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Abstract

An integral operator approach is used to derive solutions to static
shape determination and control problems associated with large space
structures. Problemn assumptions include a linear self-adjoint system
model, observations and control forces at discrete points, and quadratic
performance criteria for the comparison of estimates or control forces.

Results are illustrated by simulations, in the one dimensional case
with a flexible beam model, and in the multidimensional case with a
finite element mcdel of a large space antenna,

Modal expansions for terms in the solution algorithms are presented,
using modes from the static or associated dynamic model. These
expansions provide approximate solutions in the event that a closed form

analytical solution to the system boundary value problem is not avaiiable.
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Static Shape Determination and Control for

Large Space Structures

Chapter 1. Introduction and Summary

This report presents the results of the development and simulations of
algorithms for the static shape determination and shape control of large space
structures (LSS). Observations of positions on the structure, and actuators
for subsequent shape control, are assumed located at a relatively few
discrete points along its surface.

Quadratic performance criteria are defined to provide a means of
determininy "best' shape estimates and control forces. The resulting
constrained optimization problems are solved using an integral operator
approach, which proves ideal for the mixture of continuous and digcrete
rroblem elements.

Results are illustrated in the one dimensional case with a flexible

beam, and in the multidimensional case for a large space antenna.

1.1 Background

The development of the space shuttle has made it possible to design
space structurcs larger than ever before, which may be carried into space
and deployed or assembled there. Examples of such structures include the
space platform, which would support experiments, laboratories, observation
instruments and even habitation modules, and the solar power satellite,
which would collect and transmit solar energy.

l.arge space antennae, ranging in diameter frcm 50 meters to one kilometer,
are also being planned. They will assist in earth communications, radic

and high energy astronomy, the deep space network as orbital relay antennae,



and the remote sensing of soil moisture, salinity concentration and climatic
conditions on the earth. The latter information would assist agricultural
productivity around the world,

Satisfactory performance of chese large space structures depends
upon the competence of their control systems. Three kinds of control systems

must be developed: shape, attitude, and orbit transfer and stationkeeping,

In the past, the major deleterious influence on shape was the interaction

between the control system, or systems, and the structural dynamics of the
spacecraft. Such interactions were minimized at the design stage, by
guarauteeing a large separation between the modal frequencies of the struc-
ture and the control system bandwidth. This is accomplished either by
stiffening the structure, which increases its natural frequency (and often
its weight), or by reducing the control system bandwidth, which usually
reduces the control system performance,

However, in the case of the space structures now being designed, the
enormous size, coupled with shuttle payload considerations, reguires the
use of lightweight, flexible materials, On the other hand, the performance
criteria are extremely stringent., Furthermore, other influences, in
particular gravity and temperature gradients, will exert significant torques
on the structure. Thus design considgrations are no longer adequat: for the
maintenance of appropriate shape.

The shape countrol problem is actually the dual problem of shape
determination followed vy shape control. Shape determination must be
accomplished by the procesusing of possibly inaccurate observations of a
number of predetermined positions along the structure, After the shape is

estimated, shape control must be accomplished by means of actuators (control

Y



devices) placed at a finite number of discrete (isclated) points, which
produce forces or torques in one or more directions at these points. Since
the sensing devices and actuators are likely to be both expensive and heavy,
in comparison with ocher structural elements, they will be limited in
number and in the choice of their positions.

Thus we require methods for determining and controlling the shiape of
continuous structures by means of discrete or pointwise observations and
control devices. This is referred to as the continuous-discrete nature of
the problem.

Within shape control four categories have been identified: dynamic
shape control (control of active vibrations), static shape control, wmodel
verification, and engineering verification. This report deals with the

problem of static shape coutrol for large space structures.

1.2 The Model

In formulating the general system model it is helpful to consider the
shape of the dish of a large space antenna. Its ideal or rest shape is
a parabolic shape embedded in three dimensional space. If P is a point
on the rest shape, the shape of a distorted antenna may be described by a
three or six dimensional shape function U(P), which represents the transla-
tional andsor rotational displacements in R3 of the distorted shape from
the ideal shape.

Thus we consider an n dimeunsional state function U(P), defined on a
simply connected domain & € Rz. We assume the state i{s governed by linear
dynamics

L U(P) = F(P) for P ¢ @, )

where L 1is an n x n matrix of differential operators.
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Associated with the dynamics (1) is a set of linear homogereous

boundary conditions
B,(U) =0, 1<i<k, 2)

on T', the boundary of 2, which wili determine the number of degrees of
freedom of the antenna as a whoie. The conditions (2) may represent portions
of the boundary which are pinned, simply supported, or free,

We will assume the system (1-2) is self-adjoint.

The n dimensional vector funciion F(P) in (1) represents forces or
torques acting on the system. In the shape estimation problem, F represents
the unknown forces producing the shape distortion. F is to be determined,
along with the shape itself, by means of a set of, possibly inaccurate,

observations

Y, = C U + 2, l<ism, (3)

of the shape at the m positions Pi‘

In the shape control problem the vector F has the form

m
F(P) = } CF, 6(P-P) . (4)
i=1

The representation (4) for ¥ correspopds to the assumption that the forces

F, are to be applied in one or more dimensions at the pesitions P A

i

force applied to a rotational coordinate is a torque,

i.

To provide a measure of the optimal estimates of the shape and distur-
bance functions, or alternatively the optimal set of control feorces, we
will define quadratic perfermance criteria.

Thus the shape determination and shape control problems become

coustrained optimization problems, consisting of the following problem
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elements: A continuous state which satisfies a self-adjoint linear boundary
value problem, together with a set of m observations or forces applied at
discrete points on the structure, anc a quadratic performance criterion,
which includes both continuous and discrete components, and serves as a

means of comparison of estimates or control forces,

1.3 Approach and Procedure

We will apply an integral operator approach to the solution of both
the static shape determination and shape contrul problems in the following
manner: for a given forcing function F, the solution U of the boundary

problem (1-2) may be expressed in terms of an integral operator K:

u(p) = KF -I G¢(PlQ) FQ) dQ (5)

Q

where the function G(PIQ) is the Green's function, or influence coefficient,
corresponding to the system (1-2). The integral operator K in (5) represents
the inverse of the operator L on an appropriate space of functions. The

use of the integral expression (5) in place ot the difterential boundary
value problem (1-2) eliminates some or all of the constraints in the
optimization problem, and proves particularly advantapeous in the case of

a continuous-discrete problem mix.,

Procedure

We will begin by solving the static shape control and estimation
problems for a one-dimensional shape function u, in Chapter 2. The results

will be illustrated in Chapter 3 by simulations of a flexible beam, for

both simply supported and pinned-tree boundary conditions.



Consideration of the one dimensional case has several advantages:
It is easier to use intuition about the results, and it is possible to be
specific about the identity of the operator L and its inverse K. Thus
exact solutions may be computed, and compared with solutions from modal
approximations of the type which must be used in the multidimensional case.

In Chapter 4 the results derived in Chapter 2 are applied'to the case
that L is a partial differential operator. The static shape distortion
of a circular membrane and a rectangular plate are considered as examples.
The analytical results are similar to those for an ordinary differential
operator, but it is clear that even when the operator L is known, the
specific Green's function for a system governed by a partial differential
equation may be difficult or impossible to compute. Approximate algorithms
using the system modes (eigenfunctions), which can still be computed
analytically, are also presented.

In Chapters 5 and 6 multidimensional shapes, corresponding to most
LSS models, are considered. In Chapter 5 the theory is developed. It
parallels the theory for the one dimensional case, with some exceptions.
The differential operator and the Green's function are matrix operators.
Observations and control forces may be applied to only some of the components
of the state at each point. Furthermore, in most cases the differential
operator L and the system modes are not explicitly known. Thus the modes
must be computed experimentally, or by a modeling method such as the finite
element method. Approximate solutions based on eigenfunction expansions
corresponding to the static model are presented.

In Chapter 6, in order to apply results to a finite element model of a
large space antenna, the methods of Chapter 5 are adapied to the usgz of

eigenfunctions supplied by a dynamic (time-varying) model. A duantaiplion
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of the finite element method is presented. The control problem is used to
demonstrate the exact correspondence between sclutions of the continuous
static problem and the finite dimensional static model of the finite element
method. Finally, results are illustrated by simulations, using data from

a finite element model of a large space antenna.

Conclusions and future work are stated in Chapter 7.

The appendices include program listings and cutputs for the simulations
of the flexible beam (Appendix B) and the LSS antenna (Appendix C).

Appendix A contains a simplified sketch of distribution theory, the
mathematical theory within which the use of the delta "function" may be
considered legitimate, It also contains a proof of the identity of the
free space solution of Vay =- §(P-Q), which is a part of the Green's function

for the operator VA.

1.4 A Comment on the Approach

The integral operator approach is ideally suited to the continuous-
discrete problems of LSS shape control and determination., Physically the
Green's function represents the response of the system to a unit impulsive
force at one point. Thus, the shape control problem, for example, becomes
merely the problem of determining the linear combination of Green's
functions or responses at each point which produce the best approximation to
the desired shape.

The analytical problem of handling a continuous-discrete mathematical
mixture can prove messy or awkward. The integral equation approach reduces
the elements of the shape control and determination problems either to purely

discrete or purely continuous problems which are more easily handled.



In addition, no approximations, other than the initial assumptions of
linearity and pointwise application of {orces or cbservations, which are
common to most engineering approaches, are applied until the final computa-
tion of the solution algorithms. This approach has value in both its
simplicity and its generality. Intuition about the behavior of the system
can be retained to the finai computation stage.

For example, it is easy to determine the additional constraints which
must be applied in the case that the system has rigid body modes (eigenfunc~
tions corresponding to zero frequencies), and to understand their physical
interpretation.

Furthermore, the shape control and estimation algorithms are not dependent
on a particular model, since the only dynamical assumptions are that the system
is linear and self-adjoint. A change in the model does not necessitate a change
in the method, only a change in the eigenfunctions used to approximate elements
in the algorithms. The eigeufunctions can be provided by lumped mass finite
element models, which are themselves linear and self-adjoint.

Finally, the use of integral operators rather than differential ones
possesses these general advantages:

(1) The exprassion of a solution as an integral equation automatically
incorporates the boundary conditions, which must be stipulated separately
it the problem is stated as a differential equation,

(2) The integral operator is usually bounded and often completely
continuous, whereas differential operators are unbounded. Thus resuits
concerning cipenfunction expansions, solutions of nonhomogenesus equations
ete, are more vasily obtained,

(3) Numerical appreximations and variational techniques which include
several other methods of solving problems with constraints are more

casily applied to integral rather than ditferential equatiouns,
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Chapter 2. Static Shape Control in One Dimension

2.1 Introduction

In this chapter we present the general theory for a one dimensional shape,

which will be illustrated by a flexible beam model in Chapter 3. While
the shape of a large space structure is usually modeled as multidimensional,

consideration of the one dimensional case possesses several advantages:

1) It is possible to be explicit about the identities of the differential

operator L and its inverse, the integral operator K. Thus exact solutinns
to the shape determination and control problems may be computed.

2) Intuition about the physical meaning of results may be applied moure

easily to the one dimensional case.

Procedure

In section 2,2 we define the general linear boundary value problem
(BVP) satisfied by a one dimensional shape function u, and discuss the
existence of solutions. In section 2.3 we define the corresponding Green's
function, and demonstrate its role in vhe solution of the BVP. We discover
a mathematical distinction between the problem of shape control and those
of attitude control and stationkeeping.

We will state general shape control and determination problems for a
one dimensional state in section 2.4 and 2.5, and use the Green's function
to derive algorithms for their solution.

In section 2.6 we will present eigenfunction expansions which may be
truncated to provide approximations to elements of the shape control and
estimation algorithms. Since in the multidimensional case approximations
must be used, it is interesting to compare them to the exact solutions
available in the one dimensional case,

Conclusions are stated in section 2.7.
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2.2 The Boundary Value Prob.em
Consider a surface which occupies a simple connected region Q ¢ R2 and

is bounded by the curve T.

Assume the surface is acted on at each point P ¢ Q by a force £(P), and
that the static deformation u(P) of the surface satisfied the partial
differential equation.

Lu = f (6)
where L is a linear ordinary or partial differential operator, related to
the stiffness of the structure, which also satisfies linear boundary
conditions

Bi(u) =0, 11 i‘ko’ for P e T, (7)

Assume the bounda:‘y conditions (7) are such that the operator L is self-
adjoint. That is

<Lu, v> = <u,Lv> (8)

for any pair of functions (u,v) in an appropriate class which satisfy the
boundary conditions. (The term "appropriate class" is purposely vague.

See Appendix A.) Thc inner product <u,v> is defined to be the integral
<y,v> = J u(Q) v(qQ) dq . (9
N

Solutions of boundary value problems do not always exist. Before the
Green's function can be defined and its role in the solution of (6-7)
discussed, it is helpful to recall the following rule from linear differen-
tial equations, which gives sufficient reasons for the existence of a solution:
Consider the self-adjoint boundary value problem (6-7) and its corresponding

homogeneous problem

Lv = 0, Bi(v) =0, 1<i<k. (10)
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Then (a) The system {6-7) has a unique solution for each f if aad only
if the homogeneous system (10) has only the trivial solution.
(b) 1f (10) has non-trivial solutions, the problem (6-7) has no

solution unless the ccusistency condition

<f > = J £(Q) v(Q) dQ = 0 (11)
Q

is satisfied for every v(P) which is a solution of (10). This rule is a

simplification of Theorem 5.1 in Chapter 5.

Remark 2.1: If a solution u(P) of (6-7) exists, and Visees,Vg are independent
non-trivial solutions of (10), then u is not a unique solution, since
s
u+2c
i=1

is a solution of (6-7) for any set of constants ¢

A (12)

g°
Remark 2.2: The consistency condition (1l1) becomes reasonable when we
consider that seeking a solution to (6-7) for any function f in some space
is equivalent to seeking the inverse of the operator L on that space. If
the null space of L is zero (i.e. the solution of (10) is only the trivial
solution) then L is one to one and its inverse may be defined. If (10) has
non-trivial solutions, L is not one to one and L-l may be defined, if at
all, not uniquely on the range of L, The "consistency condition" guarantees
that f has uc component in the null space of L, hence (with a little more

work) that it is in the range of L,

2.3 The Green's Function
We first consider case (a) of the ruie in the previous section. The
corresponding homogeneous problem (10) has only the trivial solution. Then

the Green's function for the problem (0-7) satisfies
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Lg(P|Q) = §(P-Q) for P, Qe Q, (13)

31(8) =0, 1<14 5-ko’ for PeT , (14)
It represents the response of the system at the point P to a unit impulsive
force at Q. 6(P-Q) is the dirac delta function,

Since L is seif-adjoint, and both u and g satisfy the boundary conditions,

we have

<u,Lg> = <Lu,g> (15)
which implies that

u(p) = J u(Q) §(P-Q) dQ = IQ g(PlQ) £(Q) dq . (16)
Remark 2.3: Because the BVP (6-7) is self-adjoint, g(P|Q) 1s symmetric,

that 1is g(PlQ) = g(Q|P). (2] This is proved in the multidimensional case as

Theorem 5.2 in Chapter 5,

Remark 2.4: The Green's function i{s the kernel of the compact integral
oy rator K such that
Kf = J G(P|Q) £(Q) dq . (17)
1
K is clearly the inverse of the operator L, where defined on the range of

L, since KLu = Kf = u and LKf = Lu = f,

Remark 2.5: The solution of (13) is called a fundamental solution, The

equation (13) is satisfied in a distributional rather than a pointwise

sense, That 1is
\.Lgs‘:\) = <G'L*¢‘) = @(5) (18)

for all test functions ¢. (A test function is an infinitely differentiable

function defined on Rz which has compact support. See Appendix A.)



rqrens.

13

The Modified Green's Function

We now consider case (b). Supposc the problem (10) has s independent

solutions VisesasVgo which we assume have been made orthonormal with respect
to the inner product (9). We may not define the Green's function as in (13-14)

becausc

<6(P-Q), v,> = f v, (Q) 6(P-Q) dQ = v,(P) # 0 . 19
1

Thus the consistency condition (11) is not satisfied. Therefore, we define

the modified Green's function g(F|G) wnich satisfies
Lg(P]Q) = 6(P=Q) = ] v, (P} v,(Q) (20)
i
Bi(g) =0, 1<1 f-ko . (21)
We have subtracted the offending components of §(P-Q) which lie in the
nullspace of L. A soluticn to this system deoes exist. It is not unique,
however, since the addition of any linear combination of the solutions

ViseessVg is also a solution of (20-21). We therefore impose an additional

constraini on g:
<g(r|Q), vi>=0, 1<1i<s, (22)

The function which satisfies (20-22) is the unique Green's function of
minimum norm, that is, the Green's function which itself has no component
in the nullspace of the operator L.

We apply the relation (15) to the modified Green's function., We

note that

<g, Lu> = I g(P|Q) £(Q) dqQ
§
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and
<u, Lg> = I u(Q) (8(P-Q) -} "1(” vi(Q))
Q i
s
=u(p) = ] (J u(Q) v, (Q) dQ) v, (P)
1;1 Q '
=uP) - § ¢, v,(P) .
o 14
Thus
8
u(P) -[ g(P|Q) £(Q) dq + [ g v (F) . (23)
Q i=1

The arbitrary constants c, are an expected consegquence of Remark 2.l1. For

i

reasons given in the next segment, we may neglect the last term of (23).

Rigid Body Modes

As will be seen in the examples, the solutions nf the homogeneous
BVP(10) are the rigid body modes, or degrees of freedom, of the system.
They represent changes in position the structuie may take as a rigid body.
The pinned-tfree beam in section 3.3 has one rigid budy mode: it may rotate
about the pinned endpoint.

If a structure has free-free toundary conditions. which represent
a structure floating freely in space, it may rotate or translate without a
change in its shape. In three dimensions this implies up to six rigid
body modes.

1f the boundary is firmly fixed, the structure vill have no rigid
body modes. This 1s the case with the simply supported bzcm in Chapter 3,
the distorted membrane and plate of Chapter 4, and the large space antenna
with fixed hub in Chapter 6.

Since shape distortion is measured with respect to the structure itself,

it is r-usonable to define 2 structure-centered coordinate system: tine origin

and axes are defined to be aiong the structure. To such a coordinate sysiem
the rigid body modes are invisible, and the solution of (6-7) for case (b)
becomes (l6), as for case (o). Since the constants in (23) are arbitrary,

no generality is lost ia this assamprion,
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The consistency condition (11) will be seen to imply that no net
forces or torques may be applied in the directior of any degree of freedom.
Were this not so, an acceleration would result, contradicting the assumed
boundary conditions.

This conditinn (11), coupled with condition (22) on g and the arbitrary
constants in (23), imply that the rigid body modes are both invisible to the
shape control system and beyond its powers of influenc2. Translational
and rotational motions must be controlled by the other control systems.
Attitude control, orbit transfer and stationkeeping, This is the mathe-

matical distinction between the systems mentioned in section 2.1,

2.4 The static Shape Control Problem
In this section we define a general shape control probiem for one
dimensional shape functions. We first solve the control problem assuming
case (a) of the rule in section 2.3, We then discuss the solution for case
(b), which is slightly more complicated, due to extra constraints imposed by
the consistency condition.

We assume the control devices are located at the points P_, 1 < i < m,

i)
along the structure. The general model for the control problem is
m
Lu= ] £ 68(P-P) (24)
i=1
Bj(u) =0, 1 <j< ko (25)

where u(P) is the shape, L is a linear differential operator as before, fi

is a force to be applied at the point Pi’ and (25) denotes an appropriate

set of boundary conditions,

Let ¢ be the desired shape of the space structure, Define the

criterion

. _ 1 2
J(F,u) = 5 . fi ry +

i

™

Ve~

f WQ) - u@)? dq (26)
9]
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as a measure cf performance. The constants r, are arbitrary weights and
. T

F = (tlooofm) .
The control problem is to determine the vector of forces F* which

together with the corresponding solution u* of (24-25) miqimizes J overall

admissible sets (F,u).

Solution of the Control Problem

There are two basic approaches to constrained optimization problems.
One is to use Lagrange multiplier theory. We will use this method to solve
part of the shape estimation problem.

The other, perhaps more direct method, is to solve the constraints
for an expression for some of the variables in terms of the others. This
expression is substituted into the function of fewer varilables, which can
be minimized without counstraints.

We will use the second approach iun the control problem. We first
assume the system has no rigid body modes:

The solution of (24-25) is given by

m
u(e) = [ s®lQ) 1) 1 8- &
¥ i=1
) |
= £, p(elp)) QN
i=1 1 i
where g(PIQ) satisties (13-14), Substitution of (27) into the criterion (26)

yields

1‘F~lr§f2 - [ rff 2p))* 2
J(F) = Tty W - Lt g@{P )" dq . (28)

The constrained optimization problem (24-2¢) has become the simpler problem
of minimizing a tunction of m unknown constants without constraiuats.

Simultaneous solution of the equations
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g:}:..o’ l<ix<m, (29)
i
leads to the following necessary condition for an optimal solution
PR (£% L £ 0,
(R+ A) Fra B (30)
The m X m matrices R and A have coefficieunts
Ry =1y $U-)) (31)
Ay L} 5@, 10 5,0 % (32)
and the m dimensional vector B has coefficients
B, = Ju s Q) ¥(Q) da . (33)

Once the optimal forces are determined, the optimal shape u* is given by

7).

Solution of the Control Problem: Case (b)

We assume that the homogencous BVE correspouding to (24-25) has s
independent solutions VireseaVge This is, of course, vquivaleat te the

assumpt ion that the siructure governed by (24-25) has s vipid body wodes,

1n ovder for a solution te (24-29) to exist, tho cousistency condition

m m
O« v, o seer)> = }ox v

| ) (34)
S T3] i=l

must be satisficd tor cach tunction v‘. Thus the control problem is to
determine the set of torees {(i} and shape tunction u which minimize the
criterion (26) subjoct tu the constraints (24-25) and J4&).

We will assume the ceoordinate system is centered on the spacecvait

(recall the segment "Rigid Body Modes™). The solutien of (24<29) is given by
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u(p) = 2 £, g(p|p)) (35)
i-

where g is the modified Green's function which satisfies (20-22).
We first solve the s constraints (34) for the forces fl,...,fs in

terms of the remaining forces fs+l“"’fm‘

m
f,= ) c,, f,, l<i<s, (36)
1 j=s+l 131 -7

It is clear that a necessary condition for any solution to exist is that tae
number m of forces applied must be at least as great as s, the number of
rigid body modes. If we wish to obtain an optimal solution m must be
greater than s, since for m = s the condition (34) determines the forces
uniquely.

Substitution of (36) into (35) yields

m

u(P) =} (s(p|p)) + Z ‘ g(iiP )E)) (37)
i=g+l j
Define
s
Yy, (P) = g(P|P,) + } ¢, g(r|p) (38)
i 17y it 3
then
m
u(®) = ]y @) £ (39)
i=s+l

We substitute expressions (36) and (39) into the performance criterion,

which results in

l B m 2 2
Z ( 2 c Ty + Z £, r
2 i=1l  j=st+l 1 j fmet1 + 1
+ ’1; J () - Z Yi(l) f ) dp . (40)
! s+l

The criterion is now a function of the (m-s) constants f fm’ without

SEREEE

constraints, J is minimized by solving simultaneously the (m-s) conditions

R X
'afi.‘o Y ‘-"S‘*l....,m . ((‘1)
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Let F and B be (m-s) dimensional vectors with components

i:‘:1. = fI+s (42)

B, = jg Yipg () ¥(P) P (43)
and the (m-s) square matrices ﬁ and A with components

ﬁij =, 8(i-1) (44)

Aij = ) T ki kj + JQ Y (®) yj(P) dp . (45)
Then the optimal control law for the control problem (24-26)(34) is

(R+A) F=3, (46)

* *
Once the optimal forces fs+l""’fm are determined from (46), the optimal

* *
forces fl,...,fS may be found from (36), and the resulting optimal shape
is given by (35).
The non-constant terms in A and B are linear combinations of terms of

the form (32) and (33) respectively.

2.5 The General Estimation Problenm
For the estimation problem we assume the shape u(P) satisfies the

boundary value problem

Lu=f, B.(u =0, l<ick (47)

where f(P) is an unknown function representing disturbances or inaccuracies

in the model, Sensors placed at the positions Pi’ 1 <i< m, yield the

observations
vy = U(Pi) + Ly (48)
where ¢, is an unknown constant representing inaccuracy in the observation

i

at Pi. Let 2 = (;l cee cm). We define the performance criterion
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1 ¥ 2 .1 2
J(Z,f) = 5.121 ci r, + 5—[9 £°(Q) dq .
1 T ‘ 2 -1, 1 2
= i-izl (yy =e@®N"x, " +3 [Q £°(Q) dQ . (49)

The estimation problem is to determine the pair (u¥*,f*) which jointly
satisfy (47-48) and minimize the criterion (49) over all admissible pairs
(u,f).
Solution of the Estimation Problem: Case (a)
We assume there are no rigid body modes. Then the solution to (47)
is given by

u(p) = J g(?|Q) £(Q) dQ (50)
Q

where g(P{Q) again satisfies (13-14). Thus

u(e)) = J g(P, Q) £(Q) dq . (51)
Q

We substitute (51) into the criterion (49), which produces the criterion

-1 .1

3 = (v, - I g Q@ 4@ £, + 3 f 2@ d . (52)
Y; Q

O
ne-1g

i=1
The problem is now to minimize the functional J without constraints. A

necessary condition for a minimum of J at f* is that the differential

m
W(f*h) = 0= 7§ ‘;l(yi"J g(Pil(Q)f*(Q)dQ)(- f g(PilQ)h(Q)dQ)
i=1 Q Q
+ f fx(Q)h(Q)dQ . (53)
Q

for all admissible variation h. (The unknown noise function f and variation
h may be assumed to be in L,(2), for example.) Thus it may be concluded

that
T
£R(P) = [ ro g(R[P(yy - uR(P)) . (54)
i=1

Substitution of this relation into (50) yields the optimal shape estimate

m
() = § Lr, My, - uke)) f g(P{Q) g(p,[Q) da] . (55)
i=1 Q
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Note that u*(x) is expressed in terms of the unknown discrete shape
estimates u* (Pi) . Let
T
= (u* *
X= (u (Pl) N (Pm)) (56)
and

Y= Gy ooy (57)

Evaluation of (55) at x = x,, j = 1,..., m ylelds the following necessary

j’

condicion for the vector X:
(I + AR NHx = vy (58)

where A and R are the matrices of coefficients (31-32).
Once the vector X has been determined the optimal shape estimate

is given by (55).

Solution of the Estimation Problem: Case (l)
We now assume the structure described by (47) has s rigid body modes
VisesssVos which are orthonormal with respect to the inner product (9).
The estimation problem is to determine the pair (u*,f*) which minimizes the
criterion (49) over all admissible pairs (u,f) which satisfy (47) and the set
of consistency conditions

<f,vj> = [ £(Q) vj(Q) dQ =10, l<j<s. (59
Q

We will show that the solution of the estimation problem for case (b) has the
same form as that for case (a):
The solution to (47) is given by (60), where g is the modified Green's

function (20-22),.

u(p) = J g(P|Q) £(Q) dqQ (60)
Q

We evaluate (60) at P,, 1 < 1 < m, and substitute into the criterion (49)

i’

producing the criterion (52). Thus we have eliminated part of the constraints,
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the boundary value problem (47). The estimation problem becomes the
problem of minimizing the criterion (52) subject to the remainiug constraints
(59).

We will apply the Lagrange multiplier theorem [3]. We adjoin the

constraints to the criterion by means of scalar multipliera {A, }:

i
it i o, - J 2,0 £@ d@? r, 7+ %—f £2(Q) do
i=1 1Y) f
1 § J
+ = A £(Q) v,(Q) dq . (61)
2 3 g L

A necessary condition for a minimum of J at f* is that the differentials of

J with respect to f and A, 1 < § < s, are 0. We have

j!
3J
S-=0= J £(Q) v, (@ de , 1<j<s, (62)
j Q
and
T -1
aI(E,h) = | Gy, - u(p )T, (—[ g(P,|Q)h(Q)dQ)
i=1 Q
S
+ [ £ (Q) h(Q) dQ + } A f h(Q} v,(Q) dq = 0 . (63)
Q j=1 ~ ‘g

We factor the variation h to one side:
_]_ 5
h(Q) dQ [-(y, = u(P, e, " @ Q) + £(Q + } A, v.(Q] =0
i 17774 i j ]
Q j=1
Since this must be true for all admissible variations h, the bracketed

term must be zero. We have

S

-1 d
Q) = (y; - u(P ), g(PilQ) - jél A vj(Q) . (64)

We apply the other necessary conditions (4%).

m
0 = <f,v>= ) r, l(yi - U(Pi)l(j g(PiIQ) Vk(Q) dQ)
i=1 Q
s
- Z Xj <vj, V> s k=1,...,58 . (65)



The set v, was chosen orthonormal, so <vj,vk> = §(J=-k).

3

Furthermore, from condition (22) on the modified Green's function we

know that
I g(Pi|Q) vk(Q) dQ =0 , k=1,...,8. (66)
Q

Thus we have xk =0 for k=1,,.., 8 .

We may conclude that

m
@ = ) gl 1, My, - ey ue)) (67)
i=1

as in case (a), and therefore that the optimal shape estimate u¥* is also

given by (55).

Remark 2,6: Note that because of condition (22) on g, the optimal shape
estimate has no component in the direction of the rigid body modes. There
may be components in the actual shape, but a shape control system has no

means of determining them.

2.6 Approximations

1f the Green's function is known, the shape determination and shape
control problems may be solved exactly by the methods of this chapter.
however, it will be seen in Chapter 4 that when L is a partial differential
operator it can be difficult to determine the Green's function. For large
space structures, which are multidimensional, the determination of the matrix
differential operator L, and consequently the Green's runction, is usually
impossible,

However, the Green's function, and the terms in the shape control and
determination algorithms which involve the Green's function, may be expressed

in terms of series expansions involving eigenvalues and eigenfunctions
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corresponding to the BVP (6-7). Truncations of those series can serve as
approximations of the relevant terms. Even when L is not known the eigen-
functions and frequencies can be computed numerically, for example by the
finite element methcd.,

Let ¢1, ¢2,... be the normalized eigenfunctions of the boundary value

problem (6-7), corresponding to the non-zero eigenvalues Al’ Az, cess Then

{¢j} and {Aj} satisfy
L ¢j(P) = Aj ¢j(P) for P € Q, (68)
Bi(¢j) =0 , 1<1<k forPel, (69)

Eigenfunctions corresponding to zero eigenvalues are rigid body modes.

We have the following expansions:

b
g(P[Q) =] 5~ ¢,(P) ¢.(Q (70)
RTRE i

and

J g(PQ) £(@ dQ =] 5= o, () <o,,0> . 1)
Q j "k

Substitution of (70) for f in (71) yields
f g0 gD da =] L 6. () o, (®) . (12)

The expressions (71) and (72) provide approximations for the terms Bj and
Aij defined by (33) and (32) in the control and estimation algorithms.
The series expansions (70-72) are standard results of linear operator

theory [2]. They are based on the assumptions that the integral operator

K defined by

KE = J g(PlQ) £(Q) da
Q
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is a symmetric Hilbert-Schu:i't operator. The symmetry follows trom the
self-adiointness of the boundary value problem. Au cperator K is Hilbert-

Schmidt 1if

k]| = <j J le®lo) | 2ara) /2 < = | (73)
Q/Q

In the case that L is an ordinary linear differential operator,
as in Chapter 3, the Green's function is continuous on the compact domain
2, which implies (73). If g is not known precisely, the property (73)

must be assumed,

2.7 Conclusions

An integrai operator approach to the continuous-discrete optimization
problems of static shape estimation and control proves ideal for these
problems. Solutions reduce to the solution of linear equations of dimension
less than or equal tu the number of observations, or control forces.

A distinction must be drawn between the solutions for systems with
rigid body modes and those without. The coutrol law for a system with rigid
body modes is more complicated, due to the imposition of extra constraints
on the forces, which represent the requirement of zero net forces and/or
torques in the directions of these modes.

The estimation procedure for a system with rigid body modes is the same
as for a system without them, but the resulting estimate has no component
in the direction of the rigid body modes, because they are invisible to the
shape estimator, The rigid body modes represent changes in attitude and
translational movement, which must be the concern of the attitude control,

orbit transfer and stationkeeping systems.



By

26

In the event that the Green's function cannot be precisely known,
approximations to the terms in the control and estimation algorithms may be
computed from eigenfunction expansions available from linear operator theory.
Tae eigenfunctions, often called modes or mode shapes, may be computed

numerically even when the operator L is not known.




o

L T T

N —— i

27

Chapter 3. Static Shape Control for the Flexible Beam

3.1 Introduction

A flexible beam provides a perfect {llustration of static shape distcr-
tion and subsequent shape control. Considor a flexible beam which 1s
supported at the end points, and is intendec to serve as a bookshelf. The
desired shape, or rest shape in the absence of outside forces, is strictly
horizontal. However, the forces of gravity act continuously along the beam,
causing it to sag in the center.

In order to achieve the desired horizontal shape, we apply a third
support under the center of the beam, The natural stiffness of the beam
together with the applicati:s of this additional ferce at the center approxi-
mately counteract the effects of the gravitational force. Thus we observe
static shape control by means of ohe pointwise force in the ordinary brick
and board bookcase.

In this chapter we will solve static shape control and estimation
problems for a flexible beam of length &, and boundary conditions representing

simply supported, or pinned-free endpoints.,

3.2 Shape Control for a Simply Supported Beam
Consider the problem of controlling the static deflection of an elastic
beam of length 2. Define a coordinate system such that the x-axis passes
through the endpoints of the beam, with one end at the origin and the other
at x = L, Suppose control is to be implemented by means of transverse forces

£, at posftions x,, 1 £ 1 < m, where 0 < x| < x, .,. <x <. See Fig. 3.1,

i
At each point x €{0,%) denote the deflection by u(x). Assuming no net

tensile force on a cross-section, the shape of the beam is governed by the
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differential equation

d“u %
== L £ 8xx)) (74)
dx i=1

The ends of the beam satisfy the boundary conditions

uf0) = u"(0) = 0 u(r) = u"(R) = ¢ | (75)
u(x) §
b 5
] nfz |
! L 1 1 x
% %2 X3

Figure 3.1 The Simply Supported Beam

Let ¥(x) be the desired shape of the beam. As a measure of performance

we define the criterion

1 B2 1 (%
JFy =V £, +5 | (ux) - v(x))2 dx (76)
2 =1 i "1 2 jo
where F is the vector of forces (f1 ces fm)T and r, are noa-negative

constant weights whose values are optional.

The object is to determine the set of forces fi* vhich together
with the solution u*(x) of (74) minimizes (76) over all possible pairs
(u,F).

The existence and uniqueness of a solution to (7¢(-75) follows ivom

the fact that the associated homogeneous system

QY « 0, v(0) =v(0) =0, w()=v'() =0 (77
dx
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has only the trivial solution. Consequently the solution of (74-75) is
given by

m
u(x) = T glx[x) f, (78)
1=1

where g(x|&) is the Green's function which satisfies

4
9—§$§l§l = §(x-) (79)

dx
g(0lg) = g"(0lg) =0, g(r|E) =g"le: - 0, (80)

The Green's function represents the response of the beam shape to a unit
impulsive force at x = §,

The solution of (79-80) is

(-(%)—’i &% - 208 + £%) 0<x<§

g(x|g) =Y (81)
—-—-(xgi)g (x?' - 28x + &2) £ <x < %

L
Figure 3.2 displays the Green's functions which correspond to impulsive
forces at positions § = n (%), n=1 ..., 7.

The solution of the control problem: Substitution of the solution
into the criterion (76) vields
m

) p (v m 2 .
D £+ 5 Dogxlx)Df, - 9(0))" dx (82)
=1 =}

JE) =5 (
o i

i
The problem of minimizing the criterion (76) subject to the constraints
(74-75) has become the problem of minimizing a function of m unknown
constants without constraints. A necessary condition for J to have a
minimum at F* is

]

gf“ (F*) = 0 l1<i<m (83)
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This condition becomes

m £ L
forg t ! ¢ (J S(xlxi) S(X‘xj) dx = f ¥ (x) g(XIxi) dx . (84)
i=1 o o
If we define
aij = Jc g(xlxi) g(xlxj) dx , 1<i, 4 <m (85)
and
3
by = j Ve g, ) dx lcism, (86)
0

then the necessary condition for a minimum of J at F* is that F* satisfy
(R+ A) F¥ = 3 (87)

where R is the m x m diagonal matrix

R = . (88)

A is the m x m matrix with coefficients (85), and B is the m dimensional

vector with coefficients (86).

The Shape Control Algorithm for the Simply Supported Beam

1) Compute the constants aij and bj defined by (85-86).
Define R, A, B.

2) Solve (87) to obtain F¥*,
m
3) The optimal shape u*(x) = Z
i=1
Figure 3.3 displays the optimal shape vs. the desired shape

fi*g(xlxi) .

b
X .
p(x) = sin ﬁ%«, the second mode of the system (74-75), for two actuators

at 1/4% and 3/4%.
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3.3 The Control Problem for the Pinned-Free Beam
A modification of the control algorithm is necessary if the system has
rigid body modes, as is the case with the pinned-free beam.
The beam with one pinned and one free end point satisfies the differen-

tial equation (74) with boundary conditions
u(0) = u"(0) =0 u"(2) = u"r) =0 . (89)

We will again use the performance criterion (76). The object is to
determine the set of forces {fi} which together with the solution u(x) of

(74) (89) minimizes (76) over all possible pairs ({fi}’ u).

“

The system (74) (89) has the rigid body mode vl(x) = 23- x (normalized).
L
Physically this means the beam can have a non-zero slope or tilt as a rigid
body. Mathematically it means that the corresponding homogeneous system

— = 0 v(0) = v"'(0) =0 v"(QR) = v™R) =0 (90)
dx

has the non-trivial solution vl(x). Thus the system (74)(89) has a solution

only if the inner product

; Bl
( f. 8(x=x,), v,) = — f.x, =0. (91)
i1 i i 1 £3 4=1 1 i

The additional constraint (91) must be added to the problem of determining
the optimal control forces.

A solution to (79) with pinned-free boundary conditions does not exist
because the inner product <§(x-§), vy? is not zero. The "modified" Green's
function which is appropriate to the system (74)(89) satisfies

a (x]0)

3
——— = §(x=f) - = x£ (92)
dxa 23

B, (018) = 8 "(0le) -0 g "(2]e) =g "1le) = 0 (93)
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We make the additional requirement that gm(xlﬁ) have no component in the

subspace spanned by the rigid body mode.
LY
2 94)
(Sm(xlﬁ),vl) 1/;3 Jo gm(xlg) xdx =0 (S

The modified Green's function which satisfies (92-94) is given by

3 3
£°x X
2 4. 4 2= 4 —  Q0<x<§
330 . £24x £ +x ‘ 2 6 - =
g, (x18) = x6 (g + g - R (95)
0% x2£ 62
=5 + —6—' §<_x§_2

Condition (94) guarantees that gm(xlﬁ) is symmetric and of minimum norm
among all solutions of (92,93). Figure 3.4 displays gm(xli) for impulsive
forces at intervals of 1/8 %&.

The Green's function (95) represents the response of the pinned-free
beam to one of a set of unit impulsive forces which satisfy (91),
Figure 3.4 displays the Greeu's functions for impulsive forces at positions
n (;), w=1,...,7.

The solution of (74)(89)(91) is given by
m
u(x) = 121 £, o8, (lxp) (96)

We solve (91) for f. in terms of the outer “orces and substitute that

1

expression together with (94) into the criterion (76), which results in

r m  -x m
» 1 i 2 1 ¢ .2
JE) =2 (Y =Lt el oy e
3 iz2 U iZZ i T
1 L m xi 2
+ E‘Jo (iZ? li(gm(xlxi) - ;I g(xlxi)) - ¥(x))” dx (97)

- T
where F is the vector (f,...fm) .

Again, the optimization problem is reduced to one of minimizing a

function of unknown constants.
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The necessary cordition for a minimum at F* is

B a0 2<icwm. (98)
] {4 -

These conditions result in the following algorithm,
(i) Compute the m dimensional vector B and m x m matrix A whose

coordinates are

L (99)

b, = I 3n(‘l*1) v(x) dx

%t
L X (x } ) dx .

*13 L fx[xg) &xlsy (100)

(11) Compute the (m-l) dimensional vector i and (m-1l) x (m-1)
matrix A whose coordinates are

- x

- i

L= P T B (101)

- x1+1x +1

T Tt

x
1
X +1 - ‘ xi+1 . . .
MR TSIE S e P 15 ST WL (102)
Let R be the (m-1l) x (m-1l) diagonal matrix
2
@)
- ¢ (103)
R = .
O r
(1i1) The vector F* of optimal forces satisfies
(R+AFrep, (104)

The optimal force f.* is found from (91).

1

m
(iv) The optimal shape u*(x) = Z £, *g (xlx ) .
i=1 i®m i
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Since the optimal shape u* is a linear combinatjon of Green's
functions which satisfy (94), it will have no component in the subspace
of the rigid body mode. If the desired shape y(x) does have such a component,
that is if (y, vl) is not zero, the optimal shape will approximate the
shape

"J(X) - <‘P,Vl> Vl(x) . (105)

That is, it will approximate the desired shape minus its component in the
subspace spanned by vl(x).

As an example, Figure 3.5 displays the desired shape y(x) = &x - xz,
the shape which approximates % Zx-xz, and the optimal shape plus the missing
rigid body mode component %-zx.

Those components of the desired shape in the subspace spanned by rigid
body modes must be added by the attitude control system. A shape control
system constrained to satisfy the boundary conditions cannot affect these

components.
3.4 The Shape Estimation Problem

To illustrate the shape estimation algorithm we consider a simply

supported beam orf length £ and unknown shape u(x), which satisfies

d4u
— = f(x) on 0<x <2, (106)
dx
and
u(0) = u"(0) =0 u(®) = u"(W) =0 (107)

The function f(x) represents minor model inaccuracies or random disturbances
acting on the beam.

Assume sensors at positiomns x,, 0 < Xy < aae < X < &, produce

i’

observations
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Yy = u(xi) + &y s l<i<m, (108)

As a measure of the accuracy of shape estimates we define the criterion

m 2
J(E,u) = %.ijl vy - u(xi))z ri-l + %-J £2(x) dx . (109)
= 0

The object is to determine the function f* which together with the solution
u* of (106-107) minimizes (109) cwer all possible pairs (f,u).

The solution of (106-107) 1is given by
L

u(x) = J g(x|&) £(£) dg (110)
o

where g(x|£) is the Green's function (81). We substitute (110) into the

criterion (109); resulting in the criterion

m 3 L
R R A S I (U CLOR Hor@?a . aw
= o 0

The estimation problem has reduced to one of minimizing (111) without

constraints. A necessary condition for J to have a minimum at f* is that

the Frechet differential

m _ L 2
BI(E,0) = ) Ty Yy - Io g(xili)f*(e)dg)(-f g(x;|6)h(E)dE)

o
'3

+[ fx(g)h(g)dg = 0
0

for all admissible variations h., This implies

£*(8)

"
i ~3

ri-l g(x [8) (yy - ux(xy)) . (112)

i=1

Then

u*ix)

u

m L
Z ri_l(yi - u*(x,)) Jo s(x{8)g(x €) d& . (11°)

Let
T
X = (u%(x,) ... uX(x )
and

Yg (yl DY ym) .
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Evaluation of (113) at x = x, and regrouping of terms yield the following

3

necegsary condition for the vector X:

a+aly x=arly (114)
where A is the matrix of coefficients (85), and R-1 is the diagonal matrix

-1

with diagonal entries r, .

The Shape Estimation Algorithm

(1) Compute the elements of the matrix A given by (85), and define
X, R, Y.
(11) Solve the system (114) for the vector X.
(ii1) The optimal error estimates are gjven by (112) and
Gy =y —uk(xy), 1 <4 <m,
(1v) The optimal shape estimate is given by (113).
This algorithm is equally valid for the static beam with other boundary
conditions, provided the appropriate Green's function is used,
Figure 3.6 displays the optimal shape estimate versus the actual shape
sin §%) + 2 &%

for three exact observations at % L, % £, and % L.

3.5 Approximations
The approximations presented in section 2.6 take the following form

on the domain [0,2]) of the x axis:

o

1
g(x[&) = ] T ¢ (%) ¢ (£) (115)
kel Ak k k
£ @ 1
aq = jo 8 (x[x,) glx|x,) dx = RZI ;;§’¢k(“1) ¢ (x ) (116)

L ®
b, = JC s(XIxi) ¥(x) dx = kzl ¢k(xj) <Oy V> (117)
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vhere {xi) are the actuator or sensor positions, Ak are the non-zero
eigenvalues, and ’k are the corresponding normalized eigenfunctions of the
associated dboundary value problcms.

Thus for the simply supported beam the approximations based on the

first term of each expansion are given by

? % X
- 3 i
a, »2 :5 lin(—.‘-} ,3_,‘.(_‘1) (118)
. 3 X L '
b, *2 ‘-—,‘ m(—,_—‘) (I ¥(x) m(-l’-’i) ax) . (119)
L} °
For the pinned-free beam
ux ux 753 ux
) 7 sin(=2) eioh(—) sin(—d) sinh(—d)
PO S L) it ‘) {120)
1) :3 cos cosh u cos u cosh
vhere y = 3,927 satisfies tan u = tanh u.
uxy uxy ux ux
- lJ lin(—r) linh(—r) L sin T li.nh(r)
8 \Y
by v‘ L cos u * o u ) Jc v(“)(cos vt ceen dx (121)

(the normalizations are approximate).

Approximate algorithms constructed from the first term in the eigen-
function expansions were included in the simulations of the exampies in this
chapter, The graphs of approximate vs. optimal results were indistinguishkable,
Numerical results are included in the program outputs in Appendix B.

It is misleading to generalize from the approximations for the one-
dimensional cace, for which satisfactory approximations result using only
the first teru. The expansions (118-121) telescope rapidly, because the
magnitude <. the eigenvalues increases rapidly. The frequencies Wy of
large space structures increase relatively slowly (An - wnz). as can be
observed in the output of the shape control program for a large space antenna,
in Appendin C. For multidimensional structures many more modes (eigen-

functions) must be used.
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Chapter 4. Shape Control of Structures Governed by

Partcial Differential Equations

»

4,1 Introduction

In Chapter 3 static shape control and estimation problems for one
dimensional cases were solved using Green's function techniquas. 1In this
chapter corresponding results for structures defined on multidimensional
domains, governed by partial differential equations, are presented. It
will be observed that the solutions are very similar to those for one
di:wensional domains. The major difference is that it becomes difficult to
determine the analytical form of the Green's function, so that expressions
in terms of eigenfunction expansions must be used.

We consider as examples the shape distortion of membranes and plates
which in equilibrium position lie in a plane. A membrane, such as a drumhead,
or the mesh of an antenna, is distinguished from a plate by the absence of
bending resistance. The restoring forces of a membrane are due exclusively
to tension whereas plates have bending stiffness. Consequently, membranes
may be considered to be governed by the harmonic ovperator VZ, while plates
are governed by the biharmonic operator V4 = VZ(VZ).

This distinction between second and fourth order dynamics is analogous
to the modeling distinction between a string and a flexible beam in the
onz dimensional case.

For convenience, in this chapter we consider Anly systems without
rigid body modes,

4,2 The Boundary Value Problem and Green's
Function for a Membrane
Under suitable assumptions the shape distortion of a membrane is

modeled by the differential equation
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viust@) , Pegq (122)

where V” 1is the Laplacian operator and certain kucwn physical constants have
been incorporated into the forcing function f. Eq. (122) is known as
Poisson's equation.

We will choose the boundary conditions so that conditiuus (6-8) arxe
satisfied for the operator V2 = L. We will then discuss the Jdetermination
of the Green's function g(P|Q), and exhibit the solutions to the control
and estimation problems for the unit disk. Finally we will exhibit approxi-
mate solutions using the eigenfunction expansions (70-72).

Green's theorem for the Laplacian operator takes the usual form

g

J (v Vzw -w V2 v)dP = J (v %E -w %X) ds . (123)
q n n

Q

3
If we impose either of the boundary conditions u(P) = 0 or 3% = 0 for Pel,
the right side of (123) will be zero for functions w and v which satisfy
the boundary condition, and the operator V2 will be self-adjoint,

For convenience we eliminate the latter boundary condition, since the
homogeneous system

2 du _
Vius=f , 2-=0 (124)

has the non-trivial solution u = C,

The Green's Function

The Green's fupction for the system

Vus=f, u®)=0 peb (125)
satisfies
Vg, = 8(x=E) (y-n) (126)
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in rectangular coordinates P(x,y), Q({,y) and

§(r-p) 6(0-4)

2 .
V" g(r,0,0,4) = =

(127)

in the polar coordinates P = reie, Q= pei¢. In both cases g = 0O on T,

The function y = %; log R, where R is the distance QF, can be
shown to satisfy sz = 6(P|Q). It is called the free space solution
since 1t is not required to satisfy the boundary conditionms.

Thus the Green's function is given by

g(P|Q)} = %5- log k + g(P|Q) (128)

where g(P|Q) satisfies
N 1
Vg =0QongQ, g = - 3;-log Ron . (129)

The theory of analytic functions may be applied on convenient regions to

determine g, hence also to determine g. For Q equal to the unit circle

lz| <1,

2 9
1 ¢ - cos(0-¢) + p°~

5(£,0,0,8) = - log (200 cos{00) * ¢ 51 (130)

1 - 2rp cos(B-¢) + Vv

for P,Q in polar coordinates [7].

Remark 4.1: Through the use of conformal mapping it is possible to determine

the Green's functien for some otwer regions, but in general it is not

possible to determine the exact function g.

4.3 The Control Problem for V2 on the Unit Disk
The control problem for the Laplacian on the unit disk corresponds to
the problem of controlling the shape of a circular net or drumhead to a
desired shape ¢(r,0) by means of puintwise forces. Thus we desire to

determine the set of forces {f,} at positions Pj = pj ei¢j, 1 <js+m

J
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which together with the solution u(r,8) of

m 6(r-pj) 6(8-01)

2 8 =
v® u(r.s) 44 fj =

u(l,e) =0
minimizes the performance criterion

1

2 =1

1 T2 2r 1 2
J(F,u) = = 2 fj rJ + 7-J J [v(r,8) = u(r,®)]"r dr dé

<] 4]

over all possible sets (u,F), where

T
F = (f1 cee fm) .

The optimal shape for the problem (131-132) is given by

m
ux(r,8) = } fj* g(t,e,pj,¢j)

i=1
r2-2rp cos(6-4,) + ¢ )
1§ f] I I
ol fj* log | 7
j= 1l - 2rpj cos(6-¢j)+r DJ

and the vector of optimal forces F* satisfies (R+A)F* = B, where

R = (Rij) and A = (Aij) are m x m matrices such that

Rij =T, §(i-3)

and

2n (1
Aij = JO fo 8(1'.9,01,¢1) g(r,o, pj '¢j) rdrde

and B = Q;i) is an m dimensional vector such that

21 1
bi = Jo Io y(r,0) g(r,e,pi,¢1) rdrdé.

(131)

(132)

(133)

(134)

(135)

(136)

(137)
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4.4 The Estimation Problem

The corresponding estimation problem for V2 on the unit disk is,

given the shape observations
yy =uleg ) +5,, 1<i<m, (138)

{ = pie1¢i, to determine the error function f(r,8) and corres-

ponding shape function u(r,8) which satisfy

at positions P

v? u(r,8) = £(r,8) , u(l,8) = 0 (139)

and minimize the criterion

m T 1
%— ] Gy, - ul i,¢i)2 ri'l + %—J I £2(r,0)r dr d8.  (140)
i=1 0

J(F,u) =

The results of Section 2.4 yield the optimal error estimates

x = - u%

9
m r°-2rp. cos(8-¢,) + p.z 7
1 -1 i j iR
f*(r,8) = w ) T, Ci* log ) (142)
i=1 1 - 2rp, cos(B-¢.) + r'p
j ] j
where the vector X = (u*(Pl) ees Uk (Pm))T satisfies
-1 -1
(I+AR ") X=AR Y . (143)

The matrices R and A are as in (136) and Y is the vector of observations
(yi e ym)l. The corresponding optimal shape estimate is then given by

m 1 n
u*(r,0) = [ri- Ci* J

1
J g(r,8,0,9) g(r,e,p.,¢i) pdpdé] . (l44)
i=1 o 0 :

4,5 Approximate Solutions
For simplicity it may be desirable to compute approximations to the
solution (135-137) and (141-143) using cigenfunction expansions. The

eigeavalues and (normalized) eigenfunctions corresponding to
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v o(r,0) = A0(r,8), ¢(1,8) = O

are 1/2
J @A 1)

0 on

Oon(l‘) = ; ——_17'2"— ne= 1’2' XX

Jl O‘on)
corresponding to the eigenvalues Aon which satisfy
I (lon) -0, n=1,2, ...

1/2

) J ( r)
2 m  mnh
omc(r,e) = v\/-;‘_- 7 cos mb

Il (’\mn)
1/2

: (A 1)
{2 M
] ns(r'e) - ; ———lnﬂT sin wd

1(>‘mn) l<m,nc<eo

corresponding to the eigenvalues Amn which satisfy

1/2
Jm (Amn) =0,

where J , 0 < i < » are, of course, the Bessel functions.

1’
Thus, a first approximation to the forces {fi} in the control law,

using the eigenvalue )‘oo = (2.1005)2 and eigenfunction
f J (2.405 1)
(2 405)
satisfies

(R+A)F =8B, (145)
. : = \T
where R is as before, F = (fl cee fm) is the vector of approximate forces,

-~

and A and B are the approximate matrix and vector with coefficients

3y = 77 8o (Pg) 4,0y (146)
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s 1
i ) gy xhdzas )

The shape corresponding to the approximate forc2s in (145) is given by

~ m A~
ur(r,8) = [ £ g(r,0,0,,4) (148)
i 171
i=1
since the Green's function still represents the response to a unit force
= p.eltt
at Pi pie .

Using the same approximations (146) for the matrix A, the pointwise

shape estimation vector X may be approximately computed from
a+ahr=arl (149)

where X = (u(Q,) ... u(Q))) is the approximation to X, and R and Y are

as in (136)(138). The approximate estimates are then given by

g =y - v (Pi) R l<i<m, (150)
i =t J e tie e ) (151)
A i i oo oo i
oo i=1
&(r) . ? £, 7t E ¢ () ¢ () (152)
N 2 {=1 i i oo oo 1
00

Approximations of greater accuracy may be obtained by including the next

largest eigenvalues and their corresponding eigenfunctions.

4,6 The Static Vibration of a Plate - The Boundary
Value Problem and Green's Function

The static vibrations of a plate may be modeled by the partial

differential equation

v = £p), Peq (153)

where V4 = VZ(VZ) is the biharmonic operator, and again certain physical

constants have been included in the forcing function f for simplicity.

T P
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We wish again to choose the boundary conditions such that the boundary

value problem is self-adjoint., Green's theorem for the cperator vé takes

the form
P ) 2 2 . ,00 2 \av
J (vvbw - uv“v)dP = Ir[v %E {Vzw) - 3= (") + (V V)(g;)-(v N)ga]. (154)
Q

The problem of boundary conditions for plate vibrations is much more difficult

than for the membrane. A useful discussion of boundary conditions is contained

in {4].
The Simply Supported Rectangular Plate

Consider a uniform rectangular plate on the domain 2 = {(x,y) | 0<x<a,

0 <y < b}. The boundary conditions for a simply supported edge are

2
d'u v du -
u=(0 and ;;i + R 3n 0 (155)

where n is the normal vector to the edge and R is the radius of curvature.

For & :tfaight edge R = », Furthermore, since u is constant along the edge,
3u

3 = 0. Thus
vy - 332 s 13u 2% - 2%y (156)
u 2 R 2 2
an s on

and the boundary conditions for a simply supported straight edge are
2
u=V9Vuyu=0, (157)

Clearly the conditions (157) make the right side of (154) equal to zero.

4
Thus V' is self-adjoint for the simply supported rectangle,

The GCreen's Function

The Green's function for the simply supported rectangle should satisfy

v g(x,y,£,n) = §(x-£) &§(y-n) (158)

g = v =0 onx=0,8 andy=20,b, (159)
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4

The free space solution Y(PlQ) which satisfies V'y = §(P|Q) is

2

Y(PlQ = %% € log r (160)

where r represents the distance PQ. This is proved in Appendix A. Thus,

the Green's function

g(®|Q) = v(?|Q) + g(P|Q) (161)

where the function ; satisfies V“g(PIQ) = 0, plus boundary conditions such
that g satisfies (157).

The function g in (161) is no longer necessarily harmonic, as was the
function in (129). It musi in additior satisfy two sets of boundary condi-
tions. Thus it is much move difficult to determine the exact function g(P|Q)
for a given set of boundary conditions. The Green's functions and solutions
to the shape control and estimation problems will therefore be exhibited in

terms of eigenfunction expansions.

4.7 Control Problem for the Operator V4

On the rectangle 0 < x < a, 0 <y < b, we desire to determine the set of

forces {fi) at positionsP, = (xi.yi), 1l < 1 < m, which together with the

i
solution u(x,y) of

m
viax ] £, 8(xex) 8(y-y)) (162)
i=]

u= vzu onx=0,asaandy=0,0b (163)

minimize the performance criterion

1 T2 1 (2P 2 44
J(Fu) = 5 ) £50, +35 (v(x,y)-u(x,y))” dydx (164)
(o]

i=1 o
overall admissible pairs (F,u).

The optimal shape for the problem (162-164) is given by
* o *
vy = 1f

L 8(x,y, "1"1) (165)
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where the vector of optimal forces Ft = (fl* vee fm*) satisfies
®
(R+AF =38 (166)
The m x m matrices R™L and A have coordinates

Ry = 1y 6(1-9) (167)

a (b
a4 = f J s(x,Y.xi.Yi) s(x,y,xj.yj) dy dx (168)
0 ‘0

and the vector B has coordinates

a b
b, = Jo Jo V(x,y) g(x,y,x,y,) dy dx. (169)

Since a complete analytical form for thc Green's function is not known, we

use the eigenfunctions

!%5 sin Lry

¢ (xy) = J%S"‘“ b (170)

and corresponding eigenvalues

e 4ok 2 L 20242
to represent the solutions (166-169). Thus
krx twy
m ® sin krx sin 1 sin tny sin i
u*(x y) = Z 2 4 £ a a b b
T fR1kge ? 4 k2 22 (172)
' e [ + )

where the forces fi satisfy (166), and the coefficients of the matrix A and

vector B in (167-168) are given by

bt knx knx lﬁy l“y
4 ( i ¥l i 3
a,; ™ ———s |sin sin ein sin (173)
1] k=1 abA 2 \ a a b b
- nx l'ﬂy
2 i i
b, = I -— {sin sin gV (174)
1 g ge1 VA0 A, a b ki »
where b
I a krx g
<¢k£,w> = '1’:%‘ Jo Jo v(x,y) (sin —;——) (sin —%z-) dy dx (175)

Approximatjons are available by taking the first few terms in k and f.
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4,8 The Estimation Problem for v‘

The shape estimation problem for a rectangular plate is given

the shape observations

Y, = “("1"'1) + 8 » l<i<m, (176)

to determine the error function f(x,y) and corresponding shape function

u(x,y) which satisfy

ulx,y) = £(,y) o Qam

2

u=V% u=0 forx=0,aandy= 0,0%

and minimize the criterion

m a (b
J(£f,u) '% § (¥, -u (xi.yi))zr;1+ %I J fz(x.y) dy dx . (178)
o ‘0

The necessary condition for an optimal solution is that the vector
* * .
X= (u (xl,yl) e e s U (xm.ym)) satisfy

(1+A gL X) = A R‘l Y (179)

*
vhere u (a ) is the optimal shape estimate at the point (xi.yi).

1*74
the matrices A andR are defined by (167-168), and Y = (Y, ... Y). The

optimal noise estimates are

®
Lxm ¥y - u(xgyy) l:1cw, (180)
® g 1
£ (x,y) = 121 T gy S(xayexy,y) (181)
and the 6ptimal shape estimaie 1is

& m 1 [? b .
u (x,y) = 121 [ri ‘1 I J g (x,y,€,0) '3 _(xilyitcvn) dndg. (182)
* [« R ¢+
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To compute the vector X in (179) we use (173) for the elements of the matrix

A. Then
m ® knx Ly
fx(x,y) = Z Z ;s;—— {sin k:x sin = 1 sin lgy sin 5 i] . (183)
1=1 k,2=1 3%%ke

Finally, applying the expansion (72) to the optimal shape estimate (182),

m o krx Lny
u*(x,y) = Z Z [r1 l;i* 7 sin EEE sin 1 sin, ﬁgz-sin 5 i] (184
1=1 k%=1 abA

ke
Again, approximations are obtained by taking the first few terms in k and &.

4.9 Conclusions

Green's function techniques have becn applied to the solution of shape
control and estimation problems which have associated boundary value problems
involving partial differential equations, in a manner analogous to those
involving ordinary differential equations. In the case of a multidimensional
domain, however, precise knowledge of the analytical form of the Green's
function is usually not available., Solutions may be expressed in terms of
eigenfunction expansions.

Although this chapter deals with systems which do not have rigid body
modes, the techniques and solutions bear such a resemblance to those of the
one dimensional case that an extension to systems with rigid body modes

follows readily,
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Chapter 5. Static Shape Control for Multidimensional
Large Space Structures

5.1 Introduction

This chapter addresses the problems of static shape control and shape
determination for multidimensional structures. Chapters 2-4 have addressed
these problems for scalar shape functions, representing displacement in one
direction, defined on one or multidimensional domains. However, large space
structures are modeled as multidimensional states, representing translations

and/or rotations in three dimensional space.

We again use an integral operator approach basaed on assumptions of
linear self-adjoint dynamics and boundary conditions. As might be expected,
algorithms which are similar in appearance avise.

However, there are important differences in interpretation and proce-
dure. These include matrix, rather than scalar, differential and integral
operators, controls and observations applied to only a part of the state,
and the necessity for using approximate ecigenfunctions provided by experi-
mental or numerical methods, since the exact operators and corresponding
eigenfunctions are usually not known. The algorithms derived in this chapter
will be adapted to the use of modes from a dynamic finite element model,

and i{llustrated by simulated results, in Chapter 6,

Procedure
In section 5.2 we define the multidimensicnal linear boundary value
problem for a large space structure, and discuss the existence of solutions.
We then define Green's functions for a multidimensional boundary value
problem, both with and without rigid body modes, and derive solutions to the

boundary valuv problem for both casus,



56

In section 5.3 we define and solve the shape control problem for a large
space structure., V= discuss examples of the constraints imposed on the
control forces by the rresence of rigid body mndes. In section 5.4 we define
and solve the shape determination problem.

We present eigenfunction expansions for the more general multidimen-
sional terms in the algorithms, which involve Green's functions, in section

5.5, A summary and conclusions are stated in Section 5.6,

5.2 The Model and the Green's Function
Consider a multidimensional system xepresented by the n dimensional
state U(F), defined on a simply connected domain Q € Rl. Suppose the

system is governed by linear dynamics
LU=F for P € Q (185)

where L is an n x n matrix of differential operators. F(P) is an n dimen-
sional vector function, or distribution, defined on @, which represents forces
or torques acting on the system,

Suppose the system satisfies ko linear boundary conditions

Bi(U) =0 , l<i<k , for P el (186)

o
where I' is the boundary of Q. We will assume the boundary value problem

(185-186) is self-adjoint, that is that L* = L and
<LU, V> = <U, LV> (187)

where U and V are any two admissible functions which satisfy the boundary

conditions and <U,V> is the inner product

UV = I v ey vep) ap . (188)
Q

We will also require the usual vector inner product

K.Y = XY =YX . (189)



We will use the norms induced by (188-189) and the weighted seminorm

[[xl]° = <%,%0p = X'RX . (190)

R
X and Y are vectors in the same space and R is a symmetric square matrix
of appropriate dimension such that R > 0.

The reasons for the model formulation (185-186) become apparent when
cne considers an LSS (large.spac2 structure) antenna, The domain consists
of the subset of three dimensional space occupied by the undistorted ideal
shape, a perfect paraboloid. The state might be three dimensional also,
represanting vector displacements of points on the distorted antenna from
their ideal positions. Boundary conditions represent & pinned antenna
which may not rotate or tramslate as a rigid body in any direction, a free-
free antenna which may rotate or translate along any of the three axes,
or conditions between these two extremems.

Other state representations are possible. It may be convenient to
consider a six dimensional state which represents translations and rotations
of a j~int about the three axes. This is the case if torques are to be as
control mechanisms, in addition to translational forces. A torque can be
considered an impulsive force applied to a rotational coordinate of the

state.

Solutions of Boundary Value Problems

We consider under what circumstances solutions to boundary value
problem (185-186) exist, and what form the solutions take if they do exist.
We will apply the following alternative theorem for boundary value

problems:

Theorem 5.1: Consider the boundary value problem

=", BU) =0, Ledick , (191)
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its corresponding homogencous problem

=20, Bi(U) =0 , 1 <1 5-ko . (192)
and the related homogeneous adjoint problem

L*W = 0 , Bi*(V) =0, l<i<k ., (193)

L is an n x n matrix of linear differential operators, L* is its adjoint,

U and V are vector functions defined on the simply connected domain Q, and
B1 and Bi* are adjoint linear boundary operators defined on I', the boundary
of Q.

Then: (a) if the problem (192) has only the trivial solution U = 0, so
does the problem (193), and (191) has a unique solution.

(b) if (192) has s independent solutions U y+eesUg, then (193) has

1

s independent solutions V VS, and (191) has solutions if and only if

l,n..,

<, P> = J viT(p) F(P) dP = O , 1<ic<s. (194)
Q

If the conditions (194) are satisfied, the general solution of (191) has
the form

UP) = U@) + § ¢, U, (P) (195)

where U is a particular solution of (191), the ¢, are constants and Ui'

1 <i < s are the solutions of (192).
For discussions and proof of alternative theorems see [2].
We have assumed the linear operator L and boundary conditions
Bi =0, 1 <1i <k, are such that the boundary value problem (191) is self-

adjoint, that is that L*¥ = L and B, * = Bi’ 1 <i < k. Thus (192) and

i
(192) are equivalent for our purposes.

To observe the form the solutions actually take, we define Green's

functions for the cases (a) and (b) of Theorem 5.1.
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Green's Functions

We first consider case (a) of Theorem 5.1, that the homogeneous
boundary value problem has only the solution U = 0. This is equivalent to
the physical assumption that the system has no rigid body modes.

Define the n vector functions G (PIQ), 1 <3 <n, to satisfy

h|
L Gj(PlQ) = e §(P-Q)
= e, s@t-qY) ... s¢%qh (196)
Bi(Gj) =0, 112k, PerT (197)

The unit vector ej has zeros in all coordinates except the jth, where it
has the value one. The points P(p1 .o pg')T and Q(q1 eee qz) in (196) lie
in Q.

Gj(PIQ) represents the response of the system to a unit impulsive

force applied to the jth ccordinate of the structure at the point Q.

Define G(P|Q) to be the nxn matrix function with columms Gj' G(P|Q)
is the desired Green's function for the boundary value problem (191). The

ijth coordinate G (PlQ) represents the response of the ith coordinste

i}
of the state at P to a unit impulsive force applied to the jth coordinate
of the state at Q. We may write

LG(P|Q) = I_ 6(P-Q) (198)
B,(6) = C, 1<ic<k, (1997

if it is understood that the boundary conditions in(199) are to be applied
to each column of G individually,
The property derived in the next theorem will be useful when writing

the solution of (191)In terms of the Green's function G,

Theorem 5.2 Let G(P|Q) be the function defined by (196-197). Then G(PIQ)-GT(Q]P).



60

Proof: For the moment we drop the assumption that the boundary value problem
(191) 1s self-adjoint. Let G, (P|Q) and H, (P[R) be functions defined on @ such
that

L GJ(P[Q) = e, 8(P-Q) , B,(6) =0, levek.

L* B, (P[R) = e, (>-R) B*H,) =0, lc<vck,

A

Since G, and K

j 1 satisfy adjoint boundary value problems,

[ <GJ,L*81>-<LGJ,31> ’ l1<i,3<n,

Thus
G, T(P|Q) e, 6(P-R)AP = | e,T 6(P-Q)H, (P|R)dP .
Evaluation of the integrals yields

T T
c;j (R{Q) e; = ey Bi(QIR) . (200)
6, (R[Q) = B, @[R)

Iut now we recall that L#*=L and B *=B . Thus Hji(QlR) = cj 1(QIR). Substi-

tution into (200) yields

6, ®RlQ) = 6, @[R), 1<4, jzn.f#

We now seek the solution to the boundary value problem (191), assuming

case (a) of Theorem 5.1, Let U(P) be a solution of (191). Then

w16, - j uT(p) e, 6(P-Q) dP = U, (Q)
fR

3 3

where the U, is the jth coordinate of U, By Green's theorem

]
<L G,, U» = <G, LU> = I (] T(PlQ) F(P) 4P,
h] ] g 1

Thus,

U.(@Q) = I G T(PIQ) F(P) dP, i<j<n.
3 Q J -3z
1f we apply this argument to all coordinates 1 < j : n, we have

Q) -J GT(P|Q) F(P) dP = [ G(Q|P) F(P) dp
a

‘9

. . 4 (5 - ’ .
ii.‘iﬂhﬁ‘ii(‘...-n--“--ﬂﬂ‘-ﬁ--ﬂ‘-hH‘L---&ZZGHEumah-nﬂ.;gmmhn_Mm... o -
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by Theorem5.2. A change of variables yields the solution

U(p) = J G(P|Q) F(Q) dQ . (201)
a

The Modified Green's Function

We now consider case (b) of Theorem 5.1, We assume'the boundary value
problem (191) has s independent solutions Vl,...,Vs, which we assume
are orthonormal, If they are not, a Gram-Schmidt orthogonalization process
can be applied to generate an orthonormal set.

Define the following vector functions:
8

L6, @lo) = (60 - ) v,(® v, @] e (202)
i=1

Bi(Gj) =0, l<ic<k, (203)

where e, is the jth column of the nxn identity matrix.

3
Note that the right hand side of (202) has zero components in the
space spanned by the functions {Vi}, that is that its inner product with
these functions is zero. Thus by Theorem 5.1 a solution, in the distributional
sense, to these problems exists.
The solutions G, which satisfy (202) are not uniquely determined, since

3

the addition of any linear combination of solutions to the homogeneous
problem (192) yields another solution. Thus we are free to impose

another condition, We require that

<Gj,vi>-0, l1<i<s, 1<j<n. (204)

Mathematically this means we seek the solutions to (202-203) of minimum norm,
those which lie in the orthogonal complement of the nullspace of the
operation L - the space spanned by the solutions {Vi}. Thus the functions

G, have no components in the direction of the rigid body modes. Solutions

J
of (202-204) are unique,
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Let G(P|Q) be the n x n matrix function whose columns are the functions

Gj which satisfy (202-204), that is G = [G1 | eee | Gn]' Then G satisfies

H T
16 = T 6(P-Q) - E v, () (v, @)
1

B, =0, <tck. (203)

<G, V.>=0, l<ic<s.

i

G(P|Q) is called the modified Green's function for the system (191),
assuming case (b) of Theorem 5.1. The property derived in Theorem 5.2 may
also be shown to be true for modified Green's functions.

We seek a sclution U to the boundary value problem (191) for case

(b) of Theorem 5.1. We assume
<F,V>=C, lcicss, (265)

since without these conditions a solution does not exist. We will apply

Green's theorem to the inner product <u, LG>, From (205)

. s
<U, LG> = ! Ul(P)lI,‘ 6(P-Q) - } v, (®) ViT(Q)l dp
Q ) i=1

s
=ul@ -} (J vt @) v @) ap) v @7 .
1 ‘R

But

v = | uTe) v, (p) ap
i Q i

= gsome constant ci.

Thus
T T -
<U, LG> = U (Q) -} ¢ V(@ 207)
On the other hand, because the boundary value problem is self-adjoint

<U, LG> = <LU, G> = I FL(P) G(P|Q) dP . (208)
Q
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Equating (207) & (?08) and taking the transpose, we have
HORPERACR ]nc’(rlm F(P) 4P .

We apply Theorem 5.2 and a change of variables:
Uep) = jﬂc(pIQ) F(Q dQ+ ] ¢, v, (@) . | (209)

As one might expect from Theorem 5.1, the solution includes an arbitrary
linear combination of rigid body modes, or solutions to the homogeneous

problem,

Remark 5.1 Naturally if a force is applied which does not satisfy the
constraints (206), the system will still respond, but the boundary conditions
will be violated. The conditions (206) usually translate physically into
conditions that net forces or torques in one or more directions must be
zero.

without loss of generality, we can define a coordinate system
with respect to the space vehicle itself, 1In the case of the antenna we
define the xy plane tangent to the hub of the antenna and the z axis along
the axis of the paraboloid, We may fix the x axis along a particular rib.
With the coordinate system so defined, we may ignore the rigid body modes,
since rotations and translations of the antenna as a rigid body occur with
respect to another coordinate system,

We can then consider the solution of (191) to be

u(p) = ] G(Plo) F(Q) dQ (210)
f

where G(PIQ) is the modified Green's tunction which satisfies (202-204).

5.3 The Shape Control Problem

Static shape control forces may be applied to some or all of the
coordinates of the multidimensional state. Thus we define the following

control problem:
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Let ¥(P) be the desired shape of the space structure. Determine
the set of control vectors F, of (predetermined) dimension n(i),1<4i<m,

such that the resulting shape U(P), which satisfies the dynamics

m
= (211)
w= ) C,F, 8(P-P,)
i=1
and boundary conditions
Bi(U) =0, 1<14 f-kb . (212)

most closely approximates the desired shape § on 2. The measure of best
approximation is that the set (Fl*,...,Fm*, U*) minimize the performance
criterion

J'lfllFll 2+—1—J He@) - u@])2,0, ) (213)
2 1 i Ri 2 Q W(P) .

over all possible sets which satisfy (211-212).

The constant n x n (i) matrices Ci distribute the control vector Fi

over the coordinates of the state U at Pi' G(P-Pi) is the dirac delta

function for the multidimensional point Pi'

The n(i) x n(i) matrices R, are symmetric and R, > 0.

i
W(P) is a piecewise continuous symmetric positive definite matrix

defined on 4.
We first assume the homogeneous system

Lu-o,ni(u)-o, 1<_1<_k°, (214)
has only the solution U 2 O,

We apply the solution derived in section 5.2 to the boundary value

problem (211-212):

n
U(F) = G(r1Q) C, F, §(Q-P,)] 4Q
*) ]Q lQ lg K A 215)

n
« ] G(PIP)C, F
4my t Sl S |
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where G(?IQ) is the appropriate Green's function. We substitute (215) into
the criterion (213), which becomes a functional depending solely on the

discrete unknowns F

i.
17 {le 1.2 42 7 2
J = F + I ¥ - 21
7¢ Rl +3 ) [vvp) 121 ceele,) °1F1“w dP . (216)
We seek the minimum of J with respect to the constant vectors Fj:
;i_. F,' R *J (Ve - ‘f cele e F 1wy (-oeelp,c,) b 1)
Fyo3 3 g 1=1 17717 37%
=0 » 1 .<-J :.lll .
Thus
Y el e G(p|p,) dP) C.F
P
RFy+ LG (I g PGPy 1Fy
i=l Q
T (218)
= Cj J G(lep)W(P) Y(P) dP  for 1< j<m.
3:1 Q
let N = n(i) . '
i=1 (219)
Let R be the block diagonal square matrix with diagonal blocks
Rl....,Rm.
Let A be the N x N matrix of n(i) by n(j) blocks Aij' where
T
- G dP C .
Aij c, (JQ G(Pilr) w(P) (Ple) ) 2 (220)
Let D be the N dimensional vector
T T,T
D= [n1 eee D ] (221)

where

-c? P) dP .
D, = ¢, In c(PJIP) W(P) ¥(P)
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Let F be the N dimensional vector of unknown control forces:

T,T

T
F= (Fl X Fﬂ ) . (222)

Then the vector F* of the optimal control forces satifies
(R+ A) FA=D , (223)
Once the vector F* has been determined, the optimal shape U%(P) 1is

given by

m
ux(p) = ] G(p[p,) C,F %, (224)
i=1

The Shape Control Problem for Systems with Rigid Body Modes

We now assume that the homogeneous boundary value problem has s
solutions V,(P),...,V (P). We let G(P|Q) denote the modified Green's
function which satisfies (205).

Ir. order for a solution (211,212) to exist, the right hand side of
(211) must satisfy the additional set of constraints (206). That is

m
<V, 21 CyF, 5(p-pj)> =0, 1<i<s,

3

which by definition is the set of conditions
[ ¢ Tpy §
vV, (P) ] C,F 6(-P,)dP =0, 1<i<s.

Evaluating the integral yields

b

m
: T
321 v, (pj) cjl-'j =0, l<i<s. (225)

The shape control probiem is now to find the set of forces {Fi} and shape
U(P) which satisfy (211-212) (225), and minimize the criterion (213) cver

all possible sets,

At et SEasy so . & - e
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Examples of Constraints

Example 5.1: A three dimensional static with three rigid body modes.

Suppose the state U(P) is three-dimensional, representing the displacement
vector of the actual position of the structure corresponding to the point P

from its ideal position, and the antenna has three rigid body modes representing
translations along any of the three axes. An orthogonal basis for the space

spanned by these rigid body modes is

1 0 0
Vl =10 |, V,={ 1l Jand V. = 01},
1

\% \o )

Note that if U(P) is a three-dimensional state then

Ll

2
U(P) + } ¢,V
4oy 14

does represent a translation of that state,

The constraints (225) become

m

} (c.F)t =0 1<4i<3, (226)
j=1 33 - =
where (CjFJ)i is the ith coordinate of Cij. This is equivalent to the

condition that the net force applied 1in any direction of the state U over
all the points Pi is zero. If the sum of the forces in any direction is
zero, no net acceleration is appliad to the structure as a whole, which is in

keeping with the free boundary conditioms.

Example 5,2:A six-dimensional state,

If torques are to be applied as part of the control scheme it may be
convenient to consider a six-dimensional state, the first three components
of which represent displacemerits as before, and the second three components

of which represent rotations.
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A torque is an impulsive force applied to a rotational coordinate.
Suppose that the system has six rigid body modes, representing constant
translations or rotations from an ideal position, A basis for the space of
rigid body modes s (1 00 00 0), (01000 0)>, (0010007,
(000100, 00001 0)T and (00000 1)T, The later three vectors
represent unit rotations about the three axes,

The constraints (225) again become

S 1
I Fpt =0, 1<1<6. (227)
i=l

These constraints represent the fact that the net sum of forces or torques
applied to any coordinate of the state must be zero, a requirement which guarantee

zero translational or rotational acceleration applied to the state.

Example 5,3: A three-dimensional state with six rigid body modes.
Suppose for computational convenience we wish to consider a three-
dimensional state, but the vehicle is allowed to both rotate and translate

along three axes as a rigid body. One basis for the six rigid body modes

is
v=aool v= 0107 v3=@onT
VA(P) = TlP VS(P) - TZP V6(P) = T3P
where
1 0 0 \\ cosb 0 sin€
Tl =1 0 cosb -siné } T2 = 0 1l 0
0 sind cosd | -sind 0 cosb
and

/cose ~sind 0
T3 = 8ind cosb 0 .
0 0 1

Tl' Tz and T3 represent rotations by an angle 6 about the x, y, and z axes

respectively,
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The first three constraints yield the same conditions as in example 5.1.

The last three constraints yield

T eTrTcr -0 1<1<3 (228)
T Y i3, ,

For the rigid body mode VQ(P) = T P this 1s

1

T 1, 2 3 2 3
321 [pj Jpj cosf - Py s1nd), (p3 sind 4 pJ cosd) ] CJFJ = 0, (229)

This expression is the requirement that the sum of the forces applied
times the displacements at the points where the forces are applied must
be zero. But this is iust one of the constraints which resulted from

rotational rigid body modes in example 5.2:the sum of the torques must

be zero,

It is easily seen that the condition that the sum of the tcrques be
zero for each coordinate is satisfied if the constraints (228) are satisfied.
Thus, the constraints for six rigid body modes are the same, however ke
state vector is defined.

The procedure tor finding the set of optimal control vectors for systems
with rigid body modes is as follows:
i) Substitute the solution (215) into the criterion (213)
ii) Solve the constraints (225) for some of the control vectors in terms
of the others.
iii) Substitute th: expressions derived in (i1) into the criterion J,
which now becomes a function of fewer control vectors,
iv) Minimize J with respect to this smaller set of contrcl vectors,
The minimization process will result in a system of linear
equations which, when solved, yield the identity of the optimal
set of these vectors. The other control vectors may then be

determined from (ii).
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The pinned-free beam in section 3.3 was an example of this procedure in the

case of a one-dimensional state.

5.4 The Shape Determination Problem
The desired shape ¥ in the control problem in the last section will be
based on the difference between the cstimated shape and the ideal parabolic
shape. The estimated shape must be computed from observations of some or
all of the components of the state, taken at a number of predetermined

points along the structure,

Thus we seek to determine the estimates of the noise vector F(P) and

shape function U(P), defined on R, based on the observations

Y, - C U(Pi)+z1 . l<i<m, (230)

i
which minimize the performance criterion
1§ 2 43 FR)|| ar
=3 121 Yy - ¢ "“’1’”1&1-1 7], I wl(p) (231)

over all admissible sets {U,F} which satisfy
LU=sF, e Q and Bi(U) =0 l<ic<k, , PerT, (232)

Th. 3tant matrices C1 are n(i) x n, the n(1) dimensional vectors Zi
repr.sunt nois? or inaccuracies in the observations Yi' W(P) 15 a
continuous positite definite matrix on 8, and R1 are n(*; x n(1) constant
positive definite matrices.

We will assume the boundary value problem (232) has no rigid body
wodes. The estimation algorithm for systems with rigid body modes is the

same, with the exception of the fact that the rigid body modes themselves

cannot be estimated. The derivation of this fact follows as in section 2.5.
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We will ev.laute the solution (210) of the boundary value problem (232)

at the points Pi’ 1l <1< m, and substitute into the criterion J.

u(p,) = J G(P |Q) F(Q) dQ . . (233)
Q
J= %ni Y, - ¢ I G(P,|Q) F(Q) dQIl§—1+ %J lIF@]|? ¢ . (234)
1 N 9] i Q w1

The criterion is now solely a function of the continuous unknown vector
function F(Q). To minimize J with respect to F we find the Frechet derivative

8J(F,H), where H is any admissible variation, and set it equal to zero.

= -1
9J(F,H) = 2 .'Yi - Ci I G(PilQ) F(Q) dQ]'r Ri[--C'j I G(P1|Q) H{Q) dq}
1 e f

+kF@FW4Q)M®dQ=0-

1f we transpose the equation, 1actor out H and recall (233), we have

[ @ wi@ F@ + § s@lry ¢RI, ue,) - Y01 =0

Since this must be true for all Im’"ssible variations H, we have

T

m
Y = , -1 _
F(Q) = W(P) ] G(uy  C R (¥, - C UPRY) . (235)

i=1
Ve still do not know the optimal estimate of F at this point, because the

estimates Ci U(Pi) are still not known. We substitute (235) iuto (233).

m
T
U(Pj) = L} c(Pj!Q) W(Q) [i£} c(qlpi)ci R, (Y, = C, U(R)) . (236)

Then we have, for 1 < j <m ,

m
A ~ T
U + iZl ([Q G(; Q) (@ celp) da) ¢;7R, €; V(P

m
. T
= ) G(P,.]Q) Q@) G(qlp,) d4Q) ¢, R, Y, . (237)
. J i i 171
i=1 ‘Q
We will solve this set of m matcix equations for the vectors Cj uce,),
J
m
1~ j <m. Mul+iply both sides on the left bLy Cj’ Again define N = z u(i).
o i=1

(Recall that n(i) is the dimension of Y, .)

i
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Let A be the matrix of m blocks by m blocks, where the jth block

T
= 238)
is an n(j) by n(i) matrix, Thus A is N x N,
Let R} be the N x N block diagonal matrix with blocks
17t s 239
Rij R~ 8(i-3) . (239)

Let U*(Pi) be the optimal estimate of the shape function U at P,, and let

19
U be the N dimensional vector formed by "“stacking" the n(i) dimensional

vectors c1 Ut(yi) (240)
Let Y be the N dimensional vector
T T.T
(¥," oY ). (241)
Then the vector U satisfies the system of linear equations
(I + &Y t=arty, (242)

4

Once the vector U is known, the optimal estimate F* of the noise vector

F is given by

m
F*(P) = W(P) {1 crlpy) c,F RV (v, - curce,)) . (243)
i=

'The optimal shape estimate U*(P) is then given by

1

m
Us(p) = ] (j 620 w(@ 6(P)aw) ¢," 7N, - S UAR ). (04
o 244)

i=]

5.5 Approximations
In this section approximations will be presented, which involve
eigenfunctions correspending to the static boundary value problems (211-212)
(232) which parallel those in section :.6.
However , most finite element models for large space structures are
dynamic, rathcr than time-invariant. Therefore, in the next chapter, approxi-
mations will be developed for the use of eigenfunctions from the dynamic

rodel corresponding to (185-186).
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It was demonstrated in Theorem 5.2, section 5.2, tiiat G(P{Q) was
symmetric. We will also assume that G(P|Q) is a Hilbert-Schmidt kernel,

that is that
f llee|Q)||? apdQ < = . (245)
Y]

Let K be the integral operator with the Green's function as kernel. Then

for F(P) in the domain of K,

Kf = j G(P]Q) £{Q) dq . (246)
2

Let > ¥, > U, > ... be the non-zero eigenvalues of K, and @1, ¢2, cee

Hp ZHp 2 ¥
be the associated eigenfunctions, such that

K¢ (247)

1T My
The non-zerc eigen alues {”i} zf K are the inverses of the non-zero eigen-
values of L. and the eigenfunctions {¢i} are also the corresponding eigen--
functions of L.

We will assume the eigenfuncticns {¢i} have been normalized with
respect to the inner product (188).

From integral operator theory we have the following expansion for the
Green's function:

celey = T w6, ¢, @ (248)
i=1

If we assume, 25 1. Chapter 2, that W is the identity (matrix) omn 2, we

have the following expansions:

( G(?[Q) G(Q[Ry dQ = ] ui2 ¢, (P) ¢1T(R) (249)
‘9 i
and

[ celo v =) uy 4y (P) <4y ,0> . (250)
gy i
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These expressions are generalizations to the mulcidimensional case
of the approximations offered in Chapter 2.

1f W is not the idertity matrix, (249-250) become

T
G(P|Q) W(Q) G(QIR) dQ = § § w, u, ¢,.(P) ¢, Q) <¢,, ¢,> (251)
L, 13 +3 h| 173,
and
J G(P|Q) W(Q) ¥(Q) da= [ u; ¢, (P) <4, ,¥>, . (252)
Q i=1

5.6 Summary and Conclusions

Procedures for static shape control and determination of multidimen-
sional large space structures were derived in this chapter, under the assump-
tions that tiiz structures were continuous, governed by linear self-adjoint
boundary value problems, and that the control forces are applied and observa-
tions taken at a number of predetermined points along the structure.
Approximate optimal control functions and shape estimates, in terms of
eigenfunctions corresponding to the static model, were presented.

As one would expect, the problem formulations and solutions for multi-
dimensional states bear a strong resemblance to those for scalar state
formulations derived in Chapter 2. This is due to the commonality among linear
self-adjoint systems.

However, there are significant differences in interpretation and
procedure. The differential and integral opcrators become matrix operators
rather than scalar. Observations and control forces may now be applied to
parts of the state, on to linear combinations of state components, rather
than to all of the state. The additional constraints imposed in the case
of rigid body modes must be interpreted and handled with wore care.

Finally, it is now nearly impossible to know the differential and
integral operators, or their eigenfunctions, with analytical precision.
Approximations must be supplied using eigenfunctions computed experimentally

or by a numerical method such as the finite element method.

SN L e e
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Chapter 6. Finite Element Models:
A Large Space Antenna

6.1 Introduction
In Chapter 5 static shape determination and shape control algorithms
were derived for a multidimensional model defined on a multidimensional
domain, the situation most likely to correspcnd to large space structures.
It was ascumed the structural models satisfied static self-adjoint linear

boundary value problems o! :ue form
L U(P) = F(P) , B, U(®) =0, 112k, (253)

where U(P) represents an n dimensional state vector of displacements at

the point P € Q, L is an n x n matrix of differential operators and Bi‘

1<i :-ko’ are linear boundary operators defined on the boundary T of Q.
Terms in the solution algorithms for the stati~ shape estimation and

control problems involved the Green's function, or impulse coefficient,

of the associated boundary value problem. Since it is highly unlikely

that the precise Green's function for such a problem is known, approximations

to these terms by means of expansions involving the eigenvalues and eigen-

functions which satisfy the corresponding eigenvalue problem

L ¢j = Aj¢j'

Bi¢j = 0, 1<4i<k , (254)
were presented.

However, it is likely that the most convenient eigenfunctions will be
those supplied by a finite element model, which approximate those for the
dynamical boundary value problem

M(P) U, | ye,e) = By, P € 8 (255)
3:2 ’ Y ’

B, U(R,t) = 0, 1<i<k ,PeT (256)
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associated with the static problem (253). These eigenfunctions satisfy
L é;(®) - A, M) ¢,(®) =0, P&, (257)
Bi ¢j(P) =0, 1<i :_ko, Pel, (258)

and are orthonormal with respect to the norm induced by the weighted

inner product
<V, = j ul(®) M(P) U(P) dP (259)
¥ A
rather than the usual inner product

<U,V> = f ') ve) dp . (260)
This chapier investigates the modifications necessary for the use of the
eigenfunctions {ij} which satisfy (257-258), rather than those for the static
problem,
The finite element method is outlined in section 6.2. In section 6.3 eigen-
function approximations are derived for terms which involved the static Green's
function, using eigenfunctions for the dynamic problem. In comparison,
we solve the discrete static control problem in section 6.4 in order to
demonstrate the remarkable consistency between the discrete and continuous
solutions,
Finally in section 6.5 we present specific examples of algorithms for
multidimensional shape determination and control, which are illustrated
by simulations using an available finite element model of a large space
antenna. Tables . ud plots of results are included at the end of the
chapter.

For convenience, only the case that there are no rigid body modes,
or non-trivial seclutionz of the unforced (homogeneous) boundary value problem,
will be considered. 'fF? axtension of these results to the case of system

does have rigid body modes is obvious.
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6.2 The Finite Element Model

The finite element method is a modification of the Rayleigh-Ritz
procedure for solving self-adjoint boundary value problems. The Rayleigh-
Ritz method will be described briefly first. It is based on two principles:
1) The unique solution of the self-adjoint boundary value problem which

governs a system is equivalent to the unique function in a certain

class which minimizes an integral, or functional, which usually
represents the energy of the system.
Examples of such equivalences are the following:
Example 6.1: The solution of the system of linear cquations A x* = b, where
A is a symmetric matrix, is equivalent to the unique vector x* which
minimizes the functicral J(x) = %—<Ax,x> - <b,x>,

This equivalence is equally applicable if A is a self-adjoint
linear operator. [10]

Example 6.2: The function y ¢ C2[0,1] is the unique solution of the boundary

value problem
L e P rawy=m, 0xcl, (261)
y(0) = y(1) = 0 (262)

if and only if y is the unique functicn in C°2[0,1] which minimizes the
integral
1
J(u) = j {pix)[u'(x)}2 + q(x)[u(X)l2 - 2£(x) u(x)} dx . (263)
o

(Ref, [11]).

2) The second principle of the Rayleigh-Ritz metnod is that the functional
J is not minimized over all uppropriate functions (in example 6.2, for
example, J is minimized over those functions in C°2[0,1} which satisfy

(282)). It is minimized cver a smaller set cousisting of linear
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combinations of certain basis functions ¢1""'¢n‘ referred to as

coordinate functions, which are defined on the region and satisfy

the boundary conditions.

Thus, the snlution of the linear boundary value prcblem becomes the
question of determining the set of constants °1""'°n such that the function
f= § AN minimizes J overall such sets, a finite dimensional problem.

In eiztct we are finding the best approximation of the solution to the
original problem in terms of the functions ¢i. The trick in the Rayleigh-
Ritz method is to find a sequence of suitable functions {¢1} such that

as n goes to infinity the functions fn = 1§1 ci¢i converge t. “he solution
of the boundary value problem., Frequently used sets {°il are piacev.ss
linear polynomials and cubic splines,

The finite element method is a modification of the Rayleigh-Ritz
method for more complicated structures, watch cannot be described accurately
by as simple an equation as (261). Thz domaiii of the struciure is divided
into smaller regions, or elements, which are irrcrcounected at a discrete
number of nodal points,

The displacements of the . ructure at the nodal points form the unknown
constants. The displacemen.: at one node represent translations, rotations
or higher order terms in one or several dimensions. Within an element,

a set of displacement functions is chosen to define displacements between
the nodal points in terms of the displacements at them. These functions
correspond to the coordinate functions of the Rayleigh-Ritz method.

A state vector X representing the displacements at all the ncdal
points is formed. The usual order in the vector is that all displacements

for the first node are first, followed by all displacements for the second

node, and so on,
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The object of the finite element method is to determine the state vector,
or displacements, which will yield the closest approximation to the actual
displacement pattern of the structure, The derivation of the equation that
this vector satisfies is an application of the following principle which

is analogous to the first principle of the Rayleigh-Ritz method,

Hamilton's Principle: Let L = T-V be the Lagrangian of a system, where T

is the total kinetic energy and V is the potential energy. Then the actual

path of the system in time, X(t), renders the integral
tz .
L(X,X,t) dt
t

stationary with respect to all possible neighboring paths the system may

take between times tl and tz. Therefore the Frechet differential

2 .
(X H) = & j:l L(X + o, X + aH, t)dt | _ =0

for all admissible variations H. This is a classical problem in the
Calculus of Variations, which leads to the Euler-Lagrange equations for the
system:

d

L (%,%,0) - 3 Lp(X,X,0) = 0 (264)

(Refn [3]’ pt 181).

For dynamic finite element models
1 T 1 T
Tsfxm'c and V=2 XKX, (265)

M and K are square symmetric matrices and M is positive definite,

The mass matrix M arises out of an analysis of the inertial forces
acting at the nodes, The coeffiicients Mij of M are referred to as mass
influence coefficients, which relate the accelerations at the nodes to the
resulting inertial forces, Mij is the force at coordinate i due
to a unit acceleration at coordinate j. The total inertial forces acting
= MX.

on the system may be expressed in vector form by FI
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The stiffness matrix K arises out of an analysis of the elastic
force relationships at the nodes. The stiffness influence coefficient
kij represents the force at the coordinate i due to a unit displacement
of coordinate j, In vector form the elastic forces acting on the system
X may be written Fs = K X. The stiffness matrix K in the discrete system
corresponds to the linear operator L in the continuous systems (253) or (255).
The coefficients of M and K are computed by integrations over each
element using the coordinate functions.
If the Euler-Lagrange equations (264) are evaluated for the finite
element model the following equations result:
for a conservative system: Mi +KX=0 (256)
and, if a vector of nonconservative (outside) forces F(t) is
acting on the system: MX + KX = F(t) . (267)
In a static system g = 0, which yields a system of linear equations
as a necessary condition for the state X:
KX = F , (268)
The final step in the finite element method is to solve (267) or (268)
for X, the vector of nodal displacements, given a known force vector F,
The system (267) is self-adjoint if and only if the weighted inner
produce
<X,y = X'MY = YK (269)
is used. Consequently there exists a corpletc set of eigenvectors (modes)
{&1}, 1<i ﬁ_No, where No is the dimension of the state X, and (orresponding
eigenvalues {ii}, such that

- -~

Ay Mé =K¢, , 1<ic<N. (270)

The eigenvalue A = wiz, where wy is the frequency corresponding to the mode,

i

or eigenvector, ¢1.
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Eigenvectors corresponding to different eigenvalues are orthogonal
under the norm (269). We assume they have been normalized with respect

to that norm. The solution of (267) is given by
N

o N
X(e) = 121 c,(t) ¢, (271)

vhere Ci(t) satisfied 61 + wiz C1 = <F, ;i>M°

Thus, given a known vector F of non-conservative forces the solution
of (269) is expressed in terms of the eigenvectors Ji and frequencies which
satisfy (270). These are the modes and frequencies supplied by the finite
element method, which must be used to approximate the static shape control
and determination algorithms,

Because of computational limitations, only a fraction of the tccal
number of modes are actually computed,

The solution of (268) is discussed in section 6.4.

In summary, the basic steps of the finite element method are as
follows:

Summary of the Finite Element Method

i) The domain is divided into a number of elements, which are inter-
connected at a discrete number of nodal points,
11) A state vector X is formed, representing the displacements of which
knowledge is desired at each node. Displacements within an element are
expre~=ed in terms of coordinate functions, The unknown constants in the
displacement functions are the displacements at surrounding nodes,

ii1) The mass matrix M and stiffness matrix K are computed. The state vector
X there satisfies Hi + KX = F, for dynamical systems, or KX = F, for static
systems, where F 1s a vector representing outside forces acting on the

system,
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-~

iv) The modes (;1} and fraquencies (wi} which satisfy uiz M 61 = K¢,
are then computed, Solutions to the model may be expressed in terms of

these modes.

The Lumped Mass Method

A simplification of the finite element method, the lumped mass method,
is frequently used for models of large space structures at .JPL., The entire
mass of the structure is assumed to be concentrated at the nodal points,
which are interconnected by massless segments. Thus no coordinate functions
need be defined. The mass matrix is a diagonal matrix, with identical
entries for all translations corresponding to the same node, and zeros for

rotations or higher order terms [12].
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6.3 Approximations from the Dynamic Model

Given the eigenfunctions {;1) which satisfy (257-8) and are orthonormal
with respect to the weighted norm (259) we wish to generate approximations
to terms in the shape control and determinatioun algorithms., The eigen-
functions (270) supplied by the finite element method are discrete approxi-
mations to those of (257-8).

1f the Green's function G(P!Q) is not known, we require approximations

for the following quantities:

G(P{Q) (272)
Jn G(P|Q) W(Q) G(QR) dQ (273)
Jg G(P|Q) W(Q) ¥(Q) dQ (274)

where y(Q) is a known function and W(Q) is a symmetric positive definite
watrix,

We will first assume that we have available the continuous eigen-
functions for which the finite element method provides approximations., For
convenience from this point forward we drop the hats ou these eigenfunctions,

which satisfy the following properties:

L ¢j(P) = Aj M(P) ¢j. Pel (275)
Bi¢j(P)-0 . 1_<_:'._<__kD , PerT (276)

:r T ‘ = 4 b
g bn ") 4 (P) M(P) ¢,(P) dP = 8(i-}) . (277)

Properties (275)and (277) easiiy yield the following property:

<0y, Lé> = I o,T(®) 1 o (®) P = 2y 601-D) . (278)
f

The application of the Green's function (198-9) to solve the boundary value

problem (275-6) yields

¢, (P)=) I G(PIQ) M(Q) ¢,(Q) dq . 2719)
3 3l 3

T3
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1f there are no eigenfunctions 01 corregponding to the eigenvalue A = 0,
that is, if the nullspace of the operator L is only the zero vector, the
functions {¢1} form a complete set for all functions in @« suiteble class
which satisfy the boundary conditions.

1f there are eigenfunctions corresponding to A = 0, the modified Green's
Function defined in Chanter 5 has no component in the nullsnace which is
spanned by these functions. Therefore in either case the column vector
Gj(P|Q) can be expanded in terms of the eigenfunctions~¢i corresponding to
nori-zero eigenvalues:

G, elo) = g ¢4 (P) vy (@) (280)
where in(Q) are continuous scalar functions defined on Q. I1f we define

Yj(Q) = (le(Q) ces an(Q)), then

G(P|Q) =} ¢j(P) Y@ . (281)
3

In order to determine y,, we multiply both sides of (281)on the left by

j'
¢1T(P) M(P) and integrate over .

j vy (P) M(P) G(P|Q) dP = ] f 4B ME®) 6, v (@ 2 .
f j’s
1f we apply the orthogonality relationship (277):

Jp 0," (P) M(P) G(P|Q) ¢P = v, (@) . (282)

T
1f (282) 18 compared with (279) it is observed that Yi(Q) = %— oi Q,
i
and

G(P|Q) = ] %— ¢, (P) ¢1T(Q) R (283)
171

where the sum is over the non-zero eigenvalues and eigeuafuuctions of the

system (255-6),
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We use the expression (283) to find expansions for (273-4):

j 6(elo W) (@ da =] %—-Iﬂ ¢, .7 (@ W@ ¥(@ do
1] i1

=l 6® ] ¢,1@ W@ ¥(@ da
i

>1h‘

i

>~

-1
i

: ¢4 (B) <407 . | - (284)

Finally we evaluate expression (273):

J G(P|Q) W(Q) G(Q|R) dQ
Q

] q 3+ X 0, ®¢,7 (@) W@ (Z .

¢;(Q ¢, T®)) 40
Qi Ay

_ 1
- g § 2 ¢, () ¢ T®) <4, 0>y (285)

In the event that the matrix W(P) is chosen to be the mass matrix M(P),

the relation (285) becomes

) 1
J G(P|Q) M(Q) G(Q|R) dQ = ] ——5 8,® ¢, @ . (286)
Q ia
The expressions for (272-4) in terms of eigenfunctions for the dynamic
problem are very similar to those in terms of eigenfunctions for the

static problem. The maior differenc: is the loss of orthogonality with

respect to an unweighted inner product.

< -
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Section 6.4 The Discrete Control Problem

It is satisfying, although not unexpected, to note the resemblence
between the solutions of the shape control and determination problems for
continuous and discrete models. For example, the discrete control probl. n
analogous to the problem (211-212) is as follows:

Let X be an No dimensional state vector representing the displacements
for a sequence of nodal points along a structure, Let Y represent the vector
of desired displacements. Suppose m scalar forces F& are to be applied
to coordinates r(j) of the vector X in order to achieve the desired
"shape" Y, Then the control problem is to determine the control vector
X which is the solution of

KX = CF (287)
and minimizes the criterion

1 2 1l 2 \
3= 3 1EE 4 L ey 2 (285)

over all pairs (F,X) which satisfy (287).

C is an No X m matrix with entries C,, = 6(1 - r(j)). R is a symmetric

i
constant m x m matrix, and M is the mass matrix of the corresponding
dynamical model. Since we are considering systems without rigid body modes,
there are no nontrivial solutions of KX = 0. Thus K is non-singular, and

the solution of (287) is given by

X = k1 cr ' (289)

when F is known.
Finding K-l is analogous to finding the inverse of the operator L,
that is to finding the Green's function such that the solution of LU = F

plus boundary conditions may be expressed as

U=11Fa j G(P|Q) F(Q) dq .
1
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As in the continuous case, while it is easy to refer to KT in theory,
in practice the system dimension No is on the order of 103, so it is
desirable to find a means of approximating K‘l rather than actusally
computing it,

We substitute (289) into the criterion J:
m - -
J= % (F'RE) + 2(K"YcF - T uler - v), (290)
We minimize (290) with respect to the unknown vector F:

g‘fl «FR+ K IF - nx?

C=0,
This equation results in the following necessary condition for F:

R+cx o) Fec kiny ., (291)

Once F is known from this m dimensional system of equations, the optimal
shape X is given by (289).

Since it is awkward to compute K-l, we seek eigenfunction expansions

1 and x71

for it, and the terms K_l MK M Y, We assume we have available
the eigenfunctions and eigenvalues of the corresponding dynamical system

Mi + KX = f, which satisfy (270), together with the orthogonality conditions

and

T L ,
<¢i'¢j>l( - ¢i K ¢j Ai b(i‘j) . ( 93)

Let ¢ be the No by No matrix [¢1 | oo ONOI. Then

oT K o = A (294)
where A is the diagonal matrix with diagonal entries Ai' 1<1 :~No' Thus

K=Y o
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and
T
kL w0l ol §° ALY (295)
11 N .
Furthermore
NO N0
-1 1 T 1 T
K- MK=(§ 590, ¢, ) T 3¢, ¢,)
RV IR SRR I
NN
= 1T by 4y <ey.00
=1 g=1 Mgy 13 TATOM
o
- T e e, (296)
=1 A
and N \
Luy Zo 14, <o, > (297)
X - 7 3 , Yo
Ly 3t TR P

Note the marked resemblence between the discrete expressions (295-7)

the analogous expressions (283-4)(286) in the continuous problem,

e L
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6.5 Applications to a Large Space Antenna

In this section we preseat actual algorithms for the shape determination
and control of a large space structure, subject to the choice of certain
constants, which may be varied in simulations. The algorithms are illus-
trated using eigenfunctions and frequencies provided by a finite element
model of a large space antenna, which has been developed at JPL.

The model is constructed by the lumped mass method described at the
end of section 6.2. It assumes 18 ribs and 882 nodal points locatea on 14
concentric circular cross-sections of the mesh, The ribs are assumed to
be very stiff in comparison with the mesh. The hub of the antenna is
assumed to be firmly fixed to the bus of a more massive spacecraft, so that

there are no rigid body modes.

Available data on the model includes the rest coordinates in R3, which
represent the positions of the nodes on the ideal shape U°, the masses
at each node, and 33 modes and frequencies.

We will restate the problems and algorithms to incorporate two subtle
refinements necessary for the application to a large space antenna.

The first arises from the fact that the mode shapes and Green's function
represent displacements of the antenna from its ideal shape. The actual
antenna shape is the sum of its ideal, or rest shape U°, a perfect paraboloid,
and its displacement. Thus the Green's function represents the displacement
of the antenna from its ideal shape due to a unit impulsive force at one
peint.

The second refinement is that shape estimation is accomplished first,
and the resulting shape estimate U* is used as the desired shape in the

control problem. Once the forces necessary to controi the ideal shape to
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the shupe estimate are determined, the negative of those forces will bring
the estimated shape to the optimal corrected shape.

After the full algorithms are stated, we state the corresponding approxi-
mations used in the simulations, which are based on the expansions developed

in section 6.3.

U S U S T C T

The results of the simulations irclude tables representing comparisons
of results for varying choices of control and observation positions, number
of modes in the approximations, weighting matrices and choices of actual
distorted shapes. Plots of the first eleven mode chapes, and the actual
distorted shape, estimated shape and corrected shape for various initially
distorted antenna.

The computer program listing and output for the shape control of a

large space antenna are found in Appendix C.

The Shape Estimation Problem

Consider an n dimensional space structure, the shape U(P) of which
satisfies the following linear seli-adjoint boundary value problem on the

£ dimensional domain { with boundary T:
LU(P) = F(P), Peg (298)

B, U(®) =0, l1<jck, Pel. (299)

L is an nxn matrix of linear differential operators, which is related to
the stiffness of the structure. Bj, 1< :_ko,ara linear homogeneous
boundary conditions. F is a vector function of unknown disturbances.

The shape estimation problem is to determine the unknown disturbance

function F* and shape function U*, based on the m observation vectors

Yy =C Uy +2,, 1<i<um, (300)
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which satisfy (298-9) and minimize the performance criterion (301) over all
possible pairs (F,U) which satisfy (298-9). The vectors 21 represent. noise

in the observations.

‘ .
Iz H:;l +-’§-In [l F@) 1lg-1py <2 (301)

Ie3
1=1

Ri and W are symmetric positive definite weighting matrices of appropriate

dimensions.

The Static Shape Control Problem

Given the optimal shape estimate U*(P), the shape control problem is

to determine the ser af m control forces Fi’ applied at the positions Pi’

which together with the resulting shape ﬁ(P) which satisfies

m

Lu(p) = C, F, 6(P-P,), Pel ' (302)
PR

B, U(P) = 0, 1<j<k, PeT . (303)

minimizes the criterion

sl 2 1 2
ez 1 “Fillﬁi*‘}‘JnHU(P)-U*(P) iy @@ (304)

over all possidle sets {U'{Fi)} which satisfy (302-3). The matrices ﬁi are
positive semidefinite and the matrix w is positive definite.

The forces Fi’ 1 < i < m, vhen applied to the positions Pi of the
ideal shape U°, will produce the closest approximation to U* obtainable
by the pointwise application of forces at those positions. Consequently,
because the system is linear, the application of the negatives of the
forces ﬁi to posicions P1 on the estimated shape U* will produce the optimal

shape correction of U%* to the desired shape U°,
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The Shape Determination Algorithm

Assume the positions Pi’ observations Yi and their directions

determined by C, are known. Choose the weighting matrices R1 and W in

i
the criterion (301). Then

i) -. Compute the hlock matrices Aij’l <i, ] < m,given by

3

where G(PIQ) is the associated Green's function for the system.

T
Ay =y (jn G(PilP) W(p) G(PIPj) dpP) ¢ {305)

ii) Form the matrix A whose block coordinates are A1 and the diagonal

3

Form the vector Y by

-1

block matrix R whose diagonal blocks are R,

"stacking" the observations Yi'

111) Compute the solution U of the system
(1+ARY)0=arty (306)

The vector U contains the optimal pointﬁise chape estimates Ci U*(Pi)'

iv) The estimate of the continuous optimal shape distortion AU* is given by

m
AUX(P) = (J G(P|Q) W(Q) 6(Q|P,)dQ)C Trlg, -¢ Ux(p,)) - (307)
2y g i 1 %1 Y17 1 |

The optimal shape estimate is Uk = U° + AUX,

The Optimal Shape Control Algorithm

Assume again that the positions P, and matrices Ci' ﬁi and ﬁ have

i
been chosen. Assume also that the desired shape or optimal shape estimate

U% is available. Then

i) Compute the block matrices Aij given by (305) "and the vector elements

Dj given by

T
- 3
Dy = €, JQ G(leP) U*(P) dP . (308)
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ii) Form the block matrix whose tlock components are Aij’ l<i, j<m
Form the block diagonal matrix R whose diagonal elements are ﬁi’ and the
vector D by "stacking" thke vectors Dj‘

111) Solve the system (309) of 1linear equations for the vector of optimal
forces ﬁ.

(R+A) F=D (309)

iv) The optimal shape correction resulting from tyz application of these

forces at the points P1 is

~ m
AU = ) c(plpi) c (310)
i=1

If the negative of the forces F1 is applied to the shape estimate U¥,

*
1Fy*

the resulting shape is U* ~ AU, the optimal corrected azhape.

Approximate Algorithms

We assume the weighting matrices W and W are chosen to be the mass
matrix of the dynamical model which corresponds to the static model (253).

The eigenfunctions ¢k and frequencies W for that model satisfy

2 =
Wy M ¢k L Qk
Then an approximate Green's function, based on the first n  modes, is
given by o,
srle) = I S em® 6@ . (211)
k'lmk
Furthermore, the elements Aij aud D.1 in the shape control and
determination algcrithms are given by
AT T
WL =7 60 6@, (312)
R
and
D ~c7n§—}—¢(1’)<¢ yx> (313)
A J k=1, 2 k3 k’ M



94

Substitution of (311) into the expression (307) for the optimal shape

estimate U* yields

2 e, T T -1
vy = 1L S e e @) ¢ R - cuney) (314)
k

Thus the coefficient of the mode ¢k(P) in the approximste shape estimate
is

B
1 T -
=7 L e R - cune) (315)
[3

These computed estimated modal coefficients may be coupated.to the actual
coefficients of the known distorted shape. Representative comparisons
may be found in the tables at the end of this chapter.

Substitution of expression (311) into the expresaion (310} of the

optimal shape correction AU yields

" 'f n'f 1 T £ (316)
AU 3 ¢ (P) ¢ "(P,) CF
41 ke wkz k k Y1) Y45y

Thus the coefficient of the mode ¢k(P) in the optimal shape correction
AU 1is
1T . '
-3 )} o (P,) C.F, (317)

w ij=]

Comparisons of these terms with the actual coefficients are also found in

the tables,

Results of the Simulations

The tables 6.1-6.3 at the end of this chapter exhibit representative
results for the following choices of variables. Figures 6,4-6.10 illustrate

the results of shape determination and control simulation for selected

distorted shapes,

Control/Observation Positions: The control and observation points vere

chosen colocated both in position and direct{on. Since conventional

stability questious do not arise in static problems, colocation serves
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the convenience of the programmer, but is not necessary for accuracy.
Either nine or eighteen points were chosen on a given circle. Thus

they were located on every rid or every other rib on the circle, The

second, fifth, eighth .rd eleventh circles were tried, [Table 6.1}

The forces/observations were chosen to be all in the x direction

(C1 = (1 00)), the y direction (C1 = (010)), the 2z direction (C1 = (0 01)),

or both in the x and'y directions at each point (ui = 110)). Table 6.2
compares results for the same shape and varying numbers of points and
directions. The results for the z direction are no* included (see remarks

below).

Modes: The number of modes used in the approximations was either 7 or 1l.

Plots of the first eleven modes are contained in Figure 6.1 - 6.3.

Weighting Matrices: The weighting matrix W(P) was chosen tc be the mass
matrix M of the finite element model. This is a natural choice when
using modes from the same model, since the inner product for the space

spanned by the modes is weighted by M,

The weights R, and ii are scalars in these simulations. They are

i
chosen to be the same number R in both the control and estimation problems.
The criteria was that R be as suall as possible, while large enough that
the matrix (RI + A) is invertible. The correct choice of R varies from

circle to circle, but appears to be half-way in order of magnitude from

thne minimum and maximum elements of the matrix A.

Observations: A good test of sn estimation algorithm is its performance
when given exact observations of a known shape distortion. This provides
a means of comparison of the accuracy of the results. The program was
provided with the modal coefficients of several known distorted shapes,
irom which it computed 2xact observations. 1t uses the exact observatjons

in the shape estimation algorithm.
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1t should be remembered when observing results that the mode shapes

represent displecements of the antenna from its uatural or ideal shape

U®. Thus if ~.U represtnts the combination cf mudes 1n'thc distorted

shape of the antenna, the actual shape in U® + AU = U,
Results

1) As long as the value of the weighting factor R is chosen small snough,
it does not appesar to ma.ter on which circle the observations are chosen.
[(Table 6.1] There is one exception: the innermost circle may not be used,
Because of the assumption that the hit is fixad, the valuss of all the
modes on this circle are zero.
2) Good results are obtained from observation/control forces applied
only in the x direction, or aquivalently only in the v direction. Thus
if observations and/or control forces may be applied in these, or in radial
directions, satisfactory results can be obtained. [Table 6,2])

On the other hand, when observations/control forces were applied

ir the z direction, Tesults were very poor (and are not included in the

tables). Exawmination of the modes reveals two Teasons: The first is that

in the lower order modes there is very little displacement in the 2z

direction. This is due to the assumption that the ribs =sre very stiff in com-
parison with the mesh, so the lower order modes consist of ribs being

pinched together at somec points and spaced apart in others, (Figures 6.1-
6.3). The second reason is that the changes in the z direction do not

vary much on the same circle. Control/observation points on two circles

simultaneously were tried, but vesults, although better, were still poor.

For a fixed number of observations, slightly better results are
obtained if they are taken at different points in one divaectioxn, rather

than in several directions at fewer points {[Tables ©.2 and' 6.31i,

e e S maa e —— .
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3) DMore control/observation points than modes should be used. Aside from

the faci chat this is easily observed from the data, it ias a matter of

common sense. Both problem~ involve the determination of the coefficients

of each of the modes. One must have at least as many pisces of independent

data as one has unknowns,

However, it is estimated that there will be from 50 to 150 observa-

tions taken of LSS antenna. Since it is unlikely that 150 modes will be,

or could be, used in the modeling, this restriction does not actually

pose a problem.

Uﬁ

au

sU*

Table Symbols

The ith mode.

The rest shape, oi ideal shape, of the antenna.

The modal displacements of the actual distorted shape.
The actual distorted shape: U = U° + AU,

The modal displacements of the ghape estimate.

The estinated shape: U* = U° + pUx,

The modal displacements of the shape resuiting from the application of
the ccntrol forces.

The antenna shape resulting from the applicaticn of control forces:
Us= U® + 2d,
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Table 6.3

Measuremeuts and Controls applied to both x and y directions at 9 points
vs. x direction only at 18 points, on the fifth circle

Actual Shape: U° + 1o¢1 + 1004 + 508 + 5010

11 modes used in approximations. R = ;0'10.

fActual Coefficient 9 x, 9.y 18 x__

u° U= 1] Uk U
¢1 10. 10.010 | 10.010 10.0 9.994
¢2 0. .000 .000 -.001 | -.001
¢3 0. .004 .004 -.000 | -.001
¢A 10. 10.011 | 10.010 9.996 | 9.994
05 0. -.006 -.006 .004 .005
°6 0. -.003 -.003 .001 .001
¢7 c. .007 .007 .001 .002
¢8 5. 5.255 5.111 4.996 | 4.994
¢9 0. ~.551 -.559 .003 .003
¢10 5. 4,644 4,791 5.003 | 5.003
¢11 0. 488 .530 .000 .000

For a fixed number of observations, it appears better to take them at
different points in the same direction, rather than to take observations

of several directions at fewer points.

Nl .

e Okl W ik AR A A g - B
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{DEAL SHAPE U°

THIRD MODE

SECOND MODE
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Second, and Third tjodes

Figure 6.1 i1deal Shape, First,
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SEVENTH MODE

FOURTH MODE

'SIXTH MODE

Figure 6.2 Fourth, Fifth, Sixth, and Seventh Modes
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ELEVENTH MODE

TENTH MODE

Figure 6.3 Eighth, Ninth, Tenth, and Eleventh Modes
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ACTUAL SHAPE U° + 3¢ ¢g

ESTIMATED SHAPE

CORRECTED SHAPE
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Figure 6.4 U° + 30 ¢3
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ACTUAL SHAPE U° +25¢

ESTIMATED SHAPE

CORRECTED SHAPE

Figure 6,5 U° + 25 ¢,
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ACTUAL SHAPE U° + 209,

ESTIMATED SHAPE

CORRECTED SHAPE

Figure 6.6 U° + 20 «5:7
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ACTUAL SHAPE P + 15 $,+104,

ESTIMATED SHAPE

CORRECTED SHAPE

1o ¢,

4.
2

U + 15 4

Figure 6,7
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Figure 6.8
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ACTUAL SHAPE L +10¢, +104, +5¢g +5¢

ESTIMATED SHAPE

CORRECTED SHAPE : =

Figure 6.9 U® + 10 Gt g, s Gyt S V1o
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ACTUAL SHAPE U° + 106, +56,+56,+56, +5¢ ,

ESTIMATED SHAPE

CORRECTED SHAPE s S

Figure 6,10 U" + lu v
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Chapter 7. Conclusions and Future Work

it 18 possible to acrurately determine and conirol the static shape
of a large space structure by meais of a number of control devices and sensor
measurements at discrete points along the structure,

An integral operator approach to the continuous-discrete optimization
prublems of static shape estimacion and control proves ideal for these
problems. Soiutions reduce to the solution of linecar equations cof dimensioa
less than or equal tc the number of observations, or control forces.

Elements of the linear equations involve the Green's function, or influ-
ence coefficient, of the structure, which represents the recponse of the
structure to a force at one point, In the event that the Green's function
cannor be computed analytically, approximations based on wodal expansions
have been presented, involving modes either from the static or associated
dynamics model, which may be computed experimentally, or numerically.

The distinction between the shape control system and the attitude
control, orbit and stationkeeping system arises in connection with the
rigid body modes of the structure., The rigid body modes represent transla-
tions and/or rotations iu space of the structure as a whole, clearly a
coucern of the attitude control, orbit and stationkeeping systems.

Uu the other hand, the rigid bodvy modes are indetectable to the shape
conirol system., Furthermore, a shape control system may not apply 2 net
torce in the direction of a rigid body mode, te correct it, since this
would violate the boundary assumptions upon which shape control forces are
computed, The latter restriction places additional conctraints on the
shape c¢ontrol forces in the case that rigid body modes are possible.

The use of modal expansions for terms {n the shape control and

determination algorithms invites the inevitable trade~off between accuracy
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and computational difficulty. If a few modes are used and the structural
distortion involves significan. components in higher order modes, the

shape control and determination schemes will not be accurate. Or the other
hand, the use of many modes increases the necessary storage, time and
expense of computation. A compensating factor is that while dynamic

shape control must be accomplished on buard the spacecraft, and within a
short response time, static shape control may be accomplished by ground
computers over a much longer period of time. Thus, the use of modal

approximations may not present a difficulty.

Future Work

The solutions of both the shape determination and control problems
depend on the solutions of linear systems which have dimensions on the order of
the number of observations or control forces applied. It is estimated that
actual large space antennae will require from 50 to 150 observation points
for static control. 1t is therefore desirable to develop a geometric
scanuning algorithm, which would successively process data sets of antenna
sections in an adaptive manner.,

Despite the fact that linearity and self-adjointness are common
engineering assumptions, it is probable that large space structures will
not always have these characteristics. It is anticipated that the integral
equation techniques used here will be applied to an iterative technique for
the solution of non-linear problems, and that it will be adapted for

the solution of non-self-adjoint problems.
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Appendix A. Some Mathematical Background

A.l A Lictle Distribution Theory

We should give some consideration to what is meant mathematically
by a solution to (13-14) or (24-25).

A classical or strict solution to an ath order differential equation
Lu = f is ann times differentiable function y which "satisfies"
the differential equation: Ly = f on [a,b].

Clearly it is not possible for a function to be both n times differen-
tiable and to exhibit delta function behavior in a ccmbination of its
derivatives.

A rigorous development of the theory of solutions of equations of the
type (13) may be found in distribution theory:

Distribution theory was developed to provide a rigoruus framework

for "“functions" such as the delta function. One cannot deduce from the

definition
0 x¢¥ 0
§(x) = i
- x=0
that
I §(x) dx= 1, (318)
or
J. 8(x) ¢(x) dx = ¢(0) , (319)

or even that such expressions are meaningful, Thus a pointwise definition
of the § function does not characterize it.

On the other hand, if the 6 function is defined by (319), the other
information about it can be deduced. %Taus &(x; is defined by its action

on other functions vhrough tlie inner product

60 = J[' 6(x) 6(x) dx = #(0) .
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In distribution theory this concept is extended to an entire collection

of generalized functions, or distributions. Rather than characterizing

distributions by poiintwise values, they are defined by their “"action'" on a
specific class of functions, called test functions. Test functions are
infinitely differentiable functions on Rz which vanish outside of some
bounded domain. Eligible test functions for boundary value problems on the
interval [a,b] must vanish outside of [a,b]. For problems defined on 2, the
test functions must vanish outside of .

On one dimensional domains, a distribution t "acts" on a test function

through the inner product

w0
<t, ¢> = [ t(x) ¢(x) dx .
Two distributions 2 and t, are equal if <tl,¢> = <tg,¢> for all
elipgible test functions ¢.

The derivative of a distribution t is defined by <t',¢> = <t, -4 '>.
(n)‘¢> - <t (-l)n 9’”‘¢>. Note that
1 n
dx
again the definition describes actions on test functions rather than sume

The nth derivative is defined by <t

pointwise behavior.

) L
1t %« R, we denote a partial differential operator on & by

k1+...k£

where K is the vector (kl“"’k\) and lKl = kl+...+k9. As 21 example of

this notation, it ¢ = 3, a point in R3 is denoted hy (xl,xz,x3), and

K= (2, 0, 5), then
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In R" a distribution T acts on a test function ¢ through the inrer product
<T,®> -I T(P) ¢(P) dP .
Q
Again, two distribution Tl and Tz are equal if <T1,¢> - <T2,0> for all eligible
test functions ¢, and the derivatives of T are defined by
o, e = DX er, o¥es

By this new definition of the derivative, since test functions are
infinitely differentiable, distributions are infinitely differentiable.

Finally, the distribution T is a genrialized solution of LU = F if

<LT,®> = <F,¢$> for all test functions ¢. This removes the problem with
finding solutions to (13), that is, how a function may be n times differen-
tiable and yet have delta function behavior in a combination of its
derivatives.

If T corresponds to a pointwise defined function which satisfies
LT = F but i{s not sufficiently differentiable it is called a weak
sclution, If T corresponds to a function which is sutficiently differentiable
s. that the differential operations in LT = F may be performed in the classical
sense, T i{s a classical solutiom, or strict solution. Classical solutions
are easily shown to be generalized (distributional) solutions, so none of

these solutions is lost by appealing to distribution theory.

Examples
AJd) X %& = Q has the classical solution t = C, It also has the weak
solution t = H(x) (the heavy side step function).
A2) xz‘%i = 0 has the generalized or distributional solution t = §(x),

which is neither a weak solution nor a strict aolution.

A.3) Green's functions, which are solutions of Lt = §(x~{) are weak
sclutions, since they may be defined pointwise but lack sufficient
Gifferentiability to be atrict solutions.
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The use of the alternative theorem 6.1, and the assumption of the
existence of complete orthonormal eigenfunction expansicns which are the
basis of the approximations, depend on the assumption that the operators
L and K be defined in Hilbert spaces. The Hilbert spaces which can accommodate
members such as the deita function are known as Sobolev spaces. An excellent

treatment of Sobolev spaces is contained in [9].

A.2 The Free Space Solution of V“v = - 8(PlQ)

The equation

4

vy = - §(P|Q) (320)

represents the response of a plate in free space at the point P to a unit

negative impulsive force at (.

Theorem: A fundamental solution of (320) is given by

Y(x,y,6,n) = %; RZ log R (321)

where R is the distance PQ.

Proof: We wish to show that (321) defines a solution in the distributional

sense. Thus it is necessary to show that

wy,e0 = <y, (7 e = - 8@

for all test functions ¢, where the fnner produce <u,v> in free space is

<y,v> = J u(P) v(p) dP .
RZ
Let R€ be a circle of radius € about Q.

I!
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The runction (321) is continuous except for a removable singularity at

R = 0. Thus it is locally integrable and

J v () (T*e(P))dP = lim v(B) (V4 (P))dp.
2

E+0 R‘-Rc
We apply Green's theorem, making use of the fact that ¢ vanishes for suffi-
ciently large R to eliminate the surface integral at infinity. Thus
4 4
Y(P) (V' ¢(P))dP = ) vy (P) ¢(P) 4P
RZ-R_ RE-R,
[ (2 w2 - ¢ & (o2
-] RO -6 (s

oR
€

2., ¢ _ o2,,3y
- J ((v7Y) o v @(an)]ds.

aR
€
On RZ-RC, V“y = 0, The first integral on the right is zero. On
3 )
the boundary of R, ds ed® and " " 3R

Therefore J y{P) V“¢(P)dP
R2-R_

2n
U L SR S W
: Jo 125 v%0) -6 & (W20 2

2% .
+ C_J (VZT (%% -V2¢ (%%)]de (322)
o]

n. o 1
Now -a—ﬁ -Z-ﬁ(logr+2) .

vzy = %K (log r +1) ,

and

> wh) = L
EY"(V Y) 2nr °
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Furthermore,

the test function ¢ has continuous derivatives of all orders

which have compact support in Rz. Hence ¢ and any of the derivatives are

bounded on all of Rz. Thus

9 2 9
|3§ v%9) | < M, v ¢| < M, and |§§1 < My in R" .,

2

We apply these relations to the elements of (322):

¥4

| € J Y %ﬁ (V2¢)d6 I:_Hl c3log e (21) = o(e).
e2n
2. 3¢ €
l e] VY Gp de | <35 (oge+ 1) My (2m) = o(e)
r2n
le| v &b ao | emy % (Qoge +3) @0 = o) .

Finally,

‘o

2n s, 2 af"
-€ Jo ¢(R) 3R (v°y)de = or Io ¢(6) db.

Taking the

We can conc

limit as € » O, only the last term provides a contribution.

lude

f v(v*) da= - 6@ . ¢
R
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Appendix B. The Flexible Beam Program Listings and Output

B.1 The Simply Supported Beam Control Program
B.2 The Pinned-Free Beam Control Program

B.3 The Simply Supported Beam Estiwmation Program
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B.l The Simply Supported Beam Control Program

Listing
is COMMON STAKToESTAR) MMINGHMAXGERMAX e XL o KETY o X2 CALI) oM
2¢ REAL A(1J¢1D)9bl1I)y WORK(52) e A2(1J0¢L1D)
3 REAL 2(S50) oL (50) oFS TUSC) ol L
e REAL AA(L10912)483(10)2UAL(5D)
Se Rtal YZ(30)eYY(LCL)
be REAL Q1)
T CATA Y2/30e0,./
8e ODATA Q/1Je¢1,E8/
9 OUATA NLaNOa+NCoe/ 1930430/
10 UATA 201D 2uC1) oPSTUL)oUALLY /N0, /
13 c
12« c
13 C se5sss INTROGLULTIQONSs snss
1%e C
15e < Th]S PROGRAF COMPLIES ThnE OPTIPAL LISCRETe rCGRCES
149 c FOR THE SHAPE CONTROL PROGLEM FOR Tne SI¥2LY 3JP206RTED
17 C pEAMe ANC GKAPKS Trt RESULTIANG SHAFE VS Tnt GESISEU SHMAFL.
16 c THE GUAURATIC COST 15 ALSO (IMPUTES.
19 c
22 ¢
21 c PLEASE CEFIME Tt FOLLOWING VARIABLES.
22e c XL IS THEZ LENGYM JF THE Scav,
23e (4 NM IS Thi NUMBER CF ACTUATORS.
28 C NP IS TrHE NJUMACR IF POINTS ALONS THC AV AT WMICH Y3U
25 L wISh TRt GRAPHS TO BE PLOTTEG,
26 c NP IS LESS THAN OR EGUAL TO 3.
ral ¢ XZCIYe 1210aee?NM MRE THE ACTUATCR FCSITICAS,.
230 C 8t CERTAIN xZ(!) IS5 _ci&EEW Js AND XL,
ige d GOIYe 123 veoeoNM ARE The WEICRTS CN TmE FCRCES F(]) SCUARLD
3 C IN TAS SUAUDRATIC CJST CRITERIING
31 C IF GUIY=3eabl 1v THe MATRIX Cea MAY oE SIANBULARY RESLLTING
32 < IN NO 30LJTION.
33 ¢ RECUMMEND G2 1,E-% ® Yise?]
34e C
35 C
o ¢ PLEASZ o nOOSE INZ JOF THe FOL.OWING CGPTIJNS.
37 <
33e C JOFT =1 ONLY EXAZT J2TIMAL FOICES JILL 3¢ 2OV%31LZICY,
3y C JOFT=-g eXaCY OFTIwAL FORCCES AND FIRST AFPFOA;YATIGhS
4de c BASE) OV zIGT VFUNCTION ©XPANSIINS ARD 10 3¢ CINSI0EReu.
4ls C
“ze C
43 ¢ Thi CESIRED SHAPL IS Trnc FARASOLA  YZLEANGTrex - XeXx
44 v
NS C
4be ¢ PLEASE O0SE INZ 2F THe ~Oo0LOWING OPTIONS.
N7e ¢ KOFT1 CETERMINES Wwhal GRuPrES ARE OEMN RATLO.
§ae c
hoe ¢ K0PT:1 e SRAPPS, The OPYIMAL FLRLESY ShafFg ol LCRY
S5y L AlLL 3& 2RINTLO.




e T T RGN N TRee-—w

Sle
52e
53¢
340
59
3o
$7e
58+
59
60e
ble
62
&3
o4
5%
bbe
ale
6de
69
T0e
i
72e
T3
Tue
75
Toe
T7e
78
A1)
BUs
8l
82v
83
84
85«
84e
ale
obe
89
L20)
91
G2
93
QU
95e
Qo0
370
Qg
99
A0ue
1J1e
102
193
10us
105e
160
1J7s

OO N O

Coaonwn

OO 0O

Crroc

121

KUPT =2 EXACT OPT [WAL SHAPZ VS. JESIREU SHAPEZ,

KOPT=3 DESIREGC VS . APPROXIMATE SHAPES

XOPTY =4 EXACTs APPROXIMATEs AMD JESIRED SHAPES OV ONC G%APM,.
KOPTZS 80TH 2 AN 3,

XoPTzo 80TH & AND 5.

NRZ2

KOPT -4

JOPT =2

IF(KOPT.GT.2) JOPI=2
PIz3.,14159

NP=20

xL=10).

CEL=XL/NP

NPzNPe

WRKITEloel)) XL
FORRAT(///7/73%e 23T HE LeNGTH 9G THI 3CAM [3¢F10.2)
WRITE(b602)
FORMAT(//717)

THE FOLLOWJING VARIABLES ARE NECISSARY FOR Tni JPL JJAURATIRES
SUBROUTINE.

STARTzZ U,
HSTARZ D) oXi
HMINZ 0010 XL
HMAXZ, )58 XL
ERMAXZ)JE~&
XEYS)

THESE CONSTANTS ARE NECESSARY FCR ThE PLOTTIMNG SLBRCUTIANES,

NG=1

TiCs5='x?

NTSz=-1

NT1z2

NTeze

NT3=2

TIC1Zy

TIiC2zte

TiL3z ey

XLENZS8.

YLENZG,

00 495 INZ1.3

NMZIN

00 7 NAZ=z14IN

RLANXKZ)sNXZoXLZ LINe))

CONTINUE

CALL VOUT{CiNMo1791 THOTHE WETIGPTS C(IM)
CALL VOUT (XZeNMe33s33Huie VECTOR OF ACTJATIR PISITIONS)

HERZ THE EXACT A QATRIX ANY 3 VICTOR AL Jodyrel.
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108
109
1100
I1le
112e
113e
118¢
115
116
117
118
119e
129
1210
122+
123
128
1c5e
1260
127
128
129e
130e
131
132
133
138
135
1360
137
133e
13)Cs
1400
1481
142
143
1440
1450
lape
14 7e
148
149w
150e
15te
152+
153
154
155
1560
157
158¢
159
lolde
181
15¢e
1ol
1a4e

. Vo———

[2]

50

1

1Y

ol

(e ol o]

THE SUSROUTINE BVIZ COWPUTES THI EXACT VECTIAR 8.

CALL BVEC(Y)
00 50 I=lenN
X=x2(1)
ClzXe(X=-2,0XL)
00 SJ J=[eNN
¥Y=XZiJ)

C23Ye¥=2 06X LaY
CIzXeXoYeY
ChzXsXeYaY

ACTod) o ((X=AL Do (VY-XLDZ (30 coXLoXL))e ((XooD)/Too(X0eS)e(CRe(2)/5,9
(Xee3)eC1eC2/3.) ¢ (XoY/ (300X Lo XL)) o ((XLoaT7-YueT)/T 0K 0f 00b-XL 807
s,20(XLeeS5-YeuS)a( 13 0XLOXLeCI)-(RLooN Yool )e(3 ,0X L 00)eXL0C3)
s(XLos3-Yoe3)s(lo/Tede(S.oXLoxXLoCIeon,aXLooqeolh) ~(XLO L YoVIe(X, »
CAs (XLee3DeCI) o tXL-YIo(XLoXLOCA)) o (X/(30e0XLoe2))e(Y-xLIo((Y
s87-XeeT) /T =X 0.0 (YovboXoup) ¢ ,20(VY00S-X0e3)a(C202 .0 OX Lo XoX)~
250 (YooyoXuol)o (I o X L0 C2oXLoXOX) e (Yon) N3 )0C2a(XaXe2 0L oXL)/

T3e=(YoY=-X0K)0,Ss(XLeXeXeC2))

CONTINUE

LO 51 JS2eNNM

NENES

00 51 [=1.9J

AtJeI)ZA(]0J)

CONTINUE

WRITE(022)

CALL NCUT CAONDAINY oMol P9 0942THE ZXICT A MATRIX)
CALL VOUT(ooNMel3ed 3NOTHE » VECTORY

00 60 [=1+NA

00 63 J=1eAN

AQ(JeJdizALLed)

CONTINUE

U0 ol I=1+%%

AGCIoId)zAG (e ]l) « G(])

COAT INUE

CALL POUT(AQeNCASAMINMIZLIe2INTOTHE EXACT PATFRIX Ceal

O WM B e

SOR IS A JPL L INCAR CLQUATION SOLVIAL SUBACLTINE.

CALL SOR(AGINTAINPoBo NUBOINE +$3CouCRK)

CALL VUUT (oeNY e25¢ 25HIVECTOR 37 OPTIMAL FIR3:I3)
GO0 YO «¢

WRITt(ee31)

FORMAT (15X 026HUMATR IX 1S NEARLY SIAGULAR)

GO 10 5))

IFIJOPT LEU 1) GO T0 217G

HIRe TAc APPROX IMAT E VALUES JF A ANQ 8 ARZ CIWPUTED.
L132.8(X 071/ (Plasy)
00 15) IzleNn

XzrZ¢li
U0 13) JsleAM



e s et

1685
166¢
167
lo8e
169¢
17Qe
171e
174~
173
174
175
176e
117
178e
179
180
1d1e
luas
183
lede
185+
1806
187e
1bbe
1890
19Ge
191
142e
193¢
1v4e
195
166
197
176
199
2vuse
291
évee
233
204w
2V5 e
2Loe
2Ule
iude
209
2%C»
211
212e
213
PR L)
215e
cloe
217
clo*
2ivse
PEEE

241

150

(2N 2 o1

100

Le5

P a)

im

17<

175

[ gl N oW N ool oW ol ol o

luc

led

123

Y:x2J)

AMCTvJI 2 @ (SINCPIeX/XL)DOSINIPIeY/XL)

CONTINUE

WkITE(002)

CALL MOUT CAAIN DAY Mo NN 32¢32MIFIRST APIRINLIVAT {IN T3 A WATRIX)

THE SUIROQUTINE oA QINPUTES AN APPIOXINATE VICTOR 3.

CALL BAP(ab)

CALL VOUT(obsNMs 2o J2HUFIRST AFPROXIMATICA TO 8 VECTICR)
D0 163 I=tNY

GO 160 J=1oNP

AGC Lod)=AACTVd)

CONTINUE

U0 165 IS1.NN

AGCT1)ZAQLELel) ¢ QU]

CONTINUE

CALL MUGUTCRGoNUASNAINNI22427HOTHE AFFRCXIMATE PATRLIX Ael)

SCR 15 a JPL LINCAF CQUATION SOLVIAG SUbRCUTINE.

CALL SGR(AUINDAINPicBoeiDDBoNO S0 ¢ CRK)

CALL VOUT (08eNMe2729HIVECTIR DF APPRIXIMAT: FO0¥Cia)
CALL COST(osQohReQ)

dflTitoel 7Y C

FORMAT (//7¢7%Xe37nTHE EXACY COST 1Se E19.5% )
IF(JOPTLEQ.1) GO TO 175

CALL COST(eboeCaNMoC)

WRITELO0172) C

FORMAT (/.7 93X e23nThE APPKOXIPATE CCST 15 o £1%5,5)
WRITeloed98)

IF(JOPT ,EQ0 .13 WRIWN (6+195)

MRITclor2)

HERL TAL SHaPES ARI COWPUTEU.

20T IS THE X VALJI OF The ITH 20INT OV 4 53A7H,

UEI) IS TRE Y VALULE OF ThE 1TH FOINT CN THE GRAFF CF ThHi
OPY IvAL SHAPE.

Uall) IS THE Y VALLE OF ThE ITH FOLAY CA Tk GRAFH CF
APPROXIMATE SMAPE.
PSICL) IS TrE Y VALUL OF ThE YITr FCIAT CA Tni GhAPR CF
UESIRED SHAPE,

CU <00 XKz2 NP

L(K)Z(K=1) & JEL

xz2(x)

PSI(KDISX o =XuX

Uinizg,

UALK)IZ ),

UU 195 L1clehe

IF(XLGTXZUIN) 3 T2 e

GoUXT (Y -KL)esXs (XoX=2 X2 (])eXLeXT(])eu2}

oC 10 14%

OS(X=-XL)oX(])e (X2(jloogog sXL8XeXuX])

HESESITSEFT FARSFENIN ] §8

1¥ (JOFT Ng,2) 6O T0 Ayl

UALRIT AlK) » He3:(017(8,8X0)
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222 190 CONT INVE

223 IFLJOPT~1) 3191¢191,192

a4 191 WRITE(S>19) X ePSTIKDeU(K)

228 60 10 2C0

2260 192 WRITECos190) X oPSI(XSAVIK)0A(XK)

227 198 FORMAT(ENOoIXoBHPCS STICNOAX o) T+OESIREL SHAFEsOTXeSHSHAFE 22 xo
2208¢ 1 13MAPPROX, SHAPC)

229 195 FORMAT (IO oIX oo MPCS ITIONVAX+1IRDESIRED SHAPLsOT X SHSHAPE)
23)e 196 FORRAT{, +3XeF1)e2¢3E15.51

231 200 CONT INUE

232 NP2z2eNF

233 LG 215 JSLeNP

238 YYCI)PSItLD ey 23

23%e YY( enWPI2U( )0y, 22

236 215 CONTINVE

2317 GO TO (500630003200 2%Ce300e250)eK0PT

2340 C

239 250 CALL JuNPLY

249 CALL “LFORM(*, IN_IN*oXLENIYLEN)

241 CALL "USCAL(Z NP MU s YYINP2oAG)

2420 CALL PLABEL(°ThHE  IMPLY SUPIORTEL BEAN'e23+¢*LENITa [N WITERS e 1y
24 3 1 'ULSPLACLMENT 012D

2480 CoLL P .GRAF

2450 CALL PLAKIS (20 XLENGO,)

246 CALL PLCURVIZoUN2 yTLyTIC))

287 CAML PLCURV(ZWPSTNPoNTZeTICZ)

LY T CALL PLCURV(ZesUAINPeNTINTICY)

2690 CALL PLCURVIXZ2oYZNMoNTSeTICS)

230 CALL PLTZXT (2450345041 0UsrIINACTUATIR POSITIONS MARKCED 27 X9 300 1)
251e CALL PLTEX (S 508 W eelUeQoed9NLESIRED (0) VS OPTIMALIGY VS AFPRCXINM
252¢ 1ATCL(/) SHAA2ESrevel)

253 OU TO (270027 0ec T80 dT30274028754270600NP

254 els CALL PLYZXTU3.2¢70U0alo0an) 8252 YTN ACTUATIW 01521

25%¢ 60 10 (60

56 213 CALL PLTEXT (30407400 o0arel2MINE ACTUATOR012,41)

«57e 60 T0 ¢eC

2580 271 CALL 2LTIXT(3al3eT0dealeNaod3InTdd ALTUATIAS 0130 1)

£59e 60 10 <o0

26) <12 CALL PLTEXT (302074000l oOee ONTHRZL ACTUATIRI eln0

26l 60 10 <dd

20cie FE) ] CALL PLTEXT (e300 doelo0eel N7JUR ACTUATIHR 0 Qe

263e 00 1C ¢ol

2oue 214 CALL PLTEXT (30307000 el edaeldvFIVE ACTUATI v 1d01))

205 60 10 <60

266¢ FaL CALL PLYCAT U3 e3¢l uural o JaelSSIX ACTUATO 3013412

207 PL]Y IF(KOPT (LG .83 LU 10 asy

205 ChALL ALvPLY

2u9e e Call EBuhkLTY

2713 CALL PLFAORACY_INLL atoXLENIYLLN)

271 Coll PLSCAL (Z onP ohU oYY o NP2 00D

iree CALL PLABCL (2T mg SIWPLY SUPIORML) ogAN e3¢ LN T4 1IN €1V RS% 106
273s 1 'LISPLACCSENT o1 )

2740 CALL PLuRAr

215 CALL PLAXIS(-CeXLEN o0}

PR LY CALL PLCURVIZoUN?2 0TI TIL 1)

Fa R A CALL PLCURV (2 PSS T FanT2oT](2)

¢las Cabl SLUJRVIXZ eYZeNu%eNT3T]09)
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CALL PLTEXT 1ee595.500100uerIINACTUATOR POSITLO0YS MAIRED 4Y X9 330 1)

279e

260+ CALL PLTEXT(2.5¢95,00e10¢0.03)HCESTRED (o) VS OPTIMALIC) SHARESIIL
281+ 1 1

2e2° GO0 V0 (320+321:33203230328¢33%032060eNP

283 Jas CALL PLYZIXT(3627740001¢0.013MSEVEY ACTUAYIR5 082013
ahue 60 10 33C

285 320 CALL PLTEXT(3o407000eleVaslZHONE CTUATOR01201)
FLTL 60 10 330

287 j21 CALL PLTEXT(3e3¢70006100040230T40 ACTUATOS #1361
268+ 60 10 330

289 322 CALL PLTEXT(3420703¢¢1004elSHTHRES ACTUATOR3 4l a0'1)
290 6¢ 10 330

91 Ja3 CALL PLTEXT(3e307.20e1eQesl¥472UR ACTUATIREZ 01441
292 60 70 330

293 344 CALL PLVEXT(36¢307,00e1904¢l8nFIVE ACTUATIR3 04012
2970 60 10 330

2959 329 CALL PLTEXT(3e¢30740r-10TeedInSIX ACTUATIRS 61301
2960 330 IF(KOPT (EG.2) +O 10 &9

297 CALL AGVPLT

2960 3%0 CALL BGAPLT

299« CALL PLFORNM(, IV _IN?-XLeNIYLEN)

3009 CALL PLSCAL (27 oAG oYY NP2 1G)

Jule CALL PLABEL(*TME SIMPLY SUPRORTED oCAM* #23¢%LIN3T4 IN YSTERS* 1104
Ju2e 3 CULSPLACEMENT*+1Q)

303 CALL PLGRAF

Jube CALL FLAXISUt=-ZoXLEN D)

305 CALL PLCURV(ZePSTIoaNPeNT2+TIZ2)

JUoe CALL PLCURV (2 sUA NP oNT30TICY)

37 CALL PLCURVIXZoYZeNNINTSVT IS

Juse CALL PLTEXTI25025¢0300.¢3CHACTUATCR FCSTITICAS MARKCL oY Xe3Cel?
JUQe CALL PLTIIKT (24303400 edUedaetSHIESTIREULO) V3 APPIONIMATL(/) SHAD: 5,
310e 3 35.1)

Jile GO TO (3700370037243 73037%4375¢370) 048%

312 318 CALL PLYEXT (30207000300 0¢) nSEYEN ACTUATERSeL0d )
3430 L0 TO 4¢3

3] 4o 310 CALL PLIEXT (300 T.004200,227H0% ACTUATCROLZ0D)
315 S0 TO «92

3o 3N CALL FLYEXT (34327 0eede0aedinThul ACTUATCARSeId 1)
317 GO TO «9)

Siue 312 Call PLTEXT(3,2¢7,00a3¢00e)sHTHAEE ACTULATCRS o101 )
3135 o0 T0 &9)

3cOe 3713 CAlL PLYEXY I3 30T ,000se¢0es3arFCUR ACTUATCRS 0TI ML)
Jele 00 TO «9)

3det ARL) CoLL PLYEXT (3307 usadeD s aNHFIVE ACTUATCRS 1340l
323 20 TC %9)

J2ue 1% CALL PLTEXRT (34307 unodoDaslINSIX ACTUATCHRS 0L )
JcSe (X CONTINCE

Jco0 Call ALVFLY

PR A v CoOnTINUE

Jage CalL ENLPLY

329 < DOnT FORGELT TO RE>_ACE 490 CALL ENUSPLY

33Ce v STLP

33is LNy
ND OF COMPILATION: M GTAINISTICS.
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1s
2"
3
ks
S5s
'Y
1
3e
Se
10
11
12+
13
1ys
15+
1oe
17
13=
1gs
2)e
“1s
22+
g3

1»
rx
3
“-e
s
o
T»
as

9s
luse
11
1cs
13+
lhe
15
los
17
loe
19
P35 )
21
cee
23
&R}
P42/
PR
¢
cre
wvYe

ol

e e e

12

Su

CcOoCccroae o

1

1>

¢t

>

SUEROUT INE BAP (@) )
COMMON STAKToASTAR ¢HAMINOHMAX ¢ ERXMAX o XL e KEYOXZL13) oY
REal 8L10)

THIS SUokCUTINE CCPPUTES AN APPROXIFPATE & VECTCR FCFR
THE SIMPLY SUPPORTI D oiaN,

INTESRATIONS ARL PIRFORMNED BY THé JPL JUAIRATYRES 3J0RIITINC. :
ROMES AND ROM2 ARE PART OF ThAT SUERCUTIAE. )

P31 1S ThE LESIREL SHAPE. ;

Pr1:3,14159

DU 5 I=1,a%

(Ll ROMBSUSTARY oXL oXoFQF X e rSTARSENINehMAXeE RFAXs ARSIKsKEY )
PLIzXL eX-XeoX

FOFXZPSIoSIN(PIsX/XL)

CALL ROM2

IF(K,EG 1) GO TCG 1D
BOIYZANSeSIN(P IoX2 (1) /4L e 2,0 {XLwe3) /(P lexu}
CONTINLE

RETURN

ENL

SUSROUTINE 3VIL(3)
CLEMCN STARTobSTaRo FM T aPPFAXsERYAX o XL o XEY e X2 (LU e}
REAL 3¢1))

THIS SUoROUTINZ CIMPUTLS THE EXACT 3 VILTIR FOR The
SIMPLY SUPFGORTELL BiaM.

INTLORATIONS ARy FeRFCRIEL oY Tre JFL CLALRATURL S SLeROLTIAE.
ROMuS AN ROM2 &RI PART GF THAT SuU3PIUTiNZ,

PSL IS5 THe SESIRXED 5HA?t.

Ll 35 iTlevM

2zx2( 1y

Call ROMSS(START IX Lo X FOFXoaSTARGAMI N1 %aX s JRVAX 0 ANS e Ko XEY D
IFUY,GT,2) G0 Tu 1

DI(Z-XL o Xs{X0Kk-2, s7sX|  ¢2¢2)
60 Y0 ¢o
VS(X-XL)oZsl 2022, 8Y L 02/ s()
006/ (b.oabL)

Fislalalsd

PSizYsxXL=-X»X

FOFX:zPyles

Capl Ruvg

IFiveZael) 50 70 13

plidsast

CONTIN L

Fe TLRA

[}



- e -

le
2e
3o
Y
Se
&e
e
8e
Qe
1Je
11e
12«
13e
1%
15e
16
17
18
19e
PLL
21e
22
23
24
25
PE A
27
QB
29

30
3t
33

33

Oobntoonc

-

13

180
190
200
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SUBROUTINE COSTLEQ oNNMC)
COMMON START v ASTAR ¢nMINeHRAX ¢EINAX XL XKEYIXT (L)
REAL B(l10)«Q(20)

THIS SUGROUTINE COPPUTES THE QUADRATIC COSY FUN YICMAL
FOR A ST OF NW FORCES »{I) AT 20SITIONS X2{1) ALONS
A SIMPLY SUPPORTEQD bEAN

COSTZ(1/72)e (SURM(C () wB(tIdwe2) o INTEGRALCLLIXDI=-PSItXNYIee2))
WHERE U 1S VYHE OPTVIMAL SHAPE ANC PS1 IS THE LESLIRED SHAFE

c:“.

00 5 Iz1eNN

CaCs0ildvtbildenig)

CONTINUE

CALL ROMHSISTARTV o XL eXoF QF X o RSTAR hMIAsHPAX L RNAXe ANSeKeKEY)
SHAPE=ZD.

CO 290 I=1.NM

IFCX 3T X200 G YO 189

GoiIXT LI =XLdeXs (XoX =2 ,0X2(])eXLoX2(])sug)
60 Y0 19)
GoCX-XL)eXZ (1D)e (X2( 1) ee2-2 ,0X 8X X aX)
SHAPEZSAAPCeGab L) 7(o,0XL)

CONTINUE

PL3.14159

PSIsXeAL ~XeoX

FOFXSa 20 (SHAPE=PS])ee?

CALL ROM

IFiKNotuellde0 10 1L
CIebeg ¢ ANS

kit TURN

tNu
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Qutput

THE

THE

THE

THE

ROW
ROW
ROW

THE
1

THE
ROW

RO W
ROW

LENGTH 0G THE &EAM 1%

WEIGHTS Q(I)

10 3

1490300J0+03

100.u8

143030030423

VECTOR OF ACTUATOR POSITJIUNS

T0 3

24 3003000 UL

EXACT A MATRIX

1

2

3
B VECTOR
T 3

oL 1
1eJ0623027¢ 10
1490212710
1.0458322+10

1.3737839¢09

EXACTY MATRIX GeoA

1
2
3

coL 1

1.2723027+10
1e4932127¢1y
1.0858322+10

VECTOR OF OPTIMAL FORCES

1

T0 3

5.2130838~02

34330002001

coL 2
1.49)2:27+0)
41001304 e)C
14493211 ¢+

CeBUTSTIVUIY

coL H
1.4902127¢1%¢C
2eilol3dael)
1el902119+1C

$e10355C7-0Cc

FIRST APPROUXINMATIGN TO A MAIRLIX

ROW
RO W
ROW

1
2
3

“ oL 1
1.3539U90%10
1e49.4543+ 1)
14053912314

coL e
14904545 1¢
2elulad2lel)
1490438310

FIRST APPROXIMATION TO o VCCTOR

1

Y0 3

1e87c9535+09

THE APPROXIMATE MaTRIX Aey

RIW
ROw
RIW

VECTOK OF KPPRCXIMATe FCR(LS

H

[}
4
3

19 3

CoL 1

L. 048390V 1y
IR R AT T BRI
160539125+ 1))

Qe 32343802

<obRDTBUT LS

LOL 2
Le3934545¢1)
«ellla222¢XC
le924533¢1)

hNe2002376=)2

1.0030J09%+28

745030209 «01

LoL 3
14045832219
1.8902°19+10
1062295610

Y .87377T92009

coL 3
1.0456322410
1.3902119+12
1.0722956410

5.2138585-32

CoL 3
1.,0539125410
les879)4503¢1)
1,053v15)3 400

1.8726540¢07

oL 3
149339125+
1.400488) 10
1.0639153¢1)

44432304532




o IR N[ oyt gy e WG, e 6 v

Tt Vo N dvd

g gy

Ay -

P 4

THE E£XACT COST IS

THE APPROXIMATE COST 1S

POSITION

5.00
10.00
15,00
20400
25.00
3000
35.00
43,39
45.00
57.00
55.00
69,0
85.00
73439
1500
30.00
a5.0v
$3.3J
¥5.00

100.9J

OESIREU SHAPE

«847500+03
«93000+03
«12750+04
«1603Q90+3¢
«18750+04
+21000+04
«22150+04
« 2403304
«28753404
«250300¢04
«2UT5004
« 28090+ 04
22275004
«2132Ge 0y
«106T5us L
«10J00+04
« 1275004
«99703493
~HT500403

230300

ASYMP PUN(FSe19d708de39PLT)

aPLOT P

02204038

«83505¢)0

SHAPE

A0412+02
«T9853+03
«11734404
15191 0%
«15257+Q4
«204d83+04%
«2c919+04
< 2843304
+235373e04
«23692+0%
025373604
ce MU 3de0n
22281904
20883033
218557004
e 1519 0
«11734.04
« 1985423
HLU12e02

«JJJVI

APPRQOX. SHAFE

«802CT7CY
YALER DR ]
«dlobloCH
+15137e24
«18212 04
«23823%54
022923004
PLTRAVE LY
IR-3-L IR W)
5136404
«25U4ZH oLl
2847054
e 22973 4CH
«23823%)4
Y2V RIN
«15137e04
«llbnl ety
27943933
~MC2LT (]

«JUJ1D

129
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B.2 The Pinned-Free Beam Control Program Listing

e
20
3
[ X}

$e

ge
9e
1%
11
12e
13
14
15
160
17
18
19«
20
21
22
23
24
25¢
P
Y 27
28
2%
e
3l
A2e
Ade
Jae
I%e
ALY
AT
Jhe
X
[
A)e
Al
4 e
b
Ahe
ac e
Ale

- e T T TN RSN

OO0 NONONO

COMMON STARToHSTAR (HMINQHMAXGERMARQRLOKEYoRZELD) 9NN
REAL AC19410240010)

REAL Y(100) 4UA(SO)

REAL ARCID01N)IA3C12410)4BIGCI)0CL0)

REAL AACI010)oPHICLI0D,BALIN FALLM

REAL ABAI10413)¢BBALIDI4AGALL10410)

DIMENSION WORK(100)

REAL FLI0DoULSRD4PSTI(BNI 4 N(BD)

REAL PHI21O)

DATA R/100040/

THIS PROGRAM COMPUTES TML OPYIMAL DISCRETE FORCES
FOR THE SMAPE CONTROL PROBLEM FOR THE JPL FLEXIBLE
BEAMe AND GRAPHS THE RESULTING SHAPE VS THE DESIRET SHAPE.

PLEASE OEFINE THE FOLLOVING VARIABLES.

XL 1S THE LENGTH OF THE BEANM,

NP IS THE NUMRER OF ACTUATORS,

NM MUST BE GREATER THAN OR EQUAL TO 2.

NP 1S THE NUMBER OF POINTS ALONG THE BEAM AT WRICH YOU

MISH THE GRAPMS VD BE PLOTTED.

NP IS LESS THAN O EGUAL YO S).

X2¢I)e 15leeeeeNM ARE THE ACTUATOR POSITIONS,.

BC CERTAIN xX2¢1) 1S BETWUEEN 0, AND XL

QU1)e 1=1eeceoeNM ARE THE WEIGHTS ON THE FORCES FC]) SQUARED
IN THE QUADRATIC COST CRITERION,

PLEASE CHOOSE ONE OF THE FOLLOWING JPTIONS,
JOPT=] ONLY EXACT OPTIMAL FORCES WILL BE CONSIODERED.

JOPT =2 EXACT OPYIMAL FORCES AND FIRSYT APPROXIMATIONS
BASED ON EIGENFUNCTION EXPANSIONS ARE To 8E CONSIDERED,

THE OESIRED SHAPE 1S THE PARABOLA Y= LENGTH ¢ 374 ¥ = Xex,

PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS.
XGPY DETERMINES WHAY GRAPHS ARF GENERATED,

XapPT=1 NO GRAPMS, THE OF" jMAL FORCESe SHAPE AND COST
MILL BE PRINTED,

KQOFT =2 EXACY OPTIMAL SHAFE VS. DESIRED SHAPE,

KOPT="® DESIRED VSe APPROXINATE SHAPES



S e,

A

4R
49
Tt
S
32«
A3
S4e
35
36
87
S
39e
60e
6le
6o
6}
b
6%
the
67
68«
«9e
e
M.
T2
TNe
T4
15
T
TTe
T8
79 e
8Ce
A
B2+
ANe
8ae
8% e
Bge
RTe
(LX)
NG
92
Gl
Q2
LAY
See
Q4 e
Qb
97
9l e
ale
17 e
17
102
163
176

OO OD

e X2 Nal

[aNaNal

[2EsKaN gl

[2¥aEaXal

XOPT 34 EXACYe APPROXINATEs AND DESIRED SHAPES ON ONE GRAPH.
XOPT =8 B0TH 2 AND 3.
KOPTz26 BOTH & AND 8,

KOP Tz ¢

JOPT=2

1F(KOPTo6T02) JOPTS2

NNz2

XLz1%,.

NPz 21

00 1 131NN

¥2(1)z) e 8 oXL

CONTINUF

WRITELGe2) XL

FORMATCZ /77741 %¢25HTHE LENGTN OF THE BEAM 1S.F10.2)
CALL VOUTC(X2¢NMe33¢33NOTHE VECTOR OF ACTUATOR POSITIONS)
DEL=XL /NP

NPz=NPe}

THESE CONSYANTS ANE NECESSARY FOR THE PLOTVING SUBROUTINES.

XLENZ8,
YLENSG6,.
NG=3

NTz6

TiCi=z e e
T1C2=2°0
T1C3=z9%/¢
TICAz*3e

THESE CONSTANTS ARE NECESSARY FOR THE MATRIX INVERSICN ROUVINE SORe

KDALY
NCB =)
NB=1
3=Xx2¢})
LES 1LY

THE FOLLOMING VARLABLES ARE NECESSARY FOR THE JPL QUADRATURES
SURRJUTINE .

STARY=C,
HSTAR=, 0] eXL
HMIN= XL o], (=0
LLFY ENd.1 ] (%
ERMAX=)4E=Y
KEYz?d

HERE THE FoACY LITTLE A MATRIX AND B VECTOR ARE COMPYUTED.

CALL AMATCA)

CALL BVECtB)

CALL MOUTCAWNDAoWMoNRI2D42IMDTHE LITYLE A MATRIX)
CALL VOUT(HoNM92D¢2IHOTHE LITTLE B YECTOR)
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132.

105¢
176
157
1.8
149
110¢
111
112
113«
114
118
116¢
117
118
119
120
121
122
123
1280
128
126+
127
128
129«
135e
131
132¢
133e
1340
135«
136
137
138
139
14U
141
14Ce
14%e
1440
145
146
147
18k
14%
15 .
151

152

T 1%Te

1%6.
15%
155
1%7e
1%k
15Ge
160

1€l

C HERE THE 616 A MATRIX AND 8 VECYOR ARc COMPUTED.

00 7% 122NN
A1CGL1 =108 ¢ )=K2CI)eB 1D/ K]
00 75 J=2NN

AB(T=190=1220C1) e X2 (T X2CUDI/ (KL uX1)eAllgd)=AidoddeR2(1)/h]1=Al1e]))

TeXZCIIIRY ¢AlLe2) e A2ETIOXT(UI /(XL XY)
ki CONTINVE
CALL MOUTC(ABNDAIMoMo1To2THOTHE BIG A WMATRIX)
CALL VOUT(BIGeMelTe1THUTHE BIG B VECTOR)
CALL VOUT(QoNMo28¢28HOFOR THIS WELGHTING VLCTOR Q)

c HERE THE EXACT MEIGHTED MATRIX A+Q IS COMPUTED.

00 80 I=) M
00 80 JU=lM
AB(19VYZARL ]I W)
81 CONTINUE
D0 8% I=1,M
AQU141)2A0C 01000011
a% CONTINUE
CALL MOUT{(AQeNDAgMeMe24,24HITHE MATRIX BI6 A PLUS Q)

c NOW WE SOLVE FOR THE TXACY OPTIMAL FORCES F2 TO FM,

CALL SOR(AGeNDAsNoHIGoeNDE ¢NB¢$914VWORK)
GO YO 9%

90 WRITE(6491)

91 FORMATC///7/7¢10Xe25HMATRIX 1S NEARLY SINGULAR)
60 YO 520

95 CALL VOUT(BIGeMe22¢20HITHE FORCES F2 TO FM)

C WE COMPUTE THE ENTIRE YECTOR OF OPTIMAL FORCES.,

FL1d=23,
0O 1°C 1=1eM
FOL)=FULD=RIGLY)eX2(1 ¢33 /)
Ftlet)=Bl6CYD)
132 CONTINUE
CALL VOUT(F 4NM¢23429H0THE VECTOR OF OPTIMAL FORCES)

[«
1FCJOPTLEQs1) 60 TO 179
c
C eeceaon THE APPRCXIMATIONSteevee

00 165 Y=1410

QUIN=(NLeeT )l Ee?
13% CONTINUE

C
VzX,927
V2:T40€9
c
C V AND V2 SATISFY TAN ¥V = TANM ¥,
C THE TIRSY EIGENVALUE IS (V/XL)eea,
¢ THE SCCOND CIGENVALUE IS (V2/XL) ee a,
C
C FIRST COMPUTE THE EIGENFUNCTYION YALUES AT XZ(1)e



e B, S e O S TR, T O Sy I T SR e

e

1629
1630
164
165
166
167
168
167
170
171
172
173
1760
175
176
177
176+
179
180
183
182
183
184
185
1860
187
168
1R9e
199
191
192
192
1940
195
196
197
198
199¢
20Ce
201
202
233
2280
FARY

2.6

208
209
2100
213
212
233
2140
21% ¢
él6e
217
21g e

DO 110 Ixi.N®
ARGEVeR2(]) /XL
ARG22V2eX2¢I) ZXL

PHICIIZC=] o4342)¢SINCARGI @ (1.96953€=2)0(EXPLARG) =EXP(~ARG))
PHI2CIIRC20A248)¢SINCARG2) (821 1E=3)e(EXPLARE2)=EXPI=ARS2))
11)  CONTINUE

c THE APPROXIMATE LIVYLE A MATRIX.

00 12V Iz1.NY%
00 129 JzleNM
AMLYoUIZBUIXLaeTI/(VaeB))ePHIL])oPHILY)

AACTQUITAALT U)ol XL T)/EV2+eB))oPHI2C(1)*PHI2¢J)
123 CONTINUE

c NOW THE APPROXIMATE LITTLE B VECTOR,

DO 130 I3ieNM
KEY2)
CALL ROMBS(START oML ToFOFTYgHSTARGHMINGHMAK qERMAN GANSoKoKET)
1? WANTz o TSeXLeTaTeT
ARG=VeT/XL
P3(=].4142)¢SINLIARGI*.D19698e(EAP(ARE)=EXP{~ARE))
FOFT2WANT +P
CALL ROM2
IF (X,EQ.,1) 60 70 10
BACI)S(XL®e3)oPHICI) ¢ANS/IVeary)
130 CONTINVE
CALL VOUT(PHIoNMo1SoISHATHE PH1 VIC/OR)
CALL MOUTC(AAJNDAJNMyNMy32y32HOTHE APPROKIMATE LITTLE A MATRIX)
CALL VOUT(BAGNM¢32432HOTHE APPROXIMATE LITYLE 9 VECTOR)?

c HERE WE COMPUTE THE 8106 APPROXIMATE A AND Co

DO 31640 1324N%
BBA(I=1)2BA(])=XZC12eBAC1)/X])
0O 140 Js24NM
ABA(T=10U=1)zQ(1)oXZCIDeX2(JUD/IX1 X1 20AACToJ)=AALL 4 J)e X212/ X]
1 ~AACT 1) eX20UI/NT4AALL ) e X2 ) eRZCUI/(NL0XY)
144 CONTINVE
CALL MOUTCABAGNDAGMoM249280HITHE BIG APFROX A MATRIX)
CALL VOUT(HBAGMe24424HOTHE BIG APPROX B8 VECTORY

HERE THE APPROXIMATE WEIGHTED MATRIX BIG A ¢ @ 1S COMPUTED,

s XaNa)

DO 150 1=1eM
CO 157 J=1lem
AGALT o JYzABACL V)
153 CONTINUE
DO 155 1=14M
AQAtT o 1)2AQALT¢]l)e0( 1))
1%% CONTINUF
CALL MOUTCAGAGNDAGMyMe31¢31HITHE APPROX MATRIX 816 A PLUS )
CALL SORCAQANDAoMoBBAINDBINBs3904WORK)
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134

219
220
221
222+
223
224 ¢
22%¢
226 ¢
227
2280
229
2300
231
232¢
233
234
233
236
<37
238
239
2450
241
242
243
204
245
248
247
248
249
25Ce
2%1e
292
253
254
255
<S6e
CETe
2%8
259
260
zble
2620
263
264
268
265
267
268
€9
27 e
Tl
2720
T3
274
27%e

160

179

1718

178
179

180

183

198
2"

CALL VOUT(BBA.M¢32432HO0THE APFROXIMATE FORCES F2 TO FM)

FAL1)2),

DO 179 1=1¢M

FALLISFALL) =BBAC])eX2t]eld/X)

FA(l1e1)2BBAt])

CONT INVE

CALL VOUTIFAGNMy31431HOTHE APPROXIMATE FORLZE VEITOR F)

60 TO 18)

MRITE(G69178)

G0 TO 18%

FORMATC(//77 ¢3XeBHPOSITIONGAXo A SHDESIRED SHAPE 42X o 13HOPTINAL SHAPL)
FORMAT(//7//7 42X oBHPOSTITION o4 X9 JSHOESIRED SHAPE «2Xo13HOPTIMAL SHAPE,
1 209 13MAPPROXe SHAPE)

MRITE(E91TS)

HERE WE COMPUTE THE SHAPES,

D0 21 1=i4N°
X(Ir=(l=1)eDEL

T=t¢l)

PS1€112475eTeXLwle?
Utly=9,

UAtT)=0,

00 275 J=]1¢NY

22x2¢J)
HToZa(33¢0XL/340,¢(202eTeT)/¢h00XL)={2¢240T¢el)/§40eoXL0el3) )
1IF(T«GTe2) 60 TO 19%
GeHot2e¢2eTe B5¢(T0e3) /E,)
60 70 209

GzHe{TeTeZe ,5002003)/64)
Ut1I=U(l)+GeFtY)
1FLUOPTLEQ. 1) 60 TO 205
UACTISUACI) oGeFALY)
CONTINUE

JF (JOPT.EQe]l) 6D TO 2:8
WRITE(692:6) ToPS1C(I)qULI)UAL])
FORMAT(/¢1XeF1l0,246E15.5)
50 10 21

WRITE(44216) ToPSICIdUC])
CONTINUE

Y 1S FOR SCALING PURPOSES.

NP2Z2+NP

N0 215 1=214MP
Y(1)=zPS1ty)
Y(1eNP)ZULI)
CONTINUE

HERE oE GENERATE THE PLOTS.,

€O TC €502¢7204350025%032Ce2%50)y XOPT

CALL BGNPLY

CALL PLFORM(OL INLIN® o XLENSYLEN)

CALL PLSCAL (X NP NG oY oNP24NG)

CALL PLABELC'THE FLEXLIBLE CEAM CXPERIMENTO 284 2L ENGTHO 46, *DISPLACE
INENT*,12)



N ATRT WY T SR AT - ety o

—ccn

276 ¢
277
278
279
280+
283 e
2062
283
20840
2088
2860
287
2R8 e
283
2%0»
291
292
293
294
295
296+
237
298¢
299
300
3]
302
333
IX4e
385
306
327
303
309
3100
311
12e
313
Ji4e
318e
3160
31T
318¢
319
J2)e
321
J22e
323
124
32%e
326
327,
Jite
323
33¢Ce
23]
332

27
272
273
274

218
280

300

321
322
323
324

588
333

350

3Ty
312

CALL PLGRAF

CALL PLAXIS(=24RLENS, )

CALL PLCURVIX,PSI¢NP¢NToTICY)

CALL PLCURVIXoUINPNTHTIL2)

CALL PLCURVIRGUAINPINTTICY)

CALL PLTENTYt1e5e0300e100%.049HDESIREDCe) ¥S OPTINAL (D) ¥S APPROXINM
IATECZ) SHAPES49,1)

60 TO (27302726273 0274427%)y

CALL PLTEXT (30 deTe00elelael3NTUO ACTUATORS4134))
60 T0 289

CALL PLYEXT€3020TeM0eledeelBHTHREE ACTUATORS 418,41
€0 T0 2870

CALL PLTEXT(3¢307¢0003400014HFOUR ACTUATORS o144 1)
60 TO 281

CALL PLTEXT(3¢3¢7eD0elolaoldNFIVE ACTUATORSe1441)
60 To 280

CALL PLTEXT (3430700001 0%2¢l3HS1IX ACTUATORS ¢1341)
IF(KOPT.fQe4) GO TO 492

CALL ADVPLY

CALL BONPLT

CALL PLFORMC'L INLINCQXLENGYLEN)

CALL PLSCALCXoMNPyNGoYoNP24NG)

CALL PLABEL (*TNHE FLEXIBLE BEAR CXPERIMENT * 284 LENGTHY 4642 1ISPLACE
IMENT *412)

CALL PLGRAF

CALL PLAXIS(=2¢XLENyJo )

CALL PLCURVIXqUINPoNTLTIC2)

CALL PLCURV(X4PSTIoNPINT,TICY)

C:LL PLYENT(2¢B0¢%5%041000e¢3IHDESIREDCe) ¥S OPTIMALCO) SHAPESS1,
P B

GO TO (3214322¢323¢3244325%) 4

CALL PLYEAT (3¢3070000leleel3INTUD ACTUATORS41341)
G0 70 332

CALL PLTEXT(3420Tel0ele0eslSHTHREE ACTUATORS 41841}
60 TO 330

CALL PLTEXT(3¢3¢Te00eleleeldHFOUR ACTUATORS 41441}
60 TO 330

CALL PLYENT(3e30TodooletosliOHFIVE ACTUATORSo1441)
60 TO 339

CALL PLYEXT (3e3907¢09002¢0eelINSIX ACTUATORS¢1341)
IF(XKOPT.EQ.2) GO TO 492

CALL apvPLY

CALL BENPLT

CALL PLFORMCCLINLIN®GXLENGYLEN)

CALL PLSCAL(NgNPyNGyYoNP2¢NG)

CALL PLABEL (*THE FLEXIBLE BEAN EXPERIMENT 4284 2LENGTH® 964 *D1SPLACE
IMENT 041 2)

CALL PLGRAF

CALL PLAXIS(=2¢XLEND, I

CALL PLCURVIXqUASNPINTLTICY)

CALL PLCURV (X PSToNP¢NT(TICY)

CALL PLTEXT €20 20eS00alladaeISHOESIREGE®) VS APIROXIMATEL/) SHAPESR,
1 Y1)

GO TO (3714372¢37343744375) M

CALL PLYEXT (3307 e00ee0ael3INTUS ACTUATORS41341)
GO T0 49"

CALL PLTEXT (36207 eCooleveslSHTHREE ACTUATORS41%5¢1)
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388
334
338
336
337
AL L
239
la)e
MY

1
20
A
4
L.X3
[ Y]
T
(%]
9
10
11
12¢
1t
14
15
1€
17
1B
19
2)e
21
22
23
24
ifie
<5
PR A

280
23
Jue

1e
2
%
4o
5
La
Ts
Qe
9
1%e
13
12
ile
HLX
1t
it
17
10

i3

373
374

3%
492
500

ic

1%
16

26
21

$)

1%
20

_G,'!

60 T0 490

CALL PLTEXT(3,3¢T¢00elea00elANFOUR ACTUATORS1001)
GO T0 490

CALL PLYEXT(3¢397e0eele0se)ANFIVE ACTUATOR341401)
60 T0 491

CALL PLYERT(3,3,7400els0ee2INSIX ACTUATORS+1340)
CALL ENOPLT

sTOP

£ND

SUBROUTINE AMAT(A)

COMMON START o HSTARHNINyHNARQERMAR o XLy KEYoX2€10) oN".

REAL A€104140)

DO SC Jz) kP

CO 8"~ IxudeNM

xlzx2¢1)

Xz td)

CALL ROMBS(START oXL o XoFOFXGNSTARGHMINOHMARSERMAN gANS Ko KEY)
HIZXoXTod334eXL/1804(hToXToNOR)/¢QoeX )oK aoboNeod)/ (AN oXLoeY))
HJZR o XJed33 o0 XL /7100 e tXJeRUOX ORI/ CO o XL)miXUnoboXeea )/ tANeRLend))
1F(Xa6T,%X1) 60 10 i5

CIsHl=(XTeXIaX/2¢0(Xse])/b64)

60 70 16

ClaH]=(XIoXoX/2e0iX]*e3)/60)

1FtXeGToXJ) GO TO 22

GUEHJY=XJaXJell/2,0(Xee3) /6o

60 10 21

BUEHY=ReXeXJ/2 oKyt ed) /6o

FOFXzGElend

CALL ROM2

1F(N.E0.1) 6D TO 11

AtJg1)EANS

CORTINUE

DO 61 1x24NM

Tiz1=)

N9 66 Jziel1l

Atleddzatdel)

CONTINUE
HETURN
tND

SUBROUTINE BVEC(B)

CONMON STARTOHSTARGHRIN oHMAR ERMAR XL oKEY ¢ X2€10) oM

REAL BUID

DO %1 I=14NM

2za2¢1)Y

caLlL ROnRSCSYARYoXLc!oFOF)rnSYARqﬂﬂlN'NHAIQIRH&I.ANSQK.KCV)
ATHaZa(3300YL /14 0020240 %0X SN eXL)o(20000K008)/84) 0% e0Y))
TFtX 4GT42) 6N YO 1%

(26e(Zo2ore,50(X0e3)/E,)

50 10 2%

T2he(XoXoT0 0 (2003)/6,)

PSIseTheNe(LaXak

FOFX=PSYeG

CALL ROMD

TFIK€Cel) GD YO 3

FO1)2ANS

CONYINUE

RETURN

FND
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Output
ThS LiN5Te OF THE QEAM IS 19V
THE VECTOR OF ACTUATOR POSITIONS
110 2 $.0800003¢01  1,0000030402
THE LITTLE A MATRIX
coL 1 coL 2
ROW 1 24425991139 «4,3531314¢)9
ROW 2 841531318009  7,1452926429
THE LITTLE B VECTOR
170 2 S.4873%337008 «9,4246317428
THE BIG A MATRIX
coL 1
RC4d 1 303462782410
THE B1G B VECTOR
170 1 =2423993)9¢39
FOR THIS WEIGHTING VECTOR @
110 2 0.2000030 0.0003303
THE MATRIX 316G A& PLUS @
coL 1
ROV 1 343062782913
THE FORCES F2 TO FN
110 1 =64%961186-92
THZ VECTOR OF OPTIMAL FORCES
170 2 102192237281 <=64096118692
THE PHI VECTOR
170 2 141694310433  1,9992210493
THE APPRUXIMATE LITTLE A MATRIX
coL coL 2
aow 1 24020466959 «a, 1487159409
ROW 2 “8,140715%439 T7.1311938¢39
THE APPROXIMATE LITTLE 8 VECTOR
110 2 $,4816966938 *9,37¢7/59438
THE B1G APPRCX A MATRIX
coL i
RO 1 Je344792112
THE 211G APPROX B8 VECTOR
110 1 =2.7338570438
THE APPRQOX MATRIX BIG A PLUS O
coL 1
ROV 1 303457921019

SPPROXIMATE FIRCCS F2 TY FM
190 b b NTRATYIGeGT
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138

TnL APPROXIMATE FORCE VECTOR ¢

1710 2 162197062201 «643737399=02
FOS T ION DESIRED SHAPE OPTIMAL SHAPE APPROX., SMAPE
00 +00003 +30000 «02302
500 «33000+233 «d 067403 ©2899%3+33
13.90 +6523323 ¢3137233 o0122603
15.3) +930913493) 75124003 « 7493942
23400 .11005000 096649403 9637333
23.0 21230074 11519904 «11477430
33.0° 013303474 032973 % 01293638
3349 014050¢5%0 01398300 «13%4 2
40400 18009304 ¢14453¢00 «14412¢%
45,00 13200004 «14316404 +14276420
33.9? 2128520600 «13438404 213456400
3%.22 ¢117%%e74 s11915e00 +11931 %0
6.2 «3025000233 «mE923 )3 ¢9602643
63,97 246500223 265329433 e68164033
T7%.39? ¢33730+%8 ¢38451 423 «3438340)
75,38 + 20222 *el96584%52 *el9575e 2
83.93 *e8200023 86229403 »eb£197423
e3.3¢0 *e83%02e22 *e918)7 0%} “e91276923
93.02 ~e13%374%0 *e12913400 *e11873¢ )0
3%.58 XS X PR *e18325 90 “e]8%71e3e
133430 =e25 00000 ®e2J812 % LIY2RALE L
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B.] The Simply Supported 3eam Estimation Program Liating

le Keal OC30)sbst3UdoAC30e20)eX2(AC)IALIRO)
2 REAL PI(Su ) oAUCId el ) odORKILII eV 19DV 021320e5 120034
3e RetaL SCL GO
“e UATA B(l3eul2)e0(3 ) Z.3875¢ +25¢ 41875 ¢/
e (&
o (8 2000es INTROLUCT QKoo vone
Te [«
beo < THIS PROGHAN PERFORRS SHAPE LSTIMATICN FOR THE
9e [« SIMPLY SUPPOMTED d4C A%, UPON INPUT OF NA JISCRETE
10e [ 8 OUSLRVATIONS B I1) OF OISPLACEPENT AT POSITIONS X2¢]1)s
il [« AN OPTIRAL “TImATC OF THt SHAP. OF THE BEANM
A [ WITh RESPECY TO Tl (RITLRION
1%e L
180 C (3741 (OURCLo (1) ) o{s/Q (1)) e lNTRLAALILU-F)ong))
15e C
) oo ¢ WhENRE UIKD) )S ThE SHAPE AND FEXD IS Tk NCISE IN Tm
11e [ QUYNAMIC AOULL (DL eeddU = FiX).
YIRS [
19 C PLEASE WRFINE THe FOLLOAING VAR AGLES.
Ve C
2l e [ XL 1S ThHEe LeNuTd 3F THL BLAR,
2 < NPOIS THE NUPBER OF CGBSCLRVATIONS.
23 9 XZ(ads IZhveseaoNM Anb THE POSITIONS ALONG The obam AV guiICM
FLL (9 ObSELRVATIONS ARL Tartw,
295 9 D10 ARL Tre oo INVCRSESee OF THL JEIGHTS OW THE JBICRVATIONS 1IN
Py ¢ THe PLEFORMANCE CRITELRION.C
2Te [ NP 1S T NuMock JF POINTS OV CEACH CURVL TO st PLOYIEL.
ine 8
29 PIz3.luldy
ue | (G=5 I
. LLES ]
FYL NUAZIU
3. NUb:=}
& LTTS)
35 NPz23
Jee CtL:-XL/NP
3T NPINPe )
Jue NP z2aNP
39 V0 1 JzleNe
Y Uiz (Lo ), bt
“le XKI(i)ze250)
42 1 CONT INUL
43¢ WRiTt(oe29y)
YY) vy FORMAT(INY)
5 WhkiTtloed)
aoe < FUERAY (//72)
T WRlTcloedIXL
4 he 3 FORPAT (IXoaSHTML LENGTR OF Tt bBLAP JS¢¢k20a2)
“ve CALL WOUTIXZ2oNMe20 s20HuTrL OuS_RVATION PO 1T 1IN
50e CALL VUUT(ooNPed 20} THOTHE OBSERVAT]ICKS)
2% %
5de ¢ LOPFLUTL THe WMATR]IX A
55e "
See w0 S J:leNP
25 L &3 PAR N
3600 CizXe{g~2,0X)
“7e vl 5 JxleNn
3 be YIx2tJd)
ave C2-YoY=2, XL 0¥
ol's CIsneXeYoy
ole L4:XeXeYeV

oéw ACLoddS i (X=XLI® (Y-RLIZ(D6e0XLoxl))e (N3] D/T ,0UK 0800 (L0 2} 4y,
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63.
(L X
65
b6
b6
o¥e
o9
70
71
72+
13»
T4
15
Tbs
17+
18
19
gu*
ols
82«
o3
du=
Bhe
obs
bl
d8s
b9
Y)e
91ls
92
93
Ve«
95
b6
47
98
99
1U0s
1ul»
ldcs
103
luue
1uss
1us s
1uTe
lugs
109
1tos
11
112
11 3.
Like
115
lios
ile
11A3¢
13 s

2)

C oo

25

-
<

[l of

[ 8]

51

(Xe03)nCloCe/3e)olXoY/(JbaoXLoXL))O( (XL O80T -YoaT) /7 eXL0V00s-XL82]
¢, 20 (XL eed-You5)e (13,0 XLoXLeCI)=(XLooud-Yorh)a(3 6 L saFexLs(3)
siXLoe3-Ysa3)a( (/300 (S ,nXLoXLoCholooXLooleoCl) ~(XLOXL-Yoy)o(XLe
Che (XLwn3)oC ) e(XL-Y)o(XLoXLoll)) ¢ (X/(36e0XLs02))el{Y-rL)sl(Y
887-X88T7)/To=XL 8 58 (Yreb=Xs08) e 20(Yo5-X005)0(CR02,0XLoXLeXX)~
el58(Yasl-Xsoiy)o (3 aXLoC2eXLeXsX)¢(Yee3-XmeI)al2(XeX+2, XL 2XL )/
73.-(v~7 XeX)s oo (XL aX2Xe(l2))

CONTINUCL

00 6 IzZeNNM

11=1-1

00 & J='oeli

A(ToddzA(Ye])

COUNT INUL

CALL MOUT (AeNDAONY oMo 13¢1340THE MATRIX A}

OV EUWN -

HLRE dC COMFUTZ Asd .

U0 20 1z1+NM

Ap(l)zea

U0 20 J=ioNM

Ab(1)zZaB(I)e A(Tsd) 2p )

CONTINUC

CalL VOUT(ABeRMe1Ss 25HUTHE VECTNAR Asg)

nekt COMPUTE Aeue

CC 25 1=3eiv?

U0 25 J=1l NN

ACCTIvD)IZALT )

CONTINUE

UC 30 I=3enM

AGUIvIDZAC(Ie]) ¢ Q(I)

COMTINLE

CALL MOUT (AQeNUAoN PoNR15¢ 15HOTHE MATRIX Aeu)}

HERL WL SOLVE FOR ThHe OPTIMAL SHAPZ AT POSITIONS XZ.

CALL SCRUACONDAWYY yABe NDB e NB¢$354+4dURK)

CALL VOUT(rEoNP o 2lo c4HUOPTIMAL SHAFE PCSITICNS)

Lo YO0 4O

WhITEtoe30)

FORMAT (LHUel1Xo SOH® osmse MATI IX NEARLY SINGULAR sexass)
U TO HuU

WOh A& LUPPLTIE THE OPTIMAl ShaPte

L0 49 1z1ehP
200V i-1)e0t L
Con T INJE

UU 95J 1zl enM
U0 50U vzeohP
IF(X20i)eiTe20U)) L) TO 51
XzXx2¢1)

Yz2¢J)

Lt T0 o¢
X=2(J)

YaX{tl)
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.

o e ey

120e
121«
1¢ée
12)e
124
125
126
127
1280
149
130e
131
1300
1535«
13540
135
1360
137«
138e
159
140e
14l
Ihae
1439
luke
145
1abe
1470
Jude
14V e
1oUe
151
1540
153
1540
195
1560
1957
158
129
loue
ftole
lbae
163¢
lobe
lobe
lobe
167
loHe
loVe
170
111
1leo
173
1740
175»
170e

b2

SJ
St

51
24

ou

6>
o7
(.1
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CESYeY-2 ,0X 0¥

ClaxelX-2 eXL)

CIzXoXeYay

CAzXexXeVaY

ST ((X=XL IO (Y-XLDIZ7130.*XLONLI Do ((Xonl )/ T oo iXnoS)0lChat2)/uee
(Xes3)o(leC2/ ) e (XoY /L0 eoXLa L))ol iXLOOT =Yool )/ XL oY 00g-XL 04]
¢ 20 (XLosboYouS) o (13 aXoX eCl)-(XLoou-Yooyletd oXLvedeylo(C))
eidloes-Youddol(l/3adoideoiokloCIonaorXLooqela) ~(xLlogi-yYoy)o(XLo

Cel-Xoetl )/l e-XL0 o5 (Yerp-Xeed) ¢, 20(Y0s5-Ko0j)0( (202 ,0(L oL eXOK)

1

e

3

N (he XL e I) o tXL-YDIoXLOXLOCAID o (X/U(36.0XL002)betY-gL)o((Y
5

é

690 (Yeoh-NoeR) e (] o xLoCooXLRXOX)(VeadoXond)ol2a(XoXe2 0 xLoXL }/
Tle-(YeY=XsX)ehu(XLloXaxel2))
CONT INUE
WRiIJc(be50)
FORMAT (777 ¢1Xe22nTHHe MATRIX )
WRITELOe8)(XZ (D)o 151 NN)
FURPAT(ZolXoF iU a1 UEDSY)
FORMAT (/7 +11Xe 1021 2e5)

vtz

[

U0 83 Iz2 NP

MREITE(oeST) 2t1)elStUelde JZ1o M)
Utit=d.

L0 oV JzleNM

utiy:

ULIIe(BUI)=A3 (W) eS LU N2

CONTINUE

WRITEtOe2)

Wh1tt (0s00)

tU 0% 121 aNP
PHOLILINIZIXL®Z(1)-21())ee?
SCLIIYZULT)el, 0
SCLULIORPIZESTILINIY,)
WRITELOebT) ZU1)e2SItIdeuUt]
CONT INUL
FORWAT(/oF1l)e2041 5.5
FORPAT (2XeohPOSIT ION®3Xe22HACTUAL SHAFLe3Xed2Me STIM. SHAFL)
XLENZS.

YL NS

NOZ)

6.

TiCste®

TIC?2:

.L.

Ticszte

NT1z2

NTczo
NT3z-1

CALL
CALL
CaLL
CAtL

BUNPLY

PLrORMUYC INLIN o XLENSYLENS

PLSCAL (Z oNFP eAL sSCLINP2eNG)

PLABEL (*SHAPZ CSTIMATIIN FOR THE SIMPLY SUPPIRTLD dbavNts

1 480 °*LENLTE OF Tht GEAM o350 DISPLACEYINT412)

CALL
CaLl
CALL
call
CALlL
CALL

PLGRAY

PLAXIS (-29XLEN I S)

PLCURVIXZ oA o NMeNT 30T IC L)

FLLURVY (2ZoUsNPeRT YT ICQ)

PLLURVEZePSLenNP oeNT2,TICY)

PLYEXT (Y alin obe o2 000 S3INHESTIPATLL SHAFL L) VS CoSERVATICNS(e)

1ON ACTUAL SHAPLe3S o)
LO TO (TUsTleT2e 207007800 AN
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L17e k[ CALL PLTEXT U3 e80T U0 oloe0032HONE ACTUATORe1Z0))
118e 69 T0 o3
179e 1 CALL PLYEXT(3e307400e100.023HTRO ACTUATORS 1301}
lode 60 T0o a9
lole 12 CALL FLYEXT (3420700200, 0)3HTHREE ACTUATORSe1501)
ldce G0 T0 o9
1n3e 13 CALL PLTEXTU (343070t e300,el0HFOUR ACTUATORS14e1)
ldde w0 Y0 oY
1d5e 14 CALL PLYRXV (34307 00al0UoedAHFIVE ACTUATORSe1A0D)
146 0 YO0 &V
187 1 CALL FLYEXT (343074004300 4033HS1X ACTUATORSe3301)
1d8e ay CALL EaulLl
Ly ve Sul STOP
1) ENO

THE LLNGTH OF THE bLEAM IS 1ed0

THE OpSERVATION PCSITIONS

1 10 3 24 54J0090-u1l 340039039-J1 T5000000-41

THE ObSERVATIONS

1 1 3 le 37500uJd=~01 243Ud40IU-21 148750993-31

THL MATRIX A

cOoL 1 coL 2 LoL 3
RUW 1 1e623015-04 1e4902122-Ch 1.0856%13-064
ROW 2 le4V02122-0U4 <e1J613)1-2% 1.4902125- )4

ROw 3 1.0858312=04 1e890uc12b~Cl 1.00622%04-04

THL VUCTOR Aep

1w 3 Teb762T¥3~u3 leUBLB8621-UN Te682742-05

THe MATRIX AsQ

RO W
LA
ROW

LoL )
1 le 9633015-us
2 leSYUZI2Z-V4
s 1e0455313-04

0TIkl SHAPEL PUSITIONS

1

1o ] le 3421271-08

coL 2
1e8904122-J%
¢e3UY13J)-CH
Lelvi2l2n=2%

Ce543<T0e-I1

oL 3
1.0858515-)s
14902125 Un
1.0032V84~24

La8421149~4¢1
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e e ewrgye, e

hdates udtonth

M S JE

. T

Output

THE MATRIX S

a45

5L

o bU
-85

0

-8V
o8>
eV
«95

1.00

«25002¢00
« 2358004
~40559-00
et0353-CH
+b411-0¥
+1L623-0)
«12137-03
«13346-0)

«16222-03

«14744-03
«14902-u3
«l4693-03
«14125-03
«13215-03
«1198L-0)
o1ud58-23
s BOBNS-UN
«67021-un
L5991 -0a
«<3071-0w

scd58U~uU9

«5u3320)
«36959-04
«821U9-08
«950061-04
«1£386-43
«14902-33
«17351-u3
Jd8762-013

e 2UJ43-U3

+du821-033
«21081-u3
«2U321-0}
«20085-C)
«10781-33
«17051-02
«14932-03
«1ae38b6-u1
«956062-04
6518904
«32959-04%

«58935-Gy

«75030¢))
23L71-CH
4559104
«070 1-CH
N TY TR
«1C458-(03
«11989-33
e13213-43

«14125-03

«18093-)3
«U9C2-(3
1874403
o18¢22-03
«13346-03
«12137-C3
«10643-53
R TIRPRIN
«68351~04
4855804
«23339-)4a

«30315-Co

143
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PUSITION
«20
U5
12
15

35
«4J
o b5
«52
55
.63

« 05

75
«bu
«85
s 9L

«95

ALTUAL ShAPL
«JUu0D
«47500~-01
«93UG0~-01
«1275%50+00
+ 1630030
«18750+GC
« 2100300
«22750+00
«24U80+30
+24750+0C
+25000¢00
224750400
«240C0+50

ec 2750480

¢2100G+GO
«10750+00
«16UC0eC
«12750+0
«94300-0}
«47503-21

«745006-08

ESTIN. SHAPE
D IVE )
+41587-u1
+81910-901
«31679 440
«15416¢00
«18421 000
«20929¢00
e 22902440
«24319¢00
«25169+00
«25453¢00
«2516% %00
« 28320435

«225C3 450

+209324+40
«18423¢yy
«154818400
«11v78¢up
«81901-u1
+41590-41

«15%68-U4

. i ———— | — L p—

N v g s e m e Tt
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Appendix C. The Large Space Antenna Computer Program and Output
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ORICINAL PAGE 1S
OF POOR QUALITY

C.1l The Large Space Antenna Computer Program Listing

1ce

1Ss
los

S0%
His
LY}
&5
S8

I IIATIAAIIIIIADATIITIONNTIAITTAIIITIOAIOAAIIAIIATIONNIIOND

DIMENSTON NDR(20),FREG(S0)

OINENSTUN X(BAR) )Y (BA2),2(RA2),5LLGS(ENR)
OLIMEMBTON VECTOR(2646)U(8B2),V(ANK2),» (A8g)
DIMENDION GUMK(18),)0018),F(18),AC18,18),A0(18,18)
DIUEMSTON PHTI(11418)

DIMENSTION RETA(SYL)

DIXENSTION ALPRA(YL1), COEF(11), wORKXCIGD)
DIMENSION YSTAR(18) AY(18),USTAR(IR)

THTEGER IPT(18),JPT(1A)

INTEGER JSED(2428), ISLL(BA2)

FQUIVALENCE CUC1),VECTNR(L)) o (VECTORCHBY),V (1))
FOUTVALENCE (4(1),VECTOR(176%))

SEABYSBERSIBAES AR SRIERRERIRI RN NECAENEV TSRS TINICHREERB RIS IS
STATIC SHAPE ESTIMATION AND CONTROL O A LAKGE SPACE ANTEWNA,
SREEBEEFEERNAERSERERAREFEREIRABERNSTOICIURAESRAIANSHE IS STEEHUTND

THTS PRNGRAM ESTIMATES AND CONTNDLS THE STATIC OJSNTORTION OF A
LARGF SPACE ANTENNA, UBING REST CCHRDINATES, MNODES AGD FREGUENCIES
SUPHLIEN AY & FINITE ELEMENT MODEL,

THE MUOEL INCL!IDES JR RIRS, THE X, Y, AND I CNORDIVATES FNRk 482
PATHTS, UR NOSES, LNPATED UN §14 COKSECUTIVE CIRCLES,

1Y IS ASSUMED THAY THE WHUB LF THE AMTENNA 1S RIGINLY ATYTACHED,
81 THAT THERE ARE NN RIGID AODY Minss,

THFRF ALk 33 FRENUENEIES AND CORRESPUNDING BIGENFUNCTIOAS
(MNnES)  FUk THIS “onglL

THTS PRLUGRAY READS FRUM THE TEMPOKAKY FILE FIXFOANT, wWICH ]S
CAFATED FRUM THE TAPE 41960 RY QUAMNING A BPRELIMINARY PRNGRAM
CRFATED &Y VEJAYARAGHAVAN (VETAY) a{ #al (NEB, JPL FM §4T7Te80e434,
AIGUST J4, 1980, AV VEJAY ALwAN,

Tie ANALYSIS ON vylCm THIS PHOGRAR T8 AASED IS FOUND T™

JoL Fr 34Tey12, APRIL &, 1981, 'ARAPTING STATIC S<APF CiNthilL/
DETERNIMNATIUN ALGORTTHAS $10R TwE LA 16 *ONES BUPPLIEN AY A
FINITE LEMENT mUDELY 4 BY CONUTE WFEKS,

THp BULLUNIMG VARIARLES "i8T 6Ff DEFI%ED 460

THF VECTOR ALPHMA(T), IB],M", ARE Teb COvkPICTRATS OF THE tOLES
$r THE aCTUAL DYSTRRIED SHabE, wk]ICh 15 10 0F ESTIMATED AMD
FORUFLTH D,

TeE NESERVATINNS ahp COSTRIL POSITINES LFE 888w TN we (M OCATEDR
Ann aPPLLIED T0 THE SaME DIRECTIONS Al Falw eDr T,
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v —

T e
She
L X1
hne
hie
L4
Ay
LYY
hhe
XY
LA
LY.
hQ
Ine
T1e
1¢¢
75'
Tue
748
Tae
Ts
Ths
79¢
Are
ALs
Ags
[ X} 4
Ays
L1Y]
Rpw
ATe
ans
A9
9ng
9
Py
Qi
Q4
LAY J
QHs
97
ALY
99
177
(KRR )
112¢
10 s
[akY
1Y
[Rar Y
11:78
[RArY |
1oue
tine
1.
{12
11458

S, A AN TSI A0ATOTITASTTTAATIAIOAITIAATIATAATI T IATT AN AAIANAYID S

147

THUuS 15 & FONCE 18 APPLIFL 160 THE X NIRECTION AT st NGLE 99,
T S8 ASSUNED Vupwk 19 AN QHIESVATTGY OF TRE ~ 1R 10n AT anyt
949, A CUNVERDRLY, '

N Ty THE NUMREW OF MODES TN MR APPRNXTHAT]ANG,
ABT 18 Tk sUMHER GF BONCES TN RE APBLTID,

1PTEYY 1My qaphPT IS THE NUHMEW CF TRE AyDAL MOINT
T wntCe Tup TTw FORCE T3 APPLIMD,

JPYEI) o 18 paaee NPT IRDICATES Tut DIRFCIINAN NF TWE [T= FOh(},
JPT01) IS Lo GiX S, JPTILI}S] “FANS ThE FORRE 18 (8 Twg ¢ RINFCPTOY
JOTPIBA, S MEANY Tt FARCE TS 14 YHF ¥ DIRECTTUN N5 7 DTAECTL N,

EXASFLUgquaall OPBLY 4 FONCES, ' F Eafs T Tub @ ANP ¥ DINFRTIONS
AT ~nre (4, UAE TN TeE T RIRECTLON AT YRR 1D, AMD O NNE . Yep ¥
pIRErTINt AT S0DE 39, SPTBA, IPTE{14,1G0,10,39) A~D JRTE(1,2.4,¢),

ALL FLEPEIITS OF Tub NIAGNAL RELIGHTTICR npTRTE & ARE CHNSE T RF
The RaMe vALUY WR . O INPUT o

W2 TR Telb JNTTTAL VALUE NF THE (CTAGUAL PLEMENTS Rp Tae “gTHMT TN,
HATRTIY R,

10 TWlS PROGRAN R LS THE INCREAEMT QY xufCh we TRCRBASES,

THE CaJ1ERIDN AY WHICwm RR IS NETENRTNLD ,,, THF SMALLES?

Vat gF BLY anllH Thk MaTelXx  AeW 18 tovpwttulk,

SEY TUPT LGUAL YU Yy IF N0 PLATS aNE NESTIRED,
.lll“'t"‘."‘“l"l".lit'l"‘l'i‘I'".!!‘.tC't.!"‘ll."‘t't“l“'

TupSF VARTARLES ARE MOV (ubuT, THey WAVF ghbN FEFTUFN OR wTLL
HE nbp IREL TN ThE BHOGHAN, o iienee
FYact JeSPRVATIONNG 0F THE NISTUR "¢N SwARF ajli Re CUMPLTFY

Aen RYNREN IV THE VERTHR YSYaN,

YStaw 1S THE VECT(IR NF NKAERVATINGS AT Tee PUIWNTS IPTTY), 131,41,

UETAR YILL LUNTATY TwE NPTTHAL SWAPE FSTTIMATES AT TWE PATINS
the(r),

ks 18 THE VECTUR OF ESTIMATED COFFEICTENTS OF THE a0nes
I tub LISTURTEL SwaPe,

F oYy Twe vECTOR (b CPTIMAYL InTRiL FLNCES,
TLYY 1S APEBLIEC TH vApE 1PT{T) T YwF npRECTING 1PY(L),

RePa 18 The VECQTUW AF SORAL CORRRICTE.TY AERULTYen FuDN

Tof ARRLICATYON CF Tup LOTIvAL CNLTRN $NEMES, ~=ICH will W

Co b thi AAdEY DY TWE GPTIME SHABRL ESTISATE STNAED Tn THE VHCTOK
[ 431 2 2
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{160
119
1168
1178
1150
1108
120
121
122¢
124
1740
1250
1768
127
1248
129s
1300
131¢
182
1438
1 Mas
1358
13060
137
1 XAs
1359
jule
1ays
1429
1448
tuas
1498
14ne
1478
1uss
1498
150¢
151
1529
151
1%
18Se
1568
197
158
199
1608
1h1s
1628
(LE L
1840
1659
thns
[E2A4
1468
1898
1708

IO IOIOANDIOAIMO ITANOAAIAOND

e XaXal

[aXa Na XV [a XN al
—

TNEN 13 THE NMIMBERING OF THE NONES,
NC 13 TeE NUMBER OF PLOT COMMANDS,
JOEG 15 Tt SEQUENCE OF PLOT COnNANDS,

The LAST CIRCLE MAS BEEN NELETED FRN® THE PLULTS
8ECALUSE Db BalU OATA POINTS ON THATY CIRCLE IN SOME MNNZS,

1F 1T 18 NESTREL THAY TwWE LAST CIRCLE WF PLOTTRED, SEY NCB2428
IN THE OATA STATEMENT, I8 THE SUMRNUTINE NkAW, AND REMOVE
Tk NG LUAP INVOLVING 25 nUNYINUE,

MDR 18 THe HEADING ON TWE #ILE,
NUDES 1S THE KUMBEWR UF NODESEBRAR,
NFRER 15 THE NUMBEN OF FREQUEMNCIFSBSO,

SETANEURSCENSRANBIUSXRRFET NN AR UBES S ANTOSUERSETSRERSARES RN RN

0aTa Cak0Y,,,

DATA ALFHA/ZL0 02804 10,4, 880 ,,8,,0,,%,,0,/
Cata NC,N=, NPT/2160,11¢10/

F1Ftu CINCLE

0878 IPT/127,130,188,130,139,142,105,348,151,1%4,157,160,184,186,
1 189,172,175, 78/

DaTA JPY/Z18%1/

1§t

G TS

RRs),Vtel0

R2Q sk R

RELN FLUT CUMMAND SeQULNCE

KEAN(Yy2t) (USEW(I),188,40)
Nt (p0la)

e QF wE DELETE THE LAST CIRCLE FwOn TWE ®LOT CUt ANy,

NN 28 KnBY, N
JIBlAnS(JItL(KK))

TE IS, LT 775) LU T 29
JSFEN(RK)Re S

cAnTer UE

OFE T NGDE SROUENCE T8FOL1) .4,
th 20 luj,bae

19€n () ) ml

cerrgnue

IPCIOPY LA,3) GO T Q3N
taLL PLOTS



i e o s

y—

X e o

1718
172¢
173
174
175
1760
177¢
178
179
{hoe
1810
1820
{A3s
1840
108
18648
187
1880
189¢
190¢
191
192+
1939
194s
199
1968
1978
1980
199
200%
208
2028
203s
2048
208%
2048
207
208¢
2098
210%
2118
212
2130
2140
215
2168
FARA
2148
219
220e
2%
fe2s
22%e
224
2258
e2ne
P2rs

a0

[2 X2 Xl

(2 X o Re

15
18

X(3),7(3),4(1) ARE THE COORDINATES OF NODE I,

10
12

14

NTRAS I) A CWECK T9 SEE THAY THE TAPE 135 BEING READ PROBERLY,

CALL PLOT(D,0,6,0,%8)
CaLL FACTOR(,0048)
CONTINLUE

DO 9 INmi,NM
CQEFCIN)ED,
RETACIN) SO,
CONTINUE

D0 99 INSY,NPT
DCHK (JIN) B0,
YSTAR(JIN)EO,
AY(IN)BQ,
USTAR(IN &),
CONTINUE

REWIND a3

HEAD (u8) (MOR(K),Kai,20)
READ(US)NOOES, NFREQ
NCHMECKENUDESSY

READCAS) (XCT),YCL)o2(1),T81,NODEY)
LUGS(]) 18 THE MAS3 AT NODE I,
READCAS) (BLUGS(I),Imyi,NODED)

READ(8S) (FREQ(1),181,NFREQ)
WRITE(6,10) (MDR(K),)xmy,y20)

FORMAT (LML, 7/ 15K, 2044, 9%, 'FREQUENCEIESY,//)

wRITE(6,12) (FREQ(K) ,xB},NFRER)
FORMAY (85X ,6E1%,8,/)
WRITE (6, 14)NODES
FORMAT(//,80X, YN0, OF NOOES 8 1,14)
wiRitE (6419)

WRITE (6016)

149

FORMAT (/792X 'POSITIONS AND OIRECYIONS OF CONTROL/OBBERVATION POIN

1784
FORMAY(//,2%,) 'NODE ! , 2%, 'OLRECTIONY)
00 20 Isi NPY
FELRIANSR)
1P (J8e2) 17,108,489
WRITE(S,22) IPT(I)
6N ™ 2¢
WRTTF(6,23) IPT(1)
6N Tn 20
WRYTE(6,24) IPT(D)
CONYINUE
FNRNAT (/o2X 1asax, 'x")
FORMAT (/o204 0X,t'Y")
FORvAY (/o2 1800%,'2")

UD 100 KFmy, NN
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2200
229s
2X0s
2310
232
233
2340
235
2300
237
2388
239
2400
241
242¢
203
2640
24%e
2469
247
2689
2490
29508
251s
2%2¢
293¢
254e
25%»
2%6s
237s
FL 1.1
299
2608
b
2020
203
264s
765
2660
267
268¢
2698
270%
271
272¢
273
2T4e
27%¢
27he
277
278
279
2000
2814n
282¢
283¢
2843

AOIOOH N

o000

30
3
32

33
35

¢

50
100

NN

108

OO N

190

NTRNS & 3(882)02040,
X'R 18 THE MOOE (EIGENVECTOR) nyuMaEnR,
FR 13 THE FREQUENCY,

READ(GSIKFR ) FRyNTRNG, (VECTOR(K) ,Kay,NTANS)
IFINCHEEK JNE NTRNS)GO TO 1298

Pt(Tod)e J8I NN AND JBY, NPT WOLDS THE VALLE DF MOOE I
AT NODE IPT(J) IN TWE OIRECTION JPT(J),

00 35 lai NPT
JstPr(l,
SETRIANS®)

IF (J8=2) 30,51,32
PHY(KF,1)EU(Y)
60 Y0 33
PuI(KF,1)ev(d)
en vo0 33
PHI(xF,1)8w(d)
CNNTINUE
CONTINUE

N0 s0 ls1,NOOES

MERE wt COMPUTE YHE KNOWN DISTORTED SHAPE,

X)X () eALPRA(KF)oU(D)
YOI RY(I)*ALPHA(KF) V(1)
ZCI)mL(T)eALPHA(KF) N (])
CONTINUE
CONTINUE
IF(10PT EQ,1) GD TO 10%

HERE WE PLOT THE KNOWN OISTORTED 8KAPE,

ORAW 18 A SUBRUUTINE CREATED 8Y G, RNDRIGUEZ TO PLOT THKEE
DIMENSTIONAL SURPACES, IT CALLS THE BUBROUTINE THANS,

CaLL DRaw({X,Y,2,J8t0,13€Q)

CaLL PACTYOR(1,0)

CALL PLOT(10,000,003)

CALL FACTUR(,0008)

CONTINUE

CALL MOUT(PHI, NMyNN, NPT, 18, {SHOTHE HATARTIX PNH])

RERE rt COMPUTE THE MATRIX A AND THF VECTOR OF EXACT OBSFRVATIONS
YSTtaR,

DO 190 181,NPT
0(tis0,

00 {90 JBI,NPTY
A(1,3)80,
CONYINUE

DO 207 JRE§,NM



R U RLLHT o g Tl g

AT P -

e Kl

A e e N

2%
2048
207
208
209y
2908
294
292
2935
2%
295
2960
297s
294
299
3008
301
§02s
3030
30
30Se
3060
307
308
3099
3100
314
si2e
313
s140
315
3100
317
St
319
J20¢
321
229
323¢
31248
525¢
3208
327
3J2As
429
5308
31
332
(AS1
3440
5480
AR}
3379
$3As
439
A D]
tals
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0N 200 ISi,NPT
COEr(l)n0,
YSYAR(IIOVETARCIVoALPHRACIK) OPUTI(IK, 1)
00 200 Jsi, NPT
ALY 3)BA o d)ePHT (N, 2)OPHICIR,JI/Z(FREQ(IN)ONG)
200  CONTINUE
Coall "PUT(A NPT, NPT NPT, 13,1 SHOTHE MATRLN A)
CALL VOUT(YBTAR,NPT,30,30M0THE VECTOR OF QHIERVATIONS Ys)

COmPUTATYION OF THE PRODUCT A(YBTAR)EAY

[a X2 X2l

00 a0k 181 ,NPY
on 202 Jei, NPT
Av(gIeav (L) ea(l,J) » YEVAH())
202 CONTINUE
CaLL VOUT(AY, NPT, 16,14N0THE VECTOW AY)

HERE w€ ADD THE R MATRIX TU THE A MaThlX,

IO O

0N 203 181,aP7
AlT,1)9a(1,1)eRR
203  CONTTINUE
208 FORMAT(/7/,2%,'Re ', £19,A)
205 CaALL MOUT(A NPT NPT, uPT,15,15H0Y 'E MATAIX AeR)
WRITE(6,208) RR
00 240 I83,NPY
USTAR(I)®AY(])
DO 210 JuL, NPT
aal1,0)ea(l,d)
16 CONTTIMUE

MERE wE MOPE TO SOLVE THE SYSTEM (NeA)UsEAYs
$NR 18 A JPL LINEAR EQUATION SDLUTION HOUTIME,

(s XaXa RaNaNa ¥, ']

CaLL BORCAA, NPT, NPT, U8TAR ,“PT,1,8290,%NAK)
CALL VOUT(USTAR NPT ,28,28n0VECTNR OF OPTIHAL ESTIMATES)
DO 219 184,NPY
00 219 Jut et
NCHY (1)BOCHK (I OA (L, J)SUBTARTY)
a1y CONTINUE
CALL VOUT(DCHK, NPT, 18,19M0THE VECTON (Aek)uc)
DO 220 I8, Nm
SQuB(FREU(I)eek) SRR
DU 220 JBY,NPT
CHEF(J)SCUER (3) e (YSTAR(J)USTAR(JIIIeBNT(Y,J) /FuN
220 CONTINUE
CALL YUOLTCALPHA MM, 38, S4HOTHE VECTOR OF ACTUAL COEFFICIENTS)
CaLl VOUT(CORFoN",37,387WHOTHE VECTOR NF LOTIFATED CNEFFICTENTS)

W Wl CUMPUTE THp ESTINATED SHAPE,

E Xaxa)

Rewinl Y
NEADC6Y) (HDR (K] 4B}, 20)
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Jogs REAO(AT)NODES, NPRED

3430 NCNECABNODESSY

3040 NEADPASY(XCD),Y(2)o272),101,M0008)

349 READ(A3) (BLUGB(T),T03,M00(8)

3o REaN(a3) (FREGCS), 101, NFREQ)

jave on 240 KFei,NM

380 READ(NSIRFR,FR,NTAND, (VECTOR(K) ,ABY,NTANS)
1490 LR INCHECK NE NTANS)GO TO 128

39%0¢ 00 240 183,N00ES

3984 XerysR(1)eCOEP(nPyny(Y)

392 VY(3IeY (L) eCOLP(xPYRVLE)

393 2(3I02CI)eCUEF(RFYONLY)

3% 240 CONTINUE

393 Ir (10PT.EQ,!) G0 TO 300

39500 (4

!;10 c MERE WE PLOT THE ESTINATED SMAPE,

3%80 ¢ ’

3990 CaLL Dmaw(x,v,3,J8€Q,18E0)

3608 CaLl Pactom(1,0)

$61e CaLl PLOT(10,,0,0,°3)

3020 CALL FACYON(,00a8)

3038 c

Joae c

369 67 YU 300

Inge 250 WRITE (or29%1)

3670 19160181001

3680 251 FORMAT (1IN, RONONATAIX 18 NEARLY SINGULAR)
369 WRITE(,2%2)

370° 292 FORMAT(//,19%,3HONITY,)

371 1P {3816,67,4) GO TO a0O

3720 weRITE(e,298)

373 233 FONMATC//7) 3%, R3MREDEFINE THE MATRIX AeR,
3740 00 260 (e, ,NPY

37190 s(T,1)8a(3,1) ¢ &

37e¢ 260  CONTINUE

141 ARe10,0RH%

3788 Rag, sRR

3700 en v0 20%

3800 c

Joye 300 CONTINUE

Jope c wgnp wE COMPUTE THE VECTOR O IN TRE CONTROL PROBLEN,
JASS DO 310 18§, NN

3840 0D 310 JSi NPT

345 0(J)aD(J)ePHI(L,J)0COEF(T)/(FREN(L1)002)
3060 310 CONTINUE

JATS CalL vOUT(D NPT, 13,1 3H0THE VECTOR D)

ST Y 319 CALL MOUT(A NPT, NPT, MPT,15,15HOTNE HATRIX AeR)
a0 wRtTE (o,R204) MR

%00 0N 320 181,NPT

LI} FLTYeLLY)

3020 OCwK(1)a0,

1930 00 320 JEi,NPY

1940 aa(1,3)8A(1,4d)

3988 320 CUNTINUE

a4 ¢

307 4

3% c HERE wE WOPE (FERVENTLY) YO S0LVE THE NATRIX (ael)Feun,
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T

399
400»
401
adde
ange
whee
a0%0
4000
a0vse
a0ae
409
a10e
alye
4120
413%
alas
4190
ales
aire
8100
419
4208
ar1e
4220
423
q240
42%s
4“6
alve
A28
4290
aloe
a3y
«3ge
alse
atae
4\5e
adeos
alve
[3Y1)
(3L1]
aape
auys
YY1
4a3e
asae
ey
hipe
aere
Y
'YL 1)
MY
N
1500
4S3e
4Sue
"R1]

¢

323

3130

HOYTOO

13%

3av

la X e Nal

150

Ye0
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308 18 A JPL LINBAR EQUATION SOLUTION WOUTIE,

CALL SORCAA,NPT, NPT F NPT, ,8380,W0RK)

CaALL YOUT(F,nPT,28,29M0VECTOR OF DPAYIMAL FORCES)

00 37% 18y,NPY

00 3a% J8y, NPT

OCHr (1}80CHR(T)ea(, J)OF (J)

CONTINUE

CALL YOLT(OCHK NPT, 18, 18M0THE VECTOR AsR)F)

no 390 181, NN

POsFRLU(I) o0

00 330 JBi, NPT

BETACI)RBEYA(L)oF (J)OPHICL,J)7FQ

CONT INUE

gaLL VOUTC(BETA, Nuy 38, JONOMODAL CPEFFICIENTS FRNM CONTADL FONCES
1

CALL VUUT(ALPMA, My 38, 3aNOTHE VEZTOR OF ACTUAL CNERFICIENTS)

NOw Wt COMPUTE THE SMAPE ADJUITMENT,

00 339 I8g,N™
Corr(l)maLPHaA(I)oplTALD)

CONTINUE

REWIND 4%

READ(6S) (MON(K) ,x81,20)
HEAD(WS)NODES,NFREQ
NCHFCRBNUDESSD

REAn(4S) (X(T),YCL),2(1),18,N0ODEY)
NEANTES) (ALUGS(]), 101 ,NODFS)

READ () (FREQ(L) 181 ,NFREQ)

0N van KFEY, N
REAN(US)IUFR, PRy NTENG, (YECTNR(X) K81, NTRNS)
IECHCHECR NENTRNG) GO T 128

00 %al [81,NODES
N()ax(1)eCORF(KFIBU(T)
Y(t)ev(i)eCOEF(xb)ov(])
(1)l (1) «COEF (kFYOu(])

CONTINUL

1IF \OPT,EG,t) GU T0 S00

WERE =€ PLUY TwE CURRECTFD SWAPE,

CaLL URan(X,v, 2, 8k, 136U)
CaLl FACTUR(},0)

Catl PLOT(1n,0,0,0:m3)
Call FACTUR(,00468)

6N Yu &gV

"E1T (N, 291)

18treldtie
1F(1816,6%,10) 0 Tn alo
*RITE (6, 298)

N a0 183,P T
A(T,1)88(1,1)eR

CANY Tl
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456
437s
458
43%
460¢
464
462¢
463y
[1Y1]
405%
4662
467
468%

D OF CoMPILATIONY

139
400
100

si0

CTPI 087

19
2s
3
4e
Sa
o8
7%
&
9s

10%

11e

12¢
13s
14¢

1%

169

17

18%

198

208

219

22

23s

2as

19
2e
39
as

6
7
ax

OO0 [4]

RRu10,8RR
Rag, sRR
€0 Yo 343

CONTINUE

CONTINUE

CONTINUE

IrcroPY EQ,8) 6O TD sy0
CALL PLOT(10,40,.999)
CONTINUE

srop

Enn

NO DIAGNDSTICS,

SuUP813,380

10

SUBRNUTINE DRAW(UX,LY,UZ,8EQ,8EQ1)

ORAW I8 A SUBROUTINE CREATED BY G, RODRIGUEZ TO PLOT THR
DTNENSTONAL BUREACES. 11 CALLS THe SURROLTINE SRAND,

PARANMETER NP8882, NCB2140
REAL UX(NP),UY(NP)Y,UZ(NP)
INTEGER SEQ(NC),FLAG,SEQS (NP)
00 106 lui,NC

JulARS(SEQ (1))
00 8 KBy, NP
IP(SEVL(X) (EQ,J) KKK
CONTINUE

FLAGE2

IP(SEQ(I) LT 0) FLAGE]
X ® uX(n%)
YUY (KK)
IaU2 (KK)
CALL TRANS(X,Y,2,%xP,YP)
CALL PLOTIXP,YP,FLAG)
CONTINUE
RETURN
END

SURRNLUTINE TRANS(X,Y,Z,XP,YP)
REAL XoYoZ)XP,YP

THETARJO,0

DRB3,1416/180,0
XPe(XPY)BCOBLTHETARDE)

YRS (XeV)SSIN(THETABDR) ¢2
RETURN

END
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