
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



•ii. -

JPL PUBLICATION 81-71

Shape Determination and Control
for Large Space Structures
Conni6 J. Weeks

(JPL-Pub-81-7 1 )	 SHAPE DETER81NATIUN AND	 062-1s1"o

CONTeOL FOR LAiiGh SrACE SliUCZURES (Jet
Projulsiot ► Lan.)	 175 p hC AGe/Ili A01

CSCL lld	 Uncla_
G-)/18 0045y

14

R^CF^y 
i

NASq 877 ^D

o	 ;.

October 1, 1981

NASA
_	 National Aeronautics and

Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

A



JPL PUBLICATION 81-71

Shape Determination and Control
for Large Space Structures

Connie J. Weeks

October 1, 1981

RMSA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California lnstitatc of Technology
Pasadena, California



The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.



Preface

k'

The work contained in this report was performed while Dr. Weeks

R	 was employed at t1:e .let Propulsion Leboratory. Dr. Weeks is currently

an Assistant Professor in the Mechanical and Aerospace Engineering

Department at fx:inceton University, Princeton, New Jersey.

Acknowledgements

The author wishes to thank Dr. Guillermo Rodriguez for his ideas and

encouragement, which have contributed considerably to this work. I also

wish to thank Vijay Alwar, Rance Edmunds, Massih Hamidi, Jer-Nan Juang,

Yu-Hwan Lin, David Schaechter, Eldred Tubbs and Don Wang, for many valuable

discussions.

Finally, I wish to thank our technical typist, Sharon Miller, for her

consistently excellent work.

iii



Abstract

An integral operator approach is used to derive solutions to static

shape determination and control problems associated with large space

structures. Problem assumptions include a linear self-adjoint system

t	 model, observations and control forces at discrete points, and quadratic

f
performance criteria for the comparison of estimates or control forces.

Results are illustrated by simulations, in the one dimensional case

with a flexible beam model, and in the multidimensional case with a

finite element model of a large space antenna.

Modal expansions for terms in the solution algorithms are presented,

using modes from the static or associated dynamic model. These

expansions provide approximate solutions in the event that a closed form

analytical solution to the system boundary value problem is not available.
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Static Shape Determination and Control for

Large Space Structures

Chapter 1. Introduction and Summary

This report presents the results of the development and simulations of

algorithms for the static shape determination and shape control of large space

structures (LSS). Observations of positions on the structure, and actuators

for subsequent shape control, are assumed located at a relatively few

discrete points along its surface.

Quaaratic performance criteria are defined to provide a means of

determining "best" shape estimates and control forces. The resulting

constrained optimization problems are solved using an integral operator

approach, which proves ideal for the mixture of continuous and discrete

problem elements.

Results are illustrated in the one dimensional case with a flexible

beam, and in the multidimensional case for a large space antenna.

1.1 Background

The development of the space shuttle has made it possible to design

space structures larger than ever before, which may be carried into space

and deployed or assembled there. Examples of such structures include the

space platform, which would support experiments, laboratories, observation

instruments and even habitation modules, and the solar power satellite,

which would collect and transmit solar energy.

Large space antennae, ranging in diameter from 50 meters to one kilometer,

are also being planned. They will assist in earth communications, radio

and high energy astronomy, the deep space network as orbital relay antennae,

I



2

and the remote sensing of soil moisture, salinity concentration and climatic

conditions on the earth. The latter information would assist agricultural

productivity around the world.

Satisfactory performance of these large space structures depends

upon the competence of their control systems. Three kinds of control systems

must be developed: shape, attitude, and orbit transfer and stationkeeping.

In the past, the major deleterious influence on shape was the interaction

between the control system, or systems, and the structural dynamics of the

spacecraft. Such inte,actions were minimized at the design stage, by

guaranteeing a large separation between the modal frequencies of the struc-

ture and the control system bandwidth. This is accomplished either by

stiffening the structure, which increases its natural frequency (and often

its weight).. or by reducing the control system bandwidth, which usually

reduces the control system performance.

However, in the case of the space structures now being designed, the

enormous size, coupled with shuttle payload considerations, requires the

use of lightweight, flexible materials. On the other hand, the performance

criteria are extremely stringent. Furthermore, other influences, in

particular gravity and temperature gradients, will exert significant torques

on the structure. 'Thus design considerations are no longer adequat%: for they

maintenance of appropriate shape.

The shape control problem is actually the dual problem of shape

determination followed by shape control. Shape determination must be

accomplished by the procesiing of possibly inaccurate observations of a

number of predetermined positions along the :structure. After the shape  is

estimated, shape control must be accomplished by means of actuators (control



3

devices) placed at a finite number of discrete (isolated) points, which

produce forces or torques in one or more directions at these points. Since

the sensing devices and actuators are likely to be both expensive and heavy,

in comparison with ocher structural elements, they will be limited in

number and in the choice of their positions.

Thus we require methods for determining and controlling the si ►ape of

continuous structures by means of discrete or pointwise observations and

control devices. This is referred to as the continuous-discrete nature of

the problem.

Within shape control four categories have been identified: dynamic

shape control (control of active vibrations), static shape control, model

verification, and engineering verification. This report deals with the

problem of static shape control for large space structures.

1.2 The Model

In formulating the general system model it is helpful to consider the

shape of the dish of a large space antenna. Its ideal or rest shape is

a parabolic shape embedded in three dimensional space. If P is a point

on the rest shape, the shape of a distorted antenna may be described by a

three or six dimensional shape function U(P), which represents the transla-

tional andior rotational displacements in R 3 of the distorted shape from

the ideal shape.

'rhus we consider an n dimensional state function U(P), defined on a

simply connected domain a l& a R
k
. We assume the state is governed by linear

dynamics

1. U(P) _ ): (P) 	 for 1' c S:,	 (1 )

where L is an n x n matrix of differential operators.
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Associated with the dynamics (1) is a set of linear homogeneous

F'	 boundary conditions

Bi (U) -0 ,	 1< i < k0,
	 (2)

n
on t, the boundary of Z, which will determine the number of degrees of

freedom of the antenna as a whole. The conditions (2) may represent portions

of the boundary which are pinned, simply supported, or free.

We will assume the system (1-2) is self-adjoint.

The n dimensional vector function F(P) in (1) represents forces or

torques acting on the system. In the shape estimation problem, F represents

the unknown forces producing the shape distortion. F is to be determined,

along with the shape itself, by means of a set of, possibly inaccurate,

observations

Y  = C  U(P i ) + Z 1 ,	 1 < i - m ,	 (3)

of the shape at the m positions P1.

In the shape control problem the vector F has the form

m
F(P) a I C 

i 
F 
i 

6(P-P 1 )	 (4)
J=1

The representation (4) for F correspopds to the assumption that the forces

F  are to be applied in one or more dimensions at the positions P 1 . A

force applied to a rotational coordinate is a torque.

To provide a measure of the optimal estimates of the shape and distur-

bance functions, or alternatively the optimal set of control forces, we

1.	 will define quadratic performance criteria.

Thus the shape determination and shape control problems become

constrained optimization problems, consisting of the following problem

r
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ements: A continuous state which satisfies a self -adjoint linear boundary

lue problem, together with a set of m observations or forces applied pit

screte points on the structure, and a quadratic performance criterion,

ich includes both continuous and discrete components, and serves as a

ans of comparison of estimates or control forces.

1.3 Approach and Procedure

We will apply an integral operator approach to the solution of both

the static shape determination and shape control problems in the following

manner: for a given forcing function F, the solution U of the boundary

problem (1-2) may be expressed in terms of an integral operator K:

U(P) - KF - fG(PIQ)  F(Q) dQ 	 (5)
S:

where the function G(PIQ) is the Green's function, or influence coefficient,

corresponding to the system (1-3). The integral operator K in (5) represents

the inverse of the operator L on an appropriate space of functions. The

use of the integral expression (5) in place of the differential boundary

value problem (1-2) eliminates some or all of the constraints in the

optimization problem, and proves particularly advanta_;eous in the case of

a continuous-discrete problem mix.

Procedure

We will begin by solving; the static shape control and estimation

problems for a one-dimensional shape function u, in Chapter ?. The results

will be illustrated in Chapter 3 by simulations of a flexible beam, for

both simply supported and pinned-free boundary conditions.



Consideration of the one dimensional case has several advantages;

It is easier to use intuition about the results, and it is possible to be

specific about the identity of the operator L and its inverse K. Thus

`'
	 exact solutions may be computed, and compared with solutions from modal

approximations of the type which must be used in the multidimensional case.

In Chapter 4 the results derived in Chapter 2 are applied to the case

that L is a partial differential operator. The static shape distortion

of a circular membrane and a rectangular plate are considered as examples.

The analytical results are similar to those for an ordinary differential

operator, but it is clear that even when the operator L is known, the

specific Green's function for a system governed by a partial differential

equation may be difficult or impossible to compute. Approximate algorithms

using the system modes (eigenfunctions), which can still be computed

analytically, are also presented.

In Chapters 5 and 6 multidimensional shapes,corresponding to most

LSS models, are considered. In Chapter 5 the theory is developed. It

parallels the theory for the one dimensional case, with some exceptions.

The differential operator and the Green's function are matrix operators.

observations and control forces may be applied to only some of the components

of the state at cacti point. Furthermore, in most cases the differential

operator L and the system modes are not explicitly known. Thus the modes

must be computed experimentally, or by a modeling method such as the finite

element method. Approximate solutions based on eigenfunction expansions

corresponding to the static model are presented.

In Chapter 6, in order to apply results to a finite element model of a

large space antenna, the methods of Chapter 5 are adapted to the uesw of

eigenfunctions supplied by a dynamic (time-varying) model. A dt.r.ri;a f.or.

6



of the finite element method is presented. The control problem is used to

demonstrate the exact correspondence between solutions of the continuous

static problem and the finite dimensional static model of the finite element

#	 method. Finally, results are illustrated by simulations, using data from

a finite element model of a large space antenna.

Conclusions and future work are stated in Chapter 7.

The appendices include program listings and outputs for the simulations

of the flexible beam (Appendix B) and the LSS antenna (Appendix C).

Appendix A contains a simplified sketch of distribution theory, the
i

mathematical theory within which the use of the delta "function" may be

considered legitimate. It also contains a proof of the identity of the

free space solution of V 4  =- 6(P-Q), which is a part of the Green's function

for the operator V4.

1.4 A Comment on the Approach

The integral operator approach is ideally suited to the continuous-

discrete problems of LSS shape control and determination. Physically the

Green's function represents the response of the system to a unit impulsive

force at one point. Thus, the shape control problem, for example, becomes

merely the problem of determining the linear combination of Green's

functions or responses at each point which produce the best approximation to

the desired shape.

The analytical problem of handling; a continuous-discrete mathematical

mixture can prove messy or awkward. The integral equation approach reduces

the elements of the shape control and determination problems either to purely

discrete or purely continuous problems which are more easily handled.

i
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In addition, no approximations, other than the initial assumptions of

linearity and pointwise application of forcers or observations, which are

common to most engineering approaches, are applied until the final computa-

tion of the solution algorithms. This approach has value in both its

simplicity and its generality. Intuition about the behavior of the system

can be retained to the final computation stage.

For example, it is easy to determine the additional constraints which

must be applied in the case that the system has rigid body modes (eigenfunc-

tions corresponding to zero frequencies), and to understand their physical

interpretation.

Furthermore, the shape control and estimation algorithms are not dependent

on a particular model, since the only dynamical assumptions are that the system

is linear and self-ad ,joint. A change in the model does not necessitate a change

in the method, only a charge in the eibenfunctions used to approximate elements

in the algorithms. The eigeitfunctions can be provided b y lumped mass finite

element models, which are themselves linear and self-adjoint.

Finally, the use of integral operators rather than differential ones

possesses these general advantages:

(1) The expression of a solution as an integral equation automatically

incorporates the boundary conditions, which must be stipulated separately

if the problem is stated as a differential equation.

(2) The integral operator is usually bounded and often completely

continuous, whereas differential operators are unbounded. Thus results

erning eigenfunction expansions, solutions of nonhomogeneous equations

are more easil y obtained.

Numerical approximations and variational techniques which include

ral other methods of solving; problems with constraints are more

ly applied to integral rather than differential equations.



Chapter 2. Static Shape Control in One Dimension

2.1 Introduction

In this chapter we present the general theory for a one dimensional shape,

which will be illustrated by a flexible beam model in Chapter 3. While

the shape of a large space structure is usually modeled as multidimensional,

consideration of the one dimensional case possesses several advantages;

1) It is possible to be explicit about the identities of the differential

operator L and its inverse, the integral operator K. Thus exact solutions

to the shape determination and control problems may be computed.

2) Intuition about the physical meaning of results may be applied mure

easily to the one dimensional case.

Pro--edure

In section 2.2 we define the general linear boundary value problem

(BVP) satisfied by a one dimensional shape function u, and discuss the

existence of solutions. In section 2.3 we define the corresponding Green's

function, and demonstrate its role in Lhe solution of the BVP. We discover

a mathematical distinction betwee-a the problem of shape control and those

of attitude control and stationkeeping.

We will state general shape control and determination problems for a

one dimensional state in section 2.4 and 2.5, and use the Green's function

to derive algorithms for their solution.

In section 2.6 we will present eigenfunction expansions which may be

truncated to provide approximations to elements of the shape control and

estimation algorithms. Since in the multidimensional case approximations

must be used, it is interesting to compare them to the exact solutions

available in the one dimensional case.

Conclusions are stated in section 2.7.

9



10

2.2 The Boundary Value Prob-em

Consider a surface which occupies a simple connected region a a RI and

is bounded by the curve t.

Assume the surface is acted on at each point P e 2 by a force f(P), and

that the static deformation u(P) of the surface satisfied the partial

differential equation.

Lu - f
	

(6)

where L is a linear ordinary or partial differential-operator, related to

the stiffness of the structure, Which also satisfies linear boundary

conditions

Bi (u)=0,	 1e i<ko , for Pe t.	 (7)

Assume the boundary conditions (7) are such that the operator L is self-

adjoint. That is

<Lu, v> = <u,Lv>
	

(8)

For any pair of functions (u,v) in an appropriate class which satisfy the

boundary conditions. (The term "appropriate class" is purposely vague.

See Appendix A.) The inner product <u,v> is defined to be the integral

< u,v> =	 u(Q) v(Q) dQ .	 (9)
s:

Solutions of boundary value problems do not always exist. Before the

Green's function can be defined and its role in the solution of (6-7)

discussed, it is helpful to recall the following rule from linear differen-

tial equations, which gives sufficient reasons for the existence of a solution:

Consider the self-adjoint boundary value problem (6-7) and its corresponding

homogeneous problem

Lv - 0,	 Bi(v) - 0 9	 1 < i < ko,	 (10)
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Then (a) The system (6-7) has a unique solution for each f if asd only

if the homogeneous system (10) has only the trivial solution.

(b) If (10) has non-trivial solutions, the problem (6-7) has no

solution unless the consistency condition

<f,v> = J f(Q) v(Q) dQ = 0	 (ll)
n

A.s satisfied for every v(P) which is a solution of (10). This rule is a

simplification of Theorem 5.1 in Chapter 5.

Remark 21: If a solution u(P) of (6-7) exists, and v l ,...,vs are independent

non-trivial solutions of (10), then u is not a unique solution, since

s
u +I c 

i 
vi	(12)

i=1

is a solution of (6-7) for any set of constants ci.

Remark 2.2: The consistency condition (11) becomes reasonable when we

consider that seeking a solution to (6-7) for any function f in some space

is equivalent to seeking the inverse of the operator L on that space. If

the null space of L is zero (i.e. the solution of (10) is only the trivial

solution) then L is one to one and its inverse may be defined. If (10) has

non-trivial solutions, L is not one to one and L-1 may be defined, if at

all, not uniquely on the range of L. The "consistency condition" ,guarantees

that f has ua component in the null space of L, hence (with a little more

work) that it is in the range of L.

2.3 The Green's Function

We first consider case (a) of the rule in the previous section. The

corresponding homogeneous problem (10) has only the trivial solution. Then

the Green's function for the problem (6-7) satisfies
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Lg(PiQ) " 6(P-Q)	 for P, Q E Q ,	 (13)

Bi (g) - o ,	 1 < i < ko , for P e r .	 (14)

It represents the response of the system at the point P to a unit impulsive

force at Q. 6(P-Q) is the dirac delta function.

Since L is self-adjoint, and both u and g satisfy the boundary conditions,

we have

< tt,Lg> _ <Lu,g>	 (15)

which implies that

U(P) - j u(Q) 6(P-Q) dQ - J g (PIQ) f (Q) dQ •	 (16)
S2

Remark 2.3: Because the BVP (6-7) is self-adjoint, g(PIQ) is symmetric,

that is g(PIQ) - g(QIP). [2) This is proved in the multidimensional case as

Theorem 5.2 in Chapter 5.

Remark 2.4: The Green's function is the kernel of the compact integral

rator K

(

such that

Kf x J G(P'Q) f (Q) dQ	 (17)
n

K is clearly the inverse of the operator L, where defined on the range of

L, since KLu a Kf - u and LKf = Lu - f.

Remark 2.5: The solution of (13) is called a fundamental solution. The

equation (13) is satisfied in a distributional rather than a pointwise

sense. That is

<Lg,y> a <G,L*^> - c, (t)	 (18)

for all test functions 0. (A test function is an infinitely differentiable

function defined on R E which has compact support. See Appendix A.)



13

t

4

The Modified Green's Function

We now consider case (b). Supposes the problem (10) has s independent

solutions vl ,...,vs , which we assume have been wade orthonormal with respect

to the inner product (9). We may not define the Green's function as in (13-14)

because

<6(P-Q), v i > : f v,(Q) 6(P-Q) dQ - vi (P) # 0 .
11

Thus the consistency condition (11) is not satisfied. Therefore, we define

the modified Green's function g(FjQ) wnich satisfies

Lg(PIQ) s 6(P-Q) -	 vi (P) vi(Q)
i

Bi (g ) s 0,	 1<1<k0 .

We have subtracted the offending components of 6(P-Q) which lie in the

nullspace of L. A solution to this system does exist. It is not unique,

however, since the addition of any linear combination of the solutions

vl ,...,vs is also a solution of (20-21). We therefore impose an additional

constraint on g:

<g(PIQ), v i > : 0 ,	 1 < i < s .	 (22)

The function which satisfies (20-22) is the unique Green's .function of

minimum norm, that is, the Green's function which itself has no component

in the nulljpace of the operator L.

We apply the relation (15) to the modified Green's function. We

note that

<g . Lu> sfg(PIQ)  f (Q) dQ
it

(19)

(20)

(21)
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T	
and

<u, Lg>	 u(Q) (6(P--Q) -	 vi (P) vi(Q))
n	 i

- u(P) - E (J u(Q) vi (Q) dQ) vi(P)
i81	 fl

- u(P) -ci vi (P) .

i=1

Thus
a

U(P) -	 g(PiQ) f(Q) dQ + ! ci vi(P)f 	 .
A	 i-1

The arbitrary constants c  are an expected consequence of Remi

reasons given in the next segment, we may neglect the last tei

Rigid Body Modes

As will be seen in the examples, the solutions of the hoi

BVP(lU) are the rigid body modes, or degrees of freedom, of the system.

They represent changes in position the structure may take as a rigid body.

The pinned-free beam in section 3.3 has one rigid body mode: it may rotate

about the pinned endpoint.

If a structure has free-free 'boundary conditions ; which represent

a structure floating freely in space, it may rotate or translate without a

change in its shape. In three dimensions this implies up to six rigid

body modes.

If the boundary is firmly fixed, the structure vill have no rigid

body modes. This is the case with the simply supported bz!cm in Chapter 3,

the distorted membrane and plate of Chapter 4, and the large space antenna

with fixed hub in Chapter 6.

Since shape distortion is measured with respect to the structure itself,

it ig r-',:sonable to define a structure-centered coordinate system: the origin

and axes are defined to be along the structure. To such a coordinate system

the rigid body modes are invisible, and the solution of (6-7) for case (b)

becomes (16), as for case (.:). Since the constants in (23) are arbitrary,

no generality is lost in this assusmpcion.

I^"
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The consistency condition (11) will be seed to imply that no net

forces or torques may be applied in the direction of any degree of freedom.

Were this not so,an acceleration would result, contradicting the assumed

boundary conditions.

This condition (11), coupled with condition (22) on g and the arbitrary

constants in (23), imply that the rigid body modes are both invisible to the

shape control system and beyond its powers of influence. Translational

and rotational motions must be controlled by the other control systems.

Attitude control, orbit transfer and stationkeeping. This is the mathe-

matical distinction between the systems mentioned in section 2.1.

2.4 The static Shape Control Problem

In this section we define a general shape control prob .em for one

dimensional shape functions. We first solve the control problem assuming

case (a) of the rule in section 2.3. We then discuss the solution for case

(b), which is slightly more complicated, due to extra constraints imposed by

the consistency condition.

We assume the control devices are located at the points P i , 1 < i < m,

along the structure. The general model for the control problem is

M
Lu =	 fi 6(P-P i )	 (24)

i=1

B  (u) = 0 ,	 1 < j < k 	 (25)

where u(P) is the shape, L is a linear differential operator as before, f 

is a force to be applied at the point P i , and (25) denotes an appropriate

set of boundary conditions.

Let ^ be the desired shape of the space structure. Define the

criterion
M

J(P,u) = 2	
fit
ri	 + 2	 MQ) - u(())) 2 dQ	 (26)

i=1	 R
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as a measure of performance. The constants r  are arbitrary weights and

F - (fl...fm)T.

The control problem is to determine the vector of forces F* which

together with the corresponding solution u* of (24-25) minimizes J overall

admissible sets (F,u).

Solution of the Control Problem

There are two basic approaches to constrained optimization problems.

One is to use Lagrange multiplier theory. We will use this method to solve

part of the shape estimation problem.

The other, perhaps more direct method, is to solve the constraints

for an expression for some of the variables in terms of the others. This

expression is substituted into the function of fewer variables, which can

be minimized without constraints.

We will use the second approach in the control problem. We first

assume: the system has no rigid body modes:

The solution of (24-25) is given by

U(P) _	 g(1'IQ) I Y ti `01i-Q)] d`

n,
"	

t i 
90111) 

d	 (27)
i=1

where g(I)JQ) satisfies (13-14). Substitution of (27) into the criterion (2b)

yield.

1	 "'	 2	 i	 "t
J 	 = -	 G f i r i + 2 f	 (V^(^2) -	 fi g (^^ 1' i )) ` dL;	 (28)

i=1	 12	 i=1

The constrained optimization problem (24-2t) has become the simpler problem

Of Minimizing a iunctiou of m ullkuowll collstailts without constraints.

Simultaneous solution of the equations

i
G
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F
4	 t

f	 ^

{	 3.1	 <

t	 i	
8f

leads to the following necessary condition for an optimal solution
k

F* a (f I	 fm*)T.

(R + A) F* a B	 (30)

'file m x m matrices R and A have coefficients

Rij " r i S (i-J)	 (31)

Aij - f 8(111 ,1Q) B(Pi Io) dQ	 (32)
al

and the m dimensional vector B has coefficients

B i	 s(l^il^) *(o) dq)	 (33)
^l

once the optimal forces are determined, the optimal shape u* is given by

(21).

Solution of the Control problem: Case (b)

We assume that the humogeneous BVi' corresponding to G'4 -25) has s

independent solutions V l ,...,vs . this is, of course, equivalent to the

assumption that the structure governed by (24-25) has s rigid body modus.

In order for a solution to (24--25) to exist, the consistency condition

III	 m
 
vj 	

ft 6(r-111)> a I t i v^ tr i )	 (J4)

must bey satisfied for each function v A . 'Thus tiles control problem is to

determine the set of forces {( 1 1 and shal es function u which minimize the

criterion (2b) subiuct to the Constraints (24-25) and t34).

We will assume the coordinate system is centered on the upacecralt

(te^:ill the segment "Rigid Body Modes"). 'Tile solution ot 	 is given by
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m
U(P) - E f i g (P I P1 )	 (35)

i`1

where g is the modified Green's function which satisfies (20-22).

We first solve the s constraints (34) for the forces f l ,...,f s in

terms of the remaining forces f,,+1,...,fm'

m
f	 c	 f	 1< i< s	 (36)
i j -s+l i j	

_ _

It is clear that a necessary condition for any solution to exist is that the

number m of forces applied must be at least as great as s, the number of

rigid body modes. If we wish to obtain an optimal solution m must be

greater than s, since for m = s the condition ( 34) determines the forces

uniquely.

Substitution of (36) into (35) yields

m	 s

U(P) _	 I	 (g (PIP ) +	 c	 3(PI P )f )	 (37)

i-s+l	
i	 j=1 ji	 j i

De f ine
s

Yi(P) - g(PIP i) + I cji g(PIPj)
j =1

then
m

u(P) -	 i	 Y i (P) f 1	 (39)
i=s+l

We substitute expressions (36) and (39) into the performance criterion,

which results in

5	 m	 m

J = 2	 ( I cij Y r  +	 fiZ r1i=1 j=s+1 

	

1	 cm	 (40)

	

+ ;^	 (^(P) - G Y i (F') f i ) y dF'
Q	 s+1

The criterion is now a function of the (m-s) constants f s+l"* '•fm, without

constraints. J is minimized by solving simultaneously the (m-s) conditions

3.1
3fi s 0	

1 = s+i,...,m	 (41)

(38)
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F

M

i

f	 ^

Let F and B be (m-s) dimensional vectors with components

Fi 
f 
i+s	

(42)

4'	 w

Bi - j
R 

Yi+s(P) O(P) dP	 (43)

and the (m-s) square matrices R and A with components

Rij - ri+s d(i—j)	 (44)

Aij	 E rk cki ckj + 
j 1 

Yi (P) Yj (P) dP .	 (45)

Then the optimal control law for the control problem (24-26)(34) is

(R + A) F = B .	 (46)

Once the optimal forces f
s+1" ..,f m  are determined from (46), the optimal

forces f1 ,...,f s may be found from (36), and the resulting optimal shape

is given by (35).

The non-constant terms in A and B are linear combinations of terms of

the form (32) and (33) respectively.

2.5 The General Estimation Problem

For the estimation problem we assume the shape u(P) satisfies the

boundary value problem

Lu = f, B.(u) = 0 ,	 1 < i < k	 ,	 (47)

where f(P) is an unknown function representing disturbances or inaccuracies

in the model. Sensors placed at the positions P i , 1 < i < m, yield the

observations

yi = u(P i ) + r i	 (48)

where ^i is an unknown constant representing inaccuracy in the observation

at Pi . Let Z = (41 ... 4m). We define the performance criterion
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J(Z,f) a 2 	
i2 ri-1 + 2
	 f2 (Q) dQ -

J11n

= 2
	

(yi - ::(Pi))2 r-
-1 

+ 2 j il
f 2 (Q) dQ	 (49)

i=1 

The estimation problem is to determine the pair (u*,f*) which Jointly

satisfy (47-48) and minimize the criterion (49) over all admissible pairs

(u,f).

Solution of the Estimation Problem: Case (a)

We assume there are no rigid body modes. Then the solution to (47)

is given by

u(P) = l g (PIQ) f (Q) dQ	 (50)
n

where g(PIQ) again satisfies (13-14). Thus

u(Pi ) = f, g (Pi 1Q) f (Q) dQ •	 (51)

We substitute (51) into the criterion (49), which produces the criterion

J ( f ) = ^ I (Y i - L g(P i IQ)f(Q) dQ) 2
 ri-1 + 2
	

f2(Q)dQ(52)

i=1 	 St

The problem is now to minimize the functional J without constraints. A

necessary condition for a minimum of J at f* is that the differential

3J(f*,ti) = 0 =	 ril(Yi-J g (P i l (Q)f *(Q)dQ)(- J g(PiIQ)h(Q)dQ)
i= 1	 a2	 S2

+ f f*(Q)h(Q)dQ	 (53)
S?

for all admissible variation :a. (The unknown noise function f and variation

h may be assumed to be in L 2 (;2), for example.) Thus it may be concluded

that

f*(P) _	
ri-1 g(PIPi)(yi - u*(Pi))

i=1

Substitution of this relation into (50) yields the optimal shape estimate

u* (P) =
	

[rl
-1(y - U* (Pd) I g (P IQ) g (Pi IQ) dQ]	 (55)

i=1	 J Sl

(54)
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Note that u*(x) is expressed in terms of the unknown discrete shape

estimates u*(Pi ). Let	 r'

X - (u*(P1 )	 . . u* (Pm)) T	(56)

and

Y = (Y1 . . . ym )T .
	

(57)

Evaluation of (55) at x = xi , J	 1,..., m yields the following necessary

condi^.ion for the vector X:

(I + AR -1 )X - iR-1 Y	 (58)

where A and R are the matrices of coefficients (31-32).

Once the vector X has been determined the optimal shape estimate

is given by (55).

Solution of the Estimation Problem: Case (L)

We now assume the structure described by (47) has s rigid body modes

vl , ... ,vs , which are orthonormal with respect to the inner product (9).

The estimation problem is to determine the pair (u*,f*) which minimizes the

criterion (49) over all admissible pairs (u,f) which satisfy (47) and the set

of consistency conditions

<f ,V j > =	 f (Q) v j (Q) dQ = 0	 1 < j < s	 (59)

We will show that the solution of the estimation problem for case (b) has the

same form as that for case (a):

The solution to (47) is given by (60), where g is the modified Green's

function (20-22).

i

	 U (P) = 
jo 

g(PIQ) f(Q) dQ	 (60)

We evaluate (60) at P i , 1 < i < m, and substitute into the criterion (49)

producing the criterion (52). Thus we have eliminated part of the constra:!nts,
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k

the boundary value problem (41). The estimation problem becomes the

problem of minimizing the criterion (52) subject to the remainii:g constraints

(59) .

We will apply the Lagrange multiplier theorem [3]. We adjoin the

constraints to the criterion by means of scalar multipliere {aj};

J = 2	 (^'i -	
fil

g (P i IQ) f(Q) dQ)2ri-1 + 2 f
a

f 2 (Q) dQ
i=1   

+ 2	 aj fo
f (Q) vj (Q) dQ	 (61)

J =1 

A necessary condition for a minimum of J at f* is that the differentials of

J with respect to f and AV 1 < j < s, are 0. We have

a1 = 0	 f(Q) v i (Q) dQ	 1 < j < s	 (62)
j	 ^

and

aJ(f,h) _ I (y i - u (P i )) r i-1 ( -1 g(PiIQ)h(Q)dQ)
i=1	 S2

+	 f (Q) h(Q) dQ +	 a	 h( Q) v (Q) dQ = 0	 (63)
1Z	 j=1 j J SZ	 j

-tor the variation h to one side:

S
h(Q) dQ [- ( y i - u(Pi))ri-1 b(PiIQ) + f(Q) + 11 A  v j (Q)1 = 0

j=

this must be true for all admissible variations h, the bracketed

nust be zero. We have

I(Q) = (yi - u (P i ))r i -1 g ( P i IQ) - ^ A  vj (Q)	 (64)

j=1

ply the other necessary conditions (1ii2

-1
0 = <f,vk> 	 I ri(yi
	 - u(P i ))(^ g(P i IQ) vk (Q) dQ)	 !

i=1	 S2

S
- I x  <vj , vk >	 k	 1,..., s	 (65)

J -1
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The set vi was chosen orthonormai, so <vi ,vk> = 6(J-k).

Furthermore, from condition (22) on the modified Green's function we

know that

' 
n 

g (P i 'Q) vk (Q) dQ = 0 ,	 k	 1,..., s	 (66)

Thus we have X  = 0 for k = 1,..., s .

We may conclude that

mrr
f*(Q) a L g(P i IQ) ri-1 (yi - ci u (Pi ))	 (67)

i=1

as to case (a), and therefore that the optimal shape estimate u* is also

given by (55) .

Remark 2.6; Note that because of condition (22) on g, the optimal shape

estimate has no component in the direction of the rigid body modes. There

may be components in the actual shape, but a shape control system has no

means of determining them.

2.6 Approximations

If the Green's function is known, the shape determination and shape

control problems may be solved exactly by the methods of this chapter.

however, it will be seen in Chapter 4 that when L is a partial differential

operator it can be difficult to determine the Green's function. For large

space structures, which are multidimensional, the determination of the matrix

differential operator L, and consequently the Green's function, is usually

impossible.

However, the Green's function, and the terms in the shape control and

determination algorithms which involve the Green's function, may be expressed

in terms of series expansions involving eigenvalues and eigenfunctions
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corresponding to the BVP (6-7). Truncations of those series can serve as

approximations of the relevant terms. Even when L is not known the eigen-

functions and frequencies can be computed numerically, for example by the

ti
finite element method.

Let m l , ^2 ,... be the normalized eigenfunctions of the boundary value

problem (6-7), corresponding to the non-zero eigenvalues A l , a 2 , ^... Then

{^^} and {a^} satisfy

L ^(P) a a j ^^(P)	 for P E 9 1	 (68)

B1 (0j ) =0 ,	 1<i<ko for Pe t.	 (69)

Eigenfunctions corresponding to zero eigenvalues are rigid body modes.

We have the following expansions:

g(PIQ) : I a^ 0 j (P) 0 j (Q)	 (70)

and

fg (P IQ) f(Q) dQ	 ak	 (P) <0j,f>	 (71)
S1	 i

Substitution of (70) for f in (71) yields

fg(PIQ) g(Q! R) dQ = 1	
12 

0 j (P) 0 j (R)	 (72)
a	 j aj

The expressions (71) and (72) provide approximations for the terms B  and

Aij defined by (33) and (32) in the control and estimation algorithms.

The series expansions (70-72) are standard results of linear operator

theory (2). They are based on the assumptions that the integral operator

K defined by

Kf = J g ( P {Q) f (Q) dQ
f2



Is a symmetric Hilbert-Sch--:''t operator. The symmetry follows from the

self-sdiointness of the boundary value problem. nu operator is is Hilbert-

Schmidt if

I IKII - (J J Ig(PIQ)I ldpdQ)
1^ 2 < Go ,

SZ	 S2

In the case that L is an ordinary linear differential operator,

as in Chapter 3, the Green's function is continuous on the compact domain

i2, which implies (73). If g is not known precisely, Lhe property (73)

must be assumed.

2.7 Conclusions

An integral operator approach to the continuous-discrete optimization

problems of static shape estimation and control proves ideal for these

problems. Solutions reduce to the solution of linear equations of dimension

less than or equal to the number of observations, or control forces.

A distinction must be drawn between the solutions for systems with

rigid body modes and those without. The control law for a system with rigid

body modes is more complicated, due to the imposition of extra constraints

on the forces, which represent the requirement of zero net forces and/or

torques in the directions of these modes.

The estimation procedure for a system with rigid body modes is the same

as for a s ystem without them, but the resulting estimate has no component

in the direction of the rigid body modes, because they are invisible to the

shape estimator. The rigid body modes represent changes in attitude and
F

translational movement, which must be the concern of the attitude control,

r	 orbit transfer and stationkeeping systems.

(73)
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In the event that the Green's function cannot be precisely known,

approximations to the terms in the control and estimation algorithms may be

computed from eigenfunction expansions available from linear operator theory.

Tae eigenfunctions, often called modes or mode shapes, may be computed

numerically even when the operator L is not known.
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Chapter 3. Static Shape Control for the Flexible Beam

1

3.1 Introduction

A flexible beam provides a perfect Illustration of static shape diatcr-

tion and subsequent shape control. Consider a flexible beam which is

supported at the end points, and is intende4 to serve as a bookshelf. The

desired shape, or rest shape in the absence of outside forces, is strictly

horizontal. However, the forces of gravity act continuously along the beam,

causing it to sag in the center.

In order to achieve the desired horizontal shape, we apply a third

support under the center of the beam. The natural stiffness of the beam

together with the applicati,*;: of this additional force at the center approxi-

mately counteract the effects of the gravitational force. Thus we observe

static shape control by means of are pointwise force in the ordinary brick

and board bookcase.

In this chapter we will solve static shape control and estimation

problems for a flexible beam of length k, and boundary conditions representing

simply supported, or pinned .-free endpoints.

3.2 Shape Control for a Simply Supported Beam

Consider the problem of controlling the static deflection of an elastic

beam of length Z. Define a coordinate system such that the x-axis pas:eT

through the endpoints of the beam, with one end at the origin arch the other

r	 at x - k. Suppose

f  at positions x^

At each point

f
t	 tensile force on a

control is to be implemented by means of transverse forces

1 < i < m, where 0 < x 1 < x2 ... < X  < k. See Fig. 3.1.

X t[0,kj denote the deflection by u(x). Assuming no net

cross-section, the shape of the beam is governed by the
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differential equation

d4u	 m

dx4	 i	 i
f 6(x-x )	 (74)

i=1 

The ends of the beam satisfy the boundary conditions

U(0) = u"(0) = 0	 U W - u"(e) = n .	 (75)

Figure 3.1 The Simply Supported Beau

Let iP(x) be the desired shape of the beam. As a measure of performance

we define the criterion

m	 R
J(u,F. = 1	 fit r i + 2 fo (u(x) - O(x)) 2 dx	 (76)

where F is the vector of forces (f 1 ... f m ) T and r  are nor.-negative

constant weights whose values are optional.

The object is to determine the set of force,Q f i * t-hich together

with the solution u*(x) of (74) minimizes (76) over all possible pairs

(u,F) .

The existence and uniqueness of a solution to (74-75) follows from

the fact that the associated homogeneous system

d 4 
4 = 0	 v(0) = v

„ (0)	 0	 VCO = v"(i) = 0	 (77)
dx

i
I
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1

has only the trivial solution. Consequently the solution of (74-75) is

given by
m

U(X) = i^l g(xlxi) f i	 (78)

where g (xk- ) is the Green ' s function which satisfies

4
d (x) = d(x-^)	 (79)

dx4	?

g(Olo = g"(010 = 0 ,	 g (kI&) = g , aI&	 0 .	 (80)

The Green ' s function represents the response of the beam shape to a unit

impulsive force at x = 4.

The solution of (79-80) is

	

( b^)x 
(x2 - 2t^ + & 2 )	 0 < x <

g (x l&) _	 (81)

	

(x6QA (x2 - 21x + & 2 )	 & < x < R .

Figure 3.2 displays the Green's functions which correspond to impulsive

i
forces at positions	 = n (8), n = 1, ..., 7.

The solution of the control problem: Substitution of the solution

into the criterion (76) yields

J(F) = 2 L f it r  + 2 1 Q (	 g(x{xi)fi - ^(x)) 2 dx	 (82)
i=1	 o i=1

The problem of minimizing the criterion (16) subject to the constraints

(74--75) has become the problem of minimizing a function of m unknown

constants without constraints. A necessary condition for J to have a

minimum at F* is

311
afi (F*)=0	 1< i<m (83)
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This condition becomes

f i r  + E 

f^(^R 

g (x l xi ) g (x l x^ ) dx	
f 

*(x) 8(xlxi) dx	 (84)
J=1	 0	 0

If we define

aij =	 8(xlxi) g(xlx^) dx	 1 < i, j < m	 (85) f c
and

b i =	 V(X) g(%,- ij dx	 1 < i < m ,	 (86)
0

then the necessary condition for a minimum of J at F* is that F* satisfy

(R + A) F* = 3
	

(87)

where R is the m x m diagonal matrix

r 1	 \

O
R =	 (88)

O r
m

A is the m x m matrix with coefficients (85), and B is the m dimensional

vector with coefficients (86).

The Shape Control Algorithm for the Simply Supported Beam

1) Compute the constants a — and b, defined by (85-86).
13	 3

Define R, A, B.

2) Solve (87) to obtain F*.

m

3) The optimal shape u *(x) _	 fi*g(x,xi)
i=1

Figure 3.3 displays the optimal shape vs. the desired shape

2Trx
^j(x) = silt 

Q
-,

	

	 -75), for two actuatorsthe second mode of the system (74 

at 1/4^'' and 3/44.
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3.3 The Control Problem for the Pinned-Free Beam

A modification of the control algorithm is necessary if the system has

rigid body modes, as is the case with the pinned-free beam.

The beam with one pinned and one free end point satisfies the differen-

tial equation (74) with boundary conditions

u(0) = u"(0) = 0	 u"(R) = u"k.0 - 0 .	 (89)

We will again use the performance criterion (76). The object is to

determine the set of forces (f i } which together with the solution u(x) of

(74) (89) minimizes (76) over all possible pairs (if i }, u).

The system (74) (89) has the rigid body mode v l (x) = J'3' x (normalized).

Physically this means the beam can have a non-zero slope or tilt as a rigid

body. Mathematically it means that the corresponding homogeneous system

dx = 
0	 v(0) = v"(0) = 0 v"(R) = v"'(R) = 0 	 (90)

has the non-trivial solution v l (x). Thus the system (74)(89) has a solution

only if the inner product

m	 •3 m
(	 f  8(x-x i ) : vl )	 3	 fixi = 0	 (91)
i= 1	 R i=1

The addit?onal constraint (91) must be added to the problem of determining

the optimal control forces.

A solution to (79) with pinned-free boundary conditions does not exist

because the inner product <5(x-4), v l > is not zero. The "modified" Green's

function which is appropriate to the system (74)(89) satisfies

d 4gm (xl&)	 3

4 — = d(x-^) - 3 x&	 (92)
dx	 R

gm(OW = gm t , (Olo	 0	 sm"(Rl ;) = gm"kklo = 0	 (93)
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We make the additional requirement that gm (xl&) have no component in the

subspace spanned by the rigid body mode.

^ R
(gm(xIO ,vl ) _ ^33 fo %(xit) x dx = 0

The modified Green's function which satisfies (92-94) is given by

3x x3
_	 33R	 2+x2 ^

4
+x4	2 + {^ 0`x`

gm
(xIC)
	 x	 (

140 +	 4R -	
3 ) - l	 (95)

40R	 2	 2
x2 + 6 _ t<x<R

Condition (94) guarantees that gm(xl&) is symmetric and of minimum norm

among all solutions of (92,93). Figure 3.4 displays gm(xIQ for impulsive

forces at intervals of 1/8 R.

The Green's function (95) represents the response of the pinned-free

beam to one of a set of unit impulsive forces which satisfy (91).

Figure 3.4 displays the Green's functions for impulsive forces at positions

n (13)1 n - 1,...,7.

(94)

ie solution of I, X87 )k 7 ) is given by

m

I(X) _	 fi gm (xl xi)
i=1

ve (91) for f l in terms of the outer ':orces and substitute that

;lion together with (94) into the criterion (76), which results in

r	 m	 _X.	 m	 I
(l;) _ 	 (	 ,1 fl) Z + 2

	
fi- ri

i=2	 1	 i=2

i	 m	
xi	

2
+ 2 J (	 fi(gm(xlxi) - h- g (xlx i )) - kx)) d x	 (97)

o i=2	 1

F is the vector (f., ... fm)T.

,gain, the optimization problem is reduced to one of minimizing a

on of unknown constants.

(96)
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The necessary condition for a minimum at F* is

O. 0	 2< i m.	 (98)
8fi

These conditions result in the following algorithm.

(i) Compute the m dimensional vector B and m x m matrix A whose

coordinates are
i

b 	
fo gm(x Ixi) w(x) dx

aij f
t

o g
m(xjxi) gm(:lxj) dx	

(100)

(ii) Compute the (m-1) dimensional vector B and (m-1) x (m-1)

matrix A whose coordinates are

bi bi+, - xx

1
+1 bl 	(101)

xi+_ lxi+l,^
aij r l 	all) 

x 
2

1
X+1 _ a	 xi+l

+ ai
+l.j+l al,i+l xl 	l,j+i xl 	(102)

Let R be the (m-1) x (m-1) diagonal matrix

2

O
(103)

R •	 •

0	 r

(iii) The vector F* of optimal forces satisfies

W* 
^

B(R + A)F* `  •	 (104)

The optimal force f l* is found from (91).

m
(iv) The optimal shape u*(x) _	 fi*gm(x lxi)

i=1
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Since the optimal shape u* is a linear combination of Green's

functions which satisfy (94), it will have no component in the subspace

of the rigid body mode. If the desired shape *(x) does have such a component,

that is if (*, v 1) is not zero, the optimal shape will approximate the

I	 shape

^(x) - < ^,vl> vl (x) .	 (105)

That is, it will approximate the desired shape minus its component in the

subspace spanned by vl(x).

As an example, Figure 3.5 displays the desired shape ^(x) - Zx - x2,

the shape which approximates4 Zx-x 2 , and the optimal shape plus the missing

rigid body mode component4Zx.

Those components of the desired shape in the subspace spanned by rigid

body modes must be added by the attitude control system. A shape control

system constrained to satisfy the boundary conditions cannot affect these

components.

3.4 The Shape Estimation Problem

To illustrate the shape estimation algorithm we consider a simply

supported beam of length £ and unknown shape u(x), which satisfies

d4u =f(x)on	 0<x< , (106)
dx4
	 — —

and

u(0) - u"(0) = 0	 UM = u"(x) = 0	 (107)

The function f(x) represents minor model inaccuracies or random disturbances

acting on the beam.

Assume sensors at positions x i , 0 < x l <	 < x  < R, produce

observations
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Yisu(xi)+^i f	 l<i< m •
	 (108)

As a measure of the accuracy of shape estimates we define the criterion

m 
J(f,u) = 2 

iFl (yi - 
u(xi )) 2 ri

-1 
+ 2 Jo f2 (x)dx	 (109)

The object is to determine the function f* which together with the solution

u* of (106-107) minimizes (109) c-er all possible pairs (f,u).

The solution of (106-107) is given by

(R
U(X) - 

J 

g(xl^) f(&) d4	 (110)

0

where g (xI&) is the Green ' s function (81). We substitute ( 110) into the

criterion (109); resulting in the criterion

m
1

J	
- 2 

i^l	 ri-1	

,

(Yi - j 0 g(xi^)fl(E) d&) 2(f)	 + 2 J f (O dt	 (111)
0

The estimation problem has reduced to one of minimizing (111) without

constraints. A necessary condition for J to have a minimum at f* is that

^chet differential

m	 -1Q	 P.

J(f,h) = i^l r j 	(Y i -	 g(xil^)f*(&)d&)(-I g (x i J0 h(&)dF,)

	

0	 0

Ji
+	 f*(C)h(^)d^	 0

0

1 admissible variations h. This implies

*(E) = c ri-1 g(x
i I0 (y, - u*(Xi ))	 {11?.)

i=1

m	 R
*,,) = C rr -1

(y i - u*(X i ))	 g(xI0 g (x i l&) d&

i=1	 0

(u*(x i ) ... u*(xm))T

= (yl ... ym)

(11')
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r	
Evaluation of (113) at x • x^ and regrouping of terms yield the following

necessary condition for the vector X:

t	 (I + A^1P. ) X= A R 1 Y	 (114)
4

where A is the matrix of coefficients (85), and R 
1 

is the diagonal matrix

with diagonal entries ri-1.

The Shape Estima t ion Algorithm

(i) Compute the elements of the matrix A given by (85), and define

X, R, Y.

(ii) Solve the system (114) for the vector X.

(iii) The optimal error estimates are given by (112) and

4 1 = yi - u*(x i), 1 < i < M.

(iv) The optimal shape estimate is given by (113).

This algorithm is equally valid for the static beam with other boundary

conditions, provided the appropriate Green's function is used.

Figure 3.6 displays the optimal shape estimate versus the actual shape

sin(RX) + 2 ("x)
for three exact observations at 

4 
Z, 

2 
R, and 

4 
Z.

3.5 Approximations

The approximations presented {ii section 2.6 take the following form

on the domain (0,Z] of the x axis:
m

g (xIO_	 A- ^k (x) 0k (0	 (115)
k=1 k

E	 m

aij = J 
g (xlx i ) g(xIx^) dx	 12 4 k (x i ) Ok (x^)	 (116)

o	 k=1 X 

k	 ^
b i =	 g (xlx i ) ^(x) dx a Yx^) < 0k ,w>	 (117)

c	 k=1

f
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i
where (xi } are the actuator or sensor positions, a k are the non-zero

eigenvalues, and #k are the corresponding normalized eigenfunctions of the

associated boundary value problems.

Thus for the simply supported beam the approximations based on Ow

first term of each expansion are given by

1 7	 *xi	 Ax
aij 2 --a sink ? sue ( )	 (118)e

3	 *x	 t
b i	 2 

t4 
sin ( ) (

fo
*(x) Sin( x) dac)	 (119)

For the pinned -free beam

	

vx	 vx	 1:z	 vx
7 s is (-- 1) s iah ( i ) sin (-1) s lah (---1)

aid	 ^8	 ♦ 	 t	 i

	

cot L	 coshy	 Cos y ♦ cosh y	
1120)

where v 3.927 satisfies tan v taab v.

	

L3 Sin (vi) sinh ( v̂ i) l	 sin 
Hx sinh(px)

bi ; v4 L cos I ♦ cosh} f 0 0(x)(cos v + cosh y ) dx (121)

(the normalizations are approximate).

Approximate algorithms constructed from the first term in the eigen-

function expansions were included i.n the simulations of the exampie s in this

chapter. The graphs of approximate vs. optimal results were indistinguishable.

Numerical results are included in the program outputs in Appendix B.

It is misleading to generalize from the approximations for the one-

dimensional cage, for which satisfactory approximations result using only

the first term. The expans ions (118-121) telescope rapidly, because the
magnitude ;' the eigenvalues increases rapidly. The frequencies 

W  
of

large space structures increase relatively slowly (X n = wn2 ), as can be

obaerved in the output of the shape control program for a large space antenna,

In Appea ix C. For multidimensional structures many more modes (eigen-
functions) must be used.
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Chapter 4. Shape Control of Structures Governed by

Partial Differential Equations

•

4.1 Introduction

In Chapter 3 static shape control and estimation problems for one

dimensional cases were solved using Green's function techniques. In this

chapter corresponding results for structures defined on multidimensional

domains, governed by partial differential equations, are presented. It

will be observed that the solutions are very similar to those for one

&!iiensional domains. The major difference is that it becomes difficult to

determine the analytical form of the Green's function, so that expressions

in terms of eigenfunction expansions must be used.

We consider as examples the shape distortion of membranes and plates

which in equilibrium position lie in a plane. A membrane, such as a drumhead,

or the mesh of an antenna, is distinguished from a plate by the absence of

bending resistance. The restoring forces of a membrane are due exclusively

to tension whereas plates have bending stiffness. Consequently, membranes

may be considered to be governed by the harmonic operator V 2 , while Plates

are governed by the biharmonic operator V 4 = V2(V2).

This distinction between second and fourth order dynamics is analogous

to the model i ng distinction between a string and a flexible beam in the

one dimensional case.

For convenience, in this chapter we consider only systems without

rigid body modes,

4.2 The Boundary Value Problem and Green's
Function for a Membrane

Under suitable assumptions the shape distortion of a membrane is

modeled by the differential equation

.,
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V2 u - f (P) ,	 F e Sl	 (122)

where V 2 is the Laplacian operator and certain kitown physical constants have

been incorporated into the forcing function f, Eq. (122) is known as

Poisson's equation.

We will choose the boundary conditions so that condit =_)ns (6-8) ;are

satisfied for the operator V 2 - L. We will then discuss the determination

of the Green's function g(PIQ), and exhibit the solutions to the control

and estimation problems for the unit disk. Finally we will exhibit approxi-

mate solutions using the eigenfunction expansions (70-72).

Green's theorem for the Laplacian operator takes the usual form

r

i
(v V2w - w V 2 v)dP =	

(v an - w an) ds
	 (123)

S2	 S2

If we impoBe either of the boundary conditions u(P) = 0 orn a 0 for Per,

the right side of (123) will be zero for functions w and v which satisfy

the boundary condition, and the operator V2 will be self-adjoint.

For convenience we eliminate the latter boundary condition, since the

homogeneous system

2u=f	
do

V 
	
=0	 (124)

has the non-trivial solution u C.

The Green's Function

The Green's function for the system

V2 u = f ,	 u(P) = 0	 Pt 1'	 (125)

satisfies

V2 g(X,y,^,Ti) - 6(x-Q 6(y- T1) 	(126)



45

in rectangular coordinates P(x,y) , Q(&,y) and

02 g(r,e,a,O) Z 6(r-p) 6(e -0) 	 (127)

in the polar coordinates P 	 re i@ , Q = pe io . In both cases g = 0 on t.

The function y = ITlog R, where R is the distance QP, can be

shown to satisfy V 
2 
y - b(PIQ). It is called the free space solution

since it is not required to satisfy the boundary conditions.

Thus the Green's function is given by

g(PIQ) = In log R + e,(PI Q) 	 (128)

where g(P,Q) satisfies

2g = 0 on a, g = - 'V	 j. log R on t.	 (129)

The theory of analytic functions may be applied on convenient regions to

determine g, hence also to determine g. For Q equal to the unit circle

IZI ` 1,

g(r,e,p ,^A) = 4^r log 
[ r` - 2rp ci„( ?̂- .^ ±̂ ,21	 (130)

1 - 2rp cos(O-0) + r`V

for P,Q in polar coordinates [7].

Remark 4.1: Through the use of conformal mapping it is possible to determine

the Gi ,een's function for some ot„er regions, but in general it is not

possible to determine the exact function g.

4.3 The Control Problem for V ` on the Unit Disk

The control problem for the Laplacian on the unit disk corresponds to

the problem of controlling the shape of a circular net or drumhead to a

desired shape O (r,d) by means of pointwise forces. Thus we desire to

determine the set of forces if s } at positions P^	 p^ e i0j , 1 <	 m
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which togerh-:^r with the solution u(r,@) of

2	
m	 6(r-P j ) 6(e-4 j)

V u(r .6) = j^ f j	 r	 (131)
al

u(1 19) - 0	 (132)

minimizes the performance criterion

m	 2n 1
J(F,u)	

2	
fj2 r

j + 2	 (^(r,8) - u ( r,8)] 2r dr d8	
(133)

j=1	 0 0

over all possible sets (u,F), where

T
F - ( fl ... fm)	 (134)

The optimal shape for the problem (131-132) is given by

m
u*(r,e) _ fj * g(r,9,pj ^tj)

j=1

r2-2rp cos(e-^ 1 + p 2
= 1 I f * log [-

4,n j=1 j	 1 — 2rP j cos(6-0j)+r2Pj
(135)

and the vector of optimal forces F* satisfies (R+A)F* - B, where

R = (Rij ) and A - (A	 are m x m matrices such that

Rij	 r  6(i-j)

and

2n 1

Ai j_	 8(r,e,pi.^i) g(r,e, P j .^ j ) rdrde	 (136)
o

and B	 03 1 ) is an m dimensional vector such that

f2n f
lb i	 ^y(r,e) g(r,e,Pi

,
fi) rdrde.	 (137)

s
0 0
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4.4 The Estimation Problem

The corresponding estimation problem for V2 on the unit disk is,

given the shape observations

Yi = u(p i ,$ i ) + 41 ,	 1 < i < m ,	 (138)

at positions P i = p iei0l , to determine the error function f(r,e) and corres-

ponding shape function u(r,e) which satisfy

02 u(r,e) = f (r,e) , u(1,e) = 0
	

(139)

and minimize the criterion

m 
J(F,u) = 2(yi - of i ,o i )2r i-1+ 2 

fn f l
f 2 (re)r dr de.(140)

o  o

The results of Section 2.4 yield the optimal error estimates

4 i* = y  - u*(pi3Oi)
-t

	

M	 r`-2rp.
1 
cos(e-0 ) + p.	 I

f*(r,6) _ 
4^ c ri-1 4i* log	 —	 3	 J2 2	 (142)

	i = 1	 1 - 2rp
i
 cos(e-0^) + r 

p1

where the vector X = (u*(P 1 ) .., u* (Pm)) T satisfies

(I + AR-1 ) X = AR-lY .	 (143)

The matrices R an(! A are as in (136) and Y is the vector of observations

(Y ... 
Ym)1• The corresponding optimal shape estimate is then given by

m	
fnu*(r,©) = c[ri-4i
	 I 

g ( r , © , p ,0) g ( r , 6 , p i 4 1 ) pdodfl . (144)
i=1	 0	 0

4.5 Approximate Solutions

For simplicity it may be desirable to compute approximations to the

solution (135-137) and (141-143) using eigenfunction expansions. The

eigenvalues and (normalized) eigenfunctions corresponding to
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V2 f(r ,@) = af(r,8), sam 0

are	 1/2
J (a	 r)

	

6°n(r) _	 °

	

on
	 n = '1,2, ...

J1  (ton)

corresponding to the eigenvalues 
lon 

which satisfy

	JO 
(X 

on)=
 0 ,	 u = 1,2, ...

and	
1/2

r Jm (ate r)

	

#
mnc(r,8)	 a	 1/2	

cos m8

6m+1 (amn)

1/2
2	 JM ( amn r)

	

@mns
(r,9)
	 1/2

 sin m8

	

^Jm+l 
(XX
mn )	 1 < m, n <

corresponding to the eigenvalues amn which satisfy

1/2

Jm (Xmn) - 0

where J i , 0 < i < W are, of course, the Bessel functions.

Thus, a first approximation to the forces (f i ) in the control law,

using the eigenvalue X 0 = (2 . 405) 2 and eigenfunction

10 (2.405 r)

	moor) >s
	

n	 J1 (2.405)

satisfies

E

(R + A)F	 B	 (145)

Twhere R is as before, F u ( f l ... fm)  is the vector of approximate forces,

and A and B are the approximate matrix and vector with coefficients

1
aij = 1 2 

moo

 
(P	 (Pm0O(P j) 	 (146)

00

k
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r
r

r

1

bi s Xl @00 (Pj ) `^00'^>,
	 1 `_ i, j < m .

00

The shape corresponding to the approximate forces in (145) is given by

u*(r, e ) -	 f  g (r , e ,P i ,Qi )	 (148)

since the Green's function still represents the response to a unit force

at Pi = Piei0i.

Using the same approximations (146) for the matrix A, the pointwise

shape estimation vector X may be approximately computed from

(I + AR-')X - A R -Y
	

(149)

where X - (u(Q1 ) ... u(Qm)) is the approximation to X, and R-1 and Y are

as in (136)(138). The approximate estimates are then given by

Yi	 u ( Pi ) .	 1 < i < m .	 (150)

f(r) _ ^1
	 1 r1-1 

^i 00 (r) ^oo (p i )	 (151)
00 i=1

1
t
m 	

1u(r) _ 	 2 iL 1 ri- 4i 000(r) t00 (A 1 )	 (152)

00

Approximations of greater accuracy may be obtained by including the next

largest eigenvalues and their corresponding eigenfunctions.

4.6 The Static Vibration of a Plate - The Boundary
Value Problem and Green's Function

The static vibrations of a plate may be modeled by the partial

differential equation

V 
4 
u = f(P),	 PCn
	

(153)

where V4 = V2 (V2 ) is the biharmonic operator, and again certain physical

constants have been included in the forcing function f for simplicity.

(147)

r
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We wish again to choose the boundary conditions such that the boundary

value problem is self -adjoint. Green ' s theorem for the operator V4 takes

the form

4	 4	 a	 2	 a	 2	 2 aW	 2 av	 1
J	 w - ^V v)dP = cv an	 W)	 an 	v) + (V v)(an) 	W)aa1 •	 ( 154)
n	 f r

The problem of boundary conditions for plate vibrations is much more difficult

than four the membrane. A useful discussion of boundary conditions is contained

in 141.

The Simply Supported Rectangular Plate

Consider a uniform rectangular plate on the domain 0 - ((x,y) 1 0 < x < a,

0 < y < W. The boundary conditions for a simply supported edge are

2

u- Oand ant+Ran- 0 (155)

where n is the normal vector to the edge and R is the radius of curvature.

For a straight edge R - m . Furthermore, since u is constant along the edge,

au - 0. Thus
as

v2u - a2u + 1 au + a 2 - 32u
an
	 R an
 as	 an

(156)

and the boundary conditions for a simply supported straight edge are

U - V 2u - 0 .	 (157)

Clearly the conditions (157) make the right side of (154) equal to zero.

Thus V4 is self-adjoint for the simply supported rectangle.

The Green's Function

The Green's function for the simply supported rectangle should satisfy

V4 g(x,y 'X,n) - d(x-E) 6(y-n)
	

(158)

g-v2gin 0	 onx-0, a	 and y-0,b .	 (159) '



r

51

i'

The free space solution Y(PIQ) which satisfies V 4 6(PIQ) is

Y(PIQ = an r 2 log r
	

(160)

where r represents the distance PQ. This is proved in Appendix A. Thus,

the Green's function

g(PIQ) = Y(PIQ) + g (P IQ)	 (161)

where the function g satisfies V4g(PIQ) = 0, plus boundary conditions such

i
that g satisfies (157).

The function g in (161) is no longer necessarily harmonic, as was the

function in (129). It must in addition satisfy two sets of boundary condi-

tions. Thus it is much more diffi#:ult to determine the exact function g(P1Q)

for a given set of boundary conditions. The Green's functions and solutions

to the shape control and estimation problems will therefore be exhibited in

terms of eigenfunction expansions.

4.7 Control Problem for the Operator V4

On the rectangle 0 < x < a, 0 < y < b, we desire to determine the set of

forces {f i ) at positions P i = (xi ,yi), 1 < i < m, which together with the

solution u(x,y) of

V4u =

	

	 f  6(x-xi) 6 (Y-Yi )	 (162)
i=1

u = v2u on x = 0, a and y = 0, b 	 (163)

minimize the performance criterion

m	 a (b
F,u) = 2
	 f 12 ri + 2	

J ('+(x.Y)-u(x.Y))2 dydx
i=1	 0 0

admissible pairs (F,u).

e optimal shape for the problem (162-164) is given by

m	 a

(x .Y) _ f i g(x .Y. xi .Yi)	 (165)
i= 1	 '

(164)
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where the vector of optimal forces Fe • (f l* ... fm*) satisfies

*
(R+A)F	 B
	

(166)

The m x m matrices R -1  and A have coordinates

Rij = r  6 ( i—J) 	(167)

(a (b

aii = J J 
g (x +Y+xi .Yi) g (x ,Y+xj ,yj ) dy dx	 (168)

0 0

and the vectorfb B has coordinates

ib = Ja 	 ^4(x,Y) g(x ,Y,xi .Yi) dy dx.	 (169)
0 0

Since a complete analytical form for the Green's function is not known, we

use the eigenfunctions

#ki (x,y) _ a in kax sin t	 (170)

and corresponding eigenvalues

aki = n 4 [ T + (b)212	 (171)

to represent the solutions (166-169). Thus

knx	
1ffym	 sin kax sin a i sin try sin b i

U (x.Y) _ 1	 4 f 	 k 2	 t 2 2	 (172)
Jul k,t = 1	 n4 ab ((a) + (b) l

where the forces f  satisfy (166), and the coefficients of the matrix A and

vector B in (167-168) are given by

	

knx	 knx	 Rny,	 ,2ny

— 4 2 s	
a	

b
in 

i 
sin a sin 

i 
sin b
	

(173)
a U k,g =1 abX

.. 	 nx	 Any

b	 2	 sin	 i sin	 i	 ` tk^.,Y+> 	 (174)

i k,t =1 7_XkR	 a	 b

where
a b

` ^ki'^> _ 'ry D I J ^V(x,y) (sin ka) (sin	 ) dy dx	 (115)
0 0

Approximations are available by taking the first few terms in k and 1.
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4.8 The Estimation Problem for o4

The shape estimation problem for a rectangular plate is given

the shape observations

Yi ` u(xi •yi) + ti .	 1 `_ i `_ m +	 (176)

to determine the error function f(x,y) and corresponding shape function

u(x,y) which satisfy

o4u(x .Y)	 f (X .Y) .	 (177)

U • 72u - 0 for x - 0, a and y - 0, b

and minimize the criterion

ma b
J(f,u)	 (Yi - u (xi .Yi))

2ri1
 + j 1 f2 (x.Y) dY dx	 (178)

i	 o 0

The necessary condition for an optimal solution is that the vector

X - (u
* 	 *
(xl .Yl ) . . . u ( m.Ya)) satisfy

(I+Alt 1 X) - AR lY	 (179)

*
where u (:.i ,y i ) is the optimal shape estimate at the point (xi'yi).

the matrices A and R are defined by (167-168), and Y - 
(Y1 ... 

Ym). The

optimal noise estimates are

*
41 * - Y  - u (xi .Yi )	 1 < i m	 (180)

m

f* (x .Y) = i^l r i-1 Ci 0 (x .Y.xi +Yi)	 (181)

and the optimal shape estimate is
m	 a

u (x .Y) - I Ir1-141 1
0 

fb

o g(
x .Y.4.n) g(xi .Yi .t. n) dnd4.	 (182)i l 
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To compute the vector X in (179) we use (173) for the elements of the matrix

A. Then

y

f*(x,y) - I	 ba	 [sin 
ka	

a xsin ti sin tb sin b i] .	 (183)
ais l k,t-1	 kt

Finally, applying the expansion (72) to the optimal shape estimate (182),

Yu*(x .Y) - I	
[ri-1^ * 4 2 sin kax sin 

axi 
sin, 

tb 
sin tb i J (184

i-1 k9t-1	 abakt

Again, approximations are obtained by taking the first few terms in k and L.

4.9 Conclusions

Green's function techniques have been applied to the solution of shape

control and estimation problems which have associated boundary value problems

involving partial differential equations, in a manner analogous to those

involving ordinary differential equations. In the case of a multidimensional

domain, however, precise knowledge of the analytical form of the Green's

function is usually not available. Solutions may be expressed in terms of

eigenfunction expansions.

Although this chapter deals with systems which do not have rigid body

modes, the techniques and solutions bear such a resemblance to those of the

one dimensional case that an extension to systems with rigid body modes

follows readily.



Chapter S. Static Shape Control for Multidimensional
Large Space Structures

5.1 Introduction

This chapter addresses the problems of static shape control and shape

determination for multidimensional structures. Chapters 2-4 have addressed

these problems for scalar shape functions, representing displacement in one

direction, defined on one or multidimensional domains. However, large space

structures are modeled as multidimensional states, representing translations

and/or rotations in three dimensional space.

We again use an integral operator approach based on assumptions of

linear self-adjoint dynamics and boundary conditions. As might be expected,

algorithms which are similar in appearance anise.

However, there are important differences in interpretation and proce-

dure. These include matrix, rather than scalar, differential and integral

operators, controls and observations applied to only a part of the state,

and the necessity for using approximate eigenfunctioas provided by experi-

mental or numerical methods, since the exact operators and corresponding

eigenfunctions are usually not known. The algorithms derived in this chapter

will be adapted to the use of modes from a dynamic finite element model,

and illustrated by simulated results, in Chapter 6.

Procedure

In section 5.2 we define the multidimensional linear boundary value

problem for a large space structure, and discuss the existence of solutions.

We then define Green's functions for a multidimensional boundar y value

problem, both with and without rigid body modes, and derive solutions to the

boundary value problem for both cases.

SS
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In section 5.3 we define and solve the shape control problem for a large

space structure. V-i discuss examples of the constraints imposed on the

control forces by the rresence of rigid body aides. In section 5.4 we define

and solve the shape determination problem.

We present eigenfunction expansions for the more general multidimen-

sional terms in the algorithms, which involve Green 's functions, in section

5.5. A summary and conclusions are stated in Section 5.6.

5.2 The Model. and the Green's Function

Consider a multidimensional system represented by the n dimensional

state U(P), defined on a simply connected domain Q a R
L

.	 Suppose the

system is governed by linear dynamics

t .

LU - F	 for Pest
	

(185)

where L is an n x n matrix of differential operators. F(P) is an n dimen-

sional vector function, or diSLribution, defined on S2, which represents forces

or torques acting on the system.

Suppose the system satisfies k  linear boundary conditions

Bi (U) - 0 ,	 1 < i < ko ,	 for P E t
	

(186)

where r is the boundary of Q. We will assume the boundary value problem

(185-186) is self-adjoint, that is that L* - L and

<LU, V> - <U, LV>
	

(187)

where U and V are any two admissible function. ► which satisfy the boundary

conditions and

fU

<U,V^ is the inner product

<U,V> -	 I(P) V(P) dP .	 (188)

We will also require the usual vector inner product

<X,Y> - XT  - Y 
T 
X .	 (189)
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We will use the norms induced by (188-189) and the weighted seminorm

'' X '' R2
 = <X,X>R = XTRX .	 (190)

X and Y are vectors in the same space and R is a symmetric square matrix

of appropriate dimension such that R > 0.

The reasons for the model formulation (185-186) become apparent when

one considers an LSS (large space structure) antenna. The domain consists

of the subset of three dimensional space occupied by the undistorted ideal

shape, a perfect paraboloid. The state might be three dimensional also,

repres:nting vector displacements of points on the distorted antenna from

their ideal positions. Boundary conditions represent a pinned antenna

which may not rotate or translate as a rigid body in any direction, a free-

free antenna which may rotate or translate along any of the three axes,

or conditions between these two extremems.

Other state representations are possible. It may be convenient to

consider- a six dimensional state which represents translations and rotations

of a t-^, .Ln f: about the three axes. This is the case if torques are to be as

control mechanisms, in addition to translational forces. A torque can be

considered an impulsive force applied to a rotational coordinate of the

s~aLC.

Solutions of Boundary Value Problems

We consider under what circumstances solutions to boundary value

problem (185-186) exist, and what form the solutions take if they do exist.

We will apply the following alternative theorem for boundary value

problems:

Theorem 5.1: Consider the boundary value problem

LII=F, B i (U)=0 ,	 1< i< ko ,	 (191)



<Vi ,F> = J ViT (P) F(P) dP = 0 , 	 1 < i < s .
n

(194)
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its corresponding homogeneous problem

LU = 0 , B  (U) - 0 ,	 1 < i < ko	 (192)

and the related homogeneous adjoint problem

L*V - 0 , Bi* (V) - 0 ,	 1 < i < ko	 (193)

L is an n x n matrix of linear differential operators, L* is its adjoint,

U and V are vector functions defined on the simply connected domain 11, and

B  and B i * are adjoint linear boundary operators defined on r, the boundary

of Q.

Then: (a) if the problem (192) has only the trivial solution U _= 0, so

does the problem (193), and (191) has a unique solution.

(b) if (192) has s independent solutions Ul ,...,Us , then (193) has

s independent solutions V 1 , ... ,Vs , and (191) has solutions if and only if

If the conditions (194) are satisfied, the general solution of (191) has

the form

U(P) = U(P) + I c  Ui (P)	 (195)

where U is a particular solution of (191), the c  are constants and Ui,

1 < i < s are the solutions of (192).

For discussions and proof of alternative theorems see [2j.

We have assumed the linear operator I. and boundary conditions

B i = 0, 1 < i < k, are such that the boundary value problem (191) is self-

adjoint, that is that L* = L and B i * = B i , 1 < i < k. Thus (192) and

(193) are equivalent for our purposes.

To observe the form the solutions actually take, we define Green's 	 4M

functions for the cases (a) and (b) of Theorem 5.1.
Y

h
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Green's Functions

We first consider case (a) of Theorem 5.1, that the homogeneous

boundary value problem has only the solution U B 0. This is equivalent to

the physical assumption that the system has no rigid body modes.

Define the n vector functions Gj (PIQ), 1 < j < n, to satisfy

L Gj (PIQ) - e  6(P-Q)

1.	
a e  6(P1-q1) ... 6(P R-q R )	 (196)

B  (G j ) - 0 ,	 1 < i < ko ,	 P c T	 (197)

The unit vector e  has zeros in all coordinates except the jth, where it

has the value one. The points P(p l ... pR)T and Q(q l ... qR ) in (196) lie

in P .

Gj (PI Q) represents the response of the system to a unit impulsive

force applied to the jth enordinate of the structure at the point Q.

Define G(PIQ) to be the nxn matrix function with columns Gj . G(PIQ)

is the desired Green's function for the boundary value problem (191). The

ijth coordinate Gij (PIQ) represents the response of the ith coordinate

of the state at P to a unit impulsive force applied to the jth coordinate

of the state at Q. We may write

LG(PIQ) - In 6(P-Q)	 (198)

gi(G) - 0	 1< i< k o	 (199

if it is understood that the boundary conditions in(199) are to be applied

to each column of G individually,

The property derived in the next theorem will be useful when writing

the solution of (191)In terms of the Green's function G.

{ :.

1

Theorem 5.2 Let G(PIQ) be the function defined by(196-197). Then G(PIQ)-GT(QIP).
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Proof; For the moment we drop the assumption that the boundary value problem

(191) is self-adjoint. Let Gj (PIQ) and Hi (PIR) be functions defined on 0 such

that

LGj (PIQ) = ej 6(P-Q) . Bv (Gj ) = 0,	 1 < v < k .

L* Hi(PIR) e  6(P-R) By*(Hi) 0 , 1 < v < k .

Since Gj and Hi satisfy adjoint boundary value problems,

<Gj , L*Hi> _ <LGj . Hi> .	 1 i j 1. n•

Thus

JGGjT (P IQ) ei 6(P-R)dP = 1n ejT 6(P-Q)Hi (PIR)dP .

Evaluation of the integrals yields

Gj T (RIQ) ei	 je T H i (QI R)	 (200)

Gij (R IQ) = Hji(QIR)

But now we recall that L*=L and Bi*=Bi . Thus Hji (QIR) = Gji(QIR). Substi-

tution into (200)yields

Gij (RI Q) = Gji (QI R).	 1 ` i,	 j < n . #

We now seek the solution to the boundary value problem (191), assuming

case (a) of Theorem 5.1. Let U(P) be a solution of (191) . Then

<U,L Gj > _ f 
UT (P)ej 6(P-Q) dP = Uj(Q)

0

where the U  is the jth coordinate of U. By Green's theorem

<L Gip U> = <G j , LU> = i GjT (P IQ) F(p) dP.
i2

Thus,

Uj (Q) = 1
n 

GjT (P IQ) F (P ) dP ,	 1 < j 1. n

If we apply this argument to all coordinates 1 < j _ n, we have

11	 .U(Q)_	GT(PIQ) F(P) dP =	 G(QIP) F(P) dPIn	 ' f2



l	 61

by Theorem 5.2. A change of variables yields the solution

U(P)	 1 G(PIQ) F(Q) dQ .	 (201)
S1

The Modified Green's Function

We now consider case (b) of Theorem 5.1. We assume the boundary value

problem(191) has s independent solutions Vl ,...,Vs , which we assume

are orthonormal. If they are not, a Gram-Schmidt orthogonalization process

can be applied to generate an orthonormal set.

Define the following vector functions:

L G^(PIQ) _ 16(P-Q) - I Vi 
(P)V1T (Q)J e 	 (202)

i=1

Bi (Gj )	 0 ,	 1 < i < k ,	 (203)

where e  is the jth column of the nxn identity matrix.

Note that the right hand side of (202) has zero components in the

space spanned by the functions {Vi ), that is that its inner product with

these functions is zero. Thus by Theorem 5.1 a solution, in the distributional

sense, to these problems exists.

The solutions G  which satisfy (202) are not uniquely determined, since

the addition of any linear combination of solutions to the homogeneous

problem (192) yields another solution. Thus we are free to impose

another condition. We require that

<Gj ,Vi> =0 ,	 1< i<s , 1< j <n .	 (204)

Mathematically this means we seek the solutions to (202-203) of minimum norm,

those which lie in the orthogonal complement of the nullspacz of the

operation L - the space spanned by the solutions {V i ). Thus the functions

G  have no components in the direction of the rigid body modes. Solutions

of (202-204) are unique.
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E^

Let G (PIQ) be the n x n matrix function whose columns are the functions

G^ which satisfy (202-204), that is G = [Gl i ... Gnj. Then G satisfies

TLG = In 6(P-Q) - Vi (P)(Vi (Q))
1

Bi(G) = 
0 '	 1 < i < k	 (205)

<G,V1> 0, 	 1< i<s .

G(PIQ) is called the modified Green's function for the system (191),

assuming case (b) of Theorem 5.1. The property derived in Theorem 5.2 may

also be shown to be true for modified Green's functions.

We seek a solution U to the boundary value problem (191) for case

(b) of Theorem 5.1. We assume

<F,V.
1 
>=0,	 1<i<s,	 (206)

since without these conditions a solution does not exist. We will apply

Green's theorem to the inner product <u, LG>. From (205)

<U, LG> = fa U1 (P)L n 6(P-Q) - i^l Vi (P ) ViT (Q)] dP

s
= UT (Q) - 1 (1

 
UT 

(P ) Vi (P ) dP) Vi (Q)T .

1 B
But

<U,Vi> = J UT (P) Vi (P) dP
S2

= some constant ci.

Thus

<U . LG> - UT(Q) - I c  Vi(Q)T
	

(207)

On the other hand, because

r

 the boundary value problem is self-adjoint

<U, LG> = <LU, G> = 
J 

FT (P) G(PjQ) dP . 	 (208)
n
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Equating (207) & (208) and taking the transpose, we have

U(Q) - I ci Vi (Q) + 
in
 GT(p IQ) F(P) dP .

We apply Theorem 5.2 and a change of variables:

r
U (P) - 1 G(PIQ) F (Q) dQ + I C  Vi(P)	

(209)
S

C As one might expect from Theorem 5.1, the solution includes an arbitrary

linear combination of rigid body modes, or solutions to the homogeneous

problem.

Remark 5.1 Naturally if a force is applied which does not satisfy the

constraints (206),the system will still respond, but the boundary conditions

will be violated. The conditions (206) usually translate physically into

conditions that net forces or torques in one or more directions must be

zero.

Without loss of generality, we can define a coordinate system

with respect to the space vehicle itself. In the case of the antenna we

define the xy plane tangent to the hub of the antenna and the z axis along

the axis of the paraboloid. We may fix the x axis along a particular rib.

With the coordinate system so defined, we may ignore the rigid body modes,

since rotations and translations of the antenna as a rigid body occur with

respect to another coordinate system.

We can t

t

hen consider the solution of (191) to be

U(P) - J G(PI0) F(Q) dQ	 (210)
S1

where G(PIQ) is the modified Green's function which satisfies (202-204).

5.3 The Shape Control Problem

Static shape control forces may be applied to some or all of the

coordinates of the multidimensional state. Thus we define the following

control problem:
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Let * (P) be the desired shape of the space structure. Determine

the set of control vectors Fi of (predetermined) dimension n(i), i !. i < m,

such that the resulting shape U(P), which satisfies the dynamics
a

m	 (211)
LU	 C 

i 
F i 6(P-Pi)

i=1	 ^

and boundary conditions

Bi (U) = 0 ,	 1 < i < k  ,	 (212)

most closely approximates the desired shape * on 0. The measure of best

approximation is that the set (Fl*,..., m* , U*) minimize the performance

criterion

J	 2 i I I Fi I I R1 + 2 1n I I*(P) " U(P)112W(P) 
d)	 (213)

over all possible sets which satisfy (211-212).

The constant n x n (i) matrices C  distribute the control vector F 

over the coordinates of the state U at Pi . 6(P-Pi) is the dirac delta

function for the multidimensional point Pi.

The n (i) x n(i) matrices R  are symmetric and R  > 0.

W(P) is a piecewise continuous symmetric positive definite matrix

defined on Q.

We first assume the homogeneous system

LU s 0 , Bi (U) - 0 ,	 1 < i < ko ,	 (214)

has only the solution U = 0.

We apply the solution derived in section 5 .2 to the boundary value

problem (211-212):

U (P) _	 G (P I Q) lI Ci Fi d (Q-Fi) J dQ
A 
m

_	 G(Plpi) Ci Fi

(215)

a

}

E^
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where G(. IQ) is the appropriate Green's function. We substitute (215) into

the criterion (213), which becomes a functional depending solely on the

discrete unknowns Fi.

J ' 1	 IIF II 2 + 1 ( 1;*(P) - T G (PIP ) C F II 2 dP	 (216)l	
i ki	 ! g	 i=1	 i i i W

We seek the minimum of J with respect to the constant vectors Fj:

aj = FjT R  + f
a

[*(P) - E G(PIPi)CiFi J TW (P) [-G(PIP )C ] dP	 (217)
 i=1	 )

= 0,	 11 1`_m.

Thus

Rj Fj + 
i^l C

jT (fD G(Pj IP )G(PIPi) dP) CiFi

r	 (218)	 .
= Cj T J G(P3 IP )W(P) *(P) dP	 for 1 < j < m

m
i2

Let N =	 n(i)	
(219)i=1

Let R be the block diagonal square matrix with diagonal blocks

R1,...,Rm.

Let A be the N x N matrix of n(i) by n(j) blocks A

Aij a Ci (
JQ 

G(Pi IP) W(P) G (P I Pj ) dP) Cj	 (220)

Let D be the N dimensional vector

D = [D1T	 mTIT	 (221)

where

Dj	CjT J G (Pj IP) W (P) O(P) dP .
n
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Let F be the V dimensional vector of unknown control forces:

F - (F1T ... Fm )T 	(222)

Then the vector F* of the optimal control forces satifies

(R + A) F* - D .	 (223)

Once the vector F* has been determined, the optimal shape U*(P) is

given by

U*(P) - c G(P + Pi) OiFi*	 (224)

i=1

The Shape Control Problem for Systems with Rigid Body Modes

We now assume that the homogeneous boundary value problem has s

solutions V1(P),...,Vs(P). We let G(PIQ) denote the modified Green's

function which satisfies (205).

In order for a solution (211,212) to exist, the right hand side of

(211) must satisfy the additional set of constraints (206). That is

m
<Vi ,	 CjFj 6(P-Pj) >=0,	 1< i < s

J!,

which by definition is the set of conditions

jV
iT (P) ^ Cj F

j 
6(P-Pj ) dP - 0 , 1 < i < s

j=1

Evaluating the integral yields

Vi
T 

(P
i 

) Cj Fj = 0 ,	 1 < i < s	 (225)
j=1

The shape control problem is now to find the set of forces iF i ) and shape

U(P) which satisfy (211-212) (225), and minimize the criterion (213) ever

all possible sets.

Ki
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t .

Examples,of Constraints

Example 5 .1: A three dimensional static with three rigid body modes.
Suppose the state U (P) is three-dimensional, representing the displacement
vector of the actual position of the structure corresponding to the point P

from its ideal position, and the antenna has three rigid body modes representing

translations along any of the three axes. An orthogonal basis for the space

spanned by these rigid body modes is

1	
^0	

0
V1 	, 	 ^'l 	1	 and	 V.	 0

	

^ 0 	1

Note that if U(P) is a three-dimensional state then

3
U(P) + I c 

i 
V 
i

does represent a translation of that state.

The constraints (225) become

Ci = 0	 1 < i < 3	 (226)
j

where (Ci Fi ) i is the ith coordinate of Cj FJ . This is equivalent to the

condition that the net force applied in any direction of the state U over

all the points P i is %ero. If the sum of the forces in any direction is

zero, no net acceleration is sppliad to the structure as a whole, which is in

keeping with the free boundary conditions.

Example 5.2:A six-dimensional state.

If torques are to be applied as part of the control scheme it may be

convenient to consider a six-dimensional state, the first three components

of which represent displacements as before, and the second three components

of which represent rotations-,



68

A torque is an impulsive force applied to a rotational coordinate,

Suppose that the system has six rigid body modes, representing constant

translations or rotations from an ideal position. A basis for the apace of

rigid body modes is (1 0 0 0 0 0 )T , (0 1 0 0 0 0) T , (0 0 1 0 0 0)T,

(0 0 0 1 0 0 ) T , (0 0 0 0 1 0 ) T and (0 0 0 0 0 1) T . The later three. vectors

represent unit rotations about the three axes.

The constraints (225) again become

^1 (0'f'i)i=0,	 1<i<6.
3=

(227)

These constraints represent the fact that the net sum of forces or torques

applied to any coordinate of the state must be zero, a requirement which guarantees

zero translational or rotational acceleration applied to the state.

Example 5.3: A three -dimensional state with six rigid body modes.

Suppose for computational convenience we wish to consider a three-

dimensional state, but the vehicle is allowed to both rotate and translate

along three axes as a rigid body. One basis for the six rigid body modes

is

V1 = (1 0 0) T V2 = (0 1 0) T V3 - (0 0 1)T

V4 (P) - T 
1 
P	 VS(P) - T 

2 
P	 V6(P) - T 3 P

where

1	 0	 0 1	 cose	 o sineT1	0	 cose -sine	 T2 =	 0	 1	 0

0	 sine	 cose t	 -sine	 0 cose

and	 ,
r cose	 -sine	 0

T3 = sine	 cose 0

f
0	 0	 1

Ti t T2 and T3 represent rotations by an angle a about the x, y, and z axes

respectively.
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The first three constraints yield the same conditions as in example 5.1.

The last three constraints yield
m

Ll P 
jT TiT C j Fj a 0	 1< i< 3	 (228)

For the rigid body mode Vj. (P) - T? this is

j
1
1 

(pj l(pj 2 cosh - PJ 3 sineX (pj 2 sine ♦ pi   cose)] Cj Fi - 0. (229)

This expression is the requirement that the sum of the forces applied

times the displacements at the points where the forces are applied must

be zero. But this is just one of the constraints which resulted from

rotational rigid body modes in example 5.2 :the sum of the torques must

be zero.

It is easily seen that the condition that the sum of the torques be

zero for each coordinate is satisfied if the constraints (228) are satisfied.

Thus, the constraints for six rigid body modes are the same, however the

state vector is defined.

The procedure for finding the set of optimal control vectors for systems

with rigid body modes is as follows:

i) Substitute the solution (215) into the criterion (213)

ii) Solve the constraints (225) for some of the control vectors in terms

of the others.

iii) Substitute th:- expressions derived in (ii) into the criterion J,

which now becimes a function of fewer control vectors.

iv) Minimize J with respect to this smaller set of control vectors.

The minimization process will result in a system of linear

equations which, when solved, yield the identity of the optimal

set of these vectors. The other control vectors may then be

determined from (ii).
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The pinned-free beam in section 3.3 was an example of this procedure in the

case of a one-dimensional state.

5.4 The Shape Determination Problem

The desired shape # in the control problem in the last section will be

based on the difference between the estimated shape and the ideal parabolic

shape. The estimated shape must be computed from observations of some or

all of the components of the state, taken at a number of predetermined

points along the structure.

Thus we seek to determine the estimates of the noise vector F(P) and

shape function U(P), defined on 12, based on the observations

Y  a C  U(PI ) + Zi ,	 1 < i < m ,	 (230)

which minimize the performance criterion

U

J ' T ill II Yi - Ci U(Pi) 1IRi-1 + ''f ja JIF(P),IW-1(p) dP
	

(231)

over all admissible sets (U,F) which satisfy

LU R F, 'r t t2	 and B  (U) . 0	 1 < i < k  ,	 P c t .	 (232)

Th.	 ;tant matrices C  are n(i) x n, the n(i) dimensional vectors Zi

repr:.s.snt noise er inaccuracies in the observations Y i , W(P) is a

continuous p:: iti.e definite matrix on 9, and R  are n(.1 x n(i) constant

positive definite matrices.

We will assume the boundary value problem (232) has no rigid bod}

modes. The estimation algorithm for systems with rigid body modes is the

same, with the exception of the fact that the rigid body modes themselves

cannot be estimated. The derivation of this fact follows as in section 2.5.
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We will ev"laute the solution (210) of the boundary value problem (232)

at the points P i , 1 < i < m, and substitute into the criterion J.

z,

u(Pi) = 
JS2 

G (Pi IQ) F (Q) dQ
	

(233)

J = 2 L II Yi - 
Ci fc,

G (Pi I Q) F(Q) dQIIR1 + 2 J II F( Q)II 2 d^!	 (234)
1 	 i	 i2	 W-1

The criterion is now solely a function of the continuous unknown vector

function F(Q). To minimize J with respect to F we find the Frechet derivative

aJ(F,H), where H is any admissible variation, and

r

 set it equal to zero.

aJ(F,H) _	
rYi - C

i J G(Pi IQ) F (Q) dQJ T Ri[-C^ 
1 

G (Pi IQ) H(Q) dQ]
1	 St	 ti

+ J ,, F(Q) T W+l (Q) H (Q) dQ = 0 .

If we transpose the equation, factor out H and recall (233), we have

r HT (Q) W 1 (Q) [F(Q) +	 G(QIP;) CiTRi-l (Ci u(Pi) - Y 
i 
A = 0

R	 i.=1

Since thL; rust be true for all M .ssible variations H, we have

F(Q) = W(P) I G(Ui	 C.TR l (Y, - C U(P ))	 (235)

i=1	
i i	 i	 i	 i

Ve still do not know the optimal estimate of F at this point, because the

estimates C  U(P i) are still not known. T%le substitute (235) ii.to (233).

U;P.) = I G(P.;Q) W(Q) [ , G(, i ) CiTRi (Yi-	 ,i U(Pi))	 (236)

J S2	 i=1.

Then we have, for 1 < j < m ,

U(P.) +	 (i
J 

G (P •IQ) .'(Q) C(QIPi) dQ) C3.TZ. C
i U(Pi)

^	 i=1	 S2	 ^

- L
fS2 

G(Pj IQ) Q(Q) G(QIPi) dQ) C iTRi Y i	 (237)

i=1 

We will solve this set of m mat.--ix equations for the vectors C  U(Pj),
m

j < m. Mu.`iply bo'a sides on the left by C
J * 

Again define N = S u(i).
i=1

(Recall that n(i) is the dimension of Yi.)
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e

Let A be the matrix of m blocks by m blocks. where the jth block

Aji • Cj (j G(Pj IQ) Q(Q) (; (QI Pi) dQ) CiTR1	 (238)

is an n(j) by n(i) matrix. Thus A is N x N.

Let R-1  be the N x N block diagonal matrix with blocks

Rij = 
Ri1 6(i-j)	 (239)

Let U*(Pi) be the optimal estimate of the shape function U at P i , and let

be the N dimensional vector formed by "stacking" the n(i) dimensional

	

vectors c  U*(P1)	 (240)

Let Y be the N dimensional vector

(Y 
1T ... Ym )T.	 (241)

Then the vector U satisfies the system of linear equations

('+ AR 1) $..AR-1Y	 (242)
f

Once the vector U is known, the optimal estimate F* of the noise vector

F is given by

F*(P) - W(P) 
I 

G a'IPi) CiT R1-1 (Yi - CiU*(P1))	 (243)
i-1

The optimal shape estimate U*(P) is then given by

U*(P) _	 (f G (? IQ) ,W(Q) G (QIPi )dQ) ci 
T 

Ri	 i
-1(Y	 ':i U*(Pi ))•

	

i=1 n	
(244)

5.5 Approximations

In this section approximations will be presented, which involve

eigenfunctions corresponding to the static boundary value problems (211-21.2)

(232) which parallel those in section ::.6.

However, most finite element models for large space structures are

dynamic, rather than time-invariant. Therefore, in the next chapter, approxi-

mations will be developed for the use of eigenfunctions from the dynamic

mode; corresponding to (185-186).
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It was demonstrated in Theorem 5.2, section 5.2, that G(PIQ) was

symmetric. We will also assume that G(PIQ) is a Hilbert-Schmidt kernel,

that is that

J
II G (P IQ)II 2 dPdQ < oo	 (245)

R

Let K be the integral operator with the Green's function as kernel. Then

for F(P) in the domain of K,

r
	Kf = I G(PIQ) f(Q) dQ	 (246)

S2

Let ,j
1
 > µ 2 > u, >	 ... be the non-zero eigenvalues of K, and m

l , 02 1 .•.

be the associated eigenfunctions, such that

K 0, = P  0 1 .	 (247)

The non-zerc eigeu alues (U.) of K are the inverses of the non-zero eigen-1
values of L. --nu the eigenfunctions {Oi} are also the corresponding eigen-

functions of L.

We will assume the eigenfunctions {¢ i } have been normalized with

respect to the inner product (188).

From integral operator theory we have the following expansion for the

Green's function:

G(iIQ) _

	

	 ui 0 1 ( P ) 0
1T

(Q)	 (248)
i.=1

If we assume. a.-- i. • Chapter 2, that W is the identity (matrix) on 12, we

have the following expansions:

G ( P IQ) G (QI R ) dQ =	 tl i 2 ¢ i ( p ) ¢ i '(R)	 (244)
SZ	 i

and

fG(PIQ) kQ) dQ =	 Il i O i ( P ) < OVP	 (250)
•  	 i
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These expressions are generalizations to the multidimensional case

of the approximations offered in Chapter 2.

If W is not the identity matrix, (249-250) become

G (P IQ) W(Q) G(QIR) dQ	 E ui u^ YP) fiT(Q) <fi , f i >	 (251)
f?	 i	 W

and m
G(PIQ) W(Q) *(Q) dQ a	 ui Qi (P) <Oi, wfa

	

	 (252)
 i=1

5.6 Summary and Conclusions

Procedures for static shape control and deter-mination of multidimen-

sional large space structures were derived in this chapter, under the assump-

tions that tka structures were continuous, governed by linear self -adjoint

boundary value problemb, and that the control forces are applied and observa-

tions taken at a number of predetermined points along the structure.

Approximate optimal control functions and shape estimates, in terms of

eigenfunctions corresponding to the static model, were presented.

As one would expect, the problem formulations and solutions for multi-

dimensional states bear a strong resemblance to those for scalar state

formulations derived in Chapter 2. This is due to the commonality among linear

self-adjoint systems.

However, there are significant differences in interpretation and

procedure. The differential and integral operators become matrix operators

rather than scalar. Observations and control forces may now be applied to

parts of the state, on to linear combinations of state components, rather

than to all of the state. The additional constraints imposed in the case

4 ,	 of rigid body modes must be interpreted and handled with more care.

.z
Finally, it is now nearly impossible to know the differential and

integral operators, or their eigenfunctions, with analytical precision.

Approximations must be supplied using eigenfunctions computed experimentally

or by a numerical method such as the finite element method.
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Chapter 6. Finite Element Models:

A Large Space Antenna

6.1 Introduction

In Chapter 5 static shape determination and shape control algorithms

were derived for a multidimensional model defined on a multidimensional

domain, the situation most likely to correspond to large space structures.

It was assumed the structural models satisfied static self-adjoint linear

boundary value problems of Lk&e form

L U(P) - F(P) , B  U(P) - 0 , 	 1 < i < k  ,	 (253)

where U(P) represents an n dimensional state vector of displacements at

the point P s Q, L is an n x n matrix of differential operators and Bi,

1 < i < ko , are linear boundary operators defined on the boundary t of Q.

Terms in the solution algorithms for the stati^ shape estimation and

control problems involved the Green's function, or impulse coefficient,,

of the associated boundary value problem. Since it is highly unlikely

that the precise Green's function for such a problem is known, approximations

to these terms by means of expansions involving the eigenvalues and eigen-

functions which satisfy the corresponding eigenvalue problem

L t j - a j ^ j ,	 Bid j - 0,	 1 < i < k  ,	 (254)

were presented.

However, it is likely that the most convenient eigenfunctions will be

those supplied by a finite eloment model, which approximate those for the

dynamical boundary value problem

M(P) 
a2U(P

' t) + L U(P I t) - F(P I t), P e Q	 (255)

at 

B
i 

M a t) - 0,	 1<i<ko , Pet	 (256)
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associated with the static problem (253). These eigenfunctions satisfy

L i (P) - a j M(P) $^ (P) - 0 1	 P e Q l

Bi ^^ (P) - 0,	 1 < i < k	 P e I',
— o

and are orthonormal with respect to the norm induced by the weighted

I 	 inner product

(257)

(258)

<U,V>M - J UT (P) M(P) U(P) dP 	 (259)
S2

rather than the usual inner product

<U,V> = fU T 
(P) V(P) dP .	 (260)

S2

This chapter investigates the modifications necessary for the use of the

eigenfunctions {^^} which satisfy (257-258), rather than those for the static

problem.

The finite element method is outlined in section 6.2. In section 6.3 eigen-

function approximations are derived for terms which involved the static Green's

function, using eigenfunctions for the dynamic problem. In comparison,

we solve the discrete static control problem in section 6.4 in order to

demonstrate the remarkable consistency between the discrete and continuous

solutions.

Finally in section 6.5 we present specific examples of algorithms for

multidimensional shape determination and control, which are illustrated

by simulations using an available finite element model of a large space

antenna. Tables :ad plots of results are included at the end of the

chapter.

For convenience, only the case that there are no rigid body modes,

or non-trivial solutions of the unforced (homogeneous) boundary value problem,

will be considered. 7	 extension of these results to the case of system

does have rigid body movies is obvious.
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6.2 The Finite Element Model

The finite element method is a modification of the Rayleigh-Ritz

procedure for solving self - adjoint boundary value problems. The Rayleigh-

Ritz method will be described briefly first. It is based on two principles:

1) The unique solution of the self-adjoint boundary value problem Which

governs a system is equivalent to the unique function in a certain

class which minimizes an integral, or functional, which usually

represents the energy of the system.

Examples of such equivalences are the following:

Example 6 .1: The solution of the system of linear equations A x* = b, where

A is a symmetric matrix, is equivalent to the unique vector x* which

minimizes the functional J(x)2 <Ax,x> - <b,x>.

This equivalence is - equally applicable if A is a self-ad,joint

linear operator. [10]

Example 6.2: The function y e C2 [0,1] is the unique solution of the boundary

value problem

- 
dx (p (x) ^) + q(x) y - f(x) , 	 0 < x < 1,	 (261)

y(0) - y(1) - 0
	

(262)

if and only if y is the unique function in CO2 [0,1] which minimizes the

integral
1

J(u) -	 (p(x)fu'(x);2 + q(x)tu(x)] 2 - 2f(x) u(x)} dx	 (263)
fo

(Ref, [111).

2) The second principle of the Rayleigh--Ritz method is that the functional

J is not minimizes' over all appropriate functions (in example 6.2. for

example. J is minimized over those functions in C O2 [0,1] which satisfy

(262)). It is minimized aver a smaller set consisting of linear
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combinations of certain basis functions #1 ,...,#n , referred to as

coordinate functions, which are defined on the region and satisfy

the boundary conditions.

Thus, the solution of the linear boundary value problem becomes the

question of determining the set of constants c 1 ,...,cn such that the function

ncf	 E cifi minimizes J overall such sets, a finite dimensional problem.
i=1

In effect we are finding the best approximation of the solution to the

original problem in terms of the functions #i . The trick in the Rayleigh-

Ritz method is to find a sequence of suitable functions {^i} such that
n

as n goes to infinity the functions f n = I c i0i 
converge to :-ha solution

i=1

of the boundary value problem. Frequently used sets { 0 i ? are piec+wA'Jv^

linear polynomials and cubic splines.

The finite element method is a modification of the Rayleigh-Ritz

method for more complicated structures, whtc.h cannot be described accurately

by as simple an equation as (261). Thy doma9_ r: of the stru,,.^}Jry is divided

into smaller regions, or elements, which are IrtcYc-ounected at a discrete

number of nodal points.

The displacements of the .,ructure at the nodal points form the unknown

constants. The displacemen.. -= at one node represent translations, rotations

or higher order terms in onb or several dimensions. Within an element,

a set of displacement functions is chosen to define displacements between

the nodal points in terms of the displacements at them. These functions

correspond to the coordinate functions of the Rayleigh -Ritz method.

A state vector X representing the displacements at all the nodal

points is formed. The usual order in the vector is that all displacements

for the first node are first, followed by all displacements for the second

node, and so on.
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The object of the finite element method is to determine the state vector,

or displacements, which will yield the closest approximation to the actual

displacement pattern of the structure. The derivation of the equation that

this vector satisfies is an application of the following principle which

is analogous to the first principle of the Rayleigh-Ritz method.

Hamilton's Principle: Let L - T-V be the Lagrangian of a system, where T

is the total kinetic energy and V is the potential energy. Then the actual

path o

f

f the system in time, X(t), renders the integral

2 L(X,X,t) dt
tl

stationary with respect to all possible neighboring paths the system may

take between times t1 and t 2 . Therefore the Frechet differential

BJ (X,H) = as 1t 2 L(X + aH, 1( + aH, t) dt 
I 
a=0 - 0

1

for all admissible variations H. This is a classical problem in the

Calculus of Variations, which leads to the Euler-Lagrange equations for the

system:

Lx(X,X.t) - do LX(X,X,t) - 0	 (264)

(Ref. [3], P. 181).

For dynamic finite element models

T = -1f
 X

T MR and V - Z XTKX	 (265)

M and K are square symmetric matrices and M is positive definite.

The mass matrix M arises out of an analysis of the inertial forces

acting at the nodes. The coefficients Mij of M are referred to as mass

influence coefficients, which relate the accelerations at the nodes to the

resulting inertial forces.	 ?fib is the force, at coordinate i due

to a unit acceleration at coordinate J. The total inertial forces acting

on the system may be expressed in vector form by F l s IBC.
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The stiffness matrix K arises out of an analysis of the elastic

force relationships at the nodes. The stiffness influence coefficient

kij represents the force at the coordinate i due to a unit displacement

of coordinate J. In vector form the elastic forces acting on the system

X may be written Fs - K X. The stiffness matrix K in the discrete systs:m

corresponds to the linear operator L in the continuous systems (253) or (255).

The coefficients of M and K are computed by integrations over each

element using the coordinate functions.

If the Euler-Lagrange equations (264) are evaluated for the finite

element model the following equations result:

for a conservative system: MX + KX - 0
	

(266)

and, if a vector of nonconservative (outside` forces F(t) is

acting on the system: 	 MX + KX - F(t) .	 (267)

In a static system X - 0, which yields a system of linear equations

as a necessary condition for the state X:

KX = F .
	 (268)

The final step in the finite element method is to solve (267) or (268)

for X. the vector of nodal displacements, given a known force vector F.

The system (267)is self-adjoint if and only if the weighted inner

produce

<X,Y>M - X LMY - YTMX
	

(269)

is used. Consequently there exists a complete set of eigenvectors (modes)

{¢ i } ! 1 < i < No , where No is the dimension of the state X, and Corresponding

9	

eigenvalues {a i }, such that

A i M Qi - K 01 ,	 1 < i < No .	 (270)

The eigenvalue a i = wit , where wi is the frequency corresponding to the mode,

or eigenvector, ^i.
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Eigenvectors corresponding to different eigenvalues are orthogonal

under the norm(269). We assume they have been normalized with respect

to that norm. The solution of (267) is given by
N0

X (t) "	 Ci(t) 41	 (271)

where Ci (t) satisfied C  + wit Ci = 
<F. i>M'

Thus, given a known vector F of non-conservative forces the solution

of (269) is expressed in terms of the eigenvectors #i and frequencies which

satisfy(210). These are the modes and frequencies supplied by the finite

element method, which must be used to approximate the static shape control

and determination algorithms.

Because of computational limitations, only a fraction of the t,cal

number of modes are actually computed.

The solution of(268) is discussed in section 6.4.

In summary, the basic steps of the finite element method are as

follows:

Summary of the Finite Element Method

i) The domain is divided into a number of elements, which are inter-

connected at a discrete number of nodal points.

ii) A state vector X is formed, representing the displacements of which

knowledge is desired at each node. Displacements within an element are

expre-ed in terms of coordinate functions. The unknown constants in the

displacement functions are the displacements at surrounding nodes.

iii) The mass matrix M and stiffness matrix K are computed. The state vector

X there satisfies MX + KX - F. for dynamical systems, or KX - F, for static

systems, where F is a vector representing outside forces acting on the

system.
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iv) The modes {4 i } and frequencies {w i } which satisfy w
it M ^i t K

are then computed. Solutions to the model may be expressed in terms of

these modes.

IThe Lumped Mass_Method

A simplification of the finite element method, the lumped mass method,

is frequently used for models of large space structures at JPL. The entire

mass of the structure is assumed to be concentrated at the nodal points,

which are interconnected by massless segments. Thus no coordinate functions

need be defined. The mass matrix is a diagonal matrix, with identical

entries for all translations corresponding to the same node, and zeros for

rotations or higher order terms [121.
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6.3 Approximations from the Dynamic Model

Given the eigenfunctions ii i) which satisfy (257-8)and are orthonormal

with respect to the weighted norm (2591 we wish to generate approximations

to terms in the shape control and determination algorithms. The eigen-

functions (270) supplied by the finite element method are discrete approxi-

mations to those of (257-8).

If the Green's functio:. UP Nl is not known, we require approximations

for the following quantities:

GI

(PIQ)	 (272)

G G(P,Q) W(Q) G (QI R) dQ	 (273)

JR G(PIQ) W (Q) *(Q) dQ 	 (274)

where ^(Q) is a known function and W (Q) ib a symmetric positive definite

matrix.

We will first assume that we have available the continuous eigen-

functions for which the finite element method provides approximations. For

convenience from this point forward we drop the hats ou these eigenfunctions,

which satisfy the following properties:

L@ j (P) - A j M(P) fit P E n	 (275)

Bif
i

(P ) - 0,	 1< i< a,	 P e r	 (276)

<fj ,	 m - j fj T (P) M(P) i (Y) dP - 6( i-j)	 (271)

S^

Properties (275)arid (277)easily yield the following property:

<4)j , Lfi> - f fjT (P) 1. t
i 
(P) dP - A^ 6(i-j)	 (278)

n

The application of the Green's function (198-9) to solve the boundary value

probiem (275-6) yields

#j (P )-Aj J G(PIQ) M(Q) f j (Q) dQ .	 (279)



G j (PIQ) _ I t i (P) Yji(Q)
i

(280)
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If there are no eigenfunctions 
*i 

corresponding to the eigenvalue i R 0,

that is, if the nullspace of the operator L is only the zero vector, the

functions {#i) form a complete set for all functions in *. suitable class

which satisfy the boundary conditions.

If there are eigenfunctions corresponding to A a 0, the modified Green's

Function defined in Chanter 5 has no component in the nullspace which is

spanned by these functions. Therefore in either case the column vector

Gj (PIQ) can be expanded in terms of the tigenfurctions-#
i
 corresponding to

nor.-zero eigenvalues:

where yji (Q) are continuous scalar functions defined on Q. If we define

Y j (Q) ` (Yjl (Q) ... Y jn (Q)), then

G(PIQ)	 j(P) Yj (Q)	 (281)

j

In order to determine Yj , we multiply both sides of (281)on the left by

01 T (P) M(P) aad integrate over A.

f  i T 
(P)  M(P) G(PIQ) dP `	f  4 1T (P) M(P) 0 j (P) Y j (Q) dP .

j

If we apply the orthogonality relationship (277):

j
01 T (P)  M(P) G(PIQ) dP = Y i (Q) .

	

	 (282)
f:

If (282) is compared with (279) it is observed that Yi(Q) = 1 a 
O i

T 

(Q),
i

and

G(PIQ)	 ^i ¢
i (P) 0 iT (Q)	 (283)

where the sum Is over the non-zero eigenvalues and eige af Actions of the

system (255-6).



We use the expression (283) to f ind expansions for (273-4):

1 G(P{Q) W(Q) *(Q) dQ =	
-fa  

*i (P) #iT (Q) W(Q) *(Q) dQ
S2	 { i

= i ai fi (P) J ^ iT (Q) W(Q) *(Q) dQ

b	
85

^i (P) W 	(284)

Finally we evaluate expression (273):

1 G (P I Q) W(Q) G (Q J R) dQ

_
fq  

1 4i (P)tiT (Q)) W(Q) (^	 ^j (Q) ^JT (R)) dQ
S2 i i 

_	 1 ^ (P) fjT (R) '^i ^ ^j W	
(285)

i j i
In the event that the matrix W (P) is chosen to be the mass matrix M(P),

the relation (285) becomes

fG(PIQ)  M(Q) G (QJ R) dQ = 12 ^i
(P) ^ iT (Q)	 (286)

The expressions for (272-4) in terms of eigenfunctions for the dynamic

problem are very similar to those in terms of eigenfunctions for the

static problem. The ma;or differenr:i is the loss of orthogonality with

respect to an unweighted inner product.

4

I
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Section 6.4 The Discrete Control Problem

It is satisfying, although not unexpected, to note the resemblence

between the solutions of the shape control and determination problems for

continuous and discrete models. For example, the discrete control probl-1

analogous to the problem (211-212) is as follows:

Let X be an No dimensional state vector representing the displacements

for a sequence of nodal points along a structure. Let Y represent the vector

of desired displacements. Suppose m scalar forces F  are to be applied

to coordinates r (j) of the vector X in order to achieve the desired

"shape" Y. Then the control problem is to determine the control vector

X which is the solution of

KX - CF	 (287)

and minimizes the criterion

J = 2 11 F J1 R + 2 IIX-Y,1M	 (288)

over all pairs (F,X) which satisfy (287).

C is an No x m matrix with entries Cij = 6(1 - r(j)). R is a symmetric

constant m x m matrix, and M is the mass matrix of the corresponding

dynamical model. Since we are considering systems without rigid body modes,

there are no nontrivial solutions of KX = 0. Thu3 K is non-singular, and

the solution of (287) is given by

X - K-1 CF
	

(289)

when F is known.

Finding K-1  is analogous to finding the inverse of the operator L,

that is to finding the Green's function such that the solution of LU - F

plus boundary conditions may be expressed as

U ' L-1 F - 1 G(PIQ) F (Q) dQ .
t2
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As in the continuous case, while it is easy to refer to K -1 	 theory,

in practice the system dimension No is on the order of 10 3, so it is

desirable to find a means of approximating K-1  rather than actually

computing it.

We substitute (289) into the criterion J:

T
J 

2 
(FaRF) + 2(K 1CF -^ Y)T M(K.1CF - Y).	 (290)

We minimize (290) with respect to the unknown vector F:

31
8f = FTR + 

(K 1CF - Y )T M K-1 C = 0

This equation results in the following necessary condition for F:

K(R + CT -IBC-1C) F - CT K71 M Y .	 (291)

Once F is known from this m dimensional system of equations, the optimal

shape X is given by (289).

Since ; t is awkward to compute K-1 , we seek eigenfunction expansions

for it, and the terms K-1  M K-1 and K-1  M Y. We assume we have available

the eigenfunctions and eigenvalues of the corresponding dynamical system

MX + KX - F, which satisfy (270),together with the orthogonality conditions

<^i ,^j >M - 6(i-J)	 (292)

and

qi . ^j >K - 
#iT 

K #i - ii '5(i-J) .	 (293)

Let @ be the No by No matrix 141 	... 
^N j. 

Then
0

0T 
K 0 - A	 (294)

where A is the diagonal matrix with diagonal entries Ja i , 1 < i < No . Thus

K - (4-1) A 0-1

r,.
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and

N0^ OT
Kl A-1 #

T = ^ -11--.
i=1 1

Furthermore

	

N	 N
_1

	

K M K = (1	 ^^. ^iT) 
Mtl	

TT $i O J)

3

N N
0 0

T
I
	 1

iIl 
f Il = #  f^ <^i,,pi

N

41 

and	 N
0

K l M Y 
,I, ai 

". Y>M .

Note the marked resemblance between the discrete expressions (295-7)

the analogous expressions (283-4)( 286) in the continuous problem.

(295)

=r

(296)

(297)

A
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6.5 Applications to a Large Space Antenna

In this section we present actual algorithms for the shape determination

and control of a large space structure, subject to the choice of certain

I 't	
constants, which may be varied in simulations. The algorithms are illus-

trated using eigenfunetions and frequencies provided by a finite element

model of a large space antenna, which has been developed at JPL.

The model is constructed by the lumped mass method described at the

end of section 6.2. It assumes 18 ribs and 882 nodal points locatea on 14

concentric circular cross-sections of the mesh. The ribs are assumed to

be very stiff in comparison with the mesh. The tub of the antenna is

assumed to be firmly fixed to the bus of a more massive spacecraft, so that

there are no rigid body mode s.

Available data on the model includes the rest coordinates in R 3 , which

represent the positions of the nodes on the ideal shape U°, the masses

at each node, and 33 modes and frequencies.

We will restate the problems and algorithms to incorporate two subtle

refinements necessary for the application to a large space antenna.

The first arises from the fact that the mode shapes and Green's function

represent displacements of the antenna from its ideal shape. The actual

antenna shape is the sum of its ideal, or rest shape U°, a perfect paraboloid,

and its displacement. Thus the Green's function represents the displacement

of the antenna from its ideal shape due to a unit impulsive force at one

point.

The second refinement is that shape estimation is accumplished first,

and the resulting shape estimate U* is used as the desired shape in the

control problem. Once the forces necessary to control the ideal shape to
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the shape estimate are determined, the negative of those forces will bring

the estimated shape to the optimal corrected shape.

After the full algorithms are stated, we state the corresponding approxi-

mations used in the simulations, which are based on the expansions developed

in section 6.3.

'

	

	 The results of the simulations include tables representing comparisons

of results for varying choices of control and observation positions, number

of modes in the approximations, weighting matrices and choices of actual

distorted shapes. Plots of the first eleven mode shapes, and the actual

distorted shape, estimated shape and corrected shape for various initially

,distorted antenna.

The computer program listing and output for the shape •control of a

large space antenna are found in Appendix C.

The Shape Estimation Problem

Consider an n dimensional space structure, the shape U(P) of which

satisfies the following linear selY-adjoint boundary value problem on the

Z dimensional domain n with boundary r:

LU(P) = F(P),	 P e 11	 (293)

B  U(P)	 0 ,	 1 < j , k 0	 P e r.	 (299)

L is an mm matrix of linear differential operators, which is related to

the stiffness of the structure. B j , 1 < j < ko,ars linear homogeneous
boundary conditions. F is a vector function of unknown disturbances.

The shape estimation problem is to determine the unknown disturbance

function F* and shape function U*, based on the m observation vectors

Y  = C  U(P i) + Zi p	 1 < i < m,	 (300)

}
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which satisfy (298-9) and minimize the performance criterion (301) over all

possible pairs (F,U) which satisfy (298-9). The vectors Z i represent noise

in the observations.

cmc(301)
l	 J = 2 L ^^ Z i IR 1 + Z J 

11 
F(P) 11k-1 (P) 0.

i=1	 1	 a

R  and W are symmetric positive definite weighting matrices of appropriate

dimensions.

The Static Shape Control Problem

Given the optimal shape estimate U*(P), the shape control problem is

to determine the sez of m control forces F i , applied at the positions Pi,

which together with the resulting shape U(P) which satisfies

L U(P) _	 C  F1 d(P-Pi ),	 P e n	 (302)

±=1

Bi U(P)=0,	 1<j<k,	 P t r	 (303)

minimizes the criterion

J = 2 L 11 Fi 11 R
i 
+2	 j iI U (P) - U*(P) 11 ; ,(p, dP	

(304)

over all possible sets (U,{F i )) which satisfy (302-3). The matrices R  are

positive semidefinite and the matrix W is positive definite.

The forces Fi , 1 < i < m, when applied to the positions P i of the

ideal shape U°, will produce the closest approximation to U* obtainable

by the pointwise application of forces at those positions. Consequently,

because the system is linear, the application of the negatives of the

forces F  to positions P i on the estimated shape U* will produce the optimal

shape correction of U* to the desired shape W.
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The Shape Determination Algorithm

Assume the positions Pi , observations Yi and their directions

determined by C  are known. Choose the weighting matrices R  and W in

'	 the criterion (301). Then

i) Compute the block matrices Aij , i < i s j < m,given by

Aij = C i T (
Jn 

G(Pi 'P) W(P) G(P , Pj ) dP) C 	 (305)

where G(P!Q) is the associated Green ' s function for the system.

Form the matrix A whose block coordinates are Aij and the diagonal

block matrix R-1  whose diagonal blocks are Rif . Form the vector Y by

"stacking" the observations Y 

iii) Compute the solution U of the system

[I + AR-1 ] U= A R-1  Y	 (306)

The vector U contains the optimal pointwise shape estimates C  U*(Pi).

iv) The estimate of the continuous optimal shape distortion AU
*
 is given by

IM

DU*(P) _(^ G{P^Q) W(Q) G(QIPi)dQ)CiT 
Rif 

(Y i - Ci U*(p i ))	 (307)
i=1	 t2

The optimal shape estimate is U* = U° + pU*.

The Optimal Shape Control Algorithm

Assume again that the positions P i and matrices Ci s Ri and W have

been chosen. Assume also that the desired shape or optimal shape estimate

U* is available. Then

i) Compute the block matrices Aij given by (305) 'and the vector elements

D  given by

Di = Cj T I G(Pj IP) U*(P) dP
g

(308)
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ii) Form the block matrix whose block components are A ij , 1 < i, j !.a.
/^	 A

Form the block diagonal matrix R whose diagonal elements are R i , and the

vector D by "stacking" tre vectors Di.

iii) Solve the system (309) of linear equations for the vector . of optimal

forces F .

II
	

(R + A) F = D
	

(309)

iv) The optimal shape correction resulting from tas, application of these

forces at the points P i is

m
DU iI l G (PIPi) CiFi* 	 (310)

If the negative of the forces F  is applied to the shape estimate U*,

the resulting shape is U * » AU, the optimal corrected shape.

Approximate Algorithms

We assume the weighting matrices W and W are chosen to be the mass

matrix of the dynamical model which corresponds to the static model (253).

The eigenfunctions ^and frequencies wk for that model satisfy

wk2 M ^
k = L 0 

Then an approximate Green's function, based on the first n m modes, is

1'

given by
n

G(P,Q) k^l 12 tk (P) OkT (Q) .
wk

Furthermore, the elements Aij	 a►ad D 

determination algorithms are given by

Aij r 
CiT (n

L	
4 

4^k(Pi) 
^kT (P ))C

k=1 m 

1.

R	 j

and
nm

D t C T 1 12 f  (P j ) < ^k , U*'M
k=1 ak

(Jll)

in the shape control and

(312)

(313)
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Substitution of 1311)into the expression (307) for the optimal shape

estimate U* yields

scc nm

U*(P) ' L	 14 #
k
 (P) #kT (PL ) C

iT Ril (Yi - CiU*(Pi))	 (314)
i•1 kal wk

Thus the coefficient of the mode 4OP) in the approximate shape estimate

is

1	 (Ci#k(P1))T Ri (Yi • CiU*(Pi)) .
	

(315)

x

These computed estimated modal coefficients may be compared to the actual

coefficients of the known distorted shape. Representative comparisons

may be found in the tables at the end of this chapter.

Substitution of expression (311) into the expression (310) of the

optimal shape correction Al yields
U

DU =	 1	 1 # (P)	 T (P ) C F	 (316)
i^l k^l wk k	 k 1 i i

Thub the coefficient of the mode 4k (P) in the optimal shape correction

AU is

1	
m

2 ill mk (P1 ) C 
i 
V 
1	

(317)

k

Comparisons of these terms with the actual coefficients are also found in

the tables.

Results of the Simulations

The tables 6.1-6.3 at the end of this chapter exhibit representative

results for the following choices of variables. Figures 6.4-6.10 illustrate

the results of shape determinat[on and control simulation for selected

distorted shapes.

Control/Observation Positions: The control and observation points were

chosen colocated both in position and direction. Since conventional

stability questious do not arise in static problems, coloration serves
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the convenience of the programmer, but is not necessary for accuracy.

Either nine or eighteen points were chosen on a given circle. Thus

they were located on every rib or every other rib on the circle : The

second, fifth, eighth:.r.d eleventh circles were tried.. [Table 6.11

The forces/observations were chosen to be all in the x direction

(Ci • (1 0 0)), the y direction (Ci • (0 1 0)), the s direction (Ci 	 (0 0 1)),

or both is the x and y directions at each point (L; • t1 1 0)). Table 6.2

compares results for the same shape and varying numbers of points and

directions. The results for the z direction are not included (see remarks

below).

Modes: The number of modes used in the approximations was either 7 or 11.

Plots of the first eleven modes are contained in Figure 6.1 - 6.3.

Weighting Matrices: The weighting matrix W(P) was chosen to be the mass

matrix M of the finite element model. This is a natural choice when

using modes from the same model, since the inner product for the space

spanned by the modes is weighted by M.

The weights R  and R  are scalars in these simulations. They are

chosen to be the same number R in both the control and estimation problems.

The criteria was that R be a.s small as possible, while large enough that

the matrix (RI + A) is invertible. The correct choice of R varies from

circle to circle, but appears to be half way in order of magnitude from

the minimum and maximum elements of the matrix A.

Observations: A good test of r►a estimation algorithm is its performance

when given exact observations of a known shape distortion. This provides

	

t	 a means of comparison of the accuracy of the results. The program was

provided with the modal coefficients of several known distorted shapes,

from which it computed exact observations. It uses the exact observations

in the shape estimation algorithm.
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It should be remembered when observing results that the mode shapes

represent displacements of the auto=& from its natural or ideal shape

tt	 U'. Thus if r.0 represents the combination of sodas in the distorted

shape of the antenna, the actual shape in U • + AU • U.

Results

1) As long as the value of the weighting factor R is chosen small enough,

It does not appear to ma::ter on which circle the observations are chosen.

[Table 6.11 There is one exception: the innermost circle any not be used.

because of the assumption that the h::b is fixed, the values of all the

modes on this circle are zero.

2) Good results are obtained from observation/control forces applied

only in the x direction, or equivalently only in the v direction. Thus

if observations and/or control forces may be applied in these, or in radial

dir.ctio s, satisfactory results can be obtained. (Table 6.21

On the other hand, when observations/control forces were applied

the :direction, results were very poor (and are not included in the

tables). Examl.nation of the modes reveals two reasons: The first is that

in the lower order modes there is very little displacement in the z

direction. This is due to the assumption that the ribs ore very stiff in com-

parison with the mesh, so the lower order modes consist of ribs being

pinched together at some points and spaced apart in others. (Figures 6.1-

6.3). The second reason is that the changes in the z direction do not

vary much on the same circle. Control/observation points on two circles

simultaneously were tried, but vesults, although better. were still poor.

For a fixed number of observations. slightly better results are
i

obtained if they are taken at different points in out din ct.ion. rather

than in several directions at fewer points [Tables ti.2 an:' 6.31.

79

Ir
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f

3) More control/observation points than modes should be used. Aside from

the fac6 that this is easily observed from the data, it is a matter of

common sense. Both problem-. involve the determination of the coefficients

of each of the modes. Ona vast have at least as many pieces of independent

data as one has unknowns.

Hawaver, it is estimated that there will be from SO to 150 observa-

tions taken of LSS antenna. Since it is unlikely that lad modes will be,

or could be, used in the modeling, this restriction does not actually

pose a problems.

Table Symbols

ti The ith mode.

U° The rest shape, or ideal shape, of the antenna.

LU The modal displacements of the actual distorted shape.

U	 The actual distorted shape: U - U° + LU.

LU* The modal displacements of the shape estiaata.

U* The estimated shape: U* - U° + LU*.

DU The modal displacements of the shape resulting from the application of
the ccatrol forces.

V	 The antenna shape resulting from the application of control forces:
6= ti c +t'.U.
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à̂i a

U ,a
r I	 $4 G7

co
O)	 1~ 7
ri	 O ++

^ ^ dH
^rl

O Vi
A.	 GlV

60 $4
a0
U a

O

O L
rl U

" bu
X

W

07
u
G

O
a

a
0
,aL
^d

Ia
a^

.n
O

rn

98

a► n cn

u <p 0% o°.	 C%
°o

oo p
oG-r4	 00 C%	 .Y s	 .7 to 1

U	 1
O

.0	 rl
i.+
a	 r

w rn ^ ^ ^ an 1

C%	 rl 00	 r, r,4	 cn Oa%	 O m	 C%a C%	 O m	 Cs U	 O O

U C^

Sri	 ^
U	 .--1

O	 N N+1	 r
x ^ °o	 °o rn ^ °o	 o° o

w a o	 ^n ^ ^ „^

n	 N to O

,.0.^	 p `Q
OC;	 O

ON	 C\O^	 Q` O	 O
O	 O

O
O

in .T	 ^? u1 I
^ O
U	 .--I

11uw w 00	 r i
ON 

00
	 rn o°,	 a o-H ON	 o

00	 a%
C%

n

O	 O Ory < a C^
	

as C%	 C% O	 OC14 O

U O

Q	 N

a~
oj a C	 O Cam+ O	 O Ocn

O	 t!7 ^7	 ^Y ^!1 I

CC w
O	 vi ui	 v^ u1	 O O

a w o
Ai w a
U 0
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Table 6.3

Measuremeuts and Controls applied to both x and y directions at 9 points

vs. x direction only at 18 points, on the fifth circle

Actual Shape: U° + 104 1 + 1W4 + 5*8 + 5010

r\	 11 modes used in approximations. R - 10-10

Actual Coefficient 9 x	 9 18 x

U° U* U U* U

^1
10. 10.010 10.010 10.0 9.994

f 2 0. .000 .000 -.001 -.001

f3
0. .004 .004 -.000 -.001

f4
10. 10.011 10.010 9.996 9.994

05
0. -.006 -.006 .004 .005

^6
0. -.003 -.003 .001 .001

07
0. .007 .007 .001 .002

08
5. 5.255 5.111 4.996 4.994

^9 0. -,551 -.559 .003 .003

010
5. 4.644 4.791 5.003 5.003

011
0. .488 .530 .000 .000

For a fixed number of observations, it appears better to take them at

different points in the same direction, rather than to take observations

of several directions at fewer points.

3
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Chapter 7. Conclusions and Future Work

r

It is possible to ae ,:urately determine and con _rol the static shape
of a large space structure by means of a number of control devices and sensor
measurements at discrete points along the structure.

An integral operator approach to the continuous -discrete optimization
problems of static shape estima^:ion and controi proves ideal for these

problems. Solutions reduce to the solution of linear equations of dimensioa

less than oe equal to the number of observations, or control forces.

Elements of the linear equations involve the Green ' s function, or influ-
ence coefficient, of the structure, which represents the response of the

structure to a force at one point. In the event that the Green ' s function
cannot be computed analytically, approximations based on modal expanh ions

have been presented, involving modes either from the static or associated

dynamics model, which may be computed experimentally, or numerically.

The distinction between the shape control system and the attitude

control, orbit and stationkeeping system arises in connection with the

rigid body modes of the structure. The rigid body modes represent transla-

tions and/or rotations itt space of the structure as a whole, clearly a

concern of the attitude control, orbit and stationkeepi g systems.

On the other Land. the rigid bodv modes are indetectable to the shape

control System. Furthermore, a shape control system may not apply a net

farce in the direction of a rigid body mode, to correct it, since this

would violate the boundary assumptions upon which shape control forces are

computed. The latter restriction place:; additional con---traints on the

shape c-introl forces in the case that rigid body modes are possible.

lice use of modal expansions for terms in the shape control and

d4termiciation alguritkims invites the inevitable trade-off between accuracy



r

112

and computational difficulty. If a few modes are used and the structural

distortion involves significant components in higher order modes, the

shape control and determination schemes will not be accurate. Or. the other

hand, the use of many modes increases the necessary storage, time and

expense of computation. A compensating factor is that while dynamic

shape control must be accomplished on board the spacecraft, and within a

short response time, static shape control may be accomplished by ground

computers over a much longer period of time. Thus, the use of modal

approximations may not present a difficulty.

Future Work

The solutions of both the shape determination and control problems

depend on the solutions of linear systems which have dimensions on the order of

the number of observations or control forces applied. It is estimated that
i

actual large space antennae will require from 50 to 150 observation points

for static control. It is therefore desirable to develop a geometric

scanning algorithm, which would successively process data sets of antenna

sections in an adaptive manner.

Despite the fact that linearity and self-adjointness are common

engineering assumptions, it is probable that large space structures will

not always have these characteristics. It is anticipated that the integral

equation techniques used here will be applied to an iterative technique for

the solution of non-linear problems, and that it will be adapted for

the solution of non-self-adjoint problems.

t

E
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Appendix A. Some Mathematical Background
i

A.1 A Little Distribution Theory 	 j

i

We should give some consideration to what is meant mathematically 	 i

by a solution to (13-14) or (24-25).

A classical or strict solution to an nth order differential equation

Lu - f is an n times differentiable function y which "satisfies"

the differential equation: Ly - f on [a,b].

Clearly it is not possible for a function to be both n times differen-

tiable and to exhibit delta function behavior in a ccmbination of its

derivatives.

A rigorous development of the theory of solutions of equations of the

type (13) may be found in distribution theory:

Distribution theory was developed to provide a rigorous framework

for "functions" such as the delta function. One cannot deduce from the

definition

^0	 xf0
6(x) -

• x-0

that

Eft6(x) dx - 1	 (318)

or

T
6(x) m(x) dx #(0) ,	 (319)

^.

or even that such expressions are meaningful. Thus a pointwise definition

of the 6 function does not characterize it.

On the other hand, if the 6 function is defined by (319), the other

infarmation about it can be deduced. ^'aus 6(x) is defined by its action

on other functions Through t:he inner product

<6 ,0 > = I 	 OW 6(x) dx - 0(0) •
J..0
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In distribution theory this c.3ncept is extended to an entire collection

of generalized functions, or distributions. Rather than characterizing

distributions by poiatwise values, they are defined by their "action" on a

specific class of functions, called test functions. Test functions are

infinitely differentiable function,, on R R which vanish outside of some

bounded domain. Eligible test functions for boundary value problems on the

interval [a,b] must vanish outside of [a,b]. For problems defined on '2. the

test functions must vanish outside of S2.

On one dimensional domains, a distribution t "acts" on a test function

through the inner product

<t, ^> = j^ t(x) O(x) dx .
m

Two distributions t  and t  are equal if < t114> = <t 2 ,O> for all

eligible test functions ^.

The derivative of a distribution t is defined by <t' %O> _ <t, -4'>.

The. nth derivative is defined by <t (il) ,^> - <t l (-1) n d 
r

>. Note that
dx

again the definition describes actions on test functions rather than svme

pointwise behavior.

if 12	 R^, we denote a partial differential operator on S2 by

kl+...k

-

?x kl ... x k^.

1

where K is the vector (k l , ... I k,) and 1 K I = kIt-...+kQ, As on example of

this notation, if Z = 3, a } point in -R3 is .lenoted by 
(xi 

, x 2 %x 3 ) , and

K = (2, 0. 5) , then

7
DK _ - 3. 

ax l ax 3'

]
a
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In 1 f a distribution T acts on a test function # through the inner product

<T 94> 	 1 T(P) @(P) dP .
n

Again, two distribution Ti
 and T2 are equal if <TV0 < <T2 ,0> for all eligible

test functions 0, and the derivatives of T are defined by

<D K
T, @> ` (

_1)IKI <T, DK@> .

By this new definition of the derivative, since test functions are

infinitely differentiable, distributions are infinitely differentiable.

Finally, the distribution T is a Len P:alized solution of LU = F if

<LT,t> - <F,t> for all test functions t. This removes the problem with

finding solutions to (13), that is, how a function may be n times differen-

tiable and yet have delta function behavior in a combination of its

derivatives.

If T corresponds to a pointwise defined function which satisfies

LT - F but is not sufficiently differentiable it is called a weak

sclution. If T corresponds to a function which is sufficiently differentiable

sc that the differential operations in LT s F may be performed in the classical

sense, T is a cl assi cal solution, or strict solution. Classical solutions

are easily shown to be generalized (distributional) solutions, so none of

these solutions is lust by appealing to distribution theory.

Examples

A.1) X dX u 
0 has the classical solution t - C. It also has the weak

solution t a H(x) (the heavy side step function).

A.2) XZ dX ' 0 has the ,gene rali zed or distributional soli 	 t a 6(x),
which is neither a weak solution nor a strict solution.

A.3) Green's functions, which are solutions of Lt a 6(x-E) are weak

solutions, since they may be defined pointwise but lack sufficient

differentiability to be strict solutions.
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IL •

The use of the alternative theorem 6.1, and the assumption of the

existence of complete orthonormal eigenfunction expansions which are the

basis of the approximations, depend on the assumption that the operators

L and K be defined in Hilbert spaces. The Hilbert spaces which can accommodate

members such as the delta function are known as Sobolev spikes. An excellent

treatment of Sobolev spaces is contained in [9].

A.2 The Free Space Solution of o4Y	 d (PIQ)

The equation

V4 Y - - 4 (PIQ)
	

(320)

represents the response of a plate in free space at the point P to a unit

negative impulsive force at q.

Theorem: A fundamental solution of (320) is given by

Y(x,y,E,n) = 8n R2 log R
	

(321)

where R is the distance PQ.

Proof: We wish to show that (321) defines a solution in the distributional

sense. Thus it is necessary to show that

<04Y.t> - <Y.(D4) P - - #(Q)

for all test functions m, where the inner produce <u,v> in free space is

<u,v> - fu(P)  v(P) dP .

R2

Let Rc be a circle of radius a about Q.

F'

R	 R

jQ
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The function (321) is continuous except for a removable singularity at

R - 0. Thus it is locally integrable and

J	 Y(P) (044(P))dP - l,mfR ?	 Y(P) (V4m(P))dP.
R2	 E+o 	 -RE

We apply Green ' s theorem, making use of the fact that ^ vanishes for suffi-

ciently large R to eliminate the surface integral at infinity. Thus

1	
YM (V4 O (P))dP = J	 04Y (P) OM dP

R2-R	 R2-RE
E

r(	 (V 20) - 0 2 (V2Y)Ids
j	 an	 n
aR

( 

E

I	 ((o2Y) an - V20(an)Ids.

aR
E

On R2-RE , V 4Y 0.	 The first integral on the right is zero. On

the boundary of RE , ds	
Ede and an = aR'

Therefore 
J R 
2_R l(P) V4O(P)dP

2n	 E

`
	 IT (V 2^) -^ aR (V 2Y)I de
fo

r
+ E I 

2n 
IV 21 . (aR) -V 20 (aR)Jd e	(322)

0

Now dR --
 4n 

(log r + 2)

V 2Y = in (log r + 1)

and

a (V 2 	 1
3r	 2nr
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Furthermore, the hest function # has continuous derivati

which have compact support in R2 . Hence # and any of th

bounded on all of R2 . Thus

IL (a2#) ^ I Ml , (92# I < M2 and 
IaRI 

M3 in R2

We apply these relations to the elements of (322):

E
 Jo

2n

Y2R (V 2#)d6 J<M1 E 31og E (2n) - o(E).

j

2n

E 	 V2Y ( R) d8 < in (log E + 1) M3 (2n) o
0

2r

' E	 V2	 2	 ^# (oR) d6 JIMM2 (4n) (log E + ) (2n)
fo

Finally,

E j 2r #(R) aR (V'Y)0 - 2n J #(6) d6.
0	 0

Taking the limit as c -► 0, only the last term provides a contribution.

We can conclude

J
Y( o4#) dQ = - #(Q) .	 #

R
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Appendix B. The Flexible Beam Program Listings and Output

R
z

B.1 The Simply Supported Beam Control Program

B.2 The Pinned Free Beam Control Program

B.3 The Simply Supported Beam Estimation Program
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B.1 The Simply Supported Beam Control Program
Listing

1• COMMON STAkT#FSTAftHMIN#HPAXrE AMA X#XLvXEI9XZ(ll+l 	 #AM

2+ REAL	 A(1J91OIrtitl3)r	 'JORK(53)#A2(13#19)
3+ REAL	 Z(50) 0U (SC4) *FS I (SC• ) 06L1
4• Ri.AL	 AA(1J113)#d9(I0)9UA(50)
5• RCAL	 YZ(1019YY(1CC1
A• REAL 0(13)
70 CATA	 YZ110.0./
80 DATA	 0/IJ*1.E8/
9• GATA	 NE0NDA9NC6/	 1010910/

11• DATA	 Z(1) #U(1) #PSI (1)#UA(1)/4*3.
il• C
12• C
13 0 C •*w***INTROLU4;TION#s,0r*s
14• C
I5s C Th1S PROGRAK	 CO M PLIES IhE OPIIVAL OISC F LTc iCRCCS

164 C FOR THE SHAPE CONTROL PROaLE4 FOR THE SIM XLY W204%3
17• C bEAM9	 A4C	 GRAPHS	 IfL	 RESULTING	 SHAPE	 VS Tt%E GESI ALU	 SHAPE.
lb• C THE GUAuRATIC COST	 IS ALSO 0";bJTE;*
1v• c
2O• L
21+ C PLEASE	 DEFINE	 THE	 FOLLOWING	 VAPIASL£S.
22• C XL	 IS	 THE	 L-NGTH 3F	 THE	 SEAS.
230 C NM	 IS	 ThE NUM.(,ER	 CF	 ACTUATORS.
24+ C NP	 IS	 THE,	 NUMcIER 3F	 POIMTS	 ALONS	 THE *EAM	 At	 J41CH YOJ
15 • L .ISh	 TFE	 GRAPHS	 TO bE	 PLOTTEt,.
26 • C NP	 IS LESS	 THAN	 OR	 EQUAL	 TO	 3).
27• L XZ(I)9	 1=19 ... 9NM	 ARE	 THE	 ACTUAICR	 PCSITICNS.
2d • C 8L	 LLRTA14	 AZ(I)	 I5	 LiAEE'4	 ).	 AND	 XL.
24• C G(I)9	 1=10...9Nh	 AFL	 Ib-	 6EI6H7 5 	CA	 InE	 FCKES	 F(II	 SCUSALG
J3 • C IN	 THE	 JUAURATI;	 Z3ST	 CRITER134.
31 0 C IF	 L(I1cJ9ALL	 19	 TFL	 0W RIX	 C+A	 MAY	 cE	 SINEULAF9	 RE5LLI!tL
320 C IN	 NO	 SOLUTION.
33• C RELLMMEYL Oz	 1.E-:	 * XLrs7

34* L•
35* C
3e • L PLEASE	 , NUOiE	 3%T	 ) F	 Trio	 FOL-Owi VG	 OPTI)'9S.
37 • C
36 0 L JOPT=1	 ONLY	 EXA:T	 O JI TI 14 AL	 FORCES	 GILL	 S:	 C31faIu=2EJ.

34 • C JOFT-2	 LXwCT	 O F IIMAL	 FORCES	 AAD	 F14SI	 AFFF0Xi"AT!Gh5
4)4 C bASEJ	 OY	 r.lGi 14FUYLTIOV EXPA%5I)YS	 A RE	 TO 3E	 CJ4iIJEQEd*
41 • C
+2• C
43 6 C Thy LESiRED SHAPL	 15	 IHC	 PARw5OLA	 Y-1.EN611— x	 - XOX
44 • c
45 0 G
4a. C PLEAS-	 6 .00SE ONE )F THL . ULLOWIVG	 OPTIJ'S.
47 • L KOFI	 DETERMINES :W	 GR..Pr.S	 APE	 GENc;AIL;;.
4t]# C
44 • L KOPTcl	 NC	 THL	 OPTIMAL	 FCRL£S9	 ShFFC	 r.t.(j	 9CST
53 0 L RILL	 sE	 3RIV1`4.0.
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i

514 C KOPT=2	 EXACT OPTI I AL SHAPE VS. JESIREJ SHAPE.
524 C KOPT=3	 DESIREG VS. APPROXIPATE SHAPES
53 4 C KOPT =4	 EXACT*	 APPROXLPATE#	 A40 JESIREO iMAPES OY ONE uQAPH.
544 C KOPT=S	 BOTH 2	 AAU	 3.
55 4 C KOPT =b 	 BOTH 4 AID 5.
$6 4 C

57 • C
58 4 NM--2
594

60 4 KOPT=4
61+ JOPT=2
624 IF(KOPT.GT.2) JOPTc2
63 0 PI=3.14159
644 NP=20
654 XL=103.

66 4 CEL=XL/NP

674 NPZNP01
684 YRITE(b011	 XL
694 1 FORMAT (//// 1X025NTME Lr-UTH 06 THE	 3LA 14 lieF13.21
704 YRITE(bs2)
710 2 FORMAT001/1)
720 C
734 C THL iOLLOJINB VA.RIAdLEF	 ARE VEC:SSARY	 FOR TMi.	 JPL	 3JAJ2dTJRES
740 C SUBROUTINE.
75 • L
764 START_J.
770 MST AR=.31$XL
780 HMIN=.OUIOXL
7G0 MMAX=.)S4XL
but ERMAX=1.E-4	 (	 '.
tl1 0 KEY=)
62 0 C
630 C
840 C THESE	 CONSTANTS	 ARE NECESSARY FCR ThE	 PLOTTINb	 SLbRCUTIAES.
850 C
864 N6=1
470 TICS='Xl

46 • NT5=-1
d9. NT1=2
400 N72 =2

910 NT3=2
420 TIC1='^09

93 0 TIC2:10•
946 T;L3='/*
950 XLEN=8.
96 0 YLEN=b.
970 JO	 495	 IN=1#3
90 0 NM=IN
996 00	 7	 I AZ:1.IN

100 0 X2(\XZ ► :NX24XL/ (IA#11
1J1 0 7 CONTINUE
1	 2 0 CALL	 VOUT(09NM.11917MOTHE	 WEI() ► TS	 C(1))
1J3 • CALL	 VOJT ( XZ*NMs33 r33HJTMF.	 VECTOR	 OF	 ACTJAT )R	 13 1SI FIOVi)
104 • L
105 0 C M:RZ	 tAL LXACT	 A 1ATRIX	 AY] d VECTOR A2E	 :3142JIL).
14,6 0 C
107 • L

Me
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n

1060	 C	 THE SUSROJTINE 6V:C COMPUTES THE EXACT VECT03 At

1090 C
1100 CALL 6VEC4d1
I110 DO 50	 I=10hM

112 0 X_X2(I)
113• C1=X•(X-2.•XL)

11 q • 00 SO J=I•NM
Its* Y-XZiJI
116• C
117. C2=YeY-2.•XLOY

1160 C3=X.X*Y•Y
119 • C4=X•X.Y.Y

121 • c
2210 A(1•Jl=(iX-XL)•lY-XL)/136.•XL•XL)).	 ((X0.7)/7.•IX••S1•(CI•C21/S.•

122 0 1	 (X••))•C2eC2/3.)•IX•Y/(36.•XL•XL))0(IXL•07-Y0.1)/1.•X^•Y••6-XL007
123• 2	 •.20(XL.45-Y•eS)•113.•XL•XL•C3)-(XL••4-Y6•410(3.•XL•03•XL•C3)

126• 3 •(XL•03-Y•031.41./3.1•(S..XL.XL•C3 .4. •XL •041 •C4I	 -(XL6(L•Y•Y)•(X ,.9
las e 4	 104 • (XL •0 3) • C31•(XL-Y) • (XL e XL O C4)1	 •	 (X/(36.0X10.2))•(Y-XL)0((V
126 • S	 •.7-X••71/7.-XL•.5•(Y0.6-X••6)•.I0!40.6-X0•S)•lC2.2.•(LOXL•X.XI•

127 0 6	 .25•(Y.•4-X.OA)•(3.•XL0C2•XL•X*X)•(Y•03-k*o3leC2•(X*X•2.•XL•XLIO
126• 73.-(Y•Y-X0x)0.5•(XL•X*X•C2))
1290 50 CONTINUE

130• LO 51	 J=2•NM
131• JJ=J-I
132• 00	 51	 I=10JJ

133 • A(J•I)=A(19J)
134 0 51 CONTINUE
1350 WR1TE(o.2)

936• CALL MOUT(A•NOA•VV.V r •19•191aTiE	 EXACT	 A 1W1Ix1
137 • CALL	 VOUT(o•NM.13•I3H4THE b	 VECTOR.

13d e UO	 6)	 I=1•NM
13 10 0 00	 60 J=1•hM
1400 AO(I•J)=A(l•J)
1410 oU CONTINUE

1.2 0 UO	 61	 1=19N4
2439 A(.	 I•I ► = AO II. 11	 • OIII
144+ of COhT14uE
1450 CALL	 Y.;,UT(AO•NuA.h11.NM.Y1.21h0THE	 EXACT	 FATRIX	 C•A1
1460 c
1 0 7 • C SOR	 IS A JPL LIhEAF EQUATION SOLV1h4 SUaACLTINE.
149. C
149 0 CALL SOR(Ar-thLA•I#M.6oNfjboP4boS3C*6CPK)

150 • CALL	 I4UT ( joh4 •25.25h3VECT04	 0 =	 OPTIMAL	 = JR:_a )
151 0 60	 TO	 40
1520 3) WRITE(e.31)
153+ 31 F0k!4AT(15X•26KjMA1RIX	 IS	 NEARLY SI1twiLAR)
1540 40	 TO	 5)3
155 0 4V If iJ4P7.E4.11	 l:0	 TO	 174
1560 C
157• C
156 0 L HERE	 Tic	 APPROXIMATE VALUES	 3F	 A	 AVJ 6 AR:	 C34PJTE3.
1590 C
10DW 21 = 2.e(XL0e7)/(P10.d)
161 0 C
lbc0 00	 15)	 I=1•VM
103 0 X:kl(ll
1640 UO	 153	 JZI#%A
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less V:xz(J)

1660 AA ( I•Jl s Zlo (S IN (P loX/XL))0SIN(PI*VIXL I
1670 ISO CONTINUE

^	 lsl0 WkITEte•2)
'	 1690 CALL ROUT ( AA•!1JAsVMsNM • 32.32MJFIRST	 AP ?R)XI4AT ION 	 10	 A IATRIX)

170• C
171• C THE SU3 ,40JTINE W	 C31PUTE:, AN APPZOXI !1ATI V.- CTOi 6.	 j
17is c
1730 CALL	 BAP(Ab)
1740 CALL VOUT4o6•N14s31•32MGFIRST AFPROXIPAIICk TO 6 ViCTORI
1750 00	 163	 I=t•N!*
176 6 LO	 160 J:IVNP	 a

`	 177• AO(1•J)=AA(1•J)
I	 178• 100 CONT1hUE

1790 U0	 165	 1=1.41"
loos A4(16I)= AQ ( 1sI) 	s Q(I)
1610 165 CONTINUE
1820 CALL	 MUUT(AO•N6A9k14•NMs27.27MO1hE	 AFFfiCXIPATE	 MATfiIX	 A•C)
163s c
loo s C $OR	 15 w JPL LIN EAF CQUAT10h SOLVIkb SUoACUTINE.
18Ss C
186 0 CAI(	 SGRIA4•NOA•Nr•c6•p4bsNo•t13U•^CFK)
100 CALL	 VOUTIoi! • YN•2i•29NaVECTOi OF	 APP ,TOXI OAT:	 *-" OiCii)
16bs 170 CALL	 COST(o•O•%M•C)
1690 JNIT;(6.1711	 C
19G• 171 FORMAT(///•7X9l71n1ME	 EXACT	 COST	 ISs	 E15.5	 )
1910 IF(JOPT.E0.11	 GO	 TO	 175
1$7 0 CALL	 COST(o6.0.1MsC)
193• WRITE(6.172)	 C
194 0 172 FORMAT(/,'/91Xs23SIhE	 APPROXIMATE COST	 IS	 • E15.5)
145 0 WRITL(o•I94)
190 0 175 IF (JOPT .E0.11	 1•R I1L (6.195)
1J7s Wit I Ti. (o•2)
1': b • C
1990 C HERL Tit SHAPES	 Ai:	 CO rPUTEti.	 s
2vO • c
2U 1 s C Z( II	 IS	 TAE	 X	 VALJi	 OF	 TNL	 ITH	 -1 OIVT	 OV	 A	 14A*M.
2-)i • C U(j)	 IS	 ThE	 V	 VALVt OF	 ThE	 ITN	 FOIAT	 Ck ThE GRAFt , 	CF	 THL
2:13 0 c OPTIsAL	 SHAPE.
204 0 C LM( 11	 1$	 THL	 4	 VALLL	 OF	 ThE	 ITN	 FOlhl	 CA	 It-,	 bRAFt:	 CF
20i s C APPROXIMATE SHAPE.	 (^
206 0 G PSI( 11	 1S	 ItE	 V VALUL OF	 ThE	 Tit	 FCIAT	 Ch	 Tnt	 GkAPh	 CF
2u7 s 1; JtSIRED SHAPE,
2Ud s CO	 iOO K.2•hP
2J9• Z(K):(A - 1)	 O	 3EL
21C s XSZ(K)
211- PSI(K)=XLOA-X0X
212 • Ulh1_C.
213 • UA(K)-J.
ilia UG	 1VG	 1=14hh

1

215 • IF(X.GT.XZ(I11	 0)	 TO	 lea
216 0 G=(XZ(;1-KL)•X• (X•X-2.•XZ(1)sXL•XZ(110s2)
21 1• uC	 TO	 la w,	 j
ila • for V=tX - x11 •X^III•IXII;I••i•i.sXLsX•X0X) 	 3
21: • 105 LlK1sJ(KI•.,•o111/(o.sXL1
iC D • Ii	 IJO(T.%L.2)	 Uo	 TO	 lic	 i

221 • UAtKI=iA(A I 	 •	 X03:(:1/(11 . sX;)
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22.2•
	

190
	

CONTINJE
223•	 IF (JOPT-1 l 191. 191. 192
2240
	

191
	

WRITE(6+1961 X#PSI1K)+U(Kl
2250
	

60 TO !CO
2?60
	 192
	

WRITEI6.1961 9tPSI(1(t+U4K19'JAI10
227•
	

194
	

FORMAT( Ih0.3X•4HPCS ITION04X91:+•OESIKEG SMAFE00TX•5eSMAFE02x ►
220•
	

13HAPPROX. S14APE1
229•	 195
	

fOlk N AT(lM4 • 3X•t)HPCS ITION • 4X•13h0ESIKEO SMAP!9073teSMSMAPE)
2330
	

196
	

FORMAT4v	 +lXcFl).2.3E15•5l
231•
	

200
	

CONT 1NUE
232•
	

NP2=20NP
233+
	

UO 215 I=1+NP

23 40 	YY(1) :PSI (11.1.21
235•
	 VY(i*10)=U(I)01.2'.

2360
	

215
	

C00INUE
237•
	

GO TO (500.300035C•Z5CO3000i51))•KOPT

234•
	

C
239•	 250
	

CALL 16WPL1
2#4J0
	

CALL `LFORM(';,IN.1,V0+XLEN+YL£4)
2410
	

(,ALL 4LSCAL(Z+hP-%C:*VY•NP29KG)
2420
	

CALL PLASEII ' THi	 IMPLY SUPPORTED 8EAl $ @25•*LEh3TA IN M_ TEAS' •1s•
2430
	

1 'OI$PLACEME%T4•10
2#440
	 CALL P,,I:RAF

2#450
	 LALL Pi.AXIS(-•2+XLEh+0.)

246•
	

CALL PLCJRV(Z+Ur4294TI+TIC1)
247•
	 CALL PLCURV(ZrP5I+hP+NT2•TIC21

2#4d:
	

CALL PLCJRVIZrUA#lP•NT3rTIC3)
2490
	

CALL PLCUAV(XZ•YZ+hM+hTS•TI%S)
2i30
	

CALL PLT:XT(2.5ra.S+.1r0.r3)HA:TUAT3i -1 0sITI0VS Patti.) ^T X+30• ll
2510
	 CALL PLTCV tl	 VS OPI1PAL401 VS AFPf.4X1P

252•
	

IATE( /) SAA>ES++4.1)
253•
	 GO TO 127(1+271ra1i•173+214ri75.2761•AP

234•	 276
	

CALL ?LT :%T(3.2+1.U+ 	 ACTJATO2i•15s11
2550
	

60 10 160

g560
	

273
	

CALL PLT : X((3.4+7.J ► . I+t7.r12M0VE ACT'JATOi•12+11
1570	 60 TO 4dC
258•
	

7.71
	

CALL	 ALTU4TJ4S•13+11
159•
	

60 TO 160
26)0
	

X71
	

CALL ?LTCXT ( 3.20.0 9. 190.9 ,:ihT-4RE_ ACTJAT3ii+l'>•ll
2610
	

GO TO 4du
2 6i0
	

273
	

CALL ;)LTEXT(3.3rT.J+.1+0.rl'm 7 3U4 ACTJAT32a•l4+l l
263•	 v0 TC 400
264•	 274
	

IALL	 ACTU^T34S+l4rll
165•
	

Z  70 ado
166•
	

275
	

CALL ?LT^XTl3.5.1.it.1t3.•131+SIX ACTUATO4z•13+1)
2670
	

[b0
	 1F(A0FT.EG.41 t,0 TO #49u

2660
	

CALL A, VPLT
2sr'00	 3^1e
	

CRLL bof.l'l T
2734,	 CALL PLF0R,4('_1V.14'rXLCV+'LL4)
271•
	 C4LL PLS^.AL(Z•nPsk;j0Y.6F2r4u1

172•	 t;AtL P LA3C'_ 1'TnE SIMPLY SUP 11 04T ; J o4AM 1 •2i• + ::kJT4 IS 0 : TC't 5 + • 16c
273•
	

I 'LISPLACL1EN1'r1i1

2700	 CALL PLvRAt
275•
	 CALL PL AXIS(—I•Xlih•0.>

1760
	

CALL Al. CJBV(Z•L;.V'.VT1r11,11
277•	 LALL P L CU P V(IsPSI of, F+AT2•TIL21
11d0	 ZALL	 4X1•YZ•'0K91JT3sT1, $)
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279 0	CALL PLTEXTte.SPS.Ss . la y .s33MA : TUATOR POSIT LOIS MAIKU df Xs33s11
260 0 CALL PLTEXT(2.59S *g o .1JvQ.*llhQESlRED(0) VS OPTIMAL(0) SMAF£Ss31s
261* 1	 11
292 0 GO	 TO	 (32Js32to32is323s324s3%Ss3261*%F
2630 326 CALL	 PLTEXT(3.2s7.Os•1s0.e13MS£VEY ACTtJATOdASl:psl)
ii4 0 GO TO 33C

2650 320 CALL P LTEXT ( 3.4s7.Os * l#0 * *l2MO%E	 (: CTUATOlsl2a1)
266 0 60 TO 330
267 0 321 CALL	 PLTEXT(3.3sl.Js.1s0•s13MTW0 ACTUAT04S913s11
264 0, 60	 TO 330
2690 322 CALL PLTEXT(3.2sl.Js.1s0.a154TMRE.- 	ACTUATO4isl^s:11
290 0 G0 TO 330
2910 323 CALL	 PLTEXT ( 3.3*l . 3s•1sO.sli w ' 3Uk ACTJAT92+sl4d )
2920 60	 TO	 330
2930 324 CALL	 F;LTEXT(3.Js7.Os.1vJ * #14MFIVE	 ACTU094is1491)
2980 60	 TO 330

2950 325 CALL	 X LTEXT13.3a1.Os-ls4•a13MSIX	 ACTUAT945,s13s11
296 0 330 IF(KOPT.EO.21 :0	 70	 49c,
297 0 CALL AOVPLT
296 0 350 CALL EGNPLT
2990 CALL	 PLFORIf(s^Ik_1N0-XLcrosYLENI
300* CALL	 PLSCAI (7- 4;i9NGsYYsNP291,61
3u1 0 CALL	 PLA3EL(* TME 	 SI !(PLV SUPPORTED	 6EA 4 * s25s a L.-N5Ti	 IN METEkSsslos
3(+2 0 3	 a l)IMACEPENT* s 1i)
3030 CALL PLGRAF
3u4 • CALL	 FLAXIS(-isXLiA)s0.)
3J5 0 CALL	 PLCJRV(ZsPSI*NPsl4T2sT1C2)
3(16 0 CALL	 PL CUR V ( Z sU A s KP 9NT3971C31
307 0 CALL	 PLCJRV(XZsYZ9NllsVT5vTiC5)
3UG* CALL	 PLTEXT(2.39;.5•.l90.s3CMACTUAtCR	 FCSITICAS	 MA:K Q C	 cY	 X93C*1)
309 0 CALL	 P LTZX! ( 2.3s5.us . Iu#3.aSSMJESI2Ea ( sI	 Vi	 APPZOX14Af	 SMA21
310 4 1	 35911
311 0 GO	 TO	 (37Js)71s372s373s37493`rSs376)*N'1
312 • 376 CALL	 PLTEXT(3.2s7.Js.1s0.s1'.hSEVEA 	 ACTUrTE65sliel1
3&30 UO	 f0	 49)
31 v• 3"70 CALL	 PLICXT( 3.4s7.sj	 Is0.a1sN0Ai.	 ACTLAICFs11s11
3150 a0	 TO	 49)
316 s 371 CALL	 FLTEXT ( 3.3^1.Js . 1sO.slaT60	 ACTUATCASs13s11
317 0 Go	 TO	 49)

31tl s 372 CALL	 PLTEXT(3.2s7.Us.l*0.slShT0-2EE	 ACTLAT M9 17911
311 4 GO	 TO	 493
3c0* 373 CALL	 PL7EXI(3.3s7.i,*.t*O.oI yNFCUR	 ALTUATC6Ss14s1)
321 • GO	 TO	 49)
32i* 374 CALL	 P1IEX1(3.3s7.us.1#0.s1 IMF 1VE	 ALTLAT CAS s14s-11
323* 0	 TO	 r93
3240 375 CALL	 P LIEXT ( 3.3s7.vs.ls0 . st'.MS ?% 	A(,TUATCFSsl'-<! 1
3i5 s 4ti0 CONT111
3i 6* CALL	 A;,VFL T
327* 492 CONTIJ04C
3i 4* CALL	 E N LPI 1
329* L OONT ^OR60 TO RE Z .ACE 49J CALL M PLT
330 0 500 57LD

J31* Eh(1

GJ 0; 60 14"ILATI0:14: 	 SO	 u14 i N)SNCS.
732 ;.TF:.Jvi	 SUPI:7.o7G

r
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I* SUEROUTINE	 bAP(d)

2 0 COM M ON	 STAkT *ASTAi+:-19I1{+MkAX + E2MAXtXL +(( ET.X211J1+Vy
3* REAL	 8(lb)

-	 4• C
5* L ThIS St chOUTINE CCFPUTES AN APPROXIfATE 6 VECTOR FCR
0• THL SIMPLY SUPPORTZU ocAM.
7*

L
8* C INTEGRATIONS	 ARL ?--_RFORVEJ 6Y	 TdE	 JPL	 QUA 3 RAtJRES	 SJ*R31TIHE*
9* L ROPbS AND R002 ARE PART OF ThAT SUERCUTIhE.

1,10 C
11 • L PSI	 IS ThE LESIREL SHAPE.
12* C
13* PZ=3.14159

14* DG	 50	 I=1 0,44
15* (0-L	 ROMoS (S TAR T OIL + X+FOFX+t • STAR • HP! hthMAX * EAPAXI,AftS + K9 KEY I

16* 1a PSI=XL*X-X*X
17* FOFX=PSI•SIh(P1*X/X(,)
13 n CALL RUM2
19* IF(K.E(-.11	 GO	 TO	 10
i.) • 8(1)=ANS • Slti(PI*XZ (I)/AL)•2.*( XL**31/(?I **41
il • 5,j CON 7INuE

22* RETURN

i3* EN 

1* SU*ROJTINE	 tiVEL(3)

2* C":0 ?A 	 STAkT ► FSTAS + 	 +1-MAX+ERMAXtXL + XEY+XZ ( IuIshF
30 REAL	 b(1))

5* L THIS	 SJoROUIINE	 C)4PJT:S	 THE	 EXACT	 tl	 V-(. T71	 %OR	 T h
C) • L SIMPLY SUPPORTEu	 EEAk.
7* L
Z, • L IN'TL^RAT1OkS	 ARt	 FLnFCRtLL	 o 	 IrE	 JPL	 GLAL;AIUFtS	 SLeRCLII	 E.
90 t ROOuS	 A,y,J	 8042	 ARE	 P AR T 	 OF	 T-IAT	 SUi-7 3UTi•L	 .

1J• L
11• C PSI	 IS	 T:1L	 .i_5IA1)	 SHw z'E.
li* L
13• U0	 S;	 1 =1004

14* ZZAZl11

15 • CALL	 Ru'ijSISTAicTFXLrXtiOFX +.tiSTAR +,i"IV+nKAX+ERIAX + A'+S+(+XEY)
10* 1v IF(Y.CiT.Z)	 ;O	 To	 li,
17• u=(Z-XL,•X*(X*X-2.•Z*XL•Z*Z)
1 6 GO	 TO	 [^
19* I^ u= (X- XL)•Z•(Z•Z-2.*YL*.X#fart)

[ i • PSI=Y,*XL-X*X
23 • F0FX_?,I••.

iu • LAl	 R•,,•'i

cc • b(i 1 c^,c
[7 J LI)NTI^,.t
[^• FcT:6%

4
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'	 Ir SUbROUT INE	 COST 111 e0 eNPeC 1
2+ COMMON	 START,AST4RehMlNeHAAXeEi 4AXeXLtKEYeXZl1Jf
3 0 REAL	 B(IOle0(101

5+ c THIS SUOROUTINE COMPUTES	 THE QUADRATIC COST	 FUN%.TIC%AL
b+ C FOR	 A SLT	 OF N 4 	FORCES a(l)	 AT POSITIOYS XZ411	 ALQNd

'	 I$ C A SIMPLY SUPPORTED BEAM
as C

9+ C COST= i1/2)+ (SUP IC(1) r B(11+r2)	 +	 INTEGRALIIlilX1—PZ11Xl1**211
IJ+ C
Its C WHERE U	 I5 THE OPTIMAL SHAPE AND PSI 	 IS THE GZSI FED SHAFE
120 C'
13+ C=G.
19+ 00	 5	 1=1eNM
15 0 C=C^OIll.iblll++l

10 e 5 CONTINUE
17+ CALL	 ROMbSiSTARTe1L•XefQFXeI+STARehl+IAel1PAX#LRI1NXeAASeKeKEYI
1$ $ 11) SHAPE=J.

19e CO	 200	 1=1eNM
2J+ IF( X.3T.XZ(W	 G)	 T3	 IdJ
21+ 6=t XI t 1) — XL 1r X+ IX+X-2.+XI (I1+XL•XZ (1 ) !!+2 f
220 GO	 TO	 193
23 • 180 6=(X—XL1+XZ(I1+tXZ111++2-2.+XL+X+X*X)

24 e 1100 SHAPE=Se1APLeG+6(ll /l0•+XL)
25+ 2UO CONTINUE
te e P1=3.1*159
27 e PSI=XOAL—X+X

2!1 • F0 X=•^ie(SnAPE—PSI)++2
29+ CALL NWI

3U+	 IFIK.L6.11ti0 TO 1L

31 0 	C=.5e:. 4- ANS
32 e	RETURN

33 e	LNu
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Output

THE LEN61H 06 THE 6EAM IS 100.u0

THE WEIGHTS O(t)

1 TO	 3	 1 . JOJOJJO+Oy 1.4J3JJ10+3 y 1.JJJOJ03+98

THE VECTOR OF ACTUATOR POSITIONS

I TO	 3	 2.3uJ00JJ + Ji 5.304003J +31 7.5014300+01

t

THE EXACT A MATRIX

1

1

LOL	 I COL	 2 COL	 3

ROW 1	 1. J623027+ 1J 1.4932.27+13 1 .J458312+10	 i
ROW 2	 1.49 L2127+10 i.1001304+1C 1.4902 . 19+10
ROW 3	 1.1458322+13 1.4942114+13 1.0622356+1J

THE P VECTOR

1 TO	 3	 1.3737839+09 Z.647573u+34 8737TQ2+09

THE EXACT MATRIX (d+A

COL	 1 COL	 2 COL	 3

ROW 1	 1.3723027+IO 1.49C2127+1C 1.0456322.10
ROW 2	 1.4932127+1.j 1.4902119+IJ
ROW 3	 1.1458322+10 1.4902119+1C 1.0722956.10

VECTOR OF	 OPTIMAL	 FORCES
1 TO	 3	 5.213683d-u2 5.1635507-Ci 562134^.S5-02

FIRST APPROXIMATION TO A MA TRIX

COL	 1 COL	 2 COL	 3
ROW 1 1.0539096+1J 1.49G454.)+I1 1..0539125.11
ROW 2 1.49j4543+11 2.107e122+1J 1.49!45o3 +13
ROW 3 1.4904583+1. 1.053V153+10

FIRST APPROXIMATION TO	 o	 VCCT.-')R
I	 TO 3	 1.e 7i953 ,i+09 c.6467587•:9 1.87295VJ+0^

THE	 APPROXIMAT4 NKTRIX	 A+L

COL	 1 COL	 2 .OL	 3

ROW 1 l.J639096+1J 1.491454j+1) 1.Ji39125+1J
ROW 2 1.vVO4543+1J &.117o22i+lC 1.49L4:63•IJ
RJW 3 1.0139125+11 1.49j4583+13 1.0639153+11

VECTOk OF RFPROXI "ATc 	 FCRLLS
1	 TO 3	 4.432344b-v2 n.2042374-)2 4.4323x45-i2
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THE EXACT COST IS	 .62204*36

	

THE APPROXIMATE COST IS 	 .63505*30

POSITION	 QESIREO SHAPE	 SHAPE APPROX. SHAFE

5.00 .47500*03 .4(j412*03 .402C7*C3

10.00 .90000+03 .79850+,)3 .79459+)3

15.00 .12750*04 .11734+04 .11064+C4

20.Ju .lb000 *3 4 :!5191.34 .15137*34

2. S. .18750*04 .1625'•04 .16212*C4

30.JJ .21000+04 .23643*04 .20623+J4

35.00 .22750*04 .21919*U4 .22923*4j4

43.11 .2400J*J4 .24436+04 .2447u*)4

45.00 .2475)+04 .2ti373*U4 .254.eC*C4

5 .3.OJ .25000+04 .25642+J4 .157ib*J4

55.00 .24750+04 .25373*u4 .2542b*C4

60.OJ .240J0* J4 .44431 # ) % .2447J+)4

65.UU .22750+04 .22919+04 .12913*C4

71.JJ .21330+04 .2Jd43*14 ..Jd23+)4

75.JU .1675	 *u4 .1di57*U4 .1621c*\4

do.JU .IoJJU*04 .15193+J4 .15137+)4

415.00 .11750*i14 .11734.04 .11bb4*L4

43.JJ .90)00+')3 .7,485)+33 .79469+)3

X5.00 .4750u+03 <4G412+U1 .4GtL7*G3

1JJ.JJ .30)OJ .JJ303 .JJJ)7

d5YM .P PUNLhS.19d/o4d#6(#PL1J

&PLOT.P
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B.2 The Pinned-Free Beam Control Program Listing

l • COMMON STAR T*HSTAN ;HM 1N * HMAX ♦ERMAX ♦ XL ♦KEV ♦ XZc IV) AN
2 • REAL	 AIIO*10)0I101	 ,+
3• REAL	 YI100)	 •UA150)
t• REAL	 ARt10♦10)♦ A2t19.10)*tlI6t1J1•af10I
^• REAL	 AA/30.141^PN1110)^BAI101*FAI1?)
50 REAL ABA:10*1^f^BBAl10)^AQAI10^10)
70 DIMENSION WORK MO)
b• REAL Ft10) ♦ UtSO) ♦PS1l5J)•XtSO)
9 • REAL	 PHI2t10)

1^ • DATA R/10.0.01
II* C
12 • C THIS PROGRAM COMPUTES THE OPTIMAL DISCRETE FORCES
13 0 C FOR THE SHAPE CONTROL PROBLEM FOR THE JPL FLEXIBLE
1i • C BEAM• AND GRAPHS THE RESULTING SHAPE VS THE DESIRED SHAPE*

1S • C
16 • C PLEASE DEFINE THE FOLLOWING VARIABLES*
17• C
18 • C XL IS THE LENGTH OF THE BEAM.
190 C NO IS THE NUMBER OF ACTUATORS.
20 • C NO MUST BE GREATER THAN OR EQUAL TO 29
21 • C NP IS THE NUMBER OF POINTS ALONG THE BEAM AT WHICH VOU
220 C WISH THE GRAPNS TO BE PLOTTED.
23 • C N(' IS LESS THAN Ot EQUAL TO 509

2 4• C XI(I )• 	1=199..•NM	 ARE THE	 ACTUATOR POSITIONS•
25 • C bE CERTAIN XIII)	 1S BETWEEN 0.	 AND XL*

2S • C 0(1)9	 1=1*...•4 14 ARE	 THE WEIGHTS ON THE FORCES F(I) SQUARED
27• C IN THE QUADRATIC COST CRITERION•
28 • C
29 • C
3i • C PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS*

31 • C
32 • C JOPT=1	 ONLY	 EXACT OPTIMAL FORCES WILL BE	 CONSIDEREl1.
zk 3 C JOPT=2	 EXACT OPTIMAL FORCES AND FIRST APPROXIMATIONS

3♦• C BASED OV EIGENFUNCTION EXPANSIONS ARI TO B E CONSIDERED*
3^ • C
i5• C
'A7• C THE DESIRED SHAPE IS THE PARABOLA	 Y= LENGTH • 314 K • X•u•
3h• C
X14

C

♦ 	 • C PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS.
♦1 • C
♦.̂ • C KOPT	 DFTERMINES YHAT GRAPHS AKF GENERATED.
♦•.. C

♦♦• C KOPT=1	 NO GRAPHS.	 THE	 OV'lMAL FORCES• SHAPE ANO COST
♦ i • C WILL	 BE	 PRINTED*

♦ r • C KOPT=2	 EXACT	 O P TIMAL	 SHAPE	 VS.	 DESIRED SHAPE•
47• C KOPT=*	 DESIRED VS *	APPROXIMATE SHAPES

J
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r^

00 C KOPTV4	 EXACT* APPROXIMATE* AND DESIRED SHAPES ON ONE GRAPH*
40• C KOPTz5	 SOT" Z AND S•
i! • C KOPTa6	 SOT" 4 AND S.
51• C
52• C
43. KOPT:6
54 • JOPtz2
55• IF(KOPT.GT621 JOPTa2
56• woo 2
97• XL:Iq►	 .
%5* NPz 21
59• 00 1	 1=1oNM
60 • YZ(I)z1e.5	 +XL

61 • 1 C04TINUF
tit • NRITEt692)	 XL

63* 2 FORMAT(/I//41X925HTHE LENGTH OF THE BEAM IS0 19.2)

64 0 CALL VOUT(XZ4NM433933H4THE VECTOR OF ACTUATOR POSITIONS)
6 1^ • DEL=XL/NP
L&* NP=NP*1
b7 • C
640 C THESE CONSTANTS AlE NECESSARY FOR THE PLOTTING SUNROUTINES.
59+ C
7;.. XLE4 =8•
71 • VLENz6•
7?• N6=1
7,l • NT =b
74• TICI=te•
75 • TIC2=900
76 • T1C3=•/•
77 • TIC4=0se

7B• C
79• C THESE CONSTANTS ARE NECESSARY FOR THE MATRIX INVERSION ROUTINE SOR.
Af• C
Pl • (:DA=1'+
B2• NCB=1
P3 • NP=1
84• X1=XZ(1)
H0,. M=VM•1

AS • C
P7 • C THE FOLLOWING VARIABLES ARE NECESSARY FOR THE JPL OUADRATURES
!+A • C SUBROUTINE.
!► 9 • C
9^•• START=C.

M I • HSTAR=.OI*XL
92 • H14IN=XL•1.E-4
930 MMA%2e05*4L
94• ER4AX21.E-5
9i. KEY='.)
q(,. c
97 • C
94 • t MERE	 THE F X ACY	 LITTLE A MATRIX AND 0 VECTOR 	 ARE COPPJTEO.
^^• C

;^	 • CALL	 A40(k)
1`I • CALL	 EVECIS)
1^2 • CALL	 M0UT(A9%DAs4MsNMs20%23M0TM.	 LITTLE	 A	 MATRIX)

ICJ • CALL	 VOUT(4*4 Mv2Os23MOTHE LITTLE 0	 VECTOR)

1'4 • C

%	

i
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105• C HERE THE 816 A MATRIX AND B VECTOR ARE. COMPUTED*
1 ^6 • C
1'`7• U0 75	 IV20411
1^R • A16t1^1)s811)•X21I)•8(1)/X1
1:9• DO 75 J=24NM
110• ABlI•I^J•1)=otl)•XZtI)•XZtJ)/ikl nX1)+AtI^J)•Ai1^J)+X211>/X1•AI
111• I•XZ(J)/XI	 +A(l+l)*AZ(I)•XZ1J)/(X1•X1)
112• 75 CONTINUE
1134 CALL MOUTtA9•NDAoM•M917417H0THE BIG A MATRIX)
114• CALL VOUT(eIG94*1T•17HJTHE BIG 8 VECTOR)
I15• CALL VOUT ( Q•NM+28428HOFOR T141S WEI6HTIN6 VECTOR Q)
llb • C
II I * C HERE THE EXACT WEIGHTED MATRIK A+Q IS COMPUTED*
118. C
129• 00 80	 I=Ism
120• DO 80 J=1gM
121• AQl19J)=AF(I*J)
122• 8a CONTINUE
123• DO 85	 ImloM
124• AQ(lgl):AQ(Iol)+Q41+1)
125• 85 CONTINUE
126• CALL MOUT(AGODAtM•M*24.24H)THE MATRIX 816 A PLUS 01
177• C
128• C NOW WE SOLVE FOR THE EXACT OPTIMAL FORCES F2 TO FM•
129• C
13:• CALL SORIAO*NDAoM•N16*NDEvNB*$9"tWORK)
131• CO TO 95
132• 90 WR1TE(6.911
133 • 91 FO4MAT4////410X•25HMATRIX 1S NEARLY	 SINGULAR)
134• 60 TO 51%
135• 95 CALL VOUTIBIG•M•27v20h5THE FORCES F2 TO F141
1`6 • C
137• C WE COMPUTE THE ENTIRE VECTOR OF OPTIMAL FORCES*
13 61• C
139 • F(11=J.
14U• DO	 1^0	 1=10M
141• f(1)=f 111-BIGtI)•xZll+I)/Ml
14^. F( I.1I = HIGtI1
14i• 1': CONTINUE
144• CALL VOUT(F•kM•29.29MOTHE	 VECTOR OF OPTIMAL FORCES)
145 • C
146 • 1F(JOPT.EQ.l)	 60 TO	 175
1+7 • C
l46 • C ••••••THE	 APPafXI%ATIONS•+••••
149• 00 165	 1=1010
15.•
151 • Oli)=IxL••TI•I.E•T
1`2 • 135 CONTINUE
I•.. C
19.4 • V=3.927
155 • V2=7.:'E9
155 • C
1`•7 6 C V	 AAD V2	 SATISFY TAN V =	 TANN V.
1.`61• C THE f1RST	 FIGENVA.UE	 IS	 (V/XL)..4.
1`9 0 C THE SECOND LIGENVALUE	 IS	 (V21WL)	 ••	 4.
1 F : • C

1(1 • C FIRST	 COMPUTE THE EIGEhFUNCTION VALUES AT XZ(I)•
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162+ C
163* DO 130 121.44

164* ARGsV*XZ(1)1XL

165* AR62aV2*XZCI)/XL
166*
167* PHI(I)at-1*4142)*SINIARG)*(1.9695E-2)*tE%P(AR6)-EXP(-ARG))

168 • PH12(11=11*4148)*SINtAR621*(*8511E-3)*tEXP(AR521-EXPI-ARS2))

16" • 11J CONTINUE
170* C
171* C THE APPROXIMATE LITTLE A MATRIX*

172 * C
173* DO 12J Is19N4
174* DO 129 Jz19NM

175 • AA11*J)s(IXL•*71/tV**$)1*PHI(I)*PHItJI

176*
177* AA(I*J)zAAtI*J)*t(XL**7)/tV2**8))*PH12(1)*PN12(J)

178* 121 CONTINUE
179 • C

180* C NOW THE APPROXIMATE LITTLE 8 VECTOR*

181 • C
182* 00 130 1a`.9NM

183 0 KETz-1

lE4* CALL R0048S(START*XL*T*FOFT * NSTAR*HMIN *HMAX*ERMAX * ANS*K9KEV)
185 • 11 WANT=.75*XL*T-T*T

186* ARC--V*T/XL

187 • Pzl-1.41421*S!NIAR6)**019695*tEXP(AR6)-EXPt-AR6))

1P8* FOFTsWANT*P
199 • CALL ROM2
190* IF	 ( 0( * E0.11	 GO	 TO	 10
191 • R&(11mfXL**3)•PNIfIlaANS/(Va*4)
192 • 130 CONTINUE
193 6 CALL	 VOUTIPHI*NK915915NPTHE PHI VECTOR)
194* CALL MOUT(AA9NDA9NM9NM932932HOTHE	 APPROXIMATE LITTLE A MATRIX)

l9S • CALL VOUTIBA*NM932932H6THE APPROXIMATE LITTLE 9 VECTOR)

196* C
197* C MERE WE COMPUTE THE 810 APPROXIMATE A AND Ce
198* C
199* DO 140	 lz29N4
2?C • PBAIl-I1zBAt1) -X1t1) • BAtII/Xl
201 • t0	 140 JZ20NM

202 • ABA11-1*J-1120(1)*XZtII*XZIJI/1X1*XII*AA(1*J)-AA(1*J)*XZ(I)/X1

233* 1	 -AA( I*1) *XZ(J)/X1*AAil * 1)*XZ(I) *XZtJ) / (Xl*xl)
2;4 • 144 CONTINUE
2:5 • CALL MOUT(ABA914DA940*24924H)THE BIG APFROX A 	 MATRIX)

2^6* CALL VOUT(bBA01*24924NOTHE 816 APPROX 8 VECTORI

2:7 • C
208 • C HERE THE APPROXIMATE WEIGHTED MATRIX BIG A * 0 IS COPPUTED*
2C9 • C
21( 1 * DO 150	 1z19M
211 • 00 15) Jzl*M
212* AOA(TpJ)=A8A(IvJ1
213 • 159 CONTINUE

214 • DO	 155	 1=19P
215* AOA(19I)zA0A(191)*OII*11

216* 155 CONTINUF.

217* CALL M^UTIAOA94OA9M 9 M931931H3THE	 A PPROX MATRIX BIG A PLUS 3)

218* CALL SORIAOA*NDA914988A9ND89N896909WORKI

.
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219 • 160 CALL VOUT(SBA01932932MOTHE APPROXIMATE FORCES F2 TO FM)

22C* FA(I)=J.
221* DO 270	 131914
222 • fAll)ziAll)•t1BAt1I*x2tI*1)/X1
223 • FA(I+l)s8BAt1)
224* 170 CONTINUE
225 • CALL VOUTIFA9NI101931MOTHE APPROXIMATE FORCE VE ZVTOR f)
226 • 60 TO 163
227 • 175 WRITE(69178)
228 • CO TO 185
229• 170 FORMAT(/// 193X98HPOSITION94X913HDESIRE:D SMAPE92)(913140PTI4AL SHAPE)
230 • 179 FORMAT(// / /9,• XtS4POSIT1ON94X913MDESIREO SMAPE92X913HOPTI4AL SHAPE9
231 • 1 2X913HAPPROX. SHAPE)
232• 160 WRITE(69179)
213 9 C
234* C HERE WE COMPUTE THE SHAPES*
235* C
236 • 185 DO 2V 1=I9N9
237 • x(I)=(I-1)*DEL
274* T=X(l)
239• PSI (1 )3.75*T *XL-T*T
24;• U(11=9.
241 • UA(1)=Q.
242 • DO 215 J=19N4
243 6 Z=xZ(J)
244* H= T*Z*( 33.*XL/14;.*IZ*Z*T•T)I44.*XL)-(Z **4*T**4)/#48 **XL**3) 	)
245 • 1F(T.GT.Z)	 60	 TO	 195
246 • G=H-(Z*Z*T•.5*(T**3)/6.)
247* 60 TO 201
248 • 195 G=H- (T*T*Z..5+IZ**3)/6.)
249 0 2'9 U(11= U(I) +G*F(J)
25C* IF(JOPT.E091)	 60 TO 205
251 • UA(T)=UA(I)*G*FAIJ)
:52 • 2:5 CONTINUE
253 • IF	 (JOPT.E0.1)	 GO	 TO	 2:8
254 • YRITE(692:•61	 T9PS111)9U(I)9UAt1)
255* 206 FORMAT(/91X9F1(l.296E15.5)
Z 656* GO TO 211
: 67• 2:A YR1 T E(592: 10.)	 T9PSIII)9Utl)
259* 21^ CONTINUE
259 , C
264* C r IS FOR SCALING PURPOSES.
261 • C
262 • 14P2=2*NP
263 • n0 215	 1219AP

264 0 r(1)--PSI(J)
265 . V(1+NP)zUII)
Its* 215 CONTINUE
267• C
269* C HERE	 WE GENERATE THE PLOTS.
2(9* C
27:* CO TC	 KOPT
X71 • 25 . CALL BGNPLT
?72* CALL PLFORM(*LINLIN*9YLEN9VLCN)
:73* CALL	 PLSCAL(X94P9NG9V9NP29NG)
274 • CALL PLA6ELt • THE FLEXIBLE CEAM EXPERIMENT•9289*LEM6THf969*DISPLACE
275• 1MENT*912)
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276• CALL PLGRAF
217* CALL PLAXISC-29XLEN*8 * )
278* CALL PLCURVIX *PSI9NP9NT*TICl)
279* CALL PLCURV(K9U9VP9NT9TIC2)
260 • CALL PLCURVfX*UA*NP*NT9TIC3)
281 • CALL PLTEXTII * S9 * 589 * 1099 * 949NDESIREDI*) VS 0PTIMALf0)	 VS APPROXIM
282* IATEM SHAPES94991)
283 • 40 TO (2719272*273*2T49275)* M
284* 271 CALL PLTEXT6 * 3*7 * 09*1*0.913NTY0 ACTUAT0RS*13*I)
285* 60 TO 281
286* 272 CALL PLTEXT43 * 2*7 * l* * I*0 * *15HTMAEE ACTUATORS915oll
287* 60 TO 280
2R8* 273 CALL PLTEXTf3 * 3*7 * 09 * 1*O * 914NF0UF	 ACTUATORS91491)
289• 60 TO 281
290- 274 CALL PLTEXTf3 * 397 * 0* * 1*J * *14HFIVE	 ACTUATORS914*1)
291* 60 TO 280
292* 275 CALL	 rLTEXT(3 * 3*7 * O9 * 1*7 * *l3NSIX ACTUATORS91391)
293* 284 IF(KOPT * EO * 4)	 60 TO 491
294* CALL ADVPLT
295* 300 CALL 86NPLT
?96* CALL	 PLFORM49LINLIN*9XLEN9VLEN)
297• CALL PLSCALfX9NP9N6*V*NP29N6)
298• CALL PLABEL(*TNE FLEXIBLE BEAM EXPERTMENT•*26**LENGT14*96**3ISPLACE
299 0 1MENT**12)
300 0 CALL PLGRAF
311* CALL PLAXIS(-29XLEN*7 *	)
3(, 2* CALL	 PLCURV(X*U94P*NT9TIC2)
303 0 CALL	 PLCURV(X*PSI*NP9NT9T1Cl)
3?4* CALL PLT£XT(2 * 43* * 5)9 * lO*0 ** 31MOESIRED(*)	 VS	 OPTIMALIO)	 S44PES9319
395 • 1	 1)
306* GO TO	 (321932293239324 *325)94
307 • 321 CALL PLTEXT43 * 3*7 * 0 ** I*0 * 913MTY0 ACTUAT0RS913*1)
309* GO TO 339
309* 322 CALL	 PLTEXT(3 * 297•J * sit 0 * 91SHTHREE	 ACTUATORS91591)
310 • GO TO 330
311* 323 CALL	 PLTEXT(3 * 3*7 * 09 * l9J * 914HFOUR	 ACTUATORS*1491)
312 • 60 TO 331
313• 324 CALL	 PLTEXT(3 * 397 * j9 * 1*') * *i4HFIVE	 ACTUATORS91491)
311 • 60 TO 330
315* 6Y6 CALL	 PLTERT43 * 3*7909 * 190 * 91311SIX	 ACTUATORS91391)
316 0 331 IF(KOPT.EQ.2)	 GO TO 499
317* CALL	 ADVPLT
318 • 3.511 CALL 86NPLT
319* CALL PLFORP(*IINLIN**XLEN9TLEN)
321 • CALL	 PLSCAL(K9NP9N6*Y9NP29N6)
321* CALL PL%BEL(*THE FLEXIBLE BEAM EXPERIMENT*9289*LENGTM *96* *3IS?LACE
322* IPEVT*912)
323* CALL PLGRAF
321* CALL PLAXIS(-2*XLEN * 0 *	)
325• CALL	 PLCURVfX9UA9NN*NT9TIC3)
326 • CALL	 PLCURV(K*PS1*NP9NT*TICI)
327 6 CALL	 PLTEXT(2 * 3 ** SO ** 1J * J. * 35HDESIREG(•)	 VS	 AP DROXIMATE(/)	 SMAPER9
3TK9 1	 1591)
3..1 9 • 60 TO	 (3719372*3T3*3749375)9M
330 • 371 CALL	 P LIEXTf3 * 397 * 0991*0 * 913HTU';	 ACTUATORS*13*1)
331 • GO TO 499
332* 372 CALL PLTEXT(3 * 2*7 * C* * 3*j * 9l%HTHREE	 ACTUATORS*15*1)
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333 • 60 TO 410
334 • 1175 CALL PLTfXT(3a3 * 7a9a•l g 0•*14NF8UR ACTUATORS91491)

335 • GO TO 490

336 • 374 CALL PLTEXT(3a397.0*•190•s14HFIVE	 ACTUAYDA3914oll

337 6 50 TO 411
3tR• 379 CALL PLTEXT(3•3#7.09•I*0•*1314SI X ACTUATORS*1341)

:31 • 41: CALL ENOPLI

D4J • Soo STOP

34•• rho

1 • SUBROUTINE	 AMATIA)
2 • CONMOM START914STARON14I0*NNAX*ERNAXoXLvKETeXt11(t)ok!:
3 • REAL	 A110.16)
4• DO 5C Jxl$%P
S• DO S"	 I:.f•NM
b• x1:Xitl)
7• rJ=x1(J)
8• CALL	 ROMBS(STARTaXLgX•FOFX•NSTAR*HPIN+NNitk*ERMAX*ANS999KEV)
9• It NI_x•XI.133••XLI140+•IXI•XI•X•X)/l4••XL)•/XI••4+x•+4)/(4^••XL++31)

I" • NJ=X•XJ•t33.•XL/140.•tXJ•XJ+X+X)/t4a•XL)•(XJ••4*x•+4)1!41•*XL++3i)
11• lf(X+GT*Xl)	 60 TO	 15
12 • GI=NI-IX1•XI•X/2++1X•+3I/6.)
1! • GO TO 16
14 9 15 C1=MI-(XI•X•X/2••(Xl••3)16•)
15 • 16 1f(X.GT.XJ)	 GO	 TO 23
If* GJsNJ-XJ•XJ•r/2+•tX••3)/6•
17• GO TO 21
18 • 2L 6JsNJ-x+X•X+l/2••tKJ++31/60
19• 21 FOfxsG1•uJ
2) • CALL R0M2
21+ IF(K•EG*I)	 60	 TO 11
22 • A(JolltANS
23 • 5) rORTINUE
24• DO 6 1 1	 1s2•NM

^,• r,o	 6f.	 J-1111
27 • A(1•J)=A4Jal)

2b+ 61; CONTINUE
2's • RLTURh
3':+ EVO

I • SUBROUTINE	 SVEC(B)
2 • C04MON STAR TaNSTAR•HMIA9Ml4AXaERMAX9XL+KEr9XZtM*INM
30 REAL	 Rfl,l)
4 + D0 51	 I= ION"

^• Z=1111
!• CALL	 R004PS(START+XL•Xoff)f).,NSTAR.M141NaNRAXaERMAX,$NStK•KEV)
7• li :=l•Z •( SS.•rl / 14i+•/I•Z• x• x, / t4••XL) •tZ••4a+ X•s4)/t4J+•XL•+3)1
4• lf(X*GToZ)	 Gn	 TO	 IS

1' • ,0	 TO	 2-"
:1 • 1S '=G- Ix•x•1• +?^(1••3lIF+)

i,`. • f0ixa(S1•G
. 4 • CALL ROMP

1` • 1f(K+EC+l)	 GD	 TO	 1"
:E • f•11)=Alas
11 • Ti^ CONTIPME
:°• RETURN
i° • r%D
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Output

Ih; L'_` 5TM OF THE BEAM IS	 14Y.d4

THE VECTOR Of ACTUATOR POSITIONS
	1 TO	 2	 5.0000003.01	 100300000402

THE LITTLE A MATRIX

COL	 1	 COL	 2
ROY	 1	 2.4259911.39 -4.1531314.09
ROY	 2	 •401531314409	 7.14&2926#39

THE LITTLE B VECTOR

	

1 TO	 2	 5.46T3537•08 -9.4246017#38

THE BIG A MATRIX

COL	 1
RC7	 1	 3.3462782•► 10

THE PIG B VECTOR

	

1 TO	 1	 -2.3399339.19

FOR THIS WEIGHTING VECTOR 0

	

1 TO	 2	 0.3000000	 0.0007:00

THE MATRIX 3IG A PLUS 0

COL	 1
now	 1	 3.3462782+13

THE FORCES F2 TO FM

	

1 TO	 1	 -6.1961186-02

THE VECTOR Of OPTIMAL FORCES

	

1 TO	 2	 1.2192237-01 -6.0961186.12

THE PHI VECTOR

	

1 TO	 2	 -1.1691.31,1+33	 1.9992210#01

THE APPROXIMATE LITTLE A MATRIX

COL	 i	 COL	 2
ROW	 1	 2.4204669.74 •4.1487150+09
ROW	 2	 -4.14e7159•39	 701311938*i9

THE APPPDXIMATE LITTLE B VECTOR

	

1 TO	 2	 5.4816966+78 •96374749.38

THE @16 APP2CX A MATRIX

COL	 1
ROJ	 1	 3.3447921#11

THE PIG APPROX B VECTOR

	

I TO	 1	 -2."33!:70*39

THE APPROX MATRIX BIG A PLUS 0

COL	 1

ROY	 1	 3.34!7921.1-1

THE &PP60XIMATE F! , RCES r 2 TO FM
	I TO	 1	 •!+. 17411' 9-9
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THE APPROXIMATE FORCE VECTOR F
1 TO	 2	 1.2157462-41 -6.0741309.02

POSITION	 DESIRED SHAPE OPTIMAL :i44PE APPROX. SHAPE

•00 •00909 •90000 •09343
!x.00 •33000.93 •:	 367.03 •15993.33

130 .30 •65"33•:3 .51472.73 .:,1226.43
15433 090033.03 •751:4.03 •74939.33

23.00 611000.04 .96649.03 •96373.33
20000 •12500.94 411513+34 011977.94
33.0: .13503.14 .129?3•l)s *22936-14
35.040 611030.04 .13982404 •13S4	 -: ♦
40.00 •1.003.04 .14453.04 014.12•14
45000 .13500.04 .34316.04 •1+276.14
53000 .125'0•0. .13.9.•34 .13456•.'4
55.:? .119:9•"4 .119!s•04 411911•.4
63.r: 4,90:00.33 .!"69."•3.33 •96026.03
63091 •6500".13 •6134+1.33 06$164.93
79099 .359:0•:'3 .344b1•23 .34383.03
75.9E .1333? •.39698.12 -039575•:2

03403 •..9033.13 -.46229.03 -044&397.33

es.9C -.91537.43 +.91x76•!3

93.0: -.1353:•'4 •.1=9:3•x4 •.1:073•).

ss.:. •.1953•;+ -.18825.04 •.19.71•.•

113.3E -.25CL,14604 •0230130"4 •.237,5•;,
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B.3 The Simply Supported Seam Estimation Program Luting

I• ht AL	 0(1014b(1u/4A(1041014X2(1C1$Ab4101

1 • PEAL PIP i(Su14Ab(124101•VPRR1tJJ!4Ul!)142ti)14S(lN4StA1

3+ FLAT	 SLLilut)l
44 DATA b(114h(214001 1.16154	 .254 .1675

^• C

e • c +ee+eolNtNOt.UCtION+•^•••

1• C
b• C THIS PROGNAP PERFORMS SHAPE ESTIMATICN FOR THE

t	 90 c: SIMPLY SUPPOkTEO dEAM. 	 UPON INPUT	 OF NM JISCRETE
100 C Ob1tRVATIONS bill 	 OF	 UISPLACLPE&I	 AT POSITIM x1411•
11• C AN OPTIMAL	 t`.:1IMATE Of	 THL SNAP: OF THE BEAM
14+ C WITH RESPtrl	 TO 11%E	 LRITLOIOh
114 C
14+ C 4I/11•(S6M4toll1++210(1/0 i1111•IhlEbfFAL(lu-F1•.111
15• C
160 L W"t,kE U141	 1S	 THE	 SHAPE AkU F(x1	 IS THL NCISL	 IN	 THL
1'/+ G 0 NAMIC MOUtL	 UL:+• 41U = F41).

lu s G
194 L PLLASE LjtFIhE THL FOLLOJIN1i VA4iAdLLS.
2U • C
1l• C xL	 IS THi LLNUTM 2:	 THE	 $LAM.
12• C hM	 1S	 THE NUP6£k	 OF QNSLRVATIONS.
23• G xZl09	 I = l....•hM AML THE POSITIONS AIONCv THE 	 6LAM At 14IC4
it L Ob%LMVAT IONS AOL	 1"Aft.
25* L 0 ( 11	 AOL TNL ++IhV0tSLS • • OF TMt 4ILIYHtl	 OM THL	 3bSERVATIOIdi	 IN
16• C THE PLRFORMANCE CRITLRION.0
17• C NP IS THL NUMOEH 2F POINTS 0% EACH CURVL TO SL PLOTTEL.
1h • L
1V • P1=3.1415V
^u• x1cl.

'	 31• NM_3
31•

.t3 • NUb=1
3 46 • hb=1
35 • NP:13
366 CLL:xL/NP
37• NP.VP.1
3e• %Pi:2*%P
39+ 00 1	 1 =10P6
#6a• 6111: 4AL••71 +1.E 	 7
+61 • x1(:1:.15.1
X12• 1 CONTINUE

463• kklTL(o.29V)
4 o• .VV FOR04741H11
+50 WkITE(e411
0 60 s F0947(////1
467• WkITL(o.31xL
41+ • KO(PAT ( IX#dSHTML	 LL%film	 OF	 TML	 bt AP	 IS•I16.11
14 . GALL	 V OJT (X1.11M.26.26HuTr4L 	 OuS:RVATION	 P2SIt13%iI
!)u• LALL	 V 4Jtll(6•NP417417HJlHL	 OdSERVAT1CN51
51 • L
7i • G LOPPUIL	 THt	 IIAThIx A
tp 3• G
^•• u0	 S	 1:1she
^5• x:x2111

^o• L1=r•tx-2.•x11
hT• uU	 J:l•NM
^6• r :x71J1
^ y • c1:r•r-1.•xl•r
oc• G^ :x•x.r•r
et• ^:.:r.r.r.r
ot+ Atl•Jlc^lx- xlt+tt -x11 /t36.•xl+x111.	 ((x••11^7.•(x++31+(t1•G11I^..
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'l

63* 1	 IX**31*CI*C2/0.I+IX*Y/136.*XL*XL11*9lXl*+7-Y ++71/7.+X1 •Y **6-Xl*+i

64* 2 +42•(XL**5-Y*•Sl*(13.+XL+XL+C3)-(XL**4-Y•*4)*l3.*AL**3+XL*C31

65* 3	 +IXL**3-Y**31*(1./3.)*(S.*XL*XL*C3.4.*XL**4+C41 	 -(XL*XL-Y*Y)*(XL•
66* 4	 C4+(XL**3)*C3)+IXL-Y1*(XL*XL* 1 41)	 +	 (K/(36.*XL•*2))*(Y-!L1*((Y
67* 5 *• 7-X**7)/7.-XL*.5*(Y**6-X**6)+.a*(Y**5-X**5l*(C2+2.*XL*XL +X*X)-
bd* 6	 .25*tY**4-X**41*13.*XL*C2+XL*X*X)+(Y**3-X**3)*C2*(X*X+2.*XL*XL1/
09* 73*-(Y*Y-X*X)*.5*(XL*X+X*U:))
70* 5 CONTINUe

71* 00	 6	 1=2*NM
72* I1=I-1
73* C'0	 6 J=	 I i
74* A(I*J)=A(J*I)
75* 6 CLNT INUL
76• CALL MOUT(A*NJA*Y4*NMs13*13,10THE 	 MATRIX	 4)
77* L
789 C HERE *1E	 COMPUTE	 A*d.
79* C
dJ* UO	 23	 1=1*NM
dl* Ab ( I)=,.
82* UO !U J=1*NM
63* Ab(l )=A b(I)+	 A!I*^1*blJ)
d4* 10 CONTINUA
b5* CALL	 VOUT(Ab*NM* Its 15HUTHE 	 VECT f)R A*b)
d6* C
b70 C hL&L	 COMPUTL A•;..

db* C
b9* GC	 15	 1=1*1*M
90• u0 25 J=1*NM
91* AC(I*J)=A(l*J)
920 25 LONTINU
93* UC	 3u	 I=1*NM
94* AOtI * I1=AC(I * I)	 +	 O(I)
95* 9u LON71NVE

96* CALL MOUT(AO*Ni1A*VM*N4*15*15HOTHE	 MATRIX	 A+0)
970 C
98 0 C HERL WE	 SOLVE FOR T Hi. OPTIMAL SHAP = 	AT	 POSIT IONS XZ.
99* C

1000 CALL	 SGR(ACoNOA944 *AB*YUd*N6*6359.dORK)
1U10 CALL	 VOUT0-b * kM*24*e4HUOPTIMAL SHAPE 	 PCSITICNSI
1Jc* b0	 TO	 4J

IV30 s:) Wkl7L(6*361
IU4* 36 FORMATl1HU * IX*3bH —**** MAT41X	 NEARLY SINGULAR	 *+0.001
lu5* bu	 TO 5uU
tub* L
l07* C N06	 AL CuMPLT[	 THE OPTI MA L ShAPL.
lUd* C
lu g * r(' LO	 45	 1-1ohP

11Js 2(11=1i-3)*ul^
11) • 45 Cbe:TINJL
112 • uU	 51	 1=19N N
113 • LO	 5U '=1*hP

114* if(XZ(i).iiT.Z(J)1	 bO	 TO	 51
115* X=X7(I)
IIo* Y=Z(Jl
it l ► bt	 TO	 :)1
ll^s >1 X=Z(J)
13^ • Y=X1(11

a

i
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141k

2
)

r

116 0 52 Ll = To Y-2.0XL+Y

121. G1=X6(X-2.•XL1
111+ C3= X+ X 0Y+ Y

1230 C4=X+X 6Y6Y
124 6 StI+J1=( IX-XL 104V-XLI/t36. 0 XL 0 XL)1s	 ((X6*T1/7.0(X005is(CI4L21/'^.•
1'250 1	 (X667)0C10C2/3.)01K0Y/t?6.0XL+KL)16lIX1^07-Y0011/1.0K16Y+6o-YL+07
1'26 6 2	 0.2 0 (XL+ • 5-Y0+5)0113.+XL+)tL0C3)-(X1+64-V004lot 3.+X10s30XL6C3I
121+ S 0(XL++!-Y0031011./3.1+IS.+XL+XL6C] 0 4.+XL6+4 6 i41 	- (KL0KL -Y+Y)0(KL0
lid* 4	 44 0 1XL 6 03) 0 C31 0 (XL-Y1+(Xl + XL+C4))	 0	 (X/(36.sXL+s21)s(V- XL)+(IY
129 6 5	 +61-XOtTI/7.-YL+-5 0 ( Y++ e-X 0 06) 0 .2 +1Y• 6 ;-X0 6 i1+(L2 0 2. 04L s KL 0 K s X)-
13U 6 a	 .i5*0* 0 4 - 1064)6 13.0XE+C26XL*X+X)6/ YM+3-X6+31+L20(X+X*2.+401114
131+ 73.-(VsY-X+X)+.50(XL+X+X*C2)1
137+ 9U ON I INUE 
1310 YRI1:(6050)
134 6 56 FORMAI(I//+1X•12ONt	 MATRIX S)
1350 WRIT L(o+ael (XZ ( U* 1:1+414)
136• 57 FUhMATI/+1X•F1U.i•1UE15.5I
137• Sd FORMAT (//+11X01Jr;1 i.5)
ud+ U(1):C.
1390 UO	 S3	 1=2•NP
1406 YRITL(o•57)	 2(11+lSIJtllf	 J=10AM1

1416 U(11=3.

1410 00	 of J=1•hM

1430 U(I):U(I)018(J)-Ap(J))0S(J tII/J(J)
1#4#46 ot, CONTINUE
1450 YHITE(b•l)
1 #460 WFITE(6.66)
1470 OU	 65	 1'1 •NP
1 .600 PS1(I):XL62(i)-Z(Dss2
1490 SGL(I1=U(1101.1
1 Silo SCL ( l 6 NP 1=f 51 !  1) 0 1. 1
1510 NR1TLI6•671	 Z(1)92%1(110U(11

151 0 e5 CONTINUL

1^3 • 07 FO ►t^ATI/.f1J.2.4L1i.5)
1!.4 0 66 FONPAT (ZX*ahPOS IT I0k03X012hACTCAL 	 SHAFC63X012hC $TII'• 	 Si-AFL 1
1» 0 XLLN=tl.
1566 YLLN=6.
UIs NU=1
I'jb0 TIC+-'s'
1790 TICS ='L'
Sak i • 11L3='60

1610 NT1=2
16.0 hTt=u
1630 NT3=-1
1640 CALL	 bbNPLT

105 0 CALL	 PLv-0RM(',kN-1N'+YLLN+YLENi
lot' s CALL	 PLSCAL(Z+NP•AUOS(L•NP2•Nb)
167 0 CALL	 PLAdEL( ' SHAPE	 ZSTIMATI)N FOR	 TIE SIMPLY	 SJ P P9RTLI	 6L-14'0
161+ 0 1	 46•'LLNuTh OF	 ThE	 bEAN6•1e9'U1SPl6CLMLNT00121
le y * CALL PLGR0
170s CALL	 PIAXI, (-2•XLLN •J.)
III$ LALL	 PLCURV(K2•A3•NM9NT3•T1C11
II.0 CALL	 FL^-Uft	 Z•U•hP•ATl•T1C7)
113 6 CAII	 PLCUHY(Z9PS19%P94T2#TIC31
1146 LALL	 PL 7 LX 111.4•.`•.1+.0 . 53Ht SIIPAIc. O 	SHAFL ( L1	 VS	 Cu SERVA71CN^l0)
115• ION	 ACTUAL	 SHAPL9)1•ll
170+ UO	 10	 t741011.72073.740751a	 NM.
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177• 7G CALL PLTLX1(3.4.7.Us.is.0sl2H0AE	 ACTUATORsllsl)

l/ds G9 TO 60
179• 71 CALL PLTEXT13.3s7.1i96190.s13HT60 ACTUATOFSs13s11
IOJO GO TO eJ
lel 0 72 CALL RLILXT(1 .297.Gs * Is 0.sISHTPREE ACTUATORS919s11
Idi0 GO TO uJ
1o3 0 73 CALL PLTLXTi3.3s7.us.Is0.s14HFOUR AC1uAT065014611
1640 uO TO 6'3
ld5• 14 CALL PLTEXTl3.3s7.us.I*0.s14HFIVE ACTUATOFSsI4911
1660 uO TO 60
1670 75 CALL FLTEXT(3.3s7.«+•.1s0.s13HSIX ACTUATORSs13s1I
Ides no CALL EitOPLT
ld9s !)i (i STOP
1930 tk0

	

THE LLNGTh OF TIE bEAM IS	 I.JO

THE 00ANVATION POSITIONS
1 TO	 3	 2.7vJ00J3-U1	 ^.00J0UJ9-)1	 7.5030300-01

THE OoSERVATIOhS
1 TU	 3	 1.i79u0uJ-U1	 2.SuJJ03U-31	 1.4750'730-01

IF.L MATRIX A

COL	 1 COL	 2 tOL	 3
MUM 1 I.46i3U15-44 I.49U2I22-C4 1.0456113-64
Row 2 1.+902121-t14 c.IJc.13)1 - )Y 1.4902125-14
kow 3 1.04;8312-J4 1.49ui125-C4 1.0622904-U4

THL VLCTOk A0u

1 TO	 3 7.eie2793-V1 I.Udi)8621 -04 7.67e2742-U5

TNt MATRIX A+U

LOL	 1 COL	 2 %.OL	 3
ON  1 1.'1633317-J4 1.4901122-3% I	 J%Sdjlj-J4
NON	 2 1.v9;:i1.2 -U4 l.IJ4133l-c4 1.49(12125'04
R06	 3 1.	 45e313-04 1.Y9J212^-J4 1.0632Y64-14

UPI 1Pi-L	 %h APL PUSITIONS
I	 TO	 1 1. 34i'1271-0I 2.Sv^2762 -J1 1.6421149-U1
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Output

THE MATRIX 5

.2sOOJ+uO .S,4OJJ#Jj .75010•JJ

•U5 •13560-04 •35959-U4 .Y 3U 71-C4

.10 „46559-G4 .btilU9-U4 045591-J4

.15 .63353-G4 695661-04 .670 1-4;4

.21 .116411-U4 .11366-u3 .661145-34

.25 .IL623-J3 .14902-03 .1C456-0

.3u .12137-03 011987-33

-35 .13346-03 .16761-L3 .13213-43

.4. .14222-03 .2uJ44-ji .14125-33

.45 .14744-03 .2jd21-J3 .14693-73

.5u .14902-U3 .21081-U3 .149C2-C3

.55 .14693-03 .20921-,13 .14744-33

.6U .14125-03 .21+04b-G3 .14i22-0

.65 .1321-U3 .18781-J3 .13346-U3

.70 .119811-03 .17051-U3 .12137-:3

.75 .1u45b-33 .149J2-03 .136i3-''j3

.bu .116645-u4 .1&366-ul .1111411-L4

.0 .67021-u4 .9&663 -J4 468351-34

.VU .45591-U4 .65119-04 .4654b-64

. 9 5 .43071-U's .32959-04 .13SdI-34

1.OU .i656u-U9 .56935-01 .10315-c0

i-fti



^. ^"e'R'^s++^ri!'.^no^+.^_.	 _';v*.rs•	 g• z.-'+nr'w;-	 '7^'?^;+^^r`^.q^., ^.,_ "a' .'^M"/. -r w^^t.. rr^n-..w1p^^P^'^!"t^r ^Y.-.¢ r.^ .: .. ,. , :rrr a-^n^wy^ 	
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POSITION A0 U^L ShAPL LSTIM. ShAPL

6]3 . JJu00 .000OO

.U5 .47500-L1 .41587-ul

013 .9uuG3-.)1 .81910-01

.15 .11750+uO .11979+u0

`	 .20 .16J00+00 .15416+00

.l5 .16750+00 .18421+uu

.31 .21J03+GU .23929+00

.35 .2i750+G0 .22V02+J0

.43 .24u00+J0 .24319+00

.45 .24750+36 .25169+J0

.51 .2y00J+0u .25453+00

.55 .24750+04 .2516V+u0

.63 .Y4J00+3u .24j20+JJ

.65 .L2750+00 .22S03+JJ

.7u .21000+00 .209324U0

.75 .10750+00 .18423+uJ

.bu .IoUCO+.•0 .1541b+uU

.85 .12750+00 .11V78+uU

.94 .9L:40-Gl .blvul-ul

.95 .47503-J1 .41590-J1

1.OG .74506-:Jb .15y69-U4



Appendix C. The Large Space Antenna Computer Program and Output

145

P

r

t



ORIGINAL PAGE IS
146	 1 POOR QUALITY

C.1 The Large Space Antenna Computer Program Listing.

1# 0lmkh5InN HD4(20).FREO(50)
as OIr.E_NSIGN	 ^(eAZ),Y(e++t),i(eet),buG^(Fez)
3# OImruSION VECTOR(?646)AU(N82)rv(PAP),t(008)
4s 2IMENbI0N GCHK( le),II (16 ) AF(lA ) rA(ll' , 1A)^AA ( 18,1A)
s$ 014t05 I t ) N PH I ( I 1,16)
As nI HFN31VN NETA(11)
7s 01MENSION	 AL PMA (11),	 C O E F (11) ► 	 WORK(IC,OI
+^• O MWSIO N V$TAR(I6).AYQ8 )fU3 TAQ (IF)
vi I ►ItfGER	 IPT(1b),JPT(1A)

1C# IWTt6ER JSEG(24 0 )v I3 W 68P)
Its FOUIvALEhCE	 (U(1),YECT^R(1)) ► (v1CTORtBtl!),v(1))
12s FOUTYALkSCE	 (K(0sVkCTOR(IT6S))

13s C
14f C
1Sf el ##;#is;,ASft##Sass;;fs#isffffsfffifafi:f;f#fifff#ft#fffs;fs#if###

tbf C
17# C
1AS C STATIC SH APE ESTIMATION AND Cn NTWOL nF A LikOf SP ACE	 ANTE+NA,
19i C
20* r.
21# C istiss;#;#;;;##st#*; itfifssts #si#ifsstt ffiafts;f#t#ftis #sfs #isf#
?. 2 # C
?is s
24s r, TwIs P006RAM ESTIMATES	 AND C0 N T gPL8	 THE	 STATIC	 0j ATVidTIf1 h 	 (IF	 A
.5# C LARGF SPACF 64TENNA O 	UAIN6 WEST CGOWOI N A TES, MOPES A 1^p FQtivUENCIES
?bi r Sl1PNl. IEO	 01Y	 A	 F I N ITE ELE M EN T 	 Hl1nFL,
27s C
28s r THE	 h UOfL	 I NCLODES	 1A RIPS.	 THE	 W,	 Y.	 A :jO 2	 CnuknI v ATES FIR 862
2qs C. PnTr1TS,	 OR	 Nn4F3,	 LnrATED 11N	 1 a CO N AECUTIv c 	CIRCLES.
30s r..

31s (I IT
	

IS ASSu M E)	 THAT	 THE	 HUA 1,F	 I N C	 A ► TENNA	 IS R IFWL Y	ATTACHfn,
12s r SO THAT	 TNF4E	 AR E Nn RIGID 9nDY monFS,
;s r THFQF A4E 33 FREnUENCIES A ND C(IRRES PONDI NG EIGENFUNCTIONS

Us r (HnNFS)	 FIIW THIS m MOEL	 .
35i C
Us C THIS FROGRA` READS F R I) H THE	 TFHOONkWY	 F ILL	 FIXFnANT,	 * 41cl.	 IS

37s 01 CQF&Tto  FRI.I H T H E TAPE	 A1960 AY	 Q01'NING	 A	 P RELIMINARY	 PWf)W4A4
ads G CWFATf,!1	 tiY	 VEJAYARAGHAVAH	 (Vk,IAY)	 At"A W .( W EP 6 	J V L	 EM	 3470600434,
3 q s r A+.1r,03T	 14,	 t 9A n,	 aY	 vEJA v 	ALWAW.
4ni C
4t$ r THE	 A NALYSIS ON	 NI{ ICM 	 THIS PWVbk Ar.	 Ia PA5F0	 IS FnUND	 T•"
4?.s r JPI	 o.h	 3 47. 112 ► 	 APRIL	 h,	 19 4 1.	 ► ► ^APTTuG STATIr	 s o a p	 CONNOL/
41i C nETFqMjNATIUV	 ALf1 ► WTTw-1 i FOP	 T ►.0	 1, , it	 ro.	 rnnFS	 SUPPLIFn	 AY	 A
44i C. F'INITt	 ELE M E N T	 hur)W	 •	 P Y CnN ' i IE	 NFEKS,

4yi C
'Jr) s r

47f C Two.	 CIrLLU v- jfl A 	 v ► WI AF11E5	 POST	 rF,	 DEF114.0...
4ht r
u4s f
9 p t r 111F	 vLCT!I W	 AIPHA(I) ► 	 Is1. ► '40	 AWE	 THv	 CQFFFICfF,e•TG	 OF	 THE	 W114S
y 1 # r T ► '	 T,4E	 AC T UAL-	 7IgTnWT( ; )	 SHADE•	 wH IC4,	 15	 Tf,	 i • f	 o.,%T I'+AYEI	 Ao+ n
5?i r r fIRNFL T ► 0.
5Ss f
S4i r,
c5s r IHr	 r^ g F4vATIRhS	 A r ,r	 Cn • TWnL	 Pn4ITI n ► • i	 4WE	 a S S' I I I- 1	 Tn	 P t	 LOO -tCAIVV

Sbs A^4n	 49PLIEn	 TO	 T H E	 SA M E	 OI R f. CTIO K S	 i t	 FACw	 9 1 n1t To



%74 L Thus	 IF	 A	 F'(1wU	 19	 A PPLIFo	 IV	 tiir	 v	 nt1.FC y l-ls	 AT	 •	 1	 h(el,f	 49,
Shs C It	 1.4	 AS3( 1 •l En	 Tii l W !	 15	 AN	 004 4-ili0lil ' I	 OF	 TI+ E	 '	 r)I4E.; i In r'	 AT	 MIUL
Sts 1`1 44,	 A,-u 4Jwvrilst.Tt
h^0 c
hJt C
w?t .jw	 T5	 twF	 w %wo4kN	 nF'	 4 l iots	 I N	 n;lw	 APP1,nxI 0At 1 '•iv y4
"ts r

&40 r ,CT	 tv	 tr!	 •%U +1 bEk (W F11RUS 1 11 14	 APRLIFI)*
hss c
l.AS r IOT(Il,Islr04.r ►.Pt	 IS	 T M F	 Yu14klN	 CF	 T'+ E	 nUilAL	 VtrINT

'. 670 r Tti	 1k1470 1 	 r'1!	 I1w	 FrwCF	 I3	 AFPI.IFr•
h11t r
Fot r JO1(I)rIs1r...r^PI	 Iti 11 ICATE9	 TML	 PIarCTIr,N	 ntr	 TwF	 It s 	 FiiWta•
7n• 1 J01 ( C)	 IS	 lr2	 'ik	 J.	 .)t'Trl) = l	 "FA ti 3	 THE	 F'.Nf;	 IN	 tN	 IMF 	 i	 nI4FC.TT(1+
71s c JutrT)spr!	 AfA^.y	 THE	 FnwCF	 Is	 1 4	 TwF	 r	 0lWfCtT1,1.	 it",	 I	 itt.FCTIin•
rat c
1 St i XA'•t'1.F......t(l	 APPLY	 A	 F,)kCIS.	 o1 F	 F AC = 	t •.	 t•,F	 A':r	 r	 Ctwrrl Inv:
tY ♦ r AT	 . •,r. ► 	 1 4 r	 0', t	 I N	 TwF	 Z	 r.IWEr1t:^1:	 AT	 IT% L 	 I n .	 A l n	 1.F	 1 .	 T..t	 r
7'is r uI p FrTIOf	 AT	 4, 00f	 34 4 	 •rptau.	 IVt i2 Ctvel4 . lti•3QI	 A°+r'	 JPts ( I.).lrr).
16s r
77* r,
1Mt r ALI	 5LF ► t;+T8	 nF	 TAt	 IIA(NAL	 14lfwTI : tG	 n ► 14t1	 4	 ARE	 (; ►c115L.,	 t.1	 ++F
74s C ?,if	 •tAMt	 VALU,	 0w 4 	 ON	 IvPUT...
Ars r WW	 It	 t ►.L	 I lil t IAL	 VAI.4A	 nt	 TNF	 0146"AL	 FLE i'F. N t9	 ll F 	 TwF	 '•lT1.1•ttwh
Alt C f1ATWI1	 W.
Ars r I 1	 T.413	 P W r1URA':	 w	 IS	 TMF	 IN(^RF,1cMT	 it	 :,	 IC.,	 —	 T••rwtckips4
(11.t• r Twx	 rilltkIo hh 	 iar	 :• w lrM	 4w	 IN	 nFTEti ►, TNr	 n	 .•.	 749	 IMALLESI
A4t r VAi.-Jr	 Fu`l	 «MICH	 THE	 ►'ATQIX	 A*k	 13	 T•vtwTtkLF..
+15 s C
R6s r
ATt r AFT	 I ► 1 PT	 k1I116L	 T(;	 I	 IF	 `,L'	 PLOTS	 AWE.	 r1:gIwLt),
•3s c
a y s r
4ns f t++s+tstsasstssssststsssssssstwst+ttst+a>atttsts+tt++ttsttts+sstt
41s r
4ps r

4{0 r TVFSF	 VA R IAhLE3	 ARE	 ` , lT	 tr;Vu%	 T w F T	 w A-# F	 t1FE' h rt;	 1'0 1 1	 M.	 -ILL
Vas r 41_	 (,cF tnEl,	 14	 T ►1F	 PROGRAM.	 044.090004
9ti• C

460 r FvW	 IrSFWVATIO : iS	 hF	 T41_ 	 nISTQ-'ft)	 5-4 61 F	 'ILL	 r4 	 COMP1rTF1.l

47s C Ann	 at n wEn	 l i,,	 TwF	 vcr yi lR	 rSTAH,
vht L YST •W 	 IS	 T I C	 vFCt1iR	 nF	 hk8lWYAtIn, . 1	 At	 tot.	 out,ar9	 IPT(11,	 Ist. +Nt.
4 q s r.

I^^ • r ,(STA;	 1 ILL	 L, JNTA1 o.	 THE	 nPtlliAl	 SwAPE	 FRTI:+ ATES	 AT	 TWE	 Pill-tt
1{;10 r II'T(TI4
1'1Zs r
)n i t r r.11.F	 I5	 1.+E	 v tCT;i.i	 pF	 t511 v 	 I Er:	 CCFFFICIF %, 13	 +1F	 Iwr	 MgnF'S
1 M30 r I"	 TAk	 t•IITU ;i I EL,	 $64 AP

1 1!30 r
1"!.s c F	 is	 1 "t.	 vtctow	 (;F	 t'rTi H ► l	 c^ ,. Twr . L	 F,,,wf	 S.
1 6 7A r F(T)	 13	 A P G I,ItC	 T'1	 • ' ry nE 	 1 0 1	 Y)	 T o,	 TwF	 ^I W E01 , )'+	 YPY(I).
11 1 4• r

­ ,$ c 1^1TA	 19	 70 E 	vtC;TL,w	 IF	 +p nAl	 CiFFFIrtF;t y	 af`0LTI •,r.	 FwVy
11:x + r Try(	 AP P L IC AT T- 1W	 (l	 T 1 4	 ;,j OT I"AL	 C ri ' Tpn l 	 Fn^rF3,	 4wICH	 Iv ILt	 Pit
111 0 r Cr	 1I, , Tti	 RASL• i 	n`i	 Twk	 OPTIMA	 S w AVti	 FAVI • :ATF	 3Tn&tV	 T#1	 tHE	 VI;CTRi.
1 1 P + t (IlFF4
ltct 1
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'.

114•	 C
Its$ C 13 THE N+I MSERING OF THE NanE3,
116* C NC 13 1ht NUM W OF PLOT tOHHANOO.
111s C J3EG IS T Ht SEOUENCt OF PLOT C011uANDSo
Its$ C
ties C
1203 C TMf LAST CI RCLt MAS KEEN DELETED F4nH Twt PLOTS
t?.1s r WAUSE 0 640 OATA POINTS Pw THAT C IR CLE IN Sn"t +me,
1?2* C
1 ?.1* C IF IT I3 MESIN10 T HAT THE LAST CIRCLf Mf PLOTT M SFT NC294t0
1?4* C IN, TwL DATA STATF "tNTr	 I h THE SUNRnUtINE pkAw•	 A ND RemllyE
lass C TNt nU LOOP INVOLVING ?g ;UNTINUE.
176* C
t2Ts C 404	 I3 Twf.	 HEADING ON THE ► ILEr
I?$* C 400E5 15 THE NUM09W OF NnDf$8862.
le g s C NFefa 73 T4E SUPSEW nF FNEOUEP"CIF3850.
130* C
Isis C
132* C sss^e*ss*sss* s***s*as*s*ss***s* *sss*s*sssss*ss**ss**s*******sss**
IJ3* C
leas C
135s c OA T& CA4.03...
136 s C
131s OAVA	 ALPHA/1Q..2s0.•tA.•3*^.•5.•^..S.rC./
1 3n0 (?ATA	 NC # K" e aP T/214n l l lrlA/
ji g s c
t40s C FIFTH CIRCLE
l a s s C

14 ?* DATA	 IPT/321.13n•l33.13e.134r142.145.1ue.1S1.1P4,1S1.16n•tbS•166•
+a s s 1	 1«g,1T? ► 1TSr1T0/
1441 DATA	 JPT /la * 1/
14S* 131G3(0
141.* InoTs ► .
14T* RR81.0ta10
lass Rle.*FR
loos C
ISO* C OEAn PLO T CUMmANO 3EOULNft
ISI S C
Ises GfAnfSrP1)(JSEb(I)rIst.•^!)
1541 ?1 FnMyAT(Jula)
1543 C

1 % 5 0 C wf*f • E otLETE THE L A ST C1 kCLF FwDh THE PLOT CUf-ANOS,
t*je* C
Ills nn	 Ps	 RKa l p-4c

156• JSsIAr3(J3kie(KK))
j J4s 1^ ( J3.L T . ? 15)	 GU	 TO ?S
I tns 1Sfo(RK)BaJ3
1 0% l s 25 Cn•,TtruE
lets C

J A I $ C 411wif,40	 13F41(1)...
1 %40 c
loss cry	 ? o 	 lslrbe•2

t a b* I3F^+(l)sl
1bTt ?V CcPTINUf
l i b ♦ C
lhos lr (I0FT.L1 .l) 	 G r(i	 T 1i	 94 11

170* GALL PLOT$

H
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K
i

E
4

1110 CALL PLuT(6,0,4,Or•!)
118t CALL FACTOR(0068)
1130 430 CONTINUE
04• C

1750 C
1760 UO 9 IN^10NM
1110 COf ► fIN)^0,
1145 AETAfIN)•0•^

1190 9 CONTINuk
1fl0s 00 94 JN8IONPT
let* DCWK(jN)w0,
Ilia• rSTAR(Jh)•0e
1A30 ArtJN)@06
1440 USTANUM)NO&
1850 99 CONTINUE
1460 c
1470 REWIND as
lees mEAD(45)(04DQ(K)#KQ1020)
1890 REAOfwS)MOOESrNFREO
1 000 NCWEr%mNo0ESs3
1910 C
l ots C ARE THE COORDINATES OF NODE I•
1930 c
1940 REAP(45)(1c(IIrT(I)r2(I)•Ts1,NO0ES)
loss r
1960 C SLUGS(I)	 IS THE M ASS AT NODE 1,
1*T0 C
loss WEAO(45)(SLUGS(j),Iml#h0DEB)
1990 WEAp(45)(FREO(I)OI^i,NFREO)
2000 WRTTE(b010)(MOR(K),K01020)
20;0 In FORMAT(1M1,//,15K^20A4 rSM,0FREQUENCIESrr//)
?O2 0 MRITE(6,12)(FREQ(K),K51rNFREQ)
2030 12 FOQMAl(Sx06E159sr /)
1040 WRITE(6,14)NVD9$
2050 14 FO4NAT01 1 400 0 1 40, OF NODES s	 104)
2060 ruITF(6r1S)
2070 WRITE	 (6016)
2080 1S FORMAT ( / /r2x, r POS1TjONS AND 01RECT1048 OF CO NTROW068ERVATION POIN
2090 1T30)
2100 ib fOR ►SAT(//,2Fr^N00E0,P>",rOIRECTIONr)
211 0 00 2A IsirNPT
2120 JS nJPT(l)
PIS$ IF(Jsva)	 11018019
2140 11 WRITE(6,22)	 IPT(I)
,p iss P in it
albs is WRTTF(6023)	 I PT (I)
?170 80 Tn t0
21A0 10 WR)TF(6,20i)	 IPT(I)
2190 20 CONTThUE
2200 22 inpnAl( /,2K ,I4,bx,'M^)

10 2! FORMAT(/,2r,tw,br,rr^)
ties tw ^OQMATI/0irrt4,bx,^1r)
a p es c
P2Ys UO	 )n0 KFul,Nn
1290 c
1200
?270

i

C NTQN5 lb A C HECK T'1 SEE T ++AT THE TAPE IS BEI NG READ PROPERLVe



224•
2190
2704
2710
232 4

2330
1340
23s0
1760
2374
2344
1394
2400
1414
2424
2430

2440
2454
2464
2414
2 4 #0
1494
2s00
2510
2524
2330
2540
also
2560
2574
2560
2994
2604
261•
2%20
2630
J6 4♦
P6S0
2660
2674
26#4
2690
2704
2710
2720
2730
2140
27s0
27A0
2i 70
278•
2744
2600
2#10
2820
2830
2640

M.
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C	 NTRNS • 3(841)91646.
C	 AVR i 4 THE MOOS (EIGENVECTOR) NUMBER.
C	 FR I6 THE FREQUENCY,
C
C

READ(4l)KFR0FF0NTRNS ► (VECTOR(K)0K^10NTRN8)
IF(NCHECK.NE.NTRN8)c,0 t0 115

C
C	 Pr1(I ► J) ► I 6 1 ► 4H AND J B 1 ► NP( HOLDS THE VALLE OF MODE I
C	 AT NODE IP T (J) IN THE DIRECTION JPT(J)•
C

Dn is I.10NPt
JSIPT(IJ
JSGJPT(I)
IF (001) 30031032

30	 PNINF01)OU(J)
On TO 33

31	 P41000 I)EY(J)
Gn To 33

32	 PHI (KFIVam(J)
33	 CnNTINuE
3 5	 CON TINut

00 sA 1810400E8
C
C	 MERE ME CO MP;J TE THE KNOWN DISTORTED SHAPE,
C

X(I)sX(1)^AL1MA(Kf)4U(I)
^(I)^^tI)^AL ►HA(KF)OYtI)
Z(1)82(I) OALPHA(K ► )* W (I)

s0	 CONTINUE
loo	 CnNTiNut

iF(InPT 0 EQ.1) 60 TO 105
C
C	 MERE WE PrOT THE KNOWN DISTOR T ED $NAPE.
C
C
C	 GRAN IS A SUBROUTI NE C REATED # Y G ► RnDRIGUEZ TO PLnT THREE
t	 DIMENWNAL SURFACES.	 IT CALLS THE 8U&ROUTINE TRANS.
C

CALL DRA"(X ► Y0Z0JSEQ ► I3EQ)
CALL FACTOR(190)
CALL PLOT(10.0 ► O.Or-3)
CALL FACTURGO066)

lus	 CONTINUE
CALL 0+ 0{i T (PMi0NM 0NM 0 NPT ► 15 ► 15HOTME MATRIX PHI)

C
C
C	 HF_RE ^t CO MPUTE THE MATRIX A AND TMF VECTOR OF EXACT 046FRVATIONS
C	 Y3TARv
C
C

On 190 I•1 ► NPT
o(I)•U.
Olt 190 J21 ► NPT
A(I,J)•0.

190	 Cn%YTNuE
n0 20 6 I14010NM

s •



lu

PSS• On 800 I610NPT
2060 COEF(I)•0•
4.074 VerAR(I)^YeTAR(I^^ALPMAIIKI•PyitlR•f)
i Pe• 00 too 4410 4Pt

Pa g e Aft.J)•AtI•JI•YMI(IK , I)•►MIt2K•J)/tfREotIK)6R4I
2 90* 200 CONTINUE
291* CALL	 "^UT(A.N ►T^NPI^NPT,)3.13MOTME MATR IM A)
?92* CALL VOU T (VSTAR#NPTs30.30MOTME VECTOR OF 063EOVATIONG r•)
293• C

294* C COMPUTATION OF rHt PROOUCT A(Vl1TAR)@AV
29s• C
196 0 00 aoY 1•i •N► T

Me or Pot Ja1.NPT
P9A• YSTAN(J)
P994 002 CONTINUE
300• CALL VOUT(AV, NPT,	 14 0 14MeTHE VECTOR AV)
301• C
3ft2e r MERE of ADO TOE R MATRIX TO THE A MATkIX0
303• C
3044 C
Jose 04 203 I4104► T
3060 A(1ri)eA(Ir2)•AR
3070 d03 CONTINUE
308• 404 FORMAT(//.2K. v fl•	 4,E15,A)
3n9e 201 CALL	 MOU 1 (A,N► T,NP T ,NPT,i5.15w01'E MATR IN 444)
310• wRITF(6,204)	 RR
311 • OU P!u I8104► T
312• U3TAR(I)GAV(1)

313• DO Atu J010+Pt
314 0 AAfI.J)^A(I^J)
315• 21n CONTINUE
316• C
317 0 c
310• C HERE wt HnPF	 TO SOLVE THE S YSTEM	 (R•A)Ue•AV*
319• c SnR IS A JPL LI NEAR EQU A TION SOLUTION NnUTINE•
]200 C

S21e C

322* CALL	 tlOR(AA^NPT^N ►T^UeTAR	 ^`1PT.1.e2lO^MnRK)
323• CALL	 OF OPTI MAL ESTIMATES)
3P4• DO PIS I.1.hPT
3250 00 Pts J8114PT
3P6• ^CMrtI) • OCHKII) • A(i•JI*USTAR(J)
We dl! CONTINuF
32A* CALL	 V OU 1 (DC14K.NPT i 19,19M0THE VECTek	 (A•N)Ue)
1294 Ott	 dt(I 	181.NM
330* FQv8(«EU(I)e*4)6RR
131 • On 220 J81.10T
332• C^IEFO )•CU[t(il•t rSTARtJ)•uS1AR(J))4PMIt2.J) /FUy
1734 Rio Cnvrthuf
354 4 CALL	 W01,T(ALPMA # 16M i 34r	 34N0T ME	 rECTrM	 OF	 ACTUAL COEFFICI(NTS)
145• rAiL	 vN ,T (CokF•NM * 37.37wDTwE	 vFCTO R nF ESTI MATER CnEFfICTfNTB)
3360 C
3114 c %tw WF CUMPUTE T wE ESTI MATED $NAPE,
53A* r
5 3 90 r,
1405 Rfw1uL 4S
441• WIFAD(4%)(a0w(KI# *at , PO)

i
f
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368+ R[ANt 4!)"OOEir"FREO
3430 NCH(C^6NOOLiO3
3440 EA004t)(KtI),T(I)OI:I)rI61r400[i)
3650 R[AO(4s)(iLUOi(I),I61r"00[9)
3460 A(A^(4!)(/R[OtI)016I0" ►REG)
1410 OQ Rao XF6104"
3440 R(AD(6s)KPR^ ►R,NTRNi,(VECfOR(K),K6l^MTRNi)
1690 II( 4CM[CK. N[, "TRNi)00 TO Its
3900 DO R40 I.10"Oo[i
391 • X(1)6X(I)#CO[► tKF)•U(I)
392• T(I)0T(0 #COE► (KF)•V(I)
3539 I(I)6ItI)#CUE► (KF)swtt)
3544 140 CONTINUE
35s$ IF (IOPT,E0 9 1) GD TO 300
3S6• C
SIT• C WERE ME PLOT THE ESTIMA TED !NAPE,
3s8• C
3510 CALL ORAM(XrTO Ir^i[O,Ii[0)
360+ CALL FACTORt1,0)
3610 CALL ►LO T t10 „ 0,0,•3)
362• CALL FAC10N(40064)
363• C
3640 C
369+ GO To 300
386+ ISO WRITE	 (601st)
3630 I3169181901
364+ 1St FOR MAT(1SXsk6"OMAT4IX IS NLANLT SINGULAR)
361• MR1Tt(6,tsR)
310+ 852 F(1RMAT(//,19X,SMSMIT,)
3 7 10 IF(IIIG,67,6)	 60 TO 400
311+ WRITE(60193)
313• 853 FONMATt/ /,19 9 ,13HREDEFINE TH% MATRIX AOR'o
314• 00 ?60 I@1,NPT
317 4 AtTO1)sA(I,I)	 • R
316• 260 CONTINUE
SIT$ 406100RN
316+ 4vq,0RR

3790 Gn TO RoS
360• C
3810 300 CONTINUE
!et• c HIPP ME CO MMUTE T14[ VECTOR 0 IN THE CONTROL PROGLEM,
343 0 DO	 110 I6l,NM
3640 Ott	 310 J81, 4► T
3450 0(J).OtJ)OFMI(I,J)+CQEF(1)/(FR[0(I)+•2)
366 • 310 CONTTtiUt
347 0 CALL VOUT(D,NPT,13,13MOTME VECTnR 0)
3016+ 315 CALL MOU T ( A , 4PT rNPT,NPTs1S,19MOTME MATRIX A4R)
3890 W4TTF	 (60104)	 OR
1904 on 3P0 Iv1,NPT
3910 FtT)4G(I)
392 • OcMK(i)6o,
393+ DO INC J8I,NPT
3940 A ► (I,J)4A(I0J)
395+ 320 CONTINUE
1460 C
391• C
3980 C MIRE WE MOPE (FERVE NTLY)	 TO SOLVt THE 0106 11 (4a4)F•O,
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3900 C $no IS A JPL LIN►AN EQU ATION SOLUTION NOUTItto
4000 C
4010 C
g oes CALL inR(AA,N►T^NPT, ► ^NPT^1,i3SQ,Y0RN)
n M30 CALL VOLT(f, 0i► T t iS 4 OSMOVECTOR Of OPTIMAL FORCES)
1040 00 3►! 1810PT
4e5s on 30% J•),NPT
406* OCN01(I)•OCMK(I)0A(I,J)sF(J)
007• Sts CWThut
4060 CALL vOt, T (OC NK,N►T,1e,1SMOT^E VECTOR	 ;A+R)0)
4000 no 310 I.1, NM
alas FamM Y(I)sst
a ll • 00 330 J•I,NPT
4120 ZETA ( I)•META ( I)*F(J ) S►MI(I.J)IFQ
413• 330 CONTIMU(
alas CALL Vn1JT(QETA0 NM, 30, 39"A"OOAL CrLFF ICIE NT S ftnM CONTROL f ONCE•
also 1)
4160 CALL V(IUf(ALPMA,NM,j4,3aNDTNE VECTOR Of ACTUAL COEFFICIENTS)
4170 C
41A0 C
410* C NQr MR COMPUTE THE SHAPE ADJUSTMENT,
a20s C
4P.1* r.
422 1P 00 330 I.10N
423• COF ► (I)9A6 ►MA(I)00tTA(I)
424* 335 CONTINUE
421* 4E0IN0 45
426• RCAGt•s)(MON0K0,K•1,20)
427• w(A0(49)NOOEi,NFREO
4260 yCwfCKsNUOfS*3
4240 REAn(4S)tx(I),rti),t(i),i•t,^uOES)
43910 •EA^r4S)14LUGS(I),I•t, N OL+fi)
4314 R[AD(^5)(FNEQ(I ),I•I,NFRf.0)
432 10 Vn %aa KFalrNM
4 j3 • RE A^(45) KFR,IR,NIRN3,(VECTQN(K)er•1,NTRNi)
41410 IFVCNEC0k.NE*%1RNS)	 an YO 125
415 0 00	 14G	 1•1#40DES
ales rt;)sA(1).CJEf(K ► )0u(i)
43710 v(t)s^t))^COtF(Kf)10v(I)
43e10 2(1)stfl)•CDEI(Kr)*w(I)
434s 340 CnNTINut
4400 IF	 ^' JPT O EG.t)	 GU	 To	 Sn0
sets c
4424 C N4R{	 •E PLUT 'wE CQRRtCTFO SHAPE,
443• C
444• CALL	 BRA"(^,vejrJStr,.ISEU)
44js CALL FACTU4(1.0)
446• CALL	 YLU v ( 1 n.(1e 0,0; •3)
44710 f4tL VACTUR(0064)
4646e* Gm To 400
4644* 4150 0.6 ITo (he2S!)
4s0s IstfslSllr•1
46sis 101(telO.6T.10)	 6n	 TM	 440
aSj• •RtT((6,?S3)
46S3• nn	 44D	 I•),'+ FT
x5410 AC1e084(Iel)OR
45'!s 349 CINTT+•UL
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45641 RRs10,*RR
45141 Rso, *RR
455* QO TO 315
459* C
460* C
4610 125 CONTINUE
46241 400 CONTINUE
4630 S00 CONTINUE
464* IF(IOPT,EG,1) 60 TO 910
46541 CALL PL0T(30„0,&999)
466* 510 CONTINUE
46141 STOP
46841 E 14 ti

to OF COMPILATIONI	 NO DIAGNOSTICS,
CTP1,667	 SUPSIs,5S0

141 C
2$ SUBROUTINE ORAW(UX#uvfUZPSEGPSEGI)
3* C
4* C DRAW 18 A SUBROUTINE CREATED 9Y 6, ROONIGUEZ TO PLOT THREE
941 C DIMENSIONAL SURFACES, 	 IT CALLS THE SUBROUTINE TRANS,
641 C
741 PARAMETER NPsSS2 P NC22140
641 REAL Ux(NP)fUY(NP)PUZ(NP)
941 INTEGER SE0(NC)PFLAG,3E01(NP)

10* 00	 10	 IYIPNC
1141 JsIANS(SEO(I))
12* 00 S Ks1PNP
1341 IF(3EU1(K)6E64J)	 KKsK
1441 S CONTINUE
is$ FLA6s2
1641 IF(SE(i(I),LT,O)	 FLA693
1741 x s ux(KK)
1841 Y nuY(KK)
l a * ZsUI(KK)
2041 CALL	 TRANS(X#YPZ#NP,YP)
2141 CALL PLDT(xPPYPPFLAG)
2241 10 CONTINUE
23* RETURN
2441 END

141 SUoRnuTINE TRANS(xiY,Z,XPPYP)
241 REAL	 Xoypl#xPPYP
30 TNETAs30,0
di DRs3*1416/1600
541 xPs(r•r)iC08(TNETAiOF)
60 iPVCXOY) *SIN(THETA*DR)*Z
741 RETURN
S* ENO

I,
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ece- w r a^.rf1wrww^wr	 rrfrtrw.Gtj•orrc
r

• • 1 • • • t	 •	 /	 •	 1	 t

G G
ah
C c G

O
c

•r.
c C Cl w i<w	 hC .. C r- :' C C C C C	 [ l•	 tG

••
i C

♦
G

♦
O

1	 1r r 1	 1••	 I ^	 i	 1	 1•	 t	 lA w O I^	 ^ a C.e awr O•ar Gc P• w jrw • ! l i 11 t' t l^ f !'swr.hr•nac a.^ro
Cr

ws
r j

cC .a h.rw v rrrh o	 -•a hw i
+ •l0 ^f lY .	 /.nw 0h• N w•c Oc ee a wrwl J- f A- A h r w^	 w Vw.w tle < th r r a <

^ '• o r^ wraw-	 .^o::••	 i i	 I	 t• i
c c
cc a ►

O G
••
Cc

n r.
O C

L w a h h h w+ l . • C i
r C C C C C C♦ ♦C w • •a t G C • • •	 •! w /	 •	 /	 •	 •	 /	 1	 1	 t	 1	 t	 1a r 1 0 r r h A• :. w lan

G a•r
OM
• .+we

OC
G Oee

•O
t rao

A •
w Asr

!n a.-c a aww•IaG6!
a h w r r. A r w.ha. r/=s weeracr rC

wr
a sw P

00
O CO C

••► !O•
r rr rr: JO

tw. MC 0 t r a +'ri C
N' a C w .. 0 = ► • 0•a	 N s N• w	 vlw T.s

rr w10 Co .+^ NN u
III r.. li r	 - ee .•.i

i • Iir• n •

C4 	 of wan ww C n0 wf t C nC n a/. c w w c a h O h a	 c c
1 0 0 0 0 0 r O 0 0 C O C O C

1	 /	 /	 • •	 •	 • • •	 1 I	 • I	 1
C C C♦ • • 0 0 0

/	 • n
4
•

C O• ♦ O C O
n 	 •	 n

r G C C c c C C G=^ C
•	 n 	 I	 1	 /	 •	 1	 1	 I	 /wa,a,	 r Cn•CON44 •t	 1a't Mr•N'!N ONr0 IV 0CG0 NI.♦• MC• N i	 wCc	 awrCO r nw iwlc+r^• n f s r N O r.e C w w• r r rl n r w 1! n 1• a r r e

N r r
e w 0
O O n

C C
C C

! i•
w O N

•r=a C
a O M

l 0 w w I r+ t r P s rr n a r•• w r ► N c h1 e r w a 7 a r n n	 f	 w•
•••It f•t etM OMioe•I rr!

w a r
IINt%r

•! O
00^

0 0
OO

= .. n
«cO

..
^1 O Oi ►•rr ..	 CNtf^J'

t•rllis ^•irwrw•w .• • ni HNr i.1= eM :T M w.ri i' rinilrhrs•^sw.-
e i• Wt•► w! a a ran ► w w ► a ►O G O C O r 0 O G L O c G C W wI C 4► O cc

• t t
C O O W 

_
W e

C C I
w O C

a r t.
ce C C C G r C

• GMr• •n: a •nave• f ar •N C
i
tNN wC jwrna • c`w	 f.watweew	 e•warlae.nN!-•sc I'm W.r cn we-► aIN n- Weeieo•er u oe L re

r..r ► v• ► s .• •we wvowfc•wcrst ► ..lrtiaor•-a•n•r	 rc	 ewcran rNnanr •. it y f aww •o OaksYlwwr wrssww ^ccaca asp:r• ••-over •rwrart	 trcn•wrrr W,	 wiilf tj^nr•erwrc	 alca•ilcoarlrww• NaNw •
O

► tc
J•efl •Oar

G••
acewee -wewave

nwrnwn c oa^w_wwarjt.•
r ^ro.•.e^.-.•• .^..:^»In o x-Ou- iltwr: :« o tw vow whir a' .••InV OWN wiasir,ier ia II••	 II c ..	 n •	 • • s ••	 ••	 IOO wa aw I•O O O aO C ! t a at t a t a r a s .^ w• r	 ^r

C
O	 .-r C	 r C	 r MC C  t 0 ^r

rtwafC..Nr•rrwa
r w r r .. r r r r f C =0 1.W O G L V

W a 0
V
W C O

V
W= 6 C

r
a

r1• Y	 a, 1	 a a l a l' r O w W. P w .. • •. r• W • w W )	 7) 7 f• f• II 1
/ ccccccccccc-cca	 c	 C C	 C

sssaas aaaasias s Wa sw iw s► sw :
w

casaawasaocccsssssssssass



160

W, . aw w a a ac t zIca O a f w w c h f a r• w h h a a h cwIca	 10,	 00:OOCCCO C C r ncc.	 •	 •	 e	 1	 •C ♦ t	 - e • .	 .	 .	 .	 .	 .	 .	 •	 .	 •	 1	 .	 1	 .	 1	 •	 •e w r! r w C r r\ w w - w a r f a • •• t-nra tienra•h w sw ewan r. ► har.wnwearhrsOaCIIC•• ♦ r •Nw rr ♦• C \r♦ c^aPw.f♦ wr	 w• fa wr ♦ -ar^wa aww•hr0/I^w ♦ trwMNa hlP r^car•fw *11 Cao•rwriMae^N  wNa01`/waNw 0, 0,	 hwwNONOi l^q	 Oa^awlainiw Mwwh
r w ♦ iw wf-wra .•\\•f wwr.•a1M as
hhahaa wi hhr hs wse rreeeoec
11arwc

ecccccwsccCCCeec	 eeeeeeee
11	

sea
raalwawcwrraww.ssr

cc
► .•r. ► war r •ra rw ►► a ♦ crwerwrrw cr.

r\. a wi M w N N A c c warc t	 • r-\ * c r r w h frc	 r1 IH w N M r w w a 1 ma w a\ w
wW, ft	 r•nr•nwrca Ja ♦ r-f low rwawMrrlw -wNiwwnncNC•r^o ♦ sae ♦ Nr a.tr.• •^ari^ u iw	 :•.«s.ew.

► cwchae c c o a o cahshLwwc-awesswhw.- C e C C c C O O w c C c G C c c c wr,-•	 •	 1	 •1	 •r r a w e h •	 •	 •	 •	 •	 •	 •	 • •	 •	 .	 •	 •	 •	 •	 •	 •	 •e P r- w r	 e P-	 - a h w\ c I: rrw-rc\ ♦ ahclr oft	 P	 ow. 	 r.aaw
sec rPrrrNwrrP a l.- r'a J

aaPh.^r••nwcweweo ♦ a ► • c••a awwrnr•rNr.r a-rf r,waa I r \NIN w h- w r-r
ic^o fI DING• '^ r I	 N•G M wwa rw • Oa: t• G

^ ► mo t .-f y wiwa^h.^.^•..sw..^r.•. .. .•. .. .: j

c h c w h l r a! w! w w a c O a h a c h w w•000coc wooCOOeoowcactc000
wh r r\ ♦ir`hr wfw w• I rf .

n-
-htn-ICChNwP M. • M-aG\ ♦ w^/ wnn wr^w  NrOa . ►!•C sc\awrrw..•I./ •	 rf Ni C

^;̂.
w c C\ o /wwr.nrP w h a h N n r c P r n .. r w c w- ahwwNwreaa\\s ► .••err .- itP -•w• Gr r.- Ĉ hrrn.^Pncscar.rhrhownc V r^Nr^r. 	.r \! aw t a=^
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