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ABSTRACT

A predicted standing wave pressure and phase angle profile for a hard

wall rectangular duct with a region of converging-diverging area variation

is compared to published experimental measurements in a study of sound

propagation without flow. The factor ot 1/¢ area variation used is of

sufticient magnitude to produce large retlections. The prediction 1s based

on a transmission matrix approach developed for the analysis of sound propa-

gation in a variable area auct with and without flow. The agreement between

the measured ana preaicted results 1s shown to be excellent.
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m d In(A)/dx, m

p transformation matrix

p pressure, Pa

K pressure reflection facuor
T transmission matrix

t time, s

u velocity, m/s

X Cartesian coordinate, m

Y acoustic state vector

y cduct height, m
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& X region length, m

A eigenvalue

Po gas density, kg/m

w angular frequency, radians/s

Superscripts ara Subscripts:

() scaled quantity
( g reference state quantity
() perturbed quantity

INTRODUCT ION
An acoustic transmission matrix analysis of sound propagation in a
variable area duct with and without flow is discussed in Ket. 1. Kefter-
ence 1 is concernea only with theoretical solutions of the sound propagation
equations. This paper concentrates on the experimental verification ot the

analysis aiscussed in ket. 1.



The analysis is compared with an experimental standing wave pressure
and phase angle profile obtained in a study of sound propagation without
flow in a long hard wall rectangular duct containing a region of converging-
diverging area variation (Ref. ¢).

This experimental data provides a good test of the'theory since tne
gragients of the area variation in the region of the converging-aiverging
area variation are large enough to produce a reflection much greater than
the reflection produced at the duct exit.

In the present paper, first a brief review of the theory is presentea.
Next, the experimental data is discussed. Then the analytical results are
compared to the measurements and conclusions are drawn.

THEURY

The following assumptions are made. Ihe duct has an area profile
A(x). The acoustic equations are described by first order linearized, per-
turbed equations of continuity momentum, enerjy and state for isentropic
sound propagation. |

State variable equation

The perturbea state variables are the pressure and velocity. These

quantities are assumed to vary with time as exp (-iwt). From Ref. 1, the

Fourier transtorm ot the resulting equations is

dpl/dx 0 0% iko Py

g% - ok - 87 (1)
au. JOx 0 _d _In(A) i
1 DOCO dx 1



Method of solution
The method of solution used in this study is presentea in Ret. 1. For
clarity, it is briefly discussed. The first step in obtaining a solution to
Eq. (1) is to divide the duct into a number of regions or subsections. The
region size is selected so that the area variation in each region can be
approximatea by an exponential area variation. C(onsequently, in a given

region

mx .
A = Ao € (¢)

With this assumption the value of d In(A)/dx 1is a constant in the region
given by

m=d In(A)/dx (3)

The b matrix 1n tq. (1) 1s now independent ot x in the region where it

is to be evaluated. Thus, the solution to Eg. (1) tor the jth region is

- _ (oDAX
Y(xJ- ax) = (€77, Y(xj) (4)

where x 1is the length of the jth region ana exp (bax) is known as the

matrix exponential. The value of exp (Bax) is gefinea by
¢ 3
Bax . bax ) Bax )
e =l*(DAX)*L—2—!——’$TT—*... (5)

The matrix exp (bax) is the transmission matrix of the jth region (1)J,

so that

(Bax) (bax) 11 1¢
(])J = e o ——Ir‘l = (b)
* 1 /i
Z1 ¢
2=0 J



Consequently, the transmission matrix, T, for the variable area duct is

found from
. N (Bex) "
Y(x) xal --ﬂ-e Y(x) %<0 = T Y(x) x=0 (7)
J=1
where
N
L = D (AX)J (8)
J=1

Evaluation of matrix exponential
While the series given in Eq. (5) cefines the matrix exponential, it
was not used for computer calculations since the convergence of the series

may be slow. The matrix exponential was evaluated from

eBAX ~ c—l p eUAX p-l C (9)
where

0 =p L ap (10)

=1
o = (BC (11)

1 U
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and the 1 are the eigenvalues of the of matrix given by the roots of
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At batc=0 (14)
where

and

C =1y - MW 18}

A more complete discussion of the evaluation of the matrix exponential can
be founa in Ref. 1.
Boundary condition
The standing wave profile is calculated as follows. first, the pres-
sure at the duct exit (identified as location one) is assumed to be 1 Pa.
A duct exit impeaance 1s then used to calculate the velocity

where the duct exit impedance is related to the duct exit pressure reflec-
tion factor by

. 1 +K

Ll0¢5% = T-R (18)
Next, the transfer matrices, Tn, between each of the measurement points 1S
calculated. The state vector at the last measurement point is

P 1
O et (19)

=1 T .
’ m-1 "m-¢ 321 1/2

and the impeadance at this point 1is

p./u

&y = P m (V)



Note, that this is an initial value problem where the impedance and
pressure are specified at the exit which differs from the bounaary value
approach used by two dimensional numerical solutions.

The pressure at the point m-1 due to a unit pressure at the point m

is obtained from

Pm-1 -1 1
" = Tm--l 1/2 (21)
m-1 m
This procedure is continued at each point. Finally, the pressure at the
duct exit 1is
g 1, (-1 (!
; = Tl 1213 b Tm_2 0 (¢2)
1 m
The pressure magnitude of the standing wave pressure profile is given by
~ *1/¢ 3
|Pu| = (PrPr) (23)
ana the phase angle of the standing wave phase profile is given by
1P
6 = tan ! LT (24)
ePm

However, the pressure magnitude plotted is scaled with repect to the mea-

sured pressure magnituae at the duct exit Déizt

m pexit P (¢5)

-~



The phase angle is given with respect to the angle at x = U. In adaition
since the experimental measurements of Ref. ¢ are maae assuming a tine fac-
tor of exp (*iwt) while the analysis is based on using exp (-iwt), the

sign of the angle calculated is reversed. C(onsequently,

6, = e(0) - . ' (26)

THE EXPERIMENTAL DATA

The general acoustic duct system described in Ref. 3 was modified into
the simple no flow apparatus shown in Fig. 1(a) and used to measure the data
discussed in Ref. 2.

In the experiment discussed in Ref. ¢ the duct temperature was 27 C so
that the speed of sound was 348 m/s. The sound traveled in a 0.1 m by
0.0381 m hara wall rectangular test section which was 1.42 m long. It was
constructed so that the 8 top plates ana 8 bottom plates were detachable.
The variable area test piece was inserted in place of the bottom piece at
location 6.

The variable area test piece is shown 'n Fig. 1(b). The surface pro-

file is prescribed by a fourth degree polynomial

yIH = 16(x/L*)% = 32(x/1%)3 + 16(x/L*)? (27)

where L* is 0.U76Z m and H 1is 0.0191 m which is just half the duct heignt.
The sound source used to obtain the data discussed in Ref. ¢ was a
speaker driven by a sine wave generator at 1560 Hz. The 1560 Hz driving
frequency assured that only plane waves woula propagate in the straight por-
tion of tne duct far from the area variation since the first non plane mode

begins propagating at a frequency of 1740 Hz. An exporential horn was
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attached to the upstream end of the test section. The horn was fillea with
an acoustic foam wedge to approximate a £ = Poo impedance termination
where the pressure reflection factor is R = 0.0 (Eq. (18)) which minimizes
reflections anu simulates an infinitely long duct.

Further information on the apparatus including a description of the
microphone installation and the measurement procedure is given in Ref. 2.

UISCUSSION OF RESULTS

The measured and theoretical normaiized pressurc magnitude profiles are
compared in Fig. ¢ and the measured ana theoretical phase angle protiles are
compared in Fig. 3. The theoretical curves calculated using as an exit
boundary condition a duct exit pressure reflection factor of R = 0.0 which

corresponds to an impedance termination of £ = p C

o are a near perfect

match upstream of “he area change. However, due to design and material
limitations the pressure reflection factor is not exactly zero. (onsequent-
ly, the pressure magnitude is not constant downstream of the area change and
the experimental ana theoretical curves are not in good agreement in this
region.

Impedance tube theory indicates that one unique value of the exit re-
tlection factor will generate the stanaing wave pattern shown in Fig. ¢.
In order to determine this value, small changes in the exit boundary condi-
ticn were made so that the theoretical curves were in better agreement with
the data downstream of the area change. The resulting boundary condition
was R = -0.030 + j 0.070 (Z = oo (0.94 + j 0.003¢)). This boundary
condition as shown in Figs. Z anc 3 yields a more perfect match not only for

the downstream data points but at all data points.
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The data discussed in Ref. 2 wes used to verify the "steady" state

finite element theory of Astley and Eversman discussed in Ref. 4 and the

transient finite difference theory of White discussed in Ref. 5 for the

Timiting case of plane wave sound propagation without flow. Both of these

o ——

nqmerica1 methods yield a two dimensicnal solution. It is shown in Ref. 2
that both of these methods predict the proper trends of the data and are in
excellent aareement with the measurements. In both cases, howe er, the cai-
culations were made assuming that the impedance was 7 = oCor Con-
seaguently, the numerical calculat.ons resembled the dashed curve in the
downstream portion of duct (x areater than unity).
CONCLUDING REMARKS
The variable area transmission matrix theory (Ref. 1) producec good
agreement with the axial data both in terms of the pressure magnitude and
phes>, Similar results can be obtained by numerical methods (Refs. 4 and
5). However, these latter methocs are more complex than necessary if only
plane wave propaacation is of interest. The variaple area transmission
matrix approach is simple to use by compariton with two dimensional numeri-
ce)l methods. Consequently, the acoustic transmission matrix anaiysis of
ccund propacation in a variable area duct is an ideal procecure to use for
plane wave propagation of sound in 2 hard well duct with large area
variation.
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(@) No flow acou'stic duct test section and instrumentation.
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H (L 91cm)

(b) Variable area test piece with 5 microphone locations (microphone plugs not shown),

Figure 1. - Apparatus.
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