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Numerical Techniques in Lirear Duct
Acoustics - 1980-81 Update
Kenneth J. Baumeister
National Aeronautics and Spacé Administration
Lewis Research Center
Cleveland, Ohio 44135
A review is presented covering finite element and finite difference

analysis of small amplitude (linear) sound propagation in straight and
variable area ducts. This review stresses the new work pérformed during
the 1980-1981 time frame, although a brief discussion of earlier work is
alse included. Emphasis is placed on the latest state of the art in

numerical techniques.

NOMENCLATURE
<
§ c; ambient speed of sound, m/s
= c; group veloacity, m/s
d; duct diameter, m
F initial condition vettor, equation (22)
fr frequency, Hz
t functfon of y, see equation (18)
H* | duct height, m
. 1 number of axial arid points
. i '/IT
" number of transverse arid points
K - ceefficient matrix, equation (22)
L fength of duct, m
Neub number of storage locaticns in sub matrix




u

normal ’ . ’ =

pressure, Nlm? _

time dependent acoustic pressure, P*Io;c;Z

spatially dépendent acoustic pressure, eqﬁétion (3)

wave envelope pressure, equation (25)

radius of duct, m

dimensionless time, t*lt;

period 1/f*, sec

time step »

time dependent axial dimensionless acoustic velocity,
U(x.y.t). Ur/ey

Mach number, U*lc*

oo

spatial dimensionless axial acoustic velocity u(x.y), u*/c;

time depencdent dimensionless transverse or radial dimensionless
acoustic velocity, V(x,y,t), V*Ic;

spatial dimensicnal transverse or radial dimensionles acoustic
velocity., v*lc; |

axial coordinate, x*/H* or x*lr;

axial grid spacing

dimensionless transverse cdordinate. y*[H*

transverse arid spacing

impedance., kg/m? sec

dimensioniess specific acoustic impedance

dimensionless frequency, H*/f* ;; (cartesian) or r;If* cg
(cylindrical)

dimensionless specific resistance

dimensionless wave length.




o; “ambient air density, kg/m .
) dimensionless acoustic potential function, é*lc;{dgw ’
i dimeﬁsionless react;nce
¥ angular freguency (2»f*)
Subscripts:
e | exit condition
i axial index (fia. 1)
j transverse index (fig. 1)
0 ambient condition or mean flow variables
* dimensicnal quantity 7
k time step index
(1) real part
(2) imaginary part
INTROBUCTION

*Steady" state finite element theories and transient finite differenhe
thecries aré currently Qping applied to the désign of loud speakers, ven-
tillﬁtion systems, mpfflers. and the acoustically treated nacelles of turbo-
jet engines. In this paper, a review is presented covering both the finite
difference and finite element analysis of small amplituce (1inear) souhd
propagation in straight and variable area ducts with and without ffow.
Reference 1 contains a very recent literature review of the techniques,
advantages, limitations and applications associatec with the various numeri-
cal sclutions of the scund propagation equations in ducts. In an extensicn
of reference 1, this review emphasizes the new work performed during the
1080-1981 time period anc the state of the art of numerical simulation of

scunc propagation in ducts.
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Application of numerical theories to room acoustics, structural acoustic
radiation systems and the determination of duct eigenvalues will not be
includad in the detailed giscussions. However. since these research areas
are often of interest to acousticians studying duct acoustics, these works
have been included in the list of references (refs. 2-22) for completeness.

The numerical theories to be considered in detail in this paper employ
full two or three dimensional finite element or difference theories which
have provisions for inlet and outlet flow such as in a muffler or jet engine
duct. To delineate the starting point of the present upadate, the literature
cited in reference 1 is again tabulated herein (refs. 23 to b3). These
references will also be cited in conjunction with brief summaries of earlier
work. References 64 to 85 represent the new literature introduced during
the 1980 to 1481 update period. .

First some background information is briefly discussed relating to the
properties of sound propagation in ducts and how they impact on numerical
solutions. Next, the various numerical works developed in the 1480-1981
period are presented in the following order:

(1) Steady State Finite Difference Theory

(2) Steady State Finite Element Theory

{3) Special Numerical Transformations

(4) Transient Numerical Theory

BACKGROUND INFORMATION

1n preparation for the new (1980-1981) literature on finite gifference
and finite element techniques as applied to duct acoustics, the simplest
versions of the sound propagation equations and boundary congitions are
first briefly reviewea and some inherent problems associatea with numerical

solutions of the sound propagation equations are high-ligntea.
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“In the -absence of flow, the wave equation in dimensionless form can be

written as

- 2. 2 2 .
A 3P, 3P )
i oy |

where n 1is the dimensionless frequency defined as

n,%g o (2)
0

(1/n may also be thought of as a dimensionless speed of sound, in this
case, equation (1) corresponds more closely to the dimensional form of
the wave equation). The starred quantities represent dimensional vari-
ables. All syﬁbols are defined in the nomenclature. The souﬁd source is
generally assumed to be harmonic in nature and to vary as éi“*t* (in

c¢imensionless form as e‘z“t). In this case, the pressure and acoustic

velqcities will all be functions of e‘”*t*. 1f the acoustic pressure
is assumed to be of the form
. ot
P(2.y,t) = p(x.y)e'" (3)
the wave equation (1) becomes
? 2 ‘
if*f%*‘%ﬂ7°=° (4)

which is the classical Helmholtz equation.

" Solutions to equation (8) are ca1lgd "steady" state solutions because
the equation is independent of time. In this case, p(x,y) actually re-
presents the Fourier transform of P. On the other hand, solutions to

equation (1) are time depencent or transient. Once the initial stert up

aaad s i b LS il SRR it s T R A RO 27 s 4= 0 i




condition has died, the transient and

related by equation (3).

Governing Equations with Flow

The wave equation (1) takes on

these cases,

“steady"” state solutions are simply

slightly ditferent forms tor the cases

orm mean flow ana for irrotational flow (see ret. 40). For uniform

(5)

The wave equations are ortained

Unfortunately,

quations must be solved simultaneously. For

(5)

(7)

(8)

by ot unif
§ mean flow the wave equation becomes
¢
[ .
5 o2 2P _ (‘1 _ Uz) 22p N a%p ~ 200 2%p
2 ati 0/ 42 ;;Z o 3tax
As is equation (1), this form of the wave equation is iceally suited for
numerical analysis in that only one dependgent variable is involved in the
solution of the propagation equations.
by combining the linearized continuity and momentum equations which
describe the prupagation ot small acoustic disturbances.
for realistic shear flows, the continuity and momentum equations cannot
be combined into a single second order wave equation. In
the continuity and momentum €
parallel shear flow in a two-dimensional rectangular coordinate system,
these equations are
P __lau _1av o3P
3t adn ndy n X
w1k Y 1%
at — aX n 3xX n 3y
: o __1ap_Joav
4 at = nay n 23X
3
F For "steagy" state, these equations become
3
§,
3 5
s » S
E—— e — J ey PUSTIeR . _




(i2em)p = - M _y 2 - T (9)

; __3 _y v __0
(i2nn)u = = 5% - Uy 3% TR (10)
(i2wn)v = - —3—%- U, 3 (11)

As will be shown later in detail, the "steady" state solution of the
séuﬁc propégation equations requires storage of large matrices to obtain
a solution. Consequently, the inclusion of three dependent variables in
the shear flow problem requires an order of magnitude increase in the
storage capability and solution times of a computer over a similar prob-
lem in the absence of shear. Therefore, to chtain optimum storace and
run times, separate programs are required for no flow, irrctational
flows, and shear flows. Fortunately, as will be shown shortly, the
transient s~lution to the governing equations does not require the stor-
age cf large matrices. Therefore, the generation of a single optimum
program to cover the compiete range of no flow and shear flow seems a
reasenable goai.

Discretize the Continuum

In either the finite difference or finite element numerical analysis,
the continuous acoustic flow field is Jumped into a series of grid points
or elements as shown in figure 1. Instead of obtaining a continuous
solution for the acoustic pressure, for example, its values are cbtained
only at isolated ncde points. In the finite difference analysis, a sim-
ple rectangular pattern of discrete points is almost always used. The

finite difference approach is generally restricted to uniform ducts
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unless special_bookkeeping or transformations are employed. On the other

hand, o great variety of finite element patterns (see table 1) can be

easily emplcyed to handle complex geometric variation
Two such element patterns are displayed in figure 1.

element the fewer will be the number of elements need

s in duct walls.
The more nodes per

ed to resolve the

acoustic rield. However, since the size of ~he solution (global) matrix

.is'p[oportional to the number of nodes, considerable
time and computer core memory are required for the hi

Grid Point Requirements

more computational

gher order elements.

In sound propagation in ducts, the acoustic pressures and velocities

oscillate cown the duct. The question naturally aris

es as to how many

grid points or elements are required to accurately resolve these oscilla-

tions. For example, consider a hard wall duct, semi-
with a sinusodial plane wave pressure at x = o, and

ber U, in the duct. The one dimensional "steady" s

jnfinite in extent
a uniform Mach num-

tate plane wave

solution of equation (5) in conjunction with equation (3) yields

_ i2mnx
2P ey o2} o I+7,

p e

(12)

Thus, the real and imaginary components of the acoustic pressure oscil-

late in the axial direction with a wave length

(13)

The number of axial grid points to obtain accurate acoustic pressure

and velocity profiies may be estimated from the follo

given in references 24 and 25

wing "rule of thumb”




[ = 12 Sk*IH*)ﬂ | : (14)

’ Thds. fof the unit frequency (n = 1), unit length.(L*/ﬁ* = 1) ;na“;6‘ﬁé$d .
flow, 12 grid points are necessary to describe adequately the sinusoigal
form of the spatial pressure dependence, as shown in figure 2. It the
frequency or length is doubled. or the Mach number Uo is -0.5 (flow
towards the source), clearly twice as many grid points will be required
to déscribeé the wave, since two wave lengths ot sound must now be re-
solved. khen higher order transverse acoustic modes are present, tne
axial wave length of souna will be longer and the requirea number of
axial griag pointsiwill oe significantly reducea. Therefore, equation
(13) represents a conservative estimate of the grid point requirements.

Tne numper o7 transverse grid points will gepena on both the source
transverse modal distribution and the generation of higher order modes in
the duct. To resolvg all the higher ofder propagating modes that could
occur in tne most general case, the number of gria points in tne trans-

-verse direction would pe proportional to the frequéncy n (rets. ol and
03). The total number of grid points would be the product of the points
in the axial and transverse airections. In high frequency (large n)
cases, the required number bf grid‘points or elements can become very
large.

In determining the required number of finite elements, however, the
constant 12 in equation (o) will pe smaller because the interpolation
function in finite element theory is generally of higher ordei than the

first order linear difference approximation used to estaolish equation -
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(7). For a barticu]ar_finite e!ement; some hdmerical-experiﬁéﬁtation
will be required to determine if sufficient numbers cf"eleﬁents have been .
employed.

Wall Boundary Conditions

The boundary condition at a hard wall duct is simply that the normal

acoustic pressure aradient is zero

P .
=m0 : v (15)

or that the norma! acoustic velocity is zero.

vy =0 (16)

For 2 soft wall (absorbing) duct, an impedante is specified at the duct

wall

* .
;e—;—Tz =9r+1x=s— . (17)

Poo n

The wall resistance is represented by e. while the»reactance by

r
Xe Bothb ey and x are assumed known input quantities.

In the “steady® state analySes, application of equation (17) is
straight-ferward and offers no computational problem. In the iransient
anaiysis, however, direct application of equation (17) can lead to-
rurerical instabilities. The integration technique presehtea in refer-

ence 61 seems to alleviate this problem.

Entrance Conditicrs

For a rectangular duct, the boundary condition at a liner entrance

P(o.y.t) can be of the fcrm

*t*x

P(o,y.t) = f(y)1® (18)

10




where f(y) represents the transverse variation in acoustic pressure.
Similar Expressiansufcr-t"envc!csity potential or acoustic velocity can be
used. In cyiindrical coordinates, the radial coordinate r wculd replace
y in equation (18). Often the function form f(y) is associated with the
normal-mode analytical solution-cosines for the rectangular coordinate sys-
tem and Bessel functions for the cylindrical coordinate systeni.

Physical\y,'boundar1<condition (18) represents the sum of 2 forward and
reflected acoustic wave at x = 0. In a uniquely different approach,
Eversman, et al. (ref. 49), assumed a uniform infinite hard wall cduct
upstream of the duct section of interest and that equation (18) represents
only the forward propagating wave. The amplitudes of a truncated series of
normal mode reflection coefficients were determined by matching the pres-
cure and¢ pressure gradients in the infinite duct to the finite element
values at the entrance. This form of termination is particularly useful in
conjunction with many experiments which employ an anechoic entrance or exit
condition.

Exit Cendition

In applying the finite difference or finite element analyses to a
turbojet encine inlet, for example, the grid system has generally been con-
fined to the internal portion of the inlet. Thus, the engine has been
modeled as a short cuct. In this case, an impedance of the form

P(L*)
Ce = 'V(L'T') (19)
is often used to close the boundary. The value of ¢, is chosen to
approximate an anechoic termination. General values for the exit imped-

ance for single modes in an infinite hara wall duct (refs. 38 ang 40) are

11
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often used for theyanechoic approximation. For arbitrary multi-modal
wave forms, however, a genoral imnadance squaticn is nor available for én
exact simulation of an anechoic termination.

As with the entrance condition, Eversman, et al. (ref. 22) use the

technique of modal decomposition to obtain an accurate simulation of an

“anechoic termination.

Reference 24 (Appendix E) suggests another possibility for simulating
a non-reflecting interface at the duct exit. By aading on an additional
length of duct with acoustical damping, the reflections from the duct

exit will be effectively damped before tney can re-enter the oriainal

portion of the duct. This technique has worked extremely well in soft

wall duct problems (ref. 24) and is presently being employed in the
transient analysis. Also, in the transient analysis, an anechoic termi-
nation can be modeled exactly by extending the duct suca that the stéady
state solution is optained before the arriya} of a reflected wave from
the duct exit. This approach, nowever, is costiy from the standpoint of
comvyter storage and run times.

All the previous cases attempted to eliminate or at least reduce
reflzctions at the duct exit. However, in many practical appiications,
such as a turbofan inlet, retlections could be important for certain
modes. (Consequently, continﬁing the ér‘d structure from inside the duct
into the far field (ref. 31) woula simulate the actual ¢ynamic process
occurring at the lip of the duct. Ina the far field, all c.ct modes

* % . .
propagate and nave idgentical o0 exit impeaance far from the
exit. Tneretore, the closure problem is simplified out at the expense or

a greater number of elemer®s and a larger solution matrix. To eiiminate




this large matrix requirement, K@gawa, et al. (ref.;50) developed a com-

.-

gaticn into the far fiold.

Methoas of Solution

The methods of solution for the various “steady" and transient
theories will be discussed in detail later. Generally, the "steady"
state finite difference and finite element numerical algoritnms have been
limited to low frequencies (small n) because of the grid point require-
ments and more importantly because of tne large matrices associates with
the solution of the time independent equations. Special transtormations
have also been developed (refs. 54-60) to either reduce tne size of the
nsteady" state matrix or to eliminate it. As an alternative to the
g teady” state theories, time dependent numerical algorithms (refs.
61-63) were developed which eliminate tne need to store a large solution
matrix.

STEADY STATE FINITE DIFFERENCE THEORY

In tne %inite difference theory, the governing equation is writtan in
aifference form at each grid point. For the previous no flow exampie,
equation (3) can be written in difference form by the usual 5-point dif-

ference approximations,

- . . .. - . . YD, o
pi—l.j 2p],3 * p'l"].,J + p'lo.]"l Zp'loJ p‘sJ+1 + (21‘ )2 =0 (20)
5 2 R T B
AX sy

or for ax equal to ay

2
T A L R R L U T I
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Equation (21) applies away from the cell boundaries. For grid points on

the boundary, the hard (eq. (15)) or soft wall (absorbing) impedance

condition (eq. (17)) is imposed. Methods for generating the difference

equations on the boundary are fully documented in references 23-28.

Matrix Soluticn

The collection of the various difference equations at each grid point

forms a set of simultaneous equations that can be expressed as

(K1 ;) = (F) _ | - (22)

where [K] is the known coefficient matrix, {p} is the pressure vector
| containing the Pi.j unknowns, and (F} is the known column vector
containing the various boundary conditions. This matrix is complex
because of the complex nature of the source and impedance boundary condi-
tions (eq. 17). As seen in equation (21), the frequency term (unA_x)2
subtracts from the main diagonal element such that the coefficient matrix
is not ¢diagonally dominant. As a result, iteration solutions cannot gen-
erally be used. Equation:(zz) is usually solved by some elimination
technigque. Unfortunately, the elimination technique requires the storage
of all the matrix elements,

The total storage will be proportional to the square of the total
number ot grid points, Because of -the banded nature of the difference:
matrix, sparse matrix techniques have been employed to reduce computer
storaae and run times as much as possible. Quinn (ref. 28) partitioned
the matrix K into tridiagonal form, which_réduced the elements in the

submatrix storage to

14
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Neub = F - e’ (23)

which ‘led to a total storage requirement of - -

\ _ 3456 (L /H*)
1883 1ex 1+,

(24)

For n =10, L*/i* =1 and U, = 0, the total storage will be

3.456x105. which is quite large. Higher frequencies and flows will
greatly enlarge the storage. These submatrices are read in one at a time
to obtain a solution of the matrix. Thus, the input-output time of thé
computvr'SOIUtion can alsc become very large.

Update 1980-1981

Finite difference solutions (ref. 64) were used to study plane wave
sound propagation in a curved bend joined to two straight sections ot
duct., A reétangular mesh and .a cylindricai mesh were used in the
straiaght and curved sections of the duct respectively. At the dis-
continuities in the coordinate systems, a linear interpolation was used
in the radial directicn in conjunction with unequal meshes in the axial
direction to derive the appropriate finite difference approximaticn.
Eauation (13) was emploved at the entrance concition while moda! de-
composition and matching were used tor the anechoic exit condition.
Unfortunately, the Slgorithms for the ditfference methods are not pre-
sented in reference 64. For a variety of curved ducts, tﬁe numerical
results aareed clesely with the experimental cdata fer the reflectjon
coefficient and the pressure amplitude across the dpct. For frequencies

just belew the tirst cut-on mode freguency, the magnituce ot the cut-off

Ve o - —— . —— =
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modes generated at tne intérface were found to be greater in magni;ude
than the incident plane wave.

With the ecxcepticn of reference 63, basic veéseairch on Lk “steady™
state finite difference method appears on the wane. The bulk of recent
“steady" state acoustic analyses employ the finite element theory. The
finite element theory can readily handle duct area variation or curvature
changes without resorting to special bookkeeping procedures. However,
finite difference theory is-again receiving renewed interest in the
transient solution of the wave equation. This topic will be covered
later in the paper.

Status

A finite difference program is available in the literature for han-
dling rectangular and circular ducts with uniform flow. Reterence 28
contains a complete list of fortran statements plus example problems to
illustrate tne use of the program. Tne program also has provisions for
analyzing variable area ducts if a mapping function is available. The
mapping function for a cone ana hyperbolic horn are listed. As written,
the program is limited to 100 axial grid points and 20 grid points in tne
transverse directions. This limited number ot transverse grig points
restricts the number of higher order modes which can be resolved. There-
fore, some modification ofr the program would be necessary in the analysys
of high frequency sound.

In general for ducts with variable area, the finite element theory is
the most convenient to use. However, as pointed out by Quinn (ref. 53},
the aavantage of finite elements is not as great when a mapping function

is used to compute the mean flow field. In such a case, where the con-

16
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tormal transformation is,a§ailaolé;‘tne use of tinite ditference theoiy
would have An advantage over finite element theory. In this case, the
program cited in reference 28 could be used very eftectively.

"STEADY" STATE FINITE ELEMENT THEORY

Finite element tneory is reviewed in depth in many references 29-50
as well as tne previous review paper (ref. 1). Consequently, only a very
brief introduction to.tne finite elemeht theory 1s now presentea.

In the finite elemeﬁtvgﬂéhry; an approhriate element with its asso-
ciated nodes is distributed in tne'duc;,'sucn as shown in figure 1. At
2ach node labeled i, an unknown value of pressure P; is assigned.

The acoustic velocities would also be assigned to the nodes in the more
general shear flow problem. Table I shows some additional elements cur-
rently being used in acoustic studies. In contrast to tne finite aiffer-
ence tNeory,-interpolation functions are used to determine the value of
pressure between the nodes at any position inside the element. Again,
tablr 1 lists some typical interpolation functions.

Generally, Lagrange polynomialé are used for interpolatibn when only
the magnitudes of the dependent variables, such as pressure, are desired

at eacn node. This is commonly called the C° continuity problem. In

inlet ducts, Astley ana Eversman (ref. 51) showed that C° continuity

leaas- to smooth solutions for the acoustic pressure provided a suffi-
ciently small mesh is employed. If the mesn size is fixed, however, ana
the Macn numoer is increased, the solutions for pressure become cusped
{giscontinuous) at each node. Improvéments in resolution for the high
Mach number cases require either greater mesn refinement with a corre-
sponding increase in dimensionality or the introguction ot more sopnisti-

catea Hermitian elements.

17
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when using Hermite polynomials, items 1 and 6 in table [, the values
of slope are also calculated at each node, commonly called the C' orob-
lem. In this case, fqwer elements are required to give smooth solutions
at the nodes. However, C' continuity is more difficult to construct, so
with the exception of items 1 and 6 in Table I, Lagrange polynominals are
used. Also, C' increases the unknowns by a factor of 4 (item 6, table
1), and the resulting solutjon‘mgtrig will increase by about 16.

Next, either the Galerkin, least squares or variational finite ele-
ment methods is used to constrain the pressures at the node points such
that they satisfy the Helm:01tz equation (3) or a more general form of
the wave propagation equation. Generally, the variational techniques
have beén used for problems without mean flow, while the Galerkin formu-
lation is used when mean flow is present, see table I. Tnen the ele-
mental equations at each node are combined into a general matrix (global)
similar to equation (22). Again, this matrix must be solved to determine
the unknown pressure pi.

Matrix Solution

With the exception of the least squares approach, the global matrix
must be solved by some elimination technique Just like the finite differ-
ence solution. For the larger problems, an out-of-core banded solver is
generally required with a moderate amount of in-core storage but much
more input/output time. To reduce computer storage and run times, the

nodes should have been labeled in a manner to obtain the minimum possible

banoed matrix.

18



Update 1980-1981

No Flow

In reference 65, Shepherd and Cabelli presehted numerical and experi-
mental techniques to determine the acoqs;ic characteristics of dis-
continuities in rigid curved wall duct systems when severai modes propa-
gate. . The finite element technique was used to solve tne two-dimensiona!l
Helmholtz equation and determine the acoustic behavior of arbitrarily
shaped duct elements in terms of modal amplitudes. Eignt-noge iso-
parametric rectangular elements were used to describe the solution with
hara wall boundary conditions. Shepherd and Cabelli appliea tne methoa
to a 90° mitred bend without mean flow and obtained good agreement
between numerical and experimental resuits. In references o6 ana o7,
‘Cabelli and Shepherd extended the experiments and theory of reterence 63
to a range of mitre bend geometries. The influence of change in geometry
on the acoustic chéracteristics of Y0© bends was established over a range
of inner ang outer radii and tne~effects:of including a turning vane were
examinéu. A

Figure 3 aisplays a layout of the experinental apparatus used by
Shepherd ang Cabelli (réf. 65) Lo measure tne propagation ot higner oruer
duct modes through mitred bands. In the tinite element simulation ot
this experiment, tne mwodal match bounaary.cunaitions developea by Astiey
and Eversman (ref. 50), intinite duct modal solutions coupled to finite
element solution, were used to model the anechoic entrance ang exit
condition. Goou agreement between expérlment ang theory wds obtaineg.
In conirast, it would be diffiCult to employ an exit impedance bcundary
conuition, equation {19), in this problem because of tie aifticulty or

specifying an impedance when multiple modes are present.
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In addition to the theoretical studies, same duct experiments were
conducted which were compared to previously-developed finite element pro-
grams. In reference 68 and its improved version reference 69, the ab-
sorbing properties of a linear locally reacting honeycomb liner were
measured for an incident plane wave (no mean flow). Tne 5.08 cm square
anechoic test section supported plane wave propagation up to aoout

*® *

3.5 KHz; therefore, the standard plane wave °oo exit imped-

ance was used to terminate the so]utioh. ‘fée impedance of the liner was
determined in a separate normal incidence measurement. Very good agree-
ment between finite element theory and experiment was observea at 0.9 KHz
while 1n the high frequency tests of 2.5 KHz, significant discrepancy
existea in poth the pressure level ang phase at the trailing eage of the
liner.

Because of the rotational nature of the blades in a turbofan jet
engine, much of the emitted turbomachinery noise is concentrated in
spinning acoustic modes. The NASA Langley Spinning Mode Synthesizer
shown in figure 4 has the capability to generate indiviaually dominant
circumferential modal patterns. In reference 70, comparisohs of tne
transmission ana reflection coefficients with calcuiations based on
finite element models (refs. 37 and 46) were made. In this case, the
axperiment was conducted without mean flow with hard walls and a -aominant
spinning mode of order (1,0). In general, reasonable agreement between
axperiment and tneory was obtained.

Unitorm Flow
Ling and Hamilton (refs. 71 and 72) have developed a finite element

model for steady uniform flow based on the “steady" state form of equa-
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tion (5). 1lhe finite element formulation is basea on the Gaierkin methoa
using cubic isoparametric elements. The model was also used to approxi-
mate sound propagation in a converging-diverging auct with tlow. Since
the anlax term has been neglected in their analysis, a comparison

with the more exact theories of references 45 to 50 will be required to
establish the range of validity of their finite element program as
applieda to flow with area variations.

Potential Flow

Sigman and Zinn (ref. 73) hav2 applied their potential flow finite
element program (refs. 40 and 43) to the preblem of describing wave
propagation in axisymmetric nozzles. Agreement between values of nozzle
admittances computed from finite element solutions experimental admit-
tances are extremely good.

Shear Fiow

Astley and Eversman (ref. 74) have extended and improved their
earlier analysis (ref. 51) on the implementation of the finite element
methoa for acoustic transmission through a non-uniform duct carrying ai
nigh speea subsonic compressibple sheared flow. A finite element scheme
based on both the Galerkin method and the resicual least squares method
using an eight model isoparametric element was described. Multimodal
propagation was investigated by coupling of the solution in the duct non-
uniform section to modal expansions in uniform sections. As in refer-
ences 48 and 53, they found that the residual least squares formulation
performs poorly in comparison with the Galerken approach. At high Mach
numbers, evidence was provided that multi-mooal interactions become

important necessitating a proper handling of the raaiation condition.
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Astley, Walkington and Eversman (ref. 75) investigatea the computa-
tional efficiency and possible improvements to existing finite element
models. Numerical results were presented in an attempt to evaluate four
computational schemes comprising all combinations of Galerkin and resid-
ual least squares with both Lagrangian (C*) and Hermitian (Cl) ele-
ments. A computationally inexpensive one dimensinal model was usea for
most of the results. It was demonstrated that an inevitable consequence
of the Galerkin schemes appears to be the presence of spurious oscilla-
tions axcited by insufficient number of elements or inaccurate matching
at the boundaries. Also, the wave envelope technique, to be discussed in
the next section, showed a significant increase in accuracy over the con-
ventional solutions when a fixad number of elements was employed.

Abrahamson (ref. 76) attempted the development of a 3 aimensional
finite element program to analyze acoustic propagation in an axisymmetric
duct with circumferential variations in wall impedance. Galerkin or
least squares element formulations combined with Gaussian elimination,
successive over-relaxation, or conjugate gradient solution algorithms
were investigated. Unfortunately, all the techniques proved impractical
for handling realistic three dimensional problems, because of both very
large storage and run times.

Status

Nearly all the finite element investigations have been concerned with
the theory and accuracy of various forms of tne finite element metnod for
the calculation of the acoustic transmission in ducts. In most cases,
only in-core implementation of the finite element-metnoq has been em-

ployea. Abrahamson (ref. 46), however, has developed a large scale com-
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putational scheme utilizing an out of core banded solver for handling - -
sound propagation in ducts containing a compressible mean sheareh flow.

The program has the capacity to hanale relatively large frequencies

(n = 10), duct lengths, and Mach numbers. Both a computer program manual
(ref. 77) and detailed flow charts (ref. 78) are available. Tne detailed
Fortran listing can be obtained directly from the author.

The program solves the separate linearized continuity and momentum
equations using the Galerkin finite element method: mAs'séown in fig-
ure 5, a simple linear rectangular Lagrangian element is usea for which
the acoustic pressures and velocities are to be determined at each node.
The numbering system shown in figure 5 leads to a global matrix wnich
consists of 3 diagonal bands. For a typical two dimensional propblem, the
width of each bana is §. The structure of the global matrix is the same
for the uniform, non-uniform and variable area case shown in figure 5.
These elements are stored in a packea matrix which ignores the large
number of zeros in the general global matrix. The packed blockea tri-
diagonal matrix is then solvea in the usual manner by forwara and back-
ward substitution.

At the present time, the program has been successfully applied to 2
variety of no-tlow and uniform tlow proolems for straignt and variable
area ducts. Additional checking and debugging may still pe necessary whe
the program is applied in a sheared flow situation. [t woulc be usetul
if the modal matching boundary condition could be incorporated into this
program so that anechoic termination could pe conveniently simulated when

higher order modes can propagate.
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"STEADY" STATE SPECIAL MUMERICAL TRANSFORMATIONS.

In a turbofan inlet, high frequencies (n = 30 to 50) and flow Mach
numbers lead to pressure and velocity oscillations where many axial wave
lengths variations are present in the duct. The number of grid points or
elements reauired to track these oscillations requires extensive computer
storage and run times which prohibit the analysis of many duct problems.
Also, in a computer optimization process, hundreds of calculations are
often required to determine a desired liner configuration. Thereforé,
any reduction in the umber of grid points or elements in a numerical
analysis wi}l significantly reduce the cost of obtaining the desired
solution. As cited in reference 1, three special numerical techniques
have been developed in order to reduce the storage requirement and in-
crease the accuracy of the numerical solution.

Wave Envelope Technique

The wave envelope technique attempts to reduce the axial oscillatory
part of the wave pressure profile by transforming the wave equation into
a new fcrm whose solution is non-oscillatory. For example, if one domi-
nart moce is present in a duct, the pressure can be assumed to be of the
form

~i2nx

i
P(x,y) = p,(x.y) e Y os Po(x.¥) € 2unx

(25)
where p(x,y) is the oscillatory pressure shown by the solid line in fig-
ure 6 (real part only) and Po represents the pressure amplitude or
envelope shown by the dashed Tine in figure 6. The amplitude in figure 6
falls off because of abscrption by the soft wall. Substituting equation

(25) into the Helmholtz equation (4) yields the wave envelope equation
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Solutions of equation (26) have-lead to order of an magnitude reduc-
tion in grid points and computer stofage compared to conventional solu-
tions of the Helmholtz equation, equation (4), as discussed in references
54-47. Tne technique 1s limited to those cases wnere some reasonable
estimate of the wave]engih can be made a priori or by some simpler -analy-
sis. Re-running a.problem with increased grid points will generally be
necessary to check the validity of the solution.

Marching Technique

Although initial value numerical solutions of elliptic equations are
generally unstable, the two-aimensional Helmholtz wave equation can be
solved as an initial value problem using explicit marching techniques
(refs. 58 and 59). Combared to standard finite-difference or finite ele-
ment boundary value approaches, this numerical technique is orgers of
magnitude shorter in computational time and fequired cdmputer storégé.
This techhique is limited, however, to high freqﬁencies and to cases
where reflections are small.

Far Field Coupling

To obtain far field acousticbradiation patterns and to eliminate tne
necessity of sbecifying tne impedance of the duct at its exit, rinite
slements can be extended frcm the internal portion of a duct into tné far
tiela (ref. 31, fig. 1l8). Generally, the increased computer storage

requirements make this approach very costly. - Kagawa, et al. (ref. 31)

'receutiy developed a compination of finire element (in guct) ana analyti-
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cal methods (Green-theorem-far fiela) to anaiyze sound propagation from
an acoustic horn. Baumeister and Majjigi (ref. 44) presentea a matrix
paftitioning approximation that separates the duct and tar field into two
ur more regions and thereby reduces total matrix storage.

Update 1480-1981

Wave Envelope Technique

Astiey and Eversman (ref. 79) have adapted the wave envelope_approach
to their finite element program which was documented in reierence 74. In
contrast to the earlier works which considered mainly plane wave applice-
tions in uniform ducts, they considered multimoda} propagation in soft
walled straight and variable area ducts with fiow. Astiey and Eversman
reported that significant increases in accuracy result from a relatively
Crude wave envelope modification to conventional finite eiement schemes.
in practical terms, as suggested in previous studies, Astley and Eversman

agree that this technique could significantly reduce computer storage and

run times in realistic aeroacoustic configurations where the propagation

of high frequency modes places great demands on the axial resolution of
conventional numerical schemes.

Far Field Coupling

In agetermining far field radiation patterns from inlets, generally
the "interior" region of the duct and unbounded “exterior® region of the
inlet are treated separately. In the absence of flow, Horowitz, Sigman
and Zinn (ret. 80) developea a hybrid iterative solution approach using
finite elements for the interior of tne duct and the integral technique
for the exterior region in order to cbtain a continuous numerical solu-

tion for the acoustic field. In the first iteration, an impedar.ce bound-
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ary cond1t1on was assumed at the 1nterfaco between the interior and
exterior regions. “The boundary condit1on ‘was then used to obtain inte-
rior and exterior (radiétibh)‘atdustid‘solutions. Since the prestribed"
boundary condition at the intqr?ace was an approximation, 3 discontinufty
arises in the computed acougi%c fields at the interface. In this case,
both the interior and expe?for'acoustic fields were in error. This error
wWas eliminated by an jté}ative matchigg of the computed acoustic fields
at the interface wh€éh also provides!the correct boundary condition at -
that locat1on. /; »

Resulsgqa solutions for several simple cases were compared with known
exact solutions and good agreement was demonstrated. In all cases, the
convergence was very rapid. -Under a NASA grant, work is continuing to

'adapt this matching prccedu;e for the case when flow enters the duct.
Status.

At the present fime, these special techniques have not been in-
corporated into a2 documented computer program. Therefore, if desired,
individual programs must be revised to accommodate theSe speciéi tech-
niques just discussed.

TRANSIENT FINITE OIFFERENCE THEORY .

12"t) sound source,

The transient analysis begins with a harmonic (e
equation (18). at x = O radiating into an initially quiescent duct.
Next. an explicit iteration solution of the wave equation, equation (i)
is used to calculate both the transient as well as the "steady" state
solution. The “steady" state is obtained when the value of

p(x,y) = Plx,y,t)/eom (27)
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at the duct exit reaches a constant value. For combarison agd reporting
purposes, all the transient pressures are converted into “steady” pres-
sures according to cquaticn (27) thereby.eliminating the temporal
variations.

To illustrate how the transient equations are programmed, the second
derivatives in the wave equation, equation (1), can pe represented by the

usual central differences in time (superscript k) and space (subscripts

i, 3) o
k+1 .k k-1 k k k k k k
RN LA IR RAAT T (AW il 1A = W | DY (W i3 P
at® ax® ay®
(28)

where at, ax, ay are the time and space mesh spacings, respectively.

Solving equation (28) for P§+§ yields

2
kel gpk o pk-la (ﬁ— [P" LT L pk ]

Py 5= 2Py 5= Py aax) |Pieng * PiLaen T %P T P T T

(29)

ahere ax equals ay. The iteration procedure is explicit since all the past

k are known as the new values of P'C'1

values of P are computed. Since

equation (29) is a simple algebraic equation, storage is only
k k-1
. . ana P
1, 1,J
storage and manipulation are not required.

required for tne solution vectors P that is, matrix

As with any explicit iteration solution, the time step at must be chosen

sufficiently small to insure numerical stapility. Nevertheless, tne transient

solutions have been found to be an order of magnitude faster than tne similar
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“steady" solution, ref. 61, for plane wave propagation. Using the ven Neumann
stability theory as a guide {refs.-61-563}, the -time dépenden: solutions have
been found to be stable without flow and with uniform flow. When axial aﬁd
transverse variations in the mean flow are consfdered, some numerical experi-
mentation will no doubt be required to determine the maximum time increment
associated with rumerical stability. ‘

1981 Update | o

As previously formulated in the literature (ref. 63), the transient method
did not converge to the "steady state" solution for cut-off acoustic modes.
This has implications as to its use in a variable area duct where modes may
become cut off in the small area portion of the cuct, or for situations where
cut-off mocdes may be generated such as duct discontinuities or large velocity
aracdients. For éingle cut off mode propagation, Baumeister (ref. 81) found
that the “"steady state* impedance boundary condition produced acoustic reflec-
tions cduring the initial transient which caused finite instabilities in the
numerical calculations. In reference 81, extending the duct length to prevent
transient reflections resolved this stability prcbiem.

Reference 81 also addresses the problem of hcw long the transient calcula-
ticn must continue for tﬁe initial transient to die out in order to obtain a
"steady state" solution. ‘In agreement with analytical predictions (ref. 86),
numerical calculation chowed that the time to reach a steady state solution
will be

t* > L/cg | (30)
where c; is the axia1—component of the group velocity. Since this
aroup velocity becomes very small near the cut off frequency, the transient

solution will required long calculation times to resclve medes near cut off.
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“In pronlens with duct Jrea variations, the finite element method 1s very
convenient for “"steady state” solutions of the wave eaquation, Uafcr:unateiy.
the transient finite element metnod is inappropriate for two-dimensional proo-
lems because the solutions are implicit requiring storage of the usual large
matrix for each time iteration. Therefore, the transient finite aifference
theory must be adapted to duct problems with area variations.

With area variations, the boundary can be locatea in an approximate -manner -
with a uniform grid or can be located exactly by use of a variable spaced |
grid. Both approaches are lnaccurate and are cumbersome to use. In reference
82, White has developed a numerical mapping procedure which transrorms a com-
plex duct geometry into a simple rectangular form. Using the results of the
numerical mapping, a transformed wave equation is solvea in the rectangular
system with a standard uniform rectangular grid.

Prof. White ot the University of Tennessee (Knoxville) under NASA Grant
NAG3-18, is extenaing the procedure of reference 82 to tne proolem of sound
propagation from ducts into the far field. Figure 7 shows mapbing for a
straignt two-dimensional duct into the far field while tigure 8 illustrates
the mapping for a variable ares duct coupled to the far fiela. In both cases,
the wave equation 1s solved in a rectangular grid system and transformed back
to the apprepriate gria locations shown in figures 7 ang 8.

In reference 83, as a check on both the steaﬁy state finite element and
transitent finite difference tneories, plane wave sound propagation was stugied
experimentally in a rectangular duct with a converging-diverging area varia-
tion ror no mean flow. The 0.5 area contraction was of sufficient magnitude
to produce iarge retlections and induce some modal scattering. Figure Y from

reference 83 shows a comparison of White's (ref. 82) transient finite aqirser-
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ence program and Astley-Eversman finite element program (ref. 74) with experi-
mental data. Both theories accurately precict the standing wave pattern V
upstream of the test section (x'< 0) and the pressurerdistribution fhrOugh the
area variation (0 < x < 1). |
The transient theory has recently been applied to study the behavior of a
sound pulse propagating through the shear layer of an axisymmetric jet
(ref. 84). Both experimentation and numerical analysis show that.in the low
and intermediate frequencies the far field acocustic power exhibits a markéd o
. amplification as the flow velocity increases. The amplification is traced to
shear noise terms which trigger the instability waves that are inherent within
the flow. The experimental results were qualitatively in agreement with the
numerical simulation.

As discussed earlier in conjunction with the exit impedance, continuing
the arid structure from inside the duct into the far field would simulate the
actual dynamic process of reflection and transmission occurring at a duct
lip. This is one of the strona motiyations for Prof. White's study (ref.'82)'
anc the far field mapping shown in figures 7 and 8. In the far field, care
must alsc be exercised to prevent false reflection generated at the termina-
tion of the far field. Maestrello, Bayliss and Turkel (ref. 84) have includea
in their paper an excellent discussion of the problem involved in the far
tield termination as well as a correction to the exit i.pedance termination to
impreve the accurecy of the-numericil results. In additien, reference 85 con-
tains a comprehensive literature summary of recent work cn the external radia-

tien bourdary condition.
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Although no documented computer program is available at the present time,
the trancient technique is reiatiwvely easy to program using tne publisheg
theoretical results. The theory has been applied and checked for cases in-
volving soft walls (ref. 61), uniform flow (ref. 62), variable area propaga-
tion (ref. 7Y) and sheared mean flow (refs. 62 and 85). As yet, however, tne
theory has not been checked in the combined case of a sheared mean flow w1tn
soft walls in a variable area duct.

CONCLUDING REMARKS

Tne finite ditference and finite element theories are 1deally suitea tor
predicting sound propagation in ducts particularly in low frequency applica-
tions such as mufflers, expansion chambers, and exhaust ducts of turbofan
engines. Using available computer Programs, souna attenuations can now be
easily and precisely calculated for ducts with a variety of complexities, sucn
as variation in the wall liner impedances, axial area Changes or large varia-
tions in the mean flow fiela. Of course, the sound source distribution ang
acoustic liner parameters must be accurately known.

On the theoretical side, at the present time, research priorities include
extending tne numerical theories to higner frequencies, coupling tne internal

portign of the duct to the far field, and including non-linear effects.

Experimentally, testing with large area and mean flow variations is continuing,
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TABLE I, - PINITE ELEMENT SUMMARY

Item Element Interpolation Dependent Finfte Types of acoustic References
number type function variables element method propagation
1 Hermitian ip 3p Varfat{onal No flow, (30)
fourth order Pr 3x* Ay hard wvall
2 A Linear ring P Variational No flow, (1)
hard wall
3 A Quadratic ring P Varfational Ho flow, (32), (60)
soft wall .
No flow
4 Hexahedral P Vartatonal soft Vlill. (33), (34), (35)
isoparametric non-local (36)
Linear v 1 No flow 38 39
3 I:I {soparametric P aracional (plug) 68, (9
Hermitian 3p 3p 322 Gal No flow k)
6 I:I fourth order Pe x’ 3y' axdy 4lerkin soft vnil- Gn
7 Quadratic Galerkin No flow,
E:::} isoparanetric P soft walls (50, (63)
8 b Cubic P Galerkin Uniform (72)
b i{soparametric
1 tational
9 A Linear 4 Galerkin h::: :u!.l:‘ * (40)
Irrotational
10 A Quadratic ¢ Galerkin soft walle (42), (43), (44)
Linear : Irrotational,
" D i{soparanetric ¢ Calerkin hard wallg 4y
12 f m ::::::ttc Py U, Vv Least squares General flow (53)
1 ] ’
—» isoparametric Galerkin
13 I:I Linear Pe Uy V, W Galerkin General flow (46), (47), (48)
14 m Quadratic Least squares G £ (49), (50), (51)
isoparametric Po U v Galerkin enerl.l lov (52): (74) !
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