 SCOPE

To achieve these goals, the report provides complete coverage of all
ten tasks described in the statement of work (Reference 1-5). An overview
of the main tasks of the project is given in Figure 1-1. The main elements
of the project are as described in the following paragraphs.

In Task 1, the functional requirements for the environmental control
subsystem (ECS) are developed. This information is used in Task 2 where a
rating scheme is developed to evaluate the candidate technologies. The
1ist of candidates is generated in Task 3 and specific information about
each candidatz is developed in Task 4. C(Candidates which are clearly
inappropriate to meet the functional requirements are eliminated in Task 5.
The remaining elements for the electric vehicle are ranked in Task 6. The
"best" ELS for the electric vehicle is selected in Task 7. Task 8 covers
the special recuirements to cool the battery pack. A separate evaliation
of ECS alternatives was made for the hybrid vehicle in Task 9. Estimates
for ECS prototype development were made in Task 10. This report is part of
Task 11.

The major data sets collected during these tasks, as well as the
models and evaluation procedures developed, are summarized in this report.
It includes separate findings on the "best" ECS for electric and hybrid
vehicles. Reconmendations are also made for future work in developing
these ECS's, with estimates of the resources required.

1.3  ORGANIZATION OF THE REPORT

The remainder of the report is organizec essential by the task
outline. The only difference is that Tasks 3 and 4, as well as Tasks 6 and
7, have beern combined into single sections. Parallel methods were followed
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in the selection of the electric and hybrid vehicle ECS's.
the correspondence between tasks and sections of the report.

sunmary has been added in Section 10.

Task Numbers

Table 1-1.

]
2
344

6 &7

10
N

anc Report Sections

Task Titles
Development o Functional Requirements
Development of Rating Scheme

Identification and Description of
ECS Elements

Elimination of Inappropriate Elements

Ranking of ECS Elements and Identification
of the "Best" ECS

Impact of Battery Cooling ECS
"Best" ECS Reassessment for Hybrid Vehicle

Estimates for ECS Prototype Development

Documentation and Final Briefinag

1-2

Correspondence Between Task Numbers

Table 1-1 gives
A general

Report Section_

2.0

9.0

A1l Sections
including
10.0
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2.0 DEVELOPMENT OF FUNCTIONAL REQUIREMENTS

2.1 METHODOLOGY

The functional requirements for the environmental control subsystem (ECS)
arise from three sources. First, the vehicle's use patterns determine how
often the ECS will be required to operate and for how long a period. The
range of climate conditions encountered determine the capacity requirements
for the ECS to nrovide passenger comfort under extreme conditions. These
factors need tuv be combined with physical modeis of the vehicle and vehicle
systems to determine the functional requirements for the £CS on a sound
engineering basis. This section of the report discusses the methodology
for development of the tunction:] requirements.

. .1 Develepment of Trip Scenarios

The main characteristics of vehicle trips that affect tCS operation
are trip time and daily frequency. However, in studying vehicle use
patterns, the data is «ften given in terms of trip length. Thus, vehicle
speed must alsc be determined in order to calculate trip time.

The most comprehensive source of data on personal transportation use
is the Nationwide Personal Transportation Study (Reference 2-1). This
studv was designed to obtain up-to-date information on national patterns of
travel from 1970 Census data. Although the data is indicative of behavior
before the =nergy price in.reases of 1973, the results are likley to be
conservative. That is, today's vehicle trips are shorter and less frequent
because of motorisi's cesire to save fuel.

Work 2nd Shopping Trips

Tabie 2-1 summarizes the key characteristics of work and shopping
trips. To characterire shopping, it is probably bette: to use the broader
category "family busir-ss" which incl.des shoppinyg trips as a subset. The
results of Table 2-1 show that over 5u% of all vehicle miles are trips of
relatively short duration. Naturally, this average data must be used with
some caution since the distributions of trip length and time are rather
broad.

2-1
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Table 2-1. Characteristics of Major Auto Trip Types

Trip Characteristic

Average Length (km)

(mi)
Average Speed (kph)

(mph)
Average Duration (Min)
Frequency (per day)
Percentage of Vehicle Mil:-

*Home to work and work to home.

[ ]
Work

15.0

9.3
38.5
23.9
23.3

(g% ]

33.7

*'90 percent are Monday through Friday.

2-2

Trip Type
Family
Shopping Business
1.1 9.0
4.4 5.6
29.0 29.0
18 18
14.7 18.7
0.5 1
7.5 19.3

Source:

Reference 2-1 Report #10
Tables 9 and 10



The implication of these short trip times is that ECS must respond
quickly to be effective. On the other hand, vehicle use is basically
infrequent; that is, most of the time the vehicle is parked at rest.

Trip Simulation

For purposes of evaluating and testing vehicle behavior, it is useful
to characterize these trips in terms of the standard driving cycles. For
the electric and hybrid vehicles, the characteristics of the Jet Propulsion
Laboratory (JPL) modified Society of Automotive Engineers (SAE) "D" cycle
are appropriate.

These characte-istics are on a per cycle basis:

Distance « 1.57 km (0.977 miles)
Duration - 122 seconds
Average Speed - 46.4 kph (28.8 mph)

Thus, the work trip can be represented by 9 or 10 "D" cycles, and the
family business trip by 5 or 6 cycles. The lower average speed during the
trip could be simulated by adding longer pauses between the individua)l

cycle runs.

Maximum Range Scenario

Occasionally, a vehicle has to make a very long trip. For the
electric vehicle, this trip length is limited by the battery storage system
+0 about 105 km (65 miles ) or 66 "D" cycles. However, such trips
represent only cne percent of all trips (Reference 2-2), and therefore are
rather infrequent. Such a trip would have a duration of about 2.2 hours.

The hybrid vehicle, by contrast, can operate for much longer periods
of up to 10 hours. The implications of this ECS design are discussed in
Section 8.0.
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2.1.2 Climate Conditions

The thermal criteria for this study are based on the JPL Guidelines
(Reference 1-5). These guidelines suggest the following design
temperatures:

Winter: -29°C (=20°F)
Summer: 49°C (120°F) bry Bulb

Comparing these conditions with winter and summer design conditions given
by ASHRAE (Reference 2-3) for extreme climates in the continental United
States, these conditions seemed reasonable. (For the summer conditions,
the appropriste wet bulb temperature was taken to be 29°C (85°F).)

However, it should be pointed out that automotive systems are general
designed for more relaxed conditions. Heating systems are dasigned for
-18°C (0°F) (References 2-4 and 2-5). Cooling systems are typically
designed for 38°C (100°F-dry bulb), 26°C (78°F-wet Lulb) (References 2-4,
2-6, 2-7).

Solar Radiation Loads

Solar radiation input through the vehicle's windows varies with:
Latitude

Time of day

Time of year

Local atmospheric conditiore

Vehicle design

Vehicle orientation

At any given instant, however, the solar radiation is an unknown component

which can contribute to the ECS requirements. System designs are based on

the maximum radiation levels that are encountered. Hence, it is sufficient
to know that the maximum solar input anywhere in the United States is about
946 watt/m (300 Btu/ft? -hr) (Reference 2-8).

2.1.3 Overview of Development of Functional Requirements

The approach to developing the ECS functional requirements is broken
dowih into three separate requirements. These requirements are:

- Passenger Compartment Heating and Cooling

- Windshield Defrosting and Defogging

- Battery Environmental Control System
The second item includes the requirement to meet Federal Motor Vehicle
Safety Standard (FMVSS) 103.
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Passenger Compartment Heating and Cooling

The approach used to develop the functional requirements for the
passenger heating and cooling systems is given in Figure 2-1. The key
elements of the approach are as follows:

1. Performance of current vehicle heating and cooling systems will be
characterized from reported test data.

2. A simple vehicle heat loss mode! will be developed accounting for
conductive, convective, and rsdiative heat transfer. The loss
mode! will be utilized to estimate vehicle heating and cooling
requirements for the extreme climatic conditions, different
ventilation levels, and passenger 10ads. The analysis assumes a
favorable management of the solar input and ventilation loads.

3. Trip scenarios for work and shopping will be constructed from
basic vehicle use pattern data. The time required to reach steady
temperature will be characterized in terms of performance of
current heating and cooling systems, as well as fraction of trip
time. Requirements for system capacity under the maximum range
(66 "D" cycles) scenario will also be investigated.

Windshield Defrosting and Defogging

Three separate requirements for heating the windshield are examined.
These requirements include:

- The Federal Motor Vehicle Safety Standard 103 Test

- Dynamic Deiceing

- Dynamic Defogging
The heat requirements are calculated for a heater embedded in the
windshield, as well as a moving air stream defroster. The maximum load
from these three requirements will determine i{ne defroster's capacity.

Battery Environmental Control System

A general approach to developing the requirements for the battery
environmental control system is outlined in Figure 2-2. The key elements
of this approach include the following:

1. An allowsble temperature range for the battery will be determined
from the JPL Guidelines (as revised in Reference 2-9).

2-5
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2. A battery thermal model and a battery heat loss mode! will be
developed. Battery heat evolution will be studied for a variety
of operating modes including:

- Charging

- Work, family business and maximum range trips
- Hill climbing (maximum power)

- Cold soak

3. Functional requirements for heating and cooling the battery will
be determined for the worst heat loss mode. The heating and
cooling system will maintain the battery pack in the desired
temperature range.

2.2 PASSENGER COMPARTMENT HEATING AND COOLING

2.2.1 Vehicle Heat Loss Model

The vehicle's requirements for heating and cooling can be defined in
terms of a simple mode) for the vehicle's heat losses and gains shown in
Figure 2-3. The heating and cooling system must supply or remove the heat
needed to balance “he other system inputs in steady state operation. The
main terms in the heat balance are:

Conduction
Convection

Solar Radiation
Interior Heat and Moisture Sources

Mode! parameters will be used for subcompact, four passenger vehicles that
are similar to the prototype electr ¢ vehicles being developed in the DOE
Near Term Electric Vehicle Program.

Conduction

Heat is transferred to or from the passenger compartment by the
vehicle's structure, including the body panels and window glass. Reference
2-10 reports of an experimental technique of measuring the heat transfer
coefficient by means of wind tunnel tests in which the vehicle is treated
as a heat exchanger. The overall heat transfer coefficient is found to be
a function of both vehicle velocity and internal infiltration ventilation
air flow. A typical value of body conductarnce for a small vehicle was
taken to be 40 watts/°C (21.1 Btu/hr-F°), based on the data in References
1-1 and 2-10.

2-8
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Convection

Outside air is normally brought into the vehicle through the
ventilation system to ensure fresh air for the passengers and minimiz: the
potential build-up of carbon monoxide in the vehicle compartment. Because
the natura) ventilation rate is low, a supplementary fan is usually added.
The fan increases ventilation air flow at low speeds.

Reduced ventilation air flow is acceptable in electric vehicles,
because there is less concern about buildup of exhaust fumes in the
passenger compartment. However, other requirements such as odor control
need to be considered. For vehicle operation with 4 passengers, 255 m3/hr
(150 c¢fm) of ventilation air is needed to provide adequate odor control.
(References 1-1 and 2-3.)

Preliminary calculations show that allowing this high ventilation
level results in large heating and cooling loads. A desirable approach
would be to achieve odor control by other means such as recirculating the
air flow through a charcoal filter (see Section 4.4). Thus, the total
ventilation flow (make-up air) would only be about 43 to 77 m/hr (25 to 45
c¢fm), for adequate ventilation. This would require changes from current
ventilation system design practice.

Solar Radiation

As discussed earlier, incident solar radiation on a horizontal surface
can reach peak values of 94¢ watt/m2 (300 Btu/ftz-hr). To reduce this heat
load, shaded or tinted glass is used. Tinted glass only transmits 62% to
68% of the radiant heat (References 2-11 and 2-12). Also, the rear window
is assumed to be covered with horizontal louvers which are estimated to
reduce the heat transmission to 25% or less.

The solar radiation load was calculated on the basis of the projected
glass area in plan view (sun directly overhead). The DOE near-term
electric vehicle developed by Garrett (Reference 2-13) has a projected

glass area of 2.56 (276 ftz) which was taken as a typical design

2
exampie, 0.83 m2 (8.9 ft“) of this area is in the rear window.

Hence, for this vehicle, the estimated solar radiation load is 1941
watts (6624 Btu/hr). This could be reduced to 1011 watts (3451 Btu/hr) by
the use of tinted glass (65% transmission) and rear window louvers (25%

2-10
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transmission). This estimate is approxiimate. It does not fully account
for diffuse sky radiation or ground reflection as additional potentis’ heat
inputs.

Interior Heat Sources

The vehicle interior has two principal heat suurces: its occupants
and auxiliary equipment, such as ventilation fans, operating in the
vehicle's interior. Heat gain from occupants is tabulated in Reference 2-3
and shown in Table 2-2. Heating and cooling loads were based on maximum
rehicle occupancy of four persons. An accessary heat load of 146 watts
(500 Btu/hr) was assumed for interior electrical equipment.

2.2.2 Steady State Heating and Cooling Loads

The purpose of the vehicle's heating and cooling system is to make the
passengers comfortable. Extensive studies of comfort (Reference 2-3) show
that a sedentary lightly clothed person is comfortable in a temperature
range of approximately 22 to 25°C (72-77°F) and 20 to 60% relative
hunidity. However, the comfort temperature will decrease with heavier
clothing, and increase with increasing air velocity surrounding the
person. The somewhat more active vehicle driver, if also more heavily
clothed, may be comfortable at much lower temperatures. Thus, the heating
requirement was based on 18°C (65°F) steady state temperature.

Experimental tests (Reference 2-14) in a simulated vehicle environment
indicate that people will report having achieved "comfort" at interior
temperatures as high as 35 to 38°C (95-100°F). This is because their upper
torso and face are subjected directly to the ventilation jet from the air
conditioner. This effect can allow the vehicle occupants to achieve
comfort in a fraction of the time required to reach comfortable
temperatures throughout the vehicle interior.

For purposes of this analysis, the steady state air conditioning
capacity was calculated. Capacity was calcualted for an equilibrium
interior condition of 25°C (77°F) and 40% relative humidity (RH). However,
this is done with the realization that passenger comfort can potentially be
achieved at higher average temperatures.

2-11



Table 2-2. Total Heat Gain from Vehicle Occuplnts’

Total Adjusted”

Heat Load
Activity of Occupant (watts) (Btu/hr)
Driver (Moderately Active-Seated) 149 (510)
Passenger (At Rest-Seated) 100 (340)

+Totﬂ heat includes sensible and latent heat.

*AdJusted for a mix of men, women, and children.

Source: Reference 2-3
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Tables 2-3 and 2-4 summarize the steady state requirements for the
heating and cooling system as derived from the vehicie heat loss model.
For purposes of heat transfer calculations all air flows are assumed to be
at 15°C (59°F) and standard atmospheric pressure of 101 kN/m2 (14.7 psia).
The specific volume of air is 0.82 m3/kg (13.1 ft3/1b). “he specific heat
of air at constant pressure is 4.17 kJ/kg-°C (0.24 Btu/1bm-°F).

It is clear from this model that therz 15 an important trade-off
between steady state requirements for heating and cooling and ventilation

flows. In general, under extreme heating or cooling loads, it is highly desirabl:

to minimize ventilation flows by use of a recirculating air system.

Figures 2-4 and 2-5 show how the heating and cooling loads are reduced when
a recirculating air system is used. The ventilation rates of 43 to 77
m3/hr (25 to 45 cfm), are considered to be appropriate for determining the
design capacities of the electric and hybrid vehicle ECS.

In new vehicle designs, other inputs such as solar radiation should
also be managed effectively. Attention should be given to minimizing glass
area, particularly the plan view area, to minimize steady state cooling
1oads.

A Comparison with Performance of Current Heating and Cooling Systems

Heating and cooling systems in current vehicles have usually been
generously sized. Heating systems typically provide capacitie. of up to
7.3 kW (25,000 Btu/hr) (Reference 2-7). Since very large amounts of waste
heat are available from the engine cooling jacket, extra cap ~ity is easily
obtained.

Tests on heater defroster systems in current vehicles show that most
vehicles reach full heat capacity in about 10 minutes from an -18°C (0°F)
cold start. Typical systems have outlet temperatures of about 59°C
(135°F).

Cooling systems with capacities from 5.3 to 7.0 kW (18,000 to 24,000
Btu/hr) are typical of those found in U.S. cars [leference 2-6 and 2-7).
Smaller vehicles have slightly lower cooling requirements, but system
capacities are often restrained more by space requirements than other
considerations.
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Table 2-3. Calculation of Steady State Heating Requirements
(For 4 Passengers)

Goal

Ty = 18%C (65°F) at T, = -29°C (-20°F)
Conduction

Qe = K (Tp = Tp)

K = 40 watts/°C (21.1 Btu/hr-°F)

Q¢ = 1887 watts (6441 Btu/hr)
Infiltration

Q= €Ty =Ty

v = 255 m3/hr (150 cfm-Full ventilation load for 4 passengers)
C = 5.08 kd/m>-°C (0.0183 Btu/ft>-°F)

QL = 4103 watts (14000 Btu/hr)

Solar Radiation

Assumed » 0

Interior (Passenger)

Driver & 3 Passengers = -448 watts (-~1530 Btu/hr)
Tota)
Qr = 5542 watts (18911 Btu/hr) .

(This could be reduced 1f 147 watts (500 Btu/hi; =" interior loads
from electrical equipment were credited.)



Table 2-4. Calculation of Steady State Cooling Requirements
(For 4 Passengers)

Goal

TI = (25°C) (77°F-RH = 40%) at Ty = 49°C (120°F) Tu!t bulb " 29°C (85°F)
Conduction

LU Y

K= 40 watts/°C (21.1 Btu/hr-°F)

Qc = 955 watts (3258 Btu/hr)
Infiltration

Q =V o

VL = 255 m3/hr (150 cfm-Full ventilation load for 4 Passengers)

aH = (Enthalpy change of air-water mixture - Enthalpy of condensed
water vapor)/Specific volume of dry air.

Enthalpy change of air-water mixture = 55.7 kJ/kg (24 Btu/1b) of dry
air

Enthalpy of condensed water vapor = 0.56 kJ/kg (0.24 Btu/1b) of dry
air

Specific volume = 0.82 m3/kg (13.1 ft3/1b) of dry air at 15°C (59°F)
&H = 67.4 kd/m> (1.81 Btu/ft3)
Q_ = 4774 watts (16290 Btu/hr)
Solar Radiation
QR = (from Section 2.21) 1011 watts (3451 Btu/hr)

saterfor (Passengers and Auxiliary Equipment)

QI = (Driver, 3 Passengers, and auxiliaries) = 595 watts (2030 Btu/hr)

Total
Qy = 7336 watts (25029 Btu/hr)
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Coul down response times for aviomotive air conditioners are not
determined by any standard test procedure. In the heating system, the
response time is largely governed by the large thermal inertia of the
engine and its cooling system. The air conditioner thermal inertia by
contrast, only involves a few pounds of refrigerant and the evaporator
core. Thus, the air conditioning system itself probably reaches full
capacity in one minute or less.

However, the response of the entire vehicle system to cooling is much
slower. This is because temperatures in a vehicle soaked in simulated
sunlight conditions can easily reach 60°C (140°F) (Reference 2-14). The
time to achie.e an equilibrium temperature can vary from 10 to 30 minutes
(References 2-4, 2-6, and 2-14), depending on initial and ambient
temperature and insolation conditions. As noted earlier, passenger comfort
will likely be achieved before the vehicle interior has reached equilibrium
because the passengers are subjected Lo the jets of cool air from the air
conditioner,

2.2.3 Qperating Profiles

Figure 2-6 shows a comparison of current vehicle ECS response time is
sufficiently rapid that full heating is available for at least half of a
typical trip. The air conditioner response time is longer and full cooling
may not be achieved throughout the vehicle during the trip. However, the
front seat passengers will achieve comfort in a shorter period, by virtue
of directly receiving the cool jets of air from the air conditioner. For
Yonger trips, all systems achieve full conditioning of the passenger
compartment.

The performance of current ECS systems can set the standards for the
operating profiles of new ECS systems. A new ECS should be capable of
delivering the full heating capacity in 10 minutes. The 2i1r conditioner
should be able to provide comfort to the front seat passengers in the same
time period. This can be done if the system essentially reaches full
steady state capacity in less than 3 minutes after startup. The air
conditioner should essentially achieve equilibrium in 30 minutes.
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A Comment on Vehicle Thermal! Dynamics

No forma® models of vehicle dynamic thermal behavior were found in the
literature surveyed. A1l design work cited in the literature is based on
equilibrium calculations. For conventional heating system design, the key
dynamic element in the response is the thermal warmup cycle of the engine
and cooling system. Response of the vehicle interior to the increasing
temperature provided by the heater is rapid because virtually all of the
infiltration air flows through the heater case. Henc2. the heater
essentially supplies full capacity as soon as the core has reached the
operating temperature.

Cooling system response is potentially more complex to analyze.
First, the initial conditions »re not well defined. Internal temperatures
may be extremely high 2t the start. Most systems recirculate most or al)
of the interior air in the initial cooidown in order to rapidly bring the
vehicle interior to a lower temperature. However, no models or direct
experimental measurements about this process are reported in the
literature.

Only static design considerations are used as a basis for the ECS
heating and cooling functional requirements because there is no data for
dynamic models. Dynamic considerations or requirements will cnly be
expressed in terms which do not require dynamic thermal models.

2.2.4 Discussion of Functional Reguirements

The functional requirements for the vehicle passenger compartment
heating and cooling are summarized in Table 2-5. Where different
requirements were needed to satisfy different conditions, only the more
stringent requirements were listed. The basic assumptions behind the
requirements are alsv summarized.

In general, these design requirements are conservative because
vehicles rarely operate at these extreme temperatures. The key factor in
realizing the dusign levels is control of the ventilation air to 43 to 77
m3/hr (25 to 45 ¢fm), with appropriate provision for od-r control.

Jndesired solar loads and thermal loads can also be reduced by
improving the vehicle's thermal envelope. Tall vehicles, with more
vertical windows, will have lower thermal loads in the summer (overhead)
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Table 2-5. Functional! Requirements for Heutor' and A{r Conditioner

Heater |
] Capable of maintaining a temperature of at least 18°C (65°F) in
passenger compartmert at -29°C (-20°F) ambient.

Heating capacity 5.7 kW (19,000 Btu/hr) with full ventilation load.
Design range 1s 2.2 to 2.8 kW (7,500 to 9,500 Btu/hr) with controlled
ventilation levels.

~N

3. Time to reach capacity 1s less than 10 minutes.

Air Conditioner

1. Capable of maintaining a temperature of at most 25°C (77°F-RH 40%) 1in
passenger compartment at 49°C (120°F) (29°C (85°F) wet bulb) ambient.

2. Cooling capacity 7.5 kw (25,000 Btu/hr) with full ventilation load.
Desfgn range 1s 3.2 to 4.1 kw (11,000 to 14,000 Btu/hr) with controiled
ventilation levels.

3. Time to reach capacity is less than 3 minutes.

4, Time to produce comfort for front seat passengers is 10 minutes.

General Requirements

1. Capable of withstanding mechanical, thermal, vibrational and
acceleration environment of electric or hybrid vehicles.

?. System completely se2led and designed so combustion air and exhaust
products do not enter passenger compartment.

3. Minimizes use oY hazardous materials which could be released in
normal opertion or accidents.

4. (Capable of being packaged and integrated into the vehicle system.

'Defrosting and defogging requirements are discussed in Section 2.3.
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sun. However, this compromises low aerodynamic drag, which fs also
desirable for efficient electric and hybrid vehicles. Some thermel
insulation could be added by foaming door and body panels, or use of
fiberglass components, but detailed examination of this option is beyond
the scope of this study. Design requirements could also be modified by
relaxing the range of climate conditions in which th« vehicle fs expected
to operate. [f exterior conditions for the air con<itioner are relaxed to
38°C (100°F-dry bulb), then the maximum heat load i reduced by about one
third.

Real systems, especially heaters, generally have considerable excess
capacity. Building an extra capacity margin into these system designs
could be considered, if the penalties on vehicle cost and range are not
severe.

Design criteria should also ensure that the technology chosen is
suitable for the electric and hybrid vehicle environment and does not
introduce exhaust fumes or other hazards into the passenqger compartment.
Table 2-5 reflects these criteria.

2.3 WINDSHIELD DEFROSTING AND DEFOGGING
2.3.1 Federal Motor Vehicle Safety Standard 103

Discussion of the Standard

Federal Motor Vehicle Safety Standard 103 requires all vehicles to
have a windshield defrosting and defogging system(Reference 2-5). The
standard outlines a detailed test for each vehicle, which is the basis of
determining if the vehicle's defrosting and defogging system is adequate.

The basic nature of the FMVSS 103 test is simple. The vehicle is
"cold soaked" at approximately -1£€°C (0°F). The windshield is coated with
a thin layer of ice, about 0.44 kg/m2 (0.01 oz/inz). The engine is started
and the defroster system blower is operated at maximum flow capacity. The
vehicle remains at rest aqu: ing the entire test period. The defroster is
required to clear specified portions of the windshield with a 30 minute
period after the engine starts. The areas of the windshield to be ¢leared
are defined in terms of the driver's field of view, &nd resigned to ensure
him good visibility of the road ahead.
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For purposes of this study, two approaches will be provided to the
FMVSS 103 standard. First, the energy required to heat the window and ice
film to a point where the ice melts will be estimated. This energy would
correspond roughly to the energy a heater embedded in the windshield would
need to deliver to satisfy FMVSS 103. A second estimate will be made for
energy required to heat an air stream adjacent to the windshield to provide
the same heating effect to the windshield and ice film.

Performance Calculation to Meet FMVSS 103

The FMVSS requirement can be analyzed in terms of the actual energy
required to heat the windshield and melt the ice. This calculation is
summarized in Table 2-6 and would be appropriate for an embedded heater
such as an electric resistance system. The appropriate energy requirements
appear to be 263 watt-hrs. total in the window. This agrees closely with
experimental results for defrosting using electroconducting metal films as
embedded heaters, given in References 2-12 and 2-15.

More heat energy will be required if the windshield is defrosted
ind.rectly by a moving air stream. Table 2-7 summarizes calculations of
heat required for indirect heating of the windshield to meet FMVSS 103.
This calculation is an approximation based on the windshield being
uniformly heated by a constant temperature air stream. This approximation
is justified, because orly a small fraction of the energy in the air stream
is transferred to the windshield. The moving air stream defroster system
must supply about six times the heat required for the embedded defroster
system.

It should be pointed out that typical defrosting systems have fully
warmed up capacities many times this requirement. Typical defroster
thermal capacity is 7.3 to 8.3 kW (25,000 to 30,000 Btu/hr), about 2 to 3
times the basic ressirement. Part of this is conservative design practice.
Examination of defroster performance data in actuai FMVSS 103 tests reveals
that typically the entire windshield is cleared in as little as 15 to 20
minutes, far in excess of the requirements. The large amount of excess
capacity is partially to compensate for effects that are complex anrd
difficult to model, such as entrainment of cold interior air in the
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Table 2-6. Calculation of Energy Required to Meet FMYSS 103
Defrosting Requirements (Embedded Heat Source)

Initial Conditions

Window and lce at -18°C (0°F) 2
Ice Coating = 0.44 kg/m2 (0.01 oz/in“)

Physical Properties

Windshield (References 2-4 and 2-13 for laminated windshield)

Thickness = 0.71 cm (0.28 in.)

Conductivity = 6.34 watts/m-®C  (0.315 Btu/ft-hr-°F)
Specific Heat,» 559 watt&/m3-“c (30 Btu/ft3-°F)

Area = 1.15 mé (12.35 ft<)

Emissivity = 0.94

Ice (Reference 2-3)
- Heat of Fusion = 334 kJ/kg {144 Btu/1b)
- Conductivity = 26.2 watts/mc (1.3 Btu/ft-hr-°F)
- Specific Heat = 8.46 kJ/kg-°C (0.487 Btu/1b-°F)
Free Convection Losses
hf* = 0.19 (AT)”3 on each side of windshield (Reference 2-11)

he = 3.° watts/mé-°C (0.6 Btu/hr-ft2-°F) at 0°C (32°F)

Maximum convection losses = 139 watts (474 Btu/hr)
Radiation Losses

From both sides of windshield with Ta = -18°C (0°F) or 255°K (460°R)
and Tw = 0°F (32°F) or 273°K (492°R)

Maximum radiation 1oss* ®» 2 x .177 x Emissivity x Area x [’(Tw/‘.oo)4 -
(Ta/100)4] = 161 watts (548 Btu/hr)

Warm Up Enerqy Required

Energy to Warm Window with Ice and Melt Ice (-18°C to 0°C or 0°F to 32°F)
= 133 watts (454 Btu)

Total Defrost Eneray (30 minute test period) = 283 watt-hrs (965 Btu)

'Formu1ae are for English Units.
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Table 2-7. Calculation of Energy Required to Meet FMVSS 103

Approach

Compare energy required to heat incoming air to energy transferred
from air stream to windshield. Thus:

-

Defrosting Requirements (Moving Air Stream)

' Earp = Y (8T) t C

where
EAIR = total energy added to air stream by defroster
L volume flow rate
aT = di{fference between afir temperature and ambient
C = specific heat of air (volume basis)
t = operating time

And:
Eg * he (8T) t A

where
Ew = total energy transferred to windshield by air stream
he = interfor heat transfer coefficient
aT = difference between air temperature and windshield
A = windshield area

Combining the two equations and cancelling common terms:

EAIR/EW -V C aT/h, A &T

However, based on data in Reference 2-11, it is found that for high
defroster blower rates, hfs is a linear function of the blower air flow
VL. This neglects any free convection effects. Thus:

hf e W VL (where W is determined from data in Ref. 2-11)
EAIR/Ew = C aT/WA AT
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Table 2-7 {Continued)

Data
C = 5.08 kd/m=°C (0.0183 Btu/ft3-°F) at 15°C (59°F)
A= 1.15 nf (12.35 £t%)

We 6.66 x 10°2 wact-hrs/m>-°C (3.33 x 102 Btu/ft>-°F) based on
he = 23 watts/mé-°C (4.0 Btu/hr-ft2-°F) for v, = 340 m3/hr
(200 cfm)

AT/Af = 1.31 (for 57°C (135°F) defroster outlet temperature)
Results

EAIR/Ew = 5,82

1f Ew = 283 watt-hrs

EA!R = 1.65 kWh
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defroster jet, and lateral spreading of the defroster jet. There is also
considerable variation in temperature over the windshield. Defroster
overdesign tends to compensate for these limitations on real designs.

With an embedded heat source, it is easier to ensure an even heat
supply to the windshield, with much less total energy. Electric and hybrid
vehicles are compatible with the use of electrically conducting films,
which can provide uniform windshield heating. This is because the
propulsion battery can provide adequate voltage and power levels
(References 2-12 and 2-15) to operate these systems.

2.3.2 Dynamic Deicing and Defogqging Réquirements

Two additional conditions which are potentially hazardous for vehicle
operation are windshield icing and fogging during vehicle operation.
These conditions are not directly measured by FMVSS 103. Part of the
difficulty in establishing standards for these conditions is the difficulty
in easily simulating them in a laboratory test.

References 2-11 and 2-16 have investigated the conditions to be used
as criteria to prevent icing and foggirg. These conditions are as follows:
Icing Preventicn: Maintain the outside windshield surface

Temperature afove 0°C (32°F), in a -4°C (25°F) ambient
temperature with the vehicle speed of 48 kph (30 mph).

Defogging Prevention: Maintain the interior surface of the
windshield above the vehicle's interior dew point in a 0°C (32°F)
freezing rain.

The energy requirements to satisfy these conditions were calculated in
Reference 1-1. The icing prevention condition requires less energy than is
required to meet FMVSS 103, Defogging requires a very high energy level to
directly heat the windshield. However, with a moving air stream defroster,
approximately the same energy level is required as for FMVSS 103. Hence,
FMVSS 103 essentially governed the defroste- functional requirements.

2.3.3 Discussion of Functional Requirements

The functional requirements for the -ehicle defog and defrost systems
are summarized in Table 2-8. Where different requirements were needed to
satisfy different operating conditions, only the more stringent
requirements were listed. The basic assumptions behind the requirements
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Tesle 2-8. Functional Pequirements for Defroster and
Defog jer

1. Afir stream heater for defogging of 3.3 kW (11,500 Btu/hr)
with air flow of 340 m3/hr ?200 cfm). Heat requirement
reduced about one third by recirculating air from vehicle's
interior.

2. Time to reach full capacity of less than 10 minutes.

3. Optional: embedded heater for defrosting and FMVSS 103
test of 0.6 kW (based on power level obtained in Table 2-6).

4. Meets general requirements of Table 2-5.
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are also summarized. A blower capacity of 340 m/hr (200 cfm) was {ncluded
to ensure good heat transfer to the windshield. The total capacity
requirement can be reduced by recirculating warm air from the passenger
compartment through the defroster, in lieu of using cold outside air.
Huwever, the analysis of requirements is based on simplified physical
assumptions. Real systems generally have considerable excess capacity.
Hence, the use of design safety factors is advisable if higher capacities
do not imply excessive cost or weight penalties.

The use of a 1.0 mode system, with an embedded windshield heater :-
well as a moving air stream defroster, can also be considered ‘f the cost
penalty is not excessive.

2.4 BATTERY TEMPERATURE CONTROLLER

2.4,1 Desired Battery Temperature Range

In order to maintain the electric vehicles modest performance
capability in acceleration, hill climbing, and top speed, it is desir >le
to maintain the battery performance at close to maximum remaining cap :ity.
The JPL Guidelines (Reference 2-9) suggested that the battery control :r
try to maintain the battery at the controller set point of 49°C (120° ,
with a temperature range of 43°C to 54°C (110°F to 130°F).

There are varying opinions in the literature (References 2-17 and
2-18) suggesting temperature ranges of 35°C (95°F) to 49°C (120°F) as
"best" for lead acid storage battery operation. In general, there is very
little dats supporting these cla‘ms, specifically for vehicle traction
batteries. In the final analysis, this is not a problem, since the ECS
design can be easily modified to maintain the battery at other
temperatures.

Battery Freezing

A second concern on battery performance is potential damage from
freezing of the electrolyte during a "cold soak" period. The freezing
point of the electrolyte is a function of electrolyte specific gravity.

For a fully charged battery with a high specific gravity the freezing point
is well below the vehicle design temperature range. However, when the
battery is completely discharged, a potential freezing danger does exist
unless the battery is maintained above -4°C (25°F).
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Thus, long term storage - .ne electric vehicle at low temperatures
presents a unique problem. If the battery is charged before the storage
begins, the battery controller can allow the battery to "soak” at the
ambient temperature, with no danger of freezing. This approach requires no
energy for tpe duration of the storage period. To reactivate the vehicle,
the tattery would have to be rewarmed to the operating temperature range.

If the vehicle is stored with the battery discharged, then freezing of
the electrolyte is a potential problem. Sufficient heat would need to be
supplied to maintain the battery at about -4°C (25°F) or higher to ensure
against electrolyte freezing.

Operating Scenarios

The functional requirement for the battery temperature controller is
the capability to maintain the battery temperature level in the operating
range under a variety of conditions. The conditions used in determining
this functional requirement are as follows:

1. Trip Conditions

a. Work Trip (10 'D' cycles)
b. Family Business Trip (6 'D' cycles)
¢. Maximum Range Trip (66 'D' cycles)

2. Charging - 8 hour recharge

3. Maximum Power (i.e., hill climbs) - 3 to 5 times average power
output over 'D' cycle.

2.4.2 Battery and Container Thermal Model

Battery characteristics are taken as those provided in Reference
2-9 (dated 4/24/80). These specify the heat generated by the battery
during the charging and aischarging cycles and are taken to represent the
heat sources within the battery. The battery pack is assumed to be at
almost uniform temperature throughout by virtue of convective circulation
of the electrolyte and the high thermal conductivity of the internal parts.
Thus, the battery is considered as a homogeneous mass with a specific heat
as given in Attachment D. If the battery is in a perfect insulated box,
then it will undergo the temperature rises calculated in Table 2-9 for the
different operating modes.
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Table 2-9. Summary of Battery Heat Generated and Temperature
Change for Different Operating Modes

Trip Conditions

1. Heat relsased per battery per "D" cycle = 0.22 watt-hr (0.78 Btu)
2. Temperature change in battery per "D" cycle = 0.028°C (0.05°F)
3. Temperature change in battery for maximum range trip = 1,8°C (3.3°F)

Charging (Datly Charge*)
1. Temperature chznge in battery during rechar-ge‘H = 12°C (22°F)

2. Heat releass by battery pack during recharge = 1799 watt-hr
(6138 Btu)

3. Heat release rate for 8 hour recharge period = 225 watts
(767 8tu/hr)

Max{mum Load

Temperature rise during maximum load should not exceed total
temperature rise during driving. Temperature rise for a "D" cycle
at 10 times normal losses would only be 0.28°C (0.5°F).

*Neek1y equilization charge is 20% higher.
++Assum1ng no heat loss.
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Table 2-9 summarizes the heat releases for z 'C' cycle and during
charging. Heat releases for the trip scenarios are taken as the product of
the heat release per cycle and the number of cycles in the trip. It is
seen that charging 1s a critical mode.

Container Efficts

The battery pack is assumed to be in a container which provides
structural support and thermal insulation from ambient conditions.
Modeling of the battery container is a more complex problem because the
thermal properties of the container affect the functional requirements of
the battery controller. However, since cooling can be provided by forced
ventilation with ambient air, 2 Jow thermal conductance container appears
desirable.

This report adopted the approach that the thermal conductance of the
battery container should be an aid in maintaining the battery in its
operating temperature range during normal operation and charging. This is
similar to the approach recently reported for battery insulation in
Reference 2-17. As shown in Table 2-10, this level of thermal conductance
can be easily obtained by insulating the battery case with 2.54 cm (1 inch)
of mineral fiber insulating material.

2.4.3 Heating and Cooling Loads

Battery cooling is assumed to be accomplished by moving ambient air
through the battery compartment. This also satisfies the ventilation
requirement. The fan required to cool the batteries during driving and (8
hour) recharging is calculated in Table 2-10. The fan would be activated
by a thermal switch whenever the batteries exceeded the preset temperature.
Under most conditions, the fan would cycle on and off as needed to limit
battery maximum temperatures.

If the vehicle was left idle at low ambient temperatures for short
periods, thenr 3 small heater could be used to maintain the operating
temperature. Table 2-11 gives the energy required for such a maintenance
heater, based on the assumed battery container.

Or the other hand, if the battery has been allowed to cold soak,
considerable amounts of energy are required to bring it to operating
conditions again (Table 2-11! This energy most likely would have to be
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Table 2-10. Summary of Calculations for Battery
Container Characteristics

Normal Driving Heat Release Rate ("D" Cycle) = 121 watts (412 Btu/hr)

Norma! Charging Heat Release Rate (8 hour basis) = 225 watts (767
Btu/hr)

Surface Ares of Battery Container = 3.4 nt (37 ¢2)
(Based on 18 cells stacked width-wise in a battery tunnel.)

Required battery temperature to be maintained = 49°C (120°F)
with ambient at -29°C (-20°F)

Required thermal conductance of container to maintain battery at
49°C (120°F) with normal driving heat release rate, at -29°C
(-20°F) ambient = 0.45 watts/m2-*C  (0.08 Btu/hr-fté-°F)

Insulation Properties -

Mineral Fiber 3.6 W-cm/m2-°C (0.25 Btu-in/hr-ft2-°F)
Cellular Glass 5.8 W-cm/mé=°C (0.40 Btu-in/hr-ft2-°F)
Fibrous Glass 4.3 W-em/m2-°C (0.30 Btu-1n/hr-fte-°F)

Supplemental energy required to maintain battery at 49°C (120°F)
with one inch of mineral fiber insulation at normal driving heat
release rate at -29°C (-20°F) ambient = 260 watts (888 Btu/hr)

Cooling fan required to dissipate battery heat reTeaseg during 8 hour
charge with a 5.5°C (10°F) rise in cooling air = 120 m3/hr (70 cfm)
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Table 2-11. Summary of Energy Required to Recover
Battery Pack from "Cold Soak"

Energy to raise battery pack from cold soak at -29°C (-20°F) to
miniminum operating temperature of 18°C (65°F) = 7.0 kWh (23868 Btu)

Energy required to maintain battery pack temperature at 49°C (120°F)

with s7e¢ inch (2.54 cm) of mineral fiber insulation = 380 watts
(1295 Btu/hr)
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supplied by a source other than the vehicle battery, since it represents &
significant fraction of the rated battery capacity. More heat must be
deliverad if the warmup time 1s long, because of losses through the battery
container.

2.4.4 Discussion of Functional Requirements

The key functional requirements for the battery temperature controller
are summarized in Table 2-12. The requirements are based on the batteries
being insulated with 2.54 cm (1 inch) of mineral fiber insulation, to reduce
the heating load needed to maintain the battery at the desired temperature.
This seems to be the most effective configuration, though other variations
on this design are possible.

The controller requirements are based on the fact that the battery has
a fairly broad operating temperature range. Under a broad variety of
operating conditions in milder climates, no battery temperature control is
required. When the temperature 1imits are exceeded, the controller would
activate the heating or cocling system as required. The sysiem couid be
easily redesigned for lower battery temperatures.

The key problems in meeting the functional requirements are recovering
from "cold soak" and faster charging. Cold scak recovery enargy would most
1ikely come from either a fossil fuel heater, or the charging station,
Faster charge rates may require riore heat removal capacity fhan can be
provided by forced ventilation of the battery compartment. Improved means
of cooling the batteries could als¢ include:

- Use of exterded surfaces on the battery cases and containers

- Use of liquid cooling loops in the bLattery cases
However, these were not found to be necessary in typical automotive
service, especialiy if charging is done overnight.

2.5 SUMMARY OF FUNCTIONAL REQUIREMENTS

2.5.1 Integration of Requirements

The individual requirements for the key ECS elements have been
discussed in Sections 2.2 through 2.4 and summarized in Tables 2-5, 2-8,
and 2-12. These requirements were developed on the basis of the sysiems
being completely independent and not interconnected.
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Table 2-12.

Assumptions

1.
2.

Batteries as specifiec in Reference 2-'5.

Battery Temperature Controller Functiona) Requirements

Battery packaged widthwise in vehicle. Thermal conductance of

container to ambient 4.9 watts/®C (9.3 Btu/hreF).

Controller Requirements

1.

2.

Minimum Battery Temperature (Operating mode - no
heat supylied in cold soak mode)

Maximum Battery Tamperature (Maximum cooling
demanded at this temperature - Separate require-
ments will be developed in Section 7.1)

Heating and Cooling Requirements

1.

Maximum Heat Required to Maintain Operating
Temperature at 49°C (120°F).

Mini{mum Heat Energy Required to Recover
from Cold Soak Conditions

Maximum Heat Removal Rate
(Based on 8 hour charging cycle)

Cooling Fan Flow Required to Remove Charging

Heat Release (Based on 6°C (10°F) afr temperature
rise and 8 hour cha~qe period)
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However, there is a strong case for integrating the systems. The goal
of such integration is to reduce the number of redundant systems
contributing to vehicle weight, voime, complexity and cost. The key area
for system integration appears to be the use of a common heat source for
passenger compartment heating, windshield defrosting and defogging, and
battery recovery from “"cold soak". This approach is an extension of the
common heatir~ defrosting and defogging systems already found on current
heat engine vehicles.

Integration of the battery cooling requirement and passenger
compartment cooling requirement is also possible. It should be noted that
the passenger compartment cooling requirement exceeds the battery conoling
r~equirement by a large factor, unless very short charging times are
considered. However, (as noted in Section 7.1), battery cooling can .
accomplished with ambient air.

Preliminary Integrated Design

Figure 2-7 shows a schematic of an integrated ECS design with
recirculation and limited ventilation flow. Integration of the passenger
compartment heating and cooling system with the defroster and defogger air
flow would follow current practice. When defrosting and defogging is
required, the heater output 1s diverted to the defroster jets. The air
conditioner uses tne same blower and duct wo-=k as the heating system.
Adgitional ducting to handie the return flow could be integrated into the
vehicle body structure between the inner and outer body panels. Choice of
the inlet and exhaust points on the vehicle envelope would ensure
satisfactory performance of this system at different vehicle speeds. jhe
Elower speed would be varied by the vehicle operator, as in current design
practice.

The battery compariment temperature is integrated with the passenger
compartment ECS in order to reduce the number of heating and cooling units.
The heating unit would be used at full capacity to supply the heat required
to recover from the "cold soak" condition. It could also be used to
maintain the battery temperature in cold weather operation. Potentially,
the passenger compartment cooling unit could provide most battery cooling
reaquirements, though this <s normally suppiied by outside air. A separate
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blower is used to provide positive ventilation of the battery compartment
and to ensure that battery fumes are not returned to the passenger
compartment.

The potential embedde. heaters in the windshield and battery
compartment are not shown in Figure 2-7.

2,5.2 Summary

Table 2-13 summarizes the functional requirements of the integrated
system. The summary indicates which elements determine the requirements.
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Table 2-13. Summary of Functional Requirements for Integrated
Environmental Control System

rd

Heeting Requirements

1.

6.
7.

Cooling

Capable of inaintaining a temperature of at least 18°C (65°F) in
passenger compartment at -29°C (-20°F) ambient.

Heating capacity 5.7 kW (19,000 Btu/hr) with full ventilation
Yoad. Design range is 2.2 to 2.8 kW (7,500 to 9,500 Btu/hr) with
controlled ventilation.

Time to reach full capacity is less than 10 minutes.

Maximum air flow capacity of 1100 m3/hr (200 c¢cfm) for defroster.

Heat can be directed to passenger compartment, defroster jets,
or battery compartment.

Optional: embedded electrical heat source of 0.6 kW in windshield.
Heater can recover battery from "cold soak" in less than 4 hours.

Requirements

1.

3.
4.
5.

Genera)

Capable of maintaining a temperature of 25°C (77°F-RH 40%) in
passenger compartment at 49°C (120°F) (29°C (85°F) wet bulb) ambient.

Cooling capacity 7.5 kW (25,500 Btu/hr) with full ventilation load.
Design range 1s 3.2 to 4.1 kW (11,000 to 14,000 Btu/hr) with controlled
ventilation.

Time to reach capacity less than 3 minutes.

Time to produce comfort for front seat passengers less than 10 minutes.
Optional: cooling air stream can be directed to battery compartment.

Requirements

1.

Capable of withstanding mechanical, thermal, vibrational, and
acceleration environment of electric or hybrid vehicles.

System completely sealed and designed so combustion air and exhaust
products do not enter passenger compartment.

Minimizes use of hazardous materials which could be released in
normal operation or accidents.

Capable of being packaged and integrated into the vehicle system.
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3.0 DEVELOPMENT OF THE RATING SCHEME

3.1 METHODOGY AND SELECTION OF FACTORS

3.1.1 Overview and Guidelines

A suitable rating or evaluation scheme is essential for selecting the
best ECS elements and the best integrated ECS. A good rating scheme should
include consideration of the key parameters of cost and perforwance. It
should also account for the ECS's impacts on the vehicle's propulsion sys-
tem and on potential users. The rating scheme formuiation must take into
account the uncertainties in the ECS parameters. This includes character-
istics of emerging ECS technologies which have yet to reach the commercial
market. Because of uncertainties in the data, increasing the number >f
parameters in the rating scheme does nct necessarily increase accuracy.

The rating scheme is developed as a “wo step process. The first is a
bread screening process using many criteria but requiring lower quality
information. This step eliminates most of the unsuitable candidates. i.e
second is a more detailed evaluation to select the "best" among suitable
candidates. This step is quantitative and requires higher quality input

data.
Guidelines

Several guidelines for developing this rating scheme are borrowed from
Reference 3-1. The key guidelines emphasized in developing the rating
scheme are:

o Good analysis is the servait of judgment, not a substitute for it.

o It's better to be roughly :ight than exactly wrong. (Make sure you
evaluate all the alternatives, even if you cannot provide a sophis-

ticated analysis of each.)
o Keep it simple.

The rating scheme development is in accordance with the guidelines
suggestec by JPL in Reference 1-5. Separato evaluations are performed on
the heating and cooling system elements. The highest ranking candidates
are then combined to produce integrated ECS's. A second evaiuation step
selects tne "best" ECS alternative. This scheme is summarized in Figure
3-1.
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The evaluation of the candidates ', a two step process. First, broad
screening criteria are constructed to ¢liminate alternatives which clearly
cannot meet minimum requirements or are clearly not competitive. These
ECS's would be eliminated as inappropriate. This allows the evaluation to
focus on the stronger alternatives.

3.1.2 Scoring Models

The remaining ECS elements would be evaluated in more detail with a
“scoring model". In the "scoring model", each alternative ECS element is
described by a series of parameters called rating factor scores. A rating
factor score measures how well a particular ECS alternative meets a parti-
zular functional requirement or JPL guideline comnar<i to the other alter-
natives. It can also establish how well a new tech:ulogy compares with
current (or baseline) technology.

The rating factor score for each parameter compares the value of that
parameter for a particular technology to 2 baseline value. The baseline
values are derived from the characteristics of current ECS technology, the
ECS functional requirements, or the JPL guidelines. The rating factor
score can be represented in functional form as follows:

Rating Score = f (Actual value/Baseline value)

The overall merit of a particular ECS alternative is measured by its
total score. The total score for each alternative is the sum of the rating
factor scores for each parameter times the appropriate weights. The
weights are normalized so their sum is unity. The total score for an ECS
element is given by:

Total Score = ZE: (Rating factor score) (Weight)

The ratings for the int~grated ECS will be based on the same rating scheme
used to evaluate the individual ECS elements.

Experience with "scoring models" used to evaluate energy technologies
in Reference 3-2 has shown that "good" technologies will score well in this
type of rating system. This is regardless of specific differences in the
actual -<coring znd veighting procedures. Thus, scores and rankings of ECS
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elements and integrated ECS's should be fairly insensitive to slight shifts
in the weights themselves. DOuring the evaluation procedure, the sensitiv-
ity of the results to the weights are tested. This ensures that the rank-
ings represent significant differences between the ECS elements.

3.1.3 Factors in the Rating Scheme

Factors considered in the rating scheme are drawn from two sources;

the JPL guidelines (Reference 1-5), and the Functional Requirements report
(Reference 1-1).

JPL Guidelines

JPL guidelines which directly estaolish factors for the rating scheme
are listed in Table 3-1. In cases where the guidelines have been inter-
preted, the interpretation is given in parentheses. The guidelines set

norms or bounds for certain rating factors. These are explicitly stated
where applicable.

Functional Requirements

The functional requirements also directly establish factors for the
rating scheme. The principal requirements are listed in Table 3-2. The
functional requirements are broken down separately for the heating and
cooling ECS elements. An ECS would be required to have at least one
heating and one cooling element, except where a heat pump can perform both
functions.

System Sizing

An important variable in evaluating various ECS's is system capacity.
The evaluation procedure requires the ECS element to have the required
design range capacity levels given in Table 2-5. The characteristics of
the techr.>logy at those capacity levels will then be used in the
evaluation.

3.1.4 Quality of Information Available

1+ 1s important to match the data requirements of the rating scheme to
the input data available. Adequate data quality is important, especially
for numerical calculation of rating score in the second and third steps of
the evaluation process. Lower quality data and qualitative (non-numerical)
data is adequate for the initial screening process.
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Toble 3-1. Rating Scheme Factors from JPL Guidel ines

Cost

“The productiun line version of those ECS's selected for
proto’vpe develupment should be available to the consumer at
reasonable cost." (ECS cost tc consumer should not exceed 2 to 3
times conventional ECS costs.”)

Impact on Vehicle Characteristics

“As a goal, the combined volume of the ECS elements
excluding ducting shall be less than 0.17 m3 (6 red).”
(Upper bound for ECS impact on vehicle characteristics.)

“As a yoal, the ECS shall not decrease tElectric Vehicle
range by :"ure than 20% as estimated by the equation defined in
Task (7) (A) (iv)." (Upper bound for ECS impact on the vehicle
characteristics.)

Source: Attachment A, Reference 1-5.

*For high cost optional ECS elements, such as the air conditioner,
this cost ratio should be even lower. Consumers are more conscious oOf
these costs because they are made explicit when the vehicle is
purchased, and not included in the vehicle's "base" cost. Hence,

the cost of the cooling ECS 1s 1imited to 2 times current ECS

costs. However, the heating ECS could be 3 times the current

ECS costs.



Table 3-2. Example of Rating Schems Factors from the Functional
Requirements

Performance Factors

(Heating sttgm)

- Design range tn 2.2 to 2.8 kW (7,500 to 9,500 Btu/hr) with controlled
vent{lation (Rectirculating system).

- Time to reach capacity is less than 10 minutes (from cold soak start).

- Heater can raise battery temperature to operating range from “cold
soak” in less than 4 hours.

(Cooling System)

- Design range 1s 3.2 to 4.1 kw (11,000 to 14,000 Btu/hr) with controlled
ventilation (Recirculating system).

- Time to reach capacity is less than 3 minutes (from hot soak start).

- Time to produce comfort for front seat passengers 10 minutes.

Other Factors (Al SystemglA

- Capable of withstanding mechanical, thermal, vibrational and
acceleration environment of electric or hybrid vehicles.

- System completely sealed and designed so combusticn air and exhaust
products do not enter passenger compartment.

- Minimizes use of hazardous materials which could be released in norma)
operation or accidents.

- Capable of being packaged and integrated into the vehicle system.

NOTE: Actual evaluations will be done for a specific system size, once
the parameters affecting system size are evaiuated or selected.

Source: Reference 1-1
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An investigation of information available showed that fairly high
Quality dats was available for the following:
- Cost
Impacts on Vehicle Characteristics (Weight, Volume, and Energy Use)

For most technical options, this data was adequate to support the detsiled
numerical evaluation re~uired in the rating scheme.

By contrast, the :;.ta quality for evaluating other factors was
generally poor., Thus, these other factors were used for eliminating
“inappropriate” ECS elements (fin Task 5), but not for detailed numerical
evaluations.

3.2 FORMAT FOR RATING SCHEME FACTORS
3.2.1 Overview

This section develops the functional forms used to calculate the
rating scores of the major factors in the quantitative rating scheme. For
ease of calculation, the numerical score has been selected to have a range
of 0 to 100. A score of 100 indicates the parameter is equivalent to the
baseline value (see Section 3.1.2). If the parameter varies from the
baseline value in a favorable manner, the score will initially be taken to
be 100,

The rating goes down if the parameter varies from the baseline value
in an unfavorable manner. In general, the factor will be assigned a low
score if the parameter is at it's acceptable limits. Also, the evaluation
parameters discussed are only unacceptable if they exceed & given upper
1imit. For simplicity in ce¢lculating the actual scores, a linear
relationship is established between the rating score and the actual vilue
of the parameter, The baseline value of the parameter enters the
calculation of the rating score as shown:

Rating Score = f (Actual Value/Baseline Value)

As an example, the functional form of f could be chosen so that: f(1.0) =
10C and f(Actual value -+ Acceptable Limit) —= 25. The value of 25 would
be selected to provide a suitably low score. This approach avoids having
negative rating scores if the acceptable limit for a parameter is slightly
exceeded.
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For any given parameter, the baseline value and acceptable Vimit will
vary, depending on whether the evaluation is for an ECS element or an
integrated ECS. The baseline value and acceptable limit for a parameter
my also vary if the . ‘vation {s for a hybrid versus an electric vehicle.
Choosing different bsseln. alues and acceptable limits essentially varies
the functional form to that required for each evaluation step. The
functional form can also be varied by chosing another value for f(1), 1.e.,
f(l) = 25.

The technologies being evaluated in this process differ widely in
their degree of development. To ensure that the comparisons are fair, the
rating process {s subdivided so only technologies at the same level of
development are compared. See Section 3.2.4.

3.2.2 Cost Factors

A key rating parameter of the integrated ECS 1s first cost to the
vehicle owner. Baseline costs can be established on the basis of current
lieating and cooling systems. Table 3-3 gives the current heater-defroster
cost. Because the defroster is required on every viiicle, there is a
strong incentive to keep its cost low. Air conditioning, by contrast, is
sti11 a buyer option. Air conditioning costs are generally higher, as show~
in Table 3-3.

Any ECS with first costs equal to or lower than these baseline values
would receive a cost score of 100. For the air conditioner, if the cost
exceeded the baseline value by a factor of 2 or more, the market ity of
that air conditioner would be very low. Thus it would be assignea a low
rating score (zero). The Type A functional form shown in Figure 3-2 satis-
fies these conditions, and therefore would be used to calculate the cost
score for the air conditioner. The cost for the heater-uefroster could
have a higher acceptable 1imit, perhaps three times the baseline value.
Hence, the rating functional form for the cost of the heater would be the
adjacent curve shown in Figure 3-2. An average of these two curves is used
for the total ECS.
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Table 3-3. Estimated Cost for Vehicle Heater-Defroster
and Air Conditioners (Current Heat Engine

Vehicles)

Item Current Cest ($)
Heater Core 18 - 30
Blower 25
Water Hose 5

Total Heater 48 - 60
Complete 5.86 kW (20,000 Btu,i+)
Heater with Fan and Hose 85
Small Vehicle A/C 412 - 41"
Large Vehicle A/C -
Without Temperature Control 438 - 47N

Large Vehicle A/C -
With Temperature Control 473 - 530

*Dea1er's base ~ost (not manufacturer's suggested list price).

Source: References 3-3 and 3-4,
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Figure 3-2. Type A Functional Form for Cost Parameters
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3.2.3 1mpacts on Vehicle Characteristics

The three major impacts of the ECS on the vehicle are additiona!
weight, volume, and energy use. All three factors can be evaiuated
indvidually. However, .hey also have a co'lr “ive mpact on vehicle range.
The impact of these factors on vehicle range ».' be evaluated separately
in Section 5.0.

Weight

Weight of alternative systems could easily exceed baseline values for
cur~ent systems. System weight will inclure the weight of the associated
energy storage. Systems weighing mcre than three times current systems
would tend to have a significant impact on the vehicle's acceleration.
These systems are clearly inappropriate. However, any additional weight in
the electric vehicle is undesirable. It is desireable to reduce the ECS
weight to as low a level as possible. Hence, use of the Type B functional
form, shown in Figure 3-3 seems appropriate.

The Type B functional form is not significantly different from the
Type A functional form. In general, the lower 2 parameter's value, the
higher the rating score. The key difference is that the Type B functional
form emphasizes reduction of the parameter's value to as low 2 level as
possible. For weight, this appears to be a desirable goal. Hence, the
Type B functional form is used.

Volume

The upper limit for the volume of alternative systems has been set by
the JPL guidelines (Reference 1-5, Attachment A). Ideally, this ECS
parameter should be as small as possible. Hence, the format of the rating
function will also be functional form Type B.

Energy Use

Energy use by the ECS in general should be minimized. Although upper
limits for energy use were set by the JPL guidelines, typical ECS energy
use was significantly 1rwer than these levels. However, since a minimum
level of energy use is sought, use of the Type B functional form is
appropriate.

3-11



Rating

Score 100
50
~f(1) = 25
o b
L | >
0 1

Actual Value
Baseline Value

Figure 3-3. Type B Functional Form for Weight, Volume,
and Energy Use Parameters

3-12



e S L _SERCER P eI

3.2.4 Status of Technical Development

The ECS elements being examined in this study utilize technologies in
varying states of development. Some ECS elements are commercially avail-
able today, although perhaps not in a form suitable for automotive use.
Other ECS elements utilize technology in hardware development and evalua-
tion for eventual large-scale production. Many ECS elements are based on
concepts which have yet to be reduced to practice. Comparing ECS's whose
technical development is in such diverse states is logically incorrect.
This is because the technologies will not be ready in the same time frame.

Also, the Statement of Work (Task 7, Reference 1-5) requires a sepa-
rate evaluation of the "best" ECS for:

- lmmediate prototype development
- More extensive prototype development

Hence, the evaluation of development status is a required part of the
rating scheme.

Table 3-4 establishes the definitions for the state of development
that this study will utilize based on the suggestions in the Reference 1-5.
The evaluation will treat the first two cases separately. Only a near-term
ECS will be recommended for immediate development. A mid-term ECS would be
recommended for more extensive development only if it appeared to be very
attractive compared to the near-term system. Long-term systems are con-
sidered "out of scope” in this study.

3.3 SELECTION OF WEIGHTS

3.3.1 Basis for Weights

Selection of weights for the various rating factors is a subjective
process. A limited survey of values was made to aid in the selection of
weights. The survey included six study participants and members of the TRW
staff associated with the project. The key point in this survey was the
requirement that the team summarize both its own values, and its perception
of public values. Public values are the individual's perception of how the
general population would respond to this survey.
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Yable 3-4. Definitions of Development Status

Near-Term - Prototype development mainly requires integration and

adoption of existing proven system elements. (Includes systems

commercially available)
Development effort of 1-2 years. Production potential by 3-5 years.

Mid-Term - Prototype development requires further experiments on
systems currently at laboratory stage. System integration cannot
begin for some time,.

Development effort of 2 to 5 years needed. Production potential by
6-10 years.

Long-Term - Development from new concepts. Complete hardware test
and development cycle required. (Out of study scope).
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It is difficult to draw any definite conclusions from such a limited
survey. Two observations, however, may be relevant. First, it was noted
that the perceptions of the public valuas are diffus:; that is, they tend
to have a wide distribution. This implies that the factors tend to be
perceived as almost equal in relative importance, at least as far as this
limited survey shows. Second, the diffuse results imply that small changes
in the weights should not produce significant changes in the overall scores
for different ECS alternatives. Thiz ronclusion is also supported by work
with “scoring models" reported in Reference 3-2. Which technologies score
well in an evaluation p-ocedure should be relatively insensitive to the
choice of weights. Relative scores which are overly sensitive to the
choice of weights dc not clearly discriminate between the technical
alternatives.

3.3.2 Weights Selected

Weights were selected as indicated in Table 3-5. The weights reflect
a "best" engineering judgment. Cost was given the heaviest emphasis
because it was directly perceived by the customer and the manufacturer
alike. The factors causing impact on vehicle range are collectively nearly
as important. That is, the customer will not be favorable to an ECS with a
large range impact. However, it was not clear in advance that weight,
volume, or energy use should be emphasized in this regard. Hence, the
subfactors for weight, volume and energy use are essentially equal.

More Complex Weights

It should be noted that other factors requiring a more complex set of
weights could be considered in the rating scheme. This could include
factors such as the ECS impact on vehicle shape, or the consideration of
different weights for energy drawn from the propulsion battery versus
energy from an auxiliary liouid fuel supply. However, these factors were
not considered because they appeared to add unnecessary complication to the
rating scheme, with no advantage to the evaluation process.

3.4 APPROPRIATENESS FOR MARKET SIZE

In the automotive industry, the decision to produce and commercially
market a new technology requires two conditions. The first is technicel
superiority of the new technology, i.e., better performance, lower weight,
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Table 3-5. Weights Selected for Rating Scheme

Rating Factor Weight (Normalized)
Cost (Initial) 0.60
Impact on Vehicle Range
- Weight Factor 0.13
- Volume Factor 0.13 }0.40
- Energy Use Factor 0.14
Total 1.00

3-16



—— e @ oo eme 4 e e PR

longer 1ife, etc. The second factor fs manufacturing superiority, {.e.,
the capability of being produced at lower cost, through savings in labor,
materials, or requirements for production capital. The key to manu-
facturing superiority is mass production (Reference 3-5).

However, mass production requires a high level of consumption. The
market for the product must be iarge enough to warrant the investment in
production tooling needed for efficient mass production.

If consumption is not at a sufficiently high level, then the manu-
facturer has two choices. One, he can produce in limited quantities and
much higher unit costs. As shown in Figure 3-4, the cost of limited
production, i.e., a few thousand units per year, might be 50% higher than
mass production (millions) costs. Where no *echnical alternatives exist,
this is often the only choice. If the produci markets well, even at the
high price, the manufacturer can generate enough capital from early sales
to finance expanded and more efficient production facilities.

However, if his product line is in a competitive market where cost is
an important factor for market growth, other strategies may be more
favorable. One alternate approach is to maximize use of component tech-
nologies already in mass production for other mass markets. Assemblies of
those components which can meet his product requirements can be manu-
factured with limited investment on his part. Often he can obtain
favorable prices from the component suppliers because he buys reasunably
large quantities. His costs are mainly for assembly, which is only a
fraction of the total production costs. While his system may not be
technically optimal, its costs are competitive. As the market grows, he
can eventually make the capital investment needed to produce ithe entire
system, including all of the components, in his own plants.

Thus, if the ECS market for electric and hybrid vehicles remains
fairly small, the appropriate choice for ECS technologies is from tech-
nologies (components) already commercially available. In the near-term,
this is the most likely situation. Technologies which would require new
investments in production facilities and would carry high unit prices in
limited production are rot desirable choices for a small market.
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Because appropriateness for market size is not an easily quantified
factor, it will be used at the end of the evaluation process. That is, it
will be one of the considerations in selecting the “best” ECS after the
numerical evaluations and rankings are determined.

3.5 SOURCES OF UNCERTAINTY
Uncertainty is introduced into this evaluation by potential safety
regulations, by the commercialization status of current technology, and by

technological uncertainty in the electric vehicle market. The impact of
these factors on the evaluation process will be discussed in this section.

3.5.1 Regulatory Uncertainty

Potential future safety standards are a source of uncertainty in
evaluating alternate ECS technologies. Although, the current regulations
do not generally concern themselves with ECS technologies, they have
the following implications for new technologies. The regulatory procedure
places specific requirements on each vehicle design, i.e., the Federal
Motor Vehicle Safety Standards (Reference 3-7). However, it also requires
the manufacturers to submit data on vehicle construction practices to the
National Highway Traffic Safety Administration (NHTSA). If a new vehicle
system proves hazardous in actual operation, NHTSA could require its rezall
or implement new reculations to 1imit its use. Thus, NHTSA is the ultimate
decisionmaker of the relative safety of alternative technologies. However,
since NHTSA does not act until the technology is deployed, the impact of
NHTSA regulation cannot be predicted in advance. This introduces uncer-
tainty into the validity of the rating scheme evaluation.

3.5.2 Commercialization Uncertainty

The risks of trying to introduce a new technology into an existing
market are usually high. Consumers or users must perceive a strong
advantage in a new alternative to justify the risk of trying it. While the
electric and hybrid vehicle ECS market is not large now, several existing
ECS elements exist today which could dominate the electric and hybrid
vehicle market as it grows. These elements include:

- Combustion heaters

- flectric resistance heaters

- Electric air conditioners and heat pumps using the vapor compression
cycle (Reference 3-3).
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These ECS elements, often developed as auxiliary heeting and cooling
systems for “recreational vehicles", could easily be adapted for use in
electric or hybrid vehicles. The existence of these technologies in
commercial use can reduce the potential for commercialization of other
technologies for the same purpose. However, this is not directly reflected
in the development of the rating scheme. It is partially reflected in that
the technologies have been subdivided by state of technical development.
This type of market uncertainty is difficult to include in the rating
scheme, and contributes tc uncertainty in the overall results.

3.5.3 Technological Uncertainty in Electric Vehicle Market

The current study for electric vehicles is based on the assumption
that near-term batteries will have limited energy density. However,
considerable effort is underway to develop advanced batteries (Reference
3-8). Recently announced performance characteristics of the zinc-chlorine
battery could allow practical use of battery energy to power the ECS, even
if there was a large relative range penalty. The vehicle's total range,
even with the ECS penalty, would be adequate for typical daily needs.

3.6 SUMMARY OF RATING SLiEME
The major elements of the rating scheme are:

- Screening out inappropriate ECS elements

- Scoring remaining ECS elements

- Selecting the "best" ECS
Separate evaluations are carried c.t for the electric and hybrid vehicle.
A separate evaluation is made for battery heating and cooling because the
battery requires only small increments on the main ECS loads. Essentially
separate evaluations are carried out for ECS's in different states of
development, even though the results are summarized together.

3.6.1 Screening Criteria

The screening criteria are summarized in Table 3-6. Screening is
accomplished in a two step process. In the first step, each element is
screened using the listed criteria. If an ECS element is acceptable by all
criteria, it is retained for further evaluation. [If it clearly failed to
satisfy any particular criteria, it is eliminated from further
consideration.



Table 3-6. Susmary of Screening Criteria for ECS Elements

Cost and Performance Factors

Can the element meet basic functional requirements for system
capacity?

Wi1) system cost be excessive? (ls heater-defroster system 3
or more times current costs? Is air conditioner 2 or more times
current costs?)

Impact on Vehicle Characteristics

Are system impacts excessive?

Weight (over 300 lbs)

Volume (over 6 cubic feet)

Fuel requirements (over JPL guideline 1imits)

Range impact (over 20% degradation)

Other performance Constraints

Does the system have potential fire or crash safety hazards?

Does the system potentially create excessive pollution, noise,
or vibration?

Is the system 1ifetime compatible with automotive use?
(3000 - 5000 hours ot operation)

Is the system satisfactory from the viewpoint of reliability,
repairability and controlability?
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The second step of the process is reserved for cases where application
of the criteria produces ambiguous results. In this cese, more specific
data can be gathered on this particular ECS element, as project resources
allow. However, if there are already 2 number of attractive alternatives,
the systems lacking sufficient data for evaluation will be eliminated from
further consideration.

3.6.2 Scoring and Weighting

The scoring and weighting of the ECS elements is done twice in the
rating scheme. The first time is an evaluation of the individual ECS
elements for heating and cooling. The second time is an evaluation on an
integrated ECS.

Table 3-7 summarizes the ECS rating factors, and the data required to
compute the overall ECS element or integrated ECS score. Note that the
weights have been normalized, so that the sum of the weights 1s unity.
Hence, the total score is given by:

Total Score = V;" (Rating factor score) (Weight)
A

3.6.3 Selection of the "Best" ECS

Selection of the "best" ECS is made from the elements which rank
highest in total rating score without an excessive range penalty. These
elements must also be commercially available or in near-term development.
Elements in mid term-development can be recommended for more extensive
prototype development if they have significant potential advantages over
the current ECS. The elements must also be appropriate for the expected
market size. Selection of the best ECS will be documented in detail in
Section 6.0 and 8.0 of the report.

3-22



-auj|0oseb woay A3}244302319 6ujonpoad uj Aojeaaudb
LLe43A0 3y} vo paseq S} SHUl juey |any 3yl uj Aujl
Uo | IBU QDD 103ea3udb-aujbua ay3 Aq padnpoad £A3}d44

Jofew 3y3 j0u 5} |3y wna|oajad asnedaq S SiUlL *Abadud |B2}43I3|9
9onpoad 03 ‘abesdae 3y3 uo ¢pesn 3de S3UNOS [Ny wWNI|0433

910N 35 ¥L°0

€1°0

EL0

40300} A3y 09°0
SIUNN0) Y]

{euojjouny uj A3joeded ¢

-aujbue 3|2
oseb ayj wo
30912 jonyg 0°L

LYyaA PEagqAY 3yl 40 ADUdEDLIS3
44 Abaaua 30 nig 0°9 saajnbad
“31o1ydA PLaGAY 3yl 104

-k6adud Asewpad A3414IN JO 3D4NOS

g adAL

g 3adf)

ELLYY

v 3dA}

JeuLi04
{eLo}3oung

(sjuduwda jnbaa
Daz}s SwaysAs 40j)

Jewi04 bupjybpam pue bujp20d§ jo Aseuming

Sujbaeyd jo nig 0°1
d woaj Abadud jo s,Mg 6270 Aup ‘330N

sauj|apinb 1dC
sauj|apinbd 1dC

Swa}sSAS Jualrsn)
40 Jybyap

sw21sAg juadan)
}0 3s0)

ejeq auj|aseg
40 324n0§

(-t °l1qel

asf Abaau3j -
AWN|0A -
ybyaN -

LI HU3A

uo joedu]

350)

41030e4 bujjey

3-23



4.0 DESCRIPTION OF ECS ELEMENTS

4.1 METHODOLOGY
4.1.1 Identification of ECS Elements

ECS elements were identified through a search of the literature and a
construction of logical groupings for ECS technology. The two major
groupings for ECS technology are energy conversion and energy storage
systems.

Energy Conversion systems use a primary fuel or electrical energy to
supply or remove heat from a conditioned space. Table 4-1 gives a breakdown
of the major ECS energy conversion technologies identified.

Energy Storage systems, by contrast, supply heatinn or cooling with stored
energy. The energy 1s stored as thermal or chemical energy and is released
as needed to meet the specific loads. Table 4-2 gives a breakdown of the energy
storage alternatives.

Other ECS elements were identified as being potentially important
components of an integrated ECS, but did not directly fall into these two
najor categories. Thus, a third category, Other ECS Elements was created
for these elements. Table 4-3 summarizes this subgroup.

4.1.2 Data Sources

While some ECS elements are already commercially available, many are
still in the early development or conceptual stages. For those elements
which are in the early development or conceptual stages, the data sources
were primarily papers and proceed ngs from the 11th, 12th, lsth and 14th
Interscciety Energy Conversion Engineering Conferences and the 4th and 5th
International Symposiums on Automotive Propulsion Systems. These papers
referern.ed additional papers (notably SAE papers) or project reports
relevant to the ECS elements. Computer aided searches were used to
identify data sources. The latter were ob.uined and reviewed. More recent
informaticn was obtained by contacting, via telephone or correspondence,
those responsible for these papers or projects.
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Table 4-1. Summary of Energy Conversion ECS Elements

Direct Conversion

Combustion Heaters
Resistance Heaters

Electrically Driven Heat Pumps

Electric Vapor Compression
Electric Reversed Brayton (ROVAC)
Electric Ericsson

Heat Engine Driven Heat Pumps

Otto (Gasoline Engine)
Vapor Compression

Otto (Gasoline Engine)
ROVAC

Stirling Vapor Compression

Ericsson Ericsson

Heat Driven Heat Pumps

Absorption
Hydride
Jet Compression



Table 4-2. Summary of Energy Storage ECS Elements

Thermal Energy Storage (TES)

Sensible TES Heating
Latent TES Heating

Ice Mak1n? TES Cooling
Eutectic (Phase change) TES Conling

Chemical Energy Storage

Chemical Reaction
Intermittent Absorption
Expendible Refrigerants

Table 4-3. Summary of Other ECS Elements

Odor Control Alternatives

Charcoal Filters

Control of Solar Inputs

Reflecting Window Films
Louvered Sun Shields

Heat Recovery Systems

Ventilation Heat Recovery
(Heat Exchangers)
Waste Heat Utilization

Misce?laneous

Electrically Heated Seats
Evaporative Cooler



i
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For those elements which are commercially available, sales brochures
and manufacturers' catalogues were used to obtain element specifications on
cost, performance, and physical characteristics. Again, where more recent
information was sought, sales representatives and sales managers were con-
tacted by telephone or correspordence.

Sources were compared in order to select the most understandable and
informative diagrams and descriptions of the ECS elements for inclusion in
the study. Where sufficient data were available, summary graphs and tables
of the cost, performance, and physical characteristics of the ECS elements
were compiled. See Reference 1-3.

4,1.3 Limitations of Analysis Data Dase

The ECS elements description and data presentations are limited by the
availability of data. This is particularly true regarding the ECS elements
still in the developmental or conceptual stages. In general, descriptive
analyses of these elements were available from papers or themodynamic
texts. However, data on cost, performance and physical characteristics
were limited. In some cases, cost, performance, and physical
characteristics were proprietary. In other cases, information was
presented for a specific test and in-field characteristics are expected to
differ markedly. Production cost estimates for new technologies are often
difficult to make. Cost estimates are highly dependent on an accurate
description of the production process, which is hard to obtain for new
technologies.

In general cost and performance data is available for ECS technologies
already in widespread use. If data for the capacity range in question is
not directly available, reasonable extrapolation of existing data can
provide satisfactory estimates. By contrast, for new and emnerging
technologies data availability is much more limited. Data availebility
varied on A case by case basis.

4.1.4 Organization and Format of Summaries

Orcanization of the ECS element summaries in this section fnllows the
breakdown of the elements described in Section 4.1.1. Since Reference 1-3
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contains a detailed discussion of the ECS elements, only short summaries
were included in this report. The key items discussed in these summaries
are:

- The basic nature of the elements operation

- Key features unique to this ECS element

- Important relative merits of this ECS element
For detailed data on each ECS element, as well as a comprehensive
bibliography of data sources, refer to Reference 1-3.

4.2 ENERGY CONVERSION ELEMENTS

Energy conversion ECS elements convert the energy in a liquid fuel or
electricity (from the propulsion battery) to provide the desired heating or
cooling service. The conversion may be direct or via a thermodynamic heat
pump cycle.

Combustion heaters and mechanically (engine) driven vapor compression
air conditioners are two ECS elements used extensively in automotive service.
Extensive use is also made of the waste heat from the propulsion engine.
However, there are a number of other technologies used for providing space
heating and cooling in buildings. These include direct resistance heating,
electrically driver vapor compression heat pumps and absorntion heat pump
cycles. In the last few years, high energy costs have encouraged research
into potentially more efficient cycles such as the Stirling vapor com-
pressfon and Ericsson cycles.

4,.2.1 Direct Conversion Elements

Heating service can be provided by the dir-~. combustion of liquid
fuels to produce heat. Heat can also be suppliec “rom electricity directly
with a resistance heater.

Efficiencies for these direct conversion heating systems ace high,
usually between 70 and 100 percent. For a required heat capacity, direct
conversion elements can be designed over a wide range of costs, size, and
weight.
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Combustion Heaters

Combust'on heaters provide heat by the direct combustion of fuel. Iin
the heater, air and fuel are mixed, ignited, and burned. The resulting hot
gases circulate through a heat exchanger, transferring heat to ventilating
air. The ventilating air transfers the heat to the conditioned space.
Currently manufactured combustion heaters come in a wide range of sizes.
They are completely self-contained, as well as being relatively small and
light. Combustion heaters operate on either diesel ur gasoline fuel. All
data in this report is based on the use of gasoline.

For this analysis, only direct air heaters are considered. Water
heating systems were considered to be too complex and heavy for use in
small automobiles. (Reference 4-1)

Resistance Heaters

Resistance heaters provide heat by the direct conversion of electrical
enerqy t> heat. Heat generated in the resistors is transferred by an air
stream to the conditioned space. A resistance heater system for the EHV
consists of the resistance heater and a fan or blower. Efficiencies for
resistance heater systems are close to 100 percent.

Resistance heaters are small, light and relatively expensive. They
are very flexible and can be potentially used in a wide variety of
applications. However, their requirements for electrical energy are high,
which severely limits their application in vehicles. (Reference 4-2)

Distributed Resistance Heaters

Electric resistance heaters can be distributed over a specific area
simply by distributing the resistive material. One possibility is the use
of electroconductin, films embedded in the windshield to provide defrosting
and defogging service.

Electroconducting films consist of conducting materials deposited
directly on glass or on a transparent plastic sheet which is then laminated
into glass. These systems supply 100 to 400 watts (340-1360 Btu/hr) for a
0.72 m2 (400 inz) area (References 2-12 and 2-15). They are capable of
providing windshield defrosting within five minutes from -18°C (0°F).
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The electroconducting films have a very small size and weight impact.
However, they are currently relative expensive and are primarily considered
as an “optional" element.

4.2.2 Electrically Driven Heat Pumps

Heat Pumps

A heat pump is a device which can transfer heat from a cooler
reservoir to a hotter one, expending energy in the brocess. Numerous types
of heat pump systems have been devised. The broadest class is based on
reversed heat engine cycles. These heat pumps require mechanical drive
from either an electric motor (as discussed in this section) or a heat
engine (discussed * . Section 4.2.3). Other types of heat pumps based on
absorption cycles or other non-mechanical drives, will be discussed in
Section 4.2.4. |

The heat pump has several important characteristics. First, it is the
only dirvect means of providing a cooling effect (heat sink). Second, the
heat pump itself can be reversed to provide a heating system with a
coefficient of performance greater than unity. Potentially, a reversible
heat pump can provide both heating and cooling capability in a single unit.

Heat pump performance is characterized by the coefficient of
performance (COP), the ratio between the hea.ing or cooling effect obtained
and the required energy input. Typically, the COP and the capacity for a
heat pump will decrease at very low or very high temperatures. Unfortu-
nately, these are the same temperatures at which the heating or cooling
loads are greatest. Thus, a back-up system is generally required to at
least meet the maximum heating load. Onc exception to this general rule is
the Ericsson cycle heat pump, discussed below, which retains full capacity
regardless of ambient conditions. This is achieved with a variable stroke
drive. The same effect can be achieved by a varfable speed, constant stroke
drive, which can be adapted to other heat pump cycles.

In the electrically driven heat pumps, an electric motor supplies the
mechanical work input to the heat pump cycle. The following paragraphs
discuss heat pump based on the vapor compression, Brayton, and Ericsson
cycles.



Vapor ression 1

The most common heat pump cycle 1s the vapor compression cycle. In
this cycle, the working fluid vapor is first compressed to a high pressure
gas, then condensed to a 11quid. Heat from the condenser is rejected to the
ambient (outside) air. Th~ 1iquid refrigerant is throttled to a low pressure
through an expansion valve or capillary and then allowed to evaporate, taking
in heat from the conditioned space. The vapor then returns to the compressor
to repeat the cycle. By reversing the roles of the condenser and evaporator,
heat can also be provided to the interfor space.

The electrical vaper compression cycle, using "freon" as a working
fluid, 1s the most common heat pump system. Vapor compression heat pumps are
used to provide heating and cooling in houses and larger buildings, as well
as in mobile homes and recreational vehicles. It is a highly developed
technology and is fairly attractive in terms of weight, s.:=, cost, and
operating performance. (Reference 4-3).

Reversed Brayton Cycle (ROVAC)

In the reversed Brayton cycle, air is the working fluid, undergoing the
four basic processes of compression, heat rejectior, expansion, and heat
acceptance. The cycle is open with the working fluid being compressed,
expanded, and circulzted by a single rotary vane device. (The acronym ROVAC,
from Rotary Vane Compressor is given to this system.)

The open reversed Brayton cycle is simpler than the vapor compression
system becauce one heat exchanger is needed and sealing problems are minimal.
However, the COP's for the ROVAC system are generally lower than the correspon-
ding vapor compression cycle, requiring more energy to drive the system. Most
11kely a production system would be smaller and lighter than the vapor com-
pression system, but would cos* about the same to produce.

Prototype ROVAC's have been tested in automobiles (Reference 4-4).
Improved ROVAC systems are still being developed and tested for automotive
and stationary applications.
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Ericsson Cycle

The electrically driven Ericsson heat pump is basad on the reversible
Ericsson cycle. The Fricsson cycle is a highly efficient regenerative gas
cycle in which energy is exchanged at constant temperature between the heat
source and sink. The regenerative cycle steps occur at constant pressure.

The electric Ericsson heat pump uses two linear e!ectric motors to
drive piston compressor-expanders. Regeneration is accomplished by
operation of a free piston displacer/reenerator, which also aids in the
transfer of the working fluid between the hot and cold heat transfer
surfaces. Helium is the working fluid with freon loops used for heat
transfer.

High COP's, about 90 percent of Carnct, are expected from the fully
developed heat pump. Thus the system would use considerably less energy
than current vapor compression systems. It is also expected to be somewhat
11ghter and smaller but would cost about the same in production.

One unique feature of the Ericsson cycle system is ti .t the linear
electric drive motor has a variable stroke. At larger temperature ciffer-
entials, the stroke can be increased to maintain the systems capacity.
Potential capacity reductions at lower temperatures could be minimized in
the other cycles, if they were driven with variable speed electric motors.
(References 4-5 and 4-6)

4.2.3 Heat Engine Driven Heat Pump

As an alternative to supplying me-hanical work from an electric motor,
a heat engine may be used to drive the heat pump. The engine cycle can be
the same as the heat pump. In this evaluation four cycle combinations were
studied.

Otto (Gasoline Engine) Vapor Compression and ROVAC

Both the vapor compression and ROVAL heat pumps can be driven by a small
gasoline engine. Small gasoline engines have full load efficiencies of
about 20 percent and are actually slightly lighter than an electric motors
of the same horsepower. The cost of the gasoline engine with an elactric
starter will be about the same as the electric motor. Thus, the Otto
(gasoline engine) driven vapor compression and ROVAC cycles are potentially
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attractive options available today for the ECS cooling elament. (These
cycles could also supply heat but probably would offer little advantage
over the combustion heater.)

Stirling Vapor Compression Heat Pump

The Stirling engine driven vapor compression heat pump 1s a reciprocating
system. The Stirling engine utilizes an efficient regenerative cycle with
either helium or hydrogen as the working fluid. High temperature heat is
supplied to the engine by a combustion burner and rejected via cooling air
stream. The reciprocating output shaft is directly coupled to the piston
of a reciprocating compressor of the standard heat pump cycle.

Several industrial programs have reported development work on the Stirling
vapor compression heat pump over the last several years. The main potential
advantages of this system are its high COP, due to the high efficiency of
the Stirling engine. A second advantage is its capability to run directly
on fossil fuel. However, systems developed to date have been primerily for
residential (stationary) applications. Hence, they tend to be larger,
heavier, and more expensive than systems for automotive applications. This
reflects more conservative design practices needed to achieve longer
operating lifetimes for residential applications. (References 4-7 and 4-8)

Ericsson Ericsson Heat Pump

The Ericsson heat pump cycle can be driven by an Ericsson engine.
Coupling between the engine and neat pump is accomplished by working fluid
flow between the engine and heat pump. Both cycles use helium as a working
fluid and are regenerative. Heat is supplied to the Ericsson engine via 2
combustion burner.

The Ericsson Ericsson system is still in development. The system
performance is expected to be high with overall performance in the range of
80 to 90 percent of Carnot efficiency. The overall Ericsson Ericsson heat
pump system is expected to be somewhat smaller and lighter than the Otto vapor
compression heat pump of equal capacity. System costs in production would be
about equal. (References 4-5 and 4-6)
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4.2.4 Heat Driven Heat Pumps

Heat pump cycles have been devised based on other physical principles
such as the variation of solubility with temperature .and pressure. The
three heat pump cycles discussed here are the best known heat driven
cycles.

Absorption Cycle

The absorption cycle heat pump utilizes two fluids, the refrigerant
and the absorbent as the working medium. Operation is similar to the vapor
compression cycle in that the high pressure refrigerant rejects heat in the
condenser. After passing through the expansion valve, it atsorbs heat in
the evaporator at low pressure. The difference is that instead of mechan-
ically recompressing the refrigerant ¢0 high pressure it is absorbed in the
absorbent. The absorbent is pumped to a higher pressure and the refriger-
ant is separated from the absorbent by t“e addition of heat. Thus, most of
the energy to drive the cycle is supplied as heat, in lieu of mechanical
work.

The absorption cycle heat pump offers relatively good performance in
heating, but poorer performance in cooling. It also tends to be heavy and
large because a great deal of heat exchanger surface area is required.
Currently, designed systems, primarily for stationary use, are considerably
more costly than current electric vapor compression systems of the same capacity
(References 4-9 and 4-10).

Hydride Heat Pump (HYCSOS)

The hydride heat pump is based on the absorption properties of
hydrogen in different metal alloys, such as CaNig Hn and LaNig H_. These
meterials will absorb and reject heat as they desorb and absorb hydrogen
respectively. The hydride heat pump utilizes a series of beds which alter-
natively exchange hydrogen while "pumping” heat. The beds also regenera-
tively exchange heat between themselves as part of the heat pump cycle.

Potentially, the hydride heat pump could provide performance similar
to the absorption system. The hydride system would be smaller, lighter,
and potentially less expensive. However, the hydride system is only in the
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eariiest stages of conceptual development. For this study it can only be
considered as a prospect for long term development (References 4-11 and
"12>o

Jet Compression Heat Pump

The jet compression heat pump is also similar to the vapor compression
heat pump. A vapor jet pump replaces the mechanical compressor. Low
pressure vapor is entrained in the high velocity flow stream created by a
fluid (vapor) jet. The vapor is effectively "compressed" as the velocity
head of the jet is recovered in a diffuser. Most of the input to the cycle
is heat, which boils the working fluid to power the jet compressor.

The jet compressor heat pump system for vehicle application is
presently in the conceptual stage (Reference 4-13)., Data are, therefore,
unavailable 1o describe system weight, size, cost, or actual performance.
Expected advantages of the jet compressor system include size and
weight advantages over the larger and heavier conventional vapor com-
pression cycles (Reference 4-14). Alsc, coefficients of performance are
predicted to be slightly higher than for the absorption cycle.

4.3 ENERGY STORAGE ELEMENTS

As an alternative to energy conversion, energy may be withdrawn from a
previously charged energy storage subsystem. This subsystem can store the
energy thermally or chemically. Thermal storage mechanism can utilize both
sensible and latent heat. Chemical storage mechanisms can depend on chem-
ical reactions, absorption properties, or release of expendable
refrigerants.

4.3.1 Thermal Energy Storage

Thermal energy storage (TES) systems nave been developel for both
heating and cooling of buildings. The heating technology is widely
utilized in Europe. This section draws on existing data for these systems.

Sensible TES Heating

Sensible heat storage is based on a technology developed in Europe for
storing heat energy. It utilizes special cores, made of magnesite or cast
iron, which can withstand repeated cycling to 500 -600°C (900 - 1100°F).
These cores are heated by resistance heaters. The cores are enclosed in
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suitable insulation, so that a significant fraction of the hest may be
retained for periods of 12 to 16 hours.

Potentially, these heaters provide an attractive means for storing
heat energy with energy densities several times that of the propulsiun
battery and costs that are much lower. However, if very large amounts of
heat energy are required, the sensible heat storage system becomes too
large to be practical (Reference 4-1%),

Latent TES Heating

Energy can also be stored in the heat of fusion associated with phase
change in a eutectic material. Because of the high $pecific energy
involved in some phase changes, latent heat storage offers the potential of
even higher energy densities. Typical materials utilized are Yithium,
>0dium and magnesium fluorides.

Potential energy densities are twice that of sensible heat storage,
although costs are much higher. Latent heat storage technology is
currently in the development phase (References 4-15 and 4-16).

Ice Making TES Cooling

In the same manner that certain materials can store heat, ice has long
been used as a stored heat sink., Ice making cooling utilizes a standard
vapor compression refrigeration unit to make the ice. The ice is retained in
an insulated container to serve as a sink for heat for the ventilation air.
A separate water heat exchange loop transfers the hedt to the ice.

An ice making storage system could potentially supply a limited amount
of cooling capacity for a vehicle. The system's size. weinht, and cost
will be proportional to the amount of capacity requi (| !erence 4-15).

Eutectic TES Cooling

Other eutectic materials, such as certair 1wydrates, can provide
considerable therma) storage capacity for cooling. Eutectic materials
would provide for 2 more efficient storage system since their transition
temperature is higher, 13°C (55°F) instead of 0°C (32°F). However, their
costs are higher and their energy storage density S lower than that for
ice (Reference 4-15),
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Thermal Energy Storage for Long Durations

A1l thermal energy storage systems suffer from a common drawback. While
the thermal storage device can be insulated, some energy will leak ocut. The
thermal energy store has a typical self-discharge period o’ several days. For
a vehicle where use patterns are often intermittent, this can cause practical
problems. If the vehicle 1s 1dle for long periods, the store must be
recharged or the ECS will not function. Special requirements 1ike this may not
find wide market acceptance by vehicle users.

4.3.2 Chemical Energy Storage

Chemical energy storage systems are based on chemical reactions,
absorption or use of expendable refrigerant.

Chemical Reactions

There are a number of reversibie chemical reactions being studied as
energy storage mechanisms. A typical reaction considered involves use of
paired ammoniated salts. At high temperature, the ammoniated salts
decompose intu ammonia (NH3) gas and the salt. Heat is absorbed in this
process. The ammonia reacts with a second salt at a lower temperature,
releasing heat. When the process is reversed, heat is absorbed by the
second salt at low temperature, providing a cooling effect.

It is estimated that this particular chemical reaction system would
cost about the same as a conventional cooling system, if its operating time
was limited to 2 or 3 hours. However, thc current versions of the system
are much too large and heavy for automctive application. (References 4-17
and 4-18)

Intermittent Absorpticn

The intermittent absorption system is based on having a single charge
of refrigerant dissolved in an absorbent. The two are separated by adding
heat to the mixture and recondensing the refrigerant in a separate con-
tainer. Upon reevaporation of the refrigerant and its subsequent absorp-
tion, heat is "pumped" from the low temperature to high temperature. This
continues until all tke refrigerant is absorbed.

-
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Prototype and potential systems involve combinations such as:

- Water and magnesium chloride hydrate
= Lithium bromide and water
- Dimethyl glycol and freon (R-22)
- Water and ammonia
Preliminary estimates for intermittent absorption systems indicate
their size, weight and cost will probably be excessive for vehicle

applications. (References 4-17 and 4-19)
Expendable Refrigerants

A third alternative for chemical energy storage is expendable
refrigerants. Three "traditional" expendible refrigerants were examined.
Liquid nitrogen and its associated tankage were clearly too heavy for
automotive use. lce and dry ice were possibilities, though the weights
required were high and they were inconvenient for the vehicle user.
Expendible ' efrigerants also would not be economically practical because
they are not widely available at a price that would bs attractive to the
vehicle owner. (Reference 4-20j.

4.4 OTHER ECS ELEMENTS

4.4,1 OQOdor Control

Activated charcoal filters can be used to reduce the requirement for
ventilation air by absorbing odors onto the filter bed material.
Ventilation air is continuously recirculated through the filter bed with
make-up (fresh) air only 15 to 30 percent of the ventilation flow.

About 1 to 2 pounds of activated charcoal is needed per person per
year in typical building ventilation applications. Intermittent service
such as automobile operation could extend this by a factor of 2 or 3.
Hence, a small inexpensive filter with about a pound of charcoal would
serve about a year in a vehicle. The filter would be replaced or the
carbon regenerated.

The benefits of the charcoal filter are high. Reduced ventilation
load significantly reduces ECS capacity requirements (about 50%). Hence,
significant savings can be achieved in system size, weight, cost, and
energy requirements (Reference 4-21).
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4.4.2 Contro) of Sclar Radiation Input

Several techniques are available for controlling solar radiation
inputs through the vehicles windows. The two techniques investigated in
this study are reflective films and louvered sun shields.

Reflecting Window F1ilms

A variety of "Mylar" based reflective films are available which can
reduce the radiant heat load up to 80 percent. Their costs are very low
(Refarence 3-3). However, use of these films is restricted by the
requirements for visible 1ight transmission in the windshield and side
windows. Tinted windows also reduce the radiant heat lcad, but they are
limited in ter.s of the heat reduction they can provide. Effectively, the
radiant heat load c.n only be reduced by about 35% (Reference 1-1). How-
ever, even this level of solar control is highly effective in reducing the
ECS capacity requirements.

Louvered Sun Shields

Louvered sun shields for rear windows are an alternate approach to
reducing solar loads on the rear window. They are made of plastic or
aluminum., Although their costs are higher than reflecting films, they can
make an effective contrib:tion in reducing the cocling system capacity.
Properly designed louvers will have a minimal impact on the vehicles
aerodynamic characteristics. They are estimated to reduce the radiant heat
1oad by 80 percent (Reference 1-1).

4,4,3 Heat Recovery Systems

Heat recovery can be used in the ECS in two ways. First, heat can be
recovered from the verntilation exhaust from the passenger compartment and
used to condition incoming ventilation air. Second, waste heat from the
vehicles main propulsion system can be recovered and used to supplement the
ECS's heat inputs.

Ventilation Heat Recovery

Ventilation heat losses can be reduced up to 70% by passing
ventilation air through a counterflow heat exchanger. Exhaust air can be
used to condition incoming air in either the heating and cooling mode.
Paper plate and fin heat exchangers are the lowest cost, highest

4-16



effectiveness and most compact method of h.a: recovery. However, use of
heat recovery is much more expensive than restricting the ventilation flow
and recirculating the air through a charcoal filter for odor control.
(References 1-1 and 4-22)

Waste Heat Recovery

Considerable amounts of waste heat are potentially available from the
vehicle propulsion system. In the electric vehicle, normal operation ('D'
cy:zles) can supply up to haif the vehicle's heating load from motor and
controller waste heat. Since the motor and controller are often air
cooled, the heated cooling air could be used as input to the ventilation
air stream. Care wnuld be neec2d not to introduce contaminants such as
ozone from arcing brushes into the passenger compariment. (Reference 4-23)

Very large quantities of waste heat are available from the hybrid
vehicle power system, especially from the heat engine. Essentially all of
the ECS heat requirements can be met once the heat engine starts to
operate. Sufficient waste heat is available to drive the heat driven heat
pump cycles. The cost of recovering this waste heat is low enough to make
this an attractive option (References 1-3 and 4-24).

4.4.4 Specia) ECS Elements

Electrically Heated Seats

Electrically heated seats are used in a few vehicles to supplement the
normal heating system during warm-up and very cold conditions. The
electric seat supplements the normal metabolic heat rate, to produce the
sensation of comfort in a cold environment. Electric seats were not found
to be particularly effective in producing "comfort" and probably not a cost
effective ECS optior (Reference 1-3).

Evaporative Cooling

An evaporative cooler functions by adding moisture adiabatically to an
air stream. This reduces the dry bulb temperature. However, under the
design ambient cnnditions used in this study, an evaporative cooler can not
provide the desired interior conditions within the "comfort zone". Hence,
the evaporative cooler can not replace the heat pump system in cooling
service (Reference 1-3).
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4.5 DATA SUMMARY OF ECS ELEMENTS

Extensive quantitative data was developed on the ECS elements in
Reference 1-3. In this section, a series of individual tables is presented
to summarize the data for al) ECS elements. The EC® elements are sized for
the design range capacity. Element cnaracterist are given at the high
and low end of this range. Energy storage systems are sized with suffic-
ient capacity to operate at maximum capacity for 2.5 hours, about the
duration of the propulsion battery when driving "D" cycles.

The various ECS elements are summarized in the following tables:

Table 4-4. Summary of Characteristics of Energy Conversion ECS
Elements

Table 4-5, Summary of Characteristics of Energy Storage £CS Elements
Table 4-6. summary of Characteristics of Other ECS Elements

These tables follow on the succeeding pages.
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Table 4-4a.

Element: _Combystion Heater

Summary of Characteristics of Energy Conversion ECS Elements

RANGE OF VALUES

LOW

2,198

7,500

N/A
N/A

200

5.5

12
0.0
0.6

2,855
9,740

Neg

CHARACTERISTIC UNITS
HEATING CAPACITY: watt
Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WEIGHT: kg
b
VOLUME: m
ft3
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: watt
Btu/hr
FUEL TYPE: Gasoline
RANGE IMPACT: Percent
DEVELOPMENT STATUS: Near-Term
COMMENTS: Commercially Available - Already used in many EVs.

HluH

—£.784
2,300
—NA___
—NA__
250
8z
18
0.020
0.7

3,617
12,340



Table ¢-4b. Summery of Characteristics of Energy Conversion ECS Eiements

E ement: Resistance Heater
RANGE OF VALUES
CHARACTERISTIC UNITS LOW HIGH
HEATING CAPALITY: watt 2,198 2,284
Btu/hr 7,500 9,500
COOLING CAPACITY: watt N/A N/A
Btu/hr N/A N/A
INITIAL COST: Dollars 50 €0
WEIGHT: kg 6.8 8.3
b 15 18
VOLUME : m 0.020 0.028
i 0.7 1.0
ENERGY REQUIREMENT
HEATING: watt 2,198 2,784
Btu/hr 7,500 9,500
COOLING: watt - --
Btu/hr - ="
FUEL Typg. Electricity
RANGE IMPACT: Percent 30 86
DEVELOPMENT STATUS: Near-Term
COMMENTS:
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Table 4-4c Summary of Characteristics of Energy Conversion ECS Elements

Element: _Electric Vapor Compression

CHARACTERISTIC UNITS
HEATING CAPACITY: watt
. Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WE1GHT: kg
1b
VOLUME : m
fe3
ENERGY REQUIREMENT
HEAT ING: watt
Btu/hr
COOLING: watt
Btu/hr
FUEL TYPE: Electricity
RANGE IMPACT: Percent
DEVELOPMENT STATUs: _ Near-Term

RANGE OF VALUES

LOW

93%
1,536
5,240

26

HIGH

1,184
4,040
19,515
6,670

34

COMMENTS:  Commercially available and widely used for building space conditioning
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Table 4-4d. Summry of Characteristics of Energy Conversion ECS Elements

Element: Electric Reverse Brayton (ROVAC)

CHARACTERISTIC UNITS
HEATING CAPACITY: watt
Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WEICHT: kg
b
VOLUME: n’
3
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: watt
Btu/hr
FUEL TYPE: Electricity
RANGE IMPACT: Percent
DEVELOPMENT STATUS: Near-Term

COMMENTS: Prototypes tested in automobile with mechanical drive.
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RANGE OF VALUES

Low_ HIGH
2,198 2,784
7,500 9,500
3,224 4,103
11,000 14,000
470 490
50 61
110 120
0.040 0.048
1.4 1.6
207 —1.160
2,900 3,650
2,304 _ 2,931

6,900 8,750
33 47




Table 4-4¢. Summary of Characteristics of Energy Conversion ECS Elements

Element: Electric Ericsson
RANGE OF VALUES
CHARACTERISTIC UNITS LOW HIGH
HEATING CAPACITY: watt 2,198 2,784
Btu/hr 7,500 9,500
COOLING CAPACITY: watt 3,22 4,103
Btu/hr 11,000 14,700
INITIAL COST: Dollars 600 750
WEIGHT: kg 25 30
1b 55 _ 65
VOLUME : m 0.040 0.08
£l 1.4 1.8
ENERGY REQUIREMENT
HEATING: watt 999 1 1266
Btu/hr 3,410 4,320
COOLING: watt 1,342 1,709
Btu/hr 4,580 5,830

FUEL TYPE: E1ectr1c1ty

RANGE IMPACT: Percent 2] ‘ 27
DEVELOPMENT STATUS: Mid-Term

COMMENTS: Laboratory prototypes being designed and tested.
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F Table 4-47. Summary of Characteristics uf Energy Conversion ECS Elements

Element: _Stirling Vgpor fompression

i CHARACTERIST:C UNITS
HEATING CAPACITY: watt
Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WE1GHT: kg
b
VOLUME: m
£t?
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: wtt
Btu/hr
FUEL TYPE: Gasoline
RANGE IMPACT: Percent
DEVELOPMENT STATUS: __ Mid-Term

RANGE OF VALUES
LW HIGH
2,198 2,784
7,500 9,500
3,224 4,103
11,000 14,000
1,100 1,200

.ZZ 98

170 __.?li__.
0.24 0.28
8.5 10
J1,29¢ 1,638
4,410 5,590
3,394 4,308
11,580 14,700
6 8

COMMENTS: Prototype units undergoing experimental evaluation
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Table 4-4g. Summary of Characteristics of Energy Conversion ECS Elements

Element: Ericsson Ericsson
RANGE OF VALUES
CHARACTERISTIC UNITS LOW_ HIGH
MEATING CAPACITY: watt 2,198 2,788
Btu/hr 7,500 9,500
COOLING CAPACITY: watt 3,224 4,103
Btu/hr 11,000 14,000
INITIAL COST: Dollars 600 750
WEIGHT: kg 27 32
b 60 70
VOLUME : m 0.057 0. 065
ft3 2.0 2.3
ENERGY REQUIREMENT
HEATING: watt 1,046 1,328
Btu/hr 3,570 4,520
COOL ING: watt 1,40 1,785
Btu/hr 4,780 6,090

FUEL TYpg:  Gasoline

RANGE IMPAZT: Percent 2 2

DEVELOPMENT STATUS: Mid-Terr

COMMENTS: Laboratory prototypes being designed and tested
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Table 4-4h. Sw..»ry of Characteristics of Energy Conversion ECS Elements

Element: ___ Otto (Gasoline Engine) Vapar Comprsssion ...

- CHARACTERISTIC UNITS

HEATING CAPACITY: watt
Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WEIGHT: kg
b
VOLUME: m
red
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: watt
Btu/hr
FUEL TYPE: __ Gasoline
RANGE IMPACT: Percent
DEVELOPMENT STATUS: Near-Term
COMMENTS: Used for cooling only
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RANGE OF VALUES
LOW_ HIGH
2,198 2.784
2,500 0 9,500
3,224 4,103
11,000 14,000

580 720

4 64

90 _ 140
0.1 0.13
4.0 4.5
4,226 5,355
14,420 18,270
6,858 8,731
23,400 29,790
3 5




Table 4-494. Summary of Characteristics of Energy Conversion ECS Elements

Element: Otto (Gasoline Engine) ROVAC
RANGE OF VALUES
CHARACTERISTIC UNITS LOW_ HIGH
HEATING CAPACITY: watt 2,198 2,784
Btu/hr 7,500 9,500
COOLING CAPACITY: watt 3,224 4,103
Btu/hr 11,000 14,000
INITIAL COST: Dollars 440 465
WE IGHT : kg 36 4
b 80 90
VOLUME: m 0.056 0.071
£t3 2.0 2.5
ENERGY REQUIREMENT
HEATING: watt 4,147 5 282
Btu/hr 13,000 __ 16,400
COOLING: watt 10,404 13,236
Btu/hr 31,400 40,000
FUEL TYPE: Gasoline
RANGE IMPACT: Percent 2 3
DEVELOPMENT STATUS: Near-Term

COMMENTS: Prototype ROVAC (Mechanically driven) tested in car - Used for
cocling only.
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Table 4-43. Sumary of Characteristics of Energy Conversion ECS Elements

Element: Absorption
CHAPACTERISTIC UNITS
HEATING CAPACITY: watt

Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WE I GHT: kg
b
VOLUME ; m
3
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: watt
Btu/hr
FUEL TYPE: Gasoline
RANGE IMPACT: Percent

DEVELOPMENT STATUS: Mid-Term

COMMENTS:
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RANGE OF VALUES

LOW_ HIGH
2,198 2,784
7,500 9,500
3,224 4,103
11,000 14,000
1,010 1,280
95 18
210 260
0.28 0.34
10 12
1.832 —2.321
£.250 —1.820
6,448 8.206
22,000 28,000
7 9




Table 4-4k. Summury of Characteristics of Energy Conversion ECS Elements

Element: Hydride
CHARACTERISTIC URITS
HEATING CAPACITY: watt

Btu/hr
COOLING CAPACITY: watt
Btu/hr
INITIAL COST: Dollars
WEIGHT: kg
b
VOL 1IME : m
fe3
ENERGY REQUIREMENT
HEATING: watt
Btu/hr
COOLING: witt
Btu/hr
FUEL TYPE: Gasoline
RANGE IMPACT: Percent
DEVELOPMENT STATUS: Long-Term

COMMENTS: St111 in conceptual stage
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RANGE OF VALUES

LOW_ HIGH
2,198 2,784
7,500 9,500
3,224 4003
11,000 14,000
1,100 1,400
55 68
120 150
0.14 0.17
5.0 6.0
1,099 1,392
3,750 4,750
3,224 4,103
11,000 14,000
4 5




Table 4-41. Summary of Characteristics of Energy Conversion ECS Elemants

Element: __Jet Compression
RANGE OF VALUES
CHARACTERISTIC UNITS [N HIGH
HEATING CAPACITY: watt 2,198 2,784
Btu/hr 7,500 9,500
COOLING CAPACITY: watt 3,224 4,103
Btu/hr 11,000 14,000
INITIAL COST: Dollars == --
WEIGHT: kg - -
b - --
VOLUME: m’ -- --
£t -- -~
ENERGY REQUIREMENT
HEATING: watt 1,377 1,241
Btu/hr 4,700 5,940
COOLING: watt 5,363 6.829
Btu/hr 18,300 23,300
FUEL TYPE: Gasoline
RANGE IMPACT: Percent -- --
DEVELOPMENT STATUS: Long-Term
COMMENTS: Specific data on characteristics not available.
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Table 4-4. Summary of Characteristics of Energy Conversion
ECS Elements

Key to Tables
N/A - Not applicable.

Note:

Range impact is for electric vehicles. See Section 5.2.
Impacts for hybrid vehicles are similar.
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Table 4-5a. Summry of Characteristics of Energy Storage ECS Elements.

Element: ___ Sensible TES Heating

CHARACTERISTIC

UNITS
HEATING CAPACITY: watt -hr
Btu
COOLING CAPACITY: watt -hr
Btu
INITIAL COST: Dollars
WEIGHT: kg
b
VOLUME: m
3
ENERGY REQUIREMENT
HLATING: watt-hr
Btu
COOLING: watt
. Btu
FUEL TYPE: Charging Flectricity
PANGE IMPACT: Percent

DEVELOPMENT STATUS: Near-Term

COMMENTS:

S T
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RANGE OF VALUES

LOW_ HIGH
f,495 6,961
18,750 23,750
N/A N/A
N/A N/A
60 90
57 79
125 175
0.037 0,056
T I— 1 E
.5.465 8,189
22,060 27,940
N/A N/A
_NIA___ N/A
3 g

Widely used for residential heating in Europe.




Table 4-5b. Summary of Characteristics of Energy Storage ECS Elements.

Element: __ Latent TES Heatinp

CHARACTERISTIC UNITS
HEATING CAPACITY: watt-hr
Btu
COOL ING CAPACITY: watt -hr
Btu
INITIAL COST: Dollars
WEIGHT: kg
b
VOLUME: m
3
ENERGY REQUIREMENT
HEATING: watt-hr
Btu
COOLING: watt-hr
Btu

FUEL TYPE: Chargino Electricity

RANGE IMPACT: Percent
DEVELOPMENT STATUS: Mid-Term

COMMENTS:

4-30

RANGE OF VALUES

LOK_

5,495
18,750
A

N/A

225

23

50

0.014

0.5

£.465
22,060
N/A
N/A

HIGH

—6.961
23,750
N/A

N/A
315

32

70
0.020
0.7

—8.]189
27,940
N/A
N/A



Table 4-5c. Summary of Characteristics of Energy Storage ECS Elements.

Element: ___ Icemaking TES Cooling

CHARACTERISTIC UNITS
HEATING CAPACITY: watt-hr
Btu
COOLING CAPACITY: watt-hr
Btu
INITIAL COST: Dollars
WEIGHT: kg
b
VOLUME n
£e3
ENERGY REQUIREMENT
HEATING: watt-hr
Btu
COOLING: watt-hr
Btu
FUEL TYPE: Charging Electricity
RANGE IMPACT: Percent
DEVELOPMENT STATUS: Near-Term
COMMENTS:
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RANGE OF VALUES
LOW HIGH
NA 0 _NA
N/A N/A
8,060 10,258
27,500 35,000
525 615
123 150
270 330
0.12 0.6
4.2 5.6
NA . _NA
NA 0 _NA
8,939 _  _11,401
30,500 _38,900
8 10

Cost includes charging refrigeration system.



Table 4-5d. Summary of Characteristics of Energy Storage ECS Elements.

Elemant: __Eutectic TES Cooling
RANGE OF VALUES
CHARACTERISTIC UNITS LOW HIGd
HEATING CAPACITY: wWatt-hr N/A —N/A
Btu N/A N/A
COOLING CAPACITY: watt-hr 8,060 10,238
Btu 27,500 35.000
INITIAL COST: Dollars 540 630
WEIGHT: kg 191 24
b 420 530
VOLUME : m 0.13 0.17
£13 4.7 6.0
ENERGY REQUIREMENT
HEATING: wati-hr N/A N/A
Btu /A N/A
COOLING: watt-hr 8,939 11.401
stu 30,500 38,900
FUEi. TYPE: Charging Electricity
RANGE IMPACT: Percent de .
DEVELOPMENT STATUS: Mid-Term

COMMENTS:  Cost includes charging refrigeration system.
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Table 4-5¢. Summary of Characteristics of Energy Storage ECS Elements.

Element:

CHARACTERISTIC

HEATING CAPACITY:

COOLING CAPACITY:

INITIAL COST:
WEIGHT:

VOLUME:

ENERGY REQUIREMENT
HEATING:

COOLING:

Chemical Reaction

watt-hr
Btu
watt-hr
Btu
Dollars

watt-hr
Btu
watt-hr
Btu

FUEL TYPE: Charging Electricity or Fue)

RANGE IMPACT:

DEVELOPMENT STATUS:

Long-Term

Percent

COMMENTS:  Cost includes charging system

WBALLIEL L
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RANGE OF VALUES

LOW_ HIGH
5,495 _6.961
18,750 23,250
8,060 10,288
27,500 35,000
690 810
209 263
460 580
0.18 0.23
6.2 8.0
6,006 0 7,734
20,800 26,390
8,938 11,401
30,500 38,900
13 17




Table 4-5¢. Summary of Characteristics of Energy Storage ECS Elements.

Element: Intermittent Absorntion

CHARACTERISTIC

HEATING CAPACITY:

COOLING CAPACITY:

INITIAL COST:
WEIGHT:

VOLUME:

ENERGY REQUIREMENT
HEATING:

COOLING:

watt -hr
Btu
watt -hr
Btu
Dollars

watt-hr
Btu
watt-hr
Btu

FUEL TYPE: _ Charging £lectricity or Fue!

RANGE IMPACT:

DEVELOPMENT STATUS:

Long-Term

Percent

COMMENTS:  Cost includes charging system
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RANGE OF VALUES

KON HIGH
5,495 6,961
18,750 23,750
8,060 10,258
27,500 35,000
1,350 1,790
a3 118
205 260
6,006 = __7.734
20,800 26,390
8,939 11,40
30,500 38,900




Table 4-5. Summary of Characteristics of Energy Storage ECS Elements

Key to Tables
N/A - Not applicadble

Notes to Table

Charging unit cost 1s based to #n 8 hour charge period with
an electrical vapor compression cycle heat pump. Where
charging fuel is also indicated, a combustion heater can
supply the charging heat.

The range impact is for electric vehicles - Impacts for
hybrid vehicles are similar,

4-38



Table 4-6a. Summary of Characteristics of Other ECS Elements

Element: Charcos! Filter
PURPOSE :

Odor control with recirculating air system

CHARACTERISTICS UNITS VALUE
INITIAL COSTS: Dollars 10
WE1GHT : kg 0.5
b 1
VOLUME : m Neg
e _Neg

COMMENTS: Wi1l require annual replacement.

Table 4-6b. Summary of Characteristics of Other ECS Elements
Element: Reflecting Window Films

PURPOSE :
To reduce solar radiation load through windows.

CHARACTERISTICS UNITS VALUE
INITIAL COSTS: Dollars 6
WEIGHT: kg Neg
b Nea
VOLUME ; m Neo
ft3 Neg

COMMENTS: Tinting on windows reduce heat load 35%. Reflective films on
windows can reduce heat load 80%, but use is limited by Federal
Motor Vehicle Safety Standards.
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Table 4-6c. Swwary of Characteristics of Other ECS Elements
Element:_Louvered Syn Shield
PURPOSE
To reduce solar radfation Yoad through rear window.

CHARACTERISTICS WITS VALUE
INITIAL COSTS: Dollars 50
WE1GHT : kg 3.2
' 1 7
VOLUME : m N/A
e’ N/A

COMMENTS:  May produce 2 slight increase (2 to 3 percent) in CpA. Estimated
to reduce solar radiation load 80%. Weight is for plastic version.

Table 4-6d. Summary of Characteristics of Other ECS Elements

Element: Ventilation Heat Recovery

PURPOSE :

Heat exchanger to recover heat from ventilation exhaust air.

CHARACTERISTICS UNITS VALUE
INITIAL COSTS: Dollars 200
WE 1GHT : kg 9.1
b 20
VOL UME : m 0.042
e s

COMMENTS: Based on paper plate and fin heat exchangers. Designed to recover
70 percent of ventilation heat load.
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5.0 ELIMINATION OF INAPPROPRIATE ECS ELEMENTS

5.1 METHODOLOGY
5.1.1 Outline of Method

The ECS elements which will be selected as "best" for the electric and
hybrid vehicle (EHV) application must meet the functional requirements anc
other criteria defined in Chapters 2.0 and 3.0. In particular, it must
meet the requirements and criteria summarized in Tables 2-13 and 3-2. Cach
of these elements was summarized in Chapter 4.0. Detailed data on the
principles of operation, cost, performance, and physical characteristics of
the elements is available in Reference 1-3. This data will be the basis of
the screening process.

In this chapter each of the systems described in Chapter 4.0 is
evaluated in comparison to a baseline environmental control subsystem.
This baseline system, which meets all functional requirements and other
criteria, is described in detail in Section 5.2. Limits of acceptable
deviation from the baseline requirements are also presented. The systems
which deviate excessively fram the baseline requirements are deemed
inappropriate for the electric vehicle and are eliminated from further
study. However, where indicated, they may be considered again for the
hydrid vehicle ECS evaluation in Section 8.0

Format of Presentation

The discussion of the elimination of inappropriate ECS elements is
organized in the following manner. First, the basis of the elimination is
described by defining a baseline ECS element which satisfies all of the
functional requirements and meets all other criteria for adaptation in the
electric and hybrid vehicle. Second, all of the ECS elements are compared
to the baseline element. (The results of this comparison are summarized in
tabular form in Reference 1-4.) Finally, those elements which do not meet
the functional requirements or which excessively impact the design and
performance of the EHV are eliminated from further study. The reasons for
elimimation of each element deemed inappropriate are discussed and
summarized.

5-1



5.1.2 Limitations of Anaiysis

In some cases, it was difficult to accurately assess whether an ECS
element met specific criteria. A1so.'m1nor variations in design can
improve system lifetime or change noise levels or operating emissions. The
focus of this report is on the elimination of those ECS elements which
possess qualities detrimental to the EHV, those which cannot be overcome by
minor design changes. ECS systems failing to meet any one criteria by a
substantial margin or several criteria by narrower margins are not elimi-
nated if the deficiencies could be remedied through further research and
development. Some criteria are specifically noted as being only applied to
electric or hybrid vehicles.

5.2 DEFINITION OF BASELINE REQUIREMENTS

The elimination of inappropriate ECS elements requires that all
elements be ccmpared on an equal basis. The following discussion describes
requirements for an element which satisfies all functional requirements,
remains within the limits of vehicle design and operational impact, and
meets appropriate satety and amissions standards.

5.2.1 Functional Requirements

The functional requirements for the ECS element include heating and
cooling capacity, response time (the time required to reach capacity),
battery temperature control, windscreen defrosting and defogging, and
control flexibility. Specific baseline values for these requirements are
g ven below.

Capacity - The calculated capacity of the ECS is 5.6 kW (19,000
Btu/hr) for heating, and 7.5 kW (25,500 Btu/hr) for cooling, assuming there
are four passengers in the vehicle. The heating requirement was based on
an outdoor temperature of -29°C (-20°F). The cooling requirement was based
on an outdoor temperature of 49°C (120°F). These capacity levels &are based
on full ventilation flow.
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However, if the vehicle is designed with a controlled ventilation
system, the net ventilation flow (make-up air) will be between 43 to 77
ns/hr (25 to 45 cfm). At these ventilation levels, the range of required
capacities are as follows:

Heating: 2.2 to 2.8 kW (7,500 to 9,500 Btu/hr)
Cooling: 3.2 to 4.1 kW (11,000 to 14,000 Btu/hr)

Thesc values will be referred to as the design range. No credit has
beer taken for the waste hezt available to supplement these levels. All
parameters of the ECS will be calculated for both the high and low values

of the design range.

Total Stored Energy to Recover From "Cold Soak" - For vehicles having
storage heating systems, the heating system should hzve the capacity to
recover the battery from the "cold soak" condition at -29°C (-20°F). This
requirement is in additicn to the basic requirement for the ECS to supply
the maximum heating load on the maximum range mission. The two
requirements mean the total energy stored by the system is as follows:

Reguirement (worst case) Required Energy
Maximum capacity level for maximum 5,495 W-hr
rarge with minimum ventilation }oad (18,750 Btu)
Energy to recover battery from 7,034 W-hr
"cold soak" (24,000 Btu)
Total heating system required 12,529 W-hr
storage capacity (42,750 Btu)

Response Time - The required time to reach heating capacity is less
than 10 minutes. Time to capacity for the cooling element is less than 3
minutes with a 10 minute period to produce comfort for front seat
passengers.,

Windshield Defrosting & Defogging - Faderal Motor Vehicle Safety
Standard 103 (FMVSS 103) requires all vehizles to have a windshield
defrosting and defogging system. The nominal capacity of the windshield
defroster myst be 3.4 kW /11,500 Btu/hr) with an air flow rate of 340 m3
(200 cfr'  This capaci ¥ ¢ reduced by recirculation of passenger

/hr
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compartment air in the defroster. Thus, the heating ECS serves as the
defroster, as in current vehicle practice. An optional embedded windshield
heater could also b2 used as the defroster. The required <apacity of the
embedded heater is 0.6 kW.

Battery Tenperature Control - The battery controller must maintain
battery temperature in the 45°C + 6°C (120°F + 10°F) temperature range for
optimum effectiveness. This requires the heating capacity of the temper-
ature controller to be 380 watts (1,300 Btu/hr), when the battery compart-
ment has 2.5 om (1.0 in) of mineral fiber insulation. This requirement is
considered within the range of the heating ECS unit. Battery cooling is
accomplished by means of outside air passed over the battery by a small 120
m3/hr (70 cfm) fan. If lower battery temperatures are allowed, then less

supplemental heat is required for battery temperature control.

5.2.2 Impacts on Vehicle System

The impacts of any one element on the vehicle design and operation are
defined in terms of cost, weight, volume, energy requirement, and reduction
in range.

Cost - The baseline cost is taken as the cost of heating and cooling
systems presently used in automobiles. The cost of a typical automobile
heater is about $85. A typical air conditioner cost is $470 (Table 3-3).
The complete heating and air conditioning system cost would be $555. The
cost of the tECS element selected should not be greater than 2.5 times the
cost for the total ECS. Thus the final cost should not be greater than
$1388. Since the relative cost of the heater is much lower than the air
conditioner and the air conditioner is an "option," the vehicle owner will
be more sensitive to the cost of the air conditioner.

Weight - The weight of an ECS eiement should not exceed about three
times the current, or baseline weight. Current automobile air conditioning
systems weigh approximately 45 kg (100 1bs) (Reference 5-1). Current
heating systens weigh approximately 9 kg (20 1bs) (Reference 5-2). Element
weights up to 136 kg (300 1bs) will be acceptable.

volume - The ECS element volume should be less than 0.17 m3 (6 ft3)
(Reference 1-5). This is taken as the baseline value.
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Energy Requirements - Energy requirements were tabulated, but not used
in the elimination of inappropriate ECS elements.

Range Impact

Vehicle range impact, 8R/R is given by JPL (Reference 1-5) as:
aR/R = - (.086/Ft%) a(CoA) - (.00026/1b) aM - (.147/kN) P

where A(CDA) is the change in product of.aerodvnamic drag coefficient and
vehicle cross-section area due to the ECS, &M is the change in vehicle mass

due to the ECS, and AP is the average electrical energy required by the

ECS, not including energy derivable from onboard fuel. The average

energy required by the ECS accounts for the systems efficiency or

coefficient of performance in meeting the required capacity. Because the

drag coefficient remains essentially constant, A(CDA) can be replaced by 8A Cp,
the change in cross-sectional area.

An approximation for the relation between the vehicle cross-sectional
’
area is given by V « A‘/z. The volume change is then related to the area
change by:

dv « g-AVZ dA

Dividing both sides by V and rearranging gives:

dh = &g av

Assuming a typical vehicie cross sectional area of 1.9 m? (20 £t2) and
a typical vehicle volume of 8.7 m3 (307 ft3), based on data for a near-term

electric vehicle (References 2-13 and 5-3), the relation becomes:

dA = 0.043 dV

Substituting this relation into the range impact equation gives a
relation based on volume change, rather than area change:

AR/R = (-.0020/Ft3) aVCy - (.00026/1b) aM - (.147/KN) aP
where AV is the change in volume due to the ECS element.

It is realized that this approximation is very limited. Volume
requirements are usually met by making vehicles longer and "box-like."
Requirements for a larger vehicle may in turn add additional weight which
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may not be fully accounted for by the range equation. The range impact of
the ECS elemonts were evaluated using the modified JPL equations. The ECS
element should nct decrease the vehicle range by more than 20 percent.

5.2.3 Other Criteria

Developmental Status - In order to be considered in this evaluation
elements must be commercially available, or in near or mid-term development
{see definitions in Table 3-4),

Safety and Emissiors - Any element which could be exceptionally
hazardous in & crash or fire was considered for elimination. Elements with
potentially excessive emissions were also evaluated.

Lifetime - Normal vehicle lifetime was considered to be 3000 to 5000
operating hours. Systems which could not meet this lifetime requirement
were eliminated.

Noise and Vibration - Noise and vibration are usually dependent on
detailed system design. Systems which could not be made acceptable in
cerms of noise and vibrations were eliminated.

Serviceability - Systems with unusual or excessive service

requirements were eliminated.
5.3 SUMMARY OF INAPPROPRIATE ECS ELEMENTS

The elements which were eliminated from the detailed selectinn process
of the "best" ECS elements for the electric vehicle are summarized below.
Those elements which may still be applicable to the hybrid vehicle are
indicated. The reasons for the elimination are also presented.

Resistance Heater

In al1 cases the decrease in electric vehicle range for thi1s element
is excessive. The direct electrical requirement from the battery can
reduce the range by 30 to 46 percent. However, this element is potentially
applicable to the hybrid vehicle.

Electric Vapor Compression Heat Pump

In all cases the impact of this element on the vehicle range exceeds
acceptable limits. The range reduction is between 26 and 34 percent.
However, this element is potentialiy aprlicable to hybrid vehicles.

5-€
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Electric Reversed Brayton Cycle (ROVAC) Heat Pump

The range reduction for this element is excessive for the electric
vehicle application. The direct electrical energy requirements from the
battery can reduce the range from 37 to 47 percent. However, this element
is potentially applicable to the hybrid vehicle.

Electric Ericsson Cycle

The range reduction for this element is excessive for the electric
vehicle application. The direct electrical energy requirements from the
battery can reduce the range from 21 to 27 percent. However, this element
is potentially applicable to the hybrid vehicle.

Sensible TES Heating

When the noming) storage capacity of this system includes the capacity
to recover from "cold scak", the weight of this element is 315 lbs., which
is excessive.

Latent TES Heating

When the nominal storage capacity of this system includes the capacity
to recover from "cold soak", tne cost of this element is over $600, which
is excessive.

The following elements were eliminated from the detailed selection
process of the "best” ECS elements for both the eleciric and hybrid
vehicle. The reasons fur the eliminaiion are presented.

Hydride (HYCSOS) Heat Pump

This element has a longer term development requirement (beyond the
scope of this study).

Jet Compression Heat Pump

This element has a longer term development requirement (beyond the
scope of this study). Estimates of the element cost, weight, and volume
are not yet available.

Chemical Reaction Energy Storage

This element has a longer term develcpment requirement (beyond the
scope of this study).
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Intermittent Absorption Energy Storage

The cost of this element is high. The elament also has & longer ‘zrm
development requirement (beyond the scope of this study).

Electrically Heated Seats

The effectiveness of electrically heated seats is not clearly defined in
terms of ASHRAE comfort criteria (Reference 2-3). It cannot be determined
if these elements meet the functional requirements for passenger heating.

Evaporative Cooling

This element does not provide dehumidification. Thus, it does not
meet the baseline requirements.

Expendable Refrigerants
The size and weight of this element exceed acceptable limits.
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6.0 SELECTION OF THE “BEST" ECS FOR THE ELECTRIC VEMICLE

6.1 SELECTION METHODOLOGY

Selection of the "best" ECS for the electric vehicle is based on the
rating scheme developed in Section 2.0. The rating scheme requires that
the individual elements be ranked by their rating scores. The formal
procedures used to evaluate the elec.ric vehicle ECS elements are
summarized in this chapter.

Selection of the "best" ECS for the (near-term) electric vehicle must
include evaluation of all factors, including those not directly considered
in the numerical rating scheme. For example, of special interest for the
emerging electric vehicle technology is the expected market size over the
next few years. Evaluation of this factor is dependent on the highly
uncertain forecasts of future electric vehicle sales. Hence, it does not
lend itself to inclusion in a formal numerical evaluation scheme. This
evaluation factor is applied separately to those elements which rank
highest in the formal evaluation.

6.1.1 Consideration of Similar ECS Elements

Certain ECS elements had very similar characteristics. In some cases,
they belonged to the same group of technologies and used a similar
technical approach. To simplify the calculations and presentation of
results, the "best" member of the group was chosen to represent that class
of technologies, and the remaining members of that subgrouping were
not considered further in the evaluat on process.

6.1.2 Ranking of the ECS Elements

Ranking of the electric vehicle ECS elements is as described in
Section 3.5. The rating t~“eme factors and weights are as summarized it
Table 3-7.

Actual calculations for each element are carried out on work sheets as
shown in Table 6-1. Data sources for these work sheets are the summary
tables compiled in Section 4.5 as part of the description of the ECS
elements. More detailed data may be found in Reference 1-3.
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Table 6-1. Sample ECS Element Worksheet

Electric

vate

Hybrid Vehicle
Revisions

Heating (Backup Reqd. ) Cooling

Development Status N M

Data for Rating Scores
Capacity Level ——= High Low
Cost (%)

Weight (1bs)

Volume (ft3)

Energy Req (Btu/hr.)

Energy Type

Rating Factor Scores

Capacity Level —» High Low Weight
Cost 0.60
Weight 0.13
Volume 0.13
Energy Use 0.14

Total Rating Score

Range Penalty (%)

Commerts
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Inftiaily, individual data sheets are prepared separately for the
heating and cooling elements. Baseline values used to calculate the
heating and cooling element rating scores are given in Table 6-2. These
val ues were developed in Section 5.2. Functional forms used to calculate
the individual rating factor scores are summarized in Figures 3-2 and 3-3
(from Section 3.2).

The highest ranking heating and couling elements are combined to
produce one or two attractive total ECS elements. These total ECS's are
then reranked with the other total ECS elements. The total ECS elements
are mainly the reversible heat pumps.

In calculating the characteristics of the total ECS, the weights, the
volumes and the costs for the individual ECS elements are summed. Slight
savings are potentially available from system integration, but these were
not explicitly calculated because they did not appear to make a significant
difference in the elements' overall rating score. Energy use is calculated
as the average of heating and cooling energy use rates.

6.1.3 Selection of the "Best" ECS

Selection of the “best" ECS for the electric vehicle will be made on
the basis of the following three considerations:

- Rating Score Versus Range Penalty Plot
- Status of Technical Development
- Appropriateness for Likely Market Size

Rating Score Versus Range Penalty Plot

A plot of system rating scores versus range penalty is made for all of
the total! ECS elements. This plot quickly shows which ECS elements are the
more desirable in terms of the rating scheme. It also explicitly satisfies
the JPL requirement to indicate the elements ranking independently of the
range penalty (Reference 1-%).

Status of Technical Development

Table 3-4 establishes the definitions for the state of development
used in this study from Section 3.2. The evaluation will treat only near
and mid-term ECS elements. As suggested by JPL (Reference 1-5), only a
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Table 6-2. Baseline Values for Calculation of ECS
Eleent Rating Scores - Electric Vehicle

Element Type Heating Cooling Tota)

Rating Parameter

Cost (s) 85 470 555
Weight (kg) 9 45 54
(1b) 20 100 120
Volume  (md) 0.042 0.13 0.17
(#¢3) 1.5 4.5 6.0
* e
Energy Use (watt) 2,855 6,858 4,856
(Btu/hr) 9,740 23,400 16,570

'Based on combustion heater and used solely for comparative ECS evaluation.

"Based on Otto (Gasoline Engine) vapor compression cnoling and used solely for
comparative ECS evaluation.
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near-term ECS can be recommended for immediate development. A mid-term ECS
would be recommendud for more extensive development only {f it appeared to
be very attractive compa~ed to the near-term system. Long-term systems are
considerec "out of sccpe” for this study.

Appropriateness for Market 5ize

As discussed in Section 3.4, achieving low cost in the automotive
industry is based on achieving large scale production levels at minimum
risk. Alternately, for limited production vehicles, a high percentage of
camponents are purchased at favorable prices from existing manufacturers
already in high volume production for other purposes.

Figure 6-1 summarizes the production . vels that can be expected for
electric vehicles in the near-term. Only with very optimistic forecasts of
increased electric vehicle production can electric vehicles be assumed to
be "mass produced" in the next few years. Hence, there is a strong
incentive to select ECS elements from technologies already produced in
large quantities.

6.2 EVALUATION OF CANDIDATE SYSTEMS

6.2.1 Elements Not Considered in the Electric Vehicle Evaluation

The following ECS element was not considered further in the electric
vehicle evaluation:

- Eutectic TES Cocling - In genera1. ice making TES cooling had
almost identical or slightly more favorable properties in
comparison to eutectic TES cooling. Eutectic TES cooling was not
considered further because they were essentially similar systems.

6.2.2 Ranking of Heating and Cooling Elements

Since only one heating element (the combustion heater) remained under
consideration, no ranking was performed for the heating elements. Ranking
for the cooiing elements {s shown in Table 6-3. Because there was not a
strong difference between rating scores on these thiee elements, all three
are carried forward into the final evaluation. The results are three total
ECS's combining the combustion heater with each of the conling elements
(Otto vapor compressfon, Otto ROVAC, and Ice Making).
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Figure 6-1. Projections of Electric Automobile
Production for the United States

6-6



T ABIS st b e I WER R eVt Ieer tiw SdiE S 4 W e

“1-9 3|qeL 30 Jewi0) Bujsn 0°p UOIIIS U} eIEp WOLy PAALIAQ

15-t 6S-L¥ €
201-8 ¥9-55 -
i9-¢ éL-¢t9 L
X3euaq abuey S3100§ bujjey yuey

. 3121YaA 21432313 Y3 J4oj
sjuawd|] $33 6ui00) ay3 jo Gupyuey

buj00)
uojssaadwo) sodep 0330

Bu} L1007 Bujyey ad]

bu} {003 JVAQY 0330

EVETETE]

‘€-9 alqe})

6-7

i



o

6.2.3 Rating Score versus Range Penalty

The number of elements in the final evaluation is smali, Thus, all
were considered in the final evaluation of rating score versus range
penalty, as shown in Figure 6-2. It should be noted that this plot
contains systems in alternate states of development and not directly
comparable. Only the near term systems are candidates for the "best"”

ECS. Rating scores are given for two levels of capacity. This gives some
indication of the variation in the rating scores possible for each alement.
It also indicates that only differences in the rating scores of 20 points
or greater can be regarded as significant.

6.2.4 Choice of "Best" ECS

The Combustion Heater and Otto Vapor Compression Cooling System appears
to be the "best" ECS for the electric vehicle. See Table 6-4. Technically,
i1 of the systems are quite similar with the combustion heater and Otto
ROVAC cooling having a slight edge fn the rating scheme. However, only the
vapor compression system is proven in widespread automtive use. When com-
bined with a small Otto (gasoline) engine drive, the combinztion has good
technical characteristics and is very appropriate for limited scale production.
The combustion heater, the vapor compression air conditioner components, and
the Otto (gasoline) engine drive are 211 available in large quantities from
existing production factl{ties.

Mid-Term Development

Potentially, other technical systems could offer additional advantages
to future electric vehicle designs. Based on the data available to this
study on existing systems being developed for mid-term applications, the
Ericsson Ericsson heat pump appears attractive.

However, development in battery technology, such as the higher energy
density batteries (Reference 3-8) could change the choice of advanced
technology. For exampl=s, if a high energy density battery is used the
current range penalty coula be relaxed. This might favor consideration of
an Electric Ericsson heat pump, in lieu of the gasoline burning Ericsson
Ericsson cycle. The rating score of the Electric Ericsson heat pump is
quite high and if the 20% range penalty limit i3 reluxed, it is a very
favorable system. ZSee Figure 6-3.
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Even with a near term nickel-iron or nickel-zinc battery, the
occasionally occurring range penalty of about 25% might be acceptable to
vehicle users. Hence, the recommended strategy for more advanced
development is to conduct parallel development of both gasoline (fossil
fuel fired) and electrically driven advanced heat pumps with favorable
characteristics, such as the Ericsson cycle.

6.3 COMMENTS O« EVALUATION

Selection of the Combustion Heater and Otto vapor compression cooling
as the "best" ECS reflects the experience already acquired by electric
vehicle developers.

Both the Genera) Electric and Garrett Near Term Electric Vehicles use
combustion neaters (Reference 5-3). This {s also typical of most
commercially produced electric vehicles. Hence, the use of the combustion
heater is supported as a pragmatic choice of vehicle designers.

Selection of the Otto vapor compression cooling element is also a matter
of pragmatic chcice because it minimizes development risk. As discussed in
Section 3.4, the automotive industry tends to be "conservative". For a
1imited production market, the Otto vapor ccmpression cooling system
minimizes risk because it requires the smallest amount of capital investment
by the vehicle manufacturer until his market is established. The small and
uncertain future market for the electric vehicle ECS justifies the conser-
vative choice of technology.

Even the best technolojy evaluated in this study, the Ericsson Ericsson
heat pump, offers advantages not readily perceived by the market. The average
owner will not realize that the Ericsson Ericsson ECS is much smaller and
more efficient than Otto vapor compression ECS. He only sees that the price
is the same. Hence, unless the cost of operating the ECS becomes a key
i{ssue, there is 1ittle perceived advantage in the advanced options.

Gasoline Engine Life

The only other uncertainty in this evaluation is the lifetime of the
small gasoline engine in the ECS. Service 1ife of small gasoline engines
is highly dependent on design and construction practices. Small, fast
turning engines tend to have much shorter operating lives than larger,
slow turning engines. The data base given in the report is for industrial
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engines with service 1ives of "several hundred hours.” (Reference 6-4)
However, care in selecting the engine drive for the ECS would be required
to ensure adequate lifetime for automotive service.

In general, engine lifa can be extended by the fol1ow1ng}
- Careful design of the valve train

- Operating at low engine speeds

- Using hardened and plated pistons and rings

- Assuring good lubrication and cooling (See Refe :nce 6-5
for details.)

Conservative design practice would dictate that the ECS have a design life
of 3,000 to 5,000 hours.
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7.0 BATTERY HEATING AND COOLING ECS

The battery heating and cooling ECS has been treated separately from
the main ECS discussed in Section 6.0. This is because the additional
Yoads caused by the battery ECS are small compared to the "main" ECS loads.
Battery ECS load can be handled within the design range of the main ECS
Toads.

The current design for the battery ECS is based on the (revised) JPL
Guidelines (Reference 2-9). This requires the battery pack to be
maintained at 49°C + 6°C (120°F + 10°F). The ECS design is based on this
requirement, assuming the battery pack is insulated with 2.54 cm (1.0 in)
of mineral fiber insulation.

7.1 BATTERY HEATING AND COOLING

7.1.1 Heating

The energy required to mainta:n the battery at its operating
temperature of 49°C (120°F) at -29°C (-20°F) ambient is about 380 watts
(1300 Btu/hr). This could be provided by a small electric maintenance
heater, but would result in battery self discharge in about 2 days. A more
practical approach is to provide a means of diverting the combustion heater
output to the battery campartment. When the vehicle is idle, operation of
the heater for a fzw minutes out of every hour could provide the required
leve!. During vehicle operation, the required supplemental heat represents
Tess than 10% additional capacity for the heating system ECS. A fairly
simple control system would allow the combustion heater to meet both the
passenger compartment and battery compartment heating requirements.

7.1.2 Cooling

Battery cooling would be accomplished by blowing ambient air through
an annular region around the battery pack. This flow pattern is
illustrated in Figure 7-1. If a 1.25 em (0.5 in) air space is available
all around the batte y, the annular flow area is 132 cm® (20.4 in°). With
a cooling air flow of 119 m3/hr (70 cfm), as derived in Table 2-10, the air
flow velocity is approximately 2.6 m/sec (8 ft/sec).
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Assuming the battery suryace is rough, the surface heat transfer
coefficient would be about 12.6 wltt/m2 (4 Bta/ftz-hr). (See Figurs
7-2). If the batteries maximum heat evolution rate is 225 watts (767
Btu/hr) during an 8 hour charge, than the require:' temperature differential
between the battery pack and the ambient air is 3°C (5.4°F). If the
surface of the batterv pack is at 54°C (130°F) average, then cooling with
ambient air at 49°C (120°F) is adeyuate.

7.2 SUMMARY OF BATTERY ECS
The battery ECS consists of the following:

- Provision for diverting part of the combustion heater output to the
battery pack compartment under normal operating conditions. This
includes adding approximately 10% to the design range heater
capacity to cover the additional load.

- Provision for diverting the combustion heater's full output to the
battery compartment for providing maintenance heating when the
vehicle is idle.

- A separate blower for circulating ambient cooling air and providing
positive ventilation of the battery compartment. (The required
power level is about 100 watts.)

The operation of these components would be appropriately controlled by
the battery temperature controller.

ECS for Lower Battery Temperatures

If lower b>ttery temperatures were desired, then battery cooling could
be implemented using the cooling ECS element. When the vehicle is in
operation, the exhaust air from the passenger compartment might be adequate
to cool the battery. In any event, the additional cooling load would be
less than 10% of the capacity for passenger compartment cooling. Further-
more, if ambient temperatures are low enough, i.e., five degrees
(centigrade) less than the desired battery temperature, ambient air can be
used for battery cooling. Thus, changing the battery ECS temperature
requirement will not significantly affect the overall ECS design.
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8.0 SELECTION OF THE “BEST" ECS FOR THE HYBRID VEHICLE

8.1 EXPECTED CHARACTERISTICS FOR THE HYBRID VEHICLE

Selection of the "best" ECS for hybrid vehicle requires a clear
definition of the hybrid vehicle. Recently, results of studies by DOE/JPL
contractors (Reference 8-1 and 8-2) have provided fairly complete defini-
tions of hybrid vehicles. These definitions are used as the basis for
selecting the "best" ECS for the hybrid vehicle.

8.1.1 JPL Requirements

JPL defined the hybrid vehicle in terms of its range and passenger
carrying characteristics. (See Table 8-1.) The JPL concept of the
hybrid vehicle included a large battery pack and a small heat engine.

This maximized use of utility generated electricity and minimized use of
petroleum fuel., Because the heat engine is small, use of mechanical power
from the engine would be undesirabl. and might severely impact the
vehicle's capacity to accelerate.

8.1.2 Vehicle Characteristics from the DOE Phase ! Program

During Phase | nf the DOE Near Term Hybrid Vehicle Program, four
contractors executed independent hybrid vehicle designs. The range of the
key parameters for these vehicles 1s summarized in Table 8-2. These
vehicle designs generally meet the JPL requirements for vehicle passenger
capacity and operating range. However, in general, they have much larger
heat engines, so considerably more mechanical power is available to drive
accessory loads. In fact, design data presented in the current Phase II
design (Reference 8-2) shows a mechanical power take off provided for the
accessories, such as the air conditioner and power steering pump. With a
combined heat engine and electric motor power level of nearly 74.6 kW (100 HP)
available, the requirement of a few kW for the air conditioner should be
withir. the power system's capacity under most vehicle operating conditions.

It should also be noted from Table 8-2 that the lead acid battery pack is
approximately two thirds the capacity of the battery pack in the electric
car. This potentially reduces the loads for the battery ECS.
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Table 8-1. Key JPL Requirements for Hybrid Vehicle Characteristics

1. Designed for 5 passengers and extended range opsration
(Approximately 420 km (250 miles) between fueling stops).

2. The battery pack 1s (assumed to be) identical to the electric
vehicle.

3.  Initial charging of the batteries is from utility power.
Charging during operation will be from intermittent operation
of 2 heat engine and generator (Heat angine power approximate’y
18.6 kW (25 HP)).

4. (Mechanical) power from the engine will not be available
to drive the ECS.

8. Fuel allocation to the ECS will not exceed 19 liters (5 gallons).

Source: Reference 1-5
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8.1.3 Range Penalty for Hybrid Vehicle

The ECS system can reduce the range of the hybrid vehicle in several
ways. These include:

- Reducing the amount of gasoline a::ilable for the heat engine
- Incre:sed vehicle weight
- Increased vehicle aerodynamic drag cross section.

This listing presumes that any energy drawn fram the battery (as
electricity) will be replaced by consuming gasoline in the heat engine to
recharge the battery.

In the electric vehicle evaluation, it was found that only the range
penalty based on electric (propulsion battery) energy use ha' a significant
impact. Hence, only energy use was considered in calculating the range
penalties for the hybrid vehicle ECS.

The range penalty for energy use can be constructed frcm the predicted
characteristics of the hybrid vehicle as shown in Table 8-3. In this
case, the percentage range penalty for each gallon of gasoline used by the
ECS can be calculated in terms of the vehicle's marginal fuel economy.

The same approach can be used for electrical energy consumed, except that
this must be divided by the efficiencies of the engine and generctor
resiectively. (Again, this assumes the engine generator replaces any
electrical energy consumed fram the battery pack.)

When the heat engine begins to operate, large amounts of waste heat
(over 30 kW or 100,000 Btu/hr) will be available. Hence, the heating ECS
needs only to operate for a limited period of time. By contiast, the
cooling ECS needs to operate for the entire period of vehicle operation.
While the figure given in Table 8-3 is arbitrary, this value was used
consistently in all evaluations. Actual vehicle operation between
refueling could be for longer periods, with higher range penalties
involved.

B8.1.4 Discussion of Hybrid Vehicle Influence on ECS Design

The hybrid vehicle potentially offers considerably more flexibility in
the choice of an ECS because more total energy is available from the gasoline
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Table £-3. Calculation of Range Penaity for Hybrid
Vehicle (Based on Selected Phase I Design)

1.  Vehicle Charact. =istics -

Maximum Range . - 399 km (248 mi)
Marginal Fuel Economy" - 14.5 km/1 (34 MPG)
Assumed Average Speed - 39.8 kph (24.7 MPM)

Fitst Heat Engine Operation

120 km  (74.5 mi)

2. Powerplant Characteristics -

0.25 (Max)
0.85

Heat Engine Efficiency
Generator Effiriency with Controi

3. Range Penalty Per Gallen of
Gasoline Used

Range Penalty = Marginal Fuel Economy/Maximum Range = 12%/Gallon

4. Range Penalty Per kiWh of Electricity Used =
Gallons of Gasoline to Generate One kWh x Gasoline Range Penalty
3412 Btu/{.85 x .25) = 16,055 Btu = 0.128 Gallon of Gasoline
Range Penalty = 1.54%

5. Operating Time Until First Heat Engine Operation
Operating Ti.z= 3 hours

6. Assumed Operating Time Between Refuelings
Operating Time = € hours

Note: Vehicle is capable of operating un to 10 hours between
refuelings

Source: References 8-2 and 8-6

*Fuel economy after battery energy is exhausted.
*’Mix of 65% urban and 35% highway driving.




tank. However, more energy will be needed because of the potentially
Tonger operating periods. Hence, the emphasis in selecting the “"best" ECS
will be placed on efficient systems which minimize the use of gasoline
enrergy,

Data from the Phase | Near Term Hybrid Vehicle studies indicate that
direct mechanical drive for the ECS is feasible. Since the total power
(neat engine plus electric motor) in the hybrid vehicle approaches 74.6 kW
(100 4P), taking a few kW for the ECS should not penalize vehicle accelera-
tion. If this is a potential problem, the mechanically driven ECS can be
"declutched" during occasional requirements for peak power system output
without noticeable loss in function. Similar systems have already been
proposed for vehicles with small heat engines (Reference 8-3).

The biggest change in the power system will be the requirement to
supply auxiliary shaft power when the vehicle is stationary. This can be
done by the propulsion motor with controls to allow for efficient part load
operation.

8.2 SELECTION METHODOLOGY

Selection of the "best" ECS for the Hybrid Vehicle is based on the
rating scheme developed in Section 2.0. The rating scheme requi. s that
the individuzl elements be ranked by their rating scores. However,
stringent application of the functional requirements to certain systems
resulted in their being found inappropriate for use in hybrid vehicles in
Section 5.0.

Selection nf the "best" ECS for the (near-term) hybrid vehicle must
include evaluation of all factors, including those not directly considered
in Lhe numerical rating scheme. Of special interest for the hybrid vehicle
is the expected size of the emerging market for these vehicles over the
next few years.

8.2.1 Elimination of Additional ECS Elements from the Hybrid Vehicle
Evaluation

Additional ECS elements were eliminated from consideration for the
hybrid vehicle for two reasons. First, the very long potential mission
time requirement for the hybrid vehicle effectively limited the ECS
elements to those operatin, from onboard gasoline or electrical energy.
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Second, as discussed in Section 6.1.1, certain ECS elements had very
similar characteristics. In same cases, they belonged toc the same group of
technologies and used a similar technical approach.

To simplify the calculations and presentation of results, the "best"
member of the family was chosen to represent that class of technologies,
and the remaining members of that subgrouping were not considered furthe-
in the evaluation process.

8.2.2 Ranking of the ECS Elements

Renking of the hybrid vehicle ECS elements is as described in Section
3.5 2nd parallels the discussion in Section 6.1.2. The rating scheme
factors and weights are as described in Table 3-7.

Actual calculations for each element are carried out on work sheets as
previously shown in Table 6-1. Data sources for these work sheets are the
summary tables compiled in Section 4.5.

As ‘or the electric vehicle, individual data sheets are prepared
separately for the heating and cooling elements. Baseline values used in
calculation of the heating and cooling element rating scores are given in
Table 6-2. (These values were developed in Section 5.2). The only
difference is that energy use is calculated on the basis of the total
energy (in gasoline equivalent Btu) used by the ECS for the entire mission.
The baseline energy use values for the hybrid ECS are given in Table 8-4.
As described previously, the combined ECS energy use value is the average
of the heating and cooling values.

Functional forms used in calcalating the individual rating factor
scores are the same forms used for the electric vehicle ECS evaluation and
are summarized in Figures 3-2 and 3-3 (from Section 3.2).

The highést ranking heating and cooling elements are combined to
produce one or two attractive total ECS elements. These total ECS's are
then reranked with the other total ECS elements. The total ECS elements
are mainly the reversible heat pump cycles.

In calculating the characteristics of the total ECS, the weights, the
volumes, and the costs for the individual ECS elements are summed. Slight
savings are potentially available from system integration, but these were
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Table 8-4. Baseline Engrgy Use Values for Hybrid
Vehicle ECS

Heating ECS

Baseline energy rate (for combustion heater)

2.85 kW
(9,740 Btu/hr)

Maximum Operating Time = 3 hr
Baseline teating Energy = 8,55 kWh
(29,220 Btu)
Cooling ECS
Baseline Energy Rate (for Gasoline Rankine = 6.86 kW
ceoling) (23,400 Btu/hr)
Maximum Operating Time = 6 hr
Baseline Cooling Energy = 41.1 kWh
(140,400 Btu)
Total ECS
Average Baseline ECS Energy = 24.9 kiWh

(84,810 Btu)

L]
Baseline energy use values are solely for purposes of comparative ECS
evaluation.



not explicitly calculated because they did not appear to make a significant
difference in the elements' overall rating score.

8-2.3 Selection of the "Best"” ECS for the Hybrid Vehicle

Selection of the “best" ECS for the hybrid vehicle was done on the
basis of three considerations. These were:

- Rating Score versus Range Penalty Plot
- Status of Technical Development
- Appropriateness for Likely Market Size

Rating Score Versus Range Penalty Plot

A plot of system rating scores vs. range penalty was made for all of
the tota) ECS elements. This plot quickly shows which ECS elements are the
more desirable in terms of the rating scheme.

Status of Technical Development

Table 3-4 establishes the definitions for the state of development
used in this study from Section 3.3. The evaluation treats the first
two cases separately. Only a near-term ECS can be recommended for imme-
diate development for the hybrid vehicle.

Appropriateness for Market Size

Hybrid vehicle production is likely to be even lower than the
projections given for electric vehicles in Figure 6-3. Currently, there is
no regular production of hybrid vehicles. The total! number of prototype
hybrid vehicles in existence is about 100. Development of near term hybrid
vehicle prototypes by the Department of Energy lags comparable electric
vehicle development. A recent DOE paper (Reference 8-4) forecasted hybrid
vehicle "commercialization” as happening at least two years after electric
vehicle "commercialization". At best, hybrid vehicle production is
expected to be about half of EV production for the near future.

Thus, hybrid vehicles can be expected to be in limited production
throughout the near term period. This provides a strong incentive to
choose hybrid vehicle ECS elements from technologies which are already
produced in larges qu nti ¢ for other applications.
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8.3 EVALUATION OF CANDIDATE SYSTEMS
8.3.1 Discussion of Elements Eliminated for the Hybrid Vehicle Evaluation

A1l energy storage elements were eliminated from the hybrid vehicle

~evaluation. This was done because the operating period of up to ten hours

for the hybrid vehicle required storage systems of .«cessive size and cost.
Thus, for the hybrid vehicle, any form of energy storage rapidly becomes
impractical, except for fossil fuel.

8.3.2 Ranking of Heating and Cooling Elements

With the elimination of the energy storage elements from considera-
tion, only two heating and four cooling elements remained in the evalua-
tion. Rankings for the heating and cooling elements, shown in Table 8.5,
were actually considered to be quite close, especially when the differences
in range penalty were considered.

Hence, it seemed appropriate to consider combinations of these systems
that were logical. The combustion heater was combined with the Otto ROVAC
and vapor compression cooling elements. The electric resistance heater was
paired with the electric ROVAC and vapor compression cooling elements. The
electric ROVAC system was not considered in the final analysis because of
its large range penalty when combined with the resistance heater.

8.3.3 Rating Score versus Range Penalty

Since the number of elements in the final evaluation was small, all
elements were considered in the final evaluation of rating score versus
range penalty, showr in Figure 8-1. It should be noted that this plot
contains systems in alternate states of development and not directly
comparable. Only the near term systems are candidates for the "best" ECS.
Rating scores are given for two levels of capacity. This gives some
indication of the variation in the rating scores possible for each element.
It also indicates that only differences of 20 points or greater in the
rating scores can be regarded as significant.
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Table 8-5. Ranking of Heating and Cooling ECS Elements
for the Hybrid Vehicle

Element Rank Rating Scores Range Penalty (%)
Heating

Resistance Heater 1 72-74 11-14

Combustion Heater . 2 15-40 3-4

Cooling

Otto ROVAC .1 68-75 20-26

Electric ROVAC 2 54-62 23-29

Otto vVapor Compression 3 32-57 13-17

Electric Vapor Compression 4 30-50 15-19

“rerived from data in Section 4.0 using format of Table 6-1.
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Note on Absorption System

The absorption system potentially could be driven by engine waste heat
when it comes available. The evaluation of the absorption system is based
on this favorable premise. Direct fuel consumption is assumed to be
required for only the first 3 hours of operation. After this 3 hour
period, the system is assumed to be driven by waste heat. However, because
of its large size and weight, as well as its high cost, the absorption
system stil]l tends to rate low in the overall evaluation.

8.3.4 Choice ot "Best" ECS

The choice of "best" ECS for the hybrid vehicle is less straight
forward than for the electric vehicle. C(Clearly, the combustion heater is
the more desirable choice for the heating ECS element because it avnids tte
large range penalty associated with the electric resistance heater. The
choice of cooling systems is harder, because the rating scores of the systems
are very close. The Otto (gasoline engine) vapor compression and electric
vapor compression systems appear to be "best" because ‘.hey utilize
h»-.vare which {s already {n widespread automotive use. The key
question 1s how to drive the vapor compression cycle.

1f use of a mechanical drive from the main engine motor system is
permitted, this will probably be the preferred method. Alternately, an
electrically driven vapor compression system is the most reliable.

In all cases, the preferred systems, i.e., the combustion heater and
the electrically or mechanically driven vapor compression cycle are avail-
able in large quantities from existing production facilities. Hence, they
are appropriate for the expected "limited production" size of the hybrid
vehicle market.

Mid-Term Develop »nt

Potentially, other technical systems could offer additional advantages
to :Jture hybrid vehicle designs. Based on the data available to this
study on existing systems being developed for mid-term applications, the
Ericsson Ericsson and Electric Ericsson heat pumps appear attractive.
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As with the electric vehicle, the recommended strategy for more advanced
development is to conduct parallel development of both gasoline (fossi)
fuel fired) and electrically driven advanced heat pumps.

8.4 COMMENTS ON EVALUATION

There is less experience with hybrid vehicles which can be used to
justify the choice of "best" ECS. Table 8-6 summarizes the limited
experience from the Near-Term Hybrid Vehicle Program.

Selection of the combustion heater and vapor compression cooling element
is also a matter of pragmatic choice because it minimizes development risk.
As discussed in Section 3.4, the automotive industry tends to be
"conservative". For a limited production market, this particular ECS
minimizes risk because it requires the smallest amount of capital invest-
ment by the vehicle manufacturer until his market is established. The very
small and uncertain future market for the hybrid vehicle ECS justifies the
conser~tive choice of technology.

The fact that the advanced ECS technologies offer performance, but not
price advantages, tends to reinforce this choice. The consumer is mainly
~w>-~ of price differences, but not aware of subtle differences in system
performance.



Teble 8-6. Choices of Heating and Cooling ECS Elements
From Near-Term Hybrid Vehicle Program (Phase 1)

Contractor Heating/Cooling ECS Reference
General Combustion Heater with Engine 8-3
Electric Waste Heat Recovery/Proviston

for Mechanical Drive of vapor
compression cooling ECS from engine

Minfcars Combustion Heater/Engine Criven 8-5
vapor compression cooling ECS

Note: Summary Reports by the other contractors contained no
data on proposed ECS design.
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9.0 PROPOSED PROGRAM FOR ECS PROTOTYPE DEVELOPMENT

9.1 DISCUSSION OF DEVELOPMENT APPROACH

In order to formulate & realistic development program, the following
three important aspects of the development process must be considered:

- Compons .t Selection
- System Integration
- Test Procedures

How these factors affect specific portions of the development progranm
is discussed in the following sections.

9.1.1 Component Selection

Sinc: the selected ECS design is largely built from existing com-
ponents, component selection is critical to haing a successful design.
For several of the key components this is not a serious problem, since they
are already in widespread automotive service. However, for same components
it may be hard to get critical data on their 1ifetime and their ability to
function reliably in the automotive environment. Carcful screening, selec-
tion, and testing of these components may be necessary to ensure that the
system meets all functional and acceptability criteria.

9.1.2 System Integration

A1l of the ECS components must werk well together and work well with
the existing vehicle characteristics. An integrated design that achieves
good performance from all components is necessary. A control system must
be provided to properly integrate the components intc a systern. The system
must be capable of operating in an efficient fashion to meet ueveral func-
tional requirements at the same time. The control system also must sense
and prevent inappropriate or potentially harmful operation of the system
camponents under various possible control inputs from the vehicle operator
or from unusual operating conditions.

Complete and successful system integration will require analysis and
evaluation of the system under a wide variety of possible operating condi-
tions to ensure safe and proper functioning of al’ system components.
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9.1.3 Realistic Test Procedures

Because of the complex nature of the automobile and automotive
systems, ~vtensive testing is important to ensure satisfactory system
operation. * minimum, three broad categories of testing are required
to ensure its sa..sfactory performance of the final ECS design ‘n actual
service. These categories are:

- Operational Testing
- Acceptability Testing
- Reliability Testing

Operational Testing

The ECS would need to be tested in the operating vehicle under the
rated ambient conditions to ensure the ECS could meet all of the functional
requirements. The vehicle can be subjected to the extreme ambient con-
ditions in special test facilities as indicated in Table 9-1. Climatic
wind tunnels represent a more controlled environment for vehicle testing,
with the ability to place extensive instr.nentation in the vehicle.

Field test facilities, however, can also provide an adequate basis for
subjecting a vehicle to extreme temperature conditions.

Special test facilities (cold rooms) for conducting the federal Motor
Vehicle Safety Standard Test 103 are also available in the autom: @
industry.

Acceptability Testing

Aside from fulfilling the operational requirements, the ECS must be
acceptable to the vehicle user in terms of:

- Noise Levels
- Range of Control
- Ease of Control

Acceptability testing could include physical measurement of noise
levels, as well as subjective (user) evaluation of the systems control
features.
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Table 9-1. Examples of Test Facilities for Extreme
Climatic Conditions

Facility Temperature Range Reference
VW Climatic -30°C to 50°C" 9-1
Wind Tunne! (-22°F to 122°F)

Speeds Lo 150 kph (93 MPH)
Flat Climatic -50°C to 50°C" 9-2
Test Tunnels (2) (-58°F to 122°F)

Speeds to 160 kph (100 MPH)
Yuma Proving Maximume to 50°C (122°F) 9-3
¢rounds Mean Maximums to 41°C (106°F)
GM Kapuskasing Minimum to -41°C 5-42°F) 9.4
Proving Ground Mean Minimum to -23°C (-10°F)

'A wide range of humidity control is also possible.
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Reliability Testing

Srsteins for automotive use must be reliable under a wide variety of
operating conditions. Reliability testing is often enhanced by subjecting
the entire vehicle to severe onerating tests such as outiined in Table 9-2.
These tests usually can accelerate failure of marginal components and
indicate design "weak points." Because of the importance of reliable ECS
operation, reliability testing of the ECS is important.

9.2 RECOMMENDED DEVELOPMENT PROGRAM

In order to ensure timely and success development of an ECS prototype,
the following major steps in the development program are important:

- Preliminary Design of the ECS

- Detailed Design of the ECS

- Construction and Testing of a Bench Model ECS
- Construction and Testing of the Vehicular ECS
- Reporting of Results

These are discussed in the following sections.

9.2.1 Preliminary ECS Design

The design of the prototype ECS should L2 for a specific vehicle, or
group of vehicles with very similar characteristics. Results from the
current work should be reviewed for their applicability to the specific
vehicle and required ECS design. Most likely a new set of design calcu-
lations would be made, appropriate for the specific vehicle in question.
These would serve as the basis for the detailed design.

9.2.2 Detailed ECS Design

The detailed design of the ECS would be based on specific components.
The first step in preparing this design would be to acquire complete
specifications on suitable components. This would include:

- Detailed Specifications
- Engineering Drawings

- Component Performance Test Results
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Table 9-2. Examples of Vehicle Proving Ground
Reliability Test Facilities

Facility “x ¢ _Type Reference
Shock and Vibration Testing

Aberdeen Proving Belgian Block 9-5
Grounds & "Burma Road" ‘

GM Milford Belgian Block 9-6

Proving Ground

8

Unusual Road Cond1t1ons*

GM Mi1ford Water Bath 9-6
Proving Ground Gravel Road

*Inc1ud1ng water and dust ingestion
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The specifications would be used to select the desired components, develop
trial designs, and arrive at the final 4etailed design.

The most important step in developing a detailed ECS design is to
package the ECS camponents in the existing vehicle. This will require
obtaining detailed drawings of the vehicle and the space available for the
ECS components.

Two systems would be designed;, a final system for eventual placement
in the vehicle and an interim system for bench testing. The final system
requirements would be the basis for the detailed design. The interim
system would be designed as a test bed to ensure proper operation of the
components as a system before the commitment to installation and testing of
the ECS in the vehicle.

9.2.3 Fabrication and Testing of the ECS Bench Model

The purpose of fabricating and testing the bench model ECS, is to
reduce development time and costs. Many development problems can be dealt
with more readily in a controlled laboratory bench test. Also the compo-
nents of the bench model system are more accessible for adjustment or
modification than the components of the vehicular ECS. The cost of the
additional hardware for the bench model ECS is a small fraction of the
total program cost. It would be justified by overall cost savings in the
development process.

Construction of the bench model ECS would begin with component
acquisition. Individual components could be tested before assembly of the
ECS if important performance data were needed or existing data needed veri-
fication. The bench model ECS would be constructed to duplicate the final
layout as closely as possible.

The testing laboratory would need to provide suitable simulation of
the vehicle's passenger canpartment and the ventilation air flows. Heat
transfer to ambient could be simu'ated with external heat sources or sinks.
The battery coanpartment could also be simulated, but the battery ECS is a
small part of the total ECS loads.

Operational tests performed on the bench model! ECS should ensure its
capability to meet the functional requirements with adequate margins.
Prelimine.  criteria for acceptabie noise ieveis, range of control, and
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ease of control could also be made at this time. This system could also be
operated for long period-, under repeated cycling, and under simulated
stress conditions to ensure reliable operation over the 3000 to 5000 hour
1ife typical of automotive systems. Stress conditions could include shock
and vibration, water and dust ingestion, etc., expected in actual
operation.

Testing of the bench model ECS could reveal the need for significant
design changes. In that case, the design changes would be incorporated
into the bench model ECS which would then be retested.

9.2.4 Fabrication and Testing of the Vehicular ECS

Fabrication of the vehicular ECS would begin with acquisition and, .f
needed, testing of the system components. The final ECS unit would be
assembled from these components, inspected and installed in the test
vehicle. Care would be required to coordinate the ontime availability of
the vehicle and ECS components.

The vehicle test program would be an extensive verification of the ECS
operation, acceptability and reliability. Operational testing of the
vehicle system should include:

Heating and cooling under extreme climate conditions

Federal Motor Vehicle Safety Standards 103 (Windshield Defrosting)

Operation of the Battery ECS under extreme climate conditions

Other Operational Tests Deemed Necessary

Acceptability testing should include:

- Interior Noise Levels

- Range of Control

- Ease of Control

- Interior and Exterior Emissions of Combustion Products
Reliability testing should include:

- Extended operating periods

- Repeated cycling of system operating modes
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- Shock and vibration testing
- Ingestion of water and dust fram vehicle operating enviromment

As with the bench model ECS, any resulting design changes would need
to be retested to ensure a satisfactory final design.

9.2.5 Reporting of Results

Thorough documentation of the development process can avoi .nedless
duplication of effort in subsequent engineering efforts. Hence, careful
documentation of the basis for the final design, plus a thorough documen-
tation of the test results, are an important part of a prototype develop-
ment. Both the hardware design and the documentation should be made public
and available to the electric and hybrid vehicle manufacturers when the
development process has been completed.

Recommendations for future development work would be included in the
final documentation and report.

9.3 ESTIMATES OF REQUIRED RESOURCE. AND DEVELOPMENT SCHEDULE

Table 9-3 summarizes the estimates of development resources and
schedule. Nc explicit attempt has been made to estimate the costs for test
facilities, but it could add considerably to the total program. Strong
uncertainty about the development time needed to accomplish specific tasks
also contributes to uncertainty in development costs.

The development process should take about a year. The schedule will
be a compramise between extensive testing to ensure performance and the
need for rapidly obtaining results useful to the Near Term Electric and
Hybrid Vehicle Program.

If separate programs were required to develop the Electric and Hybrid
vehicles ECS's, resources required and schedule times would be increased.
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10. CONCLUSIONS AND RECOMMENDATIONS

10.1 CONCLUSIONS

Conclusions from this study cover four broad areas. These areas
include:

- Development of ECS Functional Requirements

- Investigation of Potential ECS Elements

- Selection of the "Best" ECS for the Electric Vehicle
- Selection of the "Best" ECS for the Hybrid Vehicle

The details of these conclusions are covered in the following
sections.

10.1.1 ECS Functional Requirements

Functional requirements for the ECS system were developed on a sound
engineering basis. Appropriate engineering models were developed as the
basis for calculating ECS requirements, such as heating or cooling capac-
ity. This allowed accurate evaluation of the requirements for ECS capacity
as well as an evaluation of how ECS capacity could be reduced by the use of

anpropriate "conservation" technigues.

Development of detailed ECS requirements necessitated breaking down
the functional requirements into three major categories. These are:

- Passenger Compartment Heating and Cooling

- Windshield Defogging and Defrosting (including FMVSS 103)

- Battery Heating and Cooling

Within these major categories, further breakdowns were alsc needed.

Passenger Compartment Heating and Cooling

Thorough evaiuation of passenger compartment heating and cooling
loads required development of a detailed model, accounting for the
following factors:

- Conduction through the vehicle body

- Solar radiation input through the windows
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- Inflow of ventilating air
- Interior heat and moisture loads

Each of these loads was analyzed at the rated climate conditicns.
Additiona)l analysis was performed on methods for reducing these loads by
controlling and recycling ventilation air and reducing solar rzdiation
inputs. [t was found that the passenger compartment loads could be reduced
to the levels given in Table 10-1.

Windshield Defrosting and Defogging

Detailed models also were constructed to evaluate the requirements for
windshield defrosting and defogging. For defrosting, the model calculated
the energy required to heat the window and melt the ice coating during the
FMVSS 103 test. Energy losses fram the window surface due to convection
and radiation were also evaluated. Calculated results were confirmed by
experimental data from prior studies of embedded wirdshield heaters. A
separate mode! was developed to evaluate a moving air stream defroster.

Other models were developed and used to evaluete dynamic conditions
for deici 71 and defogging. The most stringent conditions were used to
develop the key defroster functional requirements as given in Table 10-2.

Battery Heating and Cooling

A separate thermal model was developed for the battery and the battery
campartment. Battery temperature variation was examined under a variety of
vehicle operating conditions. It was discovered that the preferred
approach was to isolate the battery thermally fraom the ambient with a layer
of insulation. This minimized battery heating and cooling loads, as
indicated in Table 10-3.

Special Electric and Hvbrid Vehicle Requirements

The electric vehicle was found to place few limitations on the ECS
design. The relatively short operating period of the electric vehicle even
allowed consideration of stored energy techniques for the ECS. However, in
attempting to minimize the range penalty from ECS operation, it was decided
not to use the vehicle battery as the principal ECS energy source.
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Table 10-1. Summary of Range of Passenger Compartment
Heating and Cooling Loads

Heating Load - 2.2 to 2.8 kW (7,500 to 9,500 Btu/hr)

- To maintain the passenger compartment at 18°C (65°F) with an
ambient of -29°C (-20°F).

Cooling Load - 3.2 to 4.1 kW(11,000 to 14,000 Btu/hr)

- To maintain the passenger compartment at 25°C (77°F-40% RH) with
an ambient of 49°C (120°F DB) (29°C (85°F) WB).

Note: This range of heating and cooling 18ads assumes reducing the
ventilation flow rate to 43 to 77 mo/hr (25 to 45 cfm) with
2 recirculating charcoal filter. However, the range of values
used 1s conservative because automotive ECS's are usually

designed for a -18°C (0°F) ambient for heating and a 38°C (100°F)
ambient for cooling.

Table 10-2. Summary of Key Defroster Loads
(Moving Afr Stream Defroster)

FMVSS 103 Test ~ 3.4 kW (11,500 Btu/hr) for 30 minutes
Prevent Windshield Fogging ~ 3.2 kW (11,000 Btu/hr)

Note: Both of these requirements can be reduced by a third

by use of a heat recovery system or use of recirculated
interior air through the defroster.
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Table 10-3. EuMﬁ~“y of Battery Heating and Cooling
o

Heating Requirement - 380 watts (1300 Btu/hr) (Maximum
to maintain the battery at operating temperature
of 49°C (120°F) with ambient of -29°C (-20°F)
»
Cooling Requirement - 120 m3/hr (70 ¢fm) (Maximum air flow
to maintain battery at 54°C (130 °F) during an 8 hour
charge period)

'No actual battery cooling capacity is required since cooling
1s supplied with ambient air.

10-4



The hybrid vehicle, by contrast, can operate continuously for very
long periods. The vehicle's gasoline supply proved to be the only adequate
source of energy for the ECS. However, the choice of energy conversion
systems for the ECS (in the cooling mode) is fairly broad.

10.1.2 Potential ECS Candidates

Potential ECS candidates were drawn from the two main categories of
energy technolog,: energy conversion and energy storage. Energy conversion
offered the widest selection of ECS elements, mainly because of the large
number of heat pump cycles. These cycles included:

- Vapor Compression

- Reversed Brayton (ROVAC)
- Ericsson

- Absorption

- Jet Compression

- Hydride (Chemical)

Many alternative drives for the heat pump cycles were examined,
including:

- Electric

- 0Otto cycle

- Stirling cycle
- Ericssen cycle
- Direct heat

Thus, a wide variety of energy conversion technologies were
potentially available for the electric vehicle ECS. While a number of
these systems did not meet the pragmatic requirements for this study, there
were several strong contenders for the best ECS.

Energy Storage Technology

Several energy storage technologies were also investigated as the
basis for ECS elements, including:

Therm-  .nergy storage (both sensible and latent)
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- Chemical energy storage
- Absorption (heat of solution) energy storage
- Expendable refrigerants

Energy storage systems offered the potential of a low cost alternative
to using fossil fuel for the ECS. However, pragmatic considerations of the
total energy stored showed that the energy storage system was too heavy or
too costly for electric or hybrid vehicle use. Other energy storage tech-
nologies were too early in the development cycle to be fully evaluated at
this time.

Other ECS Elements

A number of other potential ECS elements found occasionally in
vehicles, such 2s evaporative coolers and electrically heated seats, were
also evaluated.

Two groups of technologies were found to be potentially useful for the
electric and hybrid vehiciz ECS designs. One was the solar radiation con-
trol; such as louvers, tinting and reflective window coatings, that can be
used to reduce the vehicle's total solar radiation loading. Control of the
solar radiation load results in lower system cooling cdpacity requirements.

The second group of other ECS elements included those useful in
reducing the ventilation loads. This group included heat exchangers and
activated charcoal filters. Heat exchangers offer the potent‘al of recov-
ering up to 70% of the ventilation energy loss. Charcoal filters allow
sharp reduction in the ventilation rate by recirculating the interior air
through the filter for odor control, thus reducing the ventilation energy
loss. Charcoal filters are the most econamical approach to reducing
ventilation energy losses.

Waste Heat Recovery

Propulsion system waste heat potentially can be utilized as a
supplement to the heat provided by the ECS heating element. In the
electric vehicle, up to half the maximum heating load could be recovered
fran the electric motor and controller. This supplemental heat would have
considerable advantage in reducing the use of primary energy by the tCS in
the heating mode. Care must be taken in recovering tkis heat so as not to
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interfere with proper cooling of the propulsion system or to introduce
contaminants (ozone from brush arcing) into the passenger compartment.
Similarly, in the hybrid vehicle, waste heat will be available, especially
from operation of the heat engine. Engine waste heat could supply all of
the ECS requirements once the engine is in regular operation.

10.1.3 Best ECS for the Electric Vehicle

The combination of the combustion heating and Otto (gasoline engine)
driven vapor compression cycle cooling was selected as the "best ECS" for the
aleciric vehicle. This selection was made as part of a multiple step evalua-
tion, designed to systematically evaluate many ECS elements and focus in a
few key choices to select the "best."

The evaluation process first screened all of the ECS elements and
eliminated from consideration those clearly inapprorriate to the ECS
requirements. A more detailed evaluation or the remaining elements was
provided by a rating scheme which scored the elements on the basis of their
projected cost, weight, volume, and energy requirements. Cost was the
foremost consideration in the rating scheme. Elements which scored well on
the rating scheme were strong contenders for the "best" ECS.

Two other factors were important in the evaluation process. One was
the state of development of the ECS technology. Only technologies that
were based on commercially available ECS elements or nearly developed ECS
elements could be considered for the near-term ECS. The second important
factor was "appropriateness for market size". Considering the limited
production levels for electric vehicles that could be reasonably expected
in the near term, it made "market sense" to choose existing technologies
already in large scale production for the electric vehicle ECS. This was
based on the observation that the automobile industry tends to minimize its
risk in the introduction of new technology.

It is important to point out that the gasoline energy use by the ECS
is minimal. The maximum energy use is expected to be 200 liters (57 gal.)
per year or less. See Addendum A. Also, continued use of air conditioning
using "freons" is not considered a major environmental problem in the near
term. See Addendum B.
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Figure 10-1 shows a schematic of the final arrangement for the
electric vehicle ECS. The ma‘n feature of the design is the recirculating
ventilation air flow for the passenger compartment. Make-up air is a
fraction (43 to 77 m3/hr or 25 to 45 cfm) of the system's full capacity
(255 m3/hr or 150 cfm). The air control valves allow the air to be
directed to the defroster outlst or passenger air jeis. A small amount of
air can be diverted to the battery compartment as needed. A separate
ventilation fan ensures positive ventilation of the battery compartment at
all times. The waste heat in the drive train cooling air may be recovered
as needed to supply warm make-up air. A separate air supply is used to
meet the combustion &ir requirements of the heater and gasoline engine.

Figure 10-2 shows the details of the cooling unit. The Otto
(gasoline) engine is directly coupled to the compressor. When the
theromostat control senses additional cooling is needed, the electric
starter engages and, causes the engine to start. The engine operates at a
preset speed under governor control. The engine is stopped by turning off
the igniticn voltage and fuel supply.

10.1.4 Best ECS for the Hybrid Vehicle

The combination of a combustion heiating system and a vapor compression
cooling system was selected as the best ECS for the hybrid vehicle. The
vapor compression cooling system could be driven either by an electric motor or
a separate gasoline engine. If the restriction on using mechanical power
directly from the vehicle's propulsion system were relaxed, then this would
be the preferred means of operation. A suitable control option would be
provided to "declutch” the ECS during periods of maximum load on the pro-
pulsion system, so the propulsion system's maximum power output would not
need to be increased to carry the ESC load.

For long vehicle trips, when the heat engine operates extensively,
provision should be made for recovering engine waste heat. This would be
done by diverting a portion of the eryine cooling water to a small heater
core, as is done in current vehicle ECS's. Heat could also be recovered
from an air-cooled propulsion engine.
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The evaluation process to select the "best" ECS for the hybrid vehicle
was similar to the process used for the electric vehicle. The rating
scheme was used in the same manner as in the electric vehicle evaluation to
rank the alternative systems. All of the energy storage elements were
eliminated as inappropraite because of the longer vehicle opersting period.

An appropriate range penalty was devised for the hybrid vehicle
systems based on their ~nergy use. No formal criteria for maximum range
impact was considered since the hybrid vehicle range is equivalent to cur-
rent vehicles. However, systems with excessive range penalties, ie. 50%,
were considered undesireable. Again, cost w:s the foremost consideration
in the rating scheme. Elements which scored well on the rating scheme were
strong contenders for the "best" ECS. State of development was also
important since only near term technologies could be considered for the
best ECS.

The final consideration for the hybrid vehicle ECS was appropriateness
for market size. Since the hybrid vehicle is likeiy to be, at best, in
Timited production for most of the next decade, use of existing technology
for the hybrid vehicle ECS is strongly suggested. Again, this is based on
the observation that the automobile industry tends to minimize risks in the
introduction of new technology.

Figure 10-3 shows a schematic of the final arrangement for the hybrid
vehicle ECS. The system is very similar to the electric vehicle system.
The main exceptions are that engine waste heat is recovered via a small
radiator and that the cooling ECS can be driven electrically or mechani-
cally, if permitted. The ECS elements are in parallel to simplify *he
control arrangement, though a series system is also feasible.

10.2 RECOMMENDATIONS FOR ECS DEVELOPMENT

10.2.1 Immediate Prototype Development

Electric Vehicle ECS

It is recommended that the development of the electric vehicle ECS be

given priority. This is because electric vehicle development is much more
advanced than hybrid vehicle development. There is a considerable current
market and ar even larger —3tential market for an electric vehicle ECS.

10-11
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The system for immediate prototype development should be the combus-
tion heater and gasoline engine driven vapor compression cooling. The
ECS development should include modification of the vehicle with tinted
windows and rear window louvers to reduce inputs from solar radialion.
The ECS should also utilize an activiated charcoal filter to reduce the
requirements for ventilation air by recirculating interior air through the
charcoal filter for odor control.

Hybrid Vehicle ECS

The hybrid vehicle "best" ECS is very similar to the electric vehicle
“best" ECS, as well as to ECS's in current vehicles. Hence, the electric
vehicle ECS development will! incorporate most of the features required for
the hybrid vehicle.

More likely, it would be best to consider incorporating the results of
this study in the development of the ECS for the current Phase !l Near-Term
Hybrid Vehicle. The Phase I design for this vehicle (Reference 8-2)
already incorporates such features as:

- A combusiion heater, supplemented by engine waste heat during
engine operation

- A mechanical takeoff for operating the vapor compression cooling system
(or other heat pump cycle)
Most likely, it would be best to continue development of the vehicle with
this system, incorporating where possible features for reduction of solar
radiation and ventilation loads in the vehicle design.

10.2.2 More Extensive Prototype Development

Certain technologies potentially o .. ECS designs that would be more
efficient, as well as smaller and lighter. Based on the data available to
this study, the Ericsson Ericsson and Electric Ericsson cycles, under
development by Energy Research and Generation (Reference 4-5), appear to be

10-13



the most attractive. However, because of the uncertainty surrounding
vehic'e technology from factors such as

- Imnmrovements in battery technology
- Future fuel and electricity prices
- Relative market penetration of electric and hybrid vehicles,

a specific program of technical development cannot be recommended.

Research efforts should be focused on obtaining detailed characterizations
of attractive advanced heat pump technologies. Data from such characteri-
zations would allow clearer decisions to be made about specific product *
developments utilizing these technologies at a future date.
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ADDENDUM A
ANNUAL ENERGY USE FOR BEST ECS

The annva! energy use for the ECS can be estimated on the basis of
average ambient temperatures. Figures A-1 and A-Z gives the variation
in heating and cooling load respective with temperature. This data was
used in Tables A-1 and A-2 to calculate the average heating and cooling
loads. Appropriately severe climates were used for both load calcu-
lations. Additional allowance was made for defrosting the windshield
in the winter climate. The conclusion is total ECS annual gasolin2
use should be under 52 gallons per year for the electric vehicle.
Similar results would be expected for the hybrid vehicle.
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Table A-1. ECS Annual Energy Use for Heating in Bismark, N.D.

Average Winter Capacity Calculation

Month Temp [°F) Copacity (Btu/Hr)
October 47 500
November 29 2300
December 16 3700
January 8 4500
February 14 3900
March 25 2700
April 43 800

Average Capacity 2600 Btu/hr

Assumed monthly operation = 50 hours
Total winter heating energy = 910,000 Btu
Estimated energy for 100 windshield defrosts at 6000 Btu per defrost = 600,000 Btu

Input at 75% efficiency = 1.8 MMBtu
or 14 gallons of gasoline



Table A-2. ECS Annual Energy Use for Cooling in Phoenix, AZ

Average Summer Cepacity Calculation

*
Month ?Zﬁ;‘i-r; g:g::?gy (Btu/hr)
Apri) 67 4200
May 81 6100
June 88 7300
July 94 8200
August 93 8000
September 85 6800
October 74 5¢00

Average Capacity

Average input energy required = 20,280 Btu/hr
Assumed monthly operation = 50 hours

Total summer cooling energy = 7 1 MMBtu
or 52 galions of gasoline

*Full solar load

6500 Btu/hr
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F.ODENDUM 8
POTENTIAL RESTRICTIONS ON USE OF FREONS

Scientific investigations concerning the potential depletion of
stratospheric ozone by halocarbon emissions have lead to discussion
of ways of reducing halocarbon emissions. One potential measure
discussed is restriction on the use of halocarbons in particular
chlorofluoro methanes (CFMs).  However, neariy 50% of all CFMs are
used as aerosol propellants, while only about 25% are used as
refrigerants. Thus, in the near term, reducing use of CFM's as
aerusols would be a2 more effective control measure than restricting
their use in heat pump systems.

Source: "Stratospheric Ozone Depletion by Halocarbons: Chemistry
and Transport.” National Academy of Sciences, Washington,
D.C. 1979.
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