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Two-dimensional Fredholm integral equations with logarithmic potential
kernels are numerically solved. The explicit convergence of these solutions

to their true solutions is demonstrated. The results are based on a previous
work in which numerical solutions were obtained for Fredholm integral equa-

tions of the second kind with continuous kernels.

INTRODUCTION

Previously (ref. 1), the convergence of a numerical. scheme for solving,
one-dimensional Fredholm integral equations of the second kind was proven,
Later on (ref. 2), these results were extended to two dimensions for contin-
uous kernels. However, since a class of physical problems involves kernels
of the logariLh,«ic potential form, this study extends the theory to kernels

of this type.

MAIN DEVELOPMENT

In a recent report (ref. 2), it was shown that the following system of

equations,

n	 n

x(t ij ) - ), E 21 h(tij;tkk)x(tki	
= y(t ij )	 (1)

kk= 1 Z=i

converge to the exact solution of the two-dimensional Fredholm integral equa-

tion of the second kind,
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	x(r,$) - ? f 
	

h(r,s;tl,t2) x (t 1 ,t 2 )dt l dt 2 = y( r , $ )	 (2)

	

0	 0

when the kernel h(r,s;t l ,t 2 ) is a continuous function over the unit square
10,11 x [0,11 and y(r,$) is also a continuous function over the unit square.



Equation (_) will be rvgarded as a tunctionaI equation ill 	 Bauuach
" ""Ice X - CO of ckiiit into u ► s funct ions on Lice unit square ( 10,1 I x [0, 1 1)
utd, typically, will be expressed in the following torn:

Kx	 x - \Hx - y	 (3)

The -;..Cell (l) is reKardeLl as an :approximate functional equation in Lh.•
.lace X - R11 . ► nd typicr I ly is ex tressed ill 	 following fot-in:

Kx _ x - 1Hx - spy	 (4)

l t • L X be a subsp.lce of X. Define the mapping Sp ill 	 onto \ as
foII ows: 	 if	 x t X, thole s p x - R

1'llr differences between this work and that of reference 	 are due to dif-
terence. arisitig ill 	 the tollowing three conditions:

\+^ e \	 ,Hr - Hv;pxll	 LIIxI^	 (5)

V	 e X	 3 x t XA II Nx	 1IIx II	 l!,)

3 V' r	 ' ; I Y ` YII < L :IIYII	 (7)

Illd Lot showing Ltl.11	 :.1. And	 go Lo zero as the mesh size goes to zero.

Condit ions (5)-(7) are show•tt for the case of continuous kernels ill
 _.	 In this work, for the case of logarithmic kernels,

(_et it of equation (4) be defined as:
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Lemma 1: H maps C O -► Co.

nrnof of Lerm 1: Since H is a bounded linear operator, this result

is immediate.

In X (a subspace of X),

\Hi = Py	 (9)

which is the approximate equation as in reference 2, since

$0 1 $ = P

Equation (9) becomes

Also,

\Hi:	 $o 1$y	 (10)

(X 	 \11x) _ $y 	 (1 I )

where X = ^S.

. .....	 Condition l5) is satisfied; that is,

v	 f X	 llkl^	 (13)

For a given f	 0, 3 an integral operator H 1 w ith
a continuous kernel	 (see the appendix),

I H 1 - H II ` f	 (14)

Since H1 is an integral operator with a continuous kernel. the results of
reference 2 are applicable. 	 In particular,

3 	 a N^c f X	 II $Ht x - H 1 $axll < X1 11 	 l	 (15)

Hence,

Ils ll^ - H 1 ^"o't ll ^ II^"1ix - $ 11 1 X ll + IIH1 $ox - H4 00+ II4^H lx - II 1 $ o xll	 (lb)

< II$II IIH 1 —HII Il x ll + II H1 — H II Ilsoll IIXII

+ ll^^li l x	 - Ill$pXll

07)
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Lemma	 Condition (6) is satisfied; that is,

d x E X	 3 X E X 3 IIHX - XI I < i IIXII	 (18)

Proof of Lemma	 From the proof of Lemma 2, we know that

Vx E X	 3x e X 4 UN I X - x 11 ^ t 1II x II	 (19)

Again, from the proof of Lemma 2, 311 1 3 for a give, E > 0,

II 11 1 - HII < E	 (20)

Noting that

Hx -	 _ (Hx - It X) + H,x - x	 (21)

Now, .ipplying Schwarz's inequality,

HX - xll < jjHx - H,xII + IIH,x - x1l	 (27)

< IjH - H 1 ;I 1i  II + IIH,x - x	 (23)

j x Il
	

(24)

Condition (7) follows readily from Lemma 3.

From the proofs of Lemmas 2 and 3, it readily follows that ^, i, l , and

tend to zero as the mesh size of the partition tends to zero.

CONCLUSION

For a given E > 0, the solution x* of the Fredholm integral egaation

x - 1Hx = v on [0,1]	 ]0,1] with a logarithmic kernel for continuous y

can be approximated by a function x* 3 IIx- ^o l x * ^I < E; x* satisfies an
equation of the form x - 1Hx = ^y. Hence, the desired accuracy can be
achieved by appropriately restricting the mesh size A.



APPENDIX

CONSTRUCTION OF APPROXIMATE INTEGRAL OPERATOR H1

Let H be an integral operator defined as follows:

flog  u l I dS
D	 PQ

Tc-r.:: Given e > 0, 3 an :ntegral operator H 1 with a continuous
kernel 1	 il l - II < C.

NI I = J	 log r I ^ Q JS`

1)	 P^;
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r .	 D L,
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r.
c

	

r=,P	 Q

folog rl IQ dSQ+ ^

r,a 

in D o . define

	

H I I I= J
	

Iog r f I dS
n.

In Dr

t	 I{ l I = 4	 log r l I dS
Dr

C
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log r[ I (^ dSQ

k^ I =



D r 	det itik,

tt : l l	 J	 log r l 1 dSL
Dr

E

, Og r ,	 j	 I 1 ,1ti
Dr

`	 H I 1 - Ei_ l I	 f	 1ot, rl 1 d ti ►j - 
J	

log rt I 1 
dye

i' 1 
-r	 i) t

( iog r - log r  1 ( 1 d,

i

H 1 ) ( 1	 l I	 f	 log r dS ` - j ,	 log r  dye
^ r	 r

e

r

1,,g r .1S - (log r .) ;
11 

1- t_

log, r - lug rE dS < 
J 

log r  ds

r 2
< 2 lu g rt

r

1H-	 log r-
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