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Change in strain energy density

X



Symbol Meaning

u,v,w Node point displacement components in the x,y,z
directions for Cartesian coordinates, in the
r,0,2 directions for polar coordinates

X,¥,2 Cartesian cuvordinate directions

X1y yij Distance between nodes 1 and j in the x and y
' directions, respectively

Dot over symbol (') Denotes incremental value

Yector Symbol

{rly Element node point force vector

{ F} Global node point force vector

{Fgpl Element dilatational strain-induced node
point force vector

(R}, Reaction node point force vector representing
the unloading of a failed element

{8} Element node point displacement vector

{e} Strain vector

{eo} Hygrothermal dilatational strain vector

{0} Stress vector

(¢} Vector of generalized element coordinates

Matrix Symbols

[A)4 Element strain-displacement matrix

{B]i Element shape matrix, global coordinates

[C]1 Element shape matrix, generalized coordinates

[H] Material properties matrix

[k]i Element stiffness matrix, global coordinates

[Eji Element stiffness matrix, generalized coordinates
[K] Global stiffness matrix

(T} Transformation matrix relating generalized to

global coordinates

xi



Greek Symbols

E,2 E,E
Xy ¥y 2

sr’ez'ee
YXY.sz,sz
er,Yre,Yez

Yo

K

QM

g_0o0_ 0O
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9x,% .9,

Meaning

Coefficient of thermal expansion

Coefficient of moisture dilatation

Kronecker delta

Virtual diéplacement

Element cross-sectional area

Normal strain components, Cartesian ccnhrdinates
Normal strain components, polar coordinates
Shear strain components, Cartesian coordinates
Shear strain components, polar coordinates
Octahedral shear strain

Constant denoting strain in the z-directior
Poisson's ratic for an isotropic material

Major Poisson's ratio for a transversely
isotropic material

Indicates that a cyclic permutation of
indices is required

Normal stress components, Cartesian coordinates

Average applied normal stresses, Cartesian
coordinates

Normal stress components, polar coordinates
Average applied normal stresses, polar coordinates
Shear stress components, Cartesian coordinates
Shear stress components, polar coordinates

Octahedral shear stress

xii



SECTION 1

TNTRODUCTTON

The present report includes work performed during the second year of
a NASA-Lewls grant to study the energy absorption mechanisms during crack
propagation in metal matrix composites, The first-yecar work was reported
in Reference [1]). This previous report contains a literature review of
micromechanics analyses of unidirectional composites, and a discussion of
the relation of these prior studies to the piescent problem,

During the first year, an existing elastoplastic, finite clement
analysis and associated computer program [2,3] was used to predict the
response of a unidirectional boron/aluminum composite to axial loading.
For this purpose, a longitudinal section model was constructed. This model
permitted the study of the influence of a broken fiber on the load distri-
butfon in adjacent unbroken fibers one and two fiber spacings away. Tt
also permitted the determination of the rate of reloading of the broken
fiber avay from the site of the break. The influence of plastic deforma-
tion of the aluminum matrix on the stress distributions was of special
interest. The addition of a crack initiation and propagation capability
was initiated, but wminor programming difficulties prevented results being
presented in the first-year report,

The goal of the second-year study was to complete the crack propapa=-
tion addition and generate detailed numerical results. Also, it was desirved
to construct larger longitudinal section models, to determine stress
redistributions and influences of a broken fiber bevond the second adjacent

fiber, and to determine the extent of influence of houndary loading



conditions. TIn addition, the existing generalized plane strain analysis
was to be converted to an axisymmetric analysis, to permit the study of
the response of a single fiber embedded in a cylindrical sheath of matrix

material.

These second-year goals were achieved, as summarized in the next section,

and deseribed in detail in the remainder of this report,



SECTION 2

SUMMARY

The crack initiation and propagation capability became operational
early in the second-year study. The entirve analysis was then converted from
a Sigma 7 computer system to the University's new CDC Cyber 730/760 computer,
which had just been installed. The much greater capacity and speed of
this new system made it practical to analyze much larger finite element
grid arrays. Thus, new models were comnstructed, invelving a greater number
of fibers adjacent to the broken fiber, and greater lengths along the
fiber axes. The results obtained using these larger models were then com-
pared with previous results. The results of the first-year study were also
extended beyond first failure, to analyze crack propagation behavior,

In addition to the longitudinal section models, transverse section
models were also ~onstructed and analyzed. These included arrays of un-
broken fibers, and also a single broken fiber surrounded by unbroken tibers,
Although axiil loading was of primary interest, transverse loading was also
studied. This permitted the comparison of results with other transverse
loading results available in the literature [4-6], for verification purposes.

The crack propagation capability of the micromechanics analysis was
found to perform very well, and is now considered to be fully operational.

The conversion of the generalized plane strain micromechanics analysis
to an axisymmetric formulation proved to be more difficult than anticipated.
The difficulty was not in the basic reformulation, but in the detailed
modifications required in the associated computer program, Ultimately a

second program was developed, as a more practical approach than attempting



to make the axisymmetric formulation an option in the original program.

The axisymmetric analysis and associated computer program is now operational.
Several example problems are presented in this report to demonstrate its
capabilities.

While minor improvements will undoubtedly be incorporated into each of
the now operational computer programs during the third-yeard effort, they
are essentially complete., Attention will thus be focusced on correlating
predictions with available experimental data, and making parametric studies
of the influences of various experimental variables, such as fiber volume,
matrix properties, locations of fiber breaks, etc. Also, usc¢ will be made
of a new three-dimensional finite element analysis recently completed as
part of another study [7], to examine further the three-dimensional nature
of stress states around broken fibers. This analysis will be useful directly
in analyzing practical problems, and also for verification purposes in
establishing tle limits of applicability of the two-dimensional generalized
plane strain and axisymmetric analyses, which are more economical to utilize.

It is anticipated that NASA-Lewis will be generating specialized and
carefully controlled supporting experimental data also, primarily usirg
single fiber specimens, to study fiber fracture and matrix deformations,

The various analyses will be correlated with rhese experimental data.



SECTTON 3

GENERALIZED PLANE STRAIN ANALYSIS METHOD

The analysis formulation was presented in detail in the first-year
report [1]. This has not changed, the governing equations and the flow
chart which defines the operational features of the computer program modi-
fied to implement the analysis, which were presented in References [1],
remain valid., Thus, only a brief summary need be given here,

The primary analvtical tool used In the present study has been the
micromechanics finite element analysis program developed by Miller and
Adams [2,3]. This analysis was developed to investipate the microstress
state in unidirectional composite materials subjected to axial and trans-
verse mechanical loads, thermal gradients, and dilatational stresses due to
moisture absorption by polymeric matrix materials., Among the special
features of thin prior University of Wyoming analysis are its ability to
model the elastoplastic stress-strain response of the isotropic matrix
material, and in concert with the determination of thermal and moisture
dilatational stresses, the functional dependence of the matrix material
properties on temperature and moisture content. In other words, the
elastic or plastic properties of any matrix material finite eclement arce
automatically computed to reflect the state of stress and the environmental
conditions of temperature and humidity. The adjustment of material prop-
erties 1s incorporated with the incremental loading technique that is cem-
ployed in this program. Once the initial temperature, moisture content, and/
or elastic stress level for the continuum have been specified, additional

loads, be they mechanical or environmental, are introduced in increments



small enough to permit close approximation of the nonlinear matrix material
properties by small linear segments. A detailed description of this technique
is presented in References [1,2,3].

The bulk of the elastoplastic formulation in the present analysis pro-
gram stems from previous work done by Adams [4-6,8,9]. The development of
a generalized plane strain formulation, incorporation of the Branca solution
technique [10], hygrothermal loading, and material properties dependence
on temperature and moisture was the subject of Miller's Ph.D. research [2],
while the addition of crack initiation and crack propagation capability
follows the approach developed by Adams [4-6]. The analysis incorporates
standard finite element techniques (see, among many other similar sources,
References {11,12]). 1In fact, the primary organization and flow of the
original computer program closely followed the suggestions of Appendix A
of Reference [12]}. This flow and organization has subsequently been rather
severely altered to include crack propagation capability,

The finite element used in this study is a modified version of the
familiar constant strain or simplex triangle. For this element, a linear
displacement field within each element is assumed, to arrive at a functional
representation of the potential energy of the system. The constant strain
triangular clement has some well-known limitations, but for the purposes of
micromechanics analyses, it has proven to be an accurate, ecoromical, and
versatile tool. The trade-offs involved in the choice of the constant strain
triangular element instead of one of the higher order finite elements is
covered quite well by Miller and Adams in Chapter 3 of Reference [2].

A primary purpose of the present study was to investigate the affects

of flaws in unidirectional boron/aluminum composites, with the eventual



goal of predicting the strength of such composites given a certain statistical
distribution of internal flaws. These defects manifest themselves in two
forms: a discontinulty in one or more boron fibers, or a localized volid
in the aluminum matrix. The loading condition of primary interest is that
of tenslon applied parallel to the fiber axes., With suitable modification,
a so-called longitudinal model was analyzed with the micromechanics program
in its original form to investigatec the problems of modeling a flaw, generally
a fiber discontinuity, and to evaluate the resulting localized stress concen-
tration and the local plastic deformation it caused. The redistribution of
the load to the broken fiber could also be characterized, but only up to the
neint at which a matrix element failed (crack initiation), For further
stu 'y of the load capability of the flawed composite, a crack propagation
scheme 1s required. This capability permits a characterization of the
energy required to isolate the defect in a "zone" of plastically deformed
matrix material, or alternatively, the total energy capacity of the system
at the point of catastrophic failure,

The approach to crack initiation and propagation taken here is
known as the "failed element" approximation as employed by Adams [4-6].
When an element in an area of high stress exhausts its strain cnergy capacity,
it fails. From this, we assume that a "crack'" has formed and has the
dimensions of the failed element. This approximation has two implications,
the most important of which is that a finite amount of material is removed
from the system, which in an actual material is not the case. The other is
that the crack is not likely to close up on itself in subsequent loading be-

cause of 1ts exaggerated width. These effects can be minimized to a prictical



degree by making the finite element grid very fine and uniform in the

area of anticipated crack initiation,

It is not enough to simply delete an element {rom the finite clement
grid when it reaches its ultimate stress. The finite element method in-
volves the maintenance of force equilibrium at every node point in the
array, as discussed in Appendix A of the first-year report [l]. This
equilibrium must be maintained when an element fails or unloads. Thus,
to represenc the unloading due to element failure, node point forces which
are cqual and opposite in sense to those equivalent to the state of stress
within the element at its failure level must be applied at its node points.
In addition, the failed element's material properties must be set to zero,
so that the element makes no further contribution to the global stiffness
matrix, and all of fts computed values of stress and strain are set to zero,
This insures that the element is completely unleoaded and that no stresses
will be developed in it in subsequent load increments,

Tn the present analysis, element failure can occur in one of two modes:
when both the computed octchedral shear stress and the plastic octahedral
shear strain reach their maximum allowable values (maximum distortional
energy criterion), or when the hydrost “ic tensile stress in an element
exceeds the tensile ultimate strength of the material. This second failure
criterion is also known as failure due to ultimate cleavage, and failure occurs
whenever a tensile principal stress exceeds the ultimate tensile strength.

Complete details are given in Reference [1].



SECTION 4

AXTSYMMETRIC ANALYSLS METHOD

4,1. Purpose of the Axisymmetric Formulation

The development of an axisymmetric triangular finite eclement for the
micromechanics analysis program was first proposed after the preliminary
results of crack propagation studies using two-dimensional, generalized
plane strain models had been examined., The difficulties and uncertainties
of representing longitudinal loading of a square array of boron fibers
cembedded in an isotropic matrix led to the finite element models to be
discussed in Section 6, As will also be discusse. in considerable detail
in Section 6, the effect of fiber spacing on the state of stress and the
pattern of crack growth around an internal flaw is quite significant. It
was thought that an axisymmetric formulation, allowing a fiber of circular
cross section to be modeled, together with possible experimental correlation,
might lead to the development of guidelines for the emyl-oyment of the much
more versatile generalized plane strain analysis., The parameter that is
sought is an "effective" fiber spacing, that will accurately represent
the relative affect of intact fibers surrounding a broken fiber, fibers
that are, in general, not all equidistant from the flawed fiber.

The axisymmetric finite element model provides a correct representa-
tion of a single boron fiber ii; an annular sheath of aluminum matrix, as
{llustrated in Figure 1. The thickness of the annular sheath of aluminum
can be changed quite readily, allowing the stress distribution around fiber
flaws to be studied for various apparent fiber spacing conditions, with the
circular cross section of the fiber being accounted for. It is proposed

that a test specimen resembling this configuration be fabricated, and the
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amount of displacement beotween the broken ends of the boron fiber at a
specified load level be measured. This displacement could then be compared
to the fiber displacement predicted by the micromechanics analysis, and used
to confirm {ts validity. In addition, by careful correlation of these
results, including the state of stress predicted by the axisymmetric formu=-
lation, to the strain and fiber displacement measurements of test specimens
containing an arbitrary number of continuous fibers surrounding one dis-
continuous fiber, an effective fiber spacing could be arrvived at for use

in the two-dimensional generalized planc strain analysis. The ultimate
objective, of course, is8 to verify the limits of accuracy of the two-
dimensional analysig, and so avold to the extent possible the much greater
expense and complexity associated with using the three-dimensional formu=
lation now available (7],

Initially, the implementation of an axisymmoeiric formulation was en-
visioned to be a relatively simple task, However, due to the special
nature of the existing micromechanics computer program and the requirement
for maximum accuracy throughout the region being analyzed, the development
of an axisymmetric element proved to be considerably more complicated than
was anticipated. Specifically, the manner in which boundary conditions and
loading conditions are combined to allow a unique solution technique
necessitated the complete rewriting of these routines for use in the axi-
symmetric computer program. In addition, since the material lying on the
axis of radial symmetry (the z-axis in Figure 1) must necessarily be included
in the analysis, the familiar approximate form of the axisymmetric element
stiffness matrix [12] was found to be unacceptably inaccurate. LIn the sub-
sections that follow, the development of an exact axisymmetric triangular

clement is presented and the reasons for its special form are discussed.
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4,2, The Axisymmetric Finite Element

4,2.1. Basic Axisymmetric Relationships

The problem of analvzing a single fiber encased in an annular sheath
of matrix material, and subjected to axial and radial tractions plus hygro-
thermal gradients, falls into the class of problems known as torsionless
axially symmetriec states. These problems are generally defined relative
to cylindrical coordinates (r,t,z), and can b~ compared to the class of plane
strain problems defined relative to Cartesian coordinates (x,y,z), as
follows:

o The in-plane stress compunents of the cylindrical system,
9 and S correspond to Ty and Gy of the plane strain
formulation, while 9 is the out-of-plane stress component,
corresponding to 7, of the Cartesian system,

o The displacement components (u,v,w), corresponding to the
(r,0,z) coordinates arce such that (u,v) are independent
of the polar angle, and the out-of=-plane displacement component,
v, vanishes. That is, u = f(r,2z), w = f(r,z), and v = 0,

When the strain-displacement relations and the stress-strain relations
of the theory of elasticity are applied to this state of torsionless axial
symmetry, it is found that Toz ™ Tro ™ 0, and the stress components Ops
Ogr U, and 1., are functions of coordinates (r,z) only.

An axisymmetric finite element is in the form of a torcidal ring of
constant cross section, as illustrated in Figure 2. The node points of

such an element are in fact nodal circles, and the volume of such an

element is dependent on both its cross-sectional area and the radii of these
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FIGURE 2. Solid Axisymmetric Triangular Element,
Polar Coordinates

nodal circles. In addition, nodal loads are a functlon of node point
radii and the load per unit of circumference. The stress and strain vec-
tors pertinent to Figure 14, as well as the strain-displacement relaticans,

are shown below. Note that the out-of-plane strain at a point, €g is a

(o}, =¢, ? ey

z (2)
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funct Llon only of the radial displacement, u, and the radial covordinate, r.
Stresses and ctrains are related by a material properties matrix, [H], form-

fng the followlng constitutive equuation for any piven element:

{ﬂ}i- “”i{l}i ((‘)
The material properties matrices ave given in Appendix A for isotropic
elastie and transversely isotropie elastic materials, and for ifsotropic
materfals in the plastic rvange. In general, the forms of the material prop-
erties matrices for axially symmetric conditions are ifdentical to those
Found {n the case of generalized plane sirain, in that the coetfficients
relating the vartous corresponding stress and strain components arve
identical, However, most texts dealing with axially symmetric problems
arvange the components of the stress, strain, and material properties
tensors in an order different from that presented here. To have employed
the more generally accvepted sequence of arranging these tensor components
would have made it necessary to rewrite all of those routines in the computer
program {n which stresses, strains, failure modes, and crack propagation
are determined. To avoid this difficulty, all relationships are derived
here with the stress and strain components arvranged in the same order as

found in the generalized plane strain relationships presented in Reference [1].



4.2.2, Approximate Axisymmetric Element Stiffness Formulation

Ag ix the cane with the goneralizoed plane strain triangular eloment [1],
a constant strain field 1s assumed to exist within cach element, which leads
to the derivation of a shape matrix relating eclement strains to nodal dis-
placements., While this derivation is much like that for a plane strain
triangular element, the presence of the r=coordinate in the denominator of
several of the terms leads to considerable difficulty in ovaluating the
coefficients of the element stiffness matrix. The procedure s briefly
out lined below, with Figure 3 provided as a visual aid in understanding the

problem,

3 et U 3 o F

r3

| F
w1 F,
-0 = Area of Triangle
Wo,F
VAR
llll’r‘rl 1 2
|

FIGURE 3. Finite Element i in the r-z Plane
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By choosing a displacemeat [leld in the simplest linear form (sce

iq. A=12 and the related discussion in Appendix A of Reference [1]), we

arrive at the following rclationship,

f“ﬂ
“1
{“} Nl, 0 N2 0 N3 0 4\12>
wJ, 0 Nl 0 N2 0 N3 Wy
Y3
\"3)
where
Nl " %ﬁ [“l + blr + clz]
N2 - %Z lu2 + bzr + czz]
N, = L {a, + b.v + c.2]
K R 3 3

Differentiating Eq. (5) and applying Eqs. (3) we have:

p— —
(un, } by 0 b, 0 b, 0
{ caz . 0 Cl 0 cy 0 c3
T2 | 2aw 24N 24N

Y ? - 1 — —3

rz : 0 ” 0 ‘ 0

¢ c b ¢ b c b
0o R 1 2 2 3 3

(6)
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in which

al - t223 - 1‘322 .2 L r321 - f123 83 - rlzz - l'zll
b, = Z, = 24 by, =25 - 2, by ™2z = 2% (8)
g =TT N )" T T3 ey =Ty T h

the 4 x 6 rectangular matrix in Eq. (7) is the "shape matrix," [B], for the
axisymmetric trianguiar element, and can be used to form the element
stiffness matrix for individual elements. Note that the equation for the
shear strain, Yip has coefficients with r terms in the denominator. When
a node (or nodes) of any element lies on the axis of rotation, i.e., r = 0,
singularities in the shape matrix result. In addition, wvhen one considers
the operation of forming the element stiffness matrix,

[k, -[ (317 [H] [B1d(Vol) (9
- Vol

and the form of the shape matrix, [B], in Eq. (7), it is obvious that a
term=by~term integration involving the r and z coordinates of the node
points is necessary. The r terms that appear in many of these expressions
result in some rather tedious calculations, and lead to logarithmic terwms
which can also result in singularities in the stiffness matrix. In the
case of a plane strain or generalized plane strain element, the volume
integral required by Eq. (9) is simply equal to the cross-sectional

area of the element times its thickness, as described, for example, in
References [11,12], To avoid the difficulties presented by the r terms

in the denominator of the shape matrix terms, an average shape matrix, [B)
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can be formed, using the coordinates of the centroidal point of the triangle
as the element's coordinates, and an element stiffness matrix can be calcu=-

lated directly, i.e.,

[k], = 2r(B])"[H](B]TA (10)
where

r = (rl tr, + r3)/3 (11)
and

Z o= (z1 +z, + 23)/3 (12)

Solutions using the approximate element stiffness matrix of Eq. (10) have been
found to be quite acceptable as long as the planar dimensions of the indivi-
dual elements are small compared to their radial ccordinates, say on the
order of 10 to 1. 1In particular, hollow cylindrical bodies can be very ade-
quately analyzed using the element stiffness formulation of Eq. (10). How-
ever, when the cyvlindrical body is solid, or possesses a very thick wall,
large numerical errors are encountered when the approximate element stiffness
matrix is used. 1In the present analysis, the axis of rotation is necessarily
part of the region of investigation, and being composed of the very stiff
boron fiber, carries a significant portion of any applied axial loads. Trial
analyses using the approximate centroidal formulation of Eq. (10) indicated
that very large numerical errors, on the order of 15 to 20 percent, were
present in stress components that were normal to the direction of :he applied
axial load. After examining these numerical errors for several loading
situe.ions, and considering the need for the precision required if the
objectives of the axisymmetric analysis were to be méc. it was decided to
formulate an exact axisymmetric element stiffness matrix, i.e., to perform

the integrations indicated in Eq. (9).
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4,2.3, Exact Axisymmetric Element Formulation

In this section, a fairly thorough description of the derivation of
the integral form of the axisymmetric triangular element is presented. In
order to maintain the flow of the derivation, some of the more involved
mathematical procedures have been placed in appendices, while the results

of the procedures are used directly.

4.2.3.1. Strain - Displacement Relationships

As is the case for planar, constant strain finite elements, a simple
linear displacement field is chosen for the axisymmetric triangular element.
This classifies it as a "simplex'" element, but unlike the planar, or unit
thickness, elements, it is derived in terms of the element's generalized
coordinates, {{}. Planar elements, with their simpler strain-displacement
relationships, allow direct evaluation of the shape function coefficients in
terms of the finite element model's global coordinates. The displacement
field relating the displacements of a point in the region of analysis to its

generalized coordinates for a polar problem can be expressed as,

(Y} = 1 r 2z 0 0 o

W "o 0 0 1 o |08y (13)
This relationship can be shown to meet convergence criteria for conforming

finite element displacement fields [10]. Substituting the nodal coordinates

of an element such as that shown in Figure 3 into Eq. (13) yields
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fu, ) (1 ¢, 2z 0 0 0 '51‘
vy 0 0 0 1 o, oz |§
u, 1 r, z, 0 0 0 63

2 v, > - 0 o 0 1 r, oz <Ea ? (14)
uy 1 r, 24 0 0 0 55

kw3) -? 0 0 1 r, 22’ \561

or
(81, = [1) 16}, (15)

where {6}1 is the element nodal displacement matrix, {{;}i is the element
generalized coordinates matrix, and ['1‘]i is the element transfermation matrix
that relates the two, By examining the transformation matrix in Eq. (14),

it can be seen that only translations are involved. In other words, the
element is not derived with respect to a "matural" coordinate system, as

in the case of a beam or isoparametric element. However, due to the need

to evaluate specific integral voefficients, the terms 51 through 56 cannot

be evaluated directly in terms of the global coordinates, as is the case for

a plane strain simplex triangle. Solving Eq. (15) for {i}i we obtain an

equation relating the generalized coordinates to the nodal displacements,

-1
ted = [T 7{s}y (16)

where the inverse of [T]i can be shown to be [3]
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-~ ——
81 0 a2 0 33 0
b1 0 b2 0 b3 0
-1 1 c 0 c 0 c 0
(M7 = 34 1 2 3
0 a, 0 a, 0 33
0 b1 0 b2 0 b3
;.? ¢y 0 c2 0 c3

in which A equals the triangular cross-sectional area of the element, and
the coefficients a;, by and ¢, are as defined in Eq. (7).
Substitution of the assumed displacement field relationships, Eq. (14),

into the definiticn of the strain components, Fq. (2), leads to

— (&
e ) o 1 o o o o0 1)
rr 52
€,z 0 0 0 0 0 1 )
5
4 - '\
e L 3 2 o o o 4
99) . F = &
K
or {n matrix notatinn,
{x‘)i = [Cliiﬁ}{ (18)

where [C]i 1s the shape matrix in terms of the element gencralized

coordinates. For global coordinates and displacements, we combine Eq. (16)

and Eq. (17) to obtain

a7l
() = [C1,IT1] (e}, (19)

vhich is the desired strain-displacement relationship.
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4.2,3.2, Element Stiffness Matrices

For the analysis of highly stressed, fiber-reinforced, metal matrix
compositea, three distinct element stiffness matrices are required; o.e to
model an isotropic matrix material which is loaded below its elastic limit,
another to model the fibers, which may be transversely isotropic, and a
third to describe the behavior of the isotropic matrix when it is loaded
into the plastiec region. These three classes of material response are
discussed in detail in Appendix A of Reference [l]. These same relation-
ships are used to derive the required axisymmetric element stiffness matrices.

In general, a stiffness matrix relates nodal forces to nodal displace-
ments. With the forces as known quantities, this allows the nodal displace-
ments throughout the region of analysis to be solved for, and stress
components can then be "backed out" of these displacements. The integra=-
tion of the product of the shape matrix, [C]i’ and the stress~strain matrix,

[H]i, over the volume of an element yields its element stiffness matrix, i.e.,

[k, =[ [B){[H], [B] d(Vol) (20)
Vol

or, for an element stiffness expressed in generalized coordinates,

T T
[k1, f [c]{[H], [C],d(Vol) (21)
Vol
For an elastic, isotropic material, after substituting Eq. (17) and Eq. (A-14)
of Reference [1] into Eq. (20) and performing the indicated matrix multi-

plications we have, after integrating with respect to 8,
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Integrating Eq. (22) with respect to r,

e

q
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where E = Modulus of elasticity
v = Poisson's ratio

and the integrals are represented as
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) s 5 ez (24)

The first three inteerale are ecasily evaluated, and are defined in several

finite element analvois texts, e.g., Reference [11]. They are

(rl+r2 +r3)[rl(zz-z3)+r2(za-zl)+r3(zl—22)] A(rlf:gfr3)
1 | — e e -
1 6 3
[r1(22_23)+r2(ZS-zl)rS(zl-zz)] .
I = 2 - é (25)
L. (zl+zz+z3)[r1(22—23)+r2(23-z1)+r3(zl~22)] - A(zl+22+z3)
3 6 3

The integrands of 14’ Is and 16 contain a (%) term, and are considerably
more difricult to evaluate,

In addition, vhen ¥y, ¥y Or rg lie on the z-axis, the integrand be-
comes singular and snecial procedures must be employed to evaluate these
terms. The procednre for evaluating these integrals is presented in
Appendix A, and the manner in which singularities in the integrands are
dealt with is described in Appendix B. For the most general case, however,

the expressions for these integrals are presented below. For
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each integral, the symbolz is used [11] to indicate that a cyeclic permu-
¢

tation of the indices is necessary to obtain the full expression, L.e.,

172 )
(26)
8 S 56 WS WO it ik i SV NP 56 Wb it NP
r,-r, r, r,-T, ry r,-r r,
In a similar manner,
- Z G 1- 2)[2 (3: r,)-z(3r,-r,)) + l(flfg:igii)z 1 ii "
a(r,-r,) £)m2lor)-ry: AR ", (27)
and,
(2)-2,) 5 2
I e (llr -7r.r +2r )+Zz (*T -11lr r 451 )
6 2°72 172 122
c 18(r1-r2)
(28)
-, 27 r
2 L e A
+ zl(llr 7r1r2+2r )] + ( T E, )" 1In ",

The element stiffness matrix for the transversely isotropic (fiber)
case is obtained in exactly the same manner as for the isotropic elastic

case, except that the material properties matrix presented in Eq. (A-16)

of Reference [1] is substituted into Eq. (20). This leads to the following

transversely isotropic, generalized, element stiffness matrix,
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= Elastic modulus in the direction perpendicular to the plane
of isotropy

= Poisson's ratio representing a strain in the plane of
isotropy due to a normal stress in the direction perpendicu-
lar to that plane.

(29)

For the element stiffness matrix of an isotropic material in the plastic

range, the material properties matrix presented as Eq. (A-32) in Reference

(1] 1is used in Eq. (20)., After performing the required multiplications and

integrations, we have, in terms of generalized coordinat s, the isotropic,

plastic element stiffness matrix, This expression is shown in Eq. (30).

The S

1]

terms are components of the deviatoric stress tensor, T, is the
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octahedral shear stress and ZMT is the tangent modulus of the octahedral
shear stress-octahedral plastic shear strain curve, all of which are discussed
in detail in Appendix A of Reference [1].

Each of the element stiffness matrices given by Eqs. (23), (29), and
(30) must be expressed in terms of the global coordinates of the finite
element model before they can he used to assembls the global stiffness
matrix. This 1s accomplished by evaluating the inverse of the transformation
matrix for each element, as defined in Eq. (16), and using the following
relationship:

k), = (r17HirE, ]! (31)

The global stiffness matrix, [K], is assembled, element by element, by
a subroutine which also imposes the houndary conditions required for the
specialized loading technique (see Appendix A-4 of Reference {1]). 1In this
subroutine, each element in the model 1is examined to determine whether it is
fiber or matrix, elastic or plastic, and the appropriate element stiffness .
subroutine is called. 1In these element stiffness subroutines, the strain-
displacement matrix and the stress-back substitution matrix for each element
is evaluated and stored on a peripheral device. These are required to ol:ain
element strains and stresres from the nodal displacements that the finite

element solution provides. In general,

{0}, = [u]i[c]i['r]'li(a}i = [H],[A), (8}, = [B], (6}, (32)

where [A]i is the strain-d.-nlacement matrix and [B]i is the stress-back
substitution matrix.
These matrices have to be evaluated for each of the three material

conditions. The most general form of the [A]i and [B]i matrices are shown



botow, and specialized Torms are presented in Appendix B,

tantrople easoe,

B
[B] =

(14v) (1-2v)

2v

lnz o njc -xic]
o

z
" 0
z

Ve 0

(%-v) 0 (*21--\))

(l—v)% 0

For the elastic, transversely isotropic case,

o

[B), Q

—
F

—_ + P
r (1+ F-T)

(“  +T)
0 0

Q-1) (1+ F -T)

L—l‘

(a-nZ

where T, F, and @ are as delined in 1q. (29).

(=]

1

‘

.
(1+v)

For the

(vT)

(1-T)

clast e ;

(1] (33)

[Tl_l (34)

The stress-back substitut fon

matrix for a plastic isotropic material is as shown in Eq. (35) on the next

page, with the torms A,

A', B, and Sij

as defined in Eq. (30). 1Tt

is

interesting to compare the elastic and plastic cases, especially in the

terms that are zero Yor the elastic [B] matrix and negative for the plastic

matrix. As Is also the case for the plastic element stiffness matrix

versus the elastic form, the negative sense of the additional terms is
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a reflection of the reduced modulus of most elastic-plastic materials when
in the plastic range.
The strain-displacement matrix, being a function of element geometry

only, is the same for all three material conditions, i.e.,

— -
o 1 o O o0 0O
o 0 o ©0 o0 1 -

(A] - T
1 o o 1 0 1 0 (36)

1 z
L 1 2 0o 0 o

 S—— pu—

It is important to note that for a given set of nodal displacements,
fqs. (33), (34), and (15) describe the variation of stresses within the
element as a function of the r and z coordinates. In other words, using
these relationships, the exact state of stress at any point in the plane of
the element ca.. he obtained. In this study, the centroid location of each
element has been nrogrammed in as the element point of interest.

This concludes the description of the exact, triangular, constant
strain axisymmetric element, It is important to realize that those elements
that have a node point or a side coincident with the axis of rotation,
sometimes referred to as "core" elements [12], require special treatment.
Elements having one side parallel to the z-axis also lead to singularities.
These special cases, described in detail in Appendix B, make the computer
implementation of this formulation particularly complicated, as the
strain-displacement and back substitution matrices must also be modified.

Comparison of the exact formulation of the element to the approximate form
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indicates that the addditional effort necessary to develop and implement

the integral form s justified. YFor axial loads applied to a model of
"core" elements, the error in o stresses is on the order of 14 percent for
the approximate formulatlon, The error in 9% stresses is on the order of
18 percent. TFor radianl or ~ombined loads, the error observed in the

approximate element formulation is even larger.



SECTION 5

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have been
treated as brittle, linearly elastic materials with isotropic strength
and stiffness properties. The aluminum matrix has also been considered to
be isotropic, but is mndeled as an elastoplastic material., To accomplish
this, the actual stress-strain curve of the aluminum alloy selected is
input to the analysis by curve fitting via a Richard-Blacklock two-parameter
equation [13], as discussed in Appendix A-5 of Reference [1]. Thus, at any
load level the tangent modulus for any given element can be computed. This
makes possible an accurate representation of the plastic deformation of -
the matrix.

Although the nonlinear material properties of any matrix material,
e.g., another alumiram alloy, can readily be incorporated in the analyses,
a 6061-T6 aluminum clloy at 75°F was used in obtaining the present results,
The material properties shown in Table 1 were obtained from Reference [14];
the full range stress-strain curve for determining the curve fit paramcters
used is shown in Figure 4.

TABLE 1

Aluminum Matrix Material Properties - 6061-6 Alloy [14]

Young's Modulus E = 10.0 x 106 psi
Poisson's Ratio v = 0.33

Tensile Yield Strength FtY = 36000 psi
Tensile Ultimate Strength FtY = 45000 psi

Coefficient of Thermal Expansion « = 13,0 x 10_6/°F
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The boron fiber properties indicated in Table 2 were obtained from

Reference [15]).

TABLE 2
Boron Fiber Material Properties [15]
Young's Modulus E = 60.5 x 106 psi
Poisson's Ratio v = 0,130
Tensile Ultimate Strength FtU = Fty = 500,000 psi
Ultimate Strain ctu = FPU « 8,264 x 1073 in./in.
E
Coefficient of Thermal Expansion o = 9,0 x 10-6/°F
SO
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-~ 30 ¢t
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20t
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Strain, in./in.
Figure 4. Typical Full Range Stress-Strain Curve for 6061-T6 Aluminum

Alloy at Room Temperature [14]



SFECTION 6

NUMERICAL RESULTS

In this section, the finite element analysis methods discussed in
Sections 3 and 4 are applied to a variety of finite element models.

In Sections 6,1 and 6.2, the development of the various finite element
models is discussed, for use with the generalized plane strain analysis
(described in Section 3) and the axisymmetric analysis (described in Section
4), respectively.

In Sections 6.3 and 6.4, numerical results are presented for axial
loading of the longitudinal section models, while axial loading of the
transverse section models is presented in Section 6,5, Transverse loading
of the transverse section model is discussed in Section 6.6.

In Section 6.3, the results of the axial loading of models representing
a condition of 33 percent discontinuous fibers are discussed. At the time
these results were generated, early in the present second-year study, the
basic computer program, developed during the first-year study [1], was still
in a somewhat unrefined condition; nearly all the reduction of output data
had to be done by hand. With the conversion of the computer program to
the larger, faster Control Data Corporation Cyber 730/760 computer system,
installed at the University of Wyoming in early 1980, a post-processing
package was added which is capable of drawing the material interfaces of the
finite element model, the outline of any crack that might be present, and
a variety of stress and strain contours, as specified by the user. The
results of the analysis of the considerably larger and more complex models

then possible are discussed in Section 6.4.
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Sections 6.5 and 6.6 deal with the mechanical loading of transverse
section finite element models. As a result of these studies, transverse
section models have been found to be incapable of adequately representing
stress concentrations due to material defects when lcaded in the direction
of the fiber axes. However, they are especially useful in studying the
effects of transverse mechanical loads and hygrothermal loads.

Preliminary results of the newly developed axisymmetric analysis are
presented in Section 6.7. These results demonstrate the capability of the

analysis; more investigation remains to ba done.

6.1. Generalized Plane Strain Analysis Models

6.1.1. Development of the Broken Fiber, Longitudinal Section Models

There are two primary reasons for the development of a longitudinal
section model. One is to permit study of localized stress concentrations,
the resulting elastoplastic behavior of the aluminum matrix, and subsequent
crack propagation in the areca of fiber flaws. Another is to characterize ‘
the load carrying capability of a flawed fiber as a function of distance
from the location of the fiber flaw.

These two considerations lead to the most important aspects of designing
the longitudinal section models, i.e., geometry, finite element grid
resolution, boundary conditions in the vicinity of a flaw, and spacing
of the boron fibers in the model. The problem of fiber spacing will be
discussed first.

A typical cross section of a unidirectional, square array, boron/
aluminum composite as shown in Figure 5, the section being perpendicular

to the fiber axes. A longitudinal section finite element model attempts
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FIGURE 5. Cross Section of a Square Array of Fibers,
55 Percent Fiber by Volume

to represent the composite in a plane oriented perpendicular to this
section, A longitudinal model of a section parallel to the x or y axes,
through the centers of the fibers, would be representative of the mininum
distance between fibers, A section cut at 45° to the x-axis and through

the fiber centers would depict a maximum fiber spacing situation. When one
of these fibers is broken, the load it carries decays to zero at the broken
surface, assuming that the boron-aluminum interface remains intact. At the
flaw site, the fibers adjacent to the broken fiber, and to some extent the
surrounding aluminum matrix, must absorb the load that the broken fiber would
have otherwise carried. The aluminum transfers this excess load back into
the broken fiber via a shear mechanism so that at some distance from the
fiber break, that fiber is again fully effective in carrving load. It is
logical to presume that the amount of aluminum between the bhoron fibers will
have an effect on this load transfer mechanism. To characterize the effects
of variation in fiber spacing, two longitudinal models were studied, one
representing a 90° section cut of the transverse cross section, and another

representing a 45° section cut. A 45° section model is shown in Figure 6,
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the element numbers being Iindicated. The region in the lower left corner,
with unnumbered elements, is the region in the vicinity of the broken fiber
end. This local region is shown in the expanded view in Figure 7, the
clement numbers being given here. A 90° section model is shown in Figure 8,
Note that the fiber diameter dimenmions have been normalized to unity. In
Figure 8 the effect of the 90° section cut in diminishing the amount of
local aluminum matrix is shown quite clearly. The size and aspect ratios of
the fiber elements are exactly the same as those of Figure 6, but the
aluminum elements of the 90° section model are so compressed that the
element numbers, which are identical to those of Figure 6, have been
eliminated for clarity.

The second problem that must be sc’ved in the finite element model ing
of a broken fiber in a composite 1is the geometry in the area of the fiber
discontinuity-matrix interface. The efforts of the present investigators
to resolve this problem have been evolutionary in nature and many models
were developed and discarded in the process. It will be noted, for example,
that the models of Figures 6 through 8 are slightly different in the region
¢ the broken fiber end than the models presented in Figures 3 6 through
3.8 in Reference [1].

As the longitudinal finite element models evolved, the problem of
computer capacity came to be a limiting factor, The models shown in
Figures 6 through 8 yielded generally favorable results, but represented
the limits of the capability of the Xerox Sigma 7 computer then being used.
After study of the numerical results obtained using these models, it was
decided that they were limited in three important areas. The first was

the modeling of the region in which crack growth is expected to occur.
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Ideally, this region should contain an extensive area of uniform elements

of approximately the same size as the elements forming the initial erack.
This is due to the fact that hen a significan.ly larger element is en-
countered by the growing crack, propagation ceases until this larger element
and its neighbors have been strained to their ultimate value. When such a
large element fajls, the released energy to be redistributed among the
surrounding elements is considerable, and the result is that many more
elements fail in the process. This also dictates the formation of a fairly
large cavity within the model, which may affect the pattern of subsequent
crack propagation in an unrealistic manner. Thig was particuiarly noticeable
in the case of the 90° section mndel. A second limitation of a small model
is that it represents a situation in which fully one-third of the fibers

are broken. In other words, the effects of a broken fiber on the loading

of more remote intact fibers cannot be studied; fibers which may have a
considerable affect on the pattern and extent of crack growth. Finally,

the limited axial length of the small models of Figures 6 and 8 was thought
to be an unfavorable influence in terms of end coffects. As will be discussed,
this limitation prevented the loading of the material being modeled to

its full capacity due to the arrival of the crack front at the right boundary
of the model.

With the acquisition of the much larger and faster CDC Cyber 760
computing facility, large: and more complex models could subsequently be
studied. The two larger finite element models created for this purpose
are presented in Figures 9 and 10, representing 45° section and 90° section
longitudinal models, respectively. In them, 12.5 percent of the fibers

are discontinuous. It will be noted that, in addition to an extensive
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reglon of undform matrix clements adjacent to the {iher discontinuity,
many rows of clements are retained in the region between this fiber and its

nelghbor, along the full length of the model,

6.1.2. Development of the Transvoerse Section Models

Finite element madeling of 1 transverse section of a unidirectional
boron/aluminum composite ts fairly straightforward [4-6,8,9]. A typical
transverse section model {s shown in Figure 11, This model will be used
here to demonstrate crack propagation in an unflawed composite subjected
to a transverse normal loading. However, the need to study the Influence
of a reduced load capncity in one fiber on its neighboring fibers requires
that a minimum section model such as that shown in Figure 12 be employed.
This model represents the {irst quadrant of a repeating square array of four
{ibers., 1If the fiber centered at the origin is assumed to be a flawed
fiber, it will be surrounded by ecight other (unflawed) fibers in the arvray.
A model of this type can easily lead to a great number of Finite elements,
and attempting to increase the resolution of the grid at selected locations
often results in a very large bandwidth of the overall stiffness matrix

for the finite element model.

6.2, Axisymmetric Analysis Models

The finite element model used for the preliminary studies using the
axisymmetric clement formulation is shown in Figure 13. In this model, the
horizontal axis is the r-axis, while the vertical axis 1s defined as the
z-axls, or axis of rotation. The fiber elements are located along the z-axis
and extend radially outward for three "bays" of elements. The fiber

discontinuity is modeied by freeing the first four node points at the lower

- eI
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Array, Unidirectional Composite (r /rm = 0.424),
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left cor.er of the model, extending radially outward. The philosophy in
creating this model is similar to that followed in the specificiation of
the generalized plane strain models of Section 6.1, i.c., maximum element
resolution in areas of high stress gradients. Minimum stiffness matrix
bandwidth is achieved by maintaining continuous node point numbering from
one end of the model to the other in at least one coordinate direction.
This can lead to a few more elements than are required in some cases, but
it has been found that the savings in computer core space due to a reduced
bandwidth far outweigh the cost of a few superfluous elements. In
addition, the dimensions and matrix thickness of this model are very casily
changed, making it particularly useful for parametric studies of the effects

of fiber volume on the response of this particular configuration.

0.3. Axial Loading of Longitudinal Models With 33 Percent Discontinuous
Fibers

6.3.1, Crack Initiation and Propagation in the 45° Section Longitudinal
Mode.

The 45° section longitudinal model was loaded axially with one boron
fiber trecated as discontinuous, the broken ends being in contact when
loading was initiated. Crack initiation occurred with the failure in
octahedral shear stress of Element No. 2 (see Figure 7) at an average
applied stress of 64.1 ksi, The release of energy caused by the failure
of Element No. 2 resulted in the failure of seven additional elements,

Nos. 1, 3, 4, 13, 14, 15, and 26. With the stiffness capacity of these
elements deleted from the analysis and their strain energy redistributed to
the runaining model, 13 more elements failed, This process of crack growth

at constant stress continued in a regular pattern until the "erack" had
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progressed to the point shown in Figure 14. The elements that have failed
are blacked out,

After crack growth had ceased, monotonic loading of the composite was
continued to an average applied stress level of 107.2 ksi without further
element failures. As loading progressed, the aluminum matrix elements
adjacent to the fiber nearest the discontinuous fiber experienced increasing
amounts of plastic straining. The shaded elements in Figure 14 are those
in the plastic stress range at an average applied stress level of 107.2 ksi.
An examination of the in-plane components of stress for these elements
revealed that in the elements nearest the crack tip, shear stress was of
the greatest magnitude. In the plastically strained elements farthest
from the crack tip, tensile stress, parallel to the fiber axes, was again
the major stress component, although the shear stress level was still high,

As the crack formed and grew, the load level in the broken fiber
decreased relative to that of the intact fibers, as expected. The pattern
of crack growth exhibited by this analysis, and the manner in which each
element was deformed and failed primarily by shear stress, is very similar
to experimental results obtained by Awerbuch and Hahn [16]. 1In their
study, center-notched tension specimens of unidirectional boron/aluminum
were tested, Microscopic examination of the failed test specimens revealed
crack growth in the aluminum matrix adjacent to the last cut boron fiber
on either side of the notch., These cracks appeared to propagate parallel
to the fiber :<e¢s, and were accompanied by long zones of plastic shear
deformation in the matrix, also running parallel to the fiber axes.

At an average applied stress of 107.2 ksi, Element No. 136, located

between the two continuous fibers (see Figure 6), failed in hydrostatic
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tension, Subsequent load redistributions resulted in total fuilure of the
aluminum matrix, At this load level, the fiber adjacent to the discontinuous
fiber was carrying a great deal more load than it would have were there no
broken fiber. The aluminum matrix, loaded primarily due to strain compat-
ibility with the boron fibers and by Poisson effects, is predicted to rupture
when the analysis is confined to the boundaries of these smaller finite
element models., For a longer finite element model with a higher percentage
of continuous fibers, higher average applied stress levels can be sustained
without fallure, as will be shown later, and further growth of the crack will
occur,

The composite stress-strain response is plotted in Figure 15, as a
measure of the strain energy capacity of this 45° section boron/aluminum
composite in which nne flber out of three is discontinuous. Tt will be
noted that the rate of energy absorption with increasing stress after
crack Initiation is considerably greater than that exhibited up to the point
of initial failure. That is, the slope of the stress-strain curve is less,
From this plot it is obvious that plastic deformation and crack growth are
important considerations in the evaluation of the effects of flaws in
composite materials.

The large amount of straining of the total model that takes place
during crack formation and propapation will also be noted in Figure 15, This
further illustrates the effect and extent of the crack growth illustrated
by Figure 14, Finally, the loss of some of the broken fiber's effectiveness
in carrying the applied load is clearly illustrated in Figure 15 by the
significant reduction in the cemposite modulus after crack formation. This

change in modulus 1is particularly dramatic in this case because of the high
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percentage (33 percent) of discontinuous fibers, the extent of crack propa-
gation, and the relav “-« ghort axial dimension of the model being investi-
gated,

6.3.2. Crack Initiation and Propagation in the 90° Section Longitudinal
Model

e

When the 90° section longitudinal model was loaded in a direction
parallel to the fiber axes, with one fiber broken, a large stress concen-
tration occurred at the crack tip, as was the case with the 45° section
longitudinal model. However, the composite axial stiffness of the 90°
section model Ls considerably greater than that of the 45° section model,
due to the larger fiber volume fraction of the 90° model,

The c¢loser proximity of an intact fiber with th_  broken one in the 90°
model results in a greater shear gtress gradient at the end of the broken
fiber than was seen in the 45° model, As a result, crack initiation occurrii
at an average applied stress level of 37.1 ksi, due to the failure of
Element No, 2, as defilned in Figure 7. Subsequent load redistributions re-
sulted in a series of a single element fajlures, until finally t° Ture
of Element Nu. 42 triggered the failure of Element Nos. 53, 54, and 55,
with Element Nos. 65, 66, and 67 failing after that. At this point, crack
propagation ceased, with plastic deformation around the crack tip and along
the fiber progressing as the load level was increased to 84.0 ksi. Figure
16 illustrates the pattern of crack growth and plastic deformation at this
level of applied stress.

Tn comparing Figure 16 with Figure 14, the difference in the shape
and oxtent of the crack is as obvious as the difference in load level.

The higher shear stress gradient brought about by the closer fiber spacing
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causes carlier crack initiation, but the crack appears to be promptly con-
tained by a large zone of plastically deformed matrix. A strong similarity
between the two is shown by the pattern oi plastic deformation and in the
fact that it is due primarily to shear, particularly in the vicinity of the
crack tip. Again, the plastic deformation appears to progress down the
boundary of the unflawed fibeér adjacent to the broken fiber, which is con-
slstont with the pattern obscerved in the 45° model, and with the experiments
of Awerbuch and Hahn [16].

At an average stress level of 84.1 ksi, Element No. 78 failed (sce
Figure 7), and subsequent element failures resulted in the crack pattern
shown in Figure 17. At this point, the "crack" was over 5 fiber diameters
long, extending to the opposite boundary of the finite element model. The
broken f{iber i{s carrying very little load under this condition, as it is
now only comnected to the remainder of the model by a single node point at
the right boundary. With continued loading, the last of the matrix elements
adjacent to the broken fiber failed at 98.0 ksi, and their releasc of
energy triggered the rupturing of Element No. 134 (see Figure 6) by hydro-
static tension.

The energy absorption capacity of the flawed 90° section wmodel of a
boron/aluminum composite is indicated by the stress-strain plot of Figure
18. Very little pure straining takes place in the initial stage of crack
growth, as depicted by Figure 16. Both Figures 15 and 18 are plotted
to the same scales of stress and strain so that the composite axial stiff-
nesses of the 45° and 90° section models may be compared visually. As
was the case with the 45° section model, the 90° section model exhibits

a reduction of stiffness after crack initiation and propagation, due to a
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loss of et tectiveness ol the discont innous tiber,  However, this stifiness
change Is tar less pronounced in the 90% scection model, as would be expectad

with its much smaller initial crack formulation.

0.4, Axial Loading of Longitudinal Models with 12.5 Percent Discontinuous
Fibers

0.4.1. Crack Initiation and Propagation in the 45° Section Longitudinal
Model

The 45° section longitudinal model was loaded axially with one boron
tiber again treated as discontinuous., Plastic deformation around the stress
concentration caused by the fiber discontinuity was first observed at an
average applied stress level of 18.0 ksi. Loading was continued until an
initial tailure occurred at an applied stress level of 75.1 ksi, whach is
considerably higher than the 64.1 ksi level at which first failure occurred
in the 45° mode! studfed in Section 6.3.1. 1In addition, anly one element
failed, the crack tip being temporarily "blunted" by this failure. The
state of stress in the aluminum matrix just prior to the initial failure
is clearly illustrated in the contour plots in Figures 19 through 22.
Although any or all of the various stress and strain components can be
plotted by the computer program, contours of constant octahedral shear
stress, octahedral shear strain, maximum principal stress, and in-plane
snear stress have been selected here as being the most useful in studying
the axial loading of unidirectional composites containing defects. Note
that the octahedral shear stresses in Figure 19 have been normalized with
respect to the octahedral shear yield strength of the 6061-T6 aluminum
alloy, In this way, the region of plastic deformation can be readily

discerned, as any contour value equal to one defines a plastic zone boundarv.
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It will be noted that at an average applied stress level of 75.1 ksi, the
plastic zone is on the order of one fiber diameter in length. The staite
of stress in the fibers just prior to crack initiation is also of great
interest; this is {llustrated quite effectively in Figure 23, 1In this
figure, the stress level of each of the fibers in the model i{s plotted as
a function of distance from the site of the fiber discontinuity. As
expected, the broken fiber picks up load fairly quickly via shearing stresses
in the matrix, attaining €9 percent of the load level of the most remote
fibers at 8.2 fiber diameters (end of model) from the plane c¢f the dis-
continuity. Of special interest is the affect the broken fiber has on its
nearest neighbor, and to some extent, the next fiber also. These fibers
must make up for the lost load carrying capecity of the composite in the
region of the fiber discontinuity, with the adjacent fiber carrying 10
percent more load than the remote fibers. It will also be noted that the
remote fibers gradually increase in loading as a function of distance from
the site of the fiber break, while the two closer fibers tend to unload.
At an average applied Sx stress of 76.0 ksi, crack growth involving
the failure of 82 clements took place. This process required 16 redistribu-
tion steps, {.e., the failure of one group of elements would trigger the
failure of additional elements, causing the crack to continue to propagate
at the constant load level. The state of stress in the matrix just after
this period of crack growth is shown in Figures 24 through 27. Note that
the size and shape of the crack is plotted as well as the contour values.
Note also the reduction in the size of the plastic region, as ~hown in
Figure 24, and the increased stresses in the matrix between the other

fibers, especially the shear stress. The fiber loading plot of Figure 28
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corresponds to the state of stress and deformation of Fipures 24 through 27,
and the most change caused by the element failures appears to be the reduced
loading of the broken fiber. While it is still loaded to almost the same
percent at the right boundary of the model, the slope of its loading curve
is somewhat leseg near the break site,

The next set of figures, Figures 29 through 33, are plits corresponding
to an average applied stress of 97.4 ksi. At this load level, further crack
growth was immanent. It will be noted that the region of plastic deforma-
tion has enlarged considerably, and that the loading of the broken fiber
at 8.2 fiber diameters from the plane of discontinuity is now only 86 percent
of the load carried by the two most remote fibers, Fibers 4 and 5. An {ncrease
in the load resulted in only one additional element failure, however, and
crack propagation did not resume until an average stress level of 183 ksi
had been attained.

At an apnlied composite stress of 183 ksi. crack prepagation involviug
169 elements and 11 stages of growth at constant stress occurred. The
results of this growth are iliuvstrated in Figures 34 through 38. What is
most sienificant about this stage of the loading of this model is that the
extensive growth of the primary crack has resulted in such a high, localized
stress in the adjacent fiber that two large matrix elements between it and
the next intact fiber have ruptured. As Figure 38 illustrates, the adjacent
fiber (Fil :r 2) 1is now carrying about 14 percent more stress than Fibers 4
and 5, &nd appears destined to faill well before Fibers 3, 4, and 5.

The 45° section longitudinal model continued to absorb loading up to an
average stress level of 208.5 ksi with no further failures. The analysis

was terminated at this point. In Figure 39, the stress-strain plot of the
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total composite 18 presented, reflecting the occurrences of crack propaga-
tion and the associated decreases in composite modulus,.

The process of modeling stress redistributions duc to crack growth
involves many cycles of the numerical solution procedure, and when this
is coupled to the incremental loading of an analytical model which experi-
ences localized plastic deformation at a small fraction of {its total joad
capacity, computer time requirements become very large. For example, the
analysis of the 45° longitudinal section model discussed in this section
required 9,577 seconds of running time on the CDC Cyber 760 computer and
372 thousand words of core storage. When one considers that, in the
present example, plastic deformation began at an applied stress level
of 18 ksi, and at Ex = 208.5 kei total failure had not yet occurred,
the complexity of the problem being analyzed can be appreciated.

6.4.2. Crack Iniciation and Propagation in the 90° Section Longitudinal
Model

The 90° section longitudinal model was loaded to a maximum of 208.3
ksil, during which five periods of crack growth were observed, but catas-
trophic failure of the composite did not occur. In the discussion that
follows, contour plots and fiber loading diagrams are presented to illus~
trate some of the more interesting points in the loading histoury of this
model. While a great many similarities between the response of the 45°
and 90° section longitudinal models exist, a careful comparison will in-
dicate the differences in crack growth pattern, stress distributions,
fiber loading, and load levels at which they occur. Such a comparison
confirms the fact that there is a strong dependence of the results on

fiber spacing when plastic deformation and crack growth are considered.
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This dependence is what makes the use of a two-dimensional formulation so
difficult to correlate to actual conditions, as there is no practical way
of manufacturing most unidirectional composites in which every fiber 1is
equidistant from each of its nearest neighbors. As was discussed in
Section 4.1, it is possible that specialized test specimens, used in
conjunction with the axisymmetric analysis, could lead to the determination
of an average, i.e., effective, fiber spacing, thus allowing the present
gencralized plane strain formulation to more accurately model square and
rectangular fiber arrays.

Because of its much higher apparent fiber volume, shear loading of the
matrix between the broken fiber and its nearest neighbor in the 90°
section longitudinal model is more severe than in the 45° section longi-
tudinal model. As a result, the initial stress concentration caused by
the broken fiber is more pronounced, and initial element failure in the
90° section model was observed before a plastic region of any significant
extent could form around the crack tip. This failure occurred at an
average applied stress level of 24.9 ksi. The matrix stress contour
plots for the composite just prior to this event are presented in
Figures 40 through 43. The single elemeat failure at this applied stress
level appears to have very effectiveiy "bluntod" the  a.  as the next
failure did not occur until an average applied s*ress ievel of 84.0 ksi
had been attained. At this point, one additior . ' aient failed, again
temporarily blunting the crack. Figures 44 througn 48 illustrate the
state of stress in the matrix and the loading of the various fibers at
this load level just prior to the failure of the + zond olement. At this

point there is a fairly extensive zone of p. itic deformation around the
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crack tip. Also, the shear stress levels in the matrix between ~uter
fibers are much hisher, and display some gradation. Of particular interast
is the fiber loading nlot, Figure 8. In this 90° section model, the
effect of the broken fiber is confined to a smaller region than for the
45° section model (sc: Figure 28), with the adjacent fiber being loaded
more than 20 percent higher at the plane of the break than the far field
average., The more remote fibers are much less affected. At 8.2 fiber
diameters, the broken fiber is almost fully loaded.

The next stage of crack growth occurred at Ex = 85,4 ksi, involving
102 clements which fatled in 9 intervals of constant stress crack
propagation. The tip of the resulting crack advanced along the boundary
of the adjacent fiber., ns is also suggested by the final shape of the
crack, shown in Figurces 49 through 53. It will be noted in Figure 49

that the matrix has been unloaded to the point that once again there is

no plastic deformation. In all these respects, the results of the 90°
section model differ from those of the 45° section model.
Loading was then increased monotonically to a level of 145.4 ksi,
at which point one more element failed. Again, the states of stress
and strain in the matrix and fibers have been plotted so that one can
contrast them to the situation that existed just after this particular
crack was formed., These results are presented in Figures 54 through 57,
At thir point there is a very extensive zone of plastic deformation, and
the effects of the crack on the fiber loading are not nearly so localized.
At a load level of 146,8 ksi, extensive crack growth again occurred.
A total of 83 elements and 10 intervals of constant stress crack propaga-

tion were involved in this process. The shape of the resulting crack,
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along with contours of normalized octahedral shear stress, are presented

in Figure 58. Tt will be note& that once again the crack has grown through
the previous region of plastic deformation, and little or no plastic
deformation remains after this process. In Figure 59, the affect of the
crack growth on the fiber loading can be scen. The two nearest fibers
become affected near the plane of the fiber break, and in addition, the

two more remote fibers begin to display the same pattern as the closer
fibers, i.e., increasing load in the vicinity of the flaw, decreasing

as the axial distance from the break site increases.

Continued loading of the 90° section model to 208.3 ksi produced no
additional element failures, at which point this computer run was
terminated. The last states of stress to be plotted were at an average
applied stress of 193.3 ksi. These are presented in Figures 60 through
63. A plot of the composite strese versus strain for this example 1is
presented in Figure 64,

6.5. Crack Initiation and Propagation in the Transverse Section Model,
Loaded Transversely

Stress increments 5x were applied to the right hand boundary of the
transverse model shown in Figure 11, Plastic deformation of the aluminum
matrix began at the fiber-matrix interface at a point about 30° from the
positive x-axis, i.e., Element Nos. 88 through 91 (see Figure 1l1). As
loading increased, these elements became even more highly stressed.
However, at 58.4 ksi, Element No. 81 ruptured in a hydrostatic tension
failure node. This failure triggered the failure of Element Nos. 83 and
85, whereupon further strain energy redistribution was required. Crack

propagation progressed along the fiber-matrix interface, terminating at
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the point shown in Figure 65. This failure pattern agrees very well with
that presented by Adams [4] in his 1973 study of crack propagation in a
transverse section of a unidirectional boron/aluminum composite. His
effort involved an analysis scheme with a constant displacement rather

than a constant stress loading procedure, a finer mesh finite element
representation, and smaller loading increments than were used in the present
analysis., Adams also typically observed initial failure at matrix elements
along the fiber-matrix interface at a point approximately 30° from the
x-axis. However, his analysis did not include a hydrostatic failure mode,
which could explain the slight difference in the location of crack initia-
tion observed in the present study.

The loading increment following the 58.4 ksi load level resulted in
further element failures, with the crack progressing along the fiber-matrix
boundary, While this example was undertaken primarily for the purpose
of comparing results of the present analysis with those or Adams [4], it is
clear that the effects of disbonds, local matrix voids, and other manu-
facturing flaws on the transverse strength of a unidirectional composite
could also be characterized, With larger finite element arrays, constructed
to simulate such flaws, manufacturing cycles of compression and thermal
loading could be imposed to determine the residual stresses caused by
these defects, and their effects on subsequent service loading and envi-

ronmental exposure.

6.6. Axial Loading of the Axisymmetric Longitudinal Model

Numerous computer runs, involving a variety of finite element models,

were made to verify the correctness and accuracy of the axisymmetric
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analysis program under all possible combinations of element geometry,
material types (i.e., elastic isotropic or transversely isotropic, and
plastic isoctropic) and loading. When all difficulties had been identified
and corrected, a series of runs was made, employing the finite element
model shown in Figure 13, Three different variations of this model were
employed in this preliminary study, aimed primarily at assessing the

effect of thickness of the annular sheath of aluminum on the response of
the single broken fiber configuration. The first model studied represents
the condition of minimum fiber spacing in a 55 percent fiber vulume, square
array, unidirectional composite., This results in 4 model in which the
broken fiber has a rather thin sheath of matrix around it, the ratio of the
fiber radius to the tocal model radius (rf/rm) being 0.714. Another model
studied was the case of maximum fiber spacing in the 55 percent fiber
volume, square array composite, wherein the ratio of the fiber radius to
the model radius is 0.424. Finally, after studying the results of rums
using the first two models, it was decided to increase the thickness of

the matrix in the maximum fiber spacing model by 50 percent, to further
investigate the effect of matrix thickness in this particular configura-
tion (rf/rm = (.330).

The results of this study are summarized in contour plots for each
model configuration, with normalized octahedral shear stress, octahedral
shear strain, maximum principal stress, and in-plane shear stress being
the parameters plotted.

Figures 66 and 67 reprecent the case of minimum matrix thickness.

It can be seen immediately that a rather small portion of the cross section

of the model perpendicular to the applied load is aluminum matrix. Since

BN SRS A RS s
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the average stress is applied to the entire circular croas section, there
is an immediate streas concentration at the z = 0 plane (see Figure 13)
due to an appreciable reduction in net cross-sectional area caused by the
fiber discontinuity., This, and the presence of the penny-shaped crack,
also a result of the fiber discontinuity, caused initial plastic deforma-
tion at the crack tip at an average applied stress of only 7 ksi. Continued
loading resulted in a first failure in the matrix a. an applied stress
of 17.4 ksi. Failure of the first element triggered the failure of three
additional elements along the z = 0 boundary, the plane of the fiber dis-
continuity. This resulted in a further reduction of net section at the
z = 0 boundary, and a subsequent adjustment increment caused the crack to
grow radially to the edge of the model, representing total failure and
thus terminating the analysis, The contour plots of Figures 66 and 67
represent the state of octahedral shear stress and strain in this model
Just prior to crack initiation.

In the case of the axial loading of the maximum fiber spacing
model (rf/rm = 0,424), plastic deformation at the crack tip did not occur
until an average applied stress of 13 ksi had been reached. Continued
loading resulted in a first failure, or crack initiation, at a stress
level of 32,3 ksi. As was the case with the minimum thickness model, the
crack immediately grew through the region of plastic deformation, and
the resulting reduction in the net section area of the model caused total
failure. The contours of constant octahedral shear stress and strain
for the maximum fiber spacing model just prior to crack initiation are

presented in Figures 68 and 69.
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For the thickest model run (rf/rm = 0,330), plastic deformation was
first observed at an average applied stress of 15 ksi. Initial crack
formation occurred at an average applied stress of 37.2 ksi; the contour
plots of stress and strain just prior to this crack initiation are pre-
sented in Figures 70 and 71, It wi)\ be noted that the region of plastic
deformation around the crack tip involves more than a third of the matrix
thickness, as was the case for the two models discussed above. As in the
previous cases, this relatively low fiber volume model representation also
suf fered catastrophic failure once the crack had been initiated,

To provide further insight to the response of the axisymmetric
model, the displacement of the broken fiber ends relative to each other
has been plotted in Figure 72 as a function of the average applied stress
level for the three model configurations discussed above. This plot
clearly illustrates the variation in overall stiffness and load carrying
capacity of the model as a function of matrix thickness. Experimental
measurements could readily be made using test specimens of these configu-

rations, and results compared with those shown in Figure 72.
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SECTION 7

CONCLUSIONS AND FUTURE WORK

At the end of the second year of this continuing investigation for
NASA-Lewis, the analytical tools required to perform the title study are
now well in hand. Although improvements can, and will, still be made in
both the generalized plane strain and axisymmetric analyses and related
computer programs, they are presently fully operational. 1In addition,
the three-dimensional finite element analysis, although developed as part
of another program (7], has also just become operational. This analysis
will also be fully available to the present NASA-Lewis study, as required.
Obviously, analysis methods have advanced significantly during the past
two years,

The numerical examples presented in this report are intended to
demonstrate the capabilities of the analyses, and to provide at least a
preliminary indication of the influence of a broken fiber on local stress
states, and overall performance of the composite.

To date, only pre-existing fiber breaks have been modeled., 1t will
be relatively straightforward to extend this to the analysis of cemposites
having weak sites distributed arbitrarily along the fibers. The numbers
and sceverity of these weak sites can be established from available experi-
‘mental data for boron fibers. This will lead to the study of interactions
between closely spaced fiber breaks occurring under an applied stress,

In terms of maximizing energy absorption during plastic deformation
and subsequent crack propagation, it is anticipatod that a detailed study
using the generalized y° ‘e strain analysis will lead to guidelines for

designing boron/alum’ composites with controlled derects fabricated

A TR PP
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into the material. This will result in trade-offs between composite stiff-
ness and ultimate strength, and euicrgy absorption during the fracture
process. The three~-dimensional analysis can be used to confirm the ade-
quacy of the (two-dimensional) generalized plane strain analysis in per-
forming these studics,

Experimental verification of the analytical work already completed,
and to be undertaken during the next year, is aico required. The axi-
symmetric analysis was developed primarily with this in mind. It will be
relatively simple to fabricate single-fiber composites, i.e., single
boron fibers surrounded by a uniform annular sheath of aluminum matrix
m.terfal, Either a break can then be induced in the fiber before mechanical
testing, or fibers known to have statistically weak sites can be used.
When these single fiber composites are loaded in axial tension, the change
in the gap between ends of the “iber break can be experimentally monitored
(using X-rays, an extensometer, etc.). As indicated in Figure 72, these
changes are predicted to be relatively large, on the order of 0.002" to
0.010" at failure.

It was noted in Section 6.6 that crack initiation in the single fiber
axisymmetric models lead to immediate catastrophic failure of the single-
fiber composite. This was in contrast to the results presented in Section
6.4 for the axially loaded, longitudinal section models using the gen-
eralized plane strain anaiysis. There, the many surrounding unbroken
fibers were able to absorb the energy released by the crack formation.
Both analyses are presently set up to hold a constant average applied
stress during the crack propagation and subsequent ‘djustment increments.

Baxed upon the results of Section 6.6, it would be better to perform the
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single-fiber composite experiments under displacement control rather than
load control. Then, when plastic deformation, crack initiation, and
subsequent crack propagation occurs, the average applied stress will drop,
allowing the crack to be arrested. Crack opening displacement measurements
can then be made before an additional increment of composite displacement
1s applied.

Addition of a constant displacement loading scheme to the existing
axisymmetric analysis will involve some modifications of the computer
program,

In conclusion, analysis methods are now well-established. Use of
these analytical tools in performing detailed parametric studies remains
to be completed. In conjunction with these analytical studies, experi-

mental verification also remains as an important task.
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APPENDIX A

EVALUATION OF INTEGRAL COEFFICIENTS

FOR THE GENERALIZED AXISYMMETRIC ELEMENT STIFFNESS MATRIX

In Section 4.2.2, it was shown that a critical step in forming
the exact clement stiffness matrix for a toroidal finite element of tri-
angular cross section is the integration of the product of the strain-
digplacement relationships and the constitutive relationships over the
volume of the clement, as described by Eq. (20). This operation led to
the six integral relationships given in Eq. (24). 1In this appendix, a
procedure for evaluating the three integrals having % terms in their
Integrands is presented. The three integrals to be evaluated are repeated

here, i.c.,

2
I5 ff—l-; drdz (A-1)
r/z

In Figure A-1, a planar section of the element is shown for

reference to geometrical considerations in evaluating Equations (A-1).
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FIGURE A-1. Geometric Definition of the Triangular Element in the
r-z Plane.

As Figure A-l indicates, the triangle, i, is defined by the lines
bounding its sides, i.e., le, L23. and L31, each of which is

described by the equation shown. For example, line L23 is expressed as

z @ m,qr + b23 (A-2)

where Myq is the slope of L23 and b23 is its z-intercept, defined as

w. mdz 37 %
2 -
3 Ar Xy - ¥,
- (A-3)
. (22r3 24T,)
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The equations for the other two lines and their coefficients can
be obtained by a cyclic permutation of the indices of Eqs. (A-2) and (A-3),

i.e.y, 1 23 » 1, FEquations (A~1) can be directly integrated with

respect to z to yleld

I, - ] Spdr (A-4)

Equations (A-2) are substituted into Eqs. (A-4) to give

r r r
2

3 1l
- | L 1
14 J r(m3lr+b31)dr+I (m23r+b23)dr+] (m12r+b12)dr
5 r3 ¥2

r r r
2,

3 2 1, 2
15 = [ 5;(m31t+b31) dr+J (m23 23) dr+] 5;(m12r+b12) dr (A-5)
rl r3 r2

3, 3 [ 1, 3
1 ¢ ™ [ 3-;(m31t+b31) dr-o-J (m23 23) dr+J (m1 Z\:+b ) dr
T 3 r2

2,

L o R IR S LA e SR e
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Equations (A-5) can now be expanded and integrated term-by-term with
respect to r fairly easily. The details of this operation are, however,
quite lengthy, and the results only are presented below. In each case,
only the first term is shown, the second two terms being obtained by a

cyclic permutation of the indices, as described in Section 4.2.2,

I “’12 31)1‘“ +(m yby =gy bgydTy + (“‘12 31’r (A-6)

5"

2 t
'53 12 31)1‘“'1*‘ 1212731 31” + ("‘12 12 “‘31 byy)Ty

+ Lad
+ g(my,- 31)" +

The expressions for 14’ IS’ 16 derived above are valid for the most
general triangular geometries, i.e., when Tys Ty and r, are distinct
and not equal to zero. For certain orientations of the element, Eqs. (A-6)
are not valid; these orientations are described and dealt with in Appendix
B.

By substituting the expressions for the slopes and z-intercepts of
the various triangle sides into Eqs. (A~6), then collecting and rearrang-

ing terms somewhat, the expressions in Eqs. (26) through (28) are obtained.
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However, it was found that computer programming of these integrals is
easier and more direct when they are left in the form shown above. This
is especially true when logical decisions regarding special element ge-

ometry are programmed.



APPENDIX B

NUMERICAL DIFFICULTIES WITH SPECIAL GEOMETRICAL

CONFIGURATIONS OF THE AXISYMMETRIC ELEMENT

The expression for the six integrals required for a full axisymmetric
element stiffness matrix, as given in Eqs. (25) through (28), are valid
for the most general geometries, i.e., when £ys Tpo and I, are distinct
and nonzero. However, there are three situations which require special
treatment. These are:

+ When one of the node points of the triangle lies on the axis

of rotation, i.e., r = 0,

» When any two of the node point radii of the triangle are equal

but nonzero.

* When any two node point radii are zero.

Each of these three cases are dealt with in the subsections that follow.

B.1. One Note Point Radius Equal to Zero

In examining the expressions for 14, IS’ and 16 (Section 4.2.2 or
Appendix A), it can be seen that logarithmic terms are involved. When
a node point is iocated on the axis of rotation, its corresponding log-
arithmic term becomes infinite., However, by examining the logarithmic
term of interest and its coefficient, which consists of the z~intercept
terms of the two lines converging on the node point in question, it is
obvious that the intercept for both of these lines is the same. In other
words, the limit of the logarithmic term and its coefficient can be shown

to exist by an application of L'Hospital's rule [17], and this limit is
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always equal to zero. Accordingly, whenever the argument of a logarithmic

term is equal to zero, the term and its :oefficient are simply deleted.

B.2. Two Node Point Radii Equal but Nonzero

When two rodal radii of an element are equal, the element side
between them is parallel to the axis of rotation, and the expressions for

mij and bij’ the slope and z-intercept of that side, become infinite. For

example, 1if r, = ry, an examination of Eqs. (A~3) quickly confirm the
problem. This singularity is easily removed by considering the form of
the integrals in Eqs. (A-5), in which the integrations with respect to r
have yet to be performed. Note that the integrals involving myq and b23,

the terms in question, also have limita of r, and LY Thus, the integral

is identically equal to zero and these terms can be omitted. In the
implementation of the formulas given by Eqs. (A-6), this objective is
accomplished by defining the m and b terms of element sides parallel.

to the z-axis to be zero, i.e.,

For r, = r

1"y

(B-1)

miy - bij =0

B.3. Two Node Point Radii Equal to Zero

When two of the element node points, say Node 1 and Node 3, lie on

the axis of rotation, as indicated in Figure B-1, we observe

El - E3 =0 (B"Z)
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FIGURE B-1. Element Node Point Identification.

When the above relations are substitute into Eq. (13) we have

q
4 " 4 }
u = 3} 1 0 z 0 0 0 0
w1 0 C 0 1 0 zl 52
u 1l r 2 0 0o O 0
2 2 2
p, - < ? (B-3)
\ v, > 0 0 O 1 r, 2, 54
w 0 0 O 1 0 =z £
I 3 e )
or

{5}i = [Toojfgi}
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(B-4)
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and the assumed displacement field tak:s the form

r + 562 (B=5)

(e"\ © 1 0 o0 o o] ]|¢&
0

€0 000001< >

<yrz>.- 0 0 0 0 1 of]¢ (B-6)
€

<) o1 0 0 0 off"s
\ %5,

or

where (COO] 1s the shape matrix for an element with two node points whose
radii are zero. By substituting this shape matrix into Eq. (21) and
performing the indicated multiplication and integration, we obtain the

element stiffness matrix for this geometry. 1In the case of an elastic,

isotropic material, we have

o

o 0 o 0
le 0 0 0 2\oxx
0 o
_—_ 218 o 90 (B-7)

(kyoly® TR (1-29) o 0 o0
SYIMETRIC (-}-v)llo

(1-v11,

. ——
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Similarly, for a transversely isotropic material in the elastic range,

0 | 7
[Ioo'l * 2%‘

SYMMETRIC

where the quantities Q, T, and F are as defined in Eq. (29).

I 2(1-1eP)

I

ojo | o ] '
ojo | o | wrepyy,
olo o | o
o, 0 | o (B-8)
=T dey
-
For an

{sotropic material in the plastic range we have, for two nodal radii

equal to zero,

P
o) 0
| o wys o8l a5l [
(u-(-—uﬂ-u. )X
t
= 20F
“‘oo' "(m)
SYMMETRIC
‘e
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, (=,

Where A, A', and B are defined in Eq. (30).

The special form of the strain-displacement matrix, as given In

Eq.

type of material response be re-derived.

(B-6), also requires that the back substitution matrices for each

These are presented below.

For an isotropic material in the elastic range we have,



(B E

ooli - (1 + vf?I>-

2v)

For the elastic, transversely isotropic case,

0 0

0 (1-T+ F)

0 (viT+ F)

[0 -1+ F)

0o o0 (V+T)

0 0 (1-T)

- ’
0 3y Y
o 0 F

=

where T, F, and Q are as defined in Eq. (29).

0 1 0 O 0
0 2v 0 O 0
1-2

0 0 0 ¢( 2

0 v 0 0 0

For an isotropic material in the plastic range,

2
% 45,5
0 2a-(AL ;1 3,
S,,8,,+5,,8
0 aral-LL 22B 22733,
- E
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o0t T T+ . 8118127515533 .
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(B-10)

(B-11)

51822

B

2
522

A=

B

529512
B

S,,5

22233

B

with A, A', B, and Sij having the same definitions as presented in

Eq. (30).

—

(B~12)



APPENDIX C

LOAD APPLICATION IN THE DISPLACEN: =T FORMULATION

OF THE FINITE ELEMENT ANALYSIS

A detailed description of the axisymmetric analysis was presented
in Section 4. The generalized plane strain analysis was included in the
first-year report [l1]. Details of the computer programming were presented
in Appendix A of that report., Of particular interest, however, is the
method of load application.

The present finite element analyses are displacement formulations,
which is ideal in terms of accounting for the symmetry boundary conditions
assoclated with the periodic arrays assumed. However, this presents a
difficulty in terms of load application, since it is desired to be able
to specify applied stress increments rather than applied displacement
increments. In early works [4-6,8,9] this problem was handled by solving
a series of displacement boundary value problems for each increment, one
displacement boundary value problem for each component of loading incre-
ment to be applied, viz, Ex’ 5y, Ez’ AT, AM. These individual solutions
were then scaled as required and sanerimposed to obtain the actual solution
for the increment. Since it is the matrix inversion assoclated with the
solution of each boundary value problem which consumes most of the computer
time, doing this a number of times within each increment was very inefficient.

Using a method introduced by Branca [10], it is possible to solve
for any combination of mechanical (Ex, 5y, Ez) and hygrothermal (AT, AM)
loadings in one step. This technique was incorporated into the basic

micromechanics analysis when it was first formulated by Miller and Adams [2].
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Tt continues to be used in the present program versions described in this
report, having been refined and improved a number of times. A brief
description of thi: "Branca" technique, as used in the present program,
will be included here, for reference.

The application of mechanical tractions to the finite element model
1s considerably simplified by taking advantage of the rearrangement of the
global stiffness matrix {K], and the toval force vector, {F}, using the
method of Branca [10]. The displacement boundary conditions for the re-
peating unit finite clement model were specified in order to maintain
continuity of the material continuum while satisfying symmetry requirements.
Specifically, referring for example to Figure 6, displacements in the x-
direction of node points along the right<hand vertical boundary must be
uniform. Likewilse, displacements in the y-direction of the upper hori-
zontal boundary must be uniform, and the displacements of all node points
in the z-axis direction must be uniform (the generalized plane strain
condition). Wher the overall force-displacement equation of the system is
considered, {.e.,

{F} = [K] {§} (c-1)

one can see that all of the boundary node points involved in mechanical
loading will have identical displacements with respect to the direction

of the load application. These identical displacements allow combining of
certain terms in the global stiffness matrix that result in the replace-~
ment of the applied forces on boundary nodes by zeroes, in the manner
described by Branca [10]). Successive modification of the global stiffness
matrix for each boundary node point displacement results in the following

form of Eq. (C-1) for the simultaneous application of uniform values of
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Oy ay, and 9, for an array of n nodal points

(o ] T k.. k. k K m (5. )
11 712 713 1 (2n+41) 1
0 k22 k23 . 62
0 k33 63
¢ + > = - ¢ > (c-2)
Fx - 62n-1
Fy - ﬁzn
\ Fz J i symmetric - | ~ 62n+1J

where ﬁx' Fy, and Fz are the total applied loads in the x, y, and z direc-

tions, and wre defined, for a unit thickness model, as

F =0 b
X

¥ = 3 C"3
o 8 (c-3)

=
#

¢ _ab
A

wvhere a and b are the lengths of the region of analysis (e.g., Figure 6)

in the x and y directions, respectively. Modification of the global stiff-
ness matrix is accomplished by summing the stiffness coefficients of un-
known but equal boundary displacemeunts throughout the system of equations.
This results in a set of three equations, representing the forces along the

three moving boundaries of the model, which are placed in the last three
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columms of the global stiffness matrix, outside of the bandwidth of a
normal stiffness matrix. Avother summation is now performed on the coef-
ficients in these three equations corresponding to equation numbers repre-
senting loaded boundary nodes. These coefficients are all added to the
terms in the last three rows of the three outside columns, which now
represent the total applied loads in the x, y, and z directions., The
system of linear, simultaneous cquations that results from this process
involves a stiffness matrix that is no longer symmetric, and whose
bandwidth has been violated., To further complicate matters, the banded
portion of this stiffness matrix must be stored in rectangular form, as
described by Zienklewicz [12], to minimize the core storage requirements
of the system of equations. The coefficients for the summation of force
equations are stored along side the rectangularized, upper triangular
portion of the stiffness matrix.

This system of equatlons is solved using a highly specialized form
of Gaussian climination in which the stiffness matrix and the load vector
must be further modified. This solution technique requirec a great deal
more bookkeeping than is the case for more conventional applications of
the Gaussian elimination technique. The important advantage of this
procedure, however, is that it allows the simultaneous application ot
external tractions in all three coordinate directions, and the application

of thermal or moisture loads in a single step.
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