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QUARTERLY REPORT NO. 3

TRANSIENT AND DIFFUSION ANALYSIS OF Hg Cd Te

1.0 INTRODUCTION

This is the third report of technical progress on Contract No.

NAS8-33698, titled, "Transient and Diffusion Analysis of Hg Cd Te". This

report concerns technical work performed between 20 March and 20 June 1980,

and includes work being carried out under the increased Scope-of*Work,

"Exhibit B" of the modified contract.

The work during this period has concentrated on the solution of

the one dimensional planar interface solidification problem. This problem

has been formulated in a most general way and numerical solutions have

been obtained. In addition, progress on the design and construction of

a high gradient furnace will be reported.
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	 It is useful at this po.nt to review why the one dimensional solid-

ification problem is of interest. Previous work by Tiller and Jackson (1)-

and Smith, Tiller, and Rutter (2) addressed the problem of solute distri-

bution in a dilute alloy system with constant segregation coefficient

and a constant growth rate. By treating the one dimensional planar inter-

face case in three parts, they were able to obtain analytical solutions

t for solute distribution in the initial transient, steady state region,

and final transient. As pointed out in the previous progress report,

these solutions do not apply to the Hg Cd Te system due to the following
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behavior that violates most of the previous works assumptions. In

contrast to the dilute alloy system, the ft Cd Te system has for a

initial liquid solute mole fraction of .2(Cd Te) ;

• A solute mole fraction in the solid that varies

from about .6 for the first to freeze to .2 at

steady state.

A changing interface solidification temperature

from 8000C initially to 70500 at steady state.

• Widely separated liquidus and solidus curves with

a segregation coefficient k that varies from 2.9

to more than 6 over the approach to steady state

growth.

The goal here is to reformulate the problem to allow for changing

k and interface temperature. Recent work by Favier (3) h as pointed

out tha t the interface velocity cannot remain constant throughout a

solidification experiment and that the applied thermal field in effect

determines the solidification rate. Favier has solved the one dimen-

sional problem :for, a rather complicated thermal field but assumed a

constant value for the sc,,regation coefficient, thus limiting the

applicability of this work to the Ftg Cd Te system. In the following

sections we will formulate the general problem, indicate a numerical

method for solution of the problem and apply the results to experimental

solute profiles to determine the effective diffusion constant for

Hg Cd Te.
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2.2 TRANSIENT'ANALYSIS

2.1 ANALYSIS OF THE PLANAR INTERFACE CASE

We wish to formulate the most general one-dimensional solid-

ification problem in keeping with the Bridgam - Stockbarger growth

configuration and the HgCdTe solid solution system. We shall make the

following assumptions:

1. The thermal and concentration fields considered are one-

dimensional.

IL. No significant diffusion occurs in the solid.

III. The thermal field is a specified function of the spatial

variables and time and does not change as a result of the

solidification process. The thermal field is taken to be

monotonic in the spacial variable.

IV. The sample movement rate, R, is constant. The growth rate,

v, is not necessarily constant.

V. We will deal with a binary or pseudobinary system.
9

We shall, choose spacial variables such that z is measured from a

fixed laboratory frame and x is measured in the sample from the first
e

to freeze point (ampoule tip). The variable n is the distance into the

liquid from the solid - liquid interface (see Figure 1.). 	 3
s

i}
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The starred (*) values refer to variables evaluated at the solid-

liquid interface. Choose t 0 to be the start of solidification in

*
the tip of the ampoule and z (0) the z - coordinate of the ampoule

F'	
tip at t 0. We may then relate the various coordinate systems by

F

x - z + Rt - z*(0), 	 (1)

I	 x*	 z* + Rt - z* (0),	 (2)
t
S	 and

n	 x - Rt + z* (0) - z* (t).	 (3)

*
The total length of the sample is 2, and_n = Q'	 t- x denotes the

end of the ampoule in the n system.

Let C(n,t) denote the solute mole fraction in the liquid ahead of

the interface. It is more convenient to express the thermal field in

the fixed coordinate system, thus,

T = T(z,t)
	

(4)

and we shall assume a thermal field of the form

T - To + Gz	 (5)
a
i

where G is: thus the thermal gradient, assumed to be constant over the

region of interest.

We define the liquidus and solidus components of the phase diagram

(binary or pseudobinary) by L(C) and S(C) respectively. We have

S(0)	 L(0) and S(1) = L(l) .	 (6)



Furthermore, we may define the solid - liquid interface location

z (t) such that

T(z t) a L(C (O,t))	 (7)

k
since n 0 denotes the interface location in the n system.

Writing the diffusion equation in the z - coordinate system and

transforming into the n system gives

D a 2C(n t) + v(t) aC	 t	 ac(n,t)	 n> 0	 (8)

I	 an 2'	 an	 at

with the associated boundary conditions

C(n,0) = Co ,	 (9)

aC(n,t) 
= 0 at n	 V for all t,an	 (lU)

v(t) (k(C) - 1) C(o,t) = D 
aC((n,t) , 

t> 0	 (11)

The boundary condition in equation (10) is normally written in a

slightly different form. If we consider a semi-infinite sample,

equation (10) may be written as

C(n,t) - Co as n + -	 for all t.	 (12)

This form of boundary condition in sufficient for the semi-infinite

sample and allows computation of the initial solidification transient

and approach to steady state growth. It is our aim here to solve for

both the initial_ and final transients for a ,finite length sample, hence

requiring that the first derivitive of the concentration in the liquid

vanish at the far end of the ampoule is necessary to obtain the initial

transient, steady state region, and the final transient.. Equations



(10) and (12) are obviously equivalent as I-)-

The boundary condition in equation (11) arises from conservation

of total solute and is applied at the interface n= 0.	 Here k(q) is-the j

segregation coefficient

CS (O,t)
k(C(O,t)) a CL (O,t) (13)

where S and L denote the solid and liquid sides of the interface re-

spectively.	 Note that we havenot assumed a constant segregation co-

efficient, but k depends on C(O,t) and is defined by the phase diagram

of the system under study. 	 The growth velocity v(t) is related to the
E

sample pull rate R by
r

*

dz
V(t)	 R + (14)

r

tdt

where we recall that z 	 is defined by equation (7).

In addition to the equations above we shall assume that the system
i

under study is such that we may approximate the segregation coefficient,
.j

liquidus portion of the phase diagram, and thermal field by theta

following:

k	 a+ K + 6C2 (15)

e,

r	 1

L =	 TA + MAC + yC2 (16)

1	 T _	 T	 + Gz (17)
3	 0

dz^
Equations (16) and {17) now allow one to solve for 

dt	
via equation

.F

(7) ^i

T ( z	 ,t)	 - L(C,:(O,t)),

,,	
Page 7

Y



giving

z*(t) _ (1/G)(TA - To + MAC ( O , t) + Y 
C2 

(0.0)

and

A dt	 ( 1
/G)(MA + 2 YC(O,t)) aG(8t0

	 (18)	 >

Y

In summary, under conditions outlined above we seek to solve

a2C(nD	 . t)- + (R + dz* ) aC n t) = aG(n, t) ; n '> 0 (19)
an2 	 dt	 an	 at

subject to

CO3 O) - Co	 (20)

aC (n, t)

an	
= 0 at n	 2' for all t >_ 0	 1	 (21)

(R + dz )(a + OC(o ,t) + 6 C2 (0,t) - 1)C(O,t) _ 0 aC(0 t)
dt	 an

at n = 0	 (22)

The numerical approach to the solution is oulined in the next section.

I

I



2.2 NUMERICAL APPROACH

The differential equation and boundary conditions outlined

in the previous section can be viewed as an initial value problem
z

in time and a boundary value problem in the spatial variable. This

set of equations may be solved by .finite difference techniques, but

we consider a different approach to be more appropriate. The al-

gorithm chosen will be outlined below.

Let the incremental time and spatial steps be at and bq..respett-

vely. We will assume that at some time t o , the values of C(n,t)

have been determined for t S to and all n. The goal is to then com-

pute COX), where t' - t  + At for all n. Assume a value for the

concentration at the interface at t = t', say

C (0,t') = C* ,	 (23)
*

where C is a trial value. We then compute

aC (0, t')	 c - C (o, tO)

at	 At	 (24)

This allows us to determine the interface velocity v by

dz
dt _ (

1 /G)(MA + 2 YC(0,tv)) aC( ' 
t')	 (25)

and

v = R + dt	 (26)

The first derivitive in n may be found from the boundary condition

(Equation (22)) as

*

ac(o,,t') _ (1/A) (R + 
dZ ) 

(a + sC(0,t') + aC2(09t')-1)C(o,t'))an 	 dt

(27)

Page
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The second derivitive of C in n is found via the diffusion equation

(Equation (19)) giving

a2c o t'	 s (1/n)( ac(o t' - (R + 
dz* ) aC(o t'))	

(28)

	

an 	 at	 T	 an

We then may use a Taylor series expansion to obtain our desired results.

C(An,t') = C(O,t') + ac 0 t' on + a 2C(0 t')	 an 2 	 (29)

an	 an 	 2

as the value for the concentration at n=On in front of the interface

at t = t'.

So far we have simply computed C(n,t) at the first spatial in-

crement away from the interface. We now wish to propagate this value

out in n until the end of the ampoule is reached (n = V) and test

to see if the boundary condition.

nOX) = 0 at n= k'	
(30)

is met. The solution may be propagated to n' = 2An, the next spatial

step, by first calculating

ac(on,t') = C(on , t')	 C(on,to)

	

at	 At	 (31)

We then may use a Taylor series expansion and the diffusion equation to

obtain

ac 
(on,t ^)

	ac(o 
tl) + 

a2c(o,t
) An 	 (32)

an	 an	 an 

a 
2 C (on,t') 	 ( 1 /D)( 3C (An,t')	 (R + 

az*) ac(on,t')). (33)
an 	 at	 dt	 an
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We note here that the value of the interface velocity R + of does

not change as we increment the spatial variable. .& second expan-

sion leads to the desired results

C(n',t') - C(on,t') + ac(an,t') bn+ 
a 2 C On, t') (n2 )	 (34)

an	 an 	 2

The process from equation (31) to equation (34) is repeated for the
next spatial step Un, ect. until ry= R', the end of the ampoule at

Y
this time step. A test is made to see if the boundary condition

(Equation (30)) is satisfied. If not, a new trial value of C is

selected and the entire process involving equations (23) to equation

(34) is repeated until the boundary condition is satisfied.

We began this exalariai:ion by assuming all of the C(n, t) were

known at some t - to . The initial value boundary condition,

C(n,0) = Co , allows one to take to = 0 and proceed in a straight-

forward manner to calculate C(n,t) for any t. At each time step,

after the value of C(O;;J C has been found that satisfies the bound-

ary condition in Equation (30), we may then proceed to obtain the

solute concentration in the solid.

The interface position, measured from the tip of the ampoule, is

given by x (Equation (21)) where we note that z (t),and thus x,

is determined by the thermal field and the liquidus curve of the phase

diagram evaluated at C(O,t). The solute concentration in the solid

Cs (x ) is defined, by

C s (x*) - k(C(0,t))C(O,t) 	 (35)



where ks assumed to be known via Equation (15). 	 After the solid

concentration is daZerm ned at a position x	 the remaining amount of

liquid to be solidified is found as

i'	 2- x (36)
f

The time is incremented by Qt, and the entire processes repeated Lc.

give new values of x (t), C s (x ), ect., until the end of the ampoule

0 is reached.	 In the following section, representative plots

of these variables and fits to actual experimental data will be presented.



2.3 RESULTS

In this section we will present typical results obtained from the

previous analysis. Figure 2 is a plot of the mole :fraction of Cd Te
., E

in the solid versus the length of the sample measured from the first

to freeze tip. This curve is calculated assuming a sample pall rate of

, .1116 cm/hr for a value of the diffusion constant of 5 x 10-5 cm2/sec.

The length of the sample was taken to be 16 cm. Data necessary to fit

the liquidus portion of the phase diagram and the segregation coefficient

was supplied by Dr. S.L. Lehoczky of MacDonald Douglas Research Labora-

tories in St. Louis, Missouri and his co-workers. The thermal gradient

was assumed to be a constant 200 0C/cm over the region of interest.

In figure 2 we note the initial transient characterized by decreasing

Cd Te content as the diffusion layer in the liquid was being built up;

the steady state region in which the solid is of uniform composition,

and the final transient in which the solute is depleted in the remaining

liquid resulting in a decreasing 	 solute composition.

We may now compare calculated curves such as figure 2 to the ex-

perimentally.ldetermined compositfon-profiles obtained by density measure-

ments or X-ray microprobe analysis. The fit to the liquidus curve and

segregation coefficient are determined by the plase diagram, so the

diffusion constant is the only free parameter in analysing the composition

profile. Figure 3 is the same theoretical data as in figure 2 plotted	 }

on an expanded split scale. In this case we have included experimental

composition profile data by Lehoczky, et. al.of MDRL for Hg Cd Te

crystal grown at a pull rate of .1116 cm/hr. The two theoretical curves 	 #'

Page 13	 1
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are for values of the diffusion constant of 5 x 10 -5 cm2/sec and

7 x 10-5 cm2'/sec. We note that the agreement between experiment and

theory is quite good in this case, with the best fit obtained for

D - 5 x 10-5 cm2/sec. The first three experimental points lie well

off the theoretical curve. The most likely explanation for this is

that in this region, the crystal is solidifying within the conical

ampoule tip and thus a one dimensional calculation does not adequately

reflect initial solidification conditions. We also note that the sensi-

tivity to the diffusion constant is good enough to allows determination

of the diffusion constant to approximately 15% if the scatter in the

experimental data is small.

One of the primary goals of this study was to analyze the solid-

ification process in Hg Cd Te so that growth conditions may be optimized.

Figures 4 and 5 are an example of the value of this analysis in choosing

proper growth conditions, and are calculated for the same parameters

as the previous graphs. In the plot of interface velocity versus time,

we see that it requires almost 25 hours of growth before the growth

rate 3.s equal to the sample pull rate. Of more practical use is figure 5

which gives the interface location z (t) as measured in the coordinate

system fixed to the furnace mid-plane:. We see that for the assumed

mid-plane temperature of 700 0C and thermal gradient of 200 00/cm, the

initial solidification begins well into the hot portion of the heater

and gradually drops down into the mid-plane of the heater as steady state

growth is achieved. As solute is depleted near the end of the ampoule,

the interface drops into the cold end region. In a real furnace system,

.m	 Pace 17



there is only a small region over which a planar isotherm, and thus

a planar interface, will exist. A shifting interface as illustrated

1	 by figure 5 implies that the furnace settings must be changed in time

to insure that the planar isotherm is also the solidification temper-
a

ature if we are to obtain a planar interface. Calculations such as these

may be coupled to thermal analysis computations to find the appropriate

furnace settings as a function of time to achieve optimized growth

conditions for Hg Cd Te.

Acknowledgements -- SEMTEC would like to thank Dr. S.L. Lehoczky and
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of their phase diagram and composition profile data. The work at MDRL
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3.0 HIGH GRADIENT FURNACE

3.1 HOT ZONE

The hot zone of the high gradient furnace will consist of a thin

walled metal tube that is heated by passing low voltage high current

AC power through the tube. The furnace is being designed to run in

air or vacuum by constructing two interchangable tubes, one of tantalum

and one of Inconel 600. The tantalum tube would require a pressure of

10-6 torr because of the high temperature oxidation properities of

tantalum. A tube constructed of Inconel 600 high temperature stainless

steel will be used in vacuum and also tried in air.

The tantalum tube assembly is a modified tantalum oversheath for

thermowells manufactured by Thermo/Co, of Houston, Texas. The tube

is 12" long with flanges welded on both ends. It is produced from

stock 5/8" I.D. .015" wall Fansteel tantalum.

The Inconel 600 tube was constructed, from a 1" rod stock because

of delivery lead time and size availability of the tubing. The 1" x

12" rod stock was drilled to .75" I.D. then the wall was turned to

0.010". A flange of 347 stainless steel 0.5 mm thick from Goodfellow

Metals of Cambridge, England was welded to the tube ends for power

connections and support.-

To estimate the amount of power needed to raise the tube heaters

to 10000C only the resistivity and surface areas need be known.



Using the following equations:

-'	 R = AL/2 wrot
	

(1)

t'	 At =27rrL
	

(2)

I =	 e6A
	

(3)

R
C
I	 v - IR
	

(4)

where:	 At = surface area

r - outside radius
Q

L - length

R _ resistivity

P - wall: thickness

I	 current

e - emissivity

6 = Stefan-Boltzman constant

T = temperature

v = volts

C	 t = wall thickness

the amount of current needed for the .015" wall 5/8" I.D. tantalum

tube heater is 400 amps at 3.25 volts. On the other hand, the O.010"

wall 3/4" I.D. Inconel tube will require = 360 amps at 7.5 volts. These

current values are in the range of available transformers and are not

difficult to obtain.

Page 20
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3.2 ADIABAT C7 ZONE AND GAS INLET

The design of the adiabatic zone has been changed from that

discussed in the second Quarterly Report. Instead of the layered metal

strips, a ceramic block with a thin stainless steel insert in the

center will be tested. This is designed to give a greater flexibility

with the sizes of adiabatic zones that can be used. The ceramic will

hopefully provide a sufficient amount of insulation between the hot

and cold zones.

The design of the gas inlet for the withdrawing of heat from the

sample in the cold end has also been changed to aid in the testing•of

the high temperature furnace. The inlet has been made removable so that

the furnace can be operated with and without the extra cooling.

3.3 COLD END HEATER

A modified Applied Test Systems (ATS) series 3110 laboratory

rurnace will serve as the cold end heater. The furnace has a 3/4" I.D.

iith a 9" heated length. With the axial insulation removed from the

kTS furnace, the tube furnace is easily mounted to the ATS furnace.

this stackability of the ATS furnace, gas inlet, adiabatic zone, and

the tube furnace leads to an efficient and stable arrangement.

q	 Page 21.



3.4 STATUS

Design changes have been finalized and drawings are completed.

Raw materials have been received and machining is in its final phase.

Assembly and system check out will be performed in the next phase of

the high gradient furnace project.

i



PROBLEMS

There were no problems of a technical nature that would impact

performance in this reporting period.

PLANS FOR IM NEXT QUARTER

In the next quarter, the results of the solution to the one

dimensional solidification problem will be applied to derive furnace

settings, ampoule length and sample pull rate.for optimum growth

conditions. The diffusion constant will be determined from experimental

data. In addition, the two dimensional diffusion problem will be

examined in an effort to couple fluid flow and diffusion into the

interface stability problem.

Work on the high gradient furnace will continue, with testing

expected to be completed near the end of the next reporting period.

SCHEDULE AND FINANCIAL PERFORMANCE

The following pages present schedule and financial data current

up to this quarter. Additions to and redirection of emphasis have

modified the schedule somewhat.

A^
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$ 17,273.00

862.22
86.22

14,336.68

246.05

4.778.38

$ 37,582.65

FINANCIAL REPORT

CONTRACT ;NAS8-33698

The period of performance, including
Amendment No. S/A 2 (CPFF), is to
November 28, 1980.

Total Estimated Cost
	

$ 57,121.00

Fixed Fee
	

4,101.00

Total 'Sum Allotted
	

61,222.00

__ i	 a

Total Direct Labor Expended
through 6/12/80 (Voucher 19)

Direct Materials
Materials Overhead

Overhead

Travel

G&A

Total

r	 Total Estimated Cost for
`	 Completion through 28 Nov. 1980 	 $ 19,538.35

Total . Amount Billed through
6/12/80 (Voucher 19)	 37,582.65

Amount Received through
6/20/80 (Vouchers 1-18)-	 35,147.54

Fee billed through 6/20/80	 1,460.03

Estimated progress on technical work is 65% of work completed.
z

L
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