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1. Navigation Fundamentals and Orbit Characterization.

The basic mathematical ideas underlying satellite radio navigation are no

different from those underlying any other kind of navigation employing
independent measurements to determine position. First, a coordinate system is

chosen by means of which the navigator's position is described. For the present
purpose, a right-hand Cartesian System using components x,y, and z may be taken

with origin the center of the Earth. Such a system is called "Earth-centered".
It is usual practice to take the z-axis through the true North Pole with a

positive sense. Then the x and y axes lie in the plane of the equator. Such a
coordinate frame is called "Equatorial" as opposed to the "Ecliptic" coordinate

frame used in astronomy and celestial navigation.

If the x-axis is projected from the center of the Earth toward a fixed
point in space at an infinite distance, such as the Vernal Equinox on the

celestial sphere, the coordinate frame does not rotate with the Earth. If the
x-axis is projected through a point on the Earth's surface, such as the
zero-latitude, zero-longitude point, then the frame is called Earth-Centered,
Earth-Fixed (ECEF). We shall deal here with either type of Earth-Centered

Cartesian coordinate frame, as the need arises.

Let us now define the navigator's position in the x-y-z frame as a
3-vector, or 3 x 1 column matrix, as

(1): P =

Let three measurements be denoted as m, , nu, and ITU. In a well-posed

navigation problem, there exist three scalar functions, f^,,), f2 (,,), and f3
(,,) such that

ml = fi .(x.y.z)
(2): m2 = f2 (x.y.z)



Now denote the measurements and functions by 3-vectors, as

( 3 ) : m = IT

IT

f =

Then we have a compact notation for the functional relationship as
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(4): m = (P

where _f ( ) is a vector-valued function of vector argument.

The navigation problem is, "Given the structure of the function, f_ ( ), and
the measurements, m_, solve for P_." If, for instance, the relationship between £
and ?_ were linear and invertible, then the problem would be simple.
Unfortunately, most navigation problems have no inverse function for f_ which can
be applied straight-away to solve for P_.

As an example, in the problem of measuring distances from the navigator's
position to three known points described by the vectors P^, P^, P_3, the
components of the function, f ( ), are given by

( 5 ) : : i = l , 2 , 3

That is, the function is the square-root of the dot-product, or the Euclidian
Norm. This function is non-linear and has no inverse.

In cases where the function, f( ), has no inverse, a so-called
"perturbation" solution is generally used, based on "linearizing" the navigation

problem. This is done as follows.

Assume there exists a reasonably precise estimate of the navigator 's
position, £0. (This might be a dead-reckoning position, for instance.) From the
assumed position, J> calculate the corresponding "predicted" measurement, Mg,

using the known function, f ( ). That is,

(6 ) : - f
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Now, M^ is the first term of a vector Taylor series for f4, expanded about the
"point", £g. Calculate the coefficient of the linear second term of the series,
which is the Jacobian matrix, H, given by,

f ( )
(7): H= : a 3 x 3 matrix

Then write

(8) M = ̂  + H (P-f^)

Equation (2) is a two-term (linear) approximation to M. If a navigation

solution exists then H will be invertible with inverse, H~ , and we may solve

for P_ as

In a satellite-based radio navigation system, it is the function of the

navigator's radio receiver to provide the measurements n^, m2, and m3,

comprising NL In the Global Positioning System (GPS) , the measurments are of

distances, or ranges, from the satellites to the navigator's receiver. In GPS,

the navigation computer requires knowledge of the satellite position at the time

of the measurement. Thus, the system incorporates data messages from satellite

to navigator in the radio transmission. These data messages contain the

Keplerian orbital elements from which the satellite orbit can be computed in the

navigation processor.

It is not intended to give a complete treatise on orbital mechanics here.

For that, the reader is referred to one of the standard texts, such as Battin

[1]. However, some familiarization is required, since contemporary satellite

radio navigation receiver-processors, such as for GPS, perform satellite orbit

calculations internally. Furthermore, the satellite data messages contain the

so-called orbital elements for the satellite being received. Thus, a knowledge

of these elements and their use is necessary to understanding of the system

itself.



Page 4

The form of a stable satellite orbit is an ellipse when only the satellite
and Earth are considered. That is, considering the satellite and the Earth to
form a "two-body problem" in celestial mechanics, the solution for the satellite
trajectory is an ellipse with the Earth (center of mass) at one focus. The
elliptic orbit is fundamentally described by its semi-latus rectum,
eccentricity, and time of nearest approach to Earth. These three quantities are
called orbital elements. To relate this elliptic orbit to the coordinate system
in use requires three more elements, classically taken as the Euler angles
(defined below).

Figure 1 shows several of the orbital elements which are used to describe
the orbits of contemporary radio navigation satellites.

Figure 1. Elliptic Orbit Parameters.
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The following quantities are identified with respect to Figure 1

L AFP = V

£ ACQ = E
AC = a

FP = r
o<e<l

P

A

F

oe
M

True Anomaly

Eccentric Anomaly

Semi-major axis
Orbit radial distance
Orbit eccentricity
Satellite position on orbit
Perigee point
Ellipse Focal Point
(Position of Earth center of mass)
Center of circumscribing circle
Earth universal gravitational parameter
Mean angular motion
Orbital period

Time of perigee passage
Mean anomaly

The orbit radial distance, r=FP, is given by

(10): r = a (1 - e cos E)

Let x" and y" denote a local Cartesian coordinate system in the plane of the
ellipse with the x"-axis passing through the focus and perigee point. The
y"-axis is orthogonal to x" and passes through the focus. The coordinates of
the point P on the elliptic orbit are then given by

x" = a (cos E - e) = r cos V
(11): y" = a (1-e2)1/2 sin E = r sin V

The eccentric anomaly, E, is determined by solving Kep ler ' s equation, given as

(12): n(t-toe) = M = E - e sin E

In (12), the Quantity, t, is the time at which the value of E (and x" and y")

are to be determined. The values of t and t must be measured with respect to

the same clock.
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Equations (11) and (12) define the orbit postion as a function of time,

referenced to the orbital plane, major axis, and perigee time. The equations
define a right-hand, Earth-Centered Cartesian coordinate system, x"-y"-z", for

which z" is identically zero. Now, there are two other right-hand,
Earth-Centered, Cartesian systems which are of interest and in which the orbit

must be defined.

Both of the systems are known as equatorial, since in both, the x and y

axes lie in the plane of the equator. The z axes both pass through the true

North Pole. The first coordinate system is called inertial (relative only to
the Earth), since the x-axis is directed at a fixed point in the firmament.

That point is the First Point of Aries, or Vernal Equinox. It is the point at
which the sun rises above the plane of the equator. The second coordinate

system is called Earth-Fixed, since the x-axis passes through the Greenwich
meridian of Longitude. (0°).

In a two-body problem with an Earth of sperically symmetric mass density,
and no air friction or powered flight, the elliptic orbit is fixed relative to
the inertial coordinate system. Thus if we denote the inertial system as

x ' - y ' - z ' , these new coordinates may be obtained from the x"-y"-z" by three

successive simple (one-axis) rotations about the origin (the center of the

Earth),

To aid in visualization of the required rotations, Figure 2 is given below.



Page 7

Figure 2. Orbit Coordinate Conversion.

In the figure, the orbital plane is shown inclined to the equatorial plane

by an Inclination angle, i. Also, the orbital major axis, which passes through
the perigee point, is displaced in the orbital plane from the intersection point

with the equatorial plane by an angle,U), called the Argument of Perigee. The
intersection point between the two planes, with the satellite z coordinate
increasing, is called the Ascending Mode Crossing. The intersection of the two
planes, called the Line of Nodes, is angularly displaced Eastward of the x-axis

in the equatorial plane by an amount Si. This latter angle is cal led the Right

Ascension of the Ascending Node. These three angles are the Euler angles.

From the above view of the angular relationships between the elliptic orbit

in x", y", z" and the Earth-Centered Inertia! frame in x1, y1, z', it is clear
what rotations are necessary to transform from the former to the latter. The
rotation order is u*, i, and JX. The compound transformation is given in

vector-matrix form as
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y
i

2

= A

(13):

A ' -

-sinwcosi sinjv

+sina>cosi cosix.

sin.fL

-cosa>cosi COSA

coswsini

sini

- sinicos/i

COST

The transformation,A , brings the satellite into Earth-Centered-Intertial

coordinate system, x1, y1, z1, by a rotation about the Earth's rotational axis

by an angle,A, the Right Ascension of the Ascending Node. To bring the

position into the ECEF system, x,y,z, where x projects through the Greenwich

meridian at the equator can be done by redefining jl , and using the

transformation,A .

Let Si now be redefined to be the longitude of the. Ascending Node, measured

positive westward from the Greenwich meridian. The angle A. is now time-varying,

due ;to the rotation of the Earth and due to the precession of the orbital plane

in inertia! space. Thus, define

(14) : Ul-Iie).(t-toe)-

In (14), the first parenthetical expression gives JVQ, the Longitude of the

Ascending Node at t=0, corrected by the easterly rotation rate of the Earth,Jle,
acting up to t=toe. The second parenthetical expression then corrects-ft.to the
time, t, for Earth rotation and for precession of the orbital plane at the rate
n, positive westerly. The parameter, tQe, is cal led "epoch time" and is aligned

with time of perigee passage.

Because a two-body problem is not sufficiently accurate, and the Earth's
gravitational field is not spherically symmetric, and other reasons, the
parameters of the orbit are not stable. Thus, a host of real-time corrections
is needed for precise orbit calculations. In particular, the Mean Motion, n,
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Inclination, i, Right Ascension of Ascending Node.Jl, and Mean Anomaly, M, are
all specified at tQe and corrected at subsequent times using rate factors.
Also, the "Argument of Latitude", 4> = v +a>» as weH as satellite orbit radius,
r, and inclination, i, are all corrected for the second zonal harmonics of the
gravitational field.

The order of computations, with corrections, is given below in Table 1.

Xi =3.986008 x 1014

-0^=7.292115147 x 10'5:

Crc»Crs'Cuc'Cus'Cic'Cis
oe
e
a

n=(*/A3)l/2

M-M0+n(t-to e)
M=E-esinE

cos v=(cos£-e)/( l-ecosE)

sin v=(l-e2)1/2sinE/(l-ecosE)
v=arctan (sinv/cosv)

:o>given

WGS-72 gravitational parameter, wr/s'

WGS-72 Earth rotation rate rad/sec

Zonal harmonic coefficients, given
time of epoch, given
eccentricity, given
semi-major axis, given

An given

MQ given
Solved implicitly for E

r=a(l-ecosE)
x"=r cos u

C rs 'Sin2<j>

y"=r sin u

i=i0 + ^i = C i c . cos24+ C i s-sin2^, iQ given
(t-tQe); J .

) given by (13)

Table 1. Satellite Orbit Computations.
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2. Corrections for Ionospheric Propagation.

The ionosphere is the interface between our atmosphere and outer space. It

is a region of ionized atmospheric gases and free electrons which have not
recombined with the atmospheric ions whence they came. Historically, the

ionosphere was described as being composed of "layers" which were thought to
give rise to "reflection" of radio waves from the Earth. Now, it is known that

the ionosphere is described by a density of electrons per cubic centimeter which
has a rapid onset in the neighborhood of 50 kilometers altitude, has a maximum

density in the neighborhood of 250-450 kilometers, and decreases more gradually
to zero in the neighborhood of 800-3000 kilometers.

Satellite radio-navigation frequencies are sufficiently high so that there
are no marked refractions of the ray paths or absorption. However, because of

the accuracies desired, the small refractive effects are significant and must be
accounted for in precision navigation.

The significant effects of ionospheric passage upon the radio wave are two.
First, the wave propagates at an infinitesmally smaller velocity in the
ionosphere than in vacuum. Second, as the wave propagates through a region of
changing density the wave is refracted smoothly, according to the gradient of

the density. This means that from a point above the ionosphere to a point below
the ionosphere, the wave travels via a curved path which is longer than the

straight path connecting the two points. This causes deleterious effects on a

ranging system, such as GPS.

Because the ray-path from satellite to user is not straight, the range

measured by a ranging system is always a little long. Since the curved ray path
always lies above the straight-line path, and therefore sees a greater
projection component of satellite velocity, the Doppler frequency measured by a
Doppler system is always a little greater in magnitude. However, this is a very

small effect compared to the effect upon a Doppler system of just the excess
propagation delay of the curved path. The effects upon GPS will be explained in
more detail below.



Page 11

The bending of the ray path is a function of refractive index, 4, or rather

of its gradient along the path. /«< is a function of frequency, F in Hz, and
electron density per cubic centimeter, N, given as

(15): x f ( N ) = [1-80. 6N/F2]1/2

When /(becomes imaginary, the gradient becomes infinite and a radio wave cannot

penetrate the ionosphere further. However, for satellite navigation frequencies
and relatively large peak electron densities, x is very near 1 and small bending

of the ray path occurs. For a value of frequency of 1575MHz, /tis of the order
of

(16): x<1575 = 1 -tt/2 x 10'11

Likewise, the angular separation of the straight and curved paths is very small.

For a satellite to user range of 25,000 km. and an excess delay of 20 meters,
the path separation angle at the satellite is of the order of 6 minutes of arc.

Graphs of results are easily plotted with satellite elevation angle, Y, as

abscissa and excess range, A.R, as ordinate. Plots may.be made for fixed Solar
Zenith Angle, Of, or Local Hour Angle, <j> , with the other serving as parameter for
a family of plots. Figure (3) shows an example for two values of Nmax for a

local hour angle of +45°, which is roughtly 15:00 hours, local time. A family

of curves for solar zenith angle, £ , from 0° to 90° is shown. [8]
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RANGE ERROR VS. FLEVfTION ANGLE

50-

10-

10-

5-

1 -

bOLAR
ZENITH
ANGLE

TEC ALGORITHM

C> = 45° (LOCAL HOUR ANGLE, SUN)

A; NEMAX = 2.50F.6 ELEC/CM-5 [JAY

B: NEMAX = T.25EP ELEC/c-3 'IME

IONOSPHERIC MODEL

(Yip AND VON Roos)

10 ô 30 40 SO
ELEVATION ANGLE (PEG.)

ro

Figure 3. Ionospheric Range Error.

An interesting feature of the example above is that the excess delay does
not increase markedly for lower elevation angles as has been held previously.
The increase from 90° to 0° elevation angle is seen to be only by a factor of
2-3. The absolute value of R is seen to be linearly dependent on Nm,v.max

In GPS the effect of R is to bias the measured position away from the
satellite. If three satellites of apprximately the same elevation angle, but
separated in azimuth by 120°, can be quickly received, then the R biases tend

to cancel in the Latitude-Longitude coordinates. The effect on altitude
remains, however, with the tendency being to measure lower than the true
altitude. For surface navigation, this is not a problem.
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With respect to correcting the effect, there are several possibilities.
The first is to use two separate transmission frequencies to correct the excess
delay effects. T-his technique takes advantage of the fact that excess delay is
inversely proportional to the square of frequency.

Suppose that two frequencies f^, and f2
 are usec' f°r transmission, with

fi<fo and with the frequencies phase-coherently generated from the same
oscillator source so that

(17): f2/f1 = (K)
1/2 : K known, stable

Now, denote the ranges measured at frequencies fj_, f2, as, respectively

Rx = R + ARj

(18): R2 = R + AR2

where R is true range and R^ R2 are the excess ranges at frequencies fj_ and

f2. There is a constant C^ such that

(19) : A R j _ = C ^ l f j ) 2 , R2 = C 1 / ( f 2 ) 2

Thus,

(20) : ARL = (f2 / f1)2^R2

and

(21) : R rR2 = AR rAR2

From these equations it follows that

R = [R 2 (V f l> 2 * R i M ( f 2 / f i ) 2 - 1] =

( 2 2 ) : = ( K R 2 - R^/CK - 1)

where K is given by (17)

Thus, from (22) the true range R may be determined by measuring apparent ranges

Rj and R2 at two known frequencies, fi and f2, whose ratio is a stable constant,

K.
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In the case of Doppler, let the Doppler at frequency, f, be denoted by 0,

where
(23): D = VR/C. f

and VR is radial velocity component (signed) with C the speed of light. Taking
time derivatives of (23), we obtain

= CD2(f2 / f1) - D^/Hfg/f!) -1] =

(24): = [tlTD2 - D1 ] /(K - 1)

»

The quantity (R/C)f, is true Doppler at frequency f, . D2 and D^ are the
apparent Dopplers measured at frequencies f2 and f1 respectively.

Equations (22) and (24) show the two-frequency method for correcting
Ranging or Doppler measurements for the effects of ionospherically-induced

excess range.



Page 15

3. GPS System and Signal Structure.

The NAVSTAR Global Positioning System, or GPS, is a system employing,

ultimately, eighteen satellites in 12-hour orbits of 55 degrees inclination.
The system is being implemented by the Department of Defense for military use.

However, it has a "Clear Access" C/A channel which is available for general
civil use. The GPS development program grew from two 1960's programs, the Air

Force's 621-B program and the Navy's Timation program which were merged in 1973.
GPS is a second-generation satellite navigation system which applies the

pseudo-noise (PN) ranging technology developed by NASA [9] in the 60's to the
satellite navigation technology embodied in Transit.

The GPS employs satellites which are precisely controlled in their orbital
positions. Indeed, knowledge of a set of orbital elements, or ephemerides, over
one year old is sufficient to predict satellite' visibility times within five
minutes from a known Earth position. The GPS is a passive navigation system on
the part of the user, in that only reception of satellite-transmitted signals is

used by the navigator to compute position. GPS uses simultaneous, or
near-simultaneous reception of signals from four satellites to compute three

coordinates of position and one of time difference, due to error between

satellite and user clocks. Thus, given visability of four satellites, GPS

provides the capability for continuous navigation processing, rather than
isolated position fixes interconnected with dead reckoning. As will be

described below, positions may be computed on the order of every second. Hence,

GPS provides the capability to "track" vehicles characterized by high dynamic
maneuvering.

The positions of the GPS satellites are uniformly distributed about the

Earth, three per orbit, in six orbits.1 Thus, with the full orbital

constellation of eighteen satellites, more than four are normally visible at any
given time, anywhere on Earth. This leads to a problem discussed below of
selecting the four satellites having the "strongest" navigation geometry. Also,

According to plans revealed by USAF Space Division as of the time of this

writing.
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if a user vehicle should lose line of sight with one GPS satellite, because,

say, of blockage of signal by vehicle superstructure, then the possibility
exists of immediately "acquiring" another satellite to replace the one just

lost. This procedure is the same as if one of four satell ites dropped below the
horizon. The latter occurence can be predicted, of course, and acquisition of a
replacement satellite planned ahead.

The GPS navigation-processor operates from measurements of range between
satellite and user. Actually, the measurement is one of elapsed time between

the time of satellite transmission of a known signal reference and the time of

user reception of that same reference. Given the speed of light, the elapsed

time measurement equates to a measured range. Now, the satellite transmission
time is measured according to its clock, which is precisely set to GPS System

Time, with an error of the order of 3 nano-seconds. However, the user reception
time is measured with respect to the user clock, based on a user reference
frequency oscillator. The user oscillator is generally of much lower quality
than the satellite frequency standards by many order of magnitude. The GPS

demostration satellites, the so-called NDS-series, have carried both the Cesium
and Rubidium frequency standards with basic long term frequency stabilities of

the order of 10"12 to 10"13 ( Af / fo) . This is truly amazing stability when one
realizes that the frequency offset just due to relativity effects is of the

order of 4 parts in 10'10 [10]. Thus, the satellites are able to maintain a
System reference time to within several nano-seconds over a 12 hour period,

which equates to about 1 meter of range. The user frequency reference
oscillators (for a supposed reasonable cost civil user) have long-term frequency

stabilities of the order of 10"7 to 10~9. This stability yields clock drifts of
1 to 100 nano-seconds per second, equivalent to 0.3 to 30 meters of range per

second. Thus, it is necessary for the inclusion of a fourth coordinate in the

user 's position, this coordinate being user clock bias (in meters).

Because the measured range is always in error by the clock bias, the

measured quantity is called pseudo-range. Pseudo-ranges without correction are
processed directly, as detailed below, to solve for the four user coordinates.

GPS operates with two avai lable satel l i te, signal frequencies, for the

purpose of removing the unknown ionospheric additional delay time. These

frequencies are 1575.420 MHz, called LI, and 1227.600 MHz, cal led L2. These two
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Carrier wave frequencies are phase-coherently generated by frequency

multiplication of the same basic standard frequency of 10.23 MHz. The
multiplication factors are 154 for LI and 120 for L2. Actually, the satellite

basic reference is lowered from 10.23 by 4.45 x 10"10
 x 10.23 to equalize the

relatively effect, but this is not significant to our consideration of signal

structure.

The LI transmitted carrier frequency carries two signals in phase

quadrature. One phase carries the C/A ranging signal and a 50-baud data-link.

The orthogonal phase carries a Precision PN ranging signal (the P-code) and the
same 50-baud data-link. The exact phase relationship is

C/A Carrier Phase = P Carrier Phase + 90°

The L2 transmitted carrier may carry either the C/A or the P-code.

The ranging signals and data-link signal are digital, of varying baud

rates. The P-code rate is 1.023 Mega-baud. The data-link rate is 50-baud. The

data-link bits are combined with the code bits using modulo-two addition (the

exclusive-or). The composite code-data bit stream is then modulated onto the
proper carrier phase using full binary phase-shift-keying (+ or - 90°), which

leaves no unmodulated carrier residual in the transmitted spectrum. That is, no

carrier phase reference is transmitted. Neither are any clock references

transmitted for the various digital signals. Thus, it is to be expected that
some of the chief problems in receiving these signals have to do with achieving

signal synchronization. ;

The PN ranging codes are special examples of Maximal-Length, Linear, Shift-

Register Sequences [11] , called Gold codes, after their inventor, Robert Gold.

The structures of the particular GPS Gold codes are explained in detail in [12].

The unambiguous length, or repetition period, of the C/A codes is 1023 chips, or

1.0 milli-second, exactly. The basic time period is also related to the
data-bit clock period, since there are exactly 20 C/A code epochs per data bit.
Since the C/A code is only 1.0 mill i-second long, it can resolve ranges
unambiguously only within multiples of about 300 kilometers. The resolution of

the ambiguity is performed during the initial satellite acquisition process as a
part of obtaining the first "f ix".
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There is really only one P-code, which is the product of two PN codes whose

lengths in chips are relatively prime numbers (that is, with no comman

divisors). These two codes are of lengths 15,345,000 and 15,345,037 chips,

respectively. Since a chip period is 100 nano-seconds, the length of the

product code is more than 38 weeks. P-codes for individual satellites are taken

as non-overlapping one-week segments of the 38-week-long code. The long code is
re-started at midnight Saturday-Sunday UMT (Greenwich), every week.

The digital data, transmitted by each satellite contains all the Keplerian

orbital parameters for the satellite position computations shown in Table 1.
Additionally, reduced accuracy orbital elements are contained in one satell i te's

data message for rough computation of the other satellites' positions. The
precise orbital information is called "Ephemeris" while the less precise data is

called "Almanac".

The satellite data transmision uses 30-bit words, with 10 words per each
6-second sub-frame. 5 sub-frames completes one satellite data message. With 20

mini-seconds per bit, each word is 0.6 seconds in duration, each sub-frame
takes 6 seconds, and a complete message requires 30 seconds. Every 30-second

data message contains Almanac for one of the 18 possible satellites. Thus, to

acquire Almanac for all satellites requires 9 minutes.

Each 6-second subframe begins with a 30-bit Telemetry Word (TLM). The

first 8-bits of TLM word is the hexadecimal "8B". Due to the way the data is

detected in a receiver, the bits may be complemented. The final two bits of the

TLM word should be zeros. If they are ones, the data is inverted. Thus, a
search for "8B" or its complement establishes sub-frame synchronization.

The second 30-bit word in each sub-frame is a Hand-over Word ( H O W ) . This

word is the number of 1.5-second epochs (Xl-epochs) which will have occurred

since the beginning of the GPS week, at the beginning of the next sub-frame (TLM

word). The purpose of this word is to enable rough synchronization of the

P-code (for the first time) at the beginning of the next sub-frame. The
HOW-word is an acquition aid for P-code.
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The structure of the 30-bit data message is indicated in Table 4, below.

Subframe

1

2
3

4

5

Structure

TLM

TLM

TLM

TLM

TLM

HOW

HOW

HOW

HOW

HOW

DATA BLOCK I

DATA BLOCK II

DATA BLOCK II

- CLOCK CORRECTION

- EPHEMERIS

- EPHEMERIS, cont'd

MESSAGE BLOCK

DATA BLOCK III - ALMANAC

Table 4. Data Message Structure

Subframe 1 contains Data Block I, which contains four parameters for making
a quadratic correction to the indicated Satellite clock time. Also in DB-I are
eight parameters for making a rough correction for ionospheric delay for those
users not equipped with dual-frequency (L1-L2) receivers. Data Block II
occupies both sub-frames 2 and 3 and contains the complete, accurate ephemeris
for the satellite being received. Sub-frame 4 makes provision for special

broadcast messages. Sub-frame 5 contains the rotating alamanacs for all
satellites.

Of interest, besides the structure of the transmitted signals, is the

signal to noise ratio environment in which the signals will be received. In
designing or analysing the performance of satellite to Earth links, it is usual

to formulate the ratio of received signal power divided by the value of the
white noise power spectral density effective in the receiver. This is the

so-called C/NQ ratio.

The received signal power, C, is equal to that transmitted, multiplied by

various gain and loss factors which affect the link. Chief among these is the

"space loss", which is .just the attenuation of power in the transmitted
electro-magnetic wave due to spherical speading of the wave front with distance
from the source. This loss factor, LS, is given by

( 2 5 ) : Ls = [VC / (4TTFR)] 2
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In (25) Vc is velocity of light, R is range, and F is frequency in Hertz. The
units for YC and R must be compatible, i.e., meters/second and meters.

It is seen that the space loss varies inversely as the square of frequency

and of the range. Thus, 0<LS<1, and L$ will always diminish the received power

over that transmitted. Since LS varies with range, there is a maximum and

minimum value for LS, depending on the elevation angle of the satellite as seen
from the user's position, assumed near the surface of the Earth. The maximum

range (at 0° elevation angle) and minimum range, respectively, are

Rmax " 25>231 Km-
R^n = 19,652 Km.

assuming a spherical Earth of mean radius 6,371 Km. Thus, we have maximum and

minimum values for !_s at frequencies LI and L2 as given in Table 5. In Table 5,

both the scalar value and the decibel value of the losses are given, where XdB =

10 Iog10(x).

"^min

Rmax

LI

5.9460 x 10'19

-182.3 dB

3.607 x 10'19

-184.4 dB

L2

9.7926 x 10'19

-180.1 dB

5.9408 x 10'19

-182.3 dB

Table 5. L1/L2 Loss Factors

The amount of noise effective in the receiver is, for GPS, essentially the
noise generated in the radio-frequency preamplifier which is of special
low-noise design. This assumes that the low-noise preamplifier has sufficient

gain (20-30 dB) to over-ride the noise generated in the first stages of the

receiver, itself. In this case, the white noise spectral density, N is given
by
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(26): NQ = K Ts

Where T is the "system noise temperature" in degrees Kelvin. T is the noise
temperature of the preamplifier, itself, plus any contributions from cable and
connector losses between antenna and preamplifier. Great pains are usually
taken to mount the preamplifier as near to the antenna as possible. The
constant K is Boltzmann's Constant given by

(27): K = 1.38 x 1(T23 watts/Hz/°Kelvin

The system noise temperature, TS, may be specified according to the standard
"noise figure", F, for the system by

(28): Ts = 290 (F-l)

A handy device for determining the values of available C/NQ for the various
cases is a Design Control Table. Such a table enters the various parameters of
the link such as transmitted powers, gains, losses, noise spectral density,
etc., in order to arrive at a value for available C/N . This value is then used
to calculate performance levels of various parts of the receiver. An example
table for the C/A channel at LI is given below.

The following comments are made with respect to Table 6. In parameter

number 2., Modulation Loss accounts for the fact that the total satellite
transmitter power is apportioned between C/A and P signals at LI and the signal
at L2. The power proportions are

(29): C/A (LI): P(L1): L2 = 4: 2: 1

In the Table, tolerances account for uncertainties in specif ications,

changes with age or temperature, or variations in the geometric relation between

user and satellite. For a user with an antenna which is nominally

omni-directional over the upper hemisphere, there is a large change in gain
between the zenith direction and the horizon. The tolerance reflects this.

Also, an omni-directional antenna which is circularly polarized at the zenith

becomes elliptical at lower elevation angles. Hence, the tolerance for
polarization loss.
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Parameter Norn. dB Tol., dB

1. Transmitter Power 13.0 dBW 0
2. Modulation Loss, Pwr. Split - 2.4 0

3. Circuit Loss, xmt. - 0.3 -0.1

4. Antenna Gain, xmt. , +13.7 -2.2

5. Antenna Pointing Loss, xmt 0 0

6. Space Loss

F=1575.4 MHz.

R=19,652 KM -182.3 -2.1

7. Antenna Polarization Loss 0 -1.4
8. Antenna Gain, Rev.(Omni) + 3.0 -5.0
9. Antenna Pointing Loss, Rev. 0 0

10. Circuit Loss, Rev. - 0.3 -0.2

11. Net Link Loss (Add 2thrulO) -168.6 -11.0

12. Total Received Power, C (1+11) -155.6 dBW -11.0
13. System Noise Spectral Density, NQ

+1.0

Preamp N.F. 3.0dB -0.0

Loss Tempr. Inc. +20°K, nom. -204.0 dBW/Hz.

14. Received C/NQ (12-13) +48.4 dB

Table 6. Design Control Table, LI, C/A.

The nominal value for C/NQ in the example is 48.4 dB, +0., -12.9 dB. Thus,
the value available is +48.4 dB in the best case and becomes, perhaps, as small
as +35.5 dB in the worst case. Experience has shown that the adverse tolerances
hardly ever add linearly, except for those which reflect correlated effects.
Three such correlated tolerances are those for space loss, Antenna Polarization
Loss, and Antenna Gain for receiving. The sum of these three correlated
tolerances is -8.5 dB., which can be expected to occur at the low elevation
angles, below, say, 10°.

The availability of 48.4 dB for C/NQ in the best case sets the upper limit
for the receiver processing possibilities in the example shown. Using a rule of
thumb that 10 dB or greater signal to noise ratios are required for good
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processing indicates that the widest final processing bandwidth can be no

greater than about 7 KHz. Being more conservative, in view of the adverse
tolerances, might bring this final processing bandwidth down to, say, 3 KHz.

The actual bandwidth used for final processing will depend, of course, on more
detailed considerations. But, at least, the value of available C/NQ sets the
scale for further thought.
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4. PN Ranging for GPS.

The basic idea behind PN ranging is the following. There are two identical

PN codes involved. One code propagates from satellite to user. The other code
is maintained in the user's equipment. Since a PN code is completely
deterministic, the sequence of one's and zero's in the code is completely known.
Both codes are started up in synchronism at a particular known time, t . The

code which propagates between satellite and user is received by the user,

delayed by the propagation time. The user then shifts his own local version of
the code, keeping track of the amount of time delay injected into the "local

code", until its sequence just exactly matches the sequence being received from

the satellite. When the user observes that the two versions of the same PN code
were "matched" or synchronized at the observation time, tr, he notes that the

range-delay time, AT, at time tr, was just that amount of time-delay which the
user injected into the local code to cause it to match the received code.

The matching of the local code with the received code is essentially

matching the zero-one sequences and then "exactly" matching the leading edges
and trailing edges of each bit (or chip as they are called in ranging) within

the sequences. Any error in matching the codes in time delay translates into an

error in determining the range separating the satellite and user. The

conversion between time delay error, AT, and range error,AR, using a velocity

of light, Vc = 2.99739xl08 m/sec. is

(30) : AR/AT = 0.983 ft/nano-second

In order to make the code matching problem yield very precise time

measurements, the time duration of each code chip is made very small. For the

C/A code, the chip duration is 0.9775 micro-seconds. For P-code, the duration

is 97.75 nano-seconds. Because of the method used for matching code chip to

code chip, the resolution in the delay time is even finer than the chip

duration.

The use of sub-micro-second code chip durations means that the modulated
bandwidth of the ranging signal is of the order of Mega-Hertz. For the case of

+ or - 90° Phase-Shift-Keying, which is used in GPS to place the code modulation
on the radio-frequency carrier, the modulated signal may be written in the form
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(31): s(t) = A c( t ) -cos (2TTf0t)

In (31), A is signal amplitude, fQ is carrier frequency in Hertz, and c(t) is
the analog code waveform, which is either +1 or -1 in value. That is, a digital
0-chip gives an analog +1 and a digital 1-chip gives an analog -1. Since c(t)
is a characteristically rectangular waveform, the frequency power spectrum has
the characteristic form,

(32) : S( f ) ̂  sin2(1T/R(f-fo))/(1T/R(f-fo))2

where f is frequency in Hertz, f is carrier frequency in Hertz, and R is code
chip rate in chips per second. The graph of (40) is given below as Figure 4.

Figure 4. PN Signal Spectrum.

It is known that 92 per cent of the power in the PN signal spectrum resides

between the first nulls on either side of the carrier frequency. Therefore,

most receivers employ bandwidths of 2R or greater to pass the modulated signal.

Now, with an available C/NQ of 48.4 dB/Hz., the signal to noise ratio for the

C/A signal in a bandwidth of 2R = 2.046 MHz. is -14.7 dB. Thus, the signal
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chips are not observable in such a bandwidth, due to the over-riding effect of
the accompanying noise.

Because of the impossiblity of synchronizing the received and local codes
on a bit-by-bit basis, a more indirect method is used, which can operate in a

smaller bandwidth. This method uses the "correlation" properties of PN codes.

Suppose we ignore for the time-being the fact that the received PN code
exists as modulation upon a sinsoidal carrier waveform. Let us consider the

simpler problem of synchronizing two identical PN code waveforms which exist in

the + or - analog format. Let us assume that the directly received code is

input to one port of an analog multiplier as C( t ) . Let the local code be input

to the multiplier's second port as C(t+T), denoting a slight desynchronization

of amount r seconds. Let the output of the analog multiplier be processed by a
time-averager, such as a low-pass filter. This operation is shown in Figure 5.

, xx \C(t)-C(t+T) _
C(t) 0 — •

C(t4-r)

Figure 5. Cross-Correlator.

The device depicted in Figure 5 is cal led a "Time-Average

Cross-Correlator." Let us now examine its operation on two relatively delayed
versions of the same PN code. For this, let us also view Figure 6. In Figure 5
are shown several representative chips of the direct PN code and local PN code
when they are near synchronism. The upper two graphs are. the codes themselves,

whi le the lower drawing is of the code product, c ( t+7) -c ( t ) .
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u
T

-1

—

C(t+T)
-M

C(t+TK(t)-i

-I
-H

Figure 6. Relatively Delayed PN Codes.

It is clear by inspection of Figure 6 that the product, C(t+r)-c(t), is +1
most of the time, with quick excursions to the -1 state during those short
periods of duration, r, when C(t) and C(t+r) are of opposite sign. It is also
clear that the time average of the product is positive and nearly +1. Whenr=0,
or the codes are exactly synchronized, the average is exactly +1. It can be
shown that the output, R(T), of the averager varies linearly with the offset, or
relative del ay, f. [13]. Also, for a very long PN code, the average is
essentially zero when C(t) and C(t+T) are desynchronized by more than one chip
period, T. This function, R(r), which is the autocorrelation function of the
basic PN code, itself, is shown in Figure 7.
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R(r)= <C(t)C(t+T)>

-T 0 +T

Figure 7. PN Autocorrelation Function.

The correlation properties of PN codes allow the synchronization of the

received and local PN codes to be accomplished using a smaller bandwidth than

that of the code itself. The lesser bandwidth is that of the time-averaging

low-pass filter, employed in the cross-correlator. For example, if we wished to
observe R(Y) with only + or - 5 percent noise with an available C/NQ of 48.4 dB,

a signal to noise ratio out of the averager of 26 dB would be required. This
would, in turn, require the bandwidth of the averaging low pass filter to be 174

Hz.

Following on with the above example, one next asks the following

interesting question. If R(r) = 1 signifies code synchronization, and it is

known that the output of the correlator has + or - 5 percent noise, what is the

possible ranging error incurred in accepting any single measurement of R(r)

within a + or - 5 percent neighborhood of +1? From Figure 7, with T=293 meters,

equivalent, it can be easily determined that the above ranging stategy might

incur an error of + or - 29.3 meters.

We have simplified the above treatment of PN code correlation to maintain
visibility of the essential results. In practice, the received PN signal may

exist as PSK modulation on a sinusoidal carrier, as in equation (39) . The

multiplication may be times the local code as PSK modulation on a sinusoid of

different frequency. In this case the multiplier acts as a mixer to produce the
code product C( t ) 'C( t+T) existing as PSK modulation upon some intermediate

frequency sinusoid. The i.f. band-pass filter then does the averaging to form
R(T) which is now present in the amplitude of the output i.f. sinusoid. There
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are many such ways to perform the correlation.
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5. Receiver Processing Techniques

In forming R(r) and searching out the local code delay corresponding to the
center of the triangle of Figure 7, there are several possibilities. We may
seek to implement a feed-back servo device in the receiver which will
automatically adjust the local code delay so as to "track" the R(r) =1 point.
Otherwise, we may choose to sweep the local code past the synchronization point
with the received code, observe R(T') during the sweep, and determine, after the
sweep, the local code delay which yielded R(T) =1.

Let us consider now the received signal as it might exist at the output of
a hypothetical code correlator which is implemented by a mixer in the formation
of the last intermediate frequency in the receiver. Figure 8 shows the
circuitry.

M<*cr
Correta ' toy

Figure 8. I.F. Correlator.

In Figure 8, the input signal to the mixer-correlator has frequency f,. A

digitally controlled oscillator produces a cosine of frequency f2, which is
phase-shift-keyed by the local code, C(t+T). The mixer forms the code product
and the bandpass filter averages it while also selecting the i.f. frequency, f^
= ^i~^2- The bandpass filter bandwidth, Bf, is small enough to average the code
product, but large enough to pass the data modulation, d(t).
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The output of the correlator may now be processed in one of several ways.

If it is desired to recover the data, then the i.f. signal may be applied to

the input of a Costas Loop [16]. See Figure 9. The Costas Loop regenerates a

reference sinusoid which is phase-coherent with the suppressed i.f. frequency,

f^. The reference is applied to a synchronous amplitude detector (product
detector) which is also driven by the received signal. A 90-degree
phase-shifted version is applied to a similar detector. The two detectors

demodulate the i.f. signal and ;produce two signal components called the
I-component (in-phase) and Q-component (quadrature phase). These components are

given as

I(t) = A/2 R(T) d(t) cos£

(33 ) : Q(T) = -A/2 R(Y) d(t) sinf

I -Channel

Carrier
Frequency
Reference

Data

Correlation
+ J ° Detection,

2. AGC

£R« Out

Figure 9. Costas Loop.

In equations (33), <£ is the error (tracking) in phase between the

regenerated i.f. sinusoid and the received i.f. sinusoid. For proper

operation of the loop d> =0 or rr and the I-channel contains the data waveform,

weighted in amplitude by + or - R(r). Note that if o) =^, then the data in the

I-channel is inverted. Taking the absolute value of the I-channel waveform just

gives A/2 | R(r)) = A/2 R(r) since d(t)=+ or - 1. Thus, the I-channel may be

used to derive both data and R(T).
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A Costas Loop synchronizes and tracks the phase (and frequency) of the i.f.

signal sinusoid, and produces an output proportional to R(*r*). Two Costas Loops
may be employed in a feed-back loop configuration to synchronize and track the

clock frequency of the received code. Such a configuration is called an
"Early-Late Clock Loop". This scheme employs two correlation-mixers and two
local code generators, as shown in Figure 10.

s(t)o

-°Dota Out

RC(T)

Early
Code
Generator

UoteCode
Generator

Cod<
Clo<
Gen

Code
Clock
Generator

Clock
Loop
FHter

R, (r)

Figure 10. Early-Late Code Synchronizer.

The Early-Late Loop works in the following way. The two local code

generators are driven by the same Code Clock Generator (oscillator). However,

one Code Generator is advanced slightly in delay with respect to the other.

Thus, the code from one generator is slightly "early" with respect to the code

from the other generator (say, one bit early, for example). As both code

generators are brought near the synchronization point, the "early code" passes

the synchronization point and the "early Costas Loop" locks, producing an "early

R(r)" called R̂ r). When the early code is 1/2-bit past the synchronization

point, the "late code" is 1/2-bit before the synchronization point, the "late
Costas Loop" comes into lock, and produces a "late R(r)" called RL(r).

Referring again to Figure 10, we see that RL (r) is subtracted from RE(r),

forming a "tracking error function" of f , This function is shown in Figure 11.

When the early and late codes are exactly 1/2 bit early and late, with respect
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to the received code, then the tracking error signal is exactly zero. When the
received code tends to move one way or the other from the bracketed position,
the tracking error signal increases or decreases from zero and is used to adjust
the frequency of the Code Clock Generator in the proper direction, to maintain
"code lock". When the loop is stably locked, neither the early or late code is
exactly synchronized, or "prompt". Each is out of synchronization by 1/2-bit,
but the error is exactly known so the R(T) =1 delay can be inferred.

Early
Code

Minus

Equals

Operating
Point

-J AT U-

Error
Function

Speed
Clock Up

Operating Point

Slow-
Clock Down

Figure 11. Tracking Error Signal.

Another processing method can be used when data is not required. This

might be the case, for instance, in a two-channel, sequential receiver, where
one-channel can be devoted to getting data and the other to ranging only. In

the ranging only case, a pair of I and Q detectors, as in the Costas Loop, can
be used with a sinusoidal reference oscillator which is not locked to the

received carrier phase. If this oscillator is different.in frequency by an
amount^, from the i.f. frequency, then the I and Q channel signals are

(34) :

I(t) = A/2 R(r) d(t) cos (ZUfct)
Q( t ) = A/2 R(r) d(t) sin
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The two signals in (34) may be squared and summed to produce a signal

(35) : I2(t) + Q2 ( t ) = A2/4 R2(7)

As the single local code generator is swept past the synchronization point, the

signal R2(T) may be used to estimate the R(r) = 1 delay, since 0 < R(r) and a
one-to-one relationship exists between R(r) and R2(r). Since this latter
processing method does not depend on having a phase or frequency lock on the

i.f. sinusoid, the method is called "non-coherent". The Costas-Lpop method is

called "coherent".

Because of Doppler effects on the received signal, both the coherent and
non-coherent ranging methods require a search, not just in delay,f , but also in

frequency. Referring back to Figure 7, the Digitally Controlled Oscillator must
be adjusted to offset the Doppler effects. It is necessary that the i.f.
signal be accurately centered in the narrowest processing bandwidth encountered
in the remainder of the receiver. In acquiring the first satellite signal,

there may be a considerable frequency uncertainty range to be searched. During

normal navigation the uncertainty should be minimal.

For either coherent or non-coherent range processing, the Digitally

Controlled Oscillator is preset and then the delay uncertainty region is
searched. If no evidence of correlation is observed, then the DCO is reset at a

different frequency, and delay searched again. In this manner the
two-dimensional frequency-delay uncertainty region is searched.



Page 35

Aircraft, Sequential, Ll-C/A only, Incoherent Ranging

Doppler Search -

Velocity Uncertainty
Doppler Search Range (+ or -

Oscillator Instability (5xlO~^fo=l0.23 MHz.)
Total Frequency Uncertainty
Range Filter Bandwidth

Delay Search -
Position Uncertainty, Spherical
Delay Search Window (+ or - 3tf"p)
Code Step Interval/Samples per Sweep
Total Sweeps/Total Samples
Samples Dwell Time
Satellite Ranging Time
Fix Time (4 satellites)

Range Estimator SMR -
Available C/NQ (Best Case)
Required Bandwidth

Available Ranging SNR
Ranging Accuracy

Error Budget -
Range Estimator
GDOP-NAY Filter Contribution (GDOP=2.0)
Ionosphere and Troposphere Contribution

Satellite Ephemeris Contribution

Total Position Uncertainty

3m/s.
63

312 Hz.
375

3000 Hz.

48.4 dB/Hz.
34.8 dB Hz.

13.6 dB

10.8 m.

10.8 m.

5.8 m.
11.0 m.

11.0 m.
48.6 m.

Table 7. Design Example: Sequential, C/A Only, Incoherent

Processing.

A hypothetical example of a system design is given in Table 7, to

illustrate some of the above points. This design is for an aircraft user, with

access only to the C/A code, on frequency, LI, employing an incoherent (phase)

ranging technique. First, some assumptions are made about the accuracies of

velocity and position provided by the navigation filter. The standard
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deviations of velocity error and position error are taken as 3 meters/second $"y,

and 48.6 meters, a~_, respectively. From <S"V is calculated the resulting
uncertainty in received frequency due to user velocity error. It is assumed

that navigation is nominal and that satellite velocity computations contribute
no uncertainty. The search range due to Ooppler uncertainty is taken,

conservatively as + or - 2ffv, or 63 Hz. Next, the frequency uncertainty at the
i.f. due to user's oscillator instability is computed as 312 Hz. The total
frequency uncertainty is thus, 375 Hz. Theoretically, the bandwidth for
estimating the R(y)=l delay, using the incoherent technique need only be 375 Hz.
However, since a sampled-data digital processor is used, the bandwidth is taken

as the much greater value of 3 KHz., to allow fast sampling. Three times the

reciprocal of this bandwidth is just the period of one epoch of the C/A code.

Next, the delay search window is taken as 293 meters, or one chip width,

which is + or - 3ff_ for the position uncertainty. The R(r) signal is repeatedly
swept 32 times, collecting 16 samples per sweep, for a total of 512 samples of
R(r). The delay resolution is 19.5 meters, but the large number of samples

taken reduces the quantization error to negligible proportions. With a dwell
time of 1 mini-second per sample, the time to compute one satellite range

measurement is 0.512 seconds. One complete sequence of four satellites takes

2.048 seconds.

Next, the performance of the ranging estimator is determined. The best

available C/NQ is taken from the previous example as 48.4 dB/Hz. In a 3 KHz,
bandwidth, the resulting signal to noise ratio is 13.6 dB. The resulting

estimation accuracy is determined by Monte Carlo simulation of the range

processing algorithms to be <5"r=10.8 meters.

Finally an error budget is developed to compute the position uncertainty,

<J"p, previously assumed. The performance of the navigation algorithms adds 5.8

meters to the range estimator error of 10.8 meters. Daytime ionospheric delay

is taken at an additional 20 meter error in final position. Tropospheric error

is taken as 1.0 meter. Worst case satell ite ephemeris error of 11.0 meters is
taken. The sum total position uncertainty is then 48.6 meters.
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It is seen from the above hypothetical example that a design case is an
iterative process. Since some of the design performance can only be determined
by computer simulation, the design must be "fine-tuned" until all entries are
consistent. The design is obviously optimized for one particular value of C/NQ.
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6. The Navigation Solution.

The purpose of the navigation processor is to accept each pseudo-range

measurement as it is obtained and to apply it to the solution for the user 's
coordinate vector, consisting of x, y, z, and b (clock bias) in the ECEF system.

In so doing, the processor must solve the Keplerian equations to determine the
position vector for each satellite being received. The processor also

determines which satellites are visible and, of those, which four to choose for
best navigation geometry.

Referring back to equations (2) through (5 ) , the measurements in GPS are

pseudo-ranges, R.,- for i=l,2,3,4. We have

(36): Ri=fi(x,y,z,b)=)/(xrx)
2+(yry)

2+(zrz)
2 + b '

where the ith satellite coordinates are x^ , y^ , z^ , the user coordinates are
x,y,z, and user clock bias in meters is b.

As in (6) the problem is linearized by assuming a user position and clock
bias x,y,z,S, approximately equal to the true quantities, and the corresponding,
R.J , as calculated from (36). Then, we make the first order linear expansion as

(37) : + f 1 {

We may write the equations for four satellites in vector matrix- form as
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(38):

* M
A

R!-RI

A

R2-R2

A
R3-R3

A

R4-R4.

= H •

A

x-x

y-y

JL

z-z

A

. b-b _

where H is the square Jacobian matrix of ordered partial derivatives as given in

(45). Now, for example, we have

(yry) + (zrz)

(39): jf )/0b « 1 ; i = 1,2,3,4

and so the elements of the matrix H are direction cosines for the directed
distance from user position to satellite position. See Figure (12). Let«<,jj,3r
be the angles of R^ , the directed distance, with respect to the x,y,z axes,
respectively. Then,

COS^ COS 5^

cos82 cosy2
(40): ' H =

COS5f
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Figure 12. Relative Geometry.

Observing the structure of the H-matrix, we can see two cases in which H

would not be invertible. One would be if the user was co-linear with two

satellites. The other is if the 4 satellites were all on the surface of a cone.

For the nominal case, when H is invertible, we may solve for the user's

coordinate "vector" as

(41 ) :

X

y

z
b

v, ~\
X

A

y

z
b

We may define position and range vectors and their differential forms,

formally as



( 42 ) : X =

Then from (41) we have
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: £x = x - x

£R = R - R

(43):

which is the differential form of the linearized solution in vector-matrix
notation.

Suppose, now, that we assume that the differential range vector, S R_, is
subject to some random statistical error (noise). Let us assme that each
element of £j* is subject to a random noise of standard deviation, ^R, and that

the four noises are statistically independent. The validity of this assumption
depends on the mechanisms for generating the pseudo-ranges, R^ , and their
linearizing estimates, R-.

Under the above assumptions we may form the covariance matrix for the

differential solution,- $ > a s

(44): var x =var [HTH]"1

Now, let us define the standard deviation of the differential solution, as

\2

The elements , ( < ) 2 »y » f z ' a n d

of the covariance matrix. Thus, we have

are the main di'a9°na1 elements

(46):

where Trace [ ] is the matrix operator which sums the main diagonal elements.
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The quantity under the diagonal has an important name in GPS. It is called

"GDOP" for Geometric Dilution of Precision". It is the quantity which relates
error in pseudo-range to error in 4-coordinate state solution, through the

geometry as expressed in the H-matrix. We have

(47) : = GOOP. CTSR

The quantity, GDOP, includes the error in the time-bias element, b. A

navigator may be more interested in just the 3-dimensional position error,

without regard to b. This is the so-called POOP, which is obtained as

, &y, £z)=PDOP

(48): PDOP = VTrace DCHTH]'1D

D =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

The GDOP factor is used in selecting the four best satellites for the

navigation problem, from those which are in view. The optimum navigation

performance is obtained for the minimum value of GDOP which is always positive.

The theoretical minimum GDOP occurs for four satell ites each separated from all

others by an angle of 120°. This value is 1.62. Unfortunately, for an
Earth-surface navigator, three of the optimum satellites would be below the

horizon, from the navigator's point of view.

Surprisingly enough, adding the constraint of satellite minumum visibil ity
does not increase GDOP much. For the case of three satellites with zero-degree
elevation angles, separated in azimuth by 120°, and a fourth overhead satellite,

GDOP=1.74.
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7. The Adaptive, Extended Kalman Filter.

A navigational filter is very useful for a vehicle which spends much of its

time in uniform motion (unaccelcrated). In this case a filter may be devised

which reduces the effects of noise on the pseudo-range measurement, almost

without limit. However, when the vehicle is subject to acceleration and
higher-order motion, as in a turn, then the situation is not as good. The

filter output will not necessarily track a non-uniform motion input without
error. An "optimum" filter is designed to "split the difference" between errors

due to measurement noise and errors due to filter mis-tracking of non-uniform

vehicle motion. That is, an optimum filter design attempts to equalize some

measure of the errors due to the two different sources. The measure usually is

the statistical average of the squared total error.

A popular approach to the filtering problem is to describe the vehicle

motion as a sample function from some family of random functions. The ranging
noise is similarly described. In the case where both vehicle motion and noise

are describeable as Gaussian random functions, there exists a linear filter

which minimizes, over all such functions, the statistical average of the square

of the instantaneous total tracking error. This filter is variously called a

Kalman filter or Wiener filter. The Kalman filter is optimum from the instant

it is activated. The Wiener Filter, which is historically older, is optimum
only in the steady-state, after the "turn-on transient" has died away.

The starting place for modeling the class of inputs is to define the

"state-vector" to be tracked. Heretofore, we have defined the "position" vector

of the user to be composed of the elements x, y, z, and b. But, this is not

sufficient for modelling purposes. In order to generate a higher order input

model which will result in a higher order filter, we will also define time

derivatives of the position components. In GPS receivers it is common practice
to model position, velocity, and acceleration for x, y, z, and to model b and b

for clock bias. The reason for limiting the model for b just to its first

derivative is that b results from a clock oscillator whose frequency is
inaccurate. There exists little acceleration in b. The same is not true for x,

y, and z.
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The order in which the various elements are inserted into the 11-state

vector is not arbitrary and has computational consequences. However, one

particular order lends itself more easily to explanation. The two popular

definitions of the state vector are

' _x = [x,y,z,x,y,z,x,yYz,b,t>] a).

(49): x1 = [x,x,x,y,y,y,z,z,z,b,b] b).

The vector-matrix generating model for x, y, z, b is, for either state-vector

definition, given canonically as

x(t) = A x (t) + B w (t) ;

(50): [x,y,z,b]T = p x ( t )

For the state-vector definition of (49)-a, the coupling matrix, A, will be

upper-triangular, and this will result in some computational advantages in terms
of 11 by 11 matrices. For the state-vector definition of b), the generally 11

by 11 vector-matrix equation of (49)-b breaks apart into 4 independent

equations, three of which are 3 by 3 and the one involving b is 2 by 2.

Under the standard Kalman assumptions, the data input to the filter, z ( k ) ,

consists of coordinate to be tracked, x ( k ) , plus noise, n (k) . It is assumed

that the noise, n (k ) , is independent of j ( k ) , is zero-mean, white, Gaussian, and

of known variance, ( t f_)2 . Then, the data form is

(51) : z (k ) = x ( k ) + n(k)

The Kalman filter equations are given below together with the generator

equations and data form, for completeness
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Generator: x_(k+l) = $ x_(k) + Yj(k)

x(k) = \T x.(k) ; XT =[1,0,0]

(52): Data: z(k) = x(k) +n(k)

Filter: x(k) = ATS(k)

= £(k) [z(k)-AJxU-l) ] + $xjk-l)

In(S2), the quantity, £(k), is a gain vector, defined by

(53) : _g_ T (k ) = [ g x ( k ) , g v ( k ) f g a ( k ) ]

gjk) can be time-varying. Its method of calculation is detailed below.

To. obtain understanding of the operation of the filter, the vector-matrix

equations of (52) are written in coupled scalar form as

x ( k ) = x(k- l ) + T v(k- l ) + (T2 /2) a(k-l) + g x (k ) e (k )

(54) : v ( k ) = v(k- l) + T a(k-l) + g y (k ) e (k )

a(k) = a(k-l) + ga(k) e(k)

e(k) = z(k) - Cx(k-l) + T'v(k-l) + (T2/2) a(k-l)]

Figure 13 shows the filter structure.
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z(k) +

2-State
Filter

3-State
Filter

Figure 13. Kalman Filter.

It is seen from (54) and the figure that each new estimate consists of a
prediction, based on the old estimates, plus a correction, based on the new
data. The correction is a weighted error term where the error is data minus
predicted position. The weighting factors are the "Kalman gains". The error
term, e(k), is called "filter residual" or "innovation".

In the standard Kalman filter, the gain vector, jg(k), is computed from a
set of coupled vector-matrix equations given below. These equations are based
on the covariance matrix of the filtering error, where
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Filtering
Error : 'x(k) = xjk) -xU)

Covariance

(55): Matrix : v(k) = E [*(k)*T(k)]

E[ ] : statistical average

under the assumption that x(k) and ̂ (k) both have zero mean values. The gain

equations are

v(k|k-l) = $v(k-l)$T +(5j)2yyT

(56): £(k) = v(k|k-l) XL[((fn)
2+Xrv(k|k-l)A]-1

v(k) = [I - g_(k)A_T]v(k|k-l)

In (56) , v ( k ) is covariance matrix computed using the x ( k ) filtered estimate,

while v (k j k - l ) is the covariance matrix computed using the x ( k j k - l ) one-step

predicted estimate, (dj) and (<Tn) are the known variances of the modeled jerk
and additive white noise processes, respectively.

The gjk) computation is recursive and is initialized with a value v (k=0) .

Usually this is the steady-state variance matrix for the process, x jk) .
However, in the present navigation case, with the given structure of the

^-matrix, the variance of _ x ( k ) grows without bound. Thus, some other "ad hoc"

initialization should be used for v ( k ) .

All the gain elements of _ g ( k ) rapidly approach steady-state values. In the

steady-state, the Kalman filter is just the optimum Wiener filter. The
steady-state gains are just functions of T, the sampling period and the ratio

(tfj) /(tfn) = SNR which is a "signal to noise ratio". The greater the ratio,
the greater the gains and vice-versa. The greater the gains, the more
responsive the filter is to abrupt changes (maneuvering) in the input, but the
more white measurement noise is accepted by the filter. The lower the gains,

the more sluggish the filter becomes, but the less noisy becomes the output.

Figures 14 and 15 [19] show the examples of the evolution of the gains and the
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steady-state dependence on signal to noise ratio.
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Figure 14. Evolution of Gains.
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Figure 15. SNR Dependence of Gains.

A problem with using a Kalman filter in the navigation problem is that the

SNR ratio changes drastically, dependent on vehicle maneuvering. During

unaccelerated motion, SNR-*0 and the optimum steady-state gains are very small,
resulting in little noise on the filter output. During accelerated motion, SNR

increases and the optimum steady-state gains are larger, resulting in more white
noise acceptance but lower dynamic filter error.

For example, a 300 knot aircraft subject to + or - 3 meter normal control

excursions with a 30 second period and 10.8 meter ranging noise, results in SNR
,-3= 5.5 x 10~b. During a standard rate two-minute turn, SNR = 1.54 x 10

30dB change. The standard Kalman gain computation has no knowledge of these
radically different environments for filter operation. Thus, in order to use

the filter effectively, an "adaptive" gain algorithm must be employed.

There exists no well-developed body of theory for adaptive-gain filters,

comparable to Kalman-Wieher theory. Thus, developements in this area are all

"ad hoc" and for special cases. The only basic requirement is that the filter
residual, e ( k ) , be used to provide information for adjusting the filter gains.
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The gains may not be adjusted independently. Rather, they must be adjusted
consistent with results which are produced by solution of the gain equations.
Otherwise, filter instabil ity may result.

There is one final problem in applying the Kalman filter to the GPS
navigation problem. That is the noisy navigation measurements, R^(k), do not
constitute the correct data form for the Kalman filter. The filter requires
noisy measurements of the position coordinates, themselves. The pseudo-range
measurements, however, are non-linear transformations of the position
coordinates. An approach to this problem is to use the linearization developed
in section 6 and embodied in equation (41). That relation is expanded here as

(57): x(k) - x(k) = H'^RU) - R(k)]

In (57), xjk) is the true position vector, x_T(k) = [x,y,z,b], and xjk) is
the position assumed for purposes of computing H"1. R(k) is the vector of four

A ~ Ameasured pseudo-ranges. £(k) is the prediction of _R(k), computed using xjk) and
the non-linear function of (44). Because the Rjk) have additive white noise, so
(57) will add white noise to x(k) through the linear transformation, H~*.
However, (57) gives a differential transformation from R to x^ rather than a
global transformation. So the question remains, how to use (57) to provide the
input data for the Kalman filters.

Suppose that in (57) at sample number k, the assumed position vector, ^x(k),
is made up of the Kalman filter predicted position components, which are all of
the same form as that for the x-component, given as

(58): x(kjk-l) = X$ xU-1)

Mow, we may write (56), showing explicitly the additive noise contribution due
to H'1 £(k), as

x_(k)

(59): = z(k) -S(k|k-l) = H'^RU) -^R(kjk-l)]

= e(k) =H"1[R(k) -
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That is, we may identify the quantity H~ l [R{k ) -R_(k jk - l ) ] as the 4-vector error
term in an 11-state Kalman filter.

Because of our choice of the coupling matrix, $, in the generating model,
that model reduced from an 11-state model to four independent models having

3,3,3, and 2 states respectively, based on the state vector description of
(49-b). The Kalman filter may be similarly composed of four independent

sections, each driven by one of the four elements of the error-vector, e_(k) .
The extended Kalman Filter, so realized, is diagrammed in Figure [16].

o X (k)

Figure 16. Extended Kalman Filter.

Although the structure of the Kalman filter is successfully de-coupled so
far as computation is concerned, the position estimates are not independent,
since errors in x, y, z and b are cross-coupled by f() and H . Another effect
is that the white noise variances in the inputs To the x, y, z, and b filters
are not necessarily eaual or fixed, since they are dependent on H~\ which is
variable with the geometry.

-To illustrate the effect on the filter input noise, let H"1 be written as
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(60): H-1
qxl <>x2 qx3 qx4
qyl qy2 qy3 qy4
qzl Qz2 qz3 qz4
qbl %2 %3 %4

Let the additive noise in R(k ) be explicitly indicated by

(61): R (k )
\(U*
R 2 ( k )

R 3 (k )

J*4W.

+
"n^kf

n2 (k)

n3(k)

n4(k)

Then, the noises effective in x, y, z, and b are given by

nx(k)

(62) : nb(k)

ni

n . ( k )

It is assumed that the range measurement noises, n^k) are zero-mean,
independent, and of equal variance, (6"r)

2. Then, the variances of n¥(k), r\(k),' ' « y
n z (k ) , and nb(k) are

(63) :

The above delevopment of the extended Kalman filter has assumed that all

four pseudo-range measurements are available at the same instant, and that the

total filter is cycled with four available pseudo-ranges. This is, of course,

not the case with a sequential receiver. Let us examine (57 ) in more detail
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(64):
*.-*

A.

y-y
A

z-z
b-b

qxl qx2 qx3 qx4
qyl qy2 qy3 qy4
qzl qz2 qz3 qz4
qbl %2 qb3 qb4

qxl(R1-R1)

o — o

R3-R3

qb4(R4-R4)

Equation (64) shows that the coefficient qxl brings the differential range
component (Rj -Rj ) into the filter to correct the x-coordinate. Likewise q j

to correct the y-coordinate, etc. The first column of H"1 thususes Rj^-
corrects all four position coordinates from the information supplied by the

v»
(Rj-R^) differential range measurement. Likewise, the second, third, and fourth
columns of H'1 apply the position vector corrections due to the second, third,
and fourth satellites, repectivley.

An interesting question is, "What if these .corrections are applied
sequentially, rather than simultaneously?" That is, what if the filter is cycled
every time a single new range measurement is obtained? The answer is that such
a procedure works well, provided that the sampling rate is high compared to the
maneuvering rate of the vehicle. As an example, Figure [17] shows the actual
output of a sequentially-corrected Kalman operating with GPS (C /A only) on-board
a ship.
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In the figure, the vessel initially steams east at ten knots (5.16
meters/sec). It then turns south smoothly, executing the 90-degree turn in 55

seconds. The range sample rate is one range every 1.2 seconds. The track

displays little random noise, roughly 6 meters, 1-sigma, and no noticeable

overshoot on the turn. The sequential correction of the filter has no
noticeable effect for this case.
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8. Conclusion.

At the time of this writing, not much has been published concerning the
actual performance of GPS. What little has been released by the military or
gotten into print about civil experiments, shows the performance to be
extraordinary. Actually, the geodetic positioning accuracy of the system is so
great that there is no standard against which to measure it. It seems likely
that GPS itself will become the standard for measuring geodetic and navigation
accuracies.

The article by Henderson and Strada [20] wa.s the first widely available
"official" release of GPS test data. Other sketchy data has appeared at various
technical symposia. The author, for example, has been a co-investigator on a
civil GPS maritime experiment, from which interesting data is released from time
to time.

f

The first really informative performance result was that the C/A-only

performance is not ten times worse than p-code performance, notwithstanding the
factor of 10 difference in code resolution. Were the L2 frequency to be

standardized for C/A code, so that a C/A-only user could have the ionospheric
correction, it is likely that P-code and C/A-code performances would be

commensurate for some users.

For surface navigators, the ionospheric perturbations are not

particularly troublesome, so long as three satellites are available with good

spread in azimuth and reasonably high elevation angles. For this kind of case,

the horizontal ionospheric biases tend to cancel, leaving the main contribution

in altitude. With 18 operational satellites, a surface navigator can construct
a satellite selection algorithm to choose satellites as mentioned above, in

order to minimize horizontal ionospheric effects.

Performance data from [20] shows P-code absolute navigation accuracies of
2.84 meters bias and 5.47 meters noise (1-sigma) in surface navigation at low
velocities for one user set. Another P-code set in low-velocity surface

navigation showed 2.84 meters bias and 6.4 meters noise (1-sigma) absolute.

Helicopter flight tests yielded P-code performances of 9.6 meters bias and 4.7
meters noise (1-sigma) in three dimensions. .A l l of these P-code results were
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taken over short periods of time, less than 20 minutes, in duration.

One C/A-code-only result was given in [20], over a duration of 6 minutes.

This showed bias of 30.3 meters and noise of 9.2 meters (1-sigma) for
3-dimensional navigation of a medium speed aircraft. Of the 30-meter bias, 29.0

meters was in altitude. The horizontal accuracy of that flight performance was
8.6 meters bias and 8.3 meters noise (1-sigma), absolute.

C/A-code-only results for a ship docked either at Galveston, Texas or

Miami, Florida have consistently shown biases less than 30-meters horizontal and
noises of 6-meters, (1-sigma) absolute, over 2-hour time intervals. The biases
are based on the best small-scale harbor charts available. These latter C/A

results were best-performance cases.

Although carefully calibrated performance results for GPS were scarce at

the time of this writing, many GPS evaluations were underway at that time, it
is likely^that by the time of publication of this work, that many more results

will be in the open literature. This author conjectures that new performance
results will continue to show the.extreme precision available from GPS, both
with P-code and C/A-only.
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