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ABSTRACT

A review is given of current computational methods for analyzing flows in
turbomachinery and other related internal propulsion components. The methods
are divided primarily into two classes, inviscid and viscous. The inviscid
methods deal specifically with turbomachinery applications. Viscous methods,
on the other hand, due to the state-of-the-art, deal with generalized duct
flows as well as flows in turbomachinery passages. Inviscid methods are
categorized into the potential, stream function, and Euler approaches.
Viscous methods are treated in terms of parabolic, partially parabolic, and
elliptic procedures. Various grids used in association with these procedures
are also discussed.

INTRODUCTION

The subject of internal flows is a very broad and complex one, encompassing a
wide variety of geometries and flow situations. There are many examples of
machinery in which internal flows play an important part. One such example is
the modern turbofan engine, such as that depicted in Figure 1. Here the
understanding of internal flows is very important in predicting the perfor-
mance of many key components. These include the inlets and exhaust nozzles at
the extremeties of the engine, the rotating and stationary turbomachinery
blade rows in both the compressor and turbine sections of the engine, the
interconnecting ducts, and the combustor portion of the engine. Another
significant type of machinery in which internal flows are extremely important
is the internal combustion engine. Here the flows to the various inlet and
exhaust ducts, ports, and cylinders are extremely complex and basically
unsteady. These complex flows must be understood before the performance of
such engines can be predicted. Another situation where complex internal flows
play a large role in the performance of machinery is that of nuclear reactors.
Here the flows through a maze of tubes and passages interact to influence the
performance and reliability of the entire system. In addition, the steam
generator portion of the nuclear reactor has all complexity of the gas turbine
engine described previously, as well as the complexities brought on by a two
phase flow situation.

In this paper, in order to make the subject more manageable, we have chosen to
treat in detail a subset of the total class of internal flows. We will be
speaking specifically about flows through turbomachinery blade rows of all
types, as well as viscous flows through ducts of various geometries.

The paper will be divided primarily into descriptions of inviscid flow methods
and then viscous flow methods. Inviscid flow methods will be described in the
context of turbomachinery blade row applications because a large number of
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analyses have been developed for these situations. For viscous flow methods
the state-of-the-art is less well advanced. Here the treatment will be
expanded beyond turbomachinery to also encompass duct flows. The analyses
discussed in the paper will also be limited to steady flows. Although some do
have the capability to predict unsteady flow phenomena, they have been
developed primarily as predictors for steady flows. They generally are not
used in their present form in order to solve unsteady flow problems in turbo-
machinery.

In describing the analyses, a variety of different geometries will be discus-
sed. We will be describing analyses which apply first of all to axial blade
geometries in both compressor and turbine blade rows. Some of these analyses
are also designed to predict mixed flow situations, which are encountered in
both centrifugal compressors and radial inflow turbines. There are also some
analyses designed for pure radial situations, such as those encountered in
radial diffusers as well as the inlet pre-swirl vanes in radial turbine situa-
tions. Some of the above analyses also apply to geometries which have no
blades, such as the interconnecting ducts and bends in turbomachinery.

Another differentiation is that between rotating and stationary blade rows,
with most of the analyses applying to both. Finally, some types of analyses
apply only in certain flow ranges. Most will handle the subsonic flow regime,
while emphasis in the recent past has been upon analyses for the transonic and
supersonic flow regimes.

A wide variety of flow characteristics exist in the various types of turboma-
chinery just described. The objective of the analyses to be discussed later
will be to predict as many of these flow features as is possible. Figure 2
illustrates for a turbomachinery blade row situation many of the important
flow features which we will ideally be trying to compute with the methods
described in this paper. First of all, large axial, radial and centrifugal
pressure gradients exist within the flow passages due to the turning of the
fluid within the blade rows. Secondly, this turning of the fluid within the
passages redistributes the incoming vorticity field and generates cross
flows. At higher velocities strong shocks exist within the blade passages.
These can be complex and interacting, and they in turn can generate their own
additional vorticity fields. These shocks, of course, interact with the blade
surfaces and endwall boundary layers, often causing separation and additional
blade loss.

There are also a wide variety of viscous flow phenomena existing in the blade
passages. Primarily there are the boundary layers which exist on all blade
and endwall surfaces as well as on the surfaces of midspan dampers which may
exist within the blade passages. Such boundary layers can have laminar,
transitional, and turbulent regions. When pressure gradients are strong, of
course, separation can also occur. Some separations may experience reattach-
ment. Finally, there are the wakes which exist downstream of all blade rows.

In addition to these common flow features, there are other more complex
viscous flows which serve to redistribute the internal vorticity in the blade
passages. The first of these, commonly encountered in turbines, is the horse-
shoe vortex which is generated at the junction of the blunt leading edge and
the endwall. Such vortices curl up, flow across the passage, and are shed
downstream off the endwall or the surface of the adjacent blade row. Another
complex flow phenomenon is the tip clearance flow in which a vortical flow is
inducea by the leakaye of fluid across the unshrouded tip of a rotating or a
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stationary blade. Finally, the fact that half the blade rows operate in a
rotating reference frame introduces the effects of centrifugal and Coriolis
forces on both the mean flow ana turbulence in these flow passages.

The resultant flow picture is an extremely complex one, particularly in the
multi-stage environment that exists in modern turbomachinery. No single analy-
sis can hope to model all of these flow phenomenon at the same time. In the
analyses to be described here, a number of different approaches are used to
divide this overall problem into one of manageable size. We have chosen here
to separate these models into two major groups, inviscid analyses and viscous
analyses. Within these classifications there are many other types of modeling
assumptions which are made. First, the assumption is always made to limit
these analyses to a single blade row, either stationary or rotating (except in
the case of hub-to-shroud stream function analyses, some of which have multi-
stage capability). WNext, within a given blade row, for a steady state type of
solution, the assumption is made that the flow in all blade passages is iden-
tical; thus only a single blade passage has to be analyzed. Within a blade
passage the next decision to be made is whether a two-dimensional or three-
dimensional flow solution will be obtained. Obviously in a three-dimensional
flow solution the entire passage is considered; however, many times assump-
tions are made to eliminate flows over the blade tips or the consideration of
dampers which may exist in the blade passage. Two-dimensional flow solutions
are typically done on one of two types of flow surfaces. The first of these
is a meridional plane solution, treating equations that model flow on an
average or mean flow surface between the suction and pressure sides of the
blade (Figure 3). This surface is generally formed from the projection of the
mean camber line of the blade onto the mid passage, with corrections made at
the leading and trailing edges for incidence and deviation. The second type
of surface on which 2D analyses can be made is the blade-to-blade surface.
This surface is generally formed by rotating around the blade row, in the
circumferential direction, one of the calculated streamlines in the meridional
plane. Such surfaces, therefore, are axisymmetric and usually have radius
change from inlet to outlet. Quasi-3-dimensional effects can also be consi-
dered on such a surface by giving it a thickness which varies in the meridio-
nal flow direction from inlet to outlet.

Beyond the decision concerning the dimensionality of the solution, a number of
decisions can be made in the process of modeling the fulil flow equations down
to a reasonable subset to be solved in the particular analysis being performed.
Tradeoffs have to be made between modeling sufficient flow physics to capture
the important features of the flow, and reducing the equations and boundary
conditions such that exorbitant computer time is not consumed in obtaining a
solution. Some of the assumptions and approaches which have been used in the
past will be summarized in the historical section which follows.

Historical Perspective

A number of excellent articles have appeared in the literature in the last
several years reviewing the different analysis methods and theories which have
been used to describe the fluid flow through turbomachinery [1, 2, 3, 4, 5, 6,
8]. These do an excellent job of reviewing the early work in the field, as
well as some of the more recent approaches which have been developed.

In the 50's and 60's, singularity methods were often used to compute the two-
dimensional incompressible potential flows through cascade blade rows. Such
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analyses were primarily applied on blade-to-blade types of flow surfaces.
These analyses have been reviewed by Gostelow [1], and Perkins and Horlock
[3]. These methods will not be discussed in further decail here.

Also in the 50's and 60's classical secondary flow theory was developed to
predict three dimensional incompressible rotational or vortical flow in cas-
cades. Such methods have been reviewed by Horlock and Lakshminarayana [2].
These methods likewise will not be discussed in this paper.

In the 60's and early 70's finite difference approaches began to gain promi-
nence, and were used to calculate two-dimensional, subsonic, inviscid flows in
turbomachinery. Both streamline curvature and stream function approaches were
used, and were applied on both meridional and blade-to-blade flow surfaces.
These approaches are reviewed by Gostelow [1], Perkins and Horlock [3], and
Japikse [4]. Stream function methods will be discussed in the inviscid flow
sections to follow.

During the 1970's time-marching solutions of the Euler equations began to be

used to solve both two-dimensional and three-dimensional transonic flows in

blade rows. In the 20 cases such methods were appliea on both meridional and -
blade-to-blade surfaces. Some of these methods are reviewed by Japikse [4],

and Habashi [5]. They will be discussed and updated in this paper.

Also during the 1970's numerical solutions to the full potential equations for
two dimensional transonic flow in turbomachinery began to appear. A great
deal of work has been done to extend such methods up to the present time.
Early full potential solutions were reviewed by Habashi [5], and the later
approaches will be discussed and updated here.

During the 70's many of the above methods, as well as some early viscous
approaches, began to be applied to flows in centrifugal impellers. These
methods are reviewed in the paper by Adler [6]. These methods are also
discussed and updated here. Finally the state-of-the-art in the computation
of a wide variety of turbulent flows was addressed at the recent
AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows [7]. The relevant
findings from this conference will also be discussed.

The review to be given here begins with the consideration of computational
meshes, since to a large degree the success of analysis approaches hinges on
the nature of the solution grid which is used. This discussion will include
consideration of desirable grid properties, the various mesh topologies in
use, and methods of grid generation.

Inviscid flow analysis methods are considered next, the Euler equations are
introduced, and the difficulties in solving the primitive variable form are
discussed. The stream function formulation for two dimensional flows and the
scalar potential approximation are both presented, and the advantages and
limitations of each are described. The various methods currently in use for
turbomachinery flow analysis are then reviewed.

The next section will consider viscous methods. The time-averaged Navier-
Stokes equations are introduced and the many difficulties associated with
their solution are discussed. Parabolic and partially parabolic approxima-
tions are presented and the advantages and limitations of each are described.
The various methods in use for both turbomachinery blade row analyses and for
generalized duct flow analyses are then reviewed.



Finally a short discussion on the status of turbulence modelling is given.
The paper will conclude with comments on future directions.

COMPUTATIONAL GRIDS

The general approach to numerical solution involves discretizing the fluid
equations on a network of points, or grid, throughout the physical domain.
The accuracy of the resultant solution can depend to a great degree on the
properties of this grid.

Cartesian grids, when used, have generally been used in the physical domain.
However, they often create problems. At boundaries not aligned with one of
the particular mesh directions, either partial mesh cells must be used or
external dummy grid points must be introduced. This results in a cumbersome
treatment of the boundary conditions and inaccurate results in some cases. A
second problem is the Tack of resolution of the grid in regions of high flow
gradients. Adequate resolution of the flow in regions adjacent to highly
curved boundaries often requires local subgrids to be used. The placement of
subgrids within the larger grid structure necessitates increased coding, and
the resultant logic problems that come with the interaction between the sub-
grid and the major grid. A final problem is that boundary layers and wakes,
which are not generally aligned with the major directions, are often difficult
to resolve.

Recent efforts have been placed on devising methods of generating grids
possessing a number of desirable features which provide a much more accurate
solution in the important regions of the flow. Some of the characteristics of
such grids are the following.

1. At solid surfaces all grid Tines shoula be either parallel or normal to the

boundary. This simplifies the boundary condition formulation and thus
improves the accuracy of the solution. It can also simplify the modelling
of the viscous terms in viscous flow calculations.

2. Away from solid surfaces the mesh should not be highly sheared, as this
tends to degrade the accuracy of the solution, especially near shocks and
other high flow gradient regions.

3. The grid should provide the ability to cluster lines to a desired density
in critical regions such as near solid surfaces, at shocks, near leading
and trailing edges, and in other regions of high surface curvature.

4. In steady state turbomachinery blade row calculations the assumption is
usually made that the flow is identical in neighboring passages.
Therefore mesh periodicity is a requirement to simplify the application of
boundary conditions at these locations.

5. At upstream and downstream boundaries, adequate but not excessive mesh
density is required in order to resolve the flow at these locations and
properly provide for the application of boundary conditions.

6. For numerical stability, some algorithms require mesh aspect ratios which
don't depart too far from one.
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It is usually not possible to obtain a grid which incorporates all of the

above features. In many applications these requirements can be in direct
conflict. For example, the requirement for local clustering of the grid may
lead to excessive shearing in certain regions. Or, the periodicity requirement
can be incompatible with the requirement for near-orthogonality in staggered
blade rows. Since no grid can possess all of the above features, obviously
compromises have to be made which depend on the particular application.

To satisfy these requirements, several types of grids have been developed for
use with different geometries. For duct flow calculations, so-called channel
grids are used (Figure 4). These consist of a set of throughflow lines toge-
ther with a set of lines or surfaces normal to these.

For turbomachinery blading three types of grids have been developed.

1. H-type, which is simply a channel grid which has throughflow grid lines
aligned with the blades, and the opposing set of grid lines running in the
circumferential direction (Figures 5 and 6).

2. 0-type, which has one family of lines forming closed loops about the
blades, and a second family crossing the first with grid lines radiating
out from the blade surfaces to the periodic boundaries (Figures 7 and 8).

3. C-type, which has one family of grid Tines originating at the downstream
boundary, progressing upstream parallel to the flow, circling the blade
and continuing downstream again parallel to the flow. The second family
crosses the first, originating at the blade and wake centerline and
progressing out to the periodic boundaries (Figures 9 and 10).

Grid Generation Methods

Three general approaches have been employed to generate such grids: conformal
mapping, differential equation techniques, and algebraic techniques. Recent
updates on a variety of techniques employing these methods are given in
Reference 9.

The conformal mapping approach proceeds generally as follows. The physical
domain is transformed into a simpler one using complex variable techniques. A
rectangular or near orthogonal grid is then constructed in the transformed
region by simple algebriac procedures. The transformation of this simple grid
back into the physical domain then produces the desired curvilinear mesh in
that domain. This procedure is relatively rapid, but control over the place-
ment of mesh points in somewhat limited. The method only lends itself to the
generation of two-dimensional grids, but these in turn can be stacked to give
a three-dimensicnal grid. General conformal mapping techniques are surveyed
in Reference 10.

In the differential equation technique, the curvilinear coordinates in physi-
cal space are defined to be the solution of a set of coupled Poisson equa-
tions, one for each of the coordinate directions ( § ,W\ , % , in three
dimensions). These equations, however, are somewhat difficult to solve in the
physical space. They are therefore transformed to a quasi-linear elliptic
system of equations in the rectangular computational space. In this set of
equations the cartesian physical coordinates (x, y, z) are the unknowns. This
system is then solved by standard finite difference techniques (relaxation
methods) to obtain the locations of grid points (x, y, z) in the physical space.
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This procedure is quite flexible, and allows considerable control over the
placement of grid points. However, it is more time consuming than other
approaches. A good description of this technique is contained in Reference 11.

Finally, in the algebraic techniques, curvilinear coordinates are constructed
in the physical space through the use of algebraic interpolating functions.
Opposing bounding surfaces are represented as algebraic functions of some
parameter, & . These opposing surfaces form the first and last members of
one family of coordinate curves. The second family of coordinate curves is
formed by connecting points of equal E; with interpolating functions in the
common parameter . The remaining members of the first family of coordinate
curves are formed by connecting points of equal . This method is poten-
tially the fastest and the most flexible of all the grid generation techni-
ques. However, the greater flexibility does require more interaction from the
user, and the technique may be slightly difficult to master at first.
Reference 12 describes one of the more advanced algebraic grid generation

techniques.

INVISCID METHODS

Euler Equations

The ultimate equations we would like to solve in any internal flow situation
through ducts or turbomachinery are the Navier-Stokes equations which govern
general viscous fluid flows. However, solving these equations in their full
form on modern day computers is still quite time consuming.

A great deal of information can be gained in most flow situations through
solving a simplified form of the Navier Stokes equations, in which all of the
viscous terms have been neglected. These are the governing egquations for
inviscid flows known as the Euler equations. These equations in vector form

are as follows:
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and and are the static density and pressure, W and \J are the Cartesian
veloity components in the x and y directions, and @, is the total energy per
unit volume. The total energy, @ , is related to the internal energy per
unit mass, E; , by the following relation

;__E_.‘élu.:
S A~ (3)

The internal energy, ﬁ , can be related to the pressure and density by the
ideal gas relation
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where 16 denotes the ratio of specific heats.

These equations are presented in terms of the conservation variables of mass,
momentum, and total energy, and these are commonly the terms for which the
equations are solved. The equations are also presented in terms of two-
dimensional cartesian components of velocity for the sake of simplicity. Most
of the comments made in terms of the equations to be presented in this paper
can be extended easily to apply to three-dimensional flows, unless otherwise
noted.

In most instances the solution desired is that to the steady state Euler equa-
tions, with the time terms not included. This system of equations is a
first-order system of partial differential equations. That fact is the source
of much of the difficulty in obtaining solutions to these equations in their
present form. The equations change in form depending upon the local flow
regime. In subsonic flow their character or type is elliptic, whereas in
supersonic flow regimes they are of hyperbolic type. This leads to major
difficulties in numerically solving the equations, since the locations of the
particular flow regimes are not known a priori. In a totally supersonic flow
field, where the equations are hyperbolic everywhere, some very efficient
methods exist for their solution. Employing the method of characteristics or
a simple marching procedure are two common approaches used with supersonic
flows. In subsonic domains, however, no good general solution method has been
devised for solving this system of elliptic first order equations. One common
approach that has been devised for solving these equations in either a sub-
sonic flow field or a mixed subsonic-supersonic flow field is to reintroduce
the time terms to the equations. The resultant set of first order partial
differential equations is hyperbolic throughout the flow field. A steady-
state solution can be obtained by marching these equations from some initial
guessed flow field through time until an asymptotic steady-state solution is
achieved.

Over the past fifteen years, a large number of algorithms have been developed
for the solution of the time-dependent Euler equations to a steady state. The
principal disadvantage in approaching a steady state solution in this manner
lies in the long computational times which are required to wash out of the

low field all of the initial transients which are introduced due to the
initial assumed solution. These initial conditions generally have included
within them large perturbations away from the final solution. These give rise
to perturbation waves which move through the solution domain as the solution
progresses in time. Steady state convergence is reached only when all of
these perturbations have completely died out. The Euler equations with the
time terms included do not inherently have any dissipative effect. Therefore
the discretization of the equations is the only source of damping introduced,
and this source is rather small. Generally, to reach a steady state requires
a large number of iterations, and thus a long computational time.

A second problem inherent in numerically solving the primative-variable Euler
equations is the fact that storage on the computer is quite excessive. In
these equations there are four primative variables in 2D, five in 3D. Whether
they be the density, velocity components, and energy, or the more common
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conservation variables, there are still four or five to be stored at each grid
point. This is a major disadvantage compared to alternative methods, to be
described shortly, in which only a single parameter must be stored at each

grid point.

A third and final source of difficulty in solving the Euler equations is in

the boundary conditions that are required by this system. Essentially boundary
conditions are required for all of the primative variables on each of the
boundaries. Some natural boundary conditions are supplied easily by the
physics of the problem; however, other auxiliary boundary conditions must be
obtained, generally through application of the method of characteristics at

the boundary. Typically this leads to a rather cumbersome treatment, and in
most methods approximations are made to the full characteristic relationships.
As an example we generally require some sort of compatibility relation obtained
from the method of characteristics to get the pressure at solid surfaces. This
relationship is often replaced by a more approximate relation which can adver-
sely effect the stability and accuracy of the overall numerical scheme.

A number of approaches to solving the full set of Euler equations will be sur-
veyed later in this paper. The conventional approach to circumventing the
problems related to solving the full Euler equations for steady inviscid flow
is to define either a stream function or a potential function and solve the
resultant second order equations which arise from these definitions.

Stream Function Equation

The stream function equation is derived by postulating that the mass flow
components, fv- and §zr , are obtainted from a scalar stream function as

follows
Y ﬁ\f = - :EES[-

where \J’is the stream function. Substitution of these definitions into the
continuity equation (1) shows that it is automatically satisfied.

fu =
If we introduce these terms into the definition of the vorticity

we obtain the following

we(F3)+2 (?%F R

where il) is the vorticity component normal to the plane of solution.

To work with this equation we must now obtain relations for_the density, g :
and the vorticity, @) , in terms of the stream function, q/'. From the
perfect gas relation we can obtain the following
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where @ is the speed of sound, S is the entropy, R is the gas constant,
and y= refers to a reference state of zero entropy. The quantities §y= and
O\y are reference conditions. The entropy & can vary from streamline to
streamline, but is constant along any given streamline.

In order to relate the speed of sound to the velocity components, we use the
equation for conservation of energy as follows:

S
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where CL is speed of sound based on total conditions.

Finally the vorticity can be related to total conditions through Crocco's
relation.
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where WA denotes a direction normal to the streamlines, and y\ is the total
enthalpy.

Rearranging we can obtain the following relationship for the vorticity in
terms of density, speed of sound, and entropy.

o= (Ea®-TH®D) o

The stream function equation, Eqn. (7), is a second order partial differential
equation, which allows us to use the extensive experience we have with relaxa-
tion procedures for the solution of such equations. The stream function
formulation retains all of the generality contained in the full Euler equa-
tions, so that it does permit variation in entropy, total pressure and
temperature throughout the flow field. Likewise the flows which are calcula-
ted can be rotational and cover the entire flow range from subsonic through
supersonic flows. However, this formulation does bring with it some inherent
loss in generality. It is limited to two-dimensional or axisymmetric flows,
and is also hampered by the fact that the dengity in the transonic flow regime
is a double-valued function of the unknown \ﬂﬁ Solution for in the
transonic regime is possible, and has recently been obtained by Hafez [137 for
an isolated airfoil application. The cascade version of such a development is
currently underway. A number of different subsonic stream function solutions
have been obtained for meridional plane and blade-to-blade plane regions in
turbomachinery applications. These will be surveyed shortly.

Working in terms of the stream function solves many of the problems cited
previously for the full Euler equations. The stream function gives a single
second order partial differential equation, for which robust and well under-
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stood relaxation solution methods exist. These solutions can therefore be
obtained in much less computer time than those for the first order Euler
systems. The computer storage required for this equatiord” is likewise much
lower, necessitating only the storage of the stream function at each mesh
point. Finally, the boundary conditions are more natural and are smaller in
number. For the stream function generally Dirichlet boundary conditions are
used at all solid surfaces, and either Dirichlet or Neumann boundary condi-
tions are imposed at all the open surfaces. The resultant problem can be
solved in at least an order of magnitude less time than the full primative-
variable Euler equations.

Full Potential Equation

Another approach to circumventing the problems inherent in solving the full
Euler equations is to define a scalar potential function, & , such that the
vector velocity field is everywhere equal to the gradient of that scalar
potential.

o

e e (12)

By definition then the curl of that velocity field will be everywhere zero, so
that such a flow is automatically irrotational throughout the flow field.

This does place a restriction on the flow, but brings with it the advantage of
being able to work in terms of a single second-order equation instead of the
full primative-variable Euler set.

If the velocity field is the gradient of a scalar potential then by definition
the components of velocity W and V" are related to the potential as follows.

:éjg- 13
vy (13)
where ¢ is the scalar potential function. Substituting these definitions

into the continuity equation yields the full potential equation in conservation
form in two-dimensional Cartesian coordinates.

%(g%—%) i —%{(g%%) = 0 (14)

Refering to Crocco's relationship, equation (11), we see that for an irrota-
tional two-dimensional flow, if the vorticity is zero, then the flow must be
everywhere isentropic, and have constant total temperature or enthalpy

throughout. Through the isentropic relationship, we then relate density to

the speed of sound as follows.
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Furthermore, knowing that total temperature is conserved throughout yields the
following relationship between the speed of sound and the velocity components.
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Elimination of the density from the conservation form of the full potential
equation, along with use of the energy relationship given above, leads to the
following common non-conservation form of the full potential eguation.

(@) T+ @ - J2

b “63

(17)

Some of the advantages and disadvantages of working with the full potential
equation are the following. As with the stream function equation, the full
potential equation permits the user to work with a single second-order partial
differential equation, for the scalar function 1? . Furthermore, it does not
have the restriction of being limited to two-dimensional flow situations, and
full 3D flows can be analyzed, as we will see. The two primary disadvantages
of this approach are that the flow is limited to being irrotational everywhere,
and it is also isentropic. The isentropic assumption implies that shock waves
captured in the transonic regime must be limited in Mach number to a value
less than about 1.3 in order to be accurate. The irrotationality condgition
necessitates a uniform incoming flow in two-dimensional flow situations, and
the condition that V\A’equa1 a constant in the radial direction in three-
dimensional turbomachinery flows.

The solution of the full potential equation will admit the existence of dis-
continuities in the flow field. However, these discontinuities are isentropic
shocks, which do not represent true physical shock waves because they do not
satisfy the Rankine-Hugoniot jump conditions. However, these shocks will be
approximately of the proper strength and will exist in the proper position in
the flow field if the Mach number of the flow approaching the shock is less
than or equal to 1.3.

With regard to the irrotationality condition for full potential flows, the
question arises as to whether this equation can be applied in the rotating
reference frame in turbomachinery applications. In this situation, the user
must recognize that the equations describe an irrotational flow in the
absolute reference frame, with a solid body rotation imposed on that flow
field due to the rotation of the wheel. In two-dimensional flows whether the
blade row is stationary or rotating, if there is no radius change in the flow
field, then the total pressure and total temperature will be constant through-
out. If the flow field does have radius change then the rothalpy and entropy
will be constant along these 2-D surfaces. The rothalphy, . , is defined in
terms of the relative velocity components which are expressed as follows

-1 —2a | b
Wi- -ﬁ u)r =-:b—r- u}e=7-—,b—;- L)y (18)

where ¥ is the local radius, and W, , W, , and We, are the relative
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velocity components in the axial, radial and tangential directions. The
rothalpy is then defined as
1 * L 3
T Wi + Wy + W ot vt
" ¥ 2 i

where L is the static enthalpy and £l is the wheel speed. Similarly in
three dimensions, in the absolute frame the total pressure and the total
temperature will be constant throughout. In the relative frame again the
rothalpy and entropy will be everywhere constant.

As was the case with the stream function, using the potential formulation
allows us to work with a single second order partial differential equation and
obtain all the advantages of the solution methods that exist for that situa-
tion. The same comments that where made prior with regard to computer storage
again apply. Finally with regard to boundary conditions, generally for the
potential function Neumann boundary conditions will exist at all solid sur-
faces, and either Dirichlet or Neumann boundary conditions will exist at the
open surface boundaries of the flow field. These are much easier to incorpor-
ate than the more complicated boundary conditions described earlier for the
full Euler equations.

We now describe in detail the analysis that have been devised for the various
sorts of equations governing inviscid flow situations. Methods for the full

potential equation will be described first, followed by those for the stream

function equation, and finally those for the full Euler equations.

FULL POTENTIAL EQUATION ANALYSES

A great deal of progress has been made in the last ten years in the develop-
ment of solutions to the full potential equation for internal turbomachinery
applications. A major development at the beginning of this period was the
paper by Murman and Cole [14], in which they demonstrated a way to properly
account for the domain of dependence in supersonic flow regions by introducing
a special backward or upwind differencing. This had the effect of stabilizing
solutions in those regions and permitting the first real transonic flow calcu-
lations using the potential equation.

Several major breakthroughs were also made during this period by Jameson. The
first of these [15] generalized the concepts introduced by Murman and Cole so
that they applied to the full potential equation in non-conservation form.
Solutions to the full potential equation in this form now routinely use
Jameson's rotated difference scheme, which effectively introduces a higher-
order term which acts like an artificial viscosity in the supersonic region.
Hafez [16] later introduced the concept of artificial compressibility to
accomplish somewhat the same objective when the conservation form of the full
potential is used. In this case the density is evaluated upstream of the
point at which it is to be applied, which again stabilizes the equation in the
supersonic zone. Jameson [17] also proposes a methoa for upwinding the
density when the conservation form of the potential egquation is used.

A number of different authors, applying these numerical technigues, and using
either finite difference, finite area (or volume), or finite element methods
to discretize the full potential equation in either conservation or non-
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conservation form, have devised several excellent, stable, and accurate
methods for solving 20 transonic flows on the blade-to-blade surfaces of
turbomachinery. Many of these blade-to-blade analyses also incoporate quasi-
3D effects through radius change and stream channel convergence. We are
beginning to see a number of full three-dimensional applications of these
methods, not only to turbomachinery problems, but also to propeller, wing-
body, and nacelle problems as well.

Discretizing the Equation

One of the principal characteristics that differentiates the manner in which
solutions are obtained to either the conservation or non-conversation form of
the full potential equation, is the way in which the equation is discretized
in order to obtain a series of algebraic equations for solution. There are
primarily three major approaches to this problem: the finite difference
method, the finite area or volume method, and the finite element approach.

In the finite difference method the terms in the basic partial differential

equation, in either untransformed physical space or transformed to a computa-

tional space, are discretized using standard central differencing and backward

(or upwind) differencing techniques. The resultant discretized equations, p
written at each of the mesh points, form a linear system of algebraic equa-

tions which are solved for the unknowns by standard numerical analysis techni-

ques. This approach was applied in the early work of Dodge [18], Ives [19,

20], and Rae [21]. More recently this method has been used by Caspar [22,

23], who applies it to so-called finite or control areas throughout his physi-

cal domain.

The next method for discretizing the partial differential equations is termed
the finite volume method (finite area method in two dimensions). This
approach is a hybrid between a finite difference method and a finite element
method, with more of the flavor of the latter. In many algorithms for solving
the full potential equation, it is transformed and subsequently solved in the
transformed computational plane. However, this approach has drawbacks, 1in
that the transformations can be quite complex, involving a large amount of
computational labor in evaluating the coefficients of the transformation. The
desire to have an algorithm which does not depend upon the details of the
transformation is what motivated the development of finite volume techniques.
In this method, a local transformation is done on each of the small volumes
which discretize the flow field, and the transformation metrics are evaluated
numerically using the Cartesian coordinates of the corners of each of the mesh
cells. The unknowns in the problem are then represented by some sort of func-
tional representation on each of these discrete volumes. This method is
described more fully in the paper by Caughey and Jameson [24]. This method ;
has been applied recently in the analyses of Dulikravich [25, 26], Farrell and

Adamczyk [27], and Fruhauf [28].

The third approach is the finite element method. In the finite element method
the physical space is discretized with a series of triangular or quadrilateral
shaped elements generated in a completely arbitrary fashion. The generation
can be readily designed to concentrate elements in regions of high surface
curvature and where flow gradients are strongest. Once the element grid is
formed, the potential function is then approximated within each element by
some sort of linear combination of mesh point values for the function based on
locally defined shape functions assigned to each mesh point. One of the
standard weighted residuals methods, usually the Galerkin method, is then used
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to reduce the partial differential equations to a system of algebraic egqua-
tions which can be solved directly. To apply this method, the continuity
equation is multiplied by the nodal weighting functions, and is integrated
over the volumes of the finite elements. The approximation for the potential
function is then substituted into the continuity equation, and the resulting
expression represents the error due to the approximation which is being used
within the elements. The algebraic sum of all such contributions in the
elements with common nodes are then set equal to zero. This represents the
algebraic finite element equation for that particular nodal parameter. This
set of Tinear equations is solved to yielc the potential function throughout
the flow field.

The order of accuracy of the functional approximation on each element can be
enhanced by using more elaborate, higher order elements. Typically linear
triangular elements are used, but biquadratic and other types of elements can
be used to give higher order discretization.

Finite element methods have been used extensively in the blade-to-blade calcu-
lation methods of Laskaris [29, 30], Ecer and Akay [31, 32], and Hirsch and
Deconinck [33]. The Laskaris work is primarily subsonic, although a three-
dimensional application is presented in [30]. The Ecer and Hirsch algorithms
have been extended into the transonic range for turbomachinery applications.
Eberle [34] has also done a considerable amount of work applying the finite
element method to transonic potential flow computations. He has applied such
methods to wings, axisymmetric bodies and nozzles, as well as turbomachinery
cascades.

Form of the Potential Equation

As mentionea previously, there are two principal forms of the full potential
equation for which solutions are generally obtained, the conservation form
(14) and the non-conservation form (17). Each has unique characteristics
which require that somewhat different methods be applied in their solutions,
but there doesn't seem to be any distinct advantage in solving one form over
the other. In fact, the authors cited in this paper are approximately evenly
divided between the two approaches, with the later approaches favoring solu-
tion of the conservation form ccupled with artificial compressibility. The
non-conservation form of the equations has been solved most recently by
Dulikravich [25], and previously by Ives [19], Rae [21], and Dodge [18]. The
conservation form is solved by Caspar [22, 23], Farrell [27], Ecer [31, 32],
and Hirsch [33]. Fruhauf [28] has solutions for both the conservation and
non-conservation forms of the eguation.

Stabilization in the Supersonic Zone

Another characteristic which differentiates among the methods used to solve
the full potential equation is the technique used to stabilize the equations
in the supersonic zone for transonic types of calculations. As mentioned
previously, there are two principal techniques which are used in this regard,
the artificial viscosity approach of Jameson [15], and the artificial compres-

sibility approach of Hafez [16].

The intent of both of these approaches is to modify the differencing in the
critical flow regions such that the grid points which contribute to the solu-
tion at a given field point lie within the zone of influence of that point.
The intent is to obtain finite difference information primarily from grid
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points which lie within the Mach cone effecting a particular grid point for
which the equations are being written. Jameson's rotated scheme identifies
both hyperbolic and elliptic operators in supersonic zones. Upwind differ-
ences are used for the former and central differences for the latter. This
has the effect of introducing an artificial viscosity to the solution proce-
dure, which assures its stability in supersonic regions where the equations
are hyperbolic. This artificial viscosity approach is employed principally by
investigators using the non-conservation form of the full potential eguation.
It has been used in the work of Dulikravich [25], Ives [19], Rae [21], and
Fruhauf [28]. Dodge [18], who also solves the non-conservation form,
constructs hyperbolic and elliptic operators on a near-characteristic grid
which is updated during the course of calculation. The artificial compressi-
bility scheme of Hafez, which achieves the same objectives as the artificial
viscosity approach, has been employed by all investigators soiving the conser-
vation form of the full potential equation, that is, Caspar [22], Farrell
[27], Ecer [31], and Hirsch [33].

Solution of the Algebraic Equations

Another distinguishing feature between the various methods for solving the
full potential equation is the technique which is used to solve the set of
difference equations resulting from either finite differences, finite volumes
or finite elements. The first of such techniques, and the most common, is
some form of relaxation procedure, generally successive line over relaxation
(SLOR). This is a technique employed in the work of Farrell [27], Dulikravich
(25, 26], Ives [19, 20], Fruhauf [28], Rae [21], and Hirsch [33]. Other
approaches generally employ a form of direct solver to do an inversion of the
linearized equations. Gaussian elimination is commonly used here as the non-
iterative part of an overall iterative solution scheme. Ecer [31, 32],
Laskaris [29, 30], and Caspar [22, 23] all employ this approach. The final
method used to solve the difference equations is approximate factorization
techniques, such as those developed by Holst [34, 35]. ADI methods are a
particular example of these. Such approaches can be up to an order of magni-
tude faster than traditional relaxation inversion techniques. However, they
have not generally been applied as yet to turbomachinery cascade problems,
except by Hirsch in reference [33].

Another approach useful for solving the difference equations even more rapidly
than the approximate factorization methods is the use of multi-grid techni-
ques. Such techniques were demonstrated for external flow applications, by
Jameson [36], who extended the methods initially developed by Brandt [37]. To
date Hirsch [33] is the only one to apply the multi-grid approach to the solu-
tion of the full potential equation for turbomachinery.

Results for Full Potential Equations

I1lustrative results will be presented for some of the latest solutions to the
full potential equation. These results are for 20 and quasi-3D blade-to-blade
stream surfaces, as well as complete 3D flow passage analyses. Most of the
references discussed do an excellent job of predicting transonic flow situa-
tions on compressor and turbine blade rows with Mach numbers below the 1.3

level.

To illustrate, results are shown first in Figure 11 for the two-dimensional
cascade analysis of Dulikravich [26]. Here flow is computed over a cascade of
symmetric NACA 0012 airfoils at zero angle of attack and zero stagger,



o

gap-to-chord ratio of 3.6, and inlet Mach number of 0.8. These results agree
very well with the calculations of Caughey, obtained in private communcation,
for the identical case. Caughey's calculations were performed using the
methods of Reference [24]. Peak Mach number in this calculation reached a
value of 1.31, and the sharpness of the shocks shows the excellent results
which can be obtained with the full potential approach. Very similar results
for this case have been obtained by Farrell [27], Ecer [31], and others.

Results of Farrell [27] are shown in Figure 12 for a supercritical compressor
stator tip section designed for NASA Lewis by Sanz using a hodograph technique
based on Bauer, et. al. [38]. The trailing edge of this blade ends in a cusp.
The inlet Mach number is 0.71, and inlet flow angle 31.160. The results

show that the rapid compression is captured very accurately without any over-
reaction or steepening by the potential method to form a shock.

Figure 13, again from Farrell, indicates the importance of quasi-3-dimensional
streamtube effects in the transonic flow regime. This figure shows a series
of calculations performed on a thick compressor stator hub section, again
developea for NASA Lewis by Sanz. Farrell's approach was first used to calcu-
Tate strict 20 flow over the blade. This agrees very well with the Sanz hodo-
graph solution, except at the trailing edge, where in Farrell's analysis the
idealized blade of infinite length was replaced by a blade with constant
trailing edge radius. The remaining two curves on the figure show the effects
of radius change and streamtube convergence. In the first of the remaining
two curves, a streamtube convergence was imposed of approximately 14% (axial
velocity density ratio = 1.15), with no radius change on the stream sheet.

The streamtube convergence strongly increases the Mach number on the suction
surface of the blade, so that the presence of a reasonably strong shock is
evident. In the final curve, the opening up of the passage due to a radius
change of 5%, entirely relieves the effect which was evident previously. The
increasing radius has a strong decelerating effect on the flow since the
blade-to-blade passage now diverges in the downstream direction. The differ-
ences evident in these three curves indicate very strongly the requirement to
consider quasi-3-dimensional effects in transonic design situations.

Finally, two results from Hirsch [33], shown in Figures 14 and 15, indicate
typical results obtained with a finite element blade-to-blade code. The
first, Figure 14, shows results calculated for a VKI-LS59 gas turbine cascade,
calculated on the grid shown in Figure 5. The inlet Mach number is 0.281,
inlet flow angle 30.0°9, outlet Mach number 0.975, and outlet flow angle
-65.890. The stream channel convergence in the through flow direction is
unity. The comparison with experimental data in this accelerating flow situa-
tion is extremely good, even in the transonic regime at the rear end of the
blade. The compressor results shown in Figure 15 are for a double circular
arc 9.50 camber compressor cascade. Inlet Mach number in this case is 1.05,
inlet flow angle 58.00, outlet Mach number 0.761, and outlet angle 49.59.

The stream channel convergence from inlet to outlet has a value of 0.86. The
deviations in this case on the suction side of the blade between the computa-
tion and experiment are explained by the presence of Targe boundary layers
which exist with compressor flows.

Finally three-dimensional results computed with the 3D code of Dulikravich
[26, 39] are presented in Figure 16. These results are for an idealized rotor
with the flow conaitions illustrated on the figure. The results show regions
of supersonic flow on all blade surfaces from hub to shroud, with fairly
strong shocks existing in the tip region. Peak Mach numbers at the tip reach



values of approximately 1.5. Two grids were used to obtain this solution,
progressing from a rather coarse grid with 24 points around the blage by 6
normal and 6 radial to a final grid with double those mesh dimensions in all
directions.

STREAM FUNCTION EQUATION ANALYSES

In the previous section on the full potential equation, it was indicated that
major work in the application of that equation to internal turbomachinery
flows didn't occur until after the papers by Murman and Cole [14], Jameson
[15], and Hafez [16]. These papers appeared in the early and mid 70's, so
that all of the major applications to turbomachinery using the full potential
equation have occurred from the mid 70's to the present time. A major point
driving the development of these analyses was the need to extend the
performance of modern day turbomachinery blading so that significant ranges of
the flow field were in the transonic regime.

Stream function equation applications to turbomachinery, on the other hand,
occured about ten years prior to those for the full potential equation. The
earliest applications appeared in the late 60's, and these have continued to
be developed and extended throughout the 1970's. It may seem strange that
developments of the stream function equation appeared sooner than those for
the full potential equation, since stream function analysis permits a more
general modeling of the full rotational flow field, incorporating all the
generality contained in the full Euler equations. (This capability is,
however, limited strictly to subsonic flows, at least up until the present
time). A major development paving the way for analyses of turbomachinery
flows using the stream function equation was the series of early papers by Wu,
particularly [40], which derived the stream function equations for soiutions
on hub-to-shroud and blade-to-blade stream surfaces of turbomachinery. This
paper appeared in 1952, but its application was delayed until the late 60's
awaiting the development of larger and faster computers on which the equations
could be accurately solved.

In Wu's so-called general theory, the stream function equations are solved on
two intersecting families of stream surfaces - the hub-to-shroud and the
blade-to-blade. The complete three-dimensional flow field is calculated
through an iterative process which involves transfer of information back and
forth between these two sets of surfaces. Wu's analysis assumes that the flow
relative to the blade rows is steady; however it does not demand that the flow
at the exit of the blade row be axisymmetric. Therefore, exit flows can vary
circumferentially, and following blade rows are thus subject to time-varying
inlet flow. Because of this, Wu's general method of analysis is only
applicable to flow through an isolated blade row. To apply it to a
multi-stage machine, the time dependence must be removed by circumferentially
averaging between each row of blades.

Several principal authors have developed computer codes for quasi-3D
calculations in turbomachinery, following the work of Wu [40]. Adopting the
nomenc lature of Wu, these flows are either solved along meridional types of
surfaces, which Wu calls S2, or blade-to-blade surfaces, called S1. Most
authors have used the approach of having only a single S2 meridional stream
surface along which the through-flow is calculated, interacted with a series
of axisymmetric blade-to-blade surfaces from the hub to the shroud.
Complications arise in the interaction between these two types of surfaces
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from the fact that the shape of the S2 meridional stream surface as well as
its thickness can only really be determined from the S1 blade-to-blade
solutions. These solutions in turn require the knowledge of the through-flow
on the meridional surface in order to provide boundary conditions as well as
the thickness of the blade-to-blade stream sheets. Obviously the procedure to
approach ccnvergence is iterative, and can be handled in a wide variety of
different ways.

Derivation of the stream function equations on the two intersecting surfaces
is complex, and the reader is referred to details in Wu and in the other
references to be given shortly. Each author approaches derivation in a
slightly different way, and the resultant non-conservation equations on the
meridional surfaces ana blade-to-blade surfaces differ from each other in a
variety of ways.

Historical Development and Applications

The two earliest developers of stream function analyses for turbomachinery
workea independently of each other, and their methocs appeared at
approximately the same time. These were Katsanis in the United States and
Marsh in England. 0ddly enough they worked on different surfaces, Katsanis on
blade-to-blade methods, and Marsh on hub-shroud stream surfaces. Katsanis
published several NASA TN's for incompressible and high subsonic blade-to-blade
applications, and then in 1969 published [41] his TN for what he called
transonic blade-to-blade flows. This analysis applied to any fixed or
rotating axial, radial or mixed flow turbomachinery blade row. Quasi-3D
effects were incorporated through a stream channel thickness. The transonic
flow referred to in Katsanis's title was not obtained by the stream function
method, but by application of a velocity gradient approach, using information
about the shape of the streamlines obtained from the stream function method at
reduced weight flow. Wood [42] has since devised methods for extending
Katsanis's approaches into the low transonic regime, obtaining more accurate
results without having to employ the velocity gradient approach. In 1969
Katsanis and McNally [43] also published a method to analyze blade-to-blade
flows through slotted or tandem blade rows, as well as a method [44] to
greatly magnify the solution obtained with the methods of [41, 43] around the
blade edges or the slot region of a tandem or slotted blade. A1l of these
methods of Katsanis use a regular rectangular mesh on the blade-to-blade flow
surface. Such a mesh has non-uniform-length mesh spacing adjacent to the
blade surfaces, requiring special treatment of the boundary conditions at
these locations.

Marsh [45] was developing at the same time his 2D stream function analysis for
hub-shroud surfaces. This was the first such analysis to appear in the
literature; and its major contribution, other than the solution method itself,
was the development of techniques for applying the method on an irreqular
grid. This grid was composed of parallel lines in the radial direction in
conjunction with through-flow lines which follow the shape of the hub and
shroud boundaries. The net result was irregular, or non-rectangular, mesh
cells in the solution domain. Marsh's technique applied to axial, radial and
mixed flow turbomachines, and the finite difference equations for the stream
function were solved by a matrix method; hence the "matrix through-flow" label
given to Marsh's techniques and other techniques such as his which followed.
Marsh deviated from the "general theory" of Wu, as most other authors were
also to do subsequent to him. Marsh developed what he called the
“through-flow theory" in which the time dependence was removed by treating the
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flow on the midchannel as an axially symmetric flow between each pair of
blades in the blade row.

Marsh's code was applied at the National Gas Turbine Establishment, and Smith
[46] presented a paper in 1968 contrasting results from that technique to
those of the established streamline curvature methods. The major conclusion
of the paper was that the matrix through-flow method enabled significant
advances to be made in the calculation of quasi-3D flows. It pointed tc the
need for incorporating a good endwall boundary layer solution and accurate
loss mechanisms in this sort or program before adequate comparisons could be
made with experimental data.

Smith and his co-workers at N.G.T.E. continued the development of matrix
methods and quickly extended them to blade-to-blade surfaces. In 1970 Smith
[47] and Frost presented a paper for computing flow fields on blade-to-blade
stream surfaces using both a matrix stream function analysis and a streamline
curvature technique. This method was applicable to any type of axial or mixed
flow compressor or turbine blading with either stationery or rotating blade
rows. In 1970 Smith [48] also published a paper describing both the
meridional and the blade-to-blade analyses which were in use at that time at
N.G.T.E. This was the first paper describing the meridional and blade-to-blade
methods being used together in a unified way. However, the paper did not
describe in detail the iteration process used between the two approaches.

Another set of codes for both hub-to-shroud and blade-to-blade analyses using
the stream function equation was developed in the early 70's at Carleton
University in Canada by Davis and Millar. Intially Davis [49] published a
thorough analysis of Marsh's approach to generating a curvilinear grid on the
hub-shroud stream surface. His paper redeveloped the Marsh technique and
again applied it to the hub-shroud stream surface of an axial turbomachine.

In 1972 and 1973 Davis and Millar [50, 51] published extensive reports on the
development of both blade-to-blade and hub-to-shroud codes at Carleton
University. The hub-shroud code, extended the methods originally developed by
Marsh. The blade-to-blade analysis was likewise similar to those published
earlier by Katsanis and Smith. In 1974 Davis and Millar [52] compared the
matrix through-flow technique to streamline curvature methods for calculating
flows on hub-shroud surfaces. They applied the two techniques to a duct flow,
a transonic fan, and three-stage axial compressor. These comparisons
indicated that the two approaches gave similar results, and that there was a
small operational aavantage with the matrix through-flow method. Both methods
were shown to be subject to certain instabilities. The convergence of the
stream function from iteration to iteration had to be damped in the matrix
through-flow method, while the shift in streamline position had to be carefully
damped in the streamline curvature techniques.

In 1975 Davis [53] presented the first hub-to-shroud stream function solution
for flow in a centrifugal compressor. To accomplish this he used a special
form of through-flow grid which remained quasi-orthogonal throughout the
solution domain. He employed two versions of the stream function equation,
one for regions where the axial velocity exceeded the radial, and the second
in regions were the radial velocity was the larger. Furthermore, Davis
incorporated a turbulent endwall calculation, using an integral method based
on the entrainment theory of Head [54]. Although the equations derived by
Davis were for application to centrifugal turbomachinery, they were only
appliea in the paper to stationary components: an inlet, a diffuser, and an
intra-stage return bend.
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In 1973 and 1974 Katsanis and McNally published NASA reports and an
accompanying paper [55] describing their hub-to-shroud stream function
analysis for use with the blade row analysis of reference [41]. This
hub-shroud analysis could handle either axial or mixed flow compressor or
turbine blade rows, but was limited to a single blade row. Later, in 1977,
the same authors [56, 57] extended this code so that it also applied to radial
or centrifugal blade rows. Mild transonic flows were treated with the same
velocity gradient method used in the blade-to-blade analysis.

At about this same time, Marsh [58] published a paper similar to earlier
papers by Smith [46] and Davis [52], comparing the matrix through-flow
analysis approach to streamline curvature techniques for the hub-shroud
problem. Like the previous papers, he discussed various loss models which
were in use, and the need for a good endwall boundary layer analysis. Marsh

concluded that the matrix through-flow and the streamline curvature techniques
could be viewed as two different methods for solving the same governing
equations on the same mean stream surface. He did not conclude that there was
a definite superiority of one method over the other. He recommended that work
be pursued to develop more accurate methods for estimating the losses within
blade rows, to calculate the development of the endwall boundary layers, and
to predict secondary flows.

Iterative Approaches and Finite Element Methods

In 1976 the first paper was published, by Bosman [59], giving significant
detail concerning an iterative approach to couple hub-to-shroud and
blaae-to-blade stream function analyses. Bosman presents equations applicable
to any type of stationery or rotating turbomachinery geometry including
centrifugals. He described the following iterative procedure: The initial S2
stream surface is assumed to coincide with a mean blade shape. From the
calculated S2 streamlines, S1 stream sheets are generated by revolution about
the axis of rotation. S1 solutions are then obtained and from these
mass-averaged streamlines are defined, thus giving a re-definition of the 52
stream surface. Another S2 solution is then obtained, and the process
repeated until convergence is obtained. Thus the shape of the S2 stream
surface evolves from S1 solutions and is not constructed by any sort of
corrections to the mean camber surface for incidence and deviation angles as
is done in several other techniques. Bosman applied his techniques to
calculate flows in a low speed centrifugal compressor, anda in a radial inflow
turbine. A meridional view showing the hub and shroud profile for the low
speed compressor as well as the grid used in Boman's calculation is indicated
in Figure 17. This is an eight bladed compressor with a very short inducer
section. In Figure 1& the S1 mean. streamlines calculated by Bosman at the hub,
mid-section and shroud for approximately zero incidence are shown. It is
unlikely that a user trying to predict the stream surface to satisfy given
incidence and slip conditions would have produced streamlines at all
approximating those calculated by Bosman. Figures 19 and 20 show the
calculated hub and shroud S2 velocity distributions, and illustrate the effect
of the stream surface shape upon these. These figures show that there is a
major influence on the hub and shroud velocities due to the graduated slip
that occurs in the exit sections of the impeller.

A second, more elaborate iterative procedure was described by Adler and
Krimerman [60] in 1978. Their meridional and blade-to-blade computer codes,
based on finite element methods, are described in references [61, 62].
Adler's iterative process occurs in four distinct steps. The first two are
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normal applications of meridional and blade-to-blade calculations on
axisymmetric stream surfaces. In the initial hub-shroud solution the mean
camber surface is adjusted at the loading edge to be aligned to the inlet
relative flow velocity and at the trailing edge to be parallel to an assumed
deviation angle. After these initial two solutions a number of different
hub-to-shroud stream surfaces are calculated from corresponding streamlines in
the blade-to-blade surfaces. These hub-shroua surfaces are no longer
axisymmetric. From these multiple hub-shroud solutions, blade-to-blade
surfaces are finally calculated by connecting corresponding streamlines.

These blade-to-blaade surfaces are therefore no longer surfaces of revolution.
Iteration is continued back and forth between the third and forth steps until
convergence is obtained. Adler applies this technique to a centrifugal
impeller, and shows that the results clearly deviate from results obtained
using a single axisymmetric meridional surface. He claims that these
deviations are significant enough to justify this type of flow field
calculation in highly-loaded compressors with back-swept blading where the
flow is very three- dimensional. Since the four corner streamlines in Adler's
analysis are forced to remain within the corners, one can argue whether the
results obtained here are worth the extra effort.

Hirsch [63] in 1976 published the first numerical solution of the meridional
through-flow stream function equation based on the finite element method. The
method was applied to axial flow machines, but was also developed for radial
machinery. The method was shown to be applicable to transonic stages in cases
where the tangential velocity distribution was given, as long as the meridional
velocity remained subsonic. Several years later, Hirsch published an iterated
analysis [64] in which meridional and blade-to-blade finite element stream
function analyses were combined for application to axial turbomachinery.

Again the flow in the S2 surface was replaced by the calculation of the exact
mass-averaged pitch-averaged flow on the meridional (& ,v ) plane. Hirsch
uses second-order isoparametric quadrilaterial elements which allow an
accurate simulation of blade curvature even in highly curved regions such as
leading and trailing edges. Even though Hirsch's meridional calculation
permits transonic relative flows as long as the merdional Mach number is lower
than 1, the blade-to-blade code used in this combinea analysic permits only
subsonic velocities throughout the flow field. Kesults of this analysis were
compared favorably with the LDV data obtained by DFVLR in Germany [65]. In
1980 Hirsch [66] again presented a combined iterative analysis, this time for
centrifugal compressors. Results were computed for the radial compressor
mapped with LDV by Eckardt [67]. Hirsch concluded that the viscous and
secondary flow effects were not well reproduced with the through-flow
calculations particularly in the back ena of the compressor. Hirsch also
presented a quasi-3D calculation on the so-called Type-B centrifugal
compressor described in reference [68]. Figure 21 shows the shape of this
compressor in the meridional plane and indicates the finite element mesh as
well as the calculated meridional streamlines obtained for a flow coefficient
of 0.2. Figures 22 and 23 show the static pressure distributions on the hub
and shroud sections for a flow coefficient of 0.5. The experimental results
from [68] are compared here to the calculated blade pressure distributions.
The inviscid calculations predict a stronger local acceleration along the
shroud suction surface than experimentally determined. Figures 24 and 25 show
the calculated Mach number distributions along the hub and shroud. The figure
at the hub indicates a local low velocity region in the outiet portion of the
blade near the pressure side of the passage. The shroud profiles indicate
details of a local acceleration region found near the front end of the suction
surface of the blade. The differences between data and calculation indicate
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that the secondary flows existing in the passage create velocity components
which give a better behavior to the real flow than that found in the
calculations. These differences illustrate the limitations of the quasi-3D
approach were secondary flows are not taken into account.

Finally, in 1980 Goulas [69] presented a stream function analysis for the
blade-to-blade flow in a centrifugal compressor which contains splitter
blades. He derived his analysis so it could either calculate isentropically,
or simulate turbulent flows with the addition of a simple turbulence model and
zero velocity conditions at the wall. He adapted the method to handle
stagnation points as well as the formation of small re-circulation zones at
the front end of the splitter blades which sometimes occur in the analysis.
His method was applied to a centrifugal compressor in which he studied various
axial locations for the leading edge of the splitter.

Multi-Stage Meridional Capability

Of the methods just described for analyzing hub-shroud flow with stream
function analyses, the methods of Marsh [45], Smith [48], Davis [49, 51], and
Hirsch [63, 64] all permit the analysis of multi-stage machines. The method
of Davis, however, was only demonstrated [49, 51] for a single full stage
machine. On the other hand, the methods of Katsanis [55, 56], and Bosman [59]
only apply to a single blade row.

Generation of Algebraic Equations

Most of the methods described above for both meridional and blade-to-blade
types of stream function analyses have used finite difference techniques to
generate the algebraic equations from the partial differential equation. The
methods of Marsh, Smith, Davis, Bosman, Katsanis, and Hafez all fall within
this class. Only the more recent methods of Hirsch and Adler use finite
element techniques to discretize the equations. As time goes by and more and
more automatic grid generators are developed for finite elements in
turbomachinery applications, this approach will no doubt be used more heavily.

Iteration Between Hub-Shroud and Blade-to-Blade Solutions

Most of the authors referenced above, except Marsh.who developed the first
through-flow method, have developed codes for both meridional and
blade-to-blade analyses. In some of these references details were given
concerning automated interactions between the S1 and S2 surfaces. Marsh,
Smith, Davis, and Katsanis described no such interactions. Bosman [59], Adler
[60], and Hirsch [64, 66] all described such an interaction between the two
types of surfaces. In cases where no interaction occurs, the midchannel
stream surface is either formed as a midchannel projection of the mean camber
line of the blade, or by altering that projection to accommodate at the
leading edge for incidence and at the trailing edge for deviation angle.
Where interaction does occur, the shape of the meridional stream surface is
obtained from some sort of integration or mass averaging of the flow on the
blade-to-blade surfaces from hub to shroud.

Type of Finite Difference Mesh

In all of the hub-to-shroud analyses mentioned above, there is a fair degree
of uniformity in the grids, with most using a.form of quasi-orthogonal grid
similar to those originally chosen by Marsh in the first meridional analysis.
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None are rectangular, and all have some sort of through-flow streamlines which
match the hub and shroud geometries coupled with a grid of lines nearly
orthogonal to these passing from hub to shroud. Generally details are not
presented concerning the generation schemes used for these grids, except by
Katsanis who uses the method of reference [70]. In some of the later methods,
particularly those due to Bosman, Adler and Hirsch, the grids coincide with
the blade edges giving a more accurate solution in those regions.

On the blade-to-blade surfaces a wider variety of meshes are used. In the
blade-to-blade methods of Katsanis [41], and Bosman [59] rectangular grids are
used with the inherent problems these bring near the boundaries. Rectangular
grids provide a great advantage in the interior regions of the flow domain.
Because of their regularity, the finite difference expressions are very simple
and uniform throughout such a grid. However, at the boundaries such grids
pose difficulties becausge of the irregularly sized mesh legs which intercept
the boundaries in both directions. In other methods, noteably Smith's [47,48]
and Davis [50], a channel or H-type grid is used with straight lines running
in the & direction and through-flow streamlines adhering to the shape of the
blade surfaces on the suction and pressure sides of the channel. Finally, for
the finite element methods, Hirsch uses second-order isoparametric
quadrilaterial elements in both his meridional and blade-to-blade solutions.
Adler, on the other hand, uses linear triangular finite elements.

Solution of the Algebraic Equations

Two principal techniques were used to solve the algebraic equations in most of
the references. The first involved classical matrix inversion techniques and
the second relaxation procedures. Of those that mentioned their methods for
solving the equations, only Katsanis used a relaxation method. Most of the
authors using direct inversion factored their matrices to lower and upper
triangular banded matrices. Once this is done, and the banded matrices are
stored, they can be applied efficiently from iteration to iteration without
any large expenditure of computer time.

Viscous Loss Corrections

-A nunber of different approaches are used with both the meridional and

blade-to-blade stream function analyses to simulate the effects of viscous
loss in these inviscid calculations. The first of these involves correlation
for loss as a function of various blade geometry, setting angle and loading
parameters. The second method involves a pre-specification-of a distribution
of total pressure from inlet to outlet through the blade row. This total
pressure is incorporated into the solution procedure and effects the velocity
accordingly. The final method employs the calculation of either endwall or
blade surface boundary layers. These boundary layers then alter the shape of
either the meridional or blade-to-blade channel thus effecting the internal
flow solution.

Transonic and Three-Dimensional Flows

The stream function method has always traditionally been applied to
two-dinensional and subsonic flows. Recently Hafez [13] has approached the
solution of the stream function equation in conservation form using technigues
traditionally applied to the full potential equation in that form. He has
found that traditional methods such as artificial compressibility can be
extended to the stream function equation. He has investigated methods to
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overcome the fact that the density is not uniquely determined in terms of the
mass flux, having instead both subsonic and supersonic solutions on either
side of the sonic point. He has applied the resultant method to flows over a
NACA 0012 airfoil at a variety of inlet Mach numbers in the transonic range.
He has also performed calculations about a 10% parabolic airfoil, as well as
transonic flows about a cylinder. These results have been compared to both
potential and Euler solutions. Hafez has Tikewise investigated the
application of stream function methods to three-dimensional flows through the
use of two different stream functions for this problem. This work is ongoing,
and as yet has not been applied to turbomachinery situations.

FULL EULER EQUATION ANALYSES

Explicit Time Marching Methods

Explicit solutions to the Euler equations have been under development for a
number of years, with applications for internal flow situations dating back to
the 1950's. An explicit method is one in which all spatial derivatives are
evaluated using known conditions at an old time level. Futhermore,
information at the new time level depends on information obtained from only a
small number of points. The resultant methods are simple and easy to code.
All such methods, however, are limited by the so-called Courant, Friedrichs,
and Lewy (CFL) stability limit, which states that the domain of dependence of
the numerical finite aifference scheme must contain the complete domain of
dependence of the original hyperbolic differential equations.

A major milestone in the development of explicit methods was the paper by
MacCormack [71]. This method has second order accuracy in both time and
space. It is a two-step predictor-corrector method, which alternates between
forward and backward differencing on the two steps. The ease with which this
method can be applied has led to many applications in the turbomachinery
field. One of the first applications of the MacCormack scheme to
turbomachinery was by Gopalakrishnan and Bozzola [72]. Gopalakrishnan applied
the basic MacCormack algorithm without modification to a transonic compressor
cascade with supersonic inlet flow shocking down in a blade row to subsonic
outlet flow.

Another application of the same scheme to turbomachinery was that of Kurzrock
and Novick [73]. This solution was obtained for a rotating blade-to-blade
stream surface, with radius change and stream channel convergence included.
The authors retained the viscous terms from the Navier-Stokes equations, with
an artifically enlarged viscosity coefficient in order to capture shocks.
They applied the method to transonic flow in a 20 compressor cascade and also
to the quasi-3D stream surface of a compressor rotor. Comparisons between
computed and experimental exit conditions were presented.

Thompkins [74] has applied the MacCormack algorithm to flow through a three-
dimensional transonic compressor rotor. This method can be applied to any
general compressor blade shape, including those with part-span shrouds.
Computer results applying this method to a transonic compressor will be
presented Tlater.

Another set of explicit methods is obtained by writing the conservation laws
in integral form and applying them to local control volumes surrounding each
grid point. The fluxes of mass, momentum and energy crossing the control
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surfaces are evaluated using the values from surrounding points. A first
order integration in time is then used to advance the dependent variables
forward to a steady state.

The first major application of this technique for turbomachinery was by
McDonald [75], who applied the method to 2D transonic flow in axial turbine
cascades. His approach includes the use of hexagonal elements surrounding
each grid point, as well as the replacement of the energy equation by a
statement of constant total enthalpy throughout the field. Computed and
experimental results were compared for a number of high-turning turbine
cascades with supersonic exits.

Denton [76, 77, 78] has developed a somewhat simpler method for both 2D and 3D
turbomachinery flows. Oenton eniploys quadrilaterial elements in two
dimensions and six-sided elements in 3U, which lead to simpler expressions for
his surface flux integrals. In order to ensure stability he uses upwind
differencing in the streamwise direction for the fluxes of mass and momentum,
while using downwind differencing for pressure. Central differencing is used
for all quantities in the pitchwise direction. This scheme has the property
that stability depends only on the axial Mach number, not on the absolute Mach
number which is more usual. This method has been successfully applied to a
wide variety of both axial and mixed flow compressor and turbine geometries.

Another first-order explicit method has been developed recently by Bosman and
Highton [79] for three-dimensional flow situations. The method employs two
separate overlapping grids on which density and internal energy are evaluated
at one set of nodes, and velocities are evaluated at the second set. This
overlapping scheme facilitates the evaluation of fluxes for the corresponding
control surfaces. Bosman updates his primative variables in a sequential
fashion. First, he evaluates the velocities, then density and pressure. A
new set of velocities is then obtained using the new pressures. Next,
internal energy and temperature are updated, which leads to a final update of
the pressure. At each stage in this process, the most recent values of all
primative variables are used to update the fluxes. The method has been
applied to both radial inflow turbines [79] ana to centrifugal compressor
impellers [80]. Results from *the radial turbine example will be presented
later.

Recent efforts have been devoted to improving both the accuracy and the speed
of explicit methods. A significant example of the former is Moretti's A -
scheme [81] which exploits concepts from the method of characteristics for
hyperbolic systems. In Moretti's scheme he rewrites the Euler equation so
that the right-hana sides involve derivatives of one-dimensional Riemann
invariants only. These derivatives are then replaced by one-sided differences
in directions corresponding to the projection of the associated
bicharacteristics onto the previous time plane. The equations are then
updated in time by a two-step predictor-corrector scheme similar to that of
MacCormack's. The result seems to be improved accuracy as evidenced by very
sharp shocks captured with modest numbers of grid points. The A -scheme by
itself only produces isentropic shocks unless it is corrected with a shock
fitting procedure, as is done in De Neef and Moretti [82]. The M -scheme
has been modified and applied to simple compressor and turbine cascades by
Pandolfi and Zannetti [83]. A similar method to the A -scheme has been
developed by Chakravarthy, et al. [84].
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Ni [85] has developed a new explicit method which is both accurate and quite
fast. He begins with a scheme that appears to be equivalent to the second-
order Lax-Wendroff procedure, (see Richtmyer and Morton [86]). However, by
using a spatially varying time-step, which is taken to be everywhere near the
CFL 1imit, he obtains a method which operates with the largest possible time
step in all regions. More importantly, this effectively biases the
differencing in such a way that the finite difference scheme has a domain of
dependence which approximates that of the underlying hyperbolic system. Ni's
method has been coupled with a multi-grid procedure which greatly speeds
convergence to a final steady state. The method was applied in [85] to
transonic flow in a turbine cascade as well as to an axisymmetric nacelle with
centerbody.

Another approach to speeding convergence of the explicit methods to a steady
state is to add purely artifical unsteady terms to the steady equations. When
properly constructed, these artificial terms can introduce a strong internal
damping into the resulting unsteady system. Such approaches are called
pseudo-unsteady. One such method has been employed by Essers [87] to compute
2D steady irrotational transonic flows. In this approach the artificial
unsteady terms are added to the continuity equation and to the irrotationality
condition. This results in two equations in the unknown velocities, with
density obtained from the isentropic relationship. These equations are solved
by an adaption of MacCormack's predictor-corrector scheme. Results are
presented by Essers for two-dimensional flow through a turbine rotor blade
section with supersonic exit. Effects of various treatments of the blunt
trailing eage are also presented.

Another pseudo-unsteady method has been developea by Viviand and Veuillot [88,
89]. In this technique the energy equation is replaced by the statement of
constant total enthalpy, and the pressure is then expressed as a simple
function of density and velocity. The resultant system includes the unsteady
continuity and momentum equations. These are solved by a generalization of
MacCormack's predictor-corrector scheme. Since the system has no unusual
damping mechanism beyond the normal damping due to truncation errors and
simple artificial viscosity, it relies on careful treatment of waves at the
boundaries in order to reach a steady state. A three-dimensional version of
this method has been developed by Brochet [90, 91] and applied to flow in a
supersonic compressor cascade with converging endwalls and to transonic flow
in a fan rotor. Results from the cascade will be presented later.

Implicit Time Marching Methods

Implicit time-marching methods for both the Euler and the Navier-Stokes
equations date from the mid-1970's. In implicit methods the equations are
backward differenced in time, and the non-linear terms at the new time are
Taylor-expanded about their values at the previous time level. This produces
a system which is linear in the unknowns at the new time level. The spatial
derivatives are then approximated by finite differences, resulting in a large
system of coupled linear algebraic equations for the unknowns at the new time
level. In each of the methods to be discussed here, these equations are
solved by block alternating-direction-implicit (block ADI) techniques. In
this approach the matrices are first factored into a sequence of matrices for
one-dimensional problems, each of which can be inverted by a tri-diagonal
routine. The matrix elements in these one-dimensional problems are in turn
simple block matrices whose size is equal to the number of unknowns at each
grid point. The solution at each time-step proceeds non-iteratively by first
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moving along the grid lines in one direction, inverting a tri-diagonal matrix
for each line. It then proceeds similarly in each of the other physical grid
directions of the problem.

The first of these methods was introduced by Briley and McDonald [92, 93],
primarily for the compressible Navier-Stokes equations. Beam and Warming [94]
independently developed a very similar method for the Euler equations. Briley
and McDonald [95] have since shown that when the Beam and Warming algorithm is
written in the "delta" form to solve for the corrections to the unknowns at
the new time levels, the two methods have identical linearized block implicit
matrices.

Steger [96, 97] has developed a curvilinear coordinate version of the
Beam-Warming algorithm for viscous as well as inviscid flows, and has applied
it to both isolated airfoils and cascades in two dimensions. Shamroth, et al.
[98] has applied the Briley-McDonald procedure to laminar and turbulent flow
through a cascade. Finally, Fruhauf [28] has applied the Beam-Warming
algorithm to solve the Euler equations for both subsonic and supercritical
flow through cascades.

In all of the time-marching explicit and implicit methods some form of
numerical damping is present in the solution procedure which smoothes the
oscillations that occur in the vicinity of strong shock waves. Most of the
methods have added the damping explicitly in the form of a higher-order
differencing term. However, in all of these cases the natural truncation
errors that occur as the result of any finite difference procedure will add
their own damping. Since the form of these damping terms varies considerably
from method to method we will not discuss the details for any particular
application.

New Methods Under Development

A number of methods are under development in order to achieve more accurate
and faster solutions for the Euler equations. Delaney [99] is developing a
hopscotch method for solving the Euler equations for application to cascades.
The method appears to be significantly faster than the original MacCormack
algorithm.

Denton [100] has extended his earlier Euler method by employing a simpler more
accurate differencing scheme. He has also increased the convergence speed
through the use of a simple multi-grid procedure. He has applied the method
to 2D transonic flow in both compressor and turbine blade rows.

Johnson [101], in order obtain the benefits of existing rapid solution
procedures for second-order partial differential equations, has developed a
new technique in which the first-order steady Euler equations are imbedded in
a second-order system. Published results to date have been for the transonic
small disturbance equations and the full Euler equations in subcritical flow.

Both Ecer and Akay [102] and Lacor and Hirsch [103] have developed methods
which are the eguivalent of solving the full steady Euler eguations. In these
two approaches the velocity is split into potential and rotational parts. The
resultant system of equations includes a second order equation for a potential
function which is obtained from the continuity equation, and a pair of first
order convective equations describing the evolution of two scalars which
together determine the rotational part of the velocity field. These are
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solved as a coupled system. Both of these methods have used finite element
formulations. Ecer has applied his technique to 2D transonic flow in a
channel with a bump and to flow around a 2D cylinder. Hirsch applies his
method to calculate 3D flow in a rectangular elbow with 900 of turning.

Finally Chang and Adamczyk [104] have developed a new semi-direct algorithm
for computing three-dimensional inviscid shear flows. This algorithm is
composed of two iteration loops. In the inner loop, the velocity and density
fields are evaluated for specified vorticity, total enthalpy and entropy
fields. This evaluation is reduced to the solution of a pair of Poisson
equations in the computational domain which are solved by three-dimensional,
fast, direct Poisson solvers. In the outer loop, the vorticity, total
enthalpy and entropy are obtained by solving convective equations for a pair
of scalars in a manner similar to that of the previous two references. In the
present work, finite difference procedures are used throughout. To date the
method has been applied to study the development of inviscid shear flows in
turning channels.

Applications of Euler Methods

Several results will be presented to indicate the kinds of calculations which
are being performed with the various Euler equation methods. The method of
Thompkins [74] has been applied at NASA by Chima and Strazisar [105] to
calculate the three-dimensional flow field within a transonic axial compressor
rotor at design speed, and to compare those results to laser anemometer
measurements at maximum-flow and near-stall operating points. Figure 26
indicates Mach number contours for the measured laser anemometer results at a
section 15% from the tip of the blade. These results can be compared to the
calculated contours in Figure 27 at the same location. These figures indicate
a pronounced bowwave and passage shock system, and show excellent agreement
between tne measured and calculated results.

The method of Bosman [79] has been applied to a radial inflow turbine which
turns through 900 of deflection in the meridional plane and has a 700
deflection in the wa=- © plane at the blade tip. Such a geometry will
naturally produce large three-dimensional secondary flows, and une of the
strong points of the Bosman tecinique is that it picks up these natural
inviscid vortex motions in such a three-dimensional geometry. Figure 28
indicates for the design point condition the calculated streakline pattern on
the hub section of the blade. Some of these streaklines have been joined to
form a streamline which is seen to migrate from mid-passage over to the
suction surface of the blade. A migration in the opposite direction was
calculated by Bosman along the tip. Similar calculated patterns are indicated
for the suction and pressure sides of this turbine rotor in Figure 29. Figure
30 compares the mid-passage-flow shroud static pressure distribution with
experimental results and with two-dimensional calculations using a blade-like
hub-shroud stream surface. The two-dimensional results have strong deviation
from the experiments, especially in the trailing edge region, while the
three-dimensional calculation agrees with tke experiments quite well.

Brochet [90] applies his method to the calculation of flow through a
supersonic compressor cascade with subsonic axial velocity. This cascade has
converging sidewalls in the throughflow direction, with a contraction ratio of
0.7. The calculation was obtained for an upstream Mach number of 1.5 and a
compression ratio of 2.0. Calculated pressure contours, related to upstream
stagnation pressure, are presented in Figures 31 and 32 for the plane of
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symmetry section and for the converging wall blade section. For the back
pressure chosen, a shock is calculated which spans the entire passage from one
converging wall to the other. At mid-pas.age the calculated flow field and
shock structure agree quite well with two-dimensional calculations obtained by
taking into account the stream channel convergence. This is no longer true,
however, near the converging wall where only the truely three-dimensional
mode1 appears capable of representing phenomena correctly.

Finally, the method of Ni [85] has been applied to flow past a VKI gas turbine
rotor blade, and compared to data by Sieverding [106]. Figure 33 presents
calculated and experimental surface Mach numbers for this turbine rotor. The
agreement is excellent on both blade surfaces except for small deviations very
close to the shock impingement point on the suction side of the blade. Figure
34 indicates the mesh used in the calculation and shows the calculated Mach
number contours. It also indicates the experimentally determined shock
locations, showing that the shock is generated at the trailing edge.
Calculated and experimental shock locations are in good agreement.

VISCOUS METHODS

Full Viscous Equations

Most flows of engineering interest are adequately described by the
compressible Navier-Stokes equations. These equations, in two-dimensional
conservation form and Cartesian (x, y) coordinates, are written
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Here gu is the viscosity coeff1c1ent and Y, is the coeff1c1ent of therma]
conduCtivity.

The above equations are valid for turbulent flows, but such computations are
impractical today due to the large range of length scales in the turbulent
spectra. The above equations are replaced by time-averaged equations and the
Reynolds stresses, e.g. = €w/u?, are modelled through the addition of
auxiliary algebraic or différential relations. If a Boussinesqg or "eddy
viscosity" model is adopted for the Reynolds stresses, the above equations
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will hold for the mean fluid variables s, W, VU & , with /A and )‘\
replaced by their effective turbulent values.

For practical engineering flows with curved boundaries, the above Cartesian
equations are transformed to curvilinear body-fitted coordinates. This adds
considerable complexity to the equations, especially so for the viscous terms.

For steady flows the time derivatives are often retained as an aid in the
solution process. The resulting time-averaged Navier-Stokes equations in
curvilinear coordinates are quite difficult to solve for a number of reasons.
First, there are many disparate length scales which must be resolved. These
may be associated with boundary layers, wakes, vortices and shock waves. For
complex flows this requires a very large number of grid points even for a
minimum description of important phenomena. Second, a large number of
guantities are needed at every grid point in the field. For example, in
three-dimensional flow, one might need five primative variables, two
turbulence properties, and nine or more metric derivatives. The above
requirements lead to the need for a very large computer memory and associated
long running times to achieve a solution. I7 sufficient computer core is not
available, the metric derivatives may have to be re-computed at every time
step or iteration, which adds to the overall run time. Third, the numerical
problems associated with the solution of the first order inviscid Euler
equations are still present in viscous problems especially for high Reynolds
numbers. One such problem often occurs when the local cell Reynolds number,
?\A.ADL// , exceeds 2 and the solution becomes either unstable or highly
inaccurate. The common "fix" of locally switching from central to first order
upwind differencing of the convective term can introduce excessive numerical
diffusion. Finally, we note in some cases with steady boundary conditions a
steady solution may not even exist.

Many techniques have been developed over the years for viscous problems which
solve simplier sets of equations. We consider only those for steady flows,
and group them into two categories.

Partially Parabolic Approximation

The first of these is the so-called partially parabolic approximation. This
assumes the existence of a predominant flow direction, which is known a priori.
Therefore, flow separation is excluded. The viscous terms are simplified by
neglecting diffusion in the main flow direction. This is much like the
boundary layer approximation. In two dimensions, if x_ is the flow
direction, the vector R is dropped from Eq. (20) and '§N§/51cis dropped

from Tux. Both terms in © are retained as they are Comparable in
magnitude for compressible flow. For three dimensions see Caretto, Curr, and
Spalding [107]. One variable, usually the pressure, is treated as elliptic
and stored at every grid point. The remaining variables, eg. W, U*, £ in 2D,
are treated as parabolic and stored on only two or three cross-sections at a
time. Starting from an approximate pressure field the momentum and energy
equations are marched in the flow direction. The variables are corrected
locally to satisfy continuity. After each marching sweep, the pressure field
is updated by solving an elliptic (Poisson) equation on the entire grid. This
sequence of marching followed by the pressure update procedure is repeated
until convergence. This type of analysis is applicable to many internal flows
in the absence of streamwise separation. This includes those in turning ducts
and turbomachinery blade rows proviaded that the details of the flow in the
leading and trailing edge regions can be glossed over. The efficiency of such
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computations should compare quite favorably with those of time marching
procedures if convergence can be obtained in a moderate number of marching
sweeps, perhaps under 50 for a three-dimensional problem. This would be
especially true if some rapid procedure such as multi-grid is used to solve
the elliptic equation for the pressure.

Fully Parabolic Approximation

Next we consicer the fully parabolic approximation. This uses the same
assumptions as the above with regard to the predominant flow direction and the
neglect of viscous diffusion in this direction. In addition, upstream
transmission of pressure disturbances generated during the calculation is
assumed to be negligible. An initial pressure field, which is stored on the
full grid, is assumed to contain all of the effects of boundary curvature.
The remaining variables, including the pressure correction, are stored on only
two or three cross sections at a time. The momentum and energy equations, or
an equivalent set, are marched a single time in the flow direction. The
variables are corrected locally at each cross section in order to satisfy
continuity. This type of procedure should be applicable to flows in duct-1like
geometries with moderate turning in the absence of streamwise separation.
Since only a single marching sweep in employed, these computations should be
orders of magnitude faster than for any time marching procedure.

' {

Both of these parabolic approximaticns are capable in principle of predicting
strong secondary flows provided that local continuity is well satisfiea on
each cross section. Both of these can even treat modest amounts of streamwise
separation if the Flugge-totz and Rehyner approximation is adopted, i.e.
streamwise velocity is artificially prevented from going negdtive in the
convective term only. ’

We now proceed to discuss methods in each of the above categories starting
with the fully parabolic approximation. Within each category, we consider the
main elements of a solution procedure and in so doing present what in our view
are the significant distinguishing features of each method.

FULLY PARABOLIC METHOUS

Main Parabolizing Assumption

A1l of the methods in this category require an additional assumption, beyond
the neglect of streamwise viscous diffusion, in order to obtain a fully
parabolic system of equations. In the usual procedure a bulk pressure
correction, WF; , assumed uniform over each cross section, is introduced into
the streamwise momentum equations. This correction is determined so as to
ensure the correct mass flux through each cross section. The cross flow
equations, on the other hand, retain a separate pressure correction P which
is permitted to vary over the cross section. This procedure is employed by
Patankar and Spalding [108], Briley [109], Ghia et. al. [110], Roberts and
Forester [111], and Briley and McDonald [112].

A different procedure is employed by Anderson [113] in 2D and Anderson and
Hankins [114] in 3D. The equations are parabolized by writing them in an
approximate intrinsic coordinate system which could be obtained for example
from an incompressible potential flow solution. The assumption of small
velocities normal to the streamwise grid lines eliminates convective
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derivatives and viscous terms in the transverse momentum equations. The
resulting system is fully parabolic with characteristic surfaces coincident
with the cross-planes. Hence, no bulk pressure correction is required.

Satisfaction of Local Continuity

We next consider the technique for satisfying local continuity over a
cross-section. Patankar and Spalding [108] introduce approximate relations
between the velocities and pressure corrections which are obtained from the
transverse momentum equations. Substitution of these into continuity yields a
2D elliptic equation which is solved over the cross-section. Another
approach, adopted by Briley [109] and Ghia et. al. [110], assumes a 2D
potential @ for the transverse velocity corrections. Substitution of this
potential into continuity yields a 20 elliptic equation for ¢ in the cross-
plane. The divergence of the transverse momentum equations provides a second
elliptic equation for the pressure correction. Roberts and Forester [111]
work directly with the divergence of the transverse momentum equations which
gives a 2D elliptic equation with a source term related to the non-satisfaction
of local continuity. This equation is solved iteratively with the momentum
equations until continuity is also satisfied. This technique is related to
that of Harlow and Welch [115] for 2D time-dependent flows. Briley and
McDonald [112] split the transverse velocity into irrotational and rotational
parts described by a 2D potentia] ¢ and stream function \V ,respectively.
Substitution into continuity gives a 20 elliptic equation for

Substitution into the definition of streamwise vorticity g gives a 2D
elliptic equation for \v'. This is solved coupled with the transport equation
for ob;vwnch replaces both transverse momentum equations. Anderson [114]
uses the same splitting as Briley ana McDonald and solves for Q s

and )% . However, the Poisson equation for pressure P is added to the
system.

Approximation by Algebraic System

All of the methods considered here use finite difference techniques to
approximate the viscous equations with an algebraic system. First order
upwind differences are used in the main flow direction and secund order
central differences in the cross-plane. Within this common framework, a few
variations deserve comment. Patankar and Spalding [108] use a staggered grid
similar to that of Harlow and Welch [115]. Velocity components and pressures
are stored at different locations within a grid cell in oraer to simplify the
differencing of the convective terms. The other methods store all variables
at common locations within the gria. For large transverse velocities both
Patankar and Spalding [108] and Ghia et. al. [110] switch to upwind
differencing in the cross-plane. Roberts and Forester [111] add explicit
local damping to deal with this problem. The other methods have not as yet
encountered this problem. Anderson [113] in his 2D method applied Keller's
box scheme to a system of first order partial differential equations. In the
current version [114] for 3D flows, he goes back to a system of second order
equations and uses differencings similar to the other methods.

Solution of Algebraic System

Finally, we consider the techniques for solving the algebraic system of
equations at each cross-section. Patankar and Spalding [108] use a completely
non-iterative scheme. Provisional velocity components are obtained from the
momentum equations by an ADI marching technique. The bulk correction rL is
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obtained by satisfying a global mass balance over the cross-section. The
local correction P is obtained from the 20 elliptic equation by several ADI
sweeps. AIll velocities are next corrected using the approximate relationships
between velocity and pressure corrections. Finally, the energy equation is
solved again by ADI. The procedures of_priley [109] and Ghia et. al. [110]
are similar to the above, except that |o. is determined iteratively with the
streamwise velocity and the 20 elliptic equations for cb and P, are solved by
point SOR. The overall process still is essentially non-iterative at each
cross-section. Roberts and Forester [111] follow a sequence similar to that
of Briley, without the equation for @ . However, the entire sequence is
repeated iteratively at each cross-section using updated pressures in the
momentum equations until convergence is achieved. Briley and McDonald [112]
solve for the streamwise velocity, density, and total enthalpy with a coupled
block ADI technique and iterate to determine ]F; . Next scalar ADI is used to
find the potential . Finally, a coupled block ADI scheme is used to

find Y and We while satisfying the no-slip condition at the wall. Anderson
[114] solves a fully coupled system for primary velocity, Q . X 3 ub;, 5
and total enthalpy. At present point SOR is used with a 6 x 6 block inversion
at each point.

Application of Methods

The methods of this section have been applied to a variety of flows. The
method of Patankar and Spalding [108] has been used for developing laminar
flow in a square duct with a moving wall [108] and a round turning duct

[116]. Briley [109] calculated the developing laminar flow in rectangular
ducts and included the effects of transverse buoyancy. The method of Ghia et.
al. [110] has been applied to the developing laminar flow in straight ducts of
polar cross-section [110] anu to turning ducts of rectangular cross-section
[117]. Roberts and Forester [111] computed the turbulent flow in a
rectangular-to-round diffusing transition duct. The method of Briley and
McDonald [112] has been used for laminar flows in a turning duct similar to a
turbine blade passage [112] and for turbulent flow in a rectanguiar turning
duct [118]. Finally, Anderson [113] has computed several 20 turbulent flows
in axisymmetric ducts with curved walls and Anderson and Hankins [114] have
applied their 3D method to the hot turbulent flow in a turbofan forced mixer
nozzle.

To illustrate the capability of these methods we present results obtained by
Kreskovsky, Briley, and McDonald [118] for turbulent flow in a rectangular
duct with a 900 bend. Figures (35) and (36) show computed primary and

radial velocity profiles, for a cross-section 77.50 around the bend,

compared with the LDV measurements of Taylor et. al. [119]. Note the very
large radial velocity near the suction side of the channel. The quantitative
disagreement with the data may be due in part to the large streamwise step
used in the computation.

Two general comments would seem in order at this point. First, all of the
methods in this section seem promising provided that small enough streamwise
steps are used in the computation and sufficient pains are taken to ensure
that local continuity is satisfied accurately enough for correct secondary .
velocities to form. Second, from the standpoint of efficiency a non-iterative
procedure would seem to be preferable.

Finally, we note that Baker and Orzechowski [120] have developed a finite
element parabolic method. Like the methods of Briley and Ghia et. al., it
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solves 20 elliptic equations for ¢ and b . Like that of Anderson it uses
the small transverse velocity assumption to parabolize the system. As of this
writing, however, we are not sufficiently familiar with the operation of the
method to discuss it further.

PARTIALLY PARABOL IC METHOUS

Satisfaction of Local Continuity

Three of the four methods considered in this section are similar to fully
parabolic methods and hence our discussion can be somewhat abbreviated. We
first consider the satisfaction of local continuity. both Pratap and Spalding
[121] and Moore and Moore [122] employ approximate relations between the
velocity and pressure corrections and adjust these variables at each
cross-section in the same manner as Patankar and Spalding. However, in
successive passes, as the pressure field is refined, these approximate
corrections should approach zero. Chilukuri and Pletcher [123] correct the
velocity field at each cross-section through a potential & in a manner
similar to that of Briley and Ghia et. al. By assuming (b to be zero at the
downstream station the method simultaneously corrects the primary velocity
without the need for a bulk pressure correction. As the pressure field is
refined in successive passes 4) should approach zero. Dodge [124] splits
the velocity into viscous and potential parts by setting

__Q'-“-VQ)*-U (&3

In this expression U is obtained by marching the momentum equations. ¢ is
updatea after each full sweep by substituting the above expression into the
continuity equation and solving the resulting three-dimensional elliptic
equation. Unlike the other methods. however, qp does not approach zero with
successive passes through the grid.

Elliptic Pressure Update

The technique for updating the elliptic pressure field is the main
distinguishing feature of thesc methods. Pratap and Spalding [121] use the
pressure field obtainead from the continuity corrections during the march. An
ad hoc means of distributing these corrections upstream is mentioned in the
paper but not discussed. Moore and Moore [122] obtained an elliptic pressure
correction equation from an approximation to the divergence of the vector
momentum equation. This is solved after each march of the viscous equations
using source terms calculated and stored during the march. The source terms
and therefore the corrections approach zero after many marching passes through
the field. Chilukuri and Pletcher [123] use the pressure Poisson equation
obtained from the divergence of the full momentum equation. This is solved
after each march with source terms again evaluated and stored during the
march. The new pressure replaces the old. Dodge [124, 125] introduces an
approximate inviscid relation between the pressure and the velocity

potential Q . Once the 3D elliptic equation is solved for ¢ , after each
march, the pressure P is obtained from the algebraic relation.

Approximation by Algebraic System

As in the previous section, finite aifference techniques are used in each
method to approximate the differential system by a large algebraic system. In
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the marching equations first or second order upwind differences are used in
the primary flow direction and second order central differences in the cross-
plane. ine main distinguishing features are discussed briefly. Both Pratap
and Spalding [121] and Chilukuri and Pletcher [123] use the same staggered
grid employed by Patankar and Spalding. The velocity components and the
pressure are each stored at different locations in a grid cell. Moore and
Moore [122] use a different staggered scheme with all velocity components
stored at common locations and only the pressure corrections stored at
different places in the grid. Dodge [125] stores all variables at common grid
locations. In addition he introduces finer subgrids near the walls in order
to resolve the viscous layers. The elliptic pressure update equations of both
Moore and Moore [122] and Chilukuri and Pletcher [123] use central differences
in all directions. The global potential equation of Dodge [125] uses the
mixed upwind-central differencing of reference [18].

Solution of Algebraic System

The solution techniques for the algebraic systems are also similar to those of
the preceding section. A1l methods use an ADI technique to obtain the
velocity components from the momentum equations during the march. Since
Chilukuri and Pletcher [123] solve 2D problems, they only need to perform a
tridiagonal matrix inversion in one direction. Pratap and Spalding [121] and
Moore and Moore [122] use ADI to solve the pressure correction equations at
each cross-plane. Only the Moore's, however, iterate with the momentum
equations until the pressure corrections are acceptably small. Both Moore and
Moore [1221 and Chilukuri and Pletcher [123] use point relaxation procedures
to solve the elliptic pressure equations. The Moore's omit points in the near
wall region of the boundary layer in their method. Dodge [124., 125] obtains
separate marching solutions on each of his near wall subgrids and couples
these to the interior marching solution at their common boundaries. The
global potential equation for q: is solved by the transonic relaxation
technique of reference [18], with the near wall subgrid points omitted from
the field. Thus, Dodge is the only method able to compute viscous transonic
flows with shocks.

Application of Methods

The partially parabolic methods have been applied to a somewhat broader range
of flows than those of the previous section. The method of Pratap and
Spalding [121] has been used for 3D turbulent flow in rectangular turning
ducts [126]. Moore and Moore have computed 3D turbulent flow in an
accelerating rectangular elbow [127] and two centrifugal impellers [128,

129]. Chilukuri and Pletcher [123] computed 2D Taminar flow in the inlet of a
straight channel over a broad range of Reynolds numbers. Dodge [125] has
calculated 3D turbulent flow in a rectangular diffuser and a low aspect ratio
turbine stator. We show results from two of these computations as examples of
the state-to-the-art.

Stanitz et al. [130] measured the turbulent flow in an accelerating
rectangular elbow designed by means of potential flow theory. The planform is
shown in figure (37). Moore and Moore [127] computed this flow for cases with
exit Mach numbers of 0.26 and 0.4 in which spoilers were used to thicken the
incoming endwall boundary layers. Figure (38) shows computed and measured
wall static pressure on four potential surfaces from inlet to exit. Figure
(39) shows computed and measured total pressure loss contours at the exit
plane downstream of the bend.
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Dodge [125] has computed 3D turbulent flow through a highly-loaded
Tow-solidity high-aspect-ratio turbine stator. His results are compared to
the measurements of Waterman [131]. Figure (40) shows computed contours of
static pressure ratio on the blade suction surface. Figures (41) and (42)
show computed and measured static pressures for the hub and tip blade
sections, respectively.

In both of these cases there is good qualitative and fair quantitative
agreement between the computations and the measurements. These results are
encouraging, but much work remains to be done. In particular, the development
of an accurate and efficient global pressure update procedure for transonic
viscous flows with shock waves would be a major accomplishment.

ELLIPTIC METHODS

A1l of the methods in this category are capable of computing separated flows.
Some of them employ parabolic approximations in the viscous terms only. The
utility of these methods in the analysis of separated flows justifies their
inclusion in the present section. The methods which solve the compressible
equations in conservation-law form have shock-capturing capability. This is
not generally available in the parabolic methods to date. In the absence of
separation or shock waves, the elliptic methods may or may not be more
accurate than the parabolic ones. This is primarily dependent on the accuracy
of the differencing of the inviscid terms in the equations. Most of the
methods now in use for internal flows are adaptions of techniques discussed
here. However, other methods, especially those now under development for
external aerodynamic applications, will undoubtedly be adapted for internal
flows in the near future.

Methods for Steady Equations

We consider first, techniques for solving the steady viscous equations. A
popular method introduced by Caretto et al. [132] is based on that of Patankar
and Spalding [109]. The method uses the so-called SIMPLE algorithm which
stands for Semi Implicit Method for Pressure Linked Equations. In this
technique an initial pressure field is substituted into the momentum egquations
which are in turn solved for provisional values of the velocities. An
approximate velocity-pressure correction relation is then substituted into
continuity to give a 3D equation for pressure corrections. The corrected
pressure field, underrelaxed for stability, is then substituted into the
momentum equations to continue the process. Many variants of this method have
been studied by Raithby and Schneider [133]. They found that reintroduction
of the time derivatives, with backward time differencing, into the momentum
equations increased the convergence rate of the algorithm. Of course, this
converts the method to an implicit time marching procedure.

A different procedure has been used by Walitt et al. [134]. The 3D steady
equations are transformed to a 2D unsteady system by treating one direction of
the problem as time-like and evaluating the spatial derivatives in this
direction from a previous solution. The equations are solved by marching
through the field in the time-like direction. After one complete sweep, the
time-1ike direction is switched and the equations are marched in a new
direction. Since an explicit procedure is used to solve the equations on each
cross-plane, very small steps in the marching direction are required in order
to assure stability. This method has been applied to a centrifugal impeller
[134] and to flow in a supersonic compressor cascade with splitter vanes [135].
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Methods for Unsteady Equations

We next consider techniques for solving the unsteady viscous equations. These
are closely related to explicit and implicit time marching methods for the
Euler equations, although in some cases the viscous method came first. In an
explicit technique all spatial derivatives are evaluated at a previous time.
Hence, the solution proceaure is unchanged by the addition of viscous terms.
The boundary conditions on the velocity are changed in order to enforce no-
slip at solid walls. The close mesh spacing, necessary to resolve the
boundary layers, imposes severe time step restrictions in order to maintain
numerical stability (CFL Timit). Bosman and Highton [136] have developed an
explicit viscous method closely related to the Euler method of reference

[79]. The intended application here was to 3D subsonic flow in rotating
machinery. Shang et al. [137] have implemented a 3D version of MacCormack's
explicit predictor-corrector scheme [71] on a vector computer. The
application here was to supersonic shocked flow in a rectangular wind tunnel.
Spradley et al. [38] have also implemented a 30U explicit method on a vector
computer. The time updating was quite similar to the MacCormack scheme.
However, the spatial discretization was obtained by means of the general
interpolants method (GIM), [139]. The application here was to supersonic flow
in an exhaust nozzle.

In an implicit technique, the non-linear spatial derivative terms are
linearized about the previous time, and backward differencing is used on the
time derivative. The resulting coupled linear system is modified by the
addition of the viscous terms. However, for central differencing of both
inviscid and viscous terms, the matrix structure remains the same as for the
Euler equations. These implicit techniques permit high resolution of the
viscous layers without severe time-step restrictions. Briley and McDonald
[92, 93] and Beam and Warming [94] have developed similar implicit techniques
which were described earlier. Briley and McDonald have concentrated on
viscous flows from the outset. Steger [96] has implemented the Beam and
Warming procedure in a 20 curvilinear-coordinate, viscous code, which is
applicable to a broad range of flow conditions including those in
turbomachinery. In addition, Steger drops the streamwise viscous diffusion
terms in the equations.

Ghia et al. [140] have developed what is termed a semi-elliptic implicit
method for 2D incompressible flow. They first present a fully elliptic method
that solves the compliete momentum equations together with a Poisson equation
for the pressure. Continuity is enforced by driving one of the source terms
in the Poisson equation to zero in the manner of Harlow and Welch [115]. The
semi-elliptic method is obtained by dropping the streamwise viscous diffusion
terms. This in turn permits a simpler solution procedure for the momentum
equations.

Approximation by Algebraic System

A1l but one of the elliptic methods use finite difference techniques to
approximate the differential equations by a large algebraic system. Spradley
et al. [ 138] use the GIM formulation which is similar to the finite volume
approaches discussed earlier. In this approach the dependent variables are
represented by interpolating functions over the interior of local mesh
volumes. The algebraic system is obtained from weighted integrals of the
differential equation over each mesh volume. Only Caretto et al. [132] use
the staggered grid differencing scheme discussed earlier in reference to
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Patankar and Spalding [108]. Bosman and Highton [136] employ the staggered
arrangement discussed earlier as part of their Euler method [79]. A1l the
other methods store all of the dependent variables at common yrid locations.
The hybrid central-upwind differencing used by Patankar and Spalding has also
been used by Caretto et al. [132] and Briley and McDonald [93]. Ghia et al.
[140] has used upwind differencing of the streamwise convective term
everywhere in the flow field.

Solution of Algebraic System

The techniques for solving the algebraic system of equations have been
discussed earlier, either in connection with the associated Euler methods or
in the two sections on parabolic methods. Only a few comments are made here.
A11 of the explicit time marching procedures as well as the explicit spatial
marching method of Walitt et al. [134] use local update schemes somewhat akin
to point Jacobi relaxation. Values at the new time depend only on a few
surrounding values at the previous time. This is a slowly converging

process, but it is easily coded. All of the implicit time marching procedures
as well as the steady method of Caretto et al. [132] use ADI techniques to
solve at least the momentum equations. These technigues can be made very
fast, especially if the time-step is permitted to vary both in time and space,
see e.g. McDonald and Briley [141]. Finally, for completeness, we note that
the elliptic pressure equation has been solved by ADI, Caretto et al. [132],
and by point SOR, Ghia et al. [140].

Application of Elliptic Methods

To illustrate the state-of-the-art for elliptic methods in internal viscous
flows, we present results from four of the analyses discussed above. The
actual range of applications of the methods is too broad to be covered here.

Humphrey et al. [142] have computed laminar flow in a square turning duct
using a method based on that of Caretto et al. [132]. Results were compared
with LDV measurements by the same authors. Figure (43) compares calculated
and measured (circles) streamwise velocity profiles at mid-span and
quarter-span for several cross-sections progressing from upstream to
completion of the 900 bend. Tle disagreement at the last three stations may
be due to inadequate grid resolution (10 x 15) over the cross-section. A
similar computation and comparison with data for turbulent flow in the same
duct is presented in reference [143].

Buggeln et al. [ 144] have used the method of Briley and McDonald [93] to
compute both laminar and turbulent flow in curved ducts, channels and pipes.
We present comparisons with the data of Taylor et al. [119] for the same
turbulent flow case computed by Kreskovsky et al. [118] with the parabolic
method of Briley and McDonald [112]. This also is the same duct used for the
studies reported in references [142] and [143]. Figure (44) shows comparisons
for streamwise velocity profiles at the symmetry plane for several stations
upstream of, around, and downstream of the bend. Figure (45) shows
comparisons for several radial velocity profiles at the 77.50 station.
Comparing Figure (45) with Figure (36) shows considerable agreement between
the two methods.

Shang et al. [137] have computed the 3D flow in a square wind-tunnel diffuser
for a case with a normal shock wave system interacting with the turbulent
tunnel-wall boundary layer, Figure (46). Figure (47) shows computed Mach
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number concours in the plane of symmetry. Figure (48) shows comparisons with
the LDV measurements of Abbiss et al. [145] for the streamwise velocity in the
symmetry plane through the interaction region. The agreement is quite good.

Finally, Ghia et al. [140] have computed 2D laminar flow in a channel with a
large constriction using both their fully elliptic and semi-elliptic methods.
Figure (49) shows computed streamline contours for a case with a large
separation zone on the downstream side of the constriction. The upper part of
the figure shows an enlargement of the central portion of the full channel
shown below. Figures (50) and (51) show computed results of both methods for
wall shear and wall static pressure, respectively. The agreement between both
methods is excellent even for the wall shear in the separated region on the
lower wall.

In general these methods all perform quite well. The disagreement with
experiment where it exists is probably due to inadequate grid resolution.
However, much work remains to be done to determine the numerical accuarcy of
all these methods. For 3D flows this can be a very expensive process.

TURBULENCE MODEL ING

The recently completed AFOSR-HTTM-Stanford Conference on Complex Turbulent
Flows was organized for the purpose of providing an assessment of the
state-of-the-art in turbulent flow prediction, especially that of turbulence
modeling. A wide range of test flows with reliable experimental data was
assembled and computational groups were invited to submit computed results for
these flows to the Conference. The comparisons of these results with the data
together with the findings of the Evaluation Committee will be presented in
reference [7]. We confine ourselves to a few observations on these
proceedings.

The current focus in turbulent modeling seems to have shifted from the one and
two equation eddy viscosity models of a few years ago to methods which predict
the Reynolds stresses themselves. Many results obtained with these models
were presented at the Conference. However, while the promise of these models
is considerable, at the presert they show little or no advantage over the
simpler treatments. This finding is especially true for separated flows.

The results of any turbulent flow prediction depend at least as much on the
numerical technique as they do on the turbulence model. For most of the flows
included in the conference, it was not possible to separate the limitations of
the numerics from those of the turbulence models. Grid refinement studies
were presented in only a few cases and many of these were inadequate. Hence,
in judging the merit of any turbulent flow computation, the method had to be
considered as an amalgam of numerical procedure and turbulence model.

In many internal flows, and especially in those through turbomachinery
components, as a result of the rapid turning of the fluid, the evolution of

the flow is dominated by the balance between strong pressure gradients and
centrifugal forces. Turbulent mixing, though present, plays a lesser role.
Indeed the development of complex secondary flows in these components, while
dependent on the presence of shear layers due to upstream viscous effects, is
an essentially inviscid phenomenon. Hence, if one can develop a sufficiently
accurate and efficient numerical technique for solving the partial differential
equations of fluid dynamics, good predictions of such flows should be possible
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even with a relatively simple turbulence model. This view is supported by the
observations of Humphrey et al. [143] in their studies of turbulent flow in
turning ducts.

CONCLUDING REMARKS

The current status of potential flow methods for turbomachinery is quite
advanced. A large number of codes have been developed for analyzing
two-dimensional transonic flow with shocks on blade-to-blade surfaces. While
an order of magnitude speed up in computing time may be possible with the
latest procedures, many of these codes run fast enough for routine use by
designers. In addition, we are aware of three codes which can compute
three-dimensional potential flow in rotors. One of these has demonstrated
transonic shock-capturing ability. Most of the stream function codes for
turbomachinery applications are based on classical relaxation or matrix
inversion techniques. They solve for subcritical flow on blade-to-blade or
hub-to-shroua surfaces. Recently, however, a transonic stream function method
has been developed and one application to a cascade is under development. In
the case of the primitive variable Euler equations a large number of codes
have been developed for turbomachinery applications. Most of these solve for
two-dimensional, blade-to-blade flow with shocks. There are, in addition, at
least three codes which analyze three-dimensional shocked flows in rotors.
With few exceptions, however, these codes utilize older long-running numerical
algorithms whose accuracy is not up to current standards. Since solution of
the Euler equations is now one of the most active areas of research in
computational fluid mechanics and since a number of promising new methods are
under development, this situation should be much improved in a few years.

The state-of-the-art for viscous methods is much less developed than for
inviscia ones. A few single-pass parabolic marching codes have been developed
for three-dimensional flows in ducts and turning passages. These methods are
relatively fast and fairly accurate in the absence of strong secondary flows.
When strong secondary flows are present at high Reynolds numbers, either
excessive grid or implicit numerical dissipation may be needed to maintain
;tability in inviscid regions of the flow. A few multi-pass partially
parabolic codes have been developed for three-dimensional flows in turning
passages and at least two of these have been applied to turbomachinery

rotors. In these methods the pressure field is treated as elliptic and is
updated as the computation proceeds. Much work remains to be done to speed up
these methods and to extend the pressure correction techniques into the
transonic regime. A number of codes have been developed which solve the full
time-averaged Navier-Stokes equations in either two or three dimensions, in
both ducts and turbomachinery, for both subsonic and transonic flow. The
comments on accuracy and computational efficiency which were made for the
Euler equation methods are equally valid here except that the computer times
are even longer. It is likely that the status of Navier-Stokes codes will be
improved substantially with the advent of new improved Euler solvers since
most regions of viscous flows are dominated by inviscid effects. Finally, we
come to the question of turbulence models for all the viscous methods. Here
we can close on a more hopeful note. Although it is not true that turbulence
models are getting much more accurate, in many flows in turning passages and
turbomachinery the velocity field is determined primarily by the balance
between centrifugal forces and pressure gradients and the effects of
turbulence are relatively weak. Hence, if one has a sufficientiy accurate
numerical procedure, one can hope to adequately compute such flows even with a
relatively simple turbulence model.
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FIG, 15 - HIRSCH - VKI COMPRESSOR CASCADE COMPARISON WITH EXPERIMENT
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F16. 26 - MEASURED MACK NUMBER CONTOURS NEAR TIP
OF NASA TRANSONIC COMPRESSOR ROTOR
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FI1G. 31 - BROCHET - PRESSURE CONTOURS IN PLAKE OF SYMMETRY
FOR CONVERGING SIDEWALL COMPRESSOR CASCADE

F16, 32 - BROCHET - PRESSURE CONTOURS ALONG CONTOURED
SIDEWALL OF COMPRESSOR CASCADE



My = 077

200 + By = o
"z!s = 1.1
pz - 24.20°
1.50 -~ =
M
1.00 +~
o i A+ DATA
—— COMPUTED
0 | |
—0.50 0 0.50 1.00 1.80
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FIG. 80 - DODGE - COMPUTED STATIC PRESSURE ON SUCTION SURFACE
OF HIGHLY LOADED TURDINE STATOR
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FIG., 41 - DODGE - CALCULATED AND MEASURED STATIC PRESSURES
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