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INTEGRAL LQUATIONS OF THE SECOND KIND WITH KERNELS
OF THE LOGARITHMIC POTENTIAL FORM
Ralph E. Gabrielsen and Aynur Unal

Ames Research Center
SUMMARY

Two-dimensional Fredholm integral equations with logarithmic potential
kernels are numerically solved. The explicit convergence of these solutions
to their true solutions is demonstrated. The results are based on a previous
work in which numerical solutions were obtained for Fredholm integral equa-
tions of the second kind with continuous kernels.

INTRODUCTION

Previously (ref. 1), the convergence of a numerical scheme for solving
one-dimensional Fredholm integral equations of the second kind was proven.
Later on (ref. 2), these results were extended to two dimensions for contin-
uous kernels. However, since a class of physical problems involves kernels
of the logarithmic potential form, this study extends the theory to kernels
of this type.

MAIN DEVELOPMENT

In a recent report (ref. 2), it was shown that the following system of
equations,

n n

x(tij) - ) z Z h(tij;tkl)x(th)A = y(tij) (1)
k=1 =1

converge to the exact solution of the two-dimensional Fredholm integral equa-
tion of the second kind,

1 1
x(r,s) - X f f h(r,s;t,,t,) X (t;l,t'.z)dt1 de, = y(r,s) (2)
0 0

when the kernel h(r.s;tl,tz) is a continuous function over the unit square

[0,1] x [0,1] and y(r,s) 1is also a continuous function over the unit square.




Equation (2) will be regarded as a functional equation in the Banach
space X = €’ of continuous functions on the unit square ([0,1] x [0,1])
and, typically, will be expressed in the following form:

Kx 2 X = \Hx = y (3)

The system (1) is regarded as an approximate functional equation in the
space X = R" and typicelly is expressed in the following form:

KX = X - \HX = ¢y (4)

Let X be a subspace ot X. Detfine the mapping ¢, in X onto X as
follows: {f X ¢ X, then $,x = X.

he ditfferences between this work and that of reference 2 are due to dif-
ferences arising in proving the tollowing three conditions:

VX ¢ X, oHx - Hoox|| < g||x|| (5
vy € X, 3% € X2 [[Hx - x| € g,|x] (6)
3y € X2y - 3l < eflyll %
and in showing that o, o;, and &, go to zero as the mesh size poes to zero.

Conditions (5)-(7) are shown tor the case of continuous kernels in refer-

)

ence 2.  In this work, tor the case of logarithmic kernels,

Let H of equation (4) be defined as:

0 h\(xx'L1;) s e h(txl'txn) S h(tll.nnn)
h(tx:'txx) 0 h(Lxx'Lnn)
iz ' ' (8)
"(lxn'txl) s £ & h(l1n'tnn)
h(l“n.tll) h(tnn.ll:) o s h([nn'tnn-l) 0

-



Lerma 1: H maps c® + .

Proof of Lemma 1: Since H 1is a bounded linear operator, this result
is immediate.

In i (a subspace of X),
Kk = X - \Hx = Py (9)

which is the approximate equation as in reference 2, since

95’6 = P
Equation (9) becomes
.= \Hx = ¢5 ¢y (10)
Also,
$o(x = \HX) = ¢y (1)
s X - \HY = ¢y (12)
where X = ¢,x

Jerpia 2: Condition (5) is satisfied; that is,
vk € X, ||onx - Heox| < & ||xl| (13)
Proos of lewpir U@ For a given € > 0, 3 an integral operator H, with
a continuous kernel 2 (sce the appendix),
M, - H|| < € (14

Since H, is an integral operator with a continuous kernel, the results of
reference 2 are applicable. In particular,

IR, 2 Vi e X, [oH % - Hidok|[ € yf[x]] (15)

Hence,

||eHx - H

,

x|| < |[oHX - ¢H x| +||H,¢,% - ﬁ¢oiH + ||¢H % - ﬁl¢°iH (16)

ol 118, = BIIx+11H, = &l ooll NIl

+ o0, x - H ¢ x|l
< o|Ix]] (17)
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Lerma &: Condition (6) is satisfied; that is,

Vx € X , Ix eX o Ilnx - x|l < ZIHxH (18)

Proof of Lerma 3: From the proof of Lemma 2, we know that

Vx €X , Ix € X > lIHyx - x|| < g,lx|| (19)

Again, from the proof of Lemma 2, 3H, 3 for a given € > 0,

|H, - H|l < € (20)

Noting that

Hx - x = (Hx - H,x) + H,x - X (21

Now, applying Schwarz's inequality,

IHx = x|| < ||Hx = H,x|| + [[H;x = X]| (22)
< 1= mll llxll+ [lngx - x| (23)
< g,lxli (24)

Condition (7) follows readily from Lemma 3.

From the proofs of Lemmas 2 and 3, it readily follows that ¢, ,, and ¢

tend to zero as the mesh size of the partition tends to zero.
CONCLUSION

For a given € > 0, the solution x* of the Fredholm integral equation
x - \Hx =y on [0,1]) «~ [0,1] with a logarithmic kernel for continuous vy
can be approximated by a function X* 3 ||x - ¢;1i*n < €; x* satisfies an
equation of the form X - \Hx = ¢y. Hence, the desired accuracy can be
achieved by appropriately restricting the mesh size A.
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APPENDIX
CONSTRUCTION OF APPROXIMATE INTEGRAL OPERATOR H,

Let H be an integral operator defined as follows:
H! ) -f log ul ], dS

Lereiz: Given € > 0, 3 an ntegral operator H, with a continuous
kernel » ||H, - H| < €.

Hl ] = J. log r | ] d%)
b PQ J Q . E
/ \
' ” P\
) D ) D
1 fe
e = [F-q
= J'D log r| ]‘ d\Q + S log r| ]Q dSQ
0 r
In Do‘ define
H, ( ]=J‘ log r[ ] dS
D,
In Dr‘.
, S
H[ ] = J. log r[ ] dS
Dr‘
€



In Dy, det ine

Hll ] ‘I log r(l ] dS
D

v

TG ¥ 2 B R | J- log r dsQ-'f log ¥ dSQ
D D
)8 T
€
t't:
I log v dS = (log l'i) —
& -
D,
| >

llog r - log rcl ds < J'log r_ds

r 2

€
-—2—' log l‘r’

1A

‘fH-Hx, :——‘—‘ log r

>

r



ro
-

REFERENCES

Gabrielsen, R. E.: A Solution to the One-Dimensional Fredholm Integral
Equations of the Second Kind. NASA TM-81195, 1980.

Gabrielsen, R, E.; and ﬁnal. A.: A Solution for Two-Dimensional Fredholm
Integral Equations of the Second Kind with Periodic, Semi-Periodic, and
Non-Periodic Kernels. NASA TM-81249, 1981.

Kantorovich, V.; and Akilov, G. P.: Functional Analysis in Normed Spaces.
Pergamon Press, New York, N. Y., 1964.

Kellogg, O. D.: Foundations of Potential Theory. Dover Publications,
Inc., New York, 1953.

Evans, (. C.: Logarithmic Potential. New York, 1927.

~J




	1982005012.pdf
	0008A02.JPG
	0008A03.JPG
	0008A04.JPG
	0008A05.JPG
	0008A06.JPG
	0008A07.JPG
	0008A08.JPG
	0008A09.JPG
	0008A10.JPG
	0008A11.JPG




