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Abstract

i
I

There is strong evidence that a comet nucleus consists of a single object

whose basic structure, is Whipple's icy conglomerate., In this review we con-

, Sider only such models. Derived radii fall In the range 0.3 - 16 km. With an

adopted density of 1/$ cm 3 , masses are between 10 13-10
19 9. Two out of nearly

700 radii appear to be between 50 and 100 km. A number of cometary phenomena

indicate that the nucleus is a low density, fragile object with a lame degree

of radial uniformity in structure and Composition. Details of the ice-dust

pattern are more uncertain. A working model is proposed which is based on

theories of accumulation of larger objects from grains. This nucleus is a

distorted spherical aggregate of a ierarchy of ice-dust cometesimals. These

canetesimals retain some separate identity which lead to comet fragmentation
when larger components break off. The outer layers of new comets have been

modified by cosmic ray irradiation in the Dort Cloud. Current experimental

research may account for the observed greater activity of new comets at large

heliocentric distances. As a comet ages during successive perihelion passes,

an inert dust layer gradually builds up on the surface, changing the

characteristics of coma development. This process can ultimately cause comets

to become inactive and become the Earth and Mars crossing asteroids. Meteoric

fireballs are associated with comets and are consistent with the fragile and

fragmentizable nature of the nucleus. The evidence for meteorite-comet

association is still controversial. Current dynamical studies do not seem to

require a cometary source of meteorites. Their presence in nuclei is not

readily explained and requires :a two-stage accumulation mechanism. The

survival of comets in the Dort Cloud seems well established although the place

of formation is uncertain. Various hypotheses have been proposed, from the

asteroid zone to interstellar clouds. The most likely source appears to be

the region of the outer planets or interstellar clouds in some way associated

with the primordial solar nebula.

I. Introduction

Comets are best known for spectacular and nearly always unpredictable

appearance of the brighter objects. It is this strange and awesome behavior
which has given rise to early myths concerning their role in warning of coming
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misfortune. In destroying the myth of comets as supernatural objects, modern

science has endowed them with an equally engaging and more significant

property. The changing appearance of a coma and tail tells us of the present

environment of interplanetary space with which it interacts. Comets are also

indicators of the remote past: when they accumulated in a primordial cloud from

Which the sun, planets and stars also formed. They have also been proposed as

a major stage in the accumulation of the giant planets (Whipple, 1964; Opik,

1973).

Because of their small size and remoteness from the sun, material was

stored in comets in relatively unchanged form. The release of this material

as they pass through the inner solar system, provides data about their

original composition and present environment. Unfortunately, the information

we receive from a comet at the present', time is akin to transmissions from

satellites and space probes whose telemetry-data is only partially received,

and for which the telemetry code is only partially known. This causes a great

deal of uncertainty and confusion about the interpretation of the data.

In this review, attention is focussed on the cometary nucleus. This is

generally conceived of as a solid structure which forms the permanent part of

a comet as it revolves around the sun. As it approaches within about five

astronomical units of the sun, the energy present in the inner solar system

causes gases and small strains to be ejected from the nucleus, forming the coma

and the tail. Material comprising these features is continuously released and

lost to space when the comet is a few AU from the sun making it part of the

interplanetary medium. Consequently, the coma and tail must constantly be

replenished during the comet's apparition.

One is faced with devising a model of a permanent object that revolves

around the sun, forms a coma and tail near perihelion and changes little at

successive apparitions. Another important characteristic of the nucleus is

its ability to survive extremely close solar passage. The "sun—grazers" cane

within a solar radius of the photosphere where bodies of 30 cm diameter would

be destroyed (Russell, 1929). At muchgreater distances all volatiles would.

be lost and many—body nuclei would not survive at perihelion distances of a

few tenths AU typical of many comets. An analysis by O'Dell (1973) concluded
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that for dynamical reasons the only stable fora y of a many body nucleus is to

collapse into a single object. Whipple (1963) has discussed models for the
structure of the nucleus in more detail and raised several other difficulties

with sand-bank and many-particle structures. The present analysis reaches the

same conclusion as Whipple did earlier, and is now generally accepted, that
the best working model is an icy nucleus with embedded solids.

In the following sections we first discuss various observational

, phelomena of comets that are relevant to this review. A brief presentation of

baulC statistics of comets is followed by a description of cometary phenomena

associated with mass loss and disintegration. This leads to conclusions on
cometary lifetimes and the preservation of comets over long times. Following
this we come to the first details of the nucleus itself. A description of

likely internal structures of an icy nucleus is given next. Next, the

evolutionary changes in structure and composition are considered. We briefly

comment on surface structure and composition including changes with time. The

relationships among comets, asteroids and meteorites are discussed and the
review concludes with considerations on cometary origin. The chemical

composition is discussed in considerable detail by Delsemme in his chapter and

omitted here.

We do not seek a definitive description of the nucleus. Rather, our aim

is to present a working model, consistent with present data and which could

serve as a sound base for further research. One has, however, always to keep

in mind the individual nature of comets and the wide variations among their
observed behavior, as well as the incomplete character of ccmetary data. Our

knowledge of the cometary nucleus is fortunately increasing at a significant
rate, especially due to ultraviolet observations and observations of comets at

large heliocentric distances, many of which are reviewed in other chapters.
These recent developments are fortunate for cometary studies, but present

problems for the preparation of a, review of the nucleus. An accurate

description of a comet nucleus will require imaging from a spacecraft with

high spatial resolution, remote sensing and sub-surface sounding capabilities.
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II. Orbits and Statistics

Comets have the most variable properties of any objects in the solar

system. This is true not only intrinsically, as with changing appearance as a

comet approaches the sun, but also with regard to the range of orbital,

luminous and spectroscopic characteristics.

A distribution of comets among the different categories of orbits taken

from Marsden's (1979) catalogue, is given in Table 1. This catalogue lists
orbital elements for 1027 cometary apparitions of 658 individual comets

observed between 87 BC and the end of 1978. The orbits upon which Table I are
based are the oscillating (instantaneous) orbits relative to the sun. To

determine the major axis prior to the comets approach to the sun and planets

.n

two corrections are necessary.
perturbations and by the shift

to be added. With the further

is no well determined original

al., 1978). Comets are called
axes, 1/a < 100 x 10-6 AU-1 am
planetary system, for the first
return (Marsden et al., 1978).

The change in energy caused by planetary

from heliocentric to barycentric orbits needs

inclusion of non-gravitational effects; there

orbit that is definitely hyperbolic (Marsden et

"new" when they have extremely large semi-major

i presumably coming from the Oort Cloud into the

time. "Old" comets have made some tens of

The perihelion distance of known comets varies from 0.005 to 6.88 AO

(Comet 1975II). Long-period comets have an average perihelion distance q
1.08 AU, whereas short-period comets have q = 1.61 AU. There are 9

"sun-grazers" with q 0.01 AU. Eight of these are clearly related -(Table 2)
and are probably the fragments of a single parent (Marsden, 1967).

Aphelion distances, Q, range from 4 AU to infinity. If there are no

comets originally coming from interstellar space (planetary perturbations do

eject some from the solar system) the maximum aphelion distance is the Outer

limit of the Oort Cloud at about 10 5 AU. Of the 11.3 short-period comets, 50

(44%) have Q between 5-6 AU, corresponding to Jupiter's distance (5.2 AU).
The 78 (69x) with Q < 7 AU can be classified as belonging to a "Jupiter

family"; the longitude of the nodes of their orbits is strongly concentrated
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near 00 and 1800 , so that near perihelion and aphelion they are also near

their nodes, and comets almost always come closer to ,Jupiter than to any other

giant planet. No other planetary "family" is generally recognized.

Intrinsic brightness variations (bursts) exceeding 1-2 magnitudes are

frequently observed among all classes of comets. P/Schwassmann—Wachmann 1

(Ps15 years, go5,4 All) brightens by several magnitudes about 2 or 3 times a

year; the luminosity of P/Tuttle—Giscobini-Kresak (Ps5.6 years, q:1.2 AU)

increased by 9 magnitudes twice in 1973.

The size of the nucleus cannot yet be determined by direct measurement.

Photographic resolution may be as small as 0."5 (Dollfus, 1961) and visual

observations can resolve about 0. 10 1 (Kuiper, 1950). The closest a comet has

approached the earth was 0.015 AU (Comet Lexall, 17701). In this century the

Closest approach was 0.04 AU (Pons—Winnecke, 1927 VII). With modern observing

techniques the minimum detectable diameter, visually, would have been 4.5 km

and 12 km and photographically, 22.5 and 60 km, respectively, —However, a

serious problem to observing the nucleus occurs for nearby comets because of

the surrounding luminous coma which will interfere with the resolution.

At some sufficiently large heliocentric distance the coma becomes

apparently non-existent. The comet then has a sharp, stellar appearance and

its luminosity is presumably caused by reflection of sunlight from the

nucleus. The luminosity relative to the sun is readily estimated.

The radius R
C
 (in km) of the assumed spherical nucleus is given by:

log R  = -0.2 me — 0.5 [log a + log P(e)] + log r + log A + 2.81 	 (1)

where me is the comet magnitude at (r,o), r is the heliocentric distance and p

the geocentric distance in AU; 6 is the phase angle, P(e) is the phase

function and • a is the albedo. The radius depends upon a and P(e) which must

both be assumed. The derivation of the radius is therefore subject to an

`

	

	 uncertainty which depends upon the optical properties of the surface of the

nucleus and a possible contribution to the luminosity from a still present
coma (Sekanina, 1976) •
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The main uncertainty lies in the value of the albedo. For a clean, rough
ice this can be near unity whereas for Whipple's dirty ice nucleus with a
crust the albedo can be very low. This point is considered later. Roemer
(1966) tabulates dimensions for two values, a = 07 and 0.02. Table 4
includes her listing and those of Whipple (1978a) and Kresak (1973). Values
were recalculated for an assumed albedo of 0.3.

Radii range upward from 0.3 km; they are typically 1 - 2 km for

short-period comets and may be up to an order of magnitude larger for

long-period comets. Very rare, much larger comets appear to occur with 50 -

60 km radius and masses of about 1021 g, e.g., the parent of the sun-grazers
or the Great Comet of 1729 that could be seen with the naked eye at 4 AU from
the Sun.

Cometary nuclei are also too small for direct determination of mass,

except by some ,future cosset probe. They have produced no detectable effects

on the orbital motion of other objects which is the only way to measure masses
in the solar system. Upper limits can be obtained in this fashion (Laplace,.

1805). Roemer (1966), for Comet Wirtanen 1957 VI, found a radius of the comet

before splitting of 16.5 lam (with an assumed albedo of 0.3), and of the

primary component after splitting of about 10 km; with unit density these

correspond to masses of about 2x10 14 and 4X10 18 g, respectively.

Masses may be calculated from the radii of Table 4 and an assumed density.

For an icy nucleus a density of 19/cm 3 should be reasonable (Donn, 1963). The

data yield cometary masses between 10 13 and 1021 gm. Most nuclei would fall
between 10 14 and 10 17 gm.

III. The Structure of the Nucleus

The concept to which the term "nucleus of a comet" is applied is often

confusing. In this review we mean by cometary nucleus, the permanent

structure which orbits the sun and is the bearer of the cometary mass.

Observational descriptions of comets often refer to a "stellar nucleus" within

the diffuse coma. This is best described as the "photometric nucleus." Other
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U303 of the term also exist (e.g., Voront30V-V4ly8minOV, 1946) .

The prevailing model prior to 1950 was some form of the "sand-bank"

hypothesis, wherein the nucleus was thought of as a diffuse cloud of small

particles, traveling together. Lyttleton (1953) has described his version of

the sand-bank model and an interstellar accretion mechanism for its formation.

However, following Whipple's (1950) description and analysis of the nucleus as

a single aggregate of ices and meteoric matter, this icy conglomerate became

the generally accepted hypothesis. A detailed analysis of the two models

which offers strong Support to the icy conglomerate structure and raises

serious objections against the sand bank version has been given by Whipple

(1964) .

The principle arguments favoring the icy conglomerate over the sand bank

model are: (1) the relatively large ratio of volatile to non-volatile

material required to account for the formation of the coma near the time of

each perihelion passage and the repetition of this gas 103S for the many

revolutions of short period comets; (2) the occurrence of non-gravitational

forces which are not consistent with a sand-bank model; (3) the similarity of

pre- and post-perihelion appearances of sun-grazing comets, requiring nuclear

aggregates which are at least meters in diameters; (4) the splitting of comet

nuclei cannot be reconciled with a sand-bank model and is difficult to explain

with a collection of large numbers of larger particles; and, (5) tidal and

Poynting-Robertson forces would disrupt a sand-bank nucleus and a many

particle model. These structures ire not consistent with the observed

splitting of sun-gazing comets. The icy conglomerate model on the other hand

is reasonably consistent with the observed behavior of comets, and the

arguments against the sand-bank model seem sufficiently strong that the

remainder of this review will be based on the icy-conglomerate model.

Modee13 for Cometary Nuclei

Several structures for an icy nucleus have been proposed since Whipple

put forward the ice with embedded dust model, the icy conglomerate, in 1951.

O'Dell (1973) showed that a gravitationally bound, many particle nucleus in

the Dort cloud would collapse into a single icy-conglomerate. structure if it

4
4

K
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were to survive as a comet. The resultant structure would appoar , to resemble

a Whipple type icy nucleus, except that the volatiles a_re interstellar

material. During successive perihelion passages. the volatiles gradually

diffuse out and vaporize leaving the grain cores behind. These form a porous

matrix as Mendis and Brin (1977, 1978), Brin and Mendis (1979) and Weissman
and Kieffer (1981) have discussed in detail. O'Dell suggests that the

non—volatile mantle, thus formed would be similar to carbonaceous chondrite

meteorites. However, the residue left behind would be extremely porous and of

low density. Such structures seem better associated with the fragile
fireballs observed by the Prairie Network (C:eplecha, 1977) than with

meteorites.

The model Just described resembles that suggested by Sekanina (1972)

consisting of a porous matrix of solid material, with ice filling the pores.

Initially, the distribution of the two components is uniform throughout the

nucleus. Sekanina rejected the ice nucleus with embedded dust for comet Encke

because it yields a continuously increasing non—gravitational parameter

proportional to AM/M. Observationally, the non—gravitational force has been

decreasing with time for Comet Encke. To get a more satisfactory fit with

various features he proposes a core with an overlying ice mantle. In a recent

paper Whipple and Sekanina (1979) derived a rotation period and orientation of

rotation axis for Ocmet Encke. They showed that the time variation of the

non-gravitational force results from processing of the spin axis rather than a

rapid decrease in the non—gravitational force. Although the reason for

proposing this model no longer applies, the structure has features relevant to

Possible relationships between comet and asteroids (Sekanina, 1971) and is

considered in that section of this review.

A modification of the snowball structure has been developed (Donn, 1980)
based on theories of accumulation of planets (Safronov, 1972; Goldreich-and

Ward, 1973; Greenberg et al., 1978). This is a further development of earlier
work (Donn, 1963). The concept of those investigations, that small solid

grains produce gravitational instabilities in a cloud on an planetary scale,

was shown by Biermann and Michel (1978) to apply to comet accretion also. In

these unstable zones, gravitational collapse causes small grains to grow into

larger aggregates on a short time *,,cale.
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Detailed investigations of the acaumulation_ of planetesimals to foray

planetary objects have been carried out by Safronov (1 1772.) and Greenberg et

al. (1978). A recent review has been given by Wetherill (1980), These
analyses show that a size distribution of planetesimals forms as illustrated
in Figure 9 of Greenberg et al. (1978), The mechanism of comet formation can

be expected to be similar on a much smaller scale, as_the final objects have

kilometer dimensions. The size 413tribution of aggregates leads to a comet
nucleus composed of an agglomeration of com etesimals with ', size distribution

of the form n(m) a j-5 . Figure 1 is an .attempt to portray such a nucleus. It
is expected that the individual cometesimals retain some degree of
their identity. This is exaggerated in the figure.

The larger ccmetesimals may be bound to the nucleus only over a fraction

of their surface and therefore very weakly attached. Such fragments_ could

readily break off from a vaporizing, rotating nucleus. The larger pieces
would. become visible as small cometr,. hireaking away from the primary nucleus,

each fragment having the characteristics of a small comet. The behavior of

frapenting comets according to this model would follow the pattern described
by Sekanina (1977). Although obtained in a completely different way from that

considered by Whipple (1978b) and described in the section on the outer layer

of a nucleus, the present model of nuclear structure appears to lead to a

somewhat similar picture, particularly for the outer region.

Internal Structure of an Icy Nucleus

The general considerations on an icy n;ieleus were combined with views of

planet accumulation from small grains to develop -a model for the internal

characteristics of the nucleus (Donn, 1963). Accretion of comets, with their

high proportion of volatile species

velocities. Velocities below about

but the most volatile species, H2,

densities below 0.5 6/cm3 , based on

( see Donn, 1963) •

requires low temperatures and low relative
0.05 km 3-1 would preserve grains of all

;0 and CHs. This would yield aggregate with

the characteristics of wind--blown snow

10
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Central pressures Pc , surface gravity, g, and escape velocity, ve,

respectively, are given by;

Pc a2/3vG0 R2	 (2)

g:4/3 wrG p R	 (3)	 . I

ve = (8/3 v G p) 1/2 R

where G is the gravitational constant, p is the mean density and R the radius.
From these equations we obtain Table 4 adopting a density of 1g/cm3.

Measurements on the compaction of snow were aummarized by Donn (1963) and we

take Figure 2 from there. These results indicate that no significant

compaction occurs for nuclei of less than 10 km radius. The impact velocity

due to gravity also does not affect the structure until the comet grows well

beyond 10 km.

Meteoric particles are embedded throughout the icy mass as demonstrated

by meteor streami and intense showers associated with short period comets.

These meteors have low densities and the latest results have been summarized

by Millman (1972, 1975). Verniani (1969, 1973) found a populous low density

group, p =-0.2 gm/cm 3 , consisting of 85%, and a high density group, p 1.4

gm/cm 3 , consisting of 15%, of the total among sporadic meteors. Fourteen

showers had low density meteors, P = 0.2 gm/cm 3 . The Draconids, associated

with Comet Giacobini-Zinner, have extremely low density, 0.01g 1 am 3 , and are

very fragile meteors. For such low density fragile aggregates to be embedded

in icy masses, similar porous ices appears to be required as, e.g., Whipple

(1955 1970) suggested.

The occurrence of fragile meteors in comets is one of several lines of

evidence that indicate ecmetary nuclei themselves must be low density, fragile

objects. More direct evidence is the tidal disruption of sun-grazing comets

(Opik, 1966a). Opik finds the nucleus of the two fragmenting sun-grazers
(comets 1882 II and 1965 VIII) weaker than all materials except meteoric

"dust balls". A third indicator is the occurrence of fragmentation among
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com#ta at heliocentric distances up to 9 AU (Sekanins, 1981:a). He lists
twenty-one split comets or about 3% of the total. Thus, theoretical ideas of
comet accumulation and observations of cometary phenomena agree in predicting
fragile nuclei, with low but finite cohesive strength.

Evidence for Radial Uniformity

Although a noticeable difference between the inner and outer zones of an
icy nucleus might be expected, several observational phenomena do not suggest

this to be the case. (1) The continuum/emission intensity ratio in the
spectra of comets appears to have similar distributions for "new" and for

short period ( "old") comets (Donn, 1977). These extreme groups with regard to
age show no difference in the dust/gaaa ratio or the character of the solid
particles. (2) In addition, the emission spectra of new and periodic comets
seeau to be similar, in the visible as well as in the ultraviolet spectral

region. Narrowband filter photometry for 6 corsets by A'Hearn and Millis

(1980) showed that the CN/'C2 production rate ratio was remarkably constant (±

0.1 in the log) from comet to comet, except for a well defined variation with

heliocentric distance. The relative production rates, specifically of CN, C20

C3 , and OH, appear to be unrelated to either the emission-to-continuum

(gas--to-dust) ratio or the dynamical age of the comet. The ultraviolet

spectra (Feldman, 1981) of a number of long period (Seargent 1978 XV,
Bradfield 1979 X, West 1976 VI), and periodic (P/ Encke, P/Tuttle, P/Stephan-

Oterma) comets were found to be remarkably similar, indicating again a 	 0

homogeneous structure of the nucleus. These have been no ultraviolet spectra

of new comets to date. (3) The seventeen fragmenting comets in Sekanina's
(1981a) review which have well determined orbits and were not sun-grazers may
be classified as; four periodic, five old, and eight new or nearly new. The

proportion of these values to total comets in each category (Marsden, 1979)

are; 0.04, 0.04, 0.02, respectively. In terms of to t-al appearances rather

than invididual comets these ratios became; 0.01, 6.04 0 0.02. In view of the

small numbers there does not seem to be any significant difference among the

three age categories. If splitting is intrinsic to a comet, the nuclei of
"new" and very old comets behave similarly. Seknina (1977) also showed that
the relative non-gravitational effects for the
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fragments were proportional to the lifetime for all categories. He also

suggests (Sekanina, 1980) that the behavior of these fragments is similar to

that of camets that were observed to dissipate during their apparition.

IV. The Outer Layer of a Nucleus and Its Evolution

Our primary concern in this review is with initial characteristics of

``	 nuclei. During perihelion passage, very pronounced evolutionary effects will
r^

occur on the volatile, fragile cometary nuclei. The analysis and

interpretation of cometary observations need to consider such changes (see

e.g., Shulman, 1972a Mendis and Brin, 1978; Whipple, 1978).

The initial surface change occurs while a comet is in the Oort Cloud

undergoing irradiation by galactic cosmic rays. This process was discussed by

Shulman ( 1972b), Donn (1976), and Whipple (1977). It was pointed out that

significant chemical effects are expected. Shulman and Donn showed thet the

chemical composition of the outer layer, to a depth of about one meter, would

be considerably transformed. Production of new species was emphasized by

Shulman. Both Donn and Whipple called attention to changes in the expected

behavior of the material, with the first author suggesting the volatile matter

may polymerize and become more inert and the latter believing the material

would become more reactive. Experimental results of energetic proton

irradiation of ice mixtures were presented by Moore and Donn ( 1980). They

found evidence for gas release between about 15-40 K and near 150 K. A
non.-volatile residue was also produced and contained a few percent of the

original material. Earlier, Patashnik et al. (1974) concluded that energy

released by the amorphous to crystalline ice transition could cause enhanced

gas release at about 150 K. More recent considerations of the role of

amorphous ice have been given by Klinger (1980) and Smoluckowski (1981a, b).

In his initial presentation of the icy model, Whipple (1950) pointed out

that the larger, non-volatile particles will not be carried away. An inert,

insulating layer would form and have a large influence on the behavior of the
;i

nucleus. This effect was examined in subsequent papers ( Whipple, 1951, 1955).

Formation of a crust and its consequence has been examined in several
investigations since then, e.g., Shulman ( 1972); Mendis and Brin (1978)	 °+

13
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(1979) Brin and Mendis (1979) Weissman and Kieffer (1981). The last papers

contain the most detailed study. Mendis and Brin assume an initially

homogeneous ice-dust nucleus. As the comet approaches perihelion some

fraction of the dust is not carried away by sublimating ices and remains

behind or falls back on the nucleus. Temperatures and vaporization rates were

calculated. From the latter, the authors determined monochromatic magnitudes

Of specific species as a function of heliocentric distance, both before and

after perihelion. A significant past-perihelion decrease in luminosity was

predicted.

In a quantitive investigation of luminositiy variation with heliocentric

distance, Whipple (1978) found a significant difference between pre- and

post-perihelion brightness variation for new and very long period comets. The

exponent of r in the relation m(r, 0=1) = Hr,1 + 2.5 n log r increased after

perihelion. The reverse was true for shorter period comets except for those

with P < 25 years for which the behavior was erratic. As pointed out earlier

Whipple believes "new'e comets have active, irradiated surfaces which are
responsible for the "excess" luminosity of "new" comets at large distances.

Whipple envisages the outer, surface region of a comet as being irregular

in structure with some non-uniformity also in composition. This is the result

of formation by the agglomeration of cometesimals. He suggests these

cometesimals have cores more cohesive and less volatile than the matrix

materials. Whipple traces out an evolutionary process of such a nucleus

whereby more coherent, darker clumps, called globs, develop in comets. These

globs may give rise to fireballs as those associated with Comet E.ncke or

observed by the Prairie Network, some of which are associated with other

showers (Wetherill, 1974). With the passage of time surface globs develop
into mounds or column as ices sublime and carry away loose meteoric material.

Eventually, they -crumble. or may be are carried away as objects of considerable

size through rotation of the nucleus, after connnecting material has sublimed.

This picture of a nucleus developed by Whipple from a study of the 	 i

luminosity variation of comets is strikingly similar to Donn's (1980`) model

based on a probable mechanism of accumulation. A consequence of these

pictures is an expected higher irregular surface structure on meter dimensions

14



or smaller. Plans for a comet rendezvous need to take this into account. A

mission involving landing on the nucleus must have detailed information on the

surface.

Sekanina (1981b) has reviewed studies, mainly by him---I f  and Whipple, of

the asymmetrical structures often found in came. These have bezn analyzed in

terms of non-isotropic ejection from the nucleus. Their results support the

picture of a heterogeneous surface consisting mostly of regions of relatively

low gas emissions with small, discrete zones of high emissivity producing the

jets. According to Sekanina'a analysis, the active regions emit for times of

the order of 0.1 day. The bursts of gas and dust tend to reoccur on several

successive rotations.

The absence of jets in many comets would be indicative of a more uniform

surface. There appears to be a variation of surface structure among cometo of

a given "age". Whipple and Sekanina did not discuss the spectral

characteristics of the Comets, particularly the emission /continuum ratio and
its possible connection to surface behavior.

V. Comets, Asteroids and Meteorites

A definitive answer to the relationship between comets and asteroids or

comets and meteorites will provide valuable insight into the origin and

structure of the nucleus. These relationships are, however, still unresolved

problems. Extensive discussions and further references appear in several
symposia proceedings and reviews (Gehrels, 1971,  1979; Delsemme, 1977;

Wetherill, 1981).

The earliest suggestion of such a relationship may have been by Kirkwood

following the discovery of asteroids as (132) Althea with eccentric orbits.

Following the detection of earth-crossing Apollo-type asteroids, Opik (1963)

proposed them as possible cometary residues. As few carets are larger than a

few kilometers, they only seem capable of accounting for the very smallest

asteroids. however, the original comets may have been much larger (Sekanina,

1971). Earth crossing Apollo-type or near Earth, Amor-type, asteroids are

small (Opik, 1963) and only a small fraction is expected to have been seen.

15



Opik concluded tL-at these objects cannot have came from the asteroid belt but

that a cometary source is not unreasonable. Later work by Wetherill and his

associates, see Wetherill (1979), showed that resonance processes could
transform asteroid belt objects to earth-crossing orbits. It now appears that

Apollo-Amor Asteroids have a mixed asteroidal-extinct comet source. Kresak

(1980) reached a similar conclusion. He points out that it is very unlikely

that all types of objects in the solar system have been discovered and gives

examples of recent findings. Chiron (1977 UB) between Saturn and Uranus and

1978 SB,; an asteroid in an orbit closely resembling that of Comet Encke are
significant examples.

If a comet developed into an asteroid, essentially all volatiles must

have been lost and a substantial U 1 km) residue remain. Such a structure is
consistent with the nonvolatile matrix-embedded ice model. However, it is

difficult to derive a mechanism to yield such a structure. The non-volatile

matrix must be formed first and have sufficient cohesive strength to stay

together. The pores must then be filled with icei It is this process that

presents problems as an outer ice layer will form first and prevent filling

the interior. To avoid this and obtain a radially uniform composition would

require an implausible temperature distribution and time variation.

An evolutionary history which would convert comets into Apollo-Amor type

asteroids appears best explained by the vaporization of Whipple's ice-dust

conglomerate (Whipple, 1951; Opik, 1963; Levin, 1977). An accumultion of
nun-volatile and icy grains or perhaps non-volatile cores with icy coatings

forms a dirty snowball. As the ices sublime and larger non-volatile

aggregates are left behind, a crust forms. This gradually encompasses the

entire nucleus to a sufficient depth that the deeper lying volatiles no longer

are heated sufficiently to vaporize. The inert residue, appreciably smaller

than the original comet, becomes the Apollo type asteroids. Detailed

treatments of dust layer formation by Mendis and Brin (1977, 1978), Brin and
Mendis (1979) and Weissman and Kieffer (1981) were referred to previously.
Opik (1963), Marsden (1971) and Sekinina (1971) have described a variation of

the above procedure. They start with a nucleus consisting of a non-volatile

core and an ice-dust mantle. Complete vaporization of the volatile material

leaves an inactive residue.
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Opik (1964, 1966a,b, 1969) proposed a cometary origin for meteorites
because of the dynamical problem of getting objects from the asteroid belt
Into earth-crossing orbits. An efficient process seemed required in order to
Account for the short cosmic-rAy exposure ages, tens of millions of years for

stones and hundreds of millions for irons (Anders, 1963). Subsequently,

Williams (1973) and Zimmerman and Wetherill (1973) found more efficient

mechanisms for perturbing objects from the asteroid belt into earth-crossing

orbits. These schemes can provide the differentiated iron and stony

meteorites (Wetherill, 1979). Because of short collision lifetimes the direct

source of chondritic meteors cannot be the asteroid belt. Wetherill and

Williams (1979) conclude that the earth-crossing Apollo-Amo y asteroids may be

capable of yielding the entire flux of chondritic meteorites. They also

conclude that the Apollo-Amo y objects themselves may be derived from a mixture

Of asteroidal and cometary sources. At this time, there does not appear to be

unambiguous evidence for a cometary source of meteorites although there may be

a need to supply chondritic meteorites from comets.. In addition, the

necessity of postulating a cometary source of meteorites to account for the

short cosmic ray exposure ages is unclear. The extremely complex dynamical

aspects of planetary encounters and perturbations for small objects has not
yet been completely analyzed.

For the purpose of this review we examine the implications for nuclear

structure if meteoritic material exists in comet nuclei. It is now well

established that fireballs are associated with comets, e.g., Taurid shower

fireballs with Curet Encke and Prairie Network fireballs (Wetherill, 1974) can

be associated with several other cometary meteor showers. As indicated

earlier such fragile and low density objects do not appear to ,present a

serious problem. There are, however, serious difficulties with meteorites in
comets. Anders (1971, 1978) has given several arguments favoring an

asteroidal over a cometary source of meteorites. He has emphasized the large

size of the parent needed to obtain a sufficiently large regolith to provide

the solar-wind induced gas center. He concludes that no stony meteorites,
including the carbonaceous chondrites, are derived from comets. Irons and

stones (Wood, 1967) require large parent bodies to obtain the high

temperatures and slow cooling necessary to produce the crystalline structure
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of these meteorites. Levin (1977) also concludes that the high temperatures

required and the complex history needed to account for brecciated meteorites

rules out a cometary source. At the low temperatures and pressures found in
cometary nuclei, no known phy31co-chemical processes can yield meteorites.

One might say, as we just pointed out about the dynamical processes yielding

earth-crossing fragment, that we do not yet completely understand all the

factors entering this problem either. To some extent that is true but it is
doubtful if the gaps in our knowledge allow for mechanisms producing. the
complex crystal structure of meteorites at low temperatures (150° C) and

pressures. Metallic iron-nickel masses have been produced (Bloch and Muller,

1971) by the condensation of vapor produced by the dissociation of iron and
nickel carbonyl. Carbon, sulfide and phosphide phases could be formed by
proper vapor composition. These experiments however, are still far from
producing the complex meteoritic minerals.

Because of the inability to produce meteoritic material in comets, Opik

(1966b) proposed a two stage mechanism. Meteorites are broken off fragments

of larger bodies, where the pressure and temperature were sufficiently high to

cause compaction acid melting of the original loose condensate. The fragments

became coated with ices and are then ejected to the outskirts of the solar
nebula. In this way comet nuclei would have formed. Some comets, according

to Opik's hypothesis, would be first generation products without meteoritic
inclusion, those with meteoritic objects are second generation. As the ices

subsequently sublimed during perihelion passage, meteorites or small asteroids
developed. If the cometary origin of meteorites is accepted there seems to be

no way of avoiding a process of this nature.

VI The Origin of Comets

It is generally assumed that the formation of comets occurred at the time

of formation of the solar system (e.g., Whipple, 1964; Opik, 1973, Delsemme,
1977), It has also been recognized that comets accumulated from a cloud of
ice-dust grains at low temperatures and low relative velocities (Levin, 1962;

Donn, 1963; Opi k, 1973).
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What is not generally agreed upon is the region Where comets formed.
Several. authors (e.g., Stromgren, 1924; van Woerkom, 1948; Sekanina, 1976b;
Noerdlinger, 1977) have shown that the absence of clearly hyperbolic original

orbits Strongly argues against comets coming from interstellar space; the
largest eccentricity observed so far measures e = 1.006. It seems likely that
observed comets have always been connected with the sun in some m6nner.

Oort's (1950) proposal for a cloud of comets orbiting the sun at s 104-105 AU

serves as the basis for investigating the history of comets, e.g., Everhart,

(1981); Weissman, (1981).

The question that is most uncertain is how the Oort cloud was formed.
Several regions have been proposed for accretion of the nucleus prior to their
residence in the Oort Cloud. This subject was reviewed by Delsemme (1977).

We discuss the regions here in order of increasing distance from the sun.

(1) The asteroid zone. This region was suggested by Oort (1950) but
rejected by subsequent investigators because of problems of ice condensation

and subsequent ejection to the Oort Cloud.

(2) The region of the outer planets, Jupiter to Neptune. This is a

commonly adopted zone (Whipple, 1964; Opik, 1973; Safronov, 1977). Ana).ysis

of the ejection of comets forming between five and thirty AU from the sun has
been studied by Opik (1966, 1973). fie finds ejection by Jupiter to be

inefficient; about one percent of Jupiter-crossing comets are perturbed into

the Dort cloud on a time scale of 107 years. The remainder are ejected into

interstellar space or destroyed by close solar passage. Uranus and Neptune
are much more efficient because of the small steps by which 1/a changes but

the time scales become too long and amount to s 10 11 years. Fernandez (1981)

obtains similar conclusion concerning the efficiency but finds time scales of

108 years.

For an average radius of "new" comets of about 3 km and density 1 g/cm3,
the average mass is 10 17 g. Weissman (1981) obtains 2x10 12 comets initially

in the Dort Cloud or a mass of 2x10 
29 

9 = 33 earth masses. Calculations

indicate a combined efficiency of ejection of comets by the giant planets



(Fernandez, 1981) and incorporation within the Oort Cloud by stellar

Perturbation (Weissman. 1981) of about a few tenths percent. These results

require a cauetary mass in the Jupiter-Neptune region of about 0.1 solar

M83303,

(3) A comet belt beyond Neptune (30-50 AU). A residual, comet cloud

beyond Neptune was suggested by Cameron ( 1962). Hamtd et al. ( 1968) from a

study of pertubations on Comet Halley concluded that there is ess than one

earth mass in this region. In a recent paper, Fernandez (1980) analyzed the

transformation of comets in the belt beyond Neptune to short period comets.

Close encounters between comets perturb some of them into Neptune -crossing

orbits. The Monte Carlo procedure adepts a comet population with the

following characteristics; mass distribution; n(m)	 Am-°, with 1 .5 t a C 2,

minimum mass of comets a 10 15 g, maximum mass = 1021 -1026 g, total mass in the.

zone amounts to about one earth mass. Orbits of Neptune-crossing comets would

,evolve as described by Everhart ( 1977). Fernandez concludes that short period

comets can be efficiently produced by a reasonable model for the hypothesized

comet belt with the mass at Hamid et al's upper limit. Long period and near-

parabolic comets still require the Oort Cloud. There would be two comet

sources which are assumed to have much in common because comets from the belt

beyond Neptune are fed into the Oort Cloud via Uranus and Neptune. Cameron

(1973) has proposed that ejection of comets to large distances would be aided

by a mass loss from the solar nebula and sun during an early T-Tauri stage for

the sun.

(4) Asteroid belt-interstellar cloud. O'Dell (1973, 1976) has proposed a

structure and mechanism of formation of comet nuclei that combines the inner

solar system and interstellar clouds. In this hypothesis micron sized grains

are ejected from the solar system by radiation pressure. O'Dell considers an

interstellar region with a typical density of one hydrogen atom per an  and

relative cosmic abundances. It is assumed that enough grains form a loose,

distant cluster to provide a comet of a few kilometers radius whf.^s they

collapse into a single object during approach to the sun. In the age of the

solar system of about 5 x 10 9 years, each grain has received an ice coating

sufficient to provide for the material lost in s 100 orbits.
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mere are several difficulties with this hypothesis. Among them is the

difficulty of cluster formation by ejected grains at 10 X145 AU and the long

time scale for coating grains at interstellar densities. It may be that this

process can be modified to provide for cometary meteorites. Instead of grains

ejected by radiation pressure,. consider fragments of asteroids ejected by

planetary perturbations similar to Oort's original proposal. Then let the sun

be formed as part of a star cluster with a number of small clouds very nearly

gravitationally bound to it. The ejected meteorites are trapped in these

clouds which have relatively high densities. Cameron ' s (1973) sub-discs have

densities in the plane of 10-11 g cm-3 or about 5 x 10 12 atom cm-3 . The

accumulation process analyzed by Cameron (1973) and Biermann and Michel (1978)

was used by Donn (1977b) to discuss comet formation directly in the Oort

Cloud. If meteorite formation and ejection were rapid enough we can conceive

of cometary nuclei containing meteorites as well as finer dust occurring in

the Dort Cloud. Although this mechanism is speculative and qualitative;

several of the steps have been analyzed in some detail. If it is necessary to

explain meteorites as fragments of earth-crossing comets, this process seems

to have fewer deficiencies than most other sequence of events leading to

ccmetary meteorites.

(5) Outlying fragmentary clouds from the pre-solar nebula. Cameron

(1973) postulated fragments of a few tenths solar mass breaking off from the

outer limits of the primordial solar nebula and revolving around it. He

suggested that in these smaller clouds numerous small objects could accrete

and became the Oort Cloud comets. He applies the mechanism developed for

planet accumulation, scaled to the mass and size of the cloud fragments and

concludes that large cometary objects could form in thousands of years. A few

sub-disks are expected to provide a sufficient number of comets to form the

Oort Cloud.

Biermann and Michel (1978) carried out a study of accumulation of comets

from ice-dust grains in the outer regions of a primordial solar nebula with a

few solar masses. Their analysis is based upon theories of planetary

accumulation developed by Safronov (1972) and Goldreich and Ward (1973)• In

Biermann and Michel ' s model the cometary aggregates have aphelia ^ 10 4 AU'.

The dispersal of approximately half of the nebula not undergoing collapse into
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the sun and. planets 'will cause the orbits to enlarge and form the Oort Cloud.
The main distinction to Cameron (1973) appears to be the larger nebular sass

which permits sufficient density at great distances to form carets in the
primordial nebula.

In yet unpublished work, Siermann (1980) concludes from recent studies on

cloud collapse that comets could not form in the sane cloud as the sun and
Planets. He modifies the above process to form comets in a neighboring
frapent of the same interstellar cloud as the sun and planets form. This is
generally similar to Cameron's scheme described above and essentially

identical with that proposed by Donn (1976). That mechanism is described next.

(6) In situ formation in the Oort Cloud. It was pointed out (Donn, 1973,
1976) that the tendency of stars to form in clusters provides a means of comet
formation in the Oort Cloud. Galactic star clusters contain the order of a
hundred stars within a roughly spherical volume of 5 pc diameter (Hogg, 1959).
The average distance between stars is 0.5 pc. The theory of star formation in
clusters is essentially non-existent, but a considerable empirical-
observational base is developing (de Jong and Maeda, 1977). Following the
procedure of Cameron (1973), we accept the existence of subclouds of small

M033 which cannot produce stars but are capable of forming much smaller mass

objects.

In these cloudlets small aggregates form. According to Cameron (1973)
and Bierm ann and Michel (1978) these have masses in the cometary range, i..e.,

10 15-1020 g. The low velocity dispersion of cluster stars, less than 3 km 3-1

(Blaauw, 1964) and the velocity dispersion of the comet population ansures
that many comets will have essentially zero velocity relative to the sun.
Thus, the sun will have a comet family moving with it"as-the cluster disperses.

Greenberg (1977, 1981) and his colleagues (Baas, 1980) propose comet
formation in dense clouds. The grains consist of refractory cores with icy

mantles that have been heavily photolysed as pointed out by Donn and Jackson

(1970). These grains may then accrete into cometary size aggregates as in the

interstellar hypothesis Just described. According to this hypothesis, the icy
material exists on the same grains as the non-volatile component rather than
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as separate particles This. is probably the case because of the much more

favorable path for condensation on an existing grain compared to nucleation of

an icy grain from. the vapor.

(7) Periodic formation of solar system comets in interstellar clouds.

The preceding hypotheses make comet formation approximately concurrent with

the formation of the solar system. McCrea ( 1975) has adopted a few million

years as the age of comets and proposed a mechanism for satisfying this

criterion.

As interstellar clouds pass through the shock region in the inner edge of

a spiral am, some are compressed, to a degree where dust concentrations are

formed and then collapse into comet nuclei. If the sun is in the vicinity
i

when this happens some are captured and become part of the sun's family of

comets. Important consequences of this hypothesis are; (a) Comet ages are

the order of the in—fall time, a few million years. (b) They appear at

intervals approximately given by half of the galactic rotation period or 108

years and decay much more rapidly. (c) Sun—comet velocities would have a mean

value of several km/sec. The occurrence of parabolic and near parabolic

orbits without unambiguous hyperbolic orbits does not seem readily explained.

In fact, the observed parabolic orbits are anomalous. (d) There is no way to

have an association of meteoritesand comets as some authoI• s (Opik, 1966;

We therill, 1977) propose.

In the process of ejecting comets into the Dort Cloud most ccmetar,y

objects escape from the solar system. If this ejection phenomena occurred for

the solar system it must have bsen a rather widespread occurrence throughout

the galaxy. This would be in addition to the well established planetary

ejection ( see e.g., Marsden et al., 1978) . Then^ would thus- be a considerable

number of interstellar comets. The suggestion for comets coming from

interstellar space has a long history (van Woerkom, 1948). Recent work on

this-subject is summarized by Noerdlinger (1977).
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VXI. Concluding Remarks

A review of the structure and origin of 4,:omet3 must bring together a

great variety of information from many sources. We have attempted to describe

the different phenomena that are involved in constructing a model, for the

nucleus. Those models that seem generally useful have been described. The

same plan was used in preparing the section on cometary origin. Our objv^Ltive

had been to present the material in a form that will permit an investigator

working on these problems to take advantage of previous efforts. Although

this chapter is not as comprehensive and critical as we initially planned, it

is our hope that it will provide cemetery scientists with a good starting

point for the exciting and often frustrating tasks of studying the structure

and origin of comets.
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Table 1

Distribution of orbital forms for 1027 apparitions of 658
observed between -86 and the end of 1978.

individual comets

Orbital Form Eccentricity N g

Elliptical orbits e < 1.0 275 42

Short-periodic comets (P < 200 a) e < 0.97 113 17

long-periodic cornets (P > 200 a) 0.97 < e < 1.0— 162 25

Parabolic orbits e = 1.0 285 43

Hyperbolic orbits e >	 1.0 93 15

Strongly hyperbolic orbits e > 1.006 0 0
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a

Table 3

NUCLEAR RADII

SHORT PERIOD COMETS

N <R>
a = 0.3

R MIN, RMAX

ROEMER 18 1.1 Km 0.3, 2.5 Km

KRESAK (R>3.2) 14 2.1 0.7, 6.2

LONG PERIOD COMETS

ROEMER 9 3.5 0.5, 16.5

WHIPPLE 3 4.0 3.1, 5.6

9



Table 4

Mechanical and Dynamical
Properties of Nuclei

R	 PC
Q va

(km)	 (dyne3/cm2) {ge/3ec3) (km/sec)

1	 14 x 103 0.02 8 x 10-4

10	 1.4 x 105 0.2 8 x 10-3

100	 1.4 x 107 2 8 x 10-2

. .



FIGURE CAPTIONS

Figure 1. Proposed model of a comet nucleus. The circular regions schemati-

cally represent the larger cometesimals. All cometesimals are
aggregates of the basic micron size ice-dust particles and are
expected to have irregular shapes generally similar to that
Pictured for the nucleus. The identity of the individual

cometesimals is exaggerated.

Figure 2. Compaction of snow. Central pressures for a I km and 10 km radius

nucleus are marked.
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