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ABSTRACT
The field of computer vision iz surveyed and assessed, key

research issues are identifiecd, and possibilities for a future JPL
vision system are discussed.
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1. INTRODUCTION

1.1 Scope of Document

The purpose of this document is to review the state of the
art of computer vision, to identify some key research issuves, and
to describe the capabilities and architecture that a future JPL

vision system might haves

The document can be used as a brief introduction to the
field of computer vision. For more detailed information the
reader can consult the cited references. In particular, Dudz and
Hart [1973] provide a good text on some of the basic principles
of computer vision; Pavlidis [1977] discusses in detall some of
the algorithms of computer vision; Winston [1975a] preszents a few
significant pieces of work; and Aggarwal ¢t al. L1977]1, Hanson
and Riseman [1978al, and Barrow and Tenenbaum [1981] provide
surveys of séme of the more important work, portions of which are
clted elsewhere herein. Also, Rosenfeld provides an annual
bibliography of image processing and computer vision. (Fcr
example, FRosenfeld [1951] covers the year 1980 and contains 897

references.)

The term #computer vision® 1s considered here to be
synonymous with "machine vision™ and "robot vision®™ The terms
"scene analysis," "image understanding,” and "pictorial pattern
recogniticn™ often are also considered to be synonymous to these,
although some authors use the latter three terms in more
restricted senses. Tne general field of pattern recognition
includes the recognition of abstract patterns in arbitrary non-
plictorial data, and is not covered here. Also, techniques for
analyzing highly specialized two-dimensional scenes (as in

character recognition) are not covered here.
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We have attempted to provide a survey of the more
significant developments in the field of computer vision, but
very likely some important work has been omitted. For this we

apologize.

1.2 Querview

There are aany ways in which & description of computer
vision could be organized. For example, the fileld could be
divided according to the systems developed by different
individuals or groups, by the nature of the scenes being
processed, by the nature c¢f the information desired, by the kind
of techniques that are used, or by the progression from low-level
(close to the image) to high-level (close to the desired finel
results) processing. This document uses primarily the latter
apprcach in Sections 2, 3, and 4, but elements of some of the
other organizations appear in other sections. In addition to
these considerations, it is difficult teo produce a coherent
organization because of the wide variety of approaches thet are
used and the overlap among them. This is caused by two facts.
First, the vision task is very difficult and requires complicated
methods. Second, vision research ig still in a very primitive
state. There is no consensus on the best techniques at any level

of processing.

The terms "representation,” "description,” and "modelling”
are used with variouvs meanings and sometimes are used
interchangeably, However, here desinitions are éssigned somewhat
arbitrarily, es follows. "Representation” denotes the choice of
lowelevel features derived from the picture which capture most of
the important information 1r the picture but do not explicitly
describe the global nature of the scene. Section 2 describes the

representation technlques usually used, arranged roughly from the
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lowest level towards higher levels. Section 3 covers
“"deseription," defined here as the ways of describing a scene or
obJect mere globally, perhaps in terms of the basic
representation components and the relations among themn.
*Modelling" is considered to be essentially the same as
description, except that it is applied to abstract models of
objects which are searched for in actual pictures. One important
vision task 4s recognition, which is considered to be the
matching of a description derived from a picture to cue or more
abstract models, perhaps out of a large number of pogsible object
models. Ways of doing this are described in Section 4 The
situation often is not as simple as this straightforward
description-model-matching scenario inmplies, however, for this
same type of process can reépeat at several levols in the analysis
of a scene,

saother important vigion task is verification, in which 1t
is known what object should be present and avproximately where it
is, and it 1s desired to verify its presence and correct the
estimate of its location. In such a case the a priori
information can be used to guide the finding of important
features used in the representation, and comparing the position
of these to their predicted positions enables the model to be
updated. A similar task is the tracking of moving objects. Here
the predicted information comes from the results at previous

times. Verificatiun and tracking are discussed in Section 5.

Three-dimensional information can be measured directly by
some devices, as mentioned in Section 2.1. However, usually it
is obtalned indirectly from two-dimensional pictures. JLf only a
single two~dimensicnal picture is available, the depth
information must be inferred by means of heuristics, some of
which are inherent in the recognition techniques described in

Section 4. Howevapr, if more than one picture is available, often’



one of several techniquss here called Ystereo vision® can be used
to obtain the depth information, ss described in Section 6.

Section T discusses methods for getting the necessary
inforustion concerning object models into the computer vision
systen, Sectian 8§ discussés methods for controlling and
calibrating the cameras. Section 9 discusses issues of systen
architecture, both in terwms of computational structures and
hardware. Section 10 summarizes our conclusions concerning the
state of vision, the key research issues of vision, and the

possible nature of a future JPL vision system.

1.3 Zveical Vision Systems

_ Before discussing particular aspects of the vision problem
in the rest of the document, a few representative computer vision

systems will be briefly described in this section.

First some operaticnal industrial vision systems will be
described. Many computer vision systems have been developed to
provide visual feedback to a robot. Typically, these systems
identify objects in the workspace of the robot, estimate the
position and orientation of objectis, and in some cases estimate
the velocity of moving objects, In some cases, object
identification may include inspection to detect defective
products. Some systems are designed around a single object and
use ad hoc.techniques which may not apply directly to any other
application. Other systems are designed for generic classes of
cbjects, These systems have a programuable data base which can
be loaded with models of specific objects for any given
application. The vision system 1s programmed to extract a
standard set of features to generate descriptions of chbjects in a
scene., This is followed by a matching procedure which compares

object descriptions obtained from the image to prototypes in an
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object model data bage. For a given application, the system
provides some means of loading this data base with descriptions

of specific prototypes.

At the National Bureau of Standards (NBS), VanderBrug gf al.
[1979] have developsd a vision system using structured light and
a camera mounted on the wrist of a robot arm. The camera is used
to locate an object resting on a flat surface and to estimete its
position and orientation so that it can be grasped by the arm. A
description of the object is built up through multiple views
obtained by woving the arm and camera. The structured light
source, also on the arm, is a stroboscopic flash behind a
cylindrical leuns which produces a sheet of light. The camera
line~of-sight is oblique to the plane of light. Inage anaiysis
consists of detecting the strips of light,on the surface of an
object. The oblizgue viewing geometiry causes the stripe to take
oh different app: arances depending on the geometry of the objest
and its orientation. For example a'rectangular ocbject viecued
head on produces a straight line, whereas a Veshaped line occurs
when the obiect 1s viewed obliquely. Cylinders produce curved
stripes when viewed parallel to the circular eross-section.
Pris&atic objects with grooves or ridges produce broken stripes.
Image analysis consists of interpreting stripe features to
identifly objects. Knowing the geometry of the camera and lisht
source mnakes It possible to extract 3«P meacurements of
illuminated points on the object, and thus ultimately the
position and crientation of the object in robot coordinates.

CONSIGHT is a hand-eye system developed at General Motors
(Vard a% 8. [19791]) for the purpose of pilcking up parts otf a
noving conveyor belt. A linear-diode-array camera is mounted
directly above the conveyor belt. The image of an object is
built up through a sequence of one-line images taken as ﬁhe

object passes through the field .of view of the camera. When the
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entire object has passed by the camera, a statistical description
derived from its 2-D silhouette 13 used to identify it aad to
determine the position and orientation (in a plane) of a
predetarmined grasp point. The vision system can identify
nultiple two-dimensional objects which are in the field of view
simultanecusly. The only requirement is that parts-do not touch
or overlap. The vision system is programued to recognize a part
using a teach~by-showing methods In this mode, the pabt
description derived from an image of the part is stored along
with its name, which is entered by tne operator. CONSIGHT also
uses structured light consisting of two focused line light
sources, one on either side of the camera along the directicn of
the conveyor belt movement. The light soufces are aimed
obliquely to the conveyor belt so that they both illuminate a
thin line on the surface of the conveyor belt perpendicular to
the direction of its motion and visible to the linear-diode-array
camera, When the belt ls empty, the camera sees a contlnuous
white stripe. When an object i1s present, the oblique
Illumination of -the object causes the thiin iine of light to nove
along the object towards the iight source and out of view of the
linear-~diode~-array camera, The amount of line of light movecment
is proportional tec the height of the object. Thus objects appear
as dark blobs on a bright backzround. The main advantage of this
structured light approach 1s that parts can be detected
independently of their contrast with the belt.

- The SRI Vision Module (Nitzan gt al. [1979]) is very similar
to CONSIGHT, and in fact served as an inspiration for the latter
system, The SRI system uses a more conventional 2-D array
camera, and is thus suited to other applications as well as
lookiag at pa.ﬁs on conveyor belis, ObJects are detected as
bleobs in a binary image obtained by thresholding. Contrast is
enhanced by careful lighting, including backlighting, so that
ijects are significantly brighter or darker than the background.




The system is programmed to recognize parts usinz the teach-by-

showing method. During the teaching phaae, the part is viewed.
several times in different positions and orientaiions in a plane

to obtain a statistical distribution of the featurdes (mean »nd

standard deviation)., The statistical distribution of feature
values can optionally be used by the program to automatically

generate an optimal binovy decision tree for blob c¢lassification

Otherwise, classification is done by "nearest neighbor® matching

in feature space. SRI has used the vision system in several

experimentsbincluding piclking parts from a moving corveycr belt,

packing and unpacking boxes; inspection, and object tracking.

Although the above systems can perform useful vision tasks
in real time, their performance 1s very lirited. [fenerbaum gf
al. [1979] point out the following linmitations of current
industrial vision systems: high contrast, no shadows, no
occlusnion, two-dimentional models, rigic objects, and standard
viewpoint., Next we discuss the ACRONYM system developzd at
Stanford University which overcomes all of these limitations to a
certain extent. (For a more complete description of ACRCEYM see
Brooks et al, [1979), Brooks and Binford [1980], and Binfo,d et
al. [1980].) ACRONYM is not an operational system. It is a
regsearch vehicle still under developnment, which runs on large
time-shared computer, and uses pre-stored images. Fowever, i1t
appears that it will be one of the most advanced vision programs
yet produced, and it has a large degree of generality in the

domain of identifying man-made objects.

ACRONYM models scenes and objects as specified by the user
in terms of generalized cones (deascribed in Section 3). An
object consists of a hierarchical structure (an object graph) in
which thé volume primitives are generalized cones. In a generic
model the number ¢ each type of part and the dimensions,

relative position, aud relative corientation of the parts can vary



over specified rengss, A predictor and planner module converts
th: medels into prediction graphs, which predict the appesranrce
of objects within the scene, snd provides a plan for lower-level -
descriptive processes and a patcher to find instances of the
objectn in the image. The edge uwapper module detects edges using
the method of Nevatie and Babu (described in Section 2.4) and
formn these into ribbons, which are the two-dimensional snalogue
of generalized cones. The result 1s an cbaervation graph. The
mateher then matches the observation graph (produced from the
image) and the prediction graph (produced from the iodel) to
produce the interpretation é;r-aph, from which the interpretatiow
of the scene is derived. In this process the predictor and
pianner can be invoked again to extend the graphs wheu a submatch
is successful. It is planned to add stereoscopic vision to
ACRONYM in the future. Ceritzin aspects of ACRONYM are discussed
further in Sections 3, &, and 7. '
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2. REFRESENTATION

2.1 Pixels

The lowest-~level reprosentation of a digitined picture is
the pixel, Each pixel represents the value of onre or more
quantities at some point in the tuwo-dimensicnal picture. Usually -
the pixels form a uniform rectangular array over the picture, but
Jometimes other arrangements are used, such as a hexagonal array
s advocated by Golay [1959].

Usually the pikels represent the brightness and perbhaps
color in a projection from a three~dimensional scens. (The
fundamentals of image formatlon and color are discussed by Pratt
£19781, and the way in which surface propertiles determine image
intensities is discussed by Horn [1977].) 1In a monochromatic

picture each pixel is represented by a single numerical value, In

‘a8 color pilcturs, each pixel 1s represented by two or wmore

(three, if huwman vision lIs simulated) values representing
brightness in different wavelength tands. (These values can be
converted to other values such as hue, saturation, and
brightness.) In general, however;, tke pixel values do not have to
represent 1ight intensitiea, UOther media, such as sound or

tactile pressure, conuld bz used,

« faet, the pixels do not haite to represent intensities at
all, 7 - * can represent distatices to the corresponding points in
the thre.-dimensional scene, in which case the pizel array is
referred to as a ¥®range Iimage.® Such data 1is produced by a
sezauning laser rangefinder ar discussed by Lewis and Johnston
{19771 or could be produced by an appropriate sconar device.
(Also see the next paragraph.) Similar data can be obtained
somewhat less directly by a triangulation method using a laser

and an ordinary camera, as described by Agin and Binford [1973].




If distance i3 not measured directly, it must be inferrad
indirectly from the two-dimensional pilctures if three-~dimensional
scenes are belng considered. A low-level method of estimating
relative distance and surface orientation from a single picture
4 described by Berrow end Tenenbaum [1978). They use heuristics
based on the rate of change of brightness across a bicture. Horn
[1975] and Woodham [1977] provide methods based on the assumption
of a reflectivity funetion that is constant over an object and
some assumptions about the illumination. M'thbda based on more
than one picture and high=level methods are discussed in later

sections,

Nitzan et al, [1977] obtain registered range and intensity
data by scanning the scene with an ampliitude-modulated laser
transmitter. A receiver outputs the amplitude and medulation
fPhase shift of the reflected laser light, which are proportional
to the intensity and (within one phase period) the range,
respactively, of the reflecting surface. Thuzs both a range
picture and & conventional brightness picture are produced
simultaneously by the same device. The main drawback to such an
approach 1in computer vision for robotics is that such & device is

currently much slower than a standard TV camera.

If the pixels represent brightness, these brightness values
usually suffice for later processing, since the important
quantity is often relative brightness rather than absolute
brightness, However, 1f it {8 desired to identify objects by
thelr absolute color, the reflectance (lightness) of their
surface (in several wavelength bands if color is used) wust be
determined. Thus the effects of illumination must be separated
from the effects of surface lightness, wiich combine to produce
the measured brightness. Human beings are quite good at this,
even though the general problem i1s inscluble. Several

investigators - e proposed heuristics by which reasonable

2=2
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results can be obtained for typical scenss. Land [1971] proposed
a method based on edges (spatizlly sudden changes in brightnesa),
assuming thet these are due to changes in lightness whereas
spatiaily gradual changes are due to illumination effects. Horn
[1974] extended Land's work, using the inverse of the Laplacian
operator as a neans of integrating the information across two
dinensions in order to obtain lightness at each point.  Gilchrist
[1979] showed the irportance of three-~dimensional position
information in performing the separation of illumination and
lightness, in addition to the two~dimensional information used by
l.and and Horn, but did not produce an algorithm for computer
implementation. ALl gt al. [1979] use normalized color values to
try to minimize the effects of shadows, a3 described in Section
2.3.

Rl IToxbure

Texture is a’ local variation in pixel values (whether
brightness, color, or any other information mentioned in Sectilon
2.1) that repeats in a regular or random way across a portion of
an lmage or object. Texture can be chavacterized in various ways
that result in descriptions including numerical or symbelic data,
or both. Such a description can vary as a function of position
wituin an image. However, the texture information is usually
obtained at a lower resoclution than the coriginal image data from
which it is derived, because several pixels are required to

determine each texture element.

Once the texture has been measured, it can be used for
several purposes. The nature of the texture may aid in
identifying a particular object or material, the scale of the
texture in the image may be used to determine distance if the
scale of the textﬁre on an object i known, and nonisotropy of

textvie may ald in determining surface orlentation. Also, the



variations in texture across an image can be used in the same way
a3 variations in untextured pixel values. Segmentation using the
adge detection techniques and reglon finding techniques to be
described in later sections cun be done based cn the texture
informatidn instead of on brightness, color, or other original
pixel information. It 1s even possible to apply the definition
of texture recursively in order to obtain a texture of textures.

Texture information is likely to be useful on natural
outdoor scenes, since these tend to be highly textured. However,
man-made objects usually have fairly uniform surfaces, Thus for
the near-term WASA applications, which involve asssnbly work,
texture is unlikely to be important. Therefore, it 1s not
discussed in further detail here. The many approaches to texture
analysis that have been used are surveyed by Haralick [19781.

2.3 Beglony

A reglon 1s a set of connected pixels that share a common
property such as average gray level, color, or texture 1n an
image, The assumption in forming regions ig that pixels sharing
the above properties will also share the property of belng lwmages
of points cn the same objeot (or part of an object, or &
collection of objects - in other words, an entity of interest to
the vision system)., Regions are typically described by
statistical features such as perimeter, area, first and second
moments, average gray level (or color), ete. In some cases,
explicit shape information such aé the location of corners or
tabs 1s included, or possibly the entire boundary is represented
for more general shape analysis. Lists of region records
containing some portion of the above set of features for each
region in the image are often structured as a tree or graph to
indicate nesting and adjacency relationships between reglons,
Zucker [1976a] and Riseman and Arbib [1977] survey several region



growing techniques, some of which are discussed below. Also,;
Kanada [ 197 8] discusses how the region segmentation problem
relates to the rest of the vision tasle

The simplest approach to region growing is to look for
cluaters of O's and 1's in a binary image obtained by
thresholding a gray~level image. The approach used by SRI
(Nitzan gf sl. [1979] and CONSIGHT (Ward gk ale (1979]) is
connectivity analysis performed in a one-pass raster scan of the
image. The result is a tree-like list of regionrecords where
links down the tree indicate nesting; i.e.,, if a region record is
not a leaf node of the tree, then the children of the region are

completely surrounded by it.

Both of the above systems use a global threshold to obtain
the binary image. Fach pixel of the image is thresholded at the
same level, This approach works best in man-made environmeuts
such as o manufacturing arer where scene paraneters such as
illdmination anc background composliion can be coatrolled to
insure high contrast images suitable for global thresholding. In
a survey of threshold selection techniques, Weszka [1978]
ldentifies three generic approaches to thresholding. One is
global thresholding as defined above. Global thresholds are often
selected by a user on the basis of experimentation to achieve the
best results., Automatic global threshold selection usually
involvey analysis of the gray level histogram of the image to
locate a well defined local minimum between two peaks, and
setting the threshold at this gray level. Attempts to improve
the results of histogram anzlysis include weighting the histogram
on the basls of the response to a local operator such as gradient
or Laplacian operators. The second approach .s called local
thresholding. In this case, the threshold is allowed to vary
from pixel to pixel depending on some function o gray levels in

a8 nelghborhood of the pixel. The third approach is dynamib



threshold selection, Thresholds are chosen for a subset of image
points using local threshold selection techniques. Thresholds at
. the remaining points ars obtained by interpolation. Thus the
threshold 1s a function of a pixel's location in the image. Otsu
[1978] devised an improved thrashold selection method that does
not require the detection of a mininmum in the histogram. This
method is equivalent to fitting te the original picturc by means
of least-squares the two=-valuoed (or multivalued for multiple
thresholds) picture obtained by thresholding.

The above techniques can be extended to color inages.
Ohlander, ot al. [1978] compute histograms for nine color
parameters: red, green, blue;'intensity, hue, saturation; and Y,
I, Q. (These parameters are defined in Pratt [1978].) Reglons
are extracted by thresholding the parameter that exhibits the
"best? histogram; J.e., a strong peak with well defined local
minima on either side., Thils process 15 called region splitting.
The algorithm is applied recursively to each region extracted in

a previous iteration until no more reglons can be split.

Ali gt al. [1979) wused Shromaticity coordinates and
normalized intensity to segment color photographs of airplane
runway scenes. The chrometicity coordinates are obtalned by
dividing the intensity in each of the red, green and blue bands
by the sum of all three intensities. The sum of the red, green.
and blue intensities 1a divided by the maximun possible total
intensity (3 x 255 for 8-bit digitization in each band) to obtain
normalized intensity. The interesting result of this work was
the ability to segment runways as & single region in spite of
shadowing since the normalized color coordinates are roughly
independent of the shadows., Attempts to locate camouflaged
airplanes in the same scenes were encouraging but not quite as

successful,



For most scenes a simple threshold is inadequate., The
region-splitting technigue of Ohlander mentioned above performs
better in some cases. Brice and Fennema [1970) use a region-
nerging technique. Starting with small, fairly uniform regions,
two heuristics are used that merge regions so that the regions
formed tend to be of simple shape and weak boundaries tend to be
eliminated. Horowitz and Pavlidis [i974] use a split-and-merge
procedure. It starts from an initial approximation to the
desired segmentation, and proceeds both to split regilons and to
nerge regions until the process siabilizes. In this way a better
and faster segmentation can be achieved in some cases than with

Just splitting or merging.

It is possible to inco-porate semantic information about the
nature of the scene into the reglon segmentation process in order
to produce a better segmentation than can be produced using
picture information unly. Yakimovsky and Feldman [1973] use a
decision-theoretic reglon-werging apprecach. They attempt to
nmaximize a probability based on the properties of the reglons,
such as color, and the properties of the boundaries between
regions, such as ﬁheir crude shape and orientation, and how these
properties relate to their semantic interpretation. Heuristics
are used in order to avoid an exhaustive search. Their technique

has been used on natural outdoor scenes.

Ohta af al. [1978]) produced a system using semantic
knowledge about objects with substructures that is able to
analyze outdoor scenes containing buildings. Ii produces a
breliminary segmentation by means of a recursive thresholding
technique similar to Ohlander's with local thresholds, and a data
structure.describing the relationship of the low-level features
fouad, A plan is generated from this segmentation based on the
larger lowest-level reglons, The interpretétion process uses the

plan and a set of production rules which contain the semantic



knowledge. In this proccss some of the lowsr-level regions are
remerged and an interpretation in terms of objects is assigned to
each region,

The segmentation system developed by Tehsnbaum and Barirou
{1976] uses relaxution techniques (describved in section 4.1) to
iteratively refine the partitioning of an image into regionz, AL
eazh step, beginning with a very eclementary pariitioning cof
single pixel reglons or regions composed of a few pixels with
identical attributes, the system performs the most complets
interpretation of regions in the current partition. Based on
this interpretation, a pair of regions is merged. The choice of
this pair is based on minimizing the pisk of merging regions that
are not part of the zame object, The risk is calculated in terms
of the current interpretations of reglons and relational
conastraints in a model of the scene. The n@w'partitionitg thus
obtained is re-interpreted, and so on, until there are no safe

merges availlable.

If the pixels contain range data instead of gray level or
color information, regions in which the gradient is approximately
constant are meaningful, since these corregspond to planar
surfaces, Milgram and Bjorklund [198] determine such regions by
first fitting local planes to small areas around each pixel by
means of least squares. Then reglons are grown from these
according {o how well adjacent planes agree and how small the

residuals of the fit are.
2.4 Edge and Line BElements

An edge ig a step in pixel values between two regions of
relatively uniform values. The detectlion of edges is often an

importsnt step in the segmenting of scenas. (An alternative

approach, the detection of regions, was discussed in the previous
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section., HNevatia and Price {1978} compare these two methods.)
For the present purposes, a line 1s defined as a thin region
(perhaps only one pixel wide) of roughly uniform pixel value
between two reglions of roughly egual pixel velues., A line is
thus a double edge. An edge element or line element is a short
(several pixels) length of an edge or line that can be assumed to
be stralght, even though the complete‘edge or line may be curved.
One approach to the detection of edges and lines is the use of a
local detector to find these short elements, which can then be
linked together by higher~level methods. The term "edge
detector®™ is used here to denote the local detectors, which are
.the subject of.this subsection,

Even though an edge detector is a very low-~level operator
and the concept of an edge elenent or line element is fairly
simple, many edge detectors have been proposed that differ in
various ways that make a simple comparison difficult, and no one
stands out ag the best. Surveys of edge detectors have been
provided by Davis [1975], Fram and Deutsch [1976], and Shaw
[1979]. A few of the mors popular or significant detectors are
described below. Unless otherwlse specified, tuese are designed
to opera‘e on monochromatic images and to detect edge elements

only.

One of the most popular edge detectors was designed by
Hueckel [1971]). It was later generalized to detect an edge-line
combination, and other improvements were made {(Hueckel [19731).
The Hueckel detector operates on a circular field several
(typically nine) pixels in diameter. It attempts to fit to the
data an ideal edge function consisting of constant biightness on
each side of a perfectly sharp edge which can be at any pousition
and orientation within the fleld. Thus four parameters are
solved for (six in the generalized version which fits an edge~

line combination). For speed, the operator only approximates a



least-squares fit by means of a set of orihogonal functions.
Since the edge does not have to pass through the center of the
field, the operator can be applied on a grid with sufficiently
small spacing so that there 1is some overlap of the fields,
instead of applying it centered on every pixel. This results in
fairly good overall speed. However, the detection'of of f-center
edges 1s somewhat degraded. Nevatia [1977] generalized the

Hueckel operator to use color information.

Several edge detectors are based on the use of very small
(two=-by-twe or three-byv-three) weighting functions which are
convolved with the input data to approximate the two components
of the gradient, from which the magnitude and direction of the
gradient can be computed. 4 sufficiently large magnitude is
considered to represent an edge, but these polints usually must be
thinned if a one-pixel thick edge is desired. A popular detector
of this type is the Sobel operator (described by Duda and Hart
[19731). In the elewmentary form of these operators as stated
above, they are fast but are quite susceptible to noilse., To
improve their noise rejection (at the cost of less spesd and
resolution) their welghting functions are sometimes spread cut by
applying each weight to the average of several pixels in a square
area, as described by Shaw [1979].

Frei and Chen [1977] use a variution on the method of the
previous paregraph. They first find the magnitude of the
gradient by means of a three~by-three operator. Next they
determine how well this fits an ideal line by using an orthogonal
set of three~-by-three functions, and then threshold the result

according'to the goodness of fit instead of by the magnitude.

Nevatia and Babu [1979] designed an edge detector that
convolves the image with a set of idecal edge masks several pixels

wide, each of which has a different edge direction. (In



practice, five-by~five masks with orientation every 30° have been
used.) The mask drientétion that produces the highest output at
ecach pixel 1s considered to be the edge orientation for that
pixel. However, an edge 1s reported at a pixel only if its edge
magnitude is a maximum along the normal to the edge direction,
its edge dirsction agrees approximately with its neighbors, and
its magnitude exceeds a thresiold. This edge detzctor has been
used on distance data by Inokuchi and Hevatia [1380].

Marr and Hildreth [1979] note that different edges are found
depending upen the size of the edge mask. To capitalize on this,
they use information from several spatial frequency channels by
convolving the original image with Gaussian smoothing filters of
various sizes. Edges are located by finding the zero erossing of
the second spatial derivative of .the smoothed image.
Computationally, this amounts to finding the zero crossings in
the convolution of the original image with the Laplacian,ﬁ?z, of
the Gaussian smoothing filter for each spatial frequency channel
used. This transformation contains nearly all of the information
present in the original image. Edges are said to occur whe.e the

zero crossings from several spatial frequency channels concur,

All of the above edge detectors perform satisfactorily on
high-quality images., Of course, perfect results cannot be
expected because of the imperfections in real images, so the
higher-level processing must be able to handle occasional errors.
Howeveér, on poor-quality images the performance of these
detentors degrades in different ways depending on the amount of
image noise, blurring of edges, faintness of edges, and smooth
varlations in pixel values superimposed on the edges. It appears

that none of them is the last word in edge detectors.
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2a8  Lurvas

Long edges or lines can be found either by using an edge
detector as discussed in the previous section and linking these
into a long smooth curve, {illing in gaps and ignoring stray
elémenta, or by a procedure which accomplishes a similsr result
by operating directly on the image data,_bypassing the need for
an edge detecteor. In either case, the aigorithm cah operate
sequentially by proceeding along the curve as it links edge
elements or pixels, in which case 1t often is called a line
follower (or tracker), ecdge follower, or curve follower, or it
can operate on an effectively parallel or gestalt basis.

Several investigators have used sequential techniques that
link edge or line ¢lements, For example, Shirai [1975] used a
pair of parameters that vary according to how continuously and
smoothly the elements are being found, These paraneters
determine threshoids for deciding when to accept a new element
according to how close it liaes to the linear continuation of the
current tracking and when to stop the tracking. Roberts [1965]
used an elaborate line-finding method that contained elements of
this kind of technique.

Martelli [1976] used a global heuristic search instead of a
local Search; His method operates directly on the brightness
valueé instead of using a separate edge detector. It attempts to
optimize a cost function that depends on the curvature and the
degree to which the curve separates regions of different
brightness. Yachida et al. [1979] used a similar method based on
the output of a local esdge detector.

Kelly [1971] devised a method in which edges found in a low-
resolution version of the picture and selected according to

global knowledge of the shape being sought are used to form a
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plan, which is then used for linkirg the edge elerents in the
full-resolution plectura,

Eberlein [1976] proposed s relaxation method (sce Section 4)
for linking edges found by a local detector. This 1is a
effectively parallel wethod. On each iterction the strength of
each local edge element 1s changed according to how well it
agrees with its neighbors, until the process converges “2 a thin
continuous line. '

When curves are derived from edge data, a useful
preprocessing step is thinning. Thinning algorithms reduce
contours to a single-pixel width by discarding redundant edges
while maintaining the global connectivity of all contours. Some
nethods, such as Eberlein's just menticned, include thinning as
an inherent part of the 2peration., Stefanelll and Rosenfeld
{1971] describe a thinning algorithm for binary images which
decides the fate of each edge based on the states of its eight
nearest neighors in a 3 by 3 window. Nevatia and Babu [1979]
perform thinning by accepting the edge which has a maximal
gradient value compared to adjacent pixels with similav gradient

oriertation, as mentioned in Section 2.4.

Hough [1962] proposed a global parallel methc” for finding
straight lines, which was improved and extendsd to other cuvrves
. by Duda and Hart [1972]. 1In this method the desired curve is
rerresented by a few parameters. (For a ccraight line, two
parameters are needed, for which the angle of its direcotion aad
its normal distance from the origin are recommended.) Each point
in the image that is a candidate for belng on the curve (by
producing significant magnitude from an edge detector, for
sxanple) is transformed into a curve in the parameter space. The
parameter space is quantized, and eacn ceil accumulates the total

nuuber {or tntal edge magnitude or other weight measure) of



transformed points that pass through it. A large pecak in the
resulting historgram in the purameter gpace then represents a
curve in the original image space. This is a fast method for
finding curves that require only a few parameters, 1if the
required accuracy is not tco uigh. However, if it is necessary
to quantize the parameters very finely or if the number of
parameters is more than about three, the number of cells bécomes
very large, resulting in tne neced for much computing and a large
storage space. The computing problem can be alleviated somewhat
if the dircotional information from the edge detector that
produced the points is used te restrict tie number of cells
increnmented for each point. However, since this local
directional information is seldom accurate, 4t is still usuasrly
necessary to increment cells corresponding to a band of
direvtions, These matters aré discussed by Wechsler and Sklansky

{19771, among others.

Even though the relatively global knowledge about the shape
of the curve (whether its precise shapé or just its smoothness)
thet is used in the above methods tends to reduce the errors made
on the basis of only local evidence, perfection cannot be
expected wich raai images. Fach higher level of processing nust
be able to tolerate the erroré from the lower levels and
hopefully to filter out some of them, in ordar to reduce the
burden on the yet higher levels.

2af  Cha.n Gode

Chatin céde is a compact representation of reglon bou iaries
or, more generally, of anv line structure in an image. A chain-
coded boundary record consists of a header containing the imsge
coordinates of the starting point and the length of the boundary,
followed by a list of chain links, or vectors, which represent

the boundary as a sequence of moves from boundary pcint to
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boundary point. Several chain-coding schomes aro described in
Freoman [1974]). 1In its wost typioal form, there uare eight
possibie vectors corresponding to links between a point and oach
of 1its oight nearest neighbors in a three~by-three window. The
vector to each neighbor position iz asaignod a unique nunmber frowm
goro to seven. Thus, in its most ocompact form, cach chain

element requires only three bits of storage.

Chain code ia of limited usefulness in modalling objects for
pattorn recognition since 1t is difficult to computo genoral
rotations or scale changes required for matohing., It can be
usoful, however, as an intermediate~level) description of the
image from which useful features are extractoad. Wilf and
Cunningham [1979] describe a boundary traversal algorithm for
computing region momants from a chain-codoed boundary. The
moments can be used to derive the area, centrold, and orientation
(axis of wminimun moment of inertis) of a region, wmong other
things. Freeman and Davis {1977]) describe an algorithm for
locating corners in line drawings represented by chain code. (See
Section 2.7) Chain code can also serve as a starting point for a
highaor-lovel boundary description consisting, for examplo, of
arbitrary lengtn line segmonts and circular arca. Freeman [1974])
dosoribes other chain~code manipulations such as smoothing,

rotation, and correlation matching.
&.1 Lorners

As an alternative to more or lass straight lines (including
edges) or in addition to these, corners pay be useful as features
to be used by higher-level processes. A corner in a two=-
dimensional {mage car be defined as & point (within the
resolution of tho trage) from which two or more lines emanate at
various angles, 1f there aro only two, the cornor is merely an

abrupt change in the direction off tho curve.
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In the latter case, one possibility for detoeoting the corner
19 as an integral part of the curve-fitting process. Martelll
[1976] included such an ability in his method mentioned in
Section 2.5. Duda and Hart [1973] discuss an iterative end-point
fit mothod for doing this when straight linos are being fit by

weans of least aquares,

Ince 4 curve has bean followed with only very local (if any)
consteaints, it ia possible to detect corners on. the curve,
(Arfter this has boen dene, the soguents of the curve oan be
smoothed if deaired.) Coderberg |1978] detects points of maximun
curvature in order to locate the corners, by using a recursive
smoothing filter technique designed to be fnplemented on a
collular processor, Kruse and Rao [ 1978} datect corners by means
of 2 matehed f£ilter operating on the second derivative of tha
length of a chord connecting two points that are a constant

distance apart along tho curve.

Freeman and Davis [1977] deotect corners in chain-coded
curves by calculating the slopes of chords connecting edge
elements 1 and 4 + n for some arbitrarily chosen constant n. By
looking at the slope of these chords as a function of i, the
position on the curve, corners are detected on the basis of an

abrupt change in the slope,

A siwmilar approach ia used by Rozonteld and Weazka [197%].
In their algorithm sevoral chords are defined for each edge
eloment i by connecting edges 1 + k and { - k for some tunge of
values ot k. By analyzing tho slopes of the set of chords thus

obtained, the odge is claasified as a corner or non-corner,

Porkins and Binford [1973] devised a method for finding a

corner of two or thrae lines when it is known approximately where
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the corner should appour in the image. The expectod areca is
searched for straight lines which approximately wmatch the
expected linos from the model., Then a corner is found as the
intersection of these lines. Several rofinements in the mothod

are included to improve ita roliability.

2.8 Pyramids and Ouadirees

A pyramid data structure represents an image at several
levels of resolution simultaneously. The base of the pyrawmid is
the original full resolution image, usually assumed to be a 2N by
2" square array. The next level of the pyramid is formed by
partitioning the original image into nonoverlapping 2 by 2 cells
and mapping the four pixels in each cell to a single pixel in the
next luvel. Various mappings are possible. Exémples are the
average gray level of a cell, the minimum or maximum value of a
céll, or ii:e output of an edge detector applied to the cell. The
complete pyramid is formed by repeating the process at each level
until the image has been compressed to a single pixel at the
highest level. The result is a set of images of sizes 2N by 27,
2n-1 by 2“"’, wo y 2 by 2,1 by 1, each representing the same
scone at different resolutions. The pyramid repr&sentétion can
bo generalized by defining ah arbitrary n by m partitioning at

each level,

The usefulness of pyramids lies in being able to extract
features at an appropriate level of resolution. This simplifies
recognitioh‘by reduéing the search space (image array size) and
suppbessing unnecessary details. Generally speaking, gross
features can be extracted from high levels of the pyramid. Finer
detail can be extracted where necessary from lower levels. As an
example, the results of edge detection or region growing in a
L. n level of the pyramid can be used to constrain the search in

lower levels as objecv descriptions are refined in higher

2-17



resolution. Uhr [1972) proposed a "recognition cone™ model for
irage analysis in whicli successive operations produce abstracted
or simplified versions of the original image at inoreasingly
lower resolutions. Tanimoto and Pavlidis [1975] used a pyramid
obtained by averaging 2 by 2 blocks. Pyramids are also central
to the scene analysis work of Hanson and Riseman [1978b] and
Levine [1978].

The qﬁadtree representation of a 2% by 2" image is obtalned
in a top-down manner by recursively splitting the ilmage into
quadrants, the quadrants into subquadrants, and so on. The
process continues until the quadrants are one pixel in aize, or
all pixels in a quadrant are uniform with respect to sone
feature. The result is a tree where each non-terminal node has
four children, and terminal nodes represent square uniform
regions of the image. In a binary image, this means that each
terminal, node is a block of all white or all black pixels.
Whereas 1 pyranid represents the image at multiple resolutiions, a
quadtree 1s a variable resolution image, representing cach area
of thi image by the largest square reglon possible. Sawmet and
Rosenfeld [1980) have adapted several stendard binary image
processing algorithms to operate on qﬁadtreos, such as boundary
trucking, connectivity analysis, genus (humber of holes)
computation, and extraction of features such as area, momeh.s,
and perimeter. They have also developed efficient tree traveraal
algorithms which de quadtree/raster and quadtree/chaln code

conversions,

For a recent survey of image analysis techniques using

pyramids and quadtrees see Rosenfeld [1980b].
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3. DESCRIPTION
.1 Seneral Inferpation

Weys of describing a scene or object and of deriving the
description from an image will now be discussed. We are
concerned here with fairly high-level descriptions, as opposed to
the Yrwer«level concerns of Section 2. At these higher ievels,
it . ovues more difficult to judge what the best approaches are,
As a result a wide variety of techniques has been used, We can
provide here only a curscry view of scme of the more important
work., For more information the reader can consult the surveys by
Pavlidis [ 197 8], Shirai {197 8a], Bajesy [1980], and Barrow and

Tenenbaum [1981].
2.2 Ihe Iwo-Dimenslonal Korld

This éection discusseu descriptions that are basicaljy (AT
dimensional. These may be used for planar surfaces contained
within a three~dimensional scene, or they may be used for
projections of flat three~dimensional objects of %kvwown

orientation relative to the camera axis.

When an image has been segmented by the_;echniques described
in Section 2.3, a description of each region, or blob, can be
generated consisting of a list of statistical regtures, Theée
features typically include area, perimeter, first and second
order moments, c¢olory, et¢. The individual blob deacriptors are
linked to form a tree data structure which represents nesting
relationships. The parent of any blob in the tree is the
adjacent blob which completely surrounds it. The SRI Vision
Module (Nitzan gt al, [1979]) and CONSIGHT (Ward gt al, [19791])
use this approach., Milgram [1979] presents the details of a cne-



pass algorithm which conatructs a bHlob tree desoription of a
binary image.

Perkins [1978] describes objects as a set of "ooncurves.” A
concurve is an ordered set of siraight line segments and eircular
arcs which approximate the boundary of an object. &n objeot such
as a connecting rod for an automobile is modelled as three
concurves, one for the outer boundary snd one each for the
crankshaf¢ and piston pin holes, respectively. Concurves
associated with objects in an image are derived from edges. If
the resulting concurves form closed boundaries, statistical
features similar to those described above are computed for the
enclosed region. Also, assoclated with each concurve is a number
describing its rotational symmetry. The main advantage of the
concurve representation is that objects may be recognized on the
basls of partisl views by matc¢ ing a subset of the lines and arcs

in a model concurve with the image data,

Shapiro [1979] surveys data structures used for description
and pattern recognition. The paper concludes with a discussion
of a recursive data structure for representing line drawings, A
fICTURE is constructed as a result of evaluating a picture
expression. A plcture expression consists of primitives (LINE,
ARC, CIRCLE, SQUARE, etc.) and possibly other pictures, with
provisions for -specifying the relative or absoliute positicen and

orientation of various components of the image.

Blum [1967] proposed a method of representing planar
regions, known as the mediale-axls transformation or prairie-fire
transformation. In this method a region is described by a
skeleton which is the locus of points equidistant from the
boundaries of the region on each side of the axis, and by the
value of this distance for each point cn the skeleton.



Nevatia and Price [1678] describe two-dimensional scenes by
means of a graph atructure in which reglons and lines are the
nodes and the positional relationships between them are the arcs,

Rosenberg gt als [1978] produce a relative depth map for
regions in a two-dimensional view by using heuristics that
indicate the occlusion relationships among these regions. A
scene is firat segmented into regions by some technique as
discussed in Section 2.3. Heuristics are used to indicate which
reglons may be occluding other regions. Then a probabilistic
relaxation process (see Section 4) is used to resolve the

contradictions that the heuristics have produced.
3.3 IThe Blogka Horxld

In this section three~dimensional objects are consldered,
but they are restricted to simple polyhedra with uniform suprface

reflectance and usually diffuse illumination.

Roberts [1965] produced perhaps the first program for
analyzing three-dimensional scenes. This method flrst extrscts a
line drawing from a picture as described in Section 2.5, This
line drawing must be a Lopolcgica;ly perfect projection of
objects made of three simple geometrical models (a cube, a wedge,
and a hexagonal prism) that can be stretched in each dimension,
rotated, and translated. The line drawing 1is then matched to the
models one at a time by comparing the polygons intersecting at a
point in the picture to the faces of the models; until the entire
scene is described in terms of the models. The distance and
hence the sizec of each obJject is obtailned by assuming that each
object is supported by another object seen or by the assumed
ground plane.

Guzman [ 196 8] produced a program that analyzes a perfect
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line drawing that represents a projection of arbiirary polyhedra.
By means of heuristics it groups the polygons in the line drawing
into objects, without the use of ény object models other than the
knowledge that thé objects are polyhedra. The program usually
does quite well on complicated scenes including occlusion, but
the fact that it requires perfect 1;ne drawings is a serious
limitation. Brice and Fennema [1970) used a technique siwmilar to
Guzman's together with some semantic knowledge to identify the
floor and walls in a room scene, Then some heuristics were used
to insert missing lines., Falk [1972] extended Guzman's
heuristics and used a set of nine fixed-size three-dimensional
models in terms of which the scene 1s interpreted, so that
perfect line drawlngs are not necessary. Grape [1973] used two-
dimensional models of edge structures for convex objects to
identify missing lines.

Huffman [1971] and Clowes [1971] eliminéted tlie need for
heuristics in interpreting perfect line drawings. They
recognized that each line in the picture represented either a
convex edge, a concave edge, or an occluding edge in the three-
dimensional scene, and they constructed a catalog of possible
vertices with allowable line labellings. A scene can then be
analyzed by starting at one vertex and proceeding through the
line drawing performing a tree search, limiting the number of
possible line labellings at each step according to the catalog;
until a consistent labelling for the entire scene is obtained.
Waltz [1975] extended this work by including shadows and cracks.
He produced a catalog of a few thousand posaible vertex types,
and used a relaxation=-type procedurc (see Seetion 4) to decide on
the correct labeliing for each line according to the
possibilities in the catalog. This procedure converges rapidly
(usually to a unique interpretation) regardless of the complexity
of the scene. Waltz also included a limited ability to handle
inperfect line drawings by including in the catalog some of the



most common cases of missing edges. Freuder [1680] showed how
simpler catalogs of vertices coula be used together with

occasional examination of the scene to obtain more information.

Shirai [1975) analyzed scenes of polyhedra by first finding
the lines separating the objeots from the background by using the
assumption that these are high-contrast edges. Then the
generally fainter edges separating objects or faces of objeots
are hypothesized by means of heuristics and searched for in the
image. A heterarchical structure is used in the program, rather
than the usual hierarchical structure. That i3, it is organilzed

as a comwunity of experts that communicate with one another,

Winston [1975b] produced a program that, given a line
drawing representing polyhedra, produces a description of the
scene in terms of a network of objects and their relations such
as supports,® "above,¥ "left of," "in frout of," and so forth,
A method similar to Guzman's is used to segment the scene into
objects. Then some rules and heuristics are used to derive the
relations. In this process groups of objects are formed by a
procass of congecture, criticism, end revision. The conjectures
find objects linked by relation chains or bearing the same-
relation to some cémmon object. Then the criticism and revision
delete from a group objects whose membership is weak compared to
the average for the group. The resulting description networks

are used by his learning system described in Section T.
3.4 " The Mora Geperal Morld

In this section more complicated objects and scenes, often
with curved surfaces, are censidered. Although some of these
techniques have a degree of generality and have baen used for
recognition as described in Section 4, they still fall short of

what 1s needed for a general, powerful vision system. For



example, two tasks that are beyond the capability of any existing
computer vision system are the recognition of parts in a Jjumble
in a bin and the operation of & robot vehicle in a complicated

outdoor environments

Marr [1978] deseribed three levels of repressentation. Fronm
lowest to highest, these are the primal sketoh, the 2-1/2«D
sketch, and the 3-D model. The primal sketch is In iconic
(image) form, but it makes Iinforration about the location of
lines and edges expliclt. The 2-1/2-D sketch i3 also iconic, but
it represents depth information and surface orientation relative
to the viewer, and it makes depth discontinuities explicit. The
3-D model is an object-centered representation that describes the
ocbject in a convenient way, perhaps in terms of genéralized cones
{described below).

Ohtua gt al, [1678] use a semantic network for describing
outdoor scenes containing builldings. The network consisgts of a
hierarchical structure describing part-wnole relationshipg, two-
dimensicnal positional relaticnships, and propertles such as
color. The method of segmenting the scene to produce this

structure was described in Section 2.3.

Barrow and Tenenbaum [1980] propose a method for
interpreting curved line drawings as three~dimensional surfaces.
To interpret a two-dimensional curve they compute a threc-
dimensional curve projecting to it that minimizes a éombin&tion
of variation in curvature and departure from planarity.. For
exaﬁple, an ellipse would.be interpreted as a circle, since a
circle has constant curvature and is planar. To interpolate
surfaces betﬁeen boundaries, they attempt to make the two
observable comporents of the surface normal vary as linearly as

possible relative to the image coordinates,



Binford introduced the concept of generaiized cones (also
known as generalized cylinders) as a means of representing three-
dimensional objects, (See Agin and Binford [19731.) A
generalized cone is defined by a space curve, called the spine or
axis, and planar cross sections normal to the spine. The
function which describes how the c¢rogs section changes along
the axis is called the sweeping rule or cross-section function,
Generalized cones are useful for describing three-dimensional
soclids whose cross sections change smoothly along an axis,
especlally elongated solids. Complicated objects often can be

broken down into parts of this nature.

Agin and Binford [1973] fit generalized cones to portions of
objects by using three-dimensiocnal data. The spine of a
generalized cone was represented werely by a list of points. The
cross sections were circles, whose radii were a linear functicn

of the position along the axis,

Nevatia and Binford [1977] derive descriptions of
complicated articulated curved objects in terms of generalized
cones., They use three-dimensional data, but only the boundaries
of the object as seen from the camera (the depth discontinuities)
are used. Initial approximations for the axes are fobmed by
using the midpoints of the intersections of the boundaries with
evenly spaced lines with about eight different orientations.
Then an iterative process finds cross sections normal to a
straight line f£1t to axis points at the centeras of these cross
sections. The axes are extended in both directions, and a new
straight-line fit is started when a new axis point deviates from
the old fit by more than a threshcld. A large jump in cross
section denotes the end of the generalized cone. The possibility
of multiple representations of the same piece of object is
eliminated by using the cone with the longest axis., Sumwmary

descriptions for each piece of the object represented by a



generalized cone are produced by computing the length of axis,
the average cross-section width, and the cone angle corresponding
to a linear fit to the cross-section function. The joints where
two or more pieces of . obJect connect are determined, The
object description then consists of the connectivity relaticns of
the pieces and Joints, which is equivalent to a graph structure;
the summary descriptions of each plece; and sors summary
information about the object; including the number of pleces,
nunber of elongated pieces;, number of joints, and information
about pieces distinguished by their large width or elongation.
This description is used for matching to an object model as

described in Section 4,

In ACRONYM (Brooks gf al. [1979], Brooks and Binfcrd [1980],
and Binford et 2l. [19801) two-dimensional scenes are described
in terms of ribbons, which are pairs of roughly parallel edges,
and the spatial relationships among the ribbons. The ribbons ars
produced by a rule-based system which links edge elements by
means of a best-first heuristic search. Three-dinensional
quects are modelled in terms of structures composed of
éeneralized cones and their spatial relationships. There exist
#ultiple levels of representation of objects, from coarse to
fine. The object model is a graph, subgraphs represent parts and
subparts of the object, and so on to the individual generalized
cones, The particular generalized cones in ACRONYM use a cross
section whose boundary can be decomposed into straight-line
segments and circular ares, a sweeping rule which is continuous
and plecewilse linear, and a spine.which is continuous and
composed of straight line'segments or, .nder some restrictions on
the cross section and sweeping rule, circular arces. This i3 &
nore general class of generallized cones than is usually used in

other systems

Woodham [1979b] showed that the shapes of some surfaces,
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including a subset of generalized cones, can be determined from
the shading (brightness) information in a single view, if the

raflectance properties of the surface are constant,

Baker [1977] deseribes irregular three-dimensional objects
by approximating thelr surfaces with circular-are wire-frame
nodels. The vertices of the model correspond to poinis where the
surface curvature changes significantly. Burr and Chien [1977]
use plecewise~linear wire-~frame models in which the wire frame
corresponds to edges in brightness, usually cadsed b
illumination effects at intersections of plauar surfaces of the
object. They obtain depth information by means of stereo vision

and match the perceived edges to a pre~stored model.

The geometric modelling system developed at IBM by Wesley gf
al. [1980] enables the user tc describe conmplicated threew
dimensional objects such as mechanical parts. The volune
primitives stored internslly are polyhedra, which can be combined
as needed by the operations of union, intersection, and
difference. Curved objects are approximated by high-order
polyhedra. Objects and assemblies are represented in a graph
structure that indicates part-whole relationships, attachmeut,
constraint, and aSsembly. Physical properties of objects and
positional relationships between objects are also included. The
relevance to computer vision is that the system can determine the
appearance of an object for an arbitrary view. This information
could be used by a recognition system to guide tne seerch for

features to match an image to the model.

Shapiro et al. [1980] describe objects in terms of three
nrimitive types of chape and the relationship betwezen these
primitive parts in the cobject. The thiree primitives are sticks,
plates, and blobs, which are meant to approximate roughly the

parts of the object with significant extent in one, two, or threc



dimensions, respectively., The relations show how the parts
connect, indicate their spatial relationsbh’ s, and limit the
sizes of the parts, Some global inforamation about the object 1s
sunnparized in a nuwmeric vector, This summary informstion can be
used to find likely candidates for w.ilching with the full
relational model when recognition is gttempted.

Gennery [1980) produced a method of descri™ing three-
dimensaicsal natural ouivoor scenes., The geound surface is
approxim- ted by ore or wore planes or paraholoids, and abjects
lying on the ground sre .pproximated by ellipscids. The method
derives this description from three~dimensional data in the form
of points densely spaced ovzr the scene {(such as might be
oroduvs ? by the stereo tnahniqges desceribed in Section 6).. The
- ground surface is found first by a process which finds a set of

points that ferm a weli-defined surface sush taat there are few
points wvell beiow it, since these lower pe.nts mosgt likely would
represent errors. However, many points above the surface can be
tolerated, since these may lie on cobjects. Then the points
sufficliently abeve the computed ground are clustered into
tentative objects. Ellipsolds are fit to these clusters in such
a way as to use the informatidn that points of any kind should
not be hidden from the camera by an object and to tolerate
occaslional incorrect points. In this process clusters of points
are split and merged as needed to produce the most reasonable
_fits. This form of description was devised for describing the
surface of Mars for a roving vehicle; thus the objects would be
rocks. For man-made objects, the ellipsoldal representation
seldom would be Suitable' However, the technique for finding the
ground might be suitable for finding the planar surfaces of man=-

made cbjeets in sowme cases.

Minsky [1975] proposed the concept of "frames™ as a way of

representing knowledge. A frome is a data structure for



representing a stereotyped situation. he frame includes
information about how {o use the frawme, what can be expocted to
happen next, and what to do if these expectations are not met,
The frame conteaina slots, whlch represont variables to be
instantiated when the frame is used. The entities to £ill these
slots often are other frames, An importart feature is the tact
that each slot has a default aasignment, which s replaced onl}
when specir‘ic. informa-tion overrlides it. Related fframes are
linked into frame systemas., The frame concept is meant to apply
to the whole tleld of artificial intelligence. In viston, fraues
would he userul in recognition; in other areas, they would be
uszd in reasoning and in vaderstanding discourse. Somre none-
visual systems using frames have been implemented, for example
KRL by Bobrow and Wincgrad [ 19771



4, RECOGNITION

H.1 General Recognikion Methads

The process of recognition consists of matchlng a
description derilved from an lmage to a description of a stored
model, perhaps chosen out of a large number of possible nouels
according to the best match. This process can occur at many
levels in the analy .Is of a scene. At the highest levels, the
descriptions to be matched are those of entire cbjects or scenes,
as described in Section 3.

The simplest form of matching is correlation; in which the
cross-correlation coefficient or a similar mathematical function
1s mawximized. For binary data this reduces to template matching.
Such a method usually is suitable only for the lowesi levels of a
vision task. For example, some of the edge detectors described
in Sectidn 2.4 and sore of the stereco techniques described in

Section 6 use this form of mateching.

» A slightly more elaborate form of recognition 1s statistical
pattern classification, Tn this method, numerical values for a
set of features are measured. The scene is classified according
to where the vector of values lies in a multidimensional feature
spaces, This method is suitable only for very specialized vision
tasks or for minor parts of elaborate vision systems, Such
techniques are deseribed by Duda and Hart [1973].

Relaxation is a methed of selecting appropriate labels for a
set of interrelated units, In a recognition task, the units
would be features extracted from an image, and the labels would
be the corresponding features in an object model. Two basic

forms of relaxation exist: discrete and probabilistic (or



continuous). In discrete relaxation, a set of pﬁssible labels is
initielly associated with each unit. On each iteration, labels
are discarded for a unit -if they are inconsistent with all of the
renmaining labels on related units.,. In probabilistic relaxation,
each label associated with each unit is assigned an initial
correctness probability estimate. On each iteration, the
probabilities are adjusted as a function of the label
probabilities on related units, according to given compatibility
functions. In either case, on each iteration all of the
adjustments are assumed to be done simultaneously, using the old
values for the related units. Thus the method is well suited for
parallel computation. In many cases the process converges after
a few iterations. Relaxation has been used in some low-level and
intermediate-level vision tasks and may be useful in high-level
tgsks also. Zucker [1976b] describes the basic principles of
rblaxation, Rosenfeld [1978b] surveys some of the work on
relaxation, Hummel and Zucker [3980)] discuss its theoretical
foundations, Yamamoto [1979) discusses the derivation of the
compatibility functions, Faugeras [1980] describes some
improvements to the basic method, and Ullman [$979] shows how to

perform constrained optimization by weans of relaxation

One approacﬁ to recognition.is syntactic analysis, In this
approach a formal language 1s devised corresponding to the model
6? the scene or object, The syntax of this language defines the
hierarchical structure of the model. Fu and Swain [1969],
Pavlidis [1977]), and Rosenfeld [1979b] discuss such methods. . The
advantage of this approach is that a parser, which doges the
matching, is independent of the knowledge in the models. This
makes 1t easy to change the models or to make other
modifications. However, applying such methods to more than one

dimension and allowing for uncertainty have proven difficult.

At the highest levels, most recognition methods that have
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been used do not fall strictly intc any of the above catagories,
al though elements of some of them often appear. Usually sone
kind of heuristic search is performed, in which features are
matched one at a time to produce a tree structure which must be
searched. Heuristic search is a common task in artificial
intelligence. General search methods are discussed by Nilsson
[1980). Very often the recognition process involves the matching
of graph structures. The relevant propsrties of graphs are
discussed by Pavlidis [1977].

For more information see Barrow and Tenenbaum [1981].

4.2 Pacticular Racoanition Efforts

This section discusses scome recognition programs and

proposals that operate at a falrly hich level.

A pattern classifier capable of limited two-dimensional
positicn, rotation, and distortion invariant re~cognition is the
recognition (Fukushima [1975] and Fukushima and Miyake [1980]),
in which feature detectors are self-organized in a network
through unsupervised learning. (8See Section ¥.) This method is

computationally extremely ..xpensive.

Barrow gt al. [1972] discuss ways of recognizing objects by
matching relational structures, which are graphs showing the
relationships between feetures in the scene or object model.
They propose the hierarchical synthesis method, in which the
object model is broken into substructures which are searched for
in the scene. Then ccmbiiaticis of the substructures are found,

and so on through as wany levels as necessary.

Fischler and Elschlager [1973] describe a way of verforming

"rubber~sheet® matching of two-dimensional structures. The
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structure conaists of features connected by Fsprings," and the
matching process attempts to find a matching of the features that
minimlzes a function of the stretching of the springs. They
describe a dynamice progranuing methed that finds the opﬁimum
match and a "linear embedding algorithm® that is much faster but

is not guaranteed to be optimum.

Price [1976] produced a method of matching two symbolic
scene descriptions, Elements of the scene are matched one at a
time. For each element in ons scene the best matceh is selected
according to a minimization of the weighted sum of absoclute
values of differences of feature values.

Gennery [1980] produced a method of matching scene
descriptions consisting of sets of feature vectors with estimated
uncertainties, It is assumed that the transfornation between the
scenes 1s known except for a few parameters.(such as tﬁanslation
and rotation, for example). Tﬁe method performs a search by
sequentially matching the features of one scene to those of the
other, solving for the transformation parameters, computing the
probabllities of these matches by weans of Bayes' theorem, and
using these probabilities to prune the search. The method was
devised to match the scene descriptions consisting of ellipsoidal
ocbjects suiltable for the Martian surface, as described in Sectlon
3. . In that case each feature vector describes an ellipsoid.
However, with cifferent feature vectors (perhaps corners) the

nethod may be suitable for matching known man-made objects.

The world model of Ballard g al. [1978) includes
information about the visual characteristics of objects. This
intermediate stage between the image and the world medel is a
"sketch map," in which instantiations of elements of the world
model are explicitly correlated with features of the current

image, with accompanying location descriptors. Recognition is



said to occur when, based on correlation of features in the image
with stored world knowledge;, a model of the scene is constructed

in the sketch mep from elements of the total world model,

Hanson and Riseman [1978c¢] use several intermediate stages
of image processing as they progress to a high~level, symbolic
representation. They use the concept of "schema” (similar to
Minsky's Frames described in Section 3) in their highest level,
by which they exploit the lact that certain objects znd features

are often found together.

Bolles [1980] uses the local feature focus method to locate
occluded two~-dimensional objects. In this method a reliable
(focus) feature of the object i3 located first, and the secordary
{eatures are located relative to it to identify the focus feature
and to determine the position and orientation of the object.
Bolles determines the focus features and their secondary features
automatically in a ﬁraining»time computation in which the progranm
analyzes a model of the object to determine those features that
can moét relianly and cheaply determine the locaticon of the
object., . ’

Neumann [1978] performs recognition of two-dimensional
objects with  occlusion. The outlines of the objects are used,
represented by straight-line segments. A4 search for best match
is done among tentative matches based on corners. The match to
a given object model c¢an vary in position, orientation, and

scale factor.

Perkins [1978] relies on exélicit shape matching to
recognize industrial parts. This is done by transforming a model
concurve to bring'it into registration with ain image concurve
(described in Section 2.2). Candidate concurves are selected on

the basis of grosa featuren such as area, perimeter and othsr
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statistical values (if the image concurve ls closed, allowing
similar quantities to be computed from the image), the number and
type of componentsg that make up the conuurves, and symmetry. The
analysis is 2-dimensional w= objects are constrained to lie in a
plane at a fixed distance from the camera -- so the
transformation of the model is expressed as (x, ¥, 8),
representing a 2-D translation and rotation, Matching based on
partial views is done in a similar wmanner by trying various
subsets of model concurve components. After the transformation
of the model 1is detérmined, a global measure of the goodness of
the match is obtained by computing the distance between the model
and image concurves at selected points along the boundary. This
system is able to correctly identify several overlapping parts,

and it tolerates fairly high levels of noise,

The SRI Vision Module (Nitzan gi al. [1979]1) uses two
matching techniques to identify btlobs, Both methods req:. oe that
position uncertainty is limited to 2.D transiation wnd rotation
in a plane parallel to the image plane and that objects are
entirely in the fieldbof view without touching any other objects.
One 1is the nearest neighbor method. A set of n features, each of
which can be expresséd as a single number, 1s chosen to classify
objects. ‘Each object in the model is rqpresgnted as an ordered
n-tuple of feature values which can be thought of as the
coordinates of a point in an n-~dimensional space. A bldb in the
image is compared to each object in the rodel by computing the
dist'ance between the n-tuple extracted from the blob and each
model point. The blob is classified as an instance of the cobject
corrésponding to the nearest model point, if the distance {is
within some tolerance set by the expected variation of feature
values., Othe}wise,the object 1s rejected as unknown. This is
also the method used in CONSIGHT (Ward ef al. [1979]).

The second method used by SRI (Agin and Duda [1975]) is the
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binary decision trae method. HNon-~terminal nodes of the binary
tree apecify a feature to be tested and 8 threshold to determine
branching. Single features are tested sequentially, with each
test reduéing the nuaber of possible classifications until a
terminal node 1s reached which represents. the desired
classification. The method is optimal given certain assumptions
about the distributions of the feature values being used, The
only drawback to this method (if the assumptions are met) is that
it cannot reject unrecognizable objects without resorting to
computing the distance between the blob n~tuple of features and
the n-tuple corresponding to the object represented by the

terminal node.

Vamos et al, [1979] produced a system which can recognize
simple industrial parts with arbitrary three-dimensional
orientation, Their system detects edges in a two~dimensiona1
view and assembles these into line.segments and arcs.
Probabilities are assigned to ﬁhese according to the strength of
evidence. The resulting description is matched to wire frane
models (including hidden~line elimination) in the data base by
means of a heuristic search. It is intended that the system be
able to recognize an object out of ten or twenty possible object

models.

Shirai [1978b] uses an iterative approach to recognize
objects. The basic processing sequence consists of edge
detection, curve fitting (straight lines and ellipses), and
recognition, The first iteration recognizes as many objects as
possible using a conservative edge detection threshold.
Subsequent iterations obtaln more edges by lowering the
threshold, and use previous recognition results in combination
with relational constraints in the model to recognize new objects
or additional parts of partially recognized objects.

Y ¢



Nevatia and Binford [1977] produced recognition of
complicated articulated curved cbjects, using the description in
terms of generalized cones described in Section 3. First, in
order to avold a lengthy, detailed comparison with all models in
a large data base, a description code summarizing some important
features of the description is used to index intoc the data base
to find a few models with similar description codes. In
practice, description codes based on the distinguisbed pleces are
used. The descriptors used are the connectivity of the
distinguished piece, whether it is distinguished because of its
length or because of its width, and whether its cone angle
exceeds & threshold. Then a detailed match against each model
retrieved by indexing 1s performed, so that the best natching
model can be chosen. In this process, similar disvinguished
pleces are tentatively matched first. Then the match is grown to
include other pieces, according to the connectivity relations and
allowing for missing pleces. In this way a tree search 1is
performed, The best match 1s chosen based on how well the
connectivity relations are preserved and how well the summary
ﬁescriptions of the matched pieces agree., In test cases where
#he data base of models consisted of a doll;, a toy horse, a toy
snake, a glove, and a ring the system usually recognized the
objects correctly even when multiple objects were present in the
scene, the limbs were variously articulated, and moderate amounts
of cocclusion were present. The computer time required for
description and recognition of a typical scene was from five to

ten minutes on a DEC KA-10 processor.

In ACRONYM (Brooks et al. [1979], Brooks and Binford [1980],
and Binford g% @J,_[1980]) an image-derived description based on
ribtbons is matched to a model based on generalized cones, (See
Sections 1.3 and 3.4) A predictor and planner produces a two-
dinmensional prediction graph from the model, and an edge mapper

produces an observation graph from the image. The matcher
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mat.ches the two graphs by finding globally consistent subsets of
local matches, Invoking the predictor and planner again where
necessary. The matching process is mapped back to three-
dimensional models to ensure global consistency. ACRONYM is able
to detect multiple objects in a scene, where each object is an
instantiation of a generic object model that has been given to
the system as described in Section 7. In early tests of the
incomplete system it has located aircraft in an aerial photograph

of &an airport.
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o TRACKING AND VERIFICATION
2.1 Irpacking

This section is devoted primarily to object tracking. 4
discussion of verification vision is included because the
approach to object recognition in both cases is similar. The
goal of object tracking 1s to process sequences cf images in real
tire to describe the motion of one or more objects in a scene.
Often real time iuwplies processing every image from a TV camera
operating at 30 Hz. 1In other words, an image is digitized,
features are extracted from the image, the object or objeéts are
located in the 1mage, and position and velocity estimates are
upqated 30 times a second, although in practice slightly slower
rates are sometimes used. At the present time, the approaches
which achieve real-time operation rely on simpiifying assumﬁtions
about the nature of the scene, tréck very few objects in a given
scene, and incorperate varying levels of special.-purpose

harduare designed for the particular tracking algorithm.

The field of opject tracking has been suypveyed by Nagel
[1978] and Martin and Aggarwel [19781. Real~tlme tracking
programs have been developed for a variety of applications.
Criffin g% 2), [1978] use an objeat-tracking program to provide
feedback for closed~loop guidance oY a breadboard Mars-rover
Vehicle. Gilbert eb al. [1980] developed a system for real time
identification and tracking of misslles and aircraft. Pinkney
[1978] describes a one-camesra system which tracks four artificial
markers on an object to control a manipulator visuwally as it
approaches an object to be grasped. Thz intended application is
to the manipulator on the Space Shuttle. A similar approach
using stereo cameras is proposed in Brooks [ 19807 for supervisory
control of a teleoperator manipulator, Chien and Jones [1975]
reported on the use of real-time tracking to ald in stacking



blocks with a manipulator and inserting a peg in a hole., SRI
(Nitzan et al. [1979)) is investigating using thelr vision module
to track objects, such as a part which is suspended from a:
overhead conveyor, for fecdback to an industrial manipulator;
Tsugawa g ale [1979] describe a real-time stereo vision system
for detecting certain road conditions to operate an automobile

autonomously.

The fundamental problem in object tracking is to devlse a
robust matching algorithm which is able to repeatedly recognize
the same object or objects in successive images, and is
computationally feasible; i.e., the'algorithm must execute in
approximately 1/30 second. In general, matching algorithms
conduct a search in a window believed to contain the cbject
Jooking for the best registration between image features
extracted from the window and features assoclatad with an
internal model of the object. The very nature of obJjeect tracking
simplifies this problem to a considerable extent. However, it is
5t111 by no means trivial. Since successive images are only 1/30
second apart{ in time, the appearance of ihe object will change
very little from image to imsge. The object can be modelled
adaptively as it was last seen by the tracker, with the
expectation that a good match between the object nodel and the
features in the current image is available. Furthermore, the
location of the object in the image can be predicted very
accurately by using'the latést available position and velocity
estimates coubled with the short elapsed time between inmages. As
a result, the search window need only be large enough to contain
the object up to a few pixels uncertainty. This limits the
required computation to a manageable level and, more importantly,
greatly reduces the probability of a false mateh oceourring.

Real-time implementations typically rely on features which
can be computed directly from the image without resorting to
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actual 3«D measurments of object features. The object tracker

sed by Griffin gk al. [1978] uses gray-level correlation
implemcnted in software to . watch images. The signature of the
object is a small spatial sample of gray lévels taken from an
arbitrary part of the object., This sanmple 1s correlated cver a
small window in the current image, with the match determined by
the maximum value attained by the correlation function., A.though
correlation is notorious for obtaining false matches, it works
reliably 1in this application due to the small search window,
While rotating objects can be tracked, tnaz rotation cannut be
measured on the basis of the correlation value, 80 only

translational velocity is measured.

Rirzinger and Snyder [19€0] use & contour-based approach,
Thé anaiog video signal 1s processed by special purpose hardware
to detect significnt contrast arecas in the image. This is done
by recording transitions as the video level rises or falls past a
threshold, with the processing taking place inside a programusable
tracking window., The coordinates of each "econtour® point are
recorded, and tracking is based on four values -~ the extrema in
the horizontal and vertical directions. The position of the
object is taken to be the centroid of the rectangle defined by
these four values. This is a very simple approach which wouid
seem to be easily fooled in scenes of moderate complexity.
Tsﬁgawa et al. [1979] use a similar video processing approach.
In their case, the analog video signals from two caneras, mounted
one above the other and oriented so that the scan lines ere
vertical, are differentiéted and compared to obtain a stereo
match of contrast edges. The matched edges are used to estimate
the position of road features such as traffic cones, curbs and
guard rails, This information 1s used to guide an autoaobile to
follow a road and avold obstacles. Pinkney [1978] also extracts
features from the analog video signal. In this case, it is

necessary to locate four high-contrast markers on arn object.
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Specirl-purpose hardware threaholds the video in four ssparate
windows, one per marker, and roturns the csntroid lecostion of
sach marker. This is a highly specialized approacht which assures
very high contrast between the markers and the background and
which assumes that there are ne other pixels of similar
brightness in the window.

The system in Gilbert gt al. [1980] is distributed over four
processors, each preocessor consisgting of & milaroprocessor and
speclal purposs hardware. One processor classifies pixels as
"target® or "nun-target®™ based on a histogram analysis of the
image In a tracking window. A second processor coumputes two
orthogonal projecticns of the target pixels by summing the pixel
values (1 = target, 0 = non-target) along horizontal and vertical
lines., Assuming that the target has bilateral symmetry (the
target 1s a missile or airplane), these projections uniquely
deteraine the identity of the target and can be used to extract
the position and oriensation (in the image) of the target. The
faatures computed frow the projections are aocrmalized to obtain
scale invarisnce. Although the features are not rotaticpally
invariant, they are nearly so for small rotations which cccur
batween two imsges. The system is able to correct for rotations
by elsctronically rotating the viden scan pattern so that the
object uyientation is essentially conshtant. Image rotation is
nandled ﬁy a third processor wkich also vontrols camera pointing
and zoom. The fourth processor evaluates the goodness of the
match at each tracking iteration and cutputs parameters for
camera control and the size and locatlion of the tracking window

to the other processors,

At a highér level, a robust tracking program must deal with
adverse conditions which occur in dynamic scenes. One of these is
occlusion, where the object becomes only partially visitle or

cannct be seen at all as it passes behind another object. In the
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case of partial occlusion,aatrnokihg progran has to be able to
generate a match on the basis of an incomplete set of image
fealanes, 1.0, the occluding object may generate features which
must be recognized as not belonging to the object of interest.
Even if an object is in full view at all times, feature
extraction algorithms such as thresholding and edge detection may
produce variable results due ;6 changes in the background or due
to changes in illumination (i.e,, the angle of incident
illumination) which ariss as the object moves both
translationally and rotationally with respect to the light
source. Of the examples discussed so far, only Hirzinger and
Snyder [1980) attenpt to deal with occlusion. Their approach
involves detecting radical changes in the relative values of the
four features derived from the contour extrema. They state that
a much more robust solution is required to handle occlusion
reliably. Correlation tracking (Griffin gt al. [1978]) is immune
to background changes if the signature mask is contalned almost
entirely in the object. Using normalized correlation makes the
tracker insensitive to uniform changes in illumination intensity,
but does not help for partial changes such as occur if the
object is moving lnto a shadow. Gilbert gf al. [1980] assign a
confidence weight to each match based on how well the features
agree withvthe expected values predicted by the internal model.
If a low welght is assigned to the current image, then the
tracker Pcoasts™ through this image, basing tracking control
declsions more heavily on previous higher-confidence images.
This is intended to overcome changing background conditions such
as the target moving past a cloud. Saund gt al. [1981] track
objects by means of features used in a least-squares adjustment
of the internal model of the tracked object. The program rejects
extranecus faatures on the basis 6f proximity of a particular

feature tc its exvected location based on the internal model.

Due to the severe constraints on computing time, it is
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virtually impossible to use all of these techniques in thseir full
generality in a real-time implementation on existing computers.
An exemple of a ore general, slower approach ls the program of
Roach and Aggarwal [1979]. Their program operates in the blocks
world. Image sequences are generated by storing inages of statio
scenes containing variously shaped blocks which are moved by hand
between images. Images are then retrieved in the azne sequence
and processed as long as necessary to extract all of the
necessary information and to perform matching. 4n internal uodel
contains a description of each bloek which hes appeared in any
scene. In matching two scenes, bloecks in the current image are
elther recognized as blocks already in the model or are labelled
as new and inserted in the model. Any block which was seenin
the pravious image but 1s not present in the current image 1s
labsetled accordingly. There are three levels of matching. At
the highest level, the program attempits to match each block in
the model with featubes in the image which are present at a
location predicted by the model based on previous position and
velooity information, Thae features used for matching are the
number of visible edges and visible surface area (in 2.0 image
coordinates). If this fails, the second level is Invoked which
attempts to match objects on the basis of the relative positions
of two or more chjects using relations such as left, right,
above, and below. The third level attempis to match individual
faces of the blocks on the basis of relative positions, This is
done primarily to disambiguate the origlinal segmentation.
Ccclusion 1s inferrsd by the presenca of "T-ncdes®; it is assumed
that the top of the ¥I¥ belongs to the occluding eobject.
Matching 1s performed by trying various corrsspondences between
the visible edges of the occclmdad object and the model of the
object which is expected to be present at that location. This
program ic fairly general in the sense that occlusion is handled
fairly well and there is no fundamental 1imit on the nunber of

objects in a scene or on the number of cbjects which enter or
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leave the scene in any gilven image. However, the blocks world is
an idealized visual domain, so this approach is certainly not the

final answer,

» Fennema and Thompson [1976]) developed a technique called the
Gradient Intensity Transform Method which differs from any of the
other exarples discussed so fars Tiwme variations in intensity
and the spatial gradient (as measured by the output of the Sobel
operator mentioned in Section 2.4) are recorded for each pixel in
the image. The intensity and gradient vahiations place
constraints on the possible directed velocity of an object imaged
at any pixel. A Hough-transform method (see Section 2.5) is used
to cluster points by parameterizing vélocity in terms of changes
in gray level intensity and orilentation of the gradient.
Clustering techniques applied to the parameter space of the Hough
transfornm are used to find reglons of pixels ﬁith similar
velocities. In this way, objects can be segmented from the scene
as well as assigned a velocity. To make this procedure work
well, the image 1is first smoothed with an averaging filter. Thus
a certain amount of detail will be lost and the accuracy of

position measurements may suffer..
5.2 Jerdfication

In verification vision the system knows what objects should
be present in the scene and thelr approximate position and
orientation. The geal is to verify the presence of these objects
and to refine the estimates of their position and orientation.
" Bolles [1976] developed a verification vision system that uses a
set of opertors to find featuires in the scene aporoximately at
the positions where these features- are expected from the a priori
information. The sygtem uses teaching and learning phases
described 1in Section 7 in which operators are selected and

statlstics about them are gathered. Then in what Bolles calls

wvi
]
-



"planning time® the system ranks the operators according to thelr
expected contribution to the solution, determines the expected
nember of operators to be needed, and predicts the cost of
obtalning the solution. Finally, in %execution time" the uystem
appllies the operators one at a time and combines their results
into estimates of confidence in the verification and precision of
the refinement. PFor this purpose the prob-bility distrihutions
of the results of applying each operator tunat were gathered in
the learning phase are used in Bayes' theorem. The refined
position and orientaticn estimate 1s obtained by a least-squares
adjustment., which includes an automatic editing feature for
removing those features that do not seem to agree with the
others, When the desired confidence and precisi. ~ or the cost

limit has been reached, no more operators are applied.
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6. STEREC

In stereoscopie vision, triangulation between two or more

views fron different positions is used to determine distance.
This avoids the high degree of ambiguity inherent in trying to
determine depth by other clues in monocular views. However,

there is still some ambiguity present in the process of matching

points in the different views so0 that the triangulaticn can be
done, since a small bortion of one iwmage may be similar to
several portions of another image. This is especially true when
. the noise level is high, since small differences may be Qbscured
by noise. Although using stereo makes the problem of extracting
three=dimensional information easier than it 1s with monocular
vision, the hardést parts of the vision problem, description and
recognition, still remain,

It makes no essential difference for stationary scenes
whether the multiple views are obtalned from separate cameras
simdltaneously or from one moving camera, except that the
calibration problenm might be different. (Camera calibration is
discussed in Section 8.)

Usually only two camera positions are used. Howuwever, if
several positions are used, the problem of resvlving the
ambiguities becomes easier. In the close-together views, things
have not shifted much between views and thus are easler to match,
These results then can be used to resolve the ambiguities in the
‘further-apart views, whose results produce greater accuracy.
Nevatia [1976] and Moravec [1980] have explored ways of
accomplishing this,

Stereo techniques differ in the way 1n which matching is

done between the pictures, especially in the kind of entities



that are matcehed. One common methed is area correlation, in
which small areas (windows) a few pixels on a side are matched by
maximizing the correlation coefficient, minimizing the mean
squared difference, or using some variant of these procecses.
This method usually works well for highly textured scenes, such

as natural outdoor scenes.

Hanpah [1974] explored some of the basic properties of area
correlation and developed a reglon-growing method using it.
Getinery [1980] produced a refined correlation measure for areca
correlation and a search procedure that uses some local context
to reduce the ambiguity in watching. Levine et al. [1973] use a
correlation window that varies in size, so that it is small for
high{resolution where there are large brightness variations but_
largé elsewhere for good noise rejection. They also first match
sparsely spaced "tle points® witn high information content, and
then use these points to consérain the search for matching the
nearby points., Yakimovsky and Cunningham [1978] also use a
corre}ation window that variles in size, according to the
magniiude of the leccal autocorrelation value. They use a sparse
windqw for speed, then use a full window at the five points with
the highest resulting correlaticn, tc produce 1in aceurate
correlation. Mori gt 2l {1973] correct fur distortion within
the windcw by means of a prediction~correction technique. On
each iteration of this preccess, the depth map produced by the
previocus iteration is used to correct the perspective distortion

within each window so that = better match can be mada.

Instead of using ordinary érea correlation, Marr and Poggio‘
[1976] proposed a relaxation method that assigns a depth %o each -
pixel, The method assumes that the depth is contlinucus except at
occasional boundaries. Grimson and Marr [197¢] produced a method
in which the images ars bande-pass fiitered and the zero crossings

of the results are mateched between the images. Various amounts



of filtering are used. The coarse zero crossings from the
heavily smoothed images are used to resolve the ambiguities in
the high~resolution zero crossings from the lightly smoothed

images.

Scenes of man~made objects often are not highly textured but
contain sharp brightness edges at boundaries of objects and at
intersections of planar faces. For such scenes area correlation
does not work very well, Instead, it is usually better to detect
features in each image and tc mateh these features,

Arnold [1978] produced a method that uses edge elements as
the features to be matched., He first finds edge elements by
means of the Hueckel operator. Then these are matched by a
relaxation process that uses local context to resolve
ambiguities. Baker [1980] matches edges by means of dynamic

progranning, using a coarse~to-i'ine strategy.

: Ganapathy [1975] detected straight edges that correspond to
‘the edges of polyhedra, then matched these in order to

Ereconstruct the polyhedra in three dimensions.

Roth [1978] used a region-matching technique to extract
three~dimenslional surfaces from & stereo pair of images. Each
image is converted to a gradlent array based on local changes in
intensity. The gradient arrays are partitioned into regions of
uniform intensity (zero gradient) and uniform change (simiiar
gradient orientation), Initial begion matching is based on
similabity of shape, size; average intensity and averagen
gradient. Further match evaluation imposes disparity constraihps
and uses occlusion clues. The matching algorithm makés or breaks
matches based on a confidence measure until a globally consistent

high-confidence match is obtained.
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Saund ef al. [1981] combine the measured positions of
featuraes found in two camera vieus into a single least-squares
adjustment for the three~dimensional position and orilentaticn of
a known obJect. Thus the stereo information is used implicitly
in the adjustment, rather than being explicitly computed for each
feature. Indeed, 1t is not necessary for any feature to be seen
by both cameras; if enough features are seen in cach image, the
constraints of the object modeal allow depth to be obta’ ed.

Woodham [197%9a] proposed a novel approach in which, inatead
of moving the camera to different known locatlons, the light
source 1lluminating the scene is moved to different known
locaticns in order to cobtain different images. Under some
reasonsble assumptions about the reflective nature o¢f the
surfaces in the scene, this allows the orientation of the
surfaces in the scene to be determined unambiguously. Although,
strictly speaking, this is not stereéo vision, it 1s sufficiently
similar so that the term "photowetric stereo® has been applied to
it.



T. TEACHING AND LEARNING

Computer vision systems recognize obJects in a scene by
matching image features with internal models. The models
represent the vision system's knowledge about the world., The
concepis of teaching and learning relate to the ways in which
general-purpose systems incorporate knowledge into the data base
of models. The teaching/learning process implies a dialogue
between the computer and a human operator. If we show the vision
system & new object (l.e., one that is not currently represented
in tha data base) and give it a name, and the system 1s able to
recognize the object when it is seen again; then we can say that
the system has learned to recognize the object. We can also say
that the system was taught .0 recognize the object, especially if
the human operator has given assistance in learning how to
recognize the object, such as by pointing out important features,
for example. Even if the operator comletely specifies the object
model and does not show the system a training exarple at atl,
this process can still be called %teaching,” as long as it
"involves a high-level interactive transfer of kncwlédge.

Otherwise, it might better be called ¥progranming.”

One approach to learning in computer vision has been to
simulate biological functions. The neocognitron (Fukushima
[1975] and Fukushima and Miyake [1980]) is a self-organizing
classifier for two-dimensional patterns constructed as a set of
layered two-dimensional "eell” arraysa, The cells are connected
between and within layers by "synapses," sowe of whose strengths
evolve with visual experience. Synapse modification is through
unsupervised learning; the machine learns to recognize patterns
it sees most often. The cells in layers near the “photoreceptive
layer® become feature detectors, while the information

represented with increasing depth becomes more abstract. The



neccognitron is able to tolerate shifts in position, rotations,
and distortion in the shape of patterns. However, this method is
computationally extremely expensive, requiring thousands of cells
and tens of thousands of synapses, s0 will probably not be of
practical use until computations can be performed in parallel for

each cell.

At the simplést level, many computer vision systems can
learn to recognize specific objects. In the case of the SRI
Vision Module (Nitzan gf al. [1979]) and CONSIGHT (Ward gf al.
f19791), blob analysis is performed in a training mode and a
record containing the features of the new object is stored in a
list of possible objects. Several views of the object may be
used to obtain a statistical distribution of the various feature
values., Viewing distance and perspeciive are constant, so the
object always appears essentially the same up to translations and
rotations in the image plane, These systems do not have to infer
what the object will look like for arbitrary translations and
rotations. Perkins [1978) used a similar teach-~by-showing method
to generata a concurve representation which includes a List of
statistical features extracted from the reglon enclosed by the
buter boundary and a measure of the rotational symmetry of the
obJect. His program also assumes that scale and perspective abé
constant.

Underwood and Coates [1975] developed a method of learning
to recognize 3~-D objects (convex polyhedia) from arbitrary views.
Their method aucomatically generates a 3-D description of an
object based on a sequence of images taken as thé object is
rotated in space. An object is described in terms of its
surfaces and how they ars interconnected, by matching successive

views to determine what has been seen before and what 1s new.

In ACRONYM (Brooks &% al. [1979] and Brooks and Binford



(1980]), the user specifics models of objects, generic object
classes, and possible relationships among objects. A high—levei
modelling language is used with an interactive editor so that the
user can conveniently specify the generalized cones to be used
and how they connsct to form objects. (See Section 1.3.) The
user is aided by a library of useful prototypes and a graphics

module that provides visual feedback.

The next. level of learning, which represents a considerable
leap from that discussed above, involves being able to model
genéric classes c¢f objects by being shown examples, with no help
from the human teacher other than selecting an appropriate
sequence of training examples. As an example of this type of
capability, a program would be able to recognize any chair after
séeing a few examples of the various types of chairs. This
requires the ability to determine the relevant components of a
chair and their relationships to each other, leading to a
description such as "a chair has four legs énd a back attached to
opposite sides of a seat.” An outstanding example of this type

of capability is described next.

Winstoh [1975b] produced a program that learns concepts by
being shown positive and negative examples. The type of concepts
used by Winston involves structures composed of simple objects.
When it is shown a scene, the program constructs a description of
the scene consisting of a network indicating the relaticnships
among the objects, as described in Section 3.3. When the scene
is designated as a positive example of a certain concept, the
program uses the resulting description as its initial model of
the concept if it had no previous model of it; otherwise it
compares the description to its model, notes the difference, and
generalizes its model accordingly. When the scene is designated
as a negative. example of a .ertain concept, the program compares

the description of the scene to its current model of the concept
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and notes the difference. If a single difference in the
structural description is noted, the relationship missing in the

negative example is marked in the model as being mandatory, or

the relationship missing in the model is entered into the model
as being prohibited. If there are multiple differences, a tree
of models is produced, which can be Jdisambiguated by later
examples. Thus the negative examples that dre near misses
provide the most information. '

Another aspect to learning is the selectlon of a recognition
strategy. The binary decision tree used in the SRI Vision Module
(discussed in Section 4.2) is generated automatically after &all
parﬁs to be modelled have been presented to the systen., Using
the observed statistical distributions of features, the tree is
constructed by selecting » feature and a threshold for values of
that feature which most reliably partition the set of objects
into twc disjoint subsets., This is done recursively for each
subset containing wore than one ijéct until all subéets contain
exactly one object.

The verification vision system or Bolles [1976] described in
Secﬁion 5 incorporates some ability to learn and to be taught.
In what Bolles calls "programming time" the user interacts with
the system to specify confidence, precision, and cost constraints
for the task and to help in selecting operators for detecting
- features in. the pictures. The system finds features and displays
them and their properties, and the user can accept, reject or
modify each operator and can specify additional operators. In
"training time®™ the system applies the chosen operators to sample
pictures and gathers statistical information about theliyp

effectiveness.



8. CAMERA CONTRUL .A:D CALIBRATION
¢
This section deals with the control of camera parameters
which allow a computer vision system to adapt to changes in
viewing conditions and camera calibration techniques which allow

accurate weasurement of 3-D object positions.

In order to deal with moving objects or to look at various
locations in the environment, a pan-tilt head is necessary to
point the cameres in the proper direction. Tnils is essentially
an engineering problem to build a suitable device, so we c¢cnnsider
here some of the important design requirements. First, it should
be cabable cf very rapid movement so that the robot can "glance
around®™ to quickly check out situatiens. Second, it should be
equipped with precice encoders so that information extracted from
ﬁhe plctures can be referenced to a fixed coordinaie system.
ihird, it should be c3pable of prenise servo cortrci to keep a
ﬁqving object centered in the field of view. Fourth, additional
drgrees or freedom of camera movement are desirable. For
example, the ability to rotat” each canmera of a stereo pair uo
that their principal axes intersect at any desired range

maximizes the common field of view at that range.

Generally speaking, image feature extraction algorithme
per.'orm best when iris and focus settings -re adjusted to obtain

the highest~quality image. If the vision system operates in a

dynamically changing environuent, automatic contrcl of irls and. .

focus is necessary to adapt to variations in illumination and
object distaace.

The best iris setilng raximirzes the ryarric range of pixel
intcnsities and is nominally obtsined by keeping the brightﬁ§t

pixel in the image Just below saturatiocn. This apprcach can ve
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refined by applying it to a window of the luwage contalning the
obJect of interest and allowing brighter regions (which'are
currently being ignored) to saturate. This 1s the approach used
in IMFEX, a special-purpose image feature extraction devlce built
at JPL (Eskenazi and Wilf [1979]). The meximum video level in a
programmable rectangulaﬁ window is available at 30 Hz to a
microcomputer which serves the irls motor.

Focus control is generally based on maximizing the high-
frequency content of the image. In a 3-D scene cohtaining
objects at varying distances, the best focus depends on which
object is being analvzed. Thus the high-frequency content should
be maximized in a window of the image which contains ihe object
of interest. One way to measure high-Irequency content is to
look at the magnitude of a gradient edge detection operator
(Eskenazi and Wilf [1979]). For best results, some quantity can
be integrated over a window. The system described by Johnscn and
Goforth [1974#] focuses by integrating elther thresholded
brightness data or the results of using high-pass filter on the
image. For all of these wmethods, a hill-climbing strategy is
used to drive the focus motor of the lens to the position that
maximizes the parameter being méasuredo In some cases local
maxina exist that do not correspond to the correct focus, but if
the 1hitial focus is sufficiently olose to belng correct, the
hill élimbing technique will find the global maximum.

The final camera parameter Lo be considered is focal length.
Varlations in object distance or varying field of view
requirements for different tasks can be best handled 1f it is
possible to change the focal lenzth of the lens., One approach is
to mount several fixed-length lenses on a turret and to rotate
the appropriate one into place as viewing conditions require.
Pingle and Tenenbaum [1971] used thiree lenses. A more general

approach Is to use a computecwcontrolled zoom lens. The



difficulty with varying the focal length is that canera
calibratfon (to be discussed below) changes. In the case of
multiple fixed-length lenses, the calibratlon is at least fixed
for a given lens. For a zoom lens however, the oalibration will
vary continuously. Gibert gt al. [1980] use a zoom lens in their
tracking system but do not discuss the impact on canmera
calibration. It is worth nbting here that changes in focus have
a sinilar effact on calibration, although on a smaller scale, to

changes caused by a zoom lens,

Camera calibration consists of determining a set of
parameters which specifies the relationship between 3-D points in
& scene and>the1r projections onto the 2-D image plane. While
there are variocus ways of formulating this relationship, in the
case of a central projection it is generally equivalent to
knowing the location of the lens center, the orientation of the
principal axis of the lens, and the distance from the lens center
to the image plane. Cameras are typically calibrated by
d@termining the image coordinates of & set of reference points
ahd solving for the calibration parameters. We are concerned
here with ecalibration methods which allow general 3-D position
Measurements and stereo matching, as opposed to methods used in
systems such as CONSIGHT (Ward et al. [1979]) which assune

constant viewing distance and perspective.

In hand-eye systems, a target on the manipulator can be usad
as a calibration point. By moving the manipulator to several
different positions and locating the target in the image each
time, a set of 3-D points (obtained through manipulator position
feedback) and their images are obtained which can be used to
solve for'the calibration parameters“ This is the method used by
the JPL hand-eye system {Yakimovsky and Cunningham [1978]). The
target is a small.light bulb on the hand which can be located

easily and reliably. One of the advantages of this approach is
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that asystematic errors in the camera calibration relative to the
manipulator calibration are eliminated.

In order to obtain sacurate position information from an
image, the transfornation from three-~diménsional space to the
two~dimensional image plane must be known. This is'usually
agsumed to be a central projection, However, cameras often have
distortion caused by the leas or by the scanning mechanism that
causes the true projection to depart from this ideal. Therefore,
‘a distortion calibration may bs necessary. One way of performing
such a calibration is to take a plcture of an array of dots whose
positions are accurately known. A program then can find the
dots, compare their positions in the image to the ideal
positions, and fit a distortion correction function (perhaps a
two~dimensional polynomial) to the discrepanciecs. Moravec [19680]
describes a way of finding the dots in the image.

In using the stereoscopic vision techniques described in
Section 6, it is highly desirable to know accurately the relative
position and orientation of the cameras which produced the
multiple views, because this knowledge constrains the search for
matching points in the images, and because it enables abs&lute
distances to be computed from the matches. Of course, if each
camera'’s position and orientation have been precalidbrated
relative to some common coordinate system, the relative position
and orlentation are easily obtained. However, sometimes this
individual calibration is insufficiently accurate or is absent.
In such cases it 1s possible to obtain the desired relative
calibration by using unknown points in the actual images, so that
no special cali“ration data is needsd, except that the distance
between the cameras cannot be so obtained. If at least five
points in general position are matched in two images, they can be
used tn compute the five parameters that define the position and

ocrientation of one camera relative to the other, except for



distance. Gennery [1980] provides a way of performing such a
stereo camera calibration, which obtains the wmatched peints by
using a method of Moravec [1980], performs a least-squares
adjustment so that wore than five points can be used effectively,
individually weights each point based on its estimated accuracy,
and automatically edits out points that have been mismatched.
The distance information is usually available with sufficient
accuracy from other sources, and, even if it is not, tirce-
dimensional information (except for a scale factor) cap still be

computed from a sterco pair of pictures.
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S. SYSTEM ARCHITECTURE
.l Comoukatioval Structuces

In the simplest computer vision systems, a scene description
1s obtained in a sequential process. A TV image is input to a
feature extractor whose output goes to a recognizer or classifier
which in turn outputs a scene description. This characterization
applies to fairly simple (and practical) vision systems such as
the SRI Vislon Module and CONSIGHT described in Sectien 1.3, The
basic assuﬁption in this type of approach is that there is a
clean distinction between the processes of fsature extraction and
recognition, and that feature extraction can operate reliably in
the absence of knowledge stored in the model that is used for
réecognition. The strict sequentlal approach makes it fairliy
straight{orward to partition f{he processing_into logically
distinct units and to implement these computaﬁiohal units in

gpecial-purpose hardware vhere speed 1s critical.

The‘apprcach described above has proven to be useful in
highly organized environments, However, it 4is woefully
inadequate when applied to natural outdoor scenes or even geheral

3=D scenes of man-made (i.e., industrisl) objects.

In developing possible architectures for more general
computer vision systems, we must consider what types of
- computational tasks will be nerformed and what structures are
best suited to perform them. HNo one knows yet how powerful high-
level understanding and visual analysis will work, so we have
very few hints as to how to design a system to do high-level
vislion, But there are some insights into wha; ;g required of
low-level vision. Low-level vision must extract an economical

description of a scene from a raw intensity image; without



necessarlily recognizing objects or understanding much about the

scene.

Much of the research that has been done in low-level vision
(for example Barrow and Tennenbaum [1978], Hanson and Riseman
[1978c], and Brady and Wielinga [1978]) indicates that a number
of images of a scene in various siages of processing should be
maintained concurrently, because these explicitly represented
images interact with each other and with higher and lower levels
as processing proceeds., The actual computations of low-level
vision are usually local to one portion of an image, both within
and between levels. Often the actual computing is by way of
relaxation processing, whereby local constraints within and
between images are used to arrive at a globally consistent result
(as, for example, with Zucker [1976]). Thus, low~level vision
might be well served by an architecturé consisting of a large
aumber of reglstered image buffers accesszible by processing

elements working in parallel.

An example of this kind of architecture for low-level vision
processing is the stack orgarization proposed by Barrow and
Tenenbaum {12781 (also described by Tenenbaum et al, [19791]).
In this organization each level of the stack holds an iconic (in
the foru of an image) representation of various characteristiocs
of the scene, called intrinsic images. For example, these can be
brightness, 1llunination, reflectance, orientation, and
distance. There 1s communication between nearby pixels in each
level  of the stack to enforce assumptions about the continuity
of each cheractericstic, and there is communication between
corresponding pixels at different levels of the stack to enforce
the assumed relationships among the various characteristics. By
an effectively parallel iterative computation based on these
assumptlons, the intrinsic images are recovered. (Special

hardware could be built for implementing this scheme, as
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deseribed in Section 9.2, but it can be implemented on any

general=-purpose computer with sufficient memory and speed.)

A possible architecture for performing some low~level vision
tasks is the cellular éutomaton, in which simplé operations are
performed at each step on each pixel as a functlon of the
neighboring pixels at the previous step. (It thus Is similar to
one level of the Barrow and Tenenbaum method described above.)
Such methods are discussed by Rosenfeld [1979b]. They can be
implemented efficiently by the single~instruction-strean

‘multiple-datanstream hardware described in Section 9,2.

Another computational structure that has received nmuch
attention is the "recognition cone® (Uhr [1972]) and its
var%ants. This is a hierarchical approach with several layers of
processing organized similarly to the pyramid data structure
discussed in:Section 2.8, Uhr proposes a "parallel-serial®
computer architecture (Uhr [1978]). Each layer is viewed as a
parallel processor which transforms (and shrinks) the data at one
level to the next higher level. There may be several transforns
(operators) at each level which éperate.in parallel. The various
layers are processed serially in both a bottom~up and top-down
fashion. This implies feedback to feature extractors based on
par#ial recognition results, something absent in the simple
vision system architecture described at the beginning of this

section.

Hanson and Riseman [1978b] propose a hierarchical processing
cone computational model for low-level vision processing such as
extracting line end region data. In their model, there may be
several planes of data at any given level representing processed
outputs from the level below. The processing at each level iws
carried out by an array of local processes., In addition to top=-

down and bottom-up processing, there would be communication
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between processes at the same level, adding lateral control
decisions to the computational structure. All of this processing
could take place in parallel, leading to a host of unknown
computatiorial methods awaiting much furiher research. '

3.2 Hardusre

The basic hardware device necessary for digital 1image
processing is an analog-to-digital (A/D) converter and a computer
interféce for access to the digital image., Advances in
semiconductor technology have led to fast A/D converters and fast
random-access memories which allow continuous eight-bit
digitization of 5i2-by~512 (or larger) images with full frame
buffering at the standard video frame rate cf 30 Hx, For the
most flexibility, the computer should have random access to any
pixel in the image without disrupting the digitization and
buffering. .One of the first devices to offer thls capability was
RAPID (Yakimovsky gf al. [1976]). RAPID digitizes (8 bits/pixel)
and buffers 192-by-2480 images while providing concurrent computer
atecess to any pixel in the frame buffer in 4 wmicrosecondsa. This
dévice enabled the implementation of the real-time correlation
tracker discussed in Section 5 (Griffin gt al. [19781).

In order to achleve reasonable competence, vision requires
enormous Guwounts of computaticnal power. It is possible that no
existing sequential computer comes within six orders of magnitude
of being powerful enough to see as well as a human being. Even
the modest performance of some of the existing systems requires
several minutes of computing in order to analyze a single scene.
Although the speed of processors will increase, it is apparent
that a different architecture than the single general-purpose
processor will be required in order to produce the large gains
needed. Two principal possibilities are special-purpose hardware

devices dedicated to computing certaln operations needed in
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vision much faster than a general-purpose computer can, and
parallel computation in general purpose computers, Special-
purpose hardware cah produce large gains in speed but it i1s
limited to low-level operations at present. At the higher
levels, the greater complexity needed may cause it to remain
noncompetitive with general-purpose hardware. Although parallel
computation can be used 1n a specilal«purpose device, it can also
be used in a general-purpose computer, so that large gains in
speed can be achieved without loss of flexibility. (Some of the
possible hardware architectures for computer vision have been
surveyed by Reddy and Bon [19791.)

One of the simplest image preprocessing steps is
thresholding, which can be done either digitally or in analog.
In the analeg case, the thresholder is essentially a one«bit A/D
converter. The JRI Vision Module (Nitzan et al. [1979]) operates
in either mode, obtaining binary images at frame rates, A 16 K-
bit frame buffer allows storage of two binary images takenh from
one or more 128~by-128 cameras, Additional special hardware can
accass thls memory to convert the raster image to run-length code
and to compute the area and firste-order moments (sum x, sum y) of
blobs: All of this processing is confined to a programmable
rectangular window so that analysis can be restricted to a single
blob, The run-length code is processed by & general-purpose
microcomputer (DEC LSI-11/02) to extract additional blob

features.

Many low~level image processing algorithms convolve the
image with a square or rectangular window. The windows typically
range in size from 3 by 3 to 7 by 7, with larger windows being
used occasionally. Most of these algorithms could be implemented
in a parallel array processor consisting of M times N identical
computatioqal units to process an Mwby-N image. However, the

output of conventional TV cameras is serial, which means that the .



processors would be idle for most of the 1/30 second frame time.
An alternative approach is to process the image serially in real
time by effectively scanning the image with a singlé
computational unit. For an n~by-n opérator, this is accouplished
by buffering the last n=1 lines and accessing an n-~by-n window
from the current line and the buffered lines in parallel, using a
plpeline architecture to perform the necessary computations, with
new windows being accessed at the pixel rate. While an entire
frame time is required to process-an image, the net result
approaches the efficiency of parallel arrey processing, since the
processing is going on concurrently with the acquisition of the
image by the camera. The effective'processing time 1s thus the
difference between the time when the last pixel is scanned by the
camerﬁ and the time when the processed value corresponding to the
last pixel is output, Clocking data thbough a computational
unit at pixel rates results In a difference; or pipeline'delay
of (n-1)/2 line times (standard video line time 1s approximately
63 microseconds) plus possibly a few pixel times for an neby-n
operator. '

An example of this type of pipéline processor is & device
calle‘:d IMFEX built at JPL (Eskenazi and Wilf [1979]). 4 video
1npu€ signal is digitized and processed by four computational
units. The first is a 3-by=3 gradient 2perator which enhances
contrast edges, outputting the magnitude (8 bits) and orientation
(quantized to 45-degree intervals) of the gradient. The second
is a thinning algorithm (3~by~3) which filters the gradient
output by passing only those pixels whose magnitude is greater
than either of its two nearest orthogonal neighbors in & 3~by~3
neighborhood (e.g., the top and bottom neighborz of a horizontal
edge). The thinned gradient image is thresholded to obtain a
binary edge map. A second thinning algorithm deletes edges from
the binary edge map which are not necessary to maintair global

connectivity, by examining the'eight nearest neighburs of each
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edge Iin a 3-by~3 window. The thinned binary edge map is
transferred to a block of memory in a DEC LSI=11703, which
performs further processing.

Hudd ¢t al. [1979] have experimented with hardware
implementation of several low-level algorithms using charge-
coupled device (CCD) technology. One of the primary goals of
their work is to integrate the image sensor and processor on a
single CCD chip. Functionally, the approach is the same as that
for IMFEX in that the image is processed serially as it is
scanned by the camera. Mosi of the operators they have
implemented (Sobel operator, Laplacian, spatial filter, and
unsharp masking, for example) are 3 by 3. They have also
implenented 5-by-5 and T-by<T programmable masks and a 26-by=26

convolution operator,

One possible type of parallelism that may be especially
suited to low-level vision is an array processor uslng a single-
iustruction-stream mutiple-data-stream (SIMD) architecture. Such
a System uses an array of simple processors (usually one per
pikel) that all perform the sams functions slimultaneously under
control of a master processor. Each cell in the array usually
can comnmunicate directly only with its neighbors in the array.
The master processor is similar to an ordinary computer. It
decodes the instructions in its program, and causes the array of
processors to execute them. Since each cell is much simpler than
a central processing unit of an ordinary comuter, a high degree
of parallelism can be achieved ai low cost. However, the kinds

of algorithms which can use this scrt of parallelism are limited.

Several SIMD devices have been built. They differ greatly
in the complexity of the processors in the array and in the
amount of data stored at each cell in the array. Golay {1969]

designed a device that performed simple operations on binary
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Ilmagea bosed on the values of the s8ix nefighboring cells in a
hexagonal array. A few bits per cell were stored. The ILLIAC-IXI
computer {McCormick [1963]) performed very simple opérations at
sach cell of elther & rectangular array or a hexagonal array,
whereas the ILLIAC-IV computer (Barnss gh als [1968]) can perform
arithmetical caleculaticnz on data that can be accessed in a
fairly flexible way; but it has only 6% processors. (The ILLIAC-
IV was not intended for vision) The CLIPL system (Duff [19781)
uses a 96-by~95 rectangular array of processors, each of which
can communicate with its eight nearent nelghbors and can perforn
boulean operations, from which arithmetic operaticns can be built
with software., Each cell can store 35 bite. Probably the most
ambhiticus projecﬁ of this sort so far is the Massively Parallel
Processor (Schaefer [19801) belng developed by NASA., It will
contain a 128~by-128 rectaungular array of cells. Fach cell
stores 1022 bits of data, perforrs logleal and arithmstic
operaticns (both fixed-point and flosting-point), and
comuunicates with its four nearest neighbors. Bi{-serial
arithnmetic is used. Thus some parallelism'is sacrificed in order
to keep the cost down enough so that the large amount of

parallelism in the array is economically practical.

_ Anotheyr type of parallelism is a multiprocessor using a
multiple-instruction-stream nultiple~data-stream (MIMD)
architecture. Such a system uses a number of central processing
units that independently execute different instructions. It
would be possible to have these comnscted only to their neighbors
in an array as in the SIMD devices, but this would waste the
generality of the processors. Some more general type of
communication is needed. FPreferably, it is desired to have all
of the proceswors able to communicate directly with each other
(without the delays that using a common bus would involve),

The above direct communication can be achieved by means of a



crosabar switch. To interconnect n items in this manner requires'

ne switching circuits. An example of such a system is the C.mmp
system built at Carnegie-~Mellon University (Wulf and Bell
[1972]1). t connects sixteen PDP~11/40E computers to sixteen
256 K memory modules by means of z sixteen~by-slxteen crossbar.
Since the amount of circuitry in each switching circuit is

considerably less than that in each processor,. it probably is

practica’ to connect a few hundred processors in this manner. .

using current semiconductor technologv.

As semioonduc?ob technology improves, it will become
praétical to use a much greater number (perhaps millions) of
pvoéessors in a computer. To connect such a large number by
meéns of a crossbar probably will be impractical, since the
~ number of components is proportional to ﬁhe_sduare of the number
of units to be connected. However, Moravec [1979] has proposed a
method based on the Batcher sorting retwork in which the number
of components increases much less rapidly. Full interconnection
is rétained, but there is a slight loss of speed, since a message
sent through the network must go through a numbur of stages of
circultry proportional to the logarithm of the number of units to
be connected. (Because of pipelining the bandwidth is high, but
the latency is faifly long.) Thus with this method it would be
most appropriate for each processor to have its own memory, which
it would access most of the time, with less {requent messages
being sent to and from other processors or memcry modules,
Al though elaborate systems software may be needed, once it is
available the complexity of the systen cah be largely transparent

to the applications programmer.

In cases where the number of processors is too great for the
use of a crossbar and it is desired to avoid the complexity of
the sorting network, a more limited interconnection schenme

tailored for a particular type of task might be used, For

g9



example, several processors could be connect ny a crosshar to
form an'image processing unit that would operate on the contents
of one image buffer, and several of these combipations could be
connected by serial image transfer between image buffers through
a crossbar, =so that processing on different idconic
representations couid occur simultaneoulsy, corresponding to
different stages of processing. As another exanple, the stack
organization of Barrow and Tenenbaum for recoverdng intrinsic
images (described in Section 9.1) could be implemented by having
processors in each level of the stack that could communicate with
thelr neighbors in thaﬁ level and with the processors at the same
position in all other levels. An existing system with limited
interconnections is the Cm® system built at Carnegie-Mellon
Uniiversity (Swan gt al. [19771). It contains %8 LSI-11 computers
cbnneéted in clusters, It must be emphasized; however, that
where the ccomplete interconnection of prccessors is practical it
;s better to use such a generasal system and to put it into the
?onfiguration of these examples under software control, rather
than to build hardware for these specialized interconnections. A
éood rule to follow 1is not to build a special-purpose device if a
generalspurpose device can be built almost as cheaply and can

perform almost as fast.
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10. CONCLUSIONS
-1 State of Compubter Mialoan

The statement "Vision is hard® is found often in the
computer vision literature. There are several reasons for the
difficulty. In the first place, an image contains an enornous
amount of informetion, much of it irrelevant to the task at hand,
and.it is an lwperfect projection of the real world, containing
noise and distortlon. From this the relevant information must be
extracted. In the second place; the transformation from the
image to the real world is highly ambiguous. Thus world
knowledge must be relied on to resolve the ambiguities. (This is
especially true in monocular vision of three-dimansional scenes,
but it is also true to a lesser extént in stereo vision)  In the
third place, an objeet seen may only vaguely resemble others of
its éeneric type or even itself at other times or under other
conditions. In the fourth place, in a powerful vislion system an
object must be recognized out of a large number of possible
~objects or generic types.

These facts appear to wanifest thgmselves in two ways in
practice, First, vision requires an enormous anmount of
computing. Second, it seeme that the computational methods
needed are very complicated, and it is unknown today what the
right methods will be.

Even though the above two aspects of the problem are both
iwportant, there is a trade-off between them. For example,
recognition covld be done in principle by comparing the image to
all possible views of all possible objects, This ir a simple
technique, but it is completely prohibitive in cowputational

cost. More complex, smarter methods can reduce the computation
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enorrgoussty. At the other extreme, one might hope that an
extremeiy clever method might be invented that would make the
amount of computing quite smail. This doesn’t ssem likely,
though, because of the large &mounb of information in an image,
the large number of possibilities in a viewed scene, and the fact
that biological evolution has not been able to come up with such
a method, (The human urain devotes billions of neurons.to the
task of vision.,) Thus, to match the capability of human vision
will probably require several orders of magnitude times the
computing power of today's most powerful computers. (If the
current progress in electronics technology continues,
sufficiently pewerful parallel computers eventually will beccue
available, as discussed in Section 9.)

One wight hope also that some powerful simplifying
principlé& might be discovered that would eliminate the need for
much of the complexity, but there is no evidence that such
principlés exist. Study of the human brain has not been ot much
helb in this regard or in regard to finding less powerful but
praccvical principles, since neurophysioclogists and psychologists
have barely scra.ched the surface in understanding how it works.
(Scme of the current knowledge is summarized by Graham [1965],
Julesz {1971]), and Carterette and Friedman [1975).) Since the
usé of the techniques that ultimately will be successtul probably
will require wuch computing, these techniques cannot be developed
until sufficiently powerful computers are available with vhich to
experiment. Thus, nuch research using these powerful computers

may be required before we learn how to use them etfectively.

In spite of the above problems, some progress has been made.
Some highly specialized systems have actually performed useful
tasks in restricted domains., Sonme laboratory systems have a
degree of genherality in the domain of recognizion or two=

dimensional objects under well-controlled lighting, because of



the lesser amount of ambiguity and complexity in this domain.

Some experimental systems hold promise for recoznitlon of generic
three~-dimensional objects, although they require a large amcunt
of computing-time on ekisting computers. Some speclal-purpose
hardware is bcdohing available, which enables some very low-level
computations to be performed rapildly. Even in these cases,

however, a variety of techniques are in use, with no consensus

about which are the best. This becomes even tiuer as we move to

the higher~level, wmore general, or mpore advanced areas,
Furthermoro, many of the approaches that have been used are ad

hoe, with littie promise of generalivy.

10.2 Key Research Issues

Some of the issues that seen important in compnter vision

researc.) will be summarized.

In recognition, it is possible to proceed either in a
botton~up manner, detecting low=level features first, and
organizing these into ever highsr-level struccures until the
 scene is completely analyzed, or in a top»dowﬁ manner, starting
with a hypothesized object and trying to find its features in the
scene. A combination of both of these approaches is needed in
most vision tasks, An important issue is the proper balance
between these two approaches and how it varies with the nature of

the task.

At the lowest level in vision the scene representationis
iconic (in the form of an iwmage), whereas at the highest level
the representation 1s symbolic., The proper level for the
dividing line between the two types of representation and how
much they should overtap is an issue, (Funt [1977] touches on
this question in the domain of problem solving. It Is also

discussed by Barrow and Tenenbaum {1981].)
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A separate but related issue is the spacific representations
that should be used. That is, what sort of features should be
extracted from the scene-(edgés, corners, regions, surface
orientation, and so forth), and how should objects be medelled
(wire-frame models, generalized cylinders, and so forth)? At the
highest level this issue is part of the general knowledge

represenvation problem in artificlal intelligence.

If there 1s a very large number of models in the data base,
the problem of how to index efficiently into 1t is important.

Ariother issue is whether parallel wethods such as relaxation
are merely a programming style as claimed by Marr [1978], or
whether they lead to inherently different algorithms than
sequential methods, and if so, wihich are more appropriate to

whiéh types of tasks, -

There are often several types of information available in
portions of a vision task. For example, depth Information can be
obtained sterecscoploally and by means of various monocular
clues. Also, information obtained from a semse of touch or from
othgr information in an intelligent robot may be available, in
addition to vision; Means of coubining such different types of
information reed to be explored. AL the lower levels, relaxation
pro#esses such as advocated by Barrow and Tenenbaum [1981] may be
appropriate. At the higher levels, one possibility is the
"blackboard® (& central communication wmedium for the
representation of hypetheses, partial solutions, and pending
activities) approach usea in the Hearsay speech-understanding and
knowledge~based expert systems (Reddy et al. [1973], Erman gt al,
{19801, and Balzer et al. [1980].)

Once a strategy is chosen for the above genaral issues, the
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qQuustion remains as to what particular metheds should be used in
each case. This is a problem at 2il levels, but 1t is
particulariy wide open at the high levels. Indeed, at the
highest levels vision merges into the rest of the field of
artifinial intelligence., Thus the question ot how high-level
processing should work cannot be limited to vision oniy but is
part of the problem of how any high-level processing might be
done no matter what sensory mechanisms an intelligent machine

possesses.

Another issue concerns means for the vision system to learn
object models By being shown the objects and to be taught object
models by means of a convenient user interface. An even more
dafficult problem is the learning and teaching of géneric types
(for example, learning the éoncept of a chair by being shown
examples of chairs). A related issue is how to make the systen

versatile by having it programmable at a very high level.

It is possible that research in vision would be greatly
helped by the availability of a very-high-level programming
|
}anguage especially designed for vision, Very little has been

Qone along this line,

Finally, the type of hardware to be used is impor’ A
specific question in this regard is how much parallelism and what
kind of parallelism should be used. (Some of the options were

discussed in Section 9.)

J0.3 Euture JPL Svshen

A JPL vision system that can be developed in the next few
years must opetate in a restricted domain, because of the limited
advancenent ¢f the state of art of computer visicn that can be

expected in thet time. It is expected that the system will be

10-5



capable of recognizing and track.ng, perhaps in real time, known
objeots that can be modelled by the composition of a few sinple
geometrical shepes. The objects can be selected from a
reasonably large set of possible objects and can have arbitrary
three~dimensinal position and orientation, It iz desirable, but
not nscessarily achievable unti later, that multiple objects
could be present, some partially obscuring othars. It may be
necessary in scne cases at first to have objects identified by
me&ans of speclal colors or markings. The objeet modeis nan be
taught by the user, aad perhaps can be leariied by means of
visaen. The vision system will produce data suitable for

grasping and manipulating objects,

"In order to make the above capability achievable, certain
hardware will be required. The cawreras should have &t least 240
non-interlaced lines of vertical resolution and roughly
equivalent horizontal resolution or better. They should produce
elght-blt monochroumatic pictures, snd scme sort of color
capability should be available. Since stereoscople vislon wili
be used, at least two cameras are required. The cameras saould
be nmountsd on a smoothly-operating pan-tL1ilt head equipped with

precise position encoders,

Special hardware for performing some low-level visaion
operations at high speed should be available. This would be
similar to the present IMFEX but probably wmuch more powerful and
versatile.

- In order to perform the remaining computatidn at or near
real time, either an exﬁremely powerful processor or many
processors will be needed. One possibility is a multiprocessor
mainframe comp&ter. Anoﬁher pbssibility is a few hundred
microprocessors operating in paralles (verhaps connected by a2

crossbar), and a single-processor mainframe computer. It remains
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.o be seen what combination will produce thes most computing for
the money. In any case sufficient memory will be needed to store
large programs and many images at various stages of processing at

orie time,

A large on-line disk storage system will be needed for
convenient storage of prograns, imnages, and other data. Good
programuning practice requires that programs be tested on stored

images, so that reproducible results can be obtained.

Interactive graphics display terminals will be needed for
the user interface; so that information concerning object models
can easily be entered and interuediate results of computations

can be displayed.

A system such as described above will allow significant
contributions to the state of the art of computer vision to be
made at JPL, and will allow the development of techniques that

NASA wiil find useful in the future use of robots in space.
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