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Abstract

Commonly used one-dimensional geoid models predict that the
I

isostatic geoid anomal y over old ocean basins for the boundary-layer

thernil model of the lithosphere is a factor of two greater than that

for the plate mode 1. Calculations presented here, using; the spherical

analogues of the plate and boundary-layer thermal models, show that for

the actual global distribution of plate ages, one-dimensional models are

not accurate and a spherical, tull y three-dimensional treatment is

necessar y . The maximum difference in geoid heights predicted for the

two models is onl y about two meters.	 The thermal structure of old

lithosphere is unlikely to he resolvable using global geoid anomilies.

Stripping the effects of plate aging; and a hypothetical uniform, 35 km,

tsostatically-compensated continental crust from the observed geoid

emphasizes that the largest-amplitude geoid anomaly is the geoid low of

almost 120 m over West Antarctica, a factor of two greater than the low

of 60 m over Ceylon.
I
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1, Introduction

One of the more striking successes of the kinematic model of

plate tectonics is that the variation in oceanic depth away from ridges

can be understood in terms of simple models of cooling of the

lithosphere (1-5). Oceanic heat flow can be explained by these models

if hydrothermal activity at the ridge is taken into account (6);

recently it has been demonstrated that the short wavelength change in

geoid elevation over ridges predicted by these simple models is also

readily observed (7-9).

A number of models have been proposed for the thermal

evolution of the lithosphere.	 In the boundary layer model, the

uppermost mantle is supposed to cool by conduction, with the

lithospheric thickness increasing as the square root of age (2,5). In

the plate model, the temperature is assumed to be held fixed by some

mechanism at a depth on the order of 100 km (1,3,4). The models are

quite similar near the ridge crest before cooling has penetrated very

deep, but over the ocean b€sins, the models differ substantially.

Other thermal models have been proposed which include the

effects of latent heat from freezing partial melts (10), pressure

gradients from return flow (11,12), heat flux into the base of the

lithosphere (13), and heat sources at the base of or below the

lithosphere (14,15). Any or all of these effects may be important in

the earth, but in this paper, discussion will be focused primarily on

the differences between the plate and boundary layer models.

Three types of observations have been proposed to provide

possible constraints on the thermal structure of the lithosphere. Heat
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flow is proportional to the surface temperature gradient. 	 The surface

t temperature gradient- for the plate and boundary layer models differ

only slightly for lithosphere less than 200 My^ old, however, so heat

flow is not at present useful for distinguishing between these models

(16).

Seafloor elevation is related to the average heat content of

the underlying column of rock. As the uppermost mantle cools while

moving away from the ridge, it contracts, leading to an increase in

ocean depth. The total increase in ocean depth with time (assuming

constant thermal expansivity) is proportional to the change in the

average heat content of that part of the mantle which is dynamically

coupled to the surface, not, in general, the lithosphere alone (15).

This change in heat content is ,just the difference between the

time-integrated heat flux out the system and any internal heating or

flux of heat into the system. The standard boundary layer and plate

models (assuming dynamic decoupling at the bare of the plate) predict

different seafloor elevations for old lithosphere; although the heat

flow out of each is nearly identical, the plate model supposes that

extra heat is added to the system at the base of the plate. This

specifically-located heat source would be in i.istinguishable from any

more general distribution of internal heat sources, however, since

topography gives only a measure of the average heat content.

A third potentially useful observation is geoid height. 	 In

the one-dimensional (long wavelength) limit, the geoid height is

proportional to the first moment of the density distribution (1-9).

Because it is sensitive to the distribution of density, geoid height in
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principle might be expected to provide a more sensitive constraint on

thermal models than heat flow or seafloor topography, which depend upon

surface gradient and average heat content respectively.

In the one-dimensional limit, the geoid heights for the two

models discussed here differ by a factor of two over old ocean basins

(17). The actual distribution of lithospheric ages is distinctly

three-dimensional, however, so the validity of the one-dimensional

calculation is not arp iori jnar , nteed. Model geoids computed using an

estimate of the actual distribution of zeafloor ages are presented

below. Unfortunately, the full three-dimensional, spherical calculation

shows that the difference between the geoids computed for the two

lithosperic models is very small and unlikely to be observable.

2. Calculation of Isostatic Geoid Anomalies

Dahlen (18) has recently discussed the application of the

concept of isostacy to a sphere, noting that the theoretical geoid

anomaly is very sensitive to the exact definition used for isostacy.

Isostatic geoid anomalies are by nature first order quantities; if they

are to be computed to first order, isostacy must be defined to second

order. Dahlen showed that geoid anomalies could differ by more than a

factor of two, depending on the definition chosen, e.g., constant

pressure at the level of compensation versus constant mass above the

level of compensation.

In this paper, the isostatic condition is assumed to

correspond to a local compensation such as would be achieved by a set of

vertical (or conical) piles of different lengths and densities decoupled
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from each other floating in an inviscid fluid. The weight of any pile

is taken to be equal to the weight of fluid displaced by the pile.

Self-compression in the earth causes the gravitational acceleration g to

be essentially constant with depth, so the constant weight criterion is

equivalent to a constant mass criterion. For a halfspace, isosracy is

achieved if

Pp dz - 0	 (1)

where z is depth, and Ap is the density contrast between the pile and

the fluid. The integral is taken over the depth of the pile, i.e., the

region in which density contrasts are nonzero, which, in this paper,

corresponds to the thickness of the lithosphere, h.

For a sphere, the equivalent definition is that

fA ^a a 
Z12 

dz - 0	 (2)

where a is the radius of the earth. Since h << a and AP is a first

order quantity, (1) and (2) are equivalent to first order, but they

result in different gravitational potential anomalies (18).

In calculating the geoid anomaly from an arbitrary density

distribution, it is convenient to separate the horizontal and depth

dependences of density. The horizontal dependence is expressed in terms

of harmonic functions. For a flat earth, the contribution of density

contrasts Apk (z), of wavelength k, extending over depth h, to the geoid

height, Nk(;6), can be written:



i

Nk(x)	
2gG e""t 

+ k f &pk(z )erkzdz	 (3)

Here ;S is the horizontal position vector, G the gravitational constant,

g the gravitational acceleration, and ^k a phase angle.

Taking ( 1) as the definition of isostacy and assuming kh << 1
leads to the simplification

NkCE) - -29G ei(k• x + kf ZAPOZ	 (4)

This approximation is in error by less than 10% for kd < .2, or for

wavelengths greater than 3800 , km if h corresponds to the plate thickness
of 120 km. It overestimates the geoid height contribution from shorter

wavelengths.

For a sphere, horizontal density contrasts can be expressed in

terms of surface spherical harmonics Y Rm(9,^) of degree R and order m.

The equivalent of (3) is then

f

/R+2
Nim (e,t) ` ;(2R,G+ 1) Y Rm ( 0 ,^) eP jm (z) ^1 aaz	dz	 (5)
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where a is the radius of the earth. For h/a << 1, using (2) leads to

N'tmom - 
-4g	

t + 1 Ytm(e.4) f zaPtm(z)dz	 (6)

In this case, the approximation is in error by less than 10% for t < 12

if h - 120 km. For t - 20, (6) overestimates the contribution of a

density contrast at a depth of 120 km by 20%.

An additional complication arises for isostatic compensation

on a spherical earth. The interior of the earth is assumed to be

inviscid on the timescales applicable to isostatic equilibrium. The

gravitational potential from an isostatically compensated mass will

cause a net deformation of the (fluid) earth. This deformation, in

turn, causes an additional gravitational potential, which leads to yet

more deformation.

This is a classical problem in geophysics which has often been

solved for the degree two deformation associated with earth rotation and

tides using Love niunbers (19). The total geoid anomaly Ntm is given by

Ntm = Ht NRm	 (7)

where Ht is the Love number for degree t.

Exact computation of the Love numbers for a fluid sphere which

has the density and compressibility distribution of the earth is a

formidable task. To my knowledge, it has been done only for degree two,
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for which H2	1.96 (19). The effect of interior density contrasts is
t

to increase HR , as deformati.,n of internal boundaries supplements the

jperturbing potential. Compressibility decreases HR.

r
i	 Rather than solve for each Love number using a realistic earth

model, I have chosen to use an approximate model calibrated using the

known value of H2 . The earth is assumed to be a sphere of

incompressible fluid of density p with a point mass at the center

sufficient to bring the average density of the sphere to p. The Love

number Hi for such a system is given by:

HR =
	 21+1 	 (8)

21+1 - 3p/p

which reduces to (I + 1/2)/(1 - 1) for p = p, the value given by Munk

and MacDonald for a uniform incompressible fluid. Using a value of 0.82

for p/p gives the observed H2 . This value, along with (7) was used to

calculate the geoid anomalies used below. A more complicated two-layer

model used to simulate bowing of interior density constants, calibrated

on H2 , gives almost identical numerical results, although its functional

form is more complicated.

As a result of the requirement that density contrasts be

specified to second order, the thermal models used to describe the

thermal evolution of the plates should be appropriate for plates which

are spherical shells, rather than plane layers. The spherical analogue

of the plate model consists of a spherical shell of thickness d which is

initially at temperature To. At times t > 0, the top of the shell (at r

= a) is held at T = 0, while the bottom (at r = a - d) is held at To.

16
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The temperature at depth z and time t is:

a=d z	 2a	 fly	 nT d_z	
2 2 2T(z,t) • 

To a-z Z + a-z) tt 	n	
sin - d
	

exp(-n x Kt/d) (9)

where K is thermal diffusivity (20). In the limit a + -, this becomes

identical to the standard plate model with horizontal conduction of heat

neglected (16). The steady-state temperature is less than, while the

time-dependent temperature is greater than that for a plane layer plate.

The corresponding expression for the boundary layer model, in

which the cooling penetrates arbitrarily deeply into the sphere is:

T(z,t) . To 1 - saz	 erfc 2na+z - erfc [(2n+2)a+z] 1	 (10)
U-0	 2 Kt	 2 Kt	 J

Only oceanic seaf,.00r less than 200 Myr old is of interest

here, so all terns with the exception of the positive, n - 0 term are

negligible. Then

To a	 s	 Z	
(11)T a-z

 [erf 2r_
-a

The density contrasts leading to geoid anomalies in Eqs. (1) -(6) are
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giver with respect to some arbitrary reference model. (The undulations

of the geoid are insensitive to the details of the reference model). I

have taken an old, equilibrium thickness, oceanic plate as the standard

for reference (Figure 1). This model has 6.4 km of water ( p w lg/cm3)

overlying a 120 km thick plate. The top 6.8 km of the plate is crust

with a density of 2.7 g/cm at OoC; below the crust is mantle of uniform

composition. The temperature varies through the plate according to the

steady-atate part of Equation (9) from OoC at the top of the crust to To

at the base of the plate, where the mantle density is taken as 3.3

g/cm3 . Density is related to temperature through a constant coefficient

of thermal expansion.

The der.,ity structures of the continental crust and

lithosphere are not known, although variations can be bounded from

observations of the geoid (21). Bcth vary with location. But since the

primary purpose of this paper is to compare models of the oceanic

lithosphere, I have arbitrarily adopted a simple uniform continental

structure which is in isostatic equilibrium with the reference oceanic

mode 1.

Continental lithosphere is assumed to be identical to old

oceanic lithosphere. Continental crust is assumed to be 35 km thick and

to extend 0.64 km above sea-level. For computational simplicity, its

density is assumed constant at 2.7 g/cm 3 in the upper 7.06 km, below

z
Which it has a decrease in density paralleling the variation with depth

€	 of the density of oceanic crust caused by variation in temperature.
r

For both the plate model and the boundary layer (sometimes

(	 called "cooling half-space") model, the crust is assumed to have
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constant thickness. The depth of water is constrained by the

requirement that the lithosphere be in laostatic equilibrium with the

equilibrium plate reference model. The density profiles for the

three-type models are shown schematically in Figure 1.

If equation (7) is rewritten

NRm( P •4) - H tnLm=jtm(e.#)	 •	 (12)

then for the spherical analogue of the plate model,

2d 2 a pmToG	

A fOceansylm	

(`1n+1

nRm 	 2R+1 	
(e•^) , exp(-n2n2Kt^d2)aineded¢

n2g 	 n-1

^.3)

For the boundary layer model,

^ - apmToG	

f foccans( 2
n
	2i+1	

6 - 
Kt) Yim(e,#) sin6ded#	 ( 14)

For the continental structure uses,

nim - 2.67 • 10 12 g/cm 
G 

--t
continents
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r In order to evaluate the integrals in (13) - (15), it is

necessary to know the age of all oceanic lithosphere as well as that

part of the surface which is continental. Mauk (22) compiled the global

estimation of seafloor age used in this study on a S o x So grid. The

expansions were carried through degree and order 20.

Model geoids are obtained by summing the terms for each degree

and order. Since geoid anomalies are referenced relative to the center

of mass of the earth, the degree zero and one terms ar y not included in

the sum.

4. Isoststic Geoid Models

Although the primary purpose of this paper is to compare

isostatic geoid anomalies for two models of the thermal structure of

oceanic lithosphere, the computed geoids depend upon the model :assumed

for the subcontinental structure. It is useful to isolate the effect of

this structure. Figure 2 shows the geoid calculated using the

continental structure in Figure 1 and neglecting the contribution from

variation of oceanic lithosphere with age; in this model, all oceanic

lithosphere is assumed to have reached thermal equilibrium.

Continental regions in this model are characterized by geoid

highs of S to 10 meters while oceanic basins show lows of -5 to -10 m.

The change in geoid elevation of about 10 m at continental merging

matches that observed off the east coast of Australia (23), but is

somewhat larger than that seen off the east coast of North American it

40.50N (8), indicating that the continental structure chosen is perhaps

representative, but cannot be applied universally. The geoid anomalies
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in the North Atlantic are about 5 m more negative than those in the

Pacific. This is a real effect of the three-dimensional nature of the

distribution of continents as discussed later, not an artifact of the

spherical harmonic expansion.

The model geoid which results when the 'observed" variations

in lithospheric age are used in the plate model [equation (13)], along

with the standard continental model, are shown in Figure 3. Oceanic

ridges and continents are characterized by geoid highs of up to 6 m,

while geoid lows of about -7 m characterize the regions of Cretaceous

seafloor in the Western Pacific, Atlantic, and Indian oceans.

This isostatic geoid is similar to one computed by Chase and

McNutt (24) using a spherical harmonic expansion of topography under the

assumptions that continental topography is compensated by the Airy

mechanism at a depth of 35 km and that oceanic topography (excepting

trenches) is compensated at 40 km. The main differences occur locally

over high mountains, where their geoid is about 10 m higher than mine,

and trenches, where their geoid is about 10 m lower. These differences

are to be expected given the differences in the two reference models.

The effect of variation in seafloor age alone, shown in Figure

4, is obtained by subtracting the continental effect (Figure 2) from the

combined oceanic age and continental model (Figure 3). The positive

contributions from the midoceanic ridges become me-e obvious. In

addition, the contributions to the geoid highs from young lithosphere

formed by back-arc spreading in the Western Pacific and off Sumatra

become apparent.

figure 5 is the equivalent of Figure 3, this time calculated
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using the spherical boundary layer model of the oceanic lithosphere. It

is remarkably similar to Figure 3, with the geoid anomaly over Jurassic

oceanic lithosphere differing by only 2 m, almost an order of magnitude

less than the 15 m predicted on the basis of the one-dimensional models

commonly used (17).

The marked similarity of the model geoids calculated using the

full three-dimensional formulation applied to actual lithospheric age

distributions is demonstrated directly by calculating the difference

between the two models. Figure 6, which shows the difference between

the boundary layer model (Fig. 5) and the plate model (Fig. 3),

illustrates that the predictions of these two models is never much in

excess of ± 2 m. Figure 6 employs a contour interval a factor of 5

smaller than those in the previous models.

5. Discussion

The models usually used in discussing the isostatic geoid

(7-9,17) are obtained by assuming 1) that the half-space equation (3) is

applicable, and 2) that only local density contrasts (the k - 0

wavenumber) is important.	 This is equivalent to assuming a

one-dimensional density model.

The spectra for some of the isostatic geoids shown above are

presented in Figure 7. The solid line with solid dots gives the

spectrum of the continental geoid (plotted in figure 2). The spectra of

the plate plus continent model (Figure 3) and boundary layer plus

continent model (Figure 5) are similar to this one. The dashed line

with open circles gives the net effect of the young lithosphere in the
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plate model.	 (The geoid for this model was shown in Figure 4.) Both

lines show a relative peak at R Z 4-5. The spectrum for the difference

between the plate and boundary layer models (Fig. 6) shown with

crosses, is about a factor of 5 smaller and doesn't reach its relative

peak until degree 10. Clearly the one-dimensional geoid models commonly

used are inadequate to describe geoid models on a global scale, although

they may be useful approximations near ridge-crests and continental

margins.

The plate and boundary layer models differ most for seafloor

of age 80 My or greater. The largest contiguous area of the seafloor

older than 80 My is in the Western Pacific. This region has a diameter

of roughly 350 of arc, which accounts for the peak in the spectrum of

the difference between the plate and boundary layer isostatic geoid

models at A Z 10. (The expansion is carried through degree and order

20. Thus, the small difference in predicted geoids is a real effect,

not an artifact of truncation of the spherical harmonic expansion). The

very small difference between the theoretical geoids for the two thermal

models arise because the long wavelength geoid anomalies from ridges and

continents common to both models extend into the ocean basins and swamp

the short wavelength differences between the models.

The plate-driving force resulting from the thickening of the

lithosphere with age is proportional to the integral of the product of

the density contrast between the lithosphere and the asthenosphere and

depth (25-27).	 As Parsons and Richter (17) pointed out, using a flat

earth model, this driving force is then proportional to the geoid

anomaly. Hager and O'Connell (27), using the plate model, of the
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lithosphere, quantified this dri-Ang force on a sph ,,:rical earth using

Mauk's (22) distribution of lithospheric ages. They concluded that it

IS a significant driving force, distributed over plate area, which can

help to explain the observed lack of dependence of oceanic plate

velocity on area if plate motion is resisted by basal drag of a few

bars. The calculations presented above show that their conclusions

would not have changed significantly if they had used the boundary layer

model rather than the plate model.

Dahlen (18) advocates using as a definition of isostacy that

1) shear stresses on vertical planes vanish and 2) deviatoric stresses

within the isostatically compensated layer be minimized. Requirement 2)

leads to an increase in gravitational potential and geoid height by a

factor very close to (I + 2)/1 over that used here. I have chosen not

to use this definition, preferring the definition used here which leads

to a lower gravitational potential of the system. Minimizing deviatoric

stress would strengthen the conclusion of this paper, since it amplifies

the low-degree harmonics more than the higher ones. It would also lead

to a spectrum closer to that of the observed geoid.

It is of interest to compare the isostatic geoids computed

here with the observed geoid heights. The top spectrum in Figure 7 is

the spectrum of the observed geoid (28). The observed spectrum is

redder than the model spectra; at I - 3 the observed geoid spectrum is

a factor of 15 larger than the model ones, although at degree 20 the

lithosphere contributes a large amount of power.

Both thermal models of the lithosphere have similar

theoretical geoids when the actual distribution of seafloor ages is
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used. Stripping the effects of seafloor aging using either model and

the uniform continental reference model from the observed geoid should

reveal the effects of dynamic processes in the mantle. Figure 8 shows

the results of stripping the geoid in Figure 3 from the GEM8 geoid (28).

The GEM8 geoid is referred to the hydrostatic figure, (f - 1/299.83),

rather than the best-fitting ellipsoid, since any departure from

hydrostatic equilibrium must be dynamically supported, and be of

geophysical, if not geodetic, interest.

The greatest amplitude anomaly in the stripped geoid remains

over West Antarctica, with a value of -120 m. Central Siberia and

Hudson Bay have anomalies in excess of -80 m. The low over Ceylon is

barely -60 m, and appears to mark the edge of the anomaly stretching

over the pole to the eastern U.S. The saddle in the geoid over Tibet is

very likely the result of the doubling of crustal thickness there, which

would lead to an additional local geoid elevation of about 20 m.

The positions of positive geoid anomalies are not affected

much, although there is a small decrease in amplitude over the Western

Pacific (back-arc spreading removed) and Africa and S. America, where a

small part of the highs are due to the effect of continental crust.

Much (about 20 m) of the local geoid high over the Andes is the result

of the great thickness there not included in the uniform crustal model.

The main negative features of the residual geoid are two large

anomalies; one is centered over W. Antarctica with an amplitude of

almost -120 m, the other is larger in area, reaching from Ceylon,

through Siberia to Quebec. There are also two large positive anomalies

- one over New Guinea, the other centered just west of Africa. It has
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been noted that these highs correlate well with subduction and hotspot

activity, respectively (29,30). The location of the Mt. Erebus hotspot

near the center of the W. Antarctic low, the most pronounced geoidal
r

feature, provides a noted and embarassing exception to the correlation

*	 between geoid highs and hotspots.

The magnitude of the observed geoid fluctuation is an order of

magnitude larger than those in the model geoids. Nonetheless, recent

studies have shown that it is possible to extract the lithospheric

signal from the global "noise" in some areas (9,31). In the most

comprehensive global study to date, Sandwell and Schubert (31) have

shown that the slope of the geoid height vs. age curve can be extracted

in several regions. Near ridges these slopes are close to those

predicted by one-dimensional models using the plate or boundary layer

thermal structures. Further from the ridges the slopes vary and even

change signs. Although this type behavior is not predicted by

one-dimensional models, inspection of Figures 3 and 6 show 1) that this

behavior is to be expected given the three-dimensional nature of the

problem, and 2) it cannot be used, given the "noise" in the geoid

signal, to discriminate between the plate and boundary layer models.

Although plate and boundary layer models cannot be

distinguished using global observations of the geoid, it may still be

possible to use geoidal variations across features such as fraction

zones to place some constraint on the thermal structure of old

lithosphere (32).
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Figure Captions

Figure 1., Density models used in calculating isostatic geoid

anomalies. A mature oceanic plate 120 km thick (right

center and dashed lines) is taken as a reference model.

Continental structure (far right) is assumed uniform; the

subcontinei•.tal lithosphere is assumed to be equivalent to

oId oceanic. lithophere.	 Near the ridge (left center) the

plate and boundary layer models are equivalent. For old

lithosphere, cooling penetrates deeper into the mantle for

the boundary layer model (far left) than for the plate

model. The increased thickness of the lithosphere is

compensated by additional subsidence.

Figure 2. Model isostatic geoid resulting from the contrast in density

structures between continents and oceans. The effects of

oceanic age variation are not included; all oceanic

lithosphere is assumed to be mature plate in thermal steady

state. The contour interval is S m.

Figure 3.	 Isostatic geoid resulting from the variation in the mal

structure with age of the plate model and from the contrast

in density structure between continents and oceans.

Figure 4. Isostatic geoid resulting from only the variation in thermal

structure with age for the plate model. This figure

represents the difference between the geoids in Figure 3 and
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Figure 2,

Figure S. Iaostatic geoid resulting from the va: • iatior, in thermal

structure w.th age of the boundary layer model and from

continents.

Figure 6. Difference in iaostatic geoids for the boundary layer and

plate models, obtained by subtracting the geoid in Figure 3

from that in Figure S. The contour interval is only 1 m.

If one-dimensional models were applicable, the maximum

difference would be 15 m.

Figure 7. Spectra for different geoids. The top line is the observed

nonhydrostatic geoid. The solid line with solid dots shows

the effect of continental structure alone. The dashed line

with open Oxcles is the spectrum of the contribution of

variations in oceanic age assuming the plate model. The

bottom line represents the spectrum of the difference

between the geoids of the boundar± layer and plate models.

Figure 8. Residual geoid through degree and order 20 obtained by

subtractng the isostutic geoid in Figure 3 from the GEMB

geoid referred to the hydrostatic flattening (f s 1/299.83).
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