NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
(NASA-CR-165007) DESIGN, FABRICATION, TEST, QUALIFICATION, AND PRICE ANALYSIS OF THIRD GENERATION DESIGN SOLAR CELL MODULES Final Design Report (Solarex Corp., Rockville, Md.) 33 p HC A03/MP A01 CSCL 10A 63/44 08479

FINAL DESIGN REPORT

DESIGN, FABRICATION, TEST, QUALIFICATION, AND PRICE ANALYSIS OF "THIRD GENERATION" DESIGN SOLAR CELL MODULES

BLOCK IV

JPL Contract No. 955404

October 15, 1981
FINAL DESIGN REPORT

DESIGN, FABRICATION, TEST, QUALIFICATION, AND PRICE ANALYSIS OF "THIRD GENERATION" DESIGN

SOLAR CELL MODULES

BLOCK IV

JPL Contract No. 955404

October 15, 1981

SOLAREX CORPORATION
1335 Piccard Drive
Rockville, MD 20850
(301) 948-0202

The JPL Low-Cost Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.
"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."
TABLE OF CONTENTS

1.0 Description of Program
2.0 Program Plan
3.0 Schedule
4.0 Environmental Tests
5.0 Design Alternations during Pre-Production Phase
 5.1 Interconnect Design
 5.2 Cell Metallization
 5.3 Frame Design - Intermediate Load
 5.4 Lamination Procedure
6.0 Performance Characteristics
7.0 Block IV Residential Load Drawing List
 7.1 Block IV Residential Load Top Assembly
 7.2 Interface Control - Residential Load - Block IV - 2 Sheets
8.0 Block IV - Intermediate Load Drawing List
 8.1 Block IV - Intermediate Load Top Assembly
 8.2 Interface Control - Block IV - Intermediate Load
9.0 Conclusions
1.0 Description of Program

The Solarex Block IV contract calls for the design, manufacture, and delivery of eighteen residential load modules and eighteen intermediate load modules. Common features of both modules include:

- 72 9.5 cm X 9.5 cm Semicrystalline Cells
- Cells - Ti-Pd-Ag front metallization with n/p p+ junction
- Geometrically arranged in 6 X 12 matrix
- 3/16" Sunadex tempered glass superstrate
- Ethylene vinyl acetate as encapsulant with cranegas spacer
- White Tedlar moisture barrier
- Redundant Cell-Interconnect Design which has six pads per cell
- Wraparound Interconnect
- Circuit Board style interconnect with in-plane stress relief feature.
- Two pigtail connections per positive or negative outlet

Features which are different are shown in Table I.
<table>
<thead>
<tr>
<th>Outside Envelope Dimensions (cm)</th>
<th>63.5 x 120</th>
<th>62.8 x 119.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series-Parallel Arrangements</td>
<td>2P - 36S</td>
<td>6P - 12S</td>
</tr>
<tr>
<td>Design Voltage (Volts)</td>
<td>14</td>
<td>4.5</td>
</tr>
<tr>
<td>Diode Protection</td>
<td>One per two parallel cells</td>
<td>Two per six parallel cells</td>
</tr>
<tr>
<td>Support</td>
<td>Aluminum-modified channel</td>
<td>Supplied without frame</td>
</tr>
</tbody>
</table>

A drawing list is included as Sections 7.0 and 8.0. Top Assembly drawings are included in 7.1 and 8.1.
2.0 **Program Plan**

The program was divided into six tasks:

Task I - Program Management. This task consists of the effort necessary to manage the contract and insure that contract deliverables are on schedule.

Task II - The manufacture, test, and delivery to JPL of the reference solar cells.

Task III - The building, check-out, and de-bugging of a prototype module fabrication machine to test lamination techniques. Complete design drawings for full-scale module fabrication machine.

Task IV - Fabricate, environmentally test, and deliver to JPL ten preproduction modules (five residential and five intermediate load).

Task V - Fabricate and deliver to JPL 26 (13 residential and 13 intermediate load) completed modules.

Task VI - SAMIS/SAMICS support. Effort, computer time and travel necessary to do SAMIS/SAMICS.
3.0 Schedule

The schedule of the program plan (both planned and actual) is shown in Table II. Almost all tasks were delayed. The prime reasons are:

- Start-up problems with cell manufacturing. Cells originally scheduled for the Block IV contract were to be semi-crystalline cells with Ni-Solder metallization. The start-up problems associated with this cell line caused the entire schedule to slip. Later, to prevent any further schedule slip, we made the decision not to use Ni-Solder metallization.

- Various problems that showed up during environmental testing. The Block IV contract was designed to allow both Solarex and JPL the opportunity to environmentally test the modules. In the first test, at both Solarex and JPL, there was a problem with delaminations during thermal cycling. This problem was solved by applying a primer/adhesive (Dupont 66040) to the Tedlar prior to lamination. In December, 1980, a second set of modules was sent to JPL for testing and there were other problems. Specifically there was delamination of the cell back metallization, power loss during humidity testing, and some cell movement during thermal cycling.

It was determined that the reason for those problems was the cell back metallization that was not resistant to humidity (and subsequently caused delamination and some power loss). The cause for the cell movement during thermal cycling was inadequate EVA cure. The cell back metallization was changed to a Tin-Silver alloy and the lamination procedure was changed to give a more complete cure. At
the time this was done it was not well understood what constituted an adequate cure.

- The third set of panels submitted to JPL exhibited yet another problem. There was EVA/Tedlar delamination that showed up during thermal cycling. However the delamination was primarily restricted to the area around the junction boxes. We determined that the most probable cause of this delamination was the diffusion of outgassing products from the silicon adhesive (that forms the bond between the Tedlar and the junction boxes) to the EVA/Tedlar bond. This weakens the bond enough so that it sometimes delaminates during thermal cycling. A suitable fabrication procedure that works consists of making an initial "priming" application of RTV-102, allowing it to cure, and then applying another coat of RTV-102 both to the primed surface and the junction box.

- The fourth set of panels submitted to JPL passed qualification.

- Throughout the qualification program there has been a problem with ripples or wrinkles in the Tedlar and EVA on the back. Though this problem was not cause for rejection, it nevertheless decreased the cosmetic appeal of the module. Another persistent problem was the lack of a consistently good edge seal. Bubbles tended to form near the edge and the edge was uneven, again decreasing the cosmetic appeal and introducing a possible moisture path. Both of these problems have been solved by a general improvement of techniques during the lamination process. The production run of the modules is much superior in all respects.
<table>
<thead>
<tr>
<th>Task II - Reference Cells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliver to JPL</td>
<td>16</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Return to Solarz</td>
<td></td>
</tr>
</tbody>
</table>

Task III - Module Fabrication Machine																		
Machine Construction	15	10																
Full Scale Machine Construction and Checkout																		

Task IV - Fabricate and Deliver																		
10 Panels (5 residential)																		
5 Intermediate Load																		
Environmental Test	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Deliver to JPL																		

Task V - Fabricate and Deliver																		
25 Panels (13 Residential)																		
13 Intermediate Load																		
12 Panel Production (58 & 61L)																		
14 Panel Production (78 & 71L)																		
Deliver 12 Panels to JPL	21	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Deliver 14 Panels to JPL																		

Task VI - SANS/SANTEX																		
Tutorial Session at JPL	31	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Price Estimates (NC-1 & NC-2)	14																	
4. Environmental Tests

Environmental tests were performed on modules at two different locations. Task IV involved Solarex testing five intermediate load and five residential load modules. JPL also performed environmental tests on a number of modules. The basis for testing is specified in:

- JPL-5101-83-"Block IV Solar Cell Module Design and Test Specification for Residential Modules".

and

- JPL-5101-16 Rev A - "Block IV Solar Cell Module Design and Test Specification for Intermediate Load Center Applications".

The environmental test procedures consisted of:

- Thermal Cycling - 50 six-hour cycles for -40°C to +90°C.
- Humidity - as specified in above mentioned documents.
- Mechanical Cycling - 10,000 cycles - positive and negative 50 lbs/ft² load.
- Twisted Mounting Surface - as specified in above documents.
- Hail Impact - Modules must be capable of withstanding 3/4" diameter iceballs traveling at velocity of 45 mph.

Solarex sub-contracted the thermal cycling, humidity, and mechanical cycling tests to an independent testing laboratory, the Stanford Technology Corporation, of Glenbrook, Conn. Solarex did the twisted mounting surface test at its facility. The hail test was done only at JPL.
5.0 Design Alternations During Pre-Production Phase

5.1 Interconnection Design:

For Block IV, a new type of interconnect (terrestrial applications) was developed. A companion cell design was developed that was compatible with the wraparound concept. A sketch of the interconnect (as drawn by JPL) is shown in Figure 1.

The original idea was that there should be six connections on the front and six connections on the back to provide a highly reliable design. However, with the original design, the interconnect connection to the back of the cell was such that it was about an inch in-board from the connections on the front. We decided to alter the design such that the front and back electrical connections would be about the same relative location on the front and back. The design that is in use is shown on Figure 2.

5.2 Cell Metallization

Two changes were made in cell metallization during the preproduction phase. Solarex's initial intention was to use Ni-Solder. However, problems in transferring this technology from single crystal to the larger 9.5 cm square semicrystalline cells prevented us from achieving this objective.

To prevent the schedule from being delayed any longer, we used the tried-and-proven Ti-Pd-Ag front metallization on the Block IV cells. Because of a problem that occurred during humidity testing at JPL in April 1981, a decision was made to use a Tin-Silver alloy back. Production
Block IV modules have Ti-Pd-Ag fronts and Tin-Silver over Aluminum backs.

Secondly, in keeping with the desire to have a highly reliable and fault tolerant design, we changed the metallization pattern to allow redundant current paths should the primary path be interrupted due to cell breakage or other opens. The mask pattern is shown on drawing B-0813.

5.3 Frame Design - Intermediate Load

The original design was a one-piece design with welded corners. One of the narrow ends was "split" to allow some flexibility to ease the glass into the frame. We had problems with this for two reasons. First, opening the frame to insert the glass called for extraordinary care or the corner welds would develop cracks. Secondly, the welding workmanship of the vendor was not always up to par and despite extraordinary care, cracks still developed. We remedied this problem by making the frame in two pieces with two L-brackets joining the two sides. The resultant frame is a much sturdier, easier-to-construct frame.

The frame and L-Bracket drawings are shown on D-0928-1, D-0929-2 and D-0864.

5.4 Lamination Procedure

Our initial lamination machine and manufacturing procedure was based on the work done by Springborn Laboratories under contract to JPL.

However, we had difficulty in consistently making bubble-free full-size panels. Our first approach was to make the panels in two steps. The first lay up consisted of the glass, two layers of EVA and the cell-interconnect
layer. In the second lamination, the final layer of EVA and one layer of Tedlar were added and put through the lamination cycle. While this approach did achieve a good EVA cure, it had two major disadvantages. Too many cells were broken and the cycle time was excessive. When the modules were subjected to thermal cycling, there was excessive delamination between the Tedlar and EVA.

Our initial approach to resolving these problems was to use much less pressure during lamination. To accomplish this, instead of an air bag technique, we used weights. This decreased the pressure from one atmosphere (about 14.7 psi) to the equivalent of about 0.14 psi. We also introduced a one step lamination procedure. The results were mixed: the cycle time decreased markedly, cell breakage was eliminated but we still had problems with bubbles, especially near the edges. The cosmetic problems with wrinkly backs continued. We tried many variations of lamination methods to improve the quality and found that the best results were attained by using a pressure differential of about 1/2 atmosphere (4.7 psi) with an air bag. We also installed better control and monitoring instrumentation both for the electrical and pressure/vacuum systems.

The procedure that is being used for the production run results in a module that is bubble-free, rarely has cell breakage, has a well-defined, bubble free edge and withstands environmental testing.

Figure 3 shows a sketch of materials used presently.
6.0 Performance Characteristics

Characteristics of the module as measured or determined by JPL are:

<table>
<thead>
<tr>
<th></th>
<th>INTERMEDIATE LOAD</th>
<th>RESIDENTIAL LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCT °C</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>Avg. Power @ 56°C-watts</td>
<td>56.0**</td>
<td>56.0***</td>
</tr>
<tr>
<td>(P_{\text{min}}) - watts</td>
<td>50.4</td>
<td>50.4</td>
</tr>
<tr>
<td>(\Delta V/\Delta T) - Volts/°C</td>
<td>-0.0856</td>
<td>-0.029</td>
</tr>
<tr>
<td>(\Delta I/\Delta T) - Amps/°C</td>
<td>+0.0045</td>
<td>+0.0136</td>
</tr>
</tbody>
</table>

* NOCT Insolation value = 100 mw/cm²

** Design Voltage = 14.0 Volts

*** Design Voltage = 4.5 Volts
<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT ASSY</td>
<td>USED ON</td>
</tr>
<tr>
<td>A</td>
<td>0865F, 0863D</td>
</tr>
<tr>
<td>B</td>
<td>0863E, 0865G</td>
</tr>
<tr>
<td>D-0871E</td>
<td>Block IV Residential Load Cell Assembly</td>
</tr>
<tr>
<td>*B-0872A</td>
<td>Solar Cell Tab Assembly</td>
</tr>
<tr>
<td>*B-0813A</td>
<td>B-4 Solar Cell Mask</td>
</tr>
<tr>
<td>*C-0926</td>
<td>Block IV Interconnect</td>
</tr>
<tr>
<td>C-0927-1,</td>
<td>Block IV R & L Interconnect</td>
</tr>
<tr>
<td>-2A</td>
<td></td>
</tr>
<tr>
<td>B-0825C</td>
<td>Electrical Schematic - Residential Load</td>
</tr>
<tr>
<td>*B-0870A</td>
<td>Block IV Terminal Box Detail</td>
</tr>
<tr>
<td>A-0976A</td>
<td>Identification Label</td>
</tr>
<tr>
<td>D-0863E</td>
<td>Interface Control Residential Load - Block IV 2 Sheets</td>
</tr>
</tbody>
</table>

*Applicable to both Residential and Intermediate Modules
TOP VIEW

SIDE VIEW

ENLARGED CROSS SECTION - ENCAPSULATION SYSTEM

4.8 mm TEMPERED GLASS

0.8 mm ETHYLENE VINYL ACETATE - CLEAR

0.3 mm SOLAR CELLS - INTERCONNECTS

0.4 mm EVA - CLEAR

0.1 mm CRANE GLASS

0.4 mm EVA CLEAR

0.1 mm TEFLON
NOTES:
1. The Solarex Block IV Residential Module has no integrated frame. One method of mounting is shown here.

2. Two positive and negative #12 wires from each of two terminal boxes -- black - neg, white - pos.
3. Active (illuminated) surface dimensions (with 1/2" overlap for gasket) = 59.7 cm x 116.2 cm.
4. Max Wt -- without frames = 30 lbs.
5. Module shall not be twisted more than 1/4" per foot.
6. I.D. label on positive terminal box, top toward short dim.
7. 8 in每个模块包含一个主标签，上面包含模块序列号、年份和制造周。序列号无顺序。
 -- XXXXXX = sequential serial number
 -- XY = calendar year
 -- YY = week in calendar year
8. All wire lengths -- 30 cm from terminal box.
9. Two diodes per six paralleled cells.
10. No Shading when Sun Angle is greater than 76.2 degrees -- long dimension or 87 degrees -- short dimension (gasket-rubber hold design.)
FOLDOUT FRAME
NOTES:

1. Module edge across short dimension does not require key-lock strip. Allow 2 in. gap between adjoining module short dimensions for rain run-off.

2. Mount 2 x 4 on 24 1/16 in. centers.

3. Source for gasket -- Pauling Rubber Company, Pauling, NY. Specify gasket with cross-section as shown in Sec A-A to fit 0.9 in. of 62.2 cm (24 1/2") x 118.7 cm (4' 3/4") Material: NOK 2000 silicone compound 60 durometer.

4. Source for key-lock fabrication -- Goodrich Rubber Company. Specify strips with cross-section as shown in Sec B-B, length = as required for application. Material -- EPDM Elastomer -- Piment trade name -- KORAL.
<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT ASSY</td>
<td>USED ON</td>
</tr>
<tr>
<td>A</td>
<td>0864F, 0862E</td>
</tr>
<tr>
<td>B</td>
<td>0862F, 0864G, D-0928A, C-0929A</td>
</tr>
</tbody>
</table>

D-0864G Block IV - Intermediate Load
Top Assembly - 2 Sheets

D-0928A-1, Frame - MIT Lincoln Laboratory
-2
C-0929A L Bracket - Frame -
MIT Lincoln Laboratory

A-0852A Rear Support Clip

D-0866E Block IV - Intermediate Load
Lamination Assembly

D-0867E Block IV - Intermediate Load
Cell Assembly

*B-0872A Solar Cell Tab Assembly

*B-0813A B-4 Solar Cell Mask

*C-0926 Block IV Interconnect

*C-0927-1,
-2A Block IV Right & Left
Interconnect

*B-0870A Block IV Terminal Box Detail

B-0826C Electrical Schematic - Intermediate Load

*B-0879 Identification Label

D-0862F Interface Control - Block IV
Intermediate Load

*Applicable to both Residential and Intermediate Load Modules
ASSEMBLY NOTES

Frame assembly—Lay completed laminate assembly (066) on flat surface (glass side down) plane true frame sides (90°-4.1) around laminate assembly, and secure with L-brackets (0919). (End with ground provision in nearest positive terminal). Turn frame—lamination assembly over (glare-up) and lay flat on table allowing taller side to rest on frame back. Apply continuous bead of RTV-108 on outer 1/2" of glass surface. Turn glass—frame over (glass-side down) and insert rear support clip (0032). Clean excess RTV-108 from glass and frame. Apply white RTV-102 as shown in Sec. D-0.

ID LABEL — IN MODEL NO BLOCK-TYPE FOLLOWING INFO:

REVISED

REVISIONS

DATE

APPROVED

<table>
<thead>
<tr>
<th>ZONE</th>
<th>LTR</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>GEN REVISION</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>GEN REVISION</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>GEN REVISION</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>GEN REVISION</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>EXPD PASS'G NO. 4.</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>ADD REV. FOR MODIFICATION LABEL</td>
<td>9/4/77</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>CHANGE A LAYOUT</td>
<td>9/4/77</td>
<td>F</td>
</tr>
</tbody>
</table>

PARTS LIST

<table>
<thead>
<tr>
<th>NO.</th>
<th>QTY</th>
<th>CODE</th>
<th>PART OR IDENT CODE</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>R/1</td>
<td>LABEL R-0866</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>R/1</td>
<td>LABEL R-0866</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>R/1</td>
<td>ADHESIVE RTV 108-CLEAR</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>R/1</td>
<td>FLAT WASHER #8 STAINLESS STEEL</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>R/1</td>
<td>STAR WASHER #8 STAINLESS STEEL</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>R/1</td>
<td>NUTS #8-32 NC-55 HEX</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>R/1</td>
<td>MACHINE SCREW #8-32 NC-55 82° FLAT HEAD</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R/1</td>
<td>MACHINE SCREW #8-32 NC-55 82° FLAT HEAD</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>R/1</td>
<td>R-D 0879</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>R/1</td>
<td>R-D 0823</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>R/1</td>
<td>L-BRACKET FRAME-MIT LINCOLN LAB.</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>R/1</td>
<td>L-BRACKET FRAME-MIT LINCOLN LAB.</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>R/1</td>
<td>FRAME-MIT LINCOLN LAB.</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>R/1</td>
<td>REAR SUPPORT CLIP</td>
<td>SOLAREX</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>R/1</td>
<td>REAR SUPPORT CLIP</td>
<td>SOLAREX</td>
</tr>
</tbody>
</table>
L-Support Assy' positioned on B of frame split

Section D-D

Ground Provision Assy'

Sec. BB
Scale 2:1

Foldout Frame
DETAIL SHOWING ADHESIVE PAINT
MODULE-FRAME SEAL

SECT. CC
SCALE: FULL
ROTATED 90° CW

REAR SUPPORT CLIP DETAIL
TYPICAL INSTALLATION AS SHOWN

FOLDOUT FRAME

SOLAREX CORPORATION
1335 PECORD DRIVE, ROCKVILLE, MD 20850 (301) 948-8888

BLOCK III - INTERMEDIATE LOAD
TOP ASSEMBLY

D RID 0064G
Top View
View showing thru-hole mounting on bottom flange.

Side View
Showing envelope and projection above glass surface.

Rear View
View showing loc. and groundin'-

Foldout. Frame
Rear View
View Showing Location of Terminal Boxes and Grounding Provision

Model No.
560-ST-L BODY MAX.

Identification Label

Electrical Ground
Furnished by Customer
L-Support
Frame

Diodes

Neg Bus

Cell Orientation (from back)
Cell Orientation (from back)
(NOT TO SCALE) - 1 DIODE PER
TWO PARALLELLED CELLS

Section 8.2

Interface Control
Block IV Inter. Load

Material
6063-T52

Check

Solvarex Corporation

1335 Piccard Drive
Rockville, MD 20855
(301) 948-8024

D R10D 0862 F

Foldout Frame
9.0 Conclusions:

Semicrystalline silicon cells were no more difficult to work with than single crystal cells.

The wraparound feature of the tabbing-stringing scheme worked reliably. There had been concern expressed that during lamination the tabs would come in contact with the edge of cells. We have not found that to be a problem.

The in-plane stress relief designed into the interconnect worked well. No interconnect failures were noted in any of the pre-production Block IV modules nor have we noted any interconnect failures in those modules of this design which are in the field.

We learned to work with EVA. Using the experience gained in the Block IV program, Solarex is now routinely making finished panels using EVA.

The crack-tolerant cell design was recognized by JPL when JPL approved the inspection system plan. As many as seven different cells per module could have cracks (some with double cracks) and still be regarded as acceptable.