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ABSTRACT

This report describes che Dish Stirling Solar Receiver (DSSR) Combustor
Test Program. The overall objectives of the program were to evaluate and
verify the operational and energy transfer characteristics of the DSSR
combustor/heat exchanger system. The DSSR is designed to operate with fossil
fuel augmentation utilizing a swirl combustor and cross flow heat exchanger
consisting of a single row of 48 closely spaced tubes that are curved into a
conical shape. In the present study the performance of the compustor/heat
exchanger system without a Stirling engine has been studied over a range of
operating conditions and output levels using water as the working fluid.
Results show that the combustor may be started under cold conditions, con-
trolled safely, and operated at a constant air/fuel ratio (v10% excess air)
over the required range of firing rates. Furthermore, nondimensional heat
transfer coefficients based on total heat transfer are plotted versus
Reynolds number and compared with literature data taken for single rows of
closely spaced tubes perpendicular to cross flow. The data show enhanced
heat transfer for the present geometry and test conditions. Analysis of the
results shows that the present system will meet specified thermal require-
ments, thus verifying the feasibility of the DSSR combustor design for final

prototype fabrication.
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SECTION I
INTRODUCTION

This document presents results of the combustor test program for the
Fairchild Dish Stirling Solar Receiver (DSSR). The purpose of this test
program was to evaluate and verify the operational and energy transfar
characteristics of the proposed design for combustion augmentation in a
hybrid solar receiver utilizing a Stirling engine. The test program was
conducted from November 1979 to December 1980 at the Fairchild Stratos
Division, Manhattan Beach, California. The DSSR program is supported by
the Department of Energy and managed by the Jet Propulsion Laboratory's
Advanced Solar Thermal Technology Group of the Thermal Power Systems
Project. Fairchild Stratos Division (FSD) is the primary contractor for the
DSSR program and the Institute of Gas Technology (IGT) was subcontractor for
combustor design.

The purpose of the DSSR program is to demonstrate the technology for a
non-heat pipe Dish Stirling Solar Receiver with fossil fuel augmentation(l’z).
This would allow a P-40 United Stirling engine to be operated at constant
power and speed under varying solar insolation levels. A diagram of the
receiver system is provided in Figure 1. The DSSR is designed to operate on a
point-focusing solar concentrator at a solar input of 76.5 kut. Max imum
fossil fuel combustor input would be 67 kut with a 10:1 combustor turndown
ratio required. The receiver is designed to operate in the hybrid
(combustion) mode at all times, where combustor heat input will be at the
maximum for zero solar input and the minimum (+10% max.) at maximum solar
input. Solar energy is transferred to the cylinder-side of the 48 Stirling

heater tubes which are embedded in the receiver body; energy is transferred
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to the regenerator-side of the heater tubgs by combustion gases provided by
eight burner jets located circumferentially behind the receiver body. Thermal
energy thus transferred is converted to shaft pawer by the Stirling engine,
and thence to electricity by a generator.

The objectives of the Combustor Test Program (CTP) were to: (1) verify
the ability to start (ignite) without air preheat, control firing rate from
minimum to maximum output (with preheat) and vice versa, and shut down the
combustor while operating at 10% excess stoichiometric air with natural gas;
(2) verify operation of the fuel safety system; (3) verify turndown capability
and stability of combustor operation at 10% excess air; and (4) analyze and
verify the heat transfer characteristics of the combustor/heat exchanger

system.
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SECTION I
DSSR COMBUSTOR AND HEAT EXCHANGER

The combustor is designed to deliver up to 67 kut to the Stirling engine
utilizing natural gas as the fuel. The eight burner jets are located
circumferentially arcund the heat exchanger bank (Figure 2). The jets fire
tangentially into the annulus behind the heater bank at a maximum outiet
velocity of approximately 30 m/sec (100 ft/sec). They are designed to operate
at 10% excess stoichiometric air at total flow rates up to 60 g/s (air +
fuel). The air is preheated to 1030 K by a recuperator which would provide
combustion gas temperatures of 2250 K assuming 20% flame losses. A burner
detail is chown in Figure 3.

The heat exchanger bank consists of 48 1.3 cm (0.512 in.) outside diameter
(d) tubes with a transverse pitch (s) of 1.41 cm (0.555 in.). The tube bank
forms the frustrum of a cone with the smaller diameter of 27.9 cm (11 in.) and
larger diameter of 40.6 cm (16 in.). The tubes swirl (or curve) through
an arc of approximately 60° from minimum to maximum diameter such that
the gap between tubes remains constant at 1.1 mm (0.043 in.) over the surface of
the tube bank. A photograph of the tube bank utilized in the combustor test
program is presented in Figure 4; and a diagram showing relative tube diameter
and spacing is given in Figure 5. For the present application, Stirling
engine tube-wall and working fluid (helium) operating temperatures will be
approximately .300 K. Thus for combrstion gas temperatures of 2250 K, an
average gas-to-tube heat transfer coefficient of approximately 220 H/m2 K (39

BTU/hr-ft2-°F) is required to transfer 67 kW, to the working fluid.

t
Fuel ignition is initially achieved utilizing spark igniters at the outlet
of two of the jets. These igniters are also sensors whereby the fuel flow is

automatically shut off if the flame extinguishes. Thus, for given combustion
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thermal requirements, metered air and fue! flows are supplied to the burner
Jets, premixed in the jet nozzle, and combusted {see the arrows in Figure 1).
The combustion gases enter the annular region, swirl avound the Lube bank, pass
over the tubes and through the tube gaps, heating the Stirling working fluid
(hel9um). Once past the tube bank, the combustion gases will transfer some
additional heat to the receiver body and then flow out through the gap bshind
the receiver body and enter the air preheater. The final products are exhausted
to the atmosphere at approximately 650 K.

A complete description of the DSSR, including detatled drawings may be
found in Reference 2.

2-2




-

SECTION I1I
DESIGN BACKGROUND

The combustor and heat exchanger system design utilized in the DSSR s
based on the geometric configuration, tota) working fluid volume and therma)
input requirements of the United Stirling P-40 engine. The eight-burner
combustor was designed to provide unmiform combustion gases with a large swirl
component, where estimates of flow characteristics for design purposes have
been made utilizing potential flow theory. The flow field was assumed to be a
sink superimposed upon a vortex for which the velocity potential and stream

function for the irrotational, two-dimensional fiow are:

¢ = - !;\:-ilnr + re/2n, and (1a)
v l--z-:%--z%'lnr. (1b)

The resulting streamlines are spiral, and the tangent of the angle (B) betwren
the flow and radial directions is:

A/

tana-gg'%- (2)
r

For the present configuration, the vortex strength (T) was evaluated by using
the burner outlet jet velocity. To obtain a corservative estimate, I was then
reduced by approximately one-half to account for the finite number of jets and
friction losses. The resulting swirl angle (B8) is 76°; and if the vortex
strength were again reduced by one-half the resulting 8= 64°. Thus, the esti-
mated swirl angle of incidence upstream of the tube bank is large as indicated
in Figure 5; and 8 is relatively insensitive to the assumed vortex strength (T).
Also, if the streamlines are determined from equation (1b), it can be siiiwn

that the flow traverses approximately one-fourth (90°) of the combustor
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circunference prior to entering the tube bank. This should allow adequate |
mixing of the combustion products for uniforwm heat transfer to the tube bank.
The DSSR heat exchanyer consists of a single row of closely spaced curied
tubes in a swirling cross flow as described previously. It is thus a special
case of the general category of tubular heat exchangers in cross flow. This
category of heat exchangers is widely used in industry and experimental data

are available for a range of condicions and configurations. A review of ,-
such data is provided by NcAdamm. and later data are provided by Kays and :
London“). and Zukauskas(s’ . In general, data have been obtained for banks E.
of straight tubes containing several rows that are perpendicular to the direc-

tion of cross flow. Local and average convective heat transfer coefficients

are determined for different transverse and longitudinal tube spacings. The

results are usually correlated with a Reynolds number referenced to tube

(3, 4, 5) (6, 7)

or hydraulic diameter and flow veiocity in the minimum or average
free cross-sectional area. For small sparwise spacing (s/d < 1.25), empirically
determined reference velocities have also been suggested“’.

For single rows of tubes less data are available; the work of Ward and
Jewad(s) being an important exception. Those authors“) reported measurements
of heat transfer to a flowing air stream from a single electrically heated ;
tube in a row of closely spaced tubes. The tubes were straight and aligned
perpendicular to the flow, where average and local heat transfer coefficients
are presenied for a range of transverse tube spacings (1.083 < s/d € 1.377).
Average Nusselt numbers are correlated with Reynolds numbers based upon
velocity in the average free cross-sectional area. For the smallest tube
spacings (s/d s 1.176) an empirically determined reference velocity is
employed. The data span a range of Reynolds numbers from approximately 103

to 2 x 10‘. However, these data do not completely cover the Reynolds number
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range ¢f interest in this investigation and no data are available in the
literature for the complex flow geometries studied in this program. Also,
previous investigations have usually been conducted with gas-to-tube wall
AT's of 10-20 K, while in the present application corresponding AT's are of
the order of 1000 K.

Thu:, the DSSR heat exchanger performance required further detailed
experimental evaluation and analysis prior to final design approval. The
foregoing experimenta]lprogram was designed to meet this need, as well as the

otner stated objectives.
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SECTION IV
EXPERIMENTAL SETUP

The combustor test program was conducted utilizing the modified DSSR
design shown in Figure 6 without a Stirling engine. The test rig combustor
utilizing natural gas and combustion gas heat exchanger configuration is
identical to the actual DSSR design. The heat transfer fluid utilized in
the test prograin is water which enters the inlet manifold and flows through
the 48 heat exchanger tubes. The tubes extend through a blank receiver body
to the outlet manifold where the water flows out. The combustor body is
fabricated from a refractory material and the heat exchanger tubes from
310 stainless steel; the tube wall thickness is 0.47 cm (0.184 in.). Combus-
tion air was supplied by a compressed air system and was preheated electric-
ally upstream of the burner jets. The combustion products were exhausted
directly to the atmosphere since no recuperator was incorporated in the test
rig. Also, the water utilized as the heat transfer fluid was preheated to
prevent condensation of water vapor from the combustion products on the tube
walls.

Temperature measurements used in heat transfer calculations include:
inlet and outlet manifold water temperatures; local water temperatures in the
tubes; local tube surface temperatures; combustion gas temperatures; and

exhaust product gas temperature. The local water and tube wall temperatures

were measured along two tubes as shown in Figure 7, where one tube was located

midway between burners and the second located nine tubes in a counterclockwise

direction away from the first. Supplemental water temperatures were measured
at the inlet and outlet of two tubes located 180° away from the primary
(instrumented) tubes. Flame temperatures were measured at two positions in

the combustor. Also, receiver body surface temperature was monitored to
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insure materials' integrity (Figure 7). Chromel alumel (type K) thermo-
couples were utilized for temperature measurements, except for combustion
gas (flame) temperatures where Platinum vs Platinum-10% Rhodium (Type R)
thermocouples were used.

Product (exhaust) gas compositions were monitored continuously to insure
that correct air/fuel ratios were maintained and complete combustion occurred.
These measurements consisted of: (1) oxygen concentration, and (ii) parcent
combustibles equivalent to a mixture of equal parts hydrogen and carbon
monoxide. Also, the total pressure drop through the combustor was measured

by a water manometer.
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SECTION V
TEST PROGRAM

The combustor test program consisted of three major phases.

Phase 1 - Cold Ignition Performance and Initial Start-Up. The purpose of this

phase was to determine the cold ignition criteria for the DSSR combustor.
Air/fuel ratios would be established for satisfactory cold-ignition perfor-
mance. After ignition was established, the firing rate was varied over the
design range of operating conditi&ns with cold combustion air, so that the
system could be checked out with regard to: safe materials' temperatures;

air and fuel flow system operation; heat exchanger water flow system operation;
and fuel safety shutoff system performance.

Phase 2 - Turndown Performance. The purpose of this phase was to verify the

ability to operate the combustor over the design operating range (10-100%).
Specifically, it was necessary to determine whether or not the present burner
design could be operated over the firing range of interest with 10% excess
air, while maintaining stable flame conditions and satisfactory combustion
efficiencies.

Phase 3 - Heat Transfer Characteristics. The purpose of this phase was to

analyze in detail the heat transfer characteristics of the combustor in order
to determine the ability of the heat exchanger to meet design specifications.

The combustor was tested over the design operating range (10-100%) at various

combustion air preheat temperatures and with no air preheat. Data obtained

in this phase would also add to the technology base for heat exchanger systems

of the type studied here.
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‘the three phases followed by general comments. The results show that the

SECTION VI
RESULTS AND DISCUSSION

The results of the Combustor Test Program are presented here for each of

feasibility of the combustor design has been successfully demonstrated for the
prototype DSSR.
Phase 1

Cold start ignition was successfully demonstrated at 10% design maximum
firing rate. This condition was established with 10% excess combustion air that
was not preheated.

The fuel safety shutoff system did not perform satisfactorily. Sensor
response to the combustion products during stable operation was intermittent,
thus causing interruptions and eventual shutoff of fuel flow unnecessarily.

It was thus concluded that greater sensitivity in the ignitor/sensor system
would be required. As a result, a three ignitor/probe system with enhanced
sensitivity was recommended by the manufacturer, and this system will be
employed in the final prototype. Subsequent acceptance testing of the final
combustor unit has successfully demonstrated satisfactory operation of the

improved fuel safety shutoff system.(z)

A11 other test systems operated satisfactorily and safe materials
temperatures were maintained.
Phase 2

Combustion is stable over the range of operating conditions from 10% to
100% (of design maximum fuel and air input) for air and fuel mixtures in the
range of 10% - 13% excess air. This conclusion also applies to operating

conditions where there is no combustion air preheat. Measured combustibles

in the exhaust products for these conditions were generally less than 0.1%.
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Thus, it appears that the DSSR combustor may be operated at a constant air/fuel
ratio over the complete range of anticipated operating conditions without loss
in combustion efficiency or stability.
Phase 3

Summaries of experimental conditions and combustor performance are
presented in Table I for preheated combustion air and in Table 1I for non-
preheated combustion air. A more detailed heat transfer analysis appears in
Figures 8 and 9 for tests run with preheated combustion air. Average gas side
heat transfer coefficients (H) were calculated based on total heat transferred

2

to the tube bank, total tube bank surface area of 0.318 m~, and temperature

difference, Tc - T;. Gas temperatures, Tc. were taken to be the average of the
two combustion gas thermocouples. Characteristic tube surface temperatures
(Ts) were taken to be an average of the local measurements (Figure 7). This
temperature (T;) varied from the (extrapolated) temperature at the midpoint of
the tube by less than approximately 15 K. To calculate the average heat trans-
fer coefficients along the length of the tube (h), local water temperature
differences and tube surface temperatures were utilized as indicated in

Figure 7. The data for each point along the length of the tube in Figure 9
represent an average of measurements from the four instrumented tubes in the
heat exchanger. The tube surface and water temperatures utilized in these
calculations are tabulated in the Appendix in addition to other miscellaneous
data obtained during the test program. Uncertainty of the resulting Nusselt
number data based on the average gas side heat transfer coefficient is within
$8% at the highest firing rates and :12% at the lower firing rates.

During the experiments, outlet bulk-water temperatures were maintained

below the saturation temperatures, even at the highest heat transfer rate, so

ok,
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that the energy transferred to the water increased its measurable sensible
heat. At firing rates of 40X and higher, average tube wall inner-surface
temperatures, determined from the heat conduction equation by using the
measured tube wall outer-surface temperatures and the total heat transferred
to each tube, were above the saturation temperature of water. Undoubtedly
some surface boiling occurred, but subsequent condensation took place because
of the significant amount of water subcooling. Good mixing occurred in the
straight tubes and manifold section (Figure 6) between the heater tubes out-
lets and the location in the manifold outlet where water temperatures were
measured. Because of the presence of the thermocouples in the water flow,
mixing was also improved in the flow through those heater tubes which were
instrumented with water thermocouples, and for which semi-local gas side
heat transfer coefficients were determined.

In the present data, Reynolds number is based on the maximum velocity

in the minimum free area between tubes and is calculated using the

definitions:
(6 .. )d
Repax ~ _G'm—u.%— ’ (3)
and
Coax T (5] (a)

where m is the :otal mass flow rate and Re is the frontal area of the tube

bank. Film temperatures for Reynolds and Nusselt,(gg- numbers were taken to
be the midpoint between the combustion gas and tube surface temperatures; and
transport properties for nitrogen were used. Regarding transport properties,

the viscosity of the actual gas mixture was estimated by the technique of



Andrussou(a)

and variations from the viscosity of pure nitrogen were found to
be less than 5% for the temperature range of {nterest. Also, the heat
transfer coefficients reported here include a radiation component. However,
estimates of the contribution of radiation from the refractory to the tube
bank have been carried out and the results show that radiation contributes
less than 5% of the heat transfer at the highest firing rates and up to 10%
of the heat transfer at the lowest firing rates. Radiation from the combus-
tion gases to the tube bank was estimated to be negligible in comparison.
Figure 8 presents heat transfer data for the four air preheat conditions
and the range of Reynolds number (firing rates) studied. The data are well

correlated by the relation:

Wa = 0.42 (R, )06 prl/3 (5)

which is indicated by the solid line on the figure. Also shown are data

from Ward and Jewad(s) for a range of tube spacings. Note that the Ward and
Jewad data have been adjusted to account for the different reference velocity
used in calculating Reynolds number, the result being a near overlap of the
two sets of data at the higher Reynolds numbers. As indicated, the present
data show significantly enhanced heat transfer characteristics for the DSSR
heat exchanger tube bank when compared to the trend of the data for a perpen-
dicular row of straight tubes, i.e., 8 = 0, While part of this enhancement is
due to radiation, the majority is presumed due to the large swirl component

in the flow which leads to the complex flow pattern incident. with the tube
bank. In this situation, the superimposed tangential velocity component may
act to increase local heat transfer coefficients on the front side of the tubes,

thereby increasing the average gas side heat transfer coefficient (H).
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The tubes were also inclined to the flow transversely (Figure 7) and curved
(Figure 4) so that the flow field around the tubes was undoubtedly very
complex.

Figure 9 shows the variation of heat transfer coefficients along the tube
length normalized by the average gas side heat transfer coefficien: (W) and
for a range of Reynolds numbers with air preheat. In general, the data show
some variations along the length of the tube where the profile exhibiting a
peak near the middle was observed most frequently. By referring to Figure 8,
the variation of h along the tube length can also be interpreted as a varia-
tion in local Reynolds number. Thus, these data give an indication of local
mass flux nonuniformity along the tube length. This is probably due to flow
turning effects near the ends of the tubes at the upper and lower surfaces
of the combustor. The extent to which these nonuniformities may affect the
performance of the Stirling engine has not yet been analyzed.

The data for tests run with nonpreheated combustion air are given in
Table II. Average gas side heat transfer coefficients (H) are presented
for the indicated conditions where the magnitudes of the heat transfer
coefficients are seen to be near those observed in the tests with preheated
air. However, reduced heat transfer was measured for operating levels greater
than 41%. This result is believed due to the loss of a seal during the test
cycle and is not considered to be indicative of final combustor performance.
As indicated in Table II, the average gas side heat transfer coefficient for
the highest operating level (102%) had recovered to within 3% of the maximum
H measured in preheated air tests.

Insofar as variations around the circumference of the tube bank are
concerned, slight nonuniformities were observed. However, while there are
not enough data for a detailed analysis, it appears that such variations are

not operationally significant.
6-5




Finally, utilizing the data in Figure 8, combustor performance for the
actual operating conditions of the Stirling engine can be estimated. Operating
at the design 100% (maximum) firing rate with P-40 engine tube wall tempera-
tures of approximately 1300K, and assuming combustion gas temperatures of
2150K, the resulting heat transfer coefficient (H) would be 248 u/mzx (44 BTU/
hr-ft2-°F) and total energy transfer would be approximately 67 kHt. Thus it
appears that design specifications can be met with the present OSSR combustor/
heat exchanger configuration. Also, a preliminary estimate of overall com-
bustor efficiency indicates that efficiencies in the range of 60-70% may be
expected in the final prototype for the stated operating conditions and range
of firing rates. Approximately one-half of the estimated losses are due to
the air preheater design which exhausts the combustion products to the
at.osphere at = 650 K.
seneral Comments

Measured combustion gas (flame) temperatures were less than the predicted
temperature (2250K) which was calculated assuming 20% (flame) heat losses.
Thus, combustor heat losses are apparently greater than 20% which may be due
to (i) convective heat transfer to the refractory and thence to the surrounds,
or (ii) losses associated with system air leakage.

Substantial comh--tor system air leakage was detected during the conduct
of the test program. Consequently, the oxygen concentration was munitored
in the combustion products immediately downstream of the heat exchanger tube
bank in order to insure that the intended fuel/air ratios were maintained
during testing. The flow rate across the heat exchanger was thei determined
from the known fuel flow rate, measured excess oxygen in the final products
and stoichiometry. Air leakage rates upstream of the burner were estimated
by suttracting the calculated air flow into the combustor from the measured

total air flow to the test rig. Estimated air leakage rates were 15-40% of
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total input for the combustor test rig. Final prototype design and assembly
should provide for a substantial reduction in system leakage. This will
insure correct fuel/air mixtures and thus optimize combustion gas temperatures.

The maximum pressure drop measured through the combustor test rig was
7 inches water column.

There is a potenfia1 problem vfth noise generated by the combustor. In
the original design configuration, the noise levels generated during combustor
testing were extremely high. Noise levels were subsequently reduced to an
“acceptable" level by raising the receiver body one-half inch above the
original design position. However, when the plate was again lowered (from the
highest position) 3/8 inch, the noise icvel increased to the previous unaccept-
able levels. Therefore, the noise is sensitive to the plate location and
thus to the geometry and fluid mechanics of the system. The final design
iocation for the receiver body was specified to be at the location where
acceptable noise levels were observed. However, it was recomuended that the
receiver combustor system be tested in as complete a configuration as
practicable to insure acceptable operation (in terms of noise level) prior to
shipment to United Stirling Sweden.

Instrumentation recommended to monitor combustor operation in the final
prototype should include: combustion gas temperature (1); combustion ai’
temperatures before and after the preheater (2); tube wall temperatures on
four (4) tubes; flue gas temperatures (2) before and after the preheater;

receiver cone temperatures (4) and flue gas analysis.
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SECTION VII
CONCLUSIONS

An experimental program to evaludte and verify the operational and
energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR)
combustor and heat exchanger system has been conducted. The combustor/heat
exchanger design is characterized by a single row of closely spaced curved
tubes in a swirling cross flow of high temperature combustion gases provided
by eight burner jets. The results of the program have successfully verified
the ability of the system to meet design specifications for the prototype
DSSR. Specific conclusion:. are:

(1) Cold start ignit.on can be achieved at 10% design maximum firing
rate with nonpreheated 10% excess combustion air.

(11) A two (2) igniter/probe fuel safety system was inadequate and a
three (3) igniter/probe system was successfully inccrporated.

(111) The combuste~ can be controlled adequately and safely, and
overated a+ a constant air/fuel ratio (10% excess air) over the entire range
of anticipated firing rates.

(iv) Substantial combustor system air leakages were observed that must
be minimized in the final DSSR prototype.

(v) Combustion gas temperatures were lower than expected. A reduction
of system air leakages and installation of the air recuperator should provide
improvement in this regard.

(vi) Average gas side heat transfer coefficients and semi-local heat
transfer coefficients along the lengths of the tubes were obtained. The
results show significantly enhanced heat transfer characteristics for the DSSR
heat exchanger when compared to similar data for closely spaced tubes perpen-

dicular to cross flow. These data provide new information on heat transfer
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to tubes in cross flow that can be achieved in a high temperature combustion
system when complex geometries such as the one described here are utilized.
Furthermore, it was concluded that the present DSSR combustor/heat exchanger
met design thermal requirements such that prototype fabrication could proceed.
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NOMENCLATURE

frontal area of the tube bank

outside tube diameter

mass flow rate per unit area in the minimum free area between tubes
local average heat transfer coefficient along the tube length based

on (T -T
c s,

average g%s side heat transfer coefficient to heater tubes based
on (Tc - T

gas film thermal conductivity

combustion chamber height

total mass flow rate

Nusselt number, Hd/k¢

gas film Prandtl number

total energy supplied by the fuel

total heat transfer rate to water flow through tubes
radius of combustion chamber cross-section

Reynolds number based on maximum velocity in the minimum free area
betweer tubes and tube outside diameter, G d/uf

max
transverse center-to-center tube spacing (pitch)

temperature of preheated combustion air

receiver body temperature

combustion gas temperature

flue gas temperature

Tocal tube wall temperature at the nth location along the tube length

average tube wall temperature

water temperature in the inlet manifold
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= water temperature in the outlet manifold

= local water temperature at the nth location along the tube length

radial velocity component

tangential velocity component

volumetric fiow rate

angle between the flow and radial directions

S

vortex strength (.IL)

turning angle in polar coordinates

gas film viscosity
velocity potential

stream function

2
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FIGURE 4, COMBUSTOR TEST RIG HEAT EXCHANGER TUBE BANK
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