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of an element

n

	

	 Octahedral shear stress-octahedral shear strain
parameter

2M 

	

	 Octahedral shear stress-plastic octahedral shear
strain tangent modulus

r,z,0	 Polar coordinate directions

r,z	 Polar coordinates of an element's centroid

Sij	 Stress de%iator component

AU 	 Strain energy density

6(AU) i	Change in strain energy density

x



S mbol	 Meanin

u,v,w	 Node point displacement components in the x,y,z
directions for Cartesian coordinates, in the
r,6 0 z directions for polar coordinates

x,y,z	 Cartesian coordinate directions

xij0yij	
Distance between nodes i and j in the x and y
directions, respectively

Dot over symbol (') Denotes incremental value

'lector Symbol

{F} i 	Element node point force vector

{F}	 Global node point force vector

{Fe0 }	 Element dilatational strain-induced node
point force vector

[R) 
i 	

Reaction node point force vector representing
the unloading of a failed element

{d} i	Element node point displacement vector

{e}	 Strain vector

{e 0 }	 Hygrothermal dilatational strain vector

{ Q }	 Stress vector

W	 Vector of generalized element coordinates

Matrix.-Symbols

[A] i	Element strain-displacement matrix

[E]i	 Element shape matrix, global coordinates

[C] i	Element shape matrix, generalized coordinates

[H]	 Material properties matrix

[k] i	Element stiffness matrix, global coordinates

[k] i	Element stiffness matrix, generalized coordinates

[K]	 Global stiffness matrix

[T]	 Transformation matrix relating generalized to
global coordinates

xi



Greek Symbols	 Meaning

a Coefficient of thermal expans-.1 on

S Coefficient of moisture dilatation

61j
Kronecker delta

6 Virtual displacement

A Element cross-sectional area

eX, ey, e z Normal strain components, Cartesian co°)rdinates

e
r,

e
z,

ee Normal strain components, polar coordinates

YXy , YXz, Yyz Shear strain components, Cartesian coordinates

Yrz,Yre,Yez
Shear strain components, polar coordinates

Yo Octahedral shear strain

K Constant denoting strain in the z- directior_

V Poisson's rati o., for an isotropic material

V1 Major Poisson's ratio for a transversely
isotropic material

Indicates that a cyclic permutation of
indices is required

ax,ay,az	 Normal stress components, Cartesian coordinates

ax ' ay, a z	 Average applied normal stresses, Cartesian
coordinates

ar, oz, ae	 Normal stress components, polar coordinates

ar, 
a

z	
Average applied normal stresses, polar coordinates

T
Xy, XZ, yZ

T 	T	 Shear stress components, Cartesian coordinates

Tr z, Tre Tez	 Shear stress components, polar coordinates

T o	 Octahedral shear stress

xii



SECTION 1

TN'.l'RODUCTTON

The present report includes work performed during; the second yell

a NASA-Lewis grant to study the energy absorption mechanisms during c

propagation in metal. matrix composites. The first- ,year work was repo

In Reference [1). This previous report contains a literature review

micromechanics analyses of unidirectional composites, and a discussic

the relation of these prior studies to the pi:esent problem.

During the first year, an existing elastoplastic, finite element

analysis and associated computer progratta [2,31 was used to predict the

response of a unidirectional boron/aluminum composites to axial loading,.

For this purpose, it 	 section model was constructed. This modal

permitted the study of the influence of a broken fiber tin the load dirt rl.-

button in adjacent unbroken fibers one and two fiber spacings .away. It

also permitted the determination of the rate of reloading, of the broken

fiber away from the site of the break. The influence of plastic deforma-

tion of the aluminum matrix on the stress distributions was of special

interest. The addition of a crack initiation and propagation capability

was initiated, but minor programming difficulties prevented results ho ng

presented in the first-year report.

The goal of the second- ,year study was to complete they crack pxopaga-

tiot, addition and generate detailed numerical results. Also, it was desired

to construct larger longitudinal section models, to determine stress

redistributions and influences of a broken fiber beyond the second adjacent,

fiber, and to determine the extent of influence of boundary loading
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conditions. In addition, the existing generalized plane strain analysis
1, a

was to be converted to an axisymmetric analysis, to permit the study of

the response of a single fiber embedded in a cylindrical sheath of matrix

material.

These second-year goals were achieved, as summarized in the next section,

and described in detail in the remainder of this report.



SEC'T'ION 2

SITMARY

The crack initiation and propagation capability became operational

early in the second-year study. The entire analysis was then converted from

a Sigma 7 computer system to the University's new CDC Cyber 730/760 computer,

which had just been installed. The much greater capacity and speed of

this new system made it practical to analyze much 1.argvr finite element

grid arrays. Thus, new models were constructed, involving a greater number

of fibers adjacent to the broken fiber, and greater lengths along the

fiber axes. The results obtained using these larger models were then com-

pared with previous results. The results of the first-your study were also

extended beyond first failure, to analyze crack propagation behavior.

In addition to the longitud;n.al section models, transverse section

models were also r-onstructcd and analyzed. These included arrays of un-

broken fibers, and also a single broken fiber surrounded by unbroken fibers.

Although axial loading was of primary interest, transverse loading was also

studied. This permitted the comparison of results with rather transverse,

loading results available in the literature [4-6], for verification purposes.

The crack propagation capability of the micromechanics analysis was

found to perform very well, and is now considered to be fully operational.

The conversion of the generalized plane strain mieromechanics analysis

to an axisymmetric :formulation proved to be more difficult than anticipated.

The difficulty was not in the basic reformulation, but in the detailed

modifications required in the associated computer program. Ultimately a

second program was developed, as a more practical approach than attempting
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to make the axisymmetric formulation an option in the original program.

The axisymnetric analysis and associated computer program is now operational.

Several example problems are presented in this report to demonstrate its

capabilities.

While minor improvements will undoubtedly be incorporated into each of

the now operational computer programs during the third-yeard effort, they

are essentially complete. Attention will thus be focused on correlating

predictions with available experimental data, and making parametric studies

of the influences of various experimental variables, such as fiber volume,

matrix properties, locations of fiber breaks, etc. Also, usc , will be made

of a new three-dimensional finite element analysis recently completed as

part of anuther study [7], to examine further the three-dimensional nature

of stress states around broken fibers. This analysis will be useful directly

in analyzing practical problems, and also for verification purposes in

establishing tl, ,e limits of applicability of the two-dimensional generalized

plane strain and axisymmetric analyses, which are more economical to utilize.

It is anticipated that NASA-Lewis will be generating specialized and

carefully controlled supporting experimental data also, primarily using

single fiber specimens, to study fiber fracture and matrix deformations.

The various analyses will be correlated with rhese experimental data.

k-'

f

f



5E ITION 3

GENERALIZED PLANE STRATN ANALYSIS METHOD

The analysis formulation was presented in detail in the first-yeas-

report [1]. This has not changed, the governing equations and the flaw

chart which defines the operational features of the computer program modi-

fied to implement the analysis, which were presented In References [l],

remain valid. Thus, only a brief summary need be given here.

The primary analytical tool used in tine present study has been the

micromechanics finite element analysis program developed by Miller and

Adams [2,3]. This analysis was developed to investigate the twicrostress

state in unidirectional composite materials subjected to axial and trans-

verse mechanical loads, thermal gradients, and dilatational stresses duo to

moisture absorption by polymeric matrix materials. Among the special

fC,'Itures of th!!s prior University of Wyoming analysis: are its ability to

model the elastoplastic stress-strain response of the isotropic matrix

material,, and in concert with the determination of thermal and moisture

dilatational stresses, the functional. dependence of the matrix material

properties on temperature and moisture content. In ether words, the

elastic or plastic properties of any matrix material finite element are

automatically computed to reflect the state of stress and the environmental

conditions of temperature and humidity. The adjustment of material prop-

erties is incorporated with the incremental loading technique that Is em-

t
	 ployed in this program. Once the initial temperature, moisture content, and/

`w	 or elastic stress level for the continuum have been specified, additional

loads, be they mechanical or environmental, aro introduced in increments
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small enough to permit close approximation of the nonlinear matrix material

properties by small linear segments. A detailed description of this technique

is presented in References [1,2,3].

The bulk of the elastoplastic formulation in the present analysis pro-

gram stems from previous work done by Adams [4-6,8,9]. The development of

a generalized plane strain formulation, incorporation of the Branca solution

technique [10], hygrothermal loading, and material properties dependence

on temperature and moisture was the subject of Miller's Ph.D. research [2],

while the addition of crack initiation and crack propagation capability

follows the approach developed by Adams [4-6]. The analysis incorporates

standard finite element techniques (see, among many other similar sources,

References [11,12]). In fact, the primary organization and flow of the

original computer program closely followed the suggestions of Appendix A

of Reference [12]. This flow and organization has subsequently been rather,

severely altered to include crack propagation capability.

The finite element used in this study is a modified version of the

familiar constant strain or simplex triangle. For this element-, a linear

displacement field within each element is assumed, to arrive at a functional

representation of the potential energy of the system. The constant strain

triangular element has some well-known limitations, but for the purposes of

micromechanics analyses, it has proven to be an accurate, economical, and

versatile tool. The trade-offs involved in the choice of the constant strain

triangular element instead of one of the higher order finite elements is

covered quite well by Miller and Adams in Chapter 3 of Reference [2].

A primary purpose of the present study was to investigate the affects

of flaws in unidirectional boron/aluminum composites, with the eventual



goal of predicting; the strength of such composites given a certain statistical

distribution of internal flaws. 'those defects manifest themselves in two

'	 forms: a discontinuity in one or more boron fibers, or a localized void

in tlae aluminum matrix. The loading condition of primary interest is that

of tension applied parallel to the fiber axes. With suitable modification,

a so-called longitudinal model was analyzed with the micromechanics program

in its original form to investigate the problems of modeling a flaw, generally

a fiber discontinuity, and to evaluate the resulting localized stress concen-

tration and the local plastic deformation it caused. The redistribution of

the load to the broken fiber could also be characterized, but only up to the

n^int at which a matrix element failed (crack initiation). For further

sta 'y of the load capability of the flawed composite, a crack propagation

scheme is required. This capability permits a characterization of the

energy required to isolate the defect in a "zone" of plastically deformed

matrix material, or alternatively, the total energy capacity of the system

at the point of catastrophic failure.

The approach to crack initiation and propagation taken here is

known as the "failed element" approximation as employed by Adams [4-6).

When an element in an area of high stress exhausts its strain energy capacity,

it fails. From this, we assume that a "crack" has formed and has the

dimensions of the failed element. This approximation has two implications,

the most important of which is that a finite amount of material is removed

from the system, which in an actual material is not the case. The other is

that the crack is not likely to close up on itself in subsequent loading; b0-

cause of its exaggerated width. These effects can be minimized to a pr.w tica7



degree by making the finite element grid very fire and uniform in the

area of anticipated crack initiation.

It is not enough to simply delete an element from the finite element

grid when it reaches its ultimate stress. The finite element method in-

volves the maintenance of force equilibrium at every node point in the

array, as discussed in Appendix A of the first-year report [1]. This

equilibrium must be maintained when an element fails or unloads. Thus,

to represenc the unloading due to element failure, node point forces which

are equal and opposite in sense to those equivalent to the state of stress

within the element at its failure level must be applied at its node points.

In addition, the failed element's material properties must be set to zero,

so that the element makes no further contribution to the global stiffness

matrix, and all of its computed values of stress and strain are set to zero.

This insures that the element is completely unloaded and that no stresses

will be developed in it in subsequent load increments.

In the present analysis, element failure can occur in one of two modes:

when both the computed octahedral shear stress and the plastic octahedral

shear strain reach their maximum allowable values (maximum distortional

energy criterion), or when the hydrost Vic tensile stress in an element

exceeds the tensile ultimate strength of the material. This second failure

criterion is also known as failure due to ultimate cleavage, and failure occurs

whenever a tensile principal stress exceeds the ultimate tensile strength.

Complete details are given in Reference [1].



SECTION 4

AXIMIMP.TRIC ANALYSIS mETin)

4.1. Purpose of the Axisymmetric Formulation

The development of an axisymmetric triangular finite element for the

micromechanics analysis program was first proposed after the preliminary

results of crack propagation studies using two-dimensional, generalized

plane strain models had been examined. The difficulties and uncertainties

of representing longitudinal loading of a square array of boron fibers

embedded in an isotropic matrix led to the finite element models to be

discussed in Section 6. As will also be discussen in considerable deta7tl

in Section 6, the effect of fiber spacing on the state of stress and the

pattern of crack growth around an internal flaw is quite significant. It

was thought that an axisymmetric formulation, allowing a fiber of circular

cross section to be modeled, together with possible experimental correlation,

might lead to the development of guidelines for the em;loyment of the much

more versatile generalized plane strain analysis. The parameter that is

sought is an "effective" fiber spacing, that will accurrtely represent

the relative affect of intact fibers surrounding a broken fiber, fibers

that are, in general, not all equidistant from the flawed fiber.

The axisymmetric finite element model provides a correct representa-

tion of a single boron fiber 1w an annular sheath of aluminum matrix, as

illustrated in Figure 1. The thickness of the annular sheath of aluminum

can be changed quite readily, allowing the stress distribution around fiber

flaws to be studied for various apparent fiber spacing conditions, with the

circular cross section of the fiber being accounted for. It is proposed

that a test specimen resembling this configuration be fabricated, and the
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amount of displacement between the broken ends of the boron fiber ate a

specified load level be measured. This displacement could then be compared

to the fiber displacement predicted by the micromeehanics analysis, and used

to confirm Its validity. In addition, by careful: correlation of these

results, including the state of stress predicted by the axisymmetric formu-

lation, to the strain and fiber displacement measurements of test specimens

containing an arbitrary number of continuous fibers surrounding one dis-

continuous fiber, an e£fcactive fiber spacing could be arrived at for use

in the two-dimensional generalized plane strain analysis. The ultimata

objective, of course, is to verify they limits of accuracy of the two-

dimensional analysis, and so avoid to the extent possible the much greater

expense and complexity associated with using the three-dimensional formu-

lation now available [7].

Initially, the implementation of an axisymmetric formulation wits en-

visioned to be a relatively simple task. However, duce to the special,

nature of the existing micromcchanics computer program and the requirement

for maximum ac our tcy throughout the region being analyzed, the development

of an axisymmetrie element proved to be considerably more complicated than

was anticipated. Spec:ifif •aliv, the manner in which boundary conditions and

loading conditions are combined to allow a unique solution technique

necessitated the complete rewriting of these routines for use in the axi-

symmetric computer program. In addition, since they material lying on the

axis of radial symmetry (the z-axis in Figure 1.) must necessarily be included

in the analysis, the familiar approximate form of the axisymmetric element

stiffness matrix [121 was found to be unacceptably inaccurate. In the sub-

sections that follow, the development of an exact axisymmetric triangular

element is presented and the reasons for its special form are discussed.

a
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Figure 1 Region of Interest for the Axisymmetric Analysis
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4.2. The Axis mmetric^Finite Eloent

4.2.1.cir^ymmetric I2^lAtio alit It

The problem of analyzing it single fiber encased in an annular sheath

of matrix material, and subjected to axial and radial tractions plus hygro-

thermal gradients, falls into the class of problems known as torsionless

axially symmetric states. These problems are generally defined relative

to cylindrical coorcinates (r,b,z), ar.d can b- compared to the class of plane

strain problems defined relative to Cartesian coordinates (x,y,z), as

follows:

o The in-plane stress coma.. ►nents of the cylindrical system,

ca r and oz , correspond to ox and o  of the plane strain

formulation, chile a () is the out-of-plane stress component,

corresponding; to a  of the Cartesian system.

o The displacement components (u,v,w), corresponding to the

(r,o,z) coordinates are such that (u,v) are independent

of the polar angle, and the out-of-plane displacement component,

v, vanishes. That is, u r f(r,z), w - f(r,z), and v w 0.

When the strain-displacement relat •Lons and the stress-strain relations

of the theory of elasticity are applied to this state of torsionless axial

symmetry, it is found that i Liz 22 	 0 0, and the stress components ar,

o© , o z and r rz are functions of coordinates (r,z) only.

An axisymmetric finite element is in the form of a toroidal ring of

constant cross section, as illustrated in Figure 2. The node points of

such an element are in fact nodal circles, and the volume of such an

element is dependent on both its cross-sectional area and the radii of these
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FIGURE 2. Solid Axisymmetric Triangular Element,
Polar Coordinates

nodal circles. In addition, nodal loads are a function of node point

radii and the load per unit of circumference. The stress and strain vec-

tors pertinent to Figure 14, as well as the strain-displacement relations,

are shown below. Note that the out-of-plane strain at a point, E
© , 
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(3)

funct ton only of the radial displacement, u, and the radial coordinate, r.

Strossos and etrains art, related by at material properties matrix, [111, form-

flip, tilt , following constitutive equation for ally Liven element;

( I')
l " fit) 1 1 t 1 1	 (u)

The material properties matrices are given in Appendix A for 'Isotropic

elastlo and transversely isotropic elastic materials, and for isotropic

materials In the plastic rango. In general, the forms of the material prop-

ertivs matrices; for axially symmetric conditions are identical to those

found in rho case of" f;enoraal ized plane strain, in that the Goof ftelents

relaat ing tile* vaarious corresponding, stress and strain components rare

identical. However, most te'xt:a dealing with ax:laally symmetric problems

arrange the components of the stress, strain, and material properties

tensors 
fit
	 order different from that presented here. To have employed

tilt, more generally accepted sequence of arranging these tensor components

would have made :it nocc- nary to rewrite all of those routines in the computer

program in which stresses, strains, failure modes, and crack propagation

are determined. To avoid this difficulty, a.11 relationships are derived

here with the stress and ;strain components arranged in the same order as

found in the generalized plane strain relationships presented in Reference [1].
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4.2.2.At^nr^xima ► t{c^ Axt.aa i n^aCxic .1A

Art Is the c;uiv witl ► the generalized plant, strain triangular vIenumt M,

it constant strain field is assumed to exist within each element, which leads

to the derivation of it shape matrix relating element strains to nodal dis-

placements. While this derivation is much like that for it plane strain

triangular e.lcment, the presence of the r-coordinate in they denottifiitor of

several of the terms :leads to considerable difficulty in ovaluating the

roe*fficlonts of the element stiffness matrix. The procedure is briefly

outlined below, with Figure 3 provided as a visual aid in undo-rstanding tile,

problem.

z,w	 w3,Fz3

3 ---••- u 3 . F r 3

1

wl zl
	

-A Area of Triangle

(i)
w2,Fr2

► ti	 rr
I	 ^

- u2 , Fr2

r,u

I

FIGURE 3. Finite Element i in the r-z Plane
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By choosing a dinpl ►ceme. ►t field in the simplest linear form (see
L	

Eq. A-12 and the related discussion in Appendix A of Reference- [1]), wu

arrive at the following rolationship,

u

wl.

N 1, 0 N 2 0 N 3 0 u2

w
j

0 N 1 0 N 2 0 N 3 w2

u3

w3

(5)

where*

N I 	2A
"-L [tit. +b1r+c.1 ZI

2AN 2 	
I [a2 + b 2 r + c

2 Z]

N3	
-
2A
L [a l + b 3 r + c 3 x]

DifferontintIng Eq.	 (5) and applyltig 1,*,qt► .	 (3)	 we have:

rr	 1 2 3

zz 1 2 3

'Y r z
2) A 2AN

-- 0
2ANII
----%	 0

2AN 3

0
r r r

C 00 c b1 c2	 b2 c3	 b3

( 6)

u

w

u2
(7)

w2

u3

w3



17

a2 = r 3z1 - r 1 
z 
3	

all r iz 2 - r2z1

b2	 z 3 - z 	 b3	 z  - z 2	 (g)

c2^r1-r3	 c3r2-rl

In whlrh

al M r 2 
z 3 - r 3 

z 2

blwz2-z3

c  . r3 - r2

the 4 x G rectangular matrix in Eq. (7) is the "shape matrix," [B], for tale

axisynunctric triangular element, and 
call 	 used to form the el.em,rnt

stiffness matrix for individual elements. Note that the equation for the

shear strain, I rz , has coefficients with r terms in the denominator. When

a node (or nodes) of any element lies on the axis of rotation, i.e., r = Q,

singularities in the shape matrix result. In addition, when one considers

the operation of forming the element stiffness matrix,

[k] i -^	 [B] T [H] [Bld(Vol)	 (9)
Vol

and the form of the shape matrix, [U], in Eq. (7), it is obvious that ,a

term-by-term integration involving the r and z coordinates of the node

points is necessary. The r terms that appear in many of these expressions

result In sonic rather tedious calculations, and lead to logarithmic terms

which can also result in singularities in the stiffness matrix. Ian the

case of a plane strain or generalized plane strain element, the y volume

integral required by Eq. (9) is simply equal to the cross-sectional

area of the element times its thickness, as described, for example, in

References [11,12]. To avoid the difficulties presented by the r terms

in the denominator of the shape matrix terms, an average shape matrix, [B[
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can be formed, using the coordinates of the centroidal point of the triangle

as the element's coordinates, and an element stiffness matrix can be calcu-

lated directly, i.e.,

(k) i ' 27rJ J T [HJtB]re	 (10)

where

r vR (r 1 + r 2 + r3 )/3	 (11)

and

r • (z1 + x 2 + z 3 )/3	 (12)

Solutions using the approximate element stiffness matrix of Eq. (10) have been

found to be quite acceptable as long as the planar dimensions of the indivi-

dual elements are small compared to their radial coordinates, say on the

order of 10 to 1. In particular, hollow cylindrical bodies can be very ade-

quately analyzed using, the element stiffness formulation of Eq. (10). How-

ever, when the cylindrical body is solid, or possesses a very thick wall,

large numerical errors are encountered when the approximate element stiffness

matrix is used. In the present analysis, the axis of rotation is necessarily

part of the region of investigation, and being composed of the very stiff

boron fiber, carries a significant portion of any applied axial loads. Trial

analyses using the approximate centroidal formulation of Eq. (10) indicated

that very large numerical errors, on the order of 15 to 20 percent, were

present in stress components that were normal to the direction of :he applied

axial. load. After examining these numerical errors for several loading

situa-ions, and considering the need for the precision required if the

objectives of the axisymmetric analysis were to be met, it was decided to

formulate an exact axisymmetric element stiffness matrix, i.e., to perform

the integrations indicated in Eq. (9).
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4.2.3. Exact Axisymmetric Element Formulation

In this section, a fairly thorough description of the derivation of

the integral form of the axisymmetric triangular element is presented. In

order to maintain the flow of the derivation, some of the more involved

mathematical procedures have been placed in appendices, while the results

of the procedures are used directly.

4.2.3.1. Strain - Displacement Relationships

As is the case for planar, constant strain finite elements, a simple

linear displacement field is chosen for the axisymmetric triangular element.

This classifies it as a "simplex" element, but unlike the planar, or unit

thickness, elements, it is derived in terms of the element's generalized

coordinates, {f,). Planar elements, with their simpler strain-displacement

relationships, allow direct evaluation of the shape function coefficients in

terms of the finite element model's global coordinates. The displacement

field relating the displacements of a point in the region of analysis to its

generalized coordinates for a polar problem can be expressed .as,

u	 1 r z 0 0 0
{w} i	 0	 0	 0	 1	 r	 z {,) i	(13)

This relationship can be shown to meet convergence criteria for conforming

finite element displacement fields [10]. Substituting the nodal coordinates

of an element such as that shown in Figure 3 into Eq. (13) yields
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U1 1 rl z 0 0 0 C1

wl 0 0 0 1 r zl 2
u2 1 r 2 z 2 0 0 0 3

w2 0 0 0 1 r  z2 4	 (14)
u3 1 r3 z3 0 0 0 5

w3 0 0 0 1 r3 z 3 6

or

{6}i . [T} 1 { 0 1	(15)

where ks)I is the element nodal displacement matrix, {F;} i is the element

generalized coordinates matrix, and [T) i is the element traiasfcrmation matrix

that relates the two. By examining the transformation matrix in Eq. (14),

it can be seen that only translations are involved. In other words, the

element is not derived with respect to a "natural" coordinate system, as

in the case of it beam or isoparametr.ic element. However, due to tine need

to evaluate specific integral. coefficients, the terms t. I through 
t'6 

cannot

he evaluated directly in terms of the global coordinates, as is tale case for

a plane strain simplex triangle. Solving Eq. (15) for {F} i we obtain an

equation relating the generalized coordinates to the nodal displacements,

{f} i 	[TJi1 {cS} i 	(16)

where the inverse of [T}i can be shown to be [3]

1.

H
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F-

(TI-li , 
I

a1 0 a2 0 a3 0

b1 0 b2 0 b3 0

c 1 0 c2 0 e3
0

0 a1 0 a2 0 a3

0 b1 0 b2 0 b3

0
Cl

0 e2 0 c3

in which A equals th o triangular cross-sectional area of the element, and

thr coefficients a V b  ,ind c  are as defined in Eq. (7).

Sub4titution of rho assumed displacement field relationships, Eq. (14),

tnto the definition cal' Litt, strain components, Eq. (2), leads to

e	
1

0	 1	 0	 0	 0	 0
rr

e	 0	 0	 0	 0	 0	 1	 2
zz

0	 0	 1	 0	 1	 0	
3

Yrz	 (17)

C	
x	 1	 =	

0	 0	 0	
4

00
&5

^6

or in matrix notation.

(^ ) i a cc) i t101	 (18)

where [C] i is the shape matrix in terms of the element generalized

coordinates. For global coordinates and displacements, we combine Eq. (16)

and Eq. (17) to obtain

tr'}i	 [C]i[T]il{^'}i	 (19)

which is the desired strain-displacement relationship.



4.2.3.2. Element Stiffness Matrices

For the analysis of highly stressed

composites, three distinct element stiffs

model an isotropic matrix material which is loaded below its elastic limit,

L,

	
another to modal the fibers, which may be transversely isotropic, and a

third to describe the behavior of the isotropic matrix when it is loaded

into the plastic: region. These three classes of material response are

discussed in detail in Appendix A of Reference [1]. These same relation-

ships are used to derive the required axisymmetric element stiffness matrices.

In general, a stiffness matrix relates nodal forces to nodal displace-

ments. With the forg es as known quantities, this allows the nodal displace-

ments throughout the region of analysis to be solved for, and stress

components can then be "backed out" of these displacements. The integra-

tion of the product of the shape matrix, [C] i , and the stress-strain matrix,

[H] i , over the volume of an element yields its element stiffness matrix, i.e.,

[k] i =
J	

[B]i[H] i [B] id(Vol)	 (20)

Vol

or, for an element stiffness expressed in generalized coordinates,

[k] i s
J	

[C] i [H] i [C] id(Vol)	 (21)

Vol

For an elastic:, isotropic material, after substituting Eq. (17) and Eq. (A-14)

of Reference [1] into Eq. (20) and performing the indicated matrix multi-

plications we have, after integrating with respect to 0,
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27rE
^ k) i ^ (1+v)(1-2v)

1-v	 1z -v	 0	 0	 '	 v

r2	
r ^	

r2
	 ^	 r

L_. 

2'	 r 	 0 I 0	 1 zv

1-20 + z2 1-v	
0	

1-2v

2	 r2	 2	 r

	

T 0 i 0	 j 0

SYMMETRIC	 ' 1 2 y	 0

^ (1-v

rdr. (22)

d

Integrating Eq. (22) with respect to r,

-y) I4	 I2
	 (1-01 5	 I 0	 0	 E VI 2211 I _„^ i3 	 0 .-  . U	

i 2vI^

2	 1 (1 -v) I 6 0 I (-2 - v) Il}-vI3

+-0	 0	 I 0

;YMMETRIC	 (1 - v) I 	 0

(23)

where E - Modulus of elasticity

v - Poisson ' s ratio

and the integrals are represented as
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J
I l
 Jr

rdrdz	 I4	
frJ z 

1drdz

lfrJ z

 z	

fri z
I W	 drdz	 I5	 zdrdz2
	 r	 (24)

f rJz

2

3	 zdrdz	 I6 	 L--drdz
 frJ z

The first three inteprnle, are easily evaluated, and are defined in several

finite element analy ir, texts, e.g., Reference ( 11). They are

(r 1 2	 3
+r +r ) [r 1 2-(z z 3	

^+
2 3 1	 3 1 2	 1

)+r (z -x )+r (x -z ) j 	 A(r r 2 +r )

1  -
6	 ^	 3	 3

[r1(z2 -z3) +r,) ( z3-zI ) r3(zI-z2))
I 2	 2	 - L3

(zl+z 2+z 3 )[r I ( z 2-z 3 ) +r 2 (z 3-z 1 )+r 3 (z 1- z 2 )]	 A(z1+z2+z3)

I 3	 6	 3

The into randy of II and I contain a4
	 ^	

6(
r 	 c^) term, and cite cnyidcrtiblti

more difficult to evaluate.

In additio:i, Wien r l , r 2 or r3 lie on the z-axis, the integrand be-

comes singular an(' P,)ecial procedures must be employed to evaluate these

terms. The proceditrc For evaluating these integrals is presented in

Appendix A. and the manner in which singularities in the integrands are

dealt with is describec' in Appendix B. For the most general rase, however.

the expressions for there integrals are presented below. For

(25)

Vii.
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each integral, the ,symbol E is used [11.] to indicate tha t a cyclic permu-
c

tation of the indices is necessary to obtain the full expression, i.e.,

riz2-r01	 rl
Ik	

c	
rI-r2	 In r2

(26)
r iz 2-r 2 z 1	rl	 r 2 z 3-r 3 z 2	r2	 r 3z 1-r i z 3	r3

2 1 In ri + _-------3 2 In _,... + . 	 In ..3
r l-r 2	r2	 r2-r3	 r,4	 r -rl	 r2

In a similar manner,

-(z	 2 )	1 
riz2

-r 2 z 1 2	 rlI 5	 c 4(rl-r2)[xl(3r2-rl)-z(3r1-r2)j + 2( 
rI-r2 ) In rz	 (27)

rind,

T6 • F	

zl-z2 2
[z2(11 ri-7r 1r 2+2r2)+2z 1 z 2 (5 i-11r 1r 2+2 2)

c 18(r.l-r2)

(28)

^,	 r z 2 -r z	 r
+ z2(llr2- 7r 1 r 2+2ri)] + 3( l

r -̂ 2 1)3 
In 

rl

l

The element stiffness matrix for the transversely isotropic; (fiber)

case is obtained in exactly the same manner as for the isotropic Mastic

case, except that the material properties matrix presented in Eq. (A-16)

of Reference [1] is substituted into Eq. (20). This leads to the following,

transversely isotropic, generalized, element stiffness matrix,

,
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(k)1 .
024E 1

	

(1-T)I4 1 ()'-T+ F)I2 1
	 (1-T)1	 0	 0	 PI2

	

2(1-T- F )I 1 '	 (1-T+ F) I 3	 0 (	 0	 ( +TiF )I1

k _X-VI +(1-T) I 0 —g--I	 I
2(1+v) 1	 61	 2(1+v) 1	 3

1 2(1+v)̂ 1 1	 0

SYMETRIC	 _ _ I (1-T) I1

(29)

2
where Q - (l+v)(1-v- 2 ^; )

- Ev'2
T	 E'

F - v' (1+\j)

E' - Elastic modulus in the direction perpendicular to the plane
of isotropy

V' - Poisson's ratio representing a strain in the plane of
isotropy due to a normal stress in the direction perpendicu-
lar to that plane.

For the element stiffness matrix of an isotropic material in the plastic

range, the material properties matrix presented as Eq. (A-32) in Reference

[1) is used in Eq. (20), After performing the required multiplications and

integrations, we have, in terms of generalized coordinates, the isotropic,

plastic element stiffness matrix. This expression is shown in Eq. (30).

The Sij terms are components of the deviatoric stress tensor, : o is the
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r	 octahedral shear stress and 2MT is the tangent modulus of the octahedral

shear stress-octahedral plastic shear strain curve, all of which are discussed

in detail in Appendix A of Reference [1].

Each of the element stiffness matrices given by Eqs. (23), (29), and

(30) must be expressed in terms of the global coordinates of the finite

element model before they can he used to assemblri the global stiffness

matrix. This is accomplished by evaluating the inverse of the transformation

matrix for each element, as defined in Eq. (16), and using the following

relationship:

[k] 1 = ([T]-1)T [k]i[T1_I	
(31)

The global stiffness matrix, [K], is assembled, element by element, by

a subroutine which also imposes the 1>oundary conditions required for the

specialized loading technique ( see Appendix A-4 of Reference [ 11). In this

subroutine, each element in the model is examined to determine whether it is

fiber or matrix, elastic or plastic, and the appropriate element stiffness .

subroutine is called. In these element stiffness subroutines, the strain-

displacement matrix and the stress -back substitution matrix for each element

is evaluated and stored on a peripheral device. These are required to ol, ain

element strains and stre ŝ les from the nodal displacements that the finite

element solution provides. In general,

fa)i ` [H]i[C]i[T]-li(6}i = [H]
i [A] 1 10 , = [B] 1 10 1
	 (32)

where [A] i is the strain-d.L-nlacement matrix and [B] i is the stress-back

substitution matrix.

These matrices have to be evaluated for each of the three material

conditions. The most general form of the (A ] i and [ B] i matrices are shown
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0

F

wlwrt^ T, G, and Q ^u°(^ at, def fined .In Eq. (29) . 	 the st ress-bark suhst I I (it tun

1
matrix for a plastle isotropic material is as shown in Eq. (35) on the next

r	 page, with the term:; A, M , B, and S ij as defined in Eq. (30). It Is

interesting to comparo the elastic and plastic cases, especially in the

'a
terms that arcs vwro Cor the elastic f Bj matrix and negative for the plastic

matrix. As is also the case for the plastic element stiffness matrix

versus the elastic farm, the negative sense of the additional terms Is
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a reflection of the reduced modulos of most elastic-plastic materials when

in tlae plastic. range.

The strain-di.:aplaceument matrix, being a function of element geometry

only, is the same for all three material conditions, i.e.,

0	 1	 0	 0	 0	 0

0	 0	 0	 0	 0	 1
[A)i	 [T]-1

0	 0	 1	 0	 1	 0

1	
1	

z	
0	 0	 0

r	 r

It is important{ to note.' that for a given set of nodal displacements,

Eqs. (33), (34), olid ('35) describe the variation of stresses within the

element as a function of the r and z coordinates. In other words, using

these relationships, the exact state of stress at aoy point in the plane of

the element ca. :)e obtained. In this study, the centroid location of each

element has been nroprammed in as the element paint of interest.

This coneludo.-; ehe description of the exact, triangular, constant

strain axisymmetric element. It is important to realize that those elements

that have a node point or a side coincident with the axis of rotation,

sometimes referred to as "core" elements [12], require special treatment.

Clements having one side parallel to the z-axis also lead to singularities.

These special cases, described in detail in Appendix ti, make the computer

implementation of this formulation particularly complicated, as the

strain-displacement and back substitution matrices must also be modified.

Comparison of the exact formulation of the element to the approximate form

(36)
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indicates that the ad(Ift•ional effort necessary to develop and implement

the integral form is justified. For axial loads applied to a model of

"core" elements, the error in 
a
  stresses is on the order of 3.4 percent for

the approximate formulation. The error in o 0 stresses is on the order of

18 percent. For radi,il or .ombined loads, the error observed in the

approximate element fornu ► lation is even larger.

{

1



SECTION 5

MATERIAL PROPERTIES

In modeling the boron/aluminum composite, the boron fibers have been

treated as brittle, linearly elastic materials with isotropic strength

and stiffness properties. The aluminum matrix has also been considered to

be isotropic, but is mndeled as an elastoplastic material. To accomplish

this, the actual stress-strain curve of the aluminum alloy selected is

input to the analysis by curve fitting via a Richard-Blacklock two-parameter

equation [13], as discussed in Appendix A-5 of Reference [1]. Thus, at any

load level the tangent modulus for any given element can be computed. This

makes possible an accurate representation of the plastic deformation of

the matrix.

Although the nonlinear material properties of any matrix material,

e.g., another aluminum alloy, can readily be incorporated in the analyses,

a 6061-T6 aluminum alloy at 75°F was used in obtaining the present results.

The material properties shown in Table 1 were obtained from Reference [14];

the full range stress-strain curve for determining the curve fit parameters

used is shown in Figure 4.

TABLE 1

Aluminum Matrix Material Properties - 6061-6 Alloy [14]

Young's Modulus E = 10.0 x 106 psi
Poisson's Ratio v = 0.33
Tensile Yield Strength Fty - 36000 psi
Tensile Ultimate Strength Ftu - 45000 psi
Coefficient of Thermal Expansion a - 13.0 x 10-6/°F

LA
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The boron fiber properties indicated in Table 2 were obtained from 	 0

Reference [15) .

TABLE 2

Boron Fiber Material Properties [15]

Young's Modulus	 E	 - 60.5 x 106 psi

Poisson's Ratio	 v	 - 0.130

Tensile Ultimate Strength 	 Ftu - Fty - 500,000 psi

Ultimate Strain	 tu - Ftu - 8.264 x 10-3 in./in.	
3

E
Coefficient of Thermal Expansion 	 cx	 - 9.0 x 10-6/°F

I

Figure 4
	

Typical Full Range Stress-Strain Curve for 6061-T6 Aluminum
Alloy at Room Temperature [14]

I



SECT IC

NUM M(Ab K1',NtJ Kb

In this section, the finite element analysis methods discussed in

Sections 3 and 4 are applied to a variety of finite element models.

In Sections 6.1 and 6.2, the development of the various finite element

models is discussed, for use with the generalized plane strain analysis

(described in Section 3) and the axisymmetric analysis (described in Section

4), respectively.

In Sections 6.3 and 6.4, numerical results are presented for axial.

loading of the longitudinal section models, while axial loading of the

transverse section models is presented in Section 6.5. Transverse loading

of the transverse section model is discussed in Section 6.6.

In Section 6.3, the results of the axial loading of models representing

a condition of 33 percent discontinuous fibers are discussed. At the time

these results were generated, early in the present second-year study, the

basic computer program, developed during the first-year study [1], was still

in a somewhat unrefined condition; nearly all the reduction of output data

had to be done by hand. With the conversion of the computer program to

the larger, faster Control Data Corporation Cyber 730/760 computer system,

installed at the University of Wyoming in early 1980, a post-processing

package was added which is capable of drawing the material interfaces of the

finite element model, the outline of any crack that might be present, and

a variety of stress and strain contours, as specified by the user. Tile

results of the analysis of the considerably larger and more complex models

then possible are discussed in Section 6.4.

Y,
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Sections 6.5 and 6.6 deal with the mechanical loading of transverse

section finite element models. As a result of these studies, transverse

section models have been found to be incapable of adequately representing

stress concentrations due to material defects when leaded in the direction

of the fiber axes. However, they are especially useful in studying the

effects of transverse mechanical loads and hygrothermal toads.

Preliminary results of the newly developed axisymmetric analysis are

presented in Section 6.7. These results demonstrate the capability of the

analysis; more investigation remains to be done.

6.1. Generalized Plane Strain Analysis Models

6.1.1. Development of the Broken Fiber, Longitudinal Section Models

There are two primary reasons for the development of a longitudinal

section model. One is to permit study of localized stress concentrations,

the resulting elastoplastic behavior of the aluminum matrix, and subsequent

crack propagation in the area of fiber flaws. Another is to characterize

the load carrying capability of a flawed fiber as a function of distance

from the location of the fiber flaw.

These two considerations lead to the most important aspects of designing

the longitudinal section models, i.e., geometry, finite element grid

resolution, boundary conditions In the vicinity of a flaw, and spacing

of the boron fibers in the model. The problem of fiber spacing will be

discussed first.

A typical cross section of a unidirectional, square array, boron/

aluminum composite as shown in Figure 5, the section being perpendicular

to the fiber axes. A longitudinal section finite element model attempts
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FIGURE 5. Gross Section of a Square Array of Fibers,
55 Percunt Fiber by Volume

to represent Lite composite in a plane oriented perpendicular to this

section. A longitudinal model of a section parallel to the x or y axes,

through the centers of the fibers, would be representative of the mininum

distance between fibers. A section cut at 45° to the x-axis and through

CI-0 T iber centers would depict a maximum fiber spacing; situation. When one

of these fibers In broken, the :load it carries decays to zero at the broken

surface, assuming; that the boron-aluminum interface remains intact. At the

flaw site, the fibers adjacent to the broken fiber, and to some extent the

surrounding aluminum matrix, must absorb the load that the broken fiber would

have otherwise carried. The aluminum transfers this excess; load back into

the broken fiber via a shear mechanism so that at some distance from the

fiber break, that fiber is again fully effective in carrying lead. It is

logical to presume that the amount of aluminum between the boron fibers will

have all 	 on this load transfer mechanism. To characterize the effects

of variation in fiber s pacing, two longitudinal modals were studied, one

representing a 10' section cut of the transverse cross section, and another

representing a 4 95° soct A.on cut. A 45° section model is shown in Figurt> 6,

9
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the element numbers being indicated. The region in the lower left cornet

with unnumbered elements, is the region in the vicinity of the broken fil

and. This local region is shown in the expanded view in Figure 7, the

element numbers being given here. A 90• section model is shown in Figure 8.

Nate that the fiber diameter dimensions have been normalized to unity. In

Figure 8 the effect of the 90' section cut in diminishing the amount of

local aluminum matrix is shown quite clearly. The size and aspect ratios of

the fiber elements are exactly the same as those of Figure 6, but the

aluminum elements of the 90° section model are so compressed that the

element numbers, which are identical to those of Figure 6, have been

eliminated for clarity.

The second problem that must be s-'ved in the finite element modeling

of a broken fiber in a composite is the geometry in the area of the fiber

discontinuity-matrix interface. The efforts of the present investigators

to resolve this problem have been evolutionary in nature and many models

were developed and discarded in the process. It will be noted, for example,

that the models of Figures 6 through 8 are slightly different in the region

C the broken fiber end than the modelo presented in FigLires 3 6 through

3.8 in Reference [1).

As the longitudinal finite element model3 evolved, the problem of

computer capacity came to be a limiting factor. The models shown in

Figures 6 through 8 yielded generally favorable results, but represented

the limits of the capability of the Xerox Sigma 7 computer then being used.

After study of the numerical results obtained using these models, it was

decided that they were limited in three important areas. The first was

the modeling of the region in which crack growth is expected to occur.

b,
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Ideally, this region should contain an extensive area of uniform elements

of approximately the same size as the elements forming the initial crack.

This is due to the fact that lien a significan.ly larger element is en-

countered by the growing crack, propagation ceases until this larger element

and its neighbors have been strained to their ultimate value. When such a

large element fails, the released energy to be redistributed among the

surrounding elements is considerable, and the result is that many more

elements fail in the process. This also dictates the formation of a fairly

large cavity within the model, which may affect the pattern of subsequent

crack propagation in an unrealistic manner. This was particularly noticeable

in the case of the 90° section model. A second limitation of a small model

is that it represents a situation in which fully one-third of the fibers

are broken. In other words, the effects of a broken fiber on the loading

of more remote intact fibers cannot be studied; fibers which may have a

considerable affect on the pattern and extent of crack growth. Finally,

the limited axial length of the small models of Figures 6 tin(] 8 was thought

to be an unfavorable influence in terms of end effects. As will be discussed,

this limitation prevented the loading of the material being modeled to

its full capacity due to the arrival of the crack front at the right boundary

of the model.

With the acquisition of the much larger and faster CDC Cyber 760

computing facility, larger and more complex models could subsequently be

studied. The two larger finite element models created for this purpose

are presented in Figures 9 and 10, representing 45° section and 90° section

longitudinal models, respectively. In them, 12.5 percent of the fibers

are discontinuous. It will be rioted that, in addition to an extensive
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region of uniform matrix elements adjacent to the fiber discontinuity,

many rows of elomontn are retained In the region between thiti fiber and its

neighbor, 
1110111, 

the full length of the model..

6.1.2. llevelo nlvtwt Of the Transvortiv Soctlon Models

Finite element modeling of a transverse section of it unidirectional

boron/aluminum ecripos1t y is fairly straightforward [4-6,8,9]. A typical

transverse section model is shown in figure 11. This model will be used

here} to denlOtI:ttrate crack propagation in all
	 t•omposite subjected

to a transverse nnrmat loading. However, the need to study the influence

of it 	 load capacity in one fiber on its neighboring fibers requires

that a minimum section model such as that shown in Figure 12 be employed.

This model represents the first quadrant of a ropeating square array of four

fibers. If the fiber centered at the origin is assumed to be it flawed

Tibor, it will bo surrounded by eight other (unflawed) fibers in the array.

A model of this type can vastly lead to a great number of finite eletnetlts,

and attempting to increase they resolution of the grid at seleete ,d locations

often results In a very large bandwidth of the overall stiffness matrix

for the finite element model.

G.2. Axisymmetrir_ Analysis Model s

TI ►e finite element model used for the preliminary studies using the

axisymnetrie element formulation is shown in Figure 13. In this model, the

horizontal axis is the r-axis, whilo they vertical axis is defined as the

z-axis, or axis of rotation. The fiber elements are .located along the z-axis

and extend radially outward for three "bays" of elements. The fiber

disc=ontinuity is modeled by freeing the first four node points at the lower

j



y 

FIGURE 11. Transverse Section Finite Element Model of a Square

Array of Unflawed Fibers, 55 Percent Fiber by Volume.
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left cor,,er of the model, extending radially outward. The philosophy In

creating this model is similar to that followed in thr specifletation of

the generalized plane strain models of Section 6.1, i.e., maximum element

resolution in areas of high stress gradients. Minimum stiffness matrix

bandwidth is achieved by maintaining continuous node point numbering from

one end of the model to the other in at least one coordinate direction.

This can lead to a few more elements than are required in some cases, but

it has been found that the savings in computer core space due to a reduml

bandwidth far outweigh the cost of a few superfluous elements. In

addition, the dimensions and matrix thickness of this model are very easily

changed, making it particularly useful for parametric studies of the effects

of fiber volume on the response of this particular configuration.

u.3. Axial Loading - of Longitudinal Models With 33 Percent Discontinuous
Fibers

6.3.1. Crack Initiation and Propagation in the 45° Section Longitudinal
Mo de I L	

—_ 	 M

The 45° section longitudinal model was loaded axially with one boron

fiber treated as discontinuous, the broken ends being in contact when

loading was initiated. Crack initiation occurred with the failure in

octahedral shear stress of Element No. 2 (see Figure 7) at an average

applied stress of 64.1 ksi. The release of energy caused by the failure

of Element No. 2 resulted in the failure of seven additional elements,

Nos. 1, 3, 4, 13, 14, 15, and 26. With the stiffness rapacity of these

elements deleted from the analysis and their strain energy redistributed to

the r,-maining model, 13 more elements failed. This process of crack growth

at constant stress continued in a regular pattern until the "crack" had
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progressed to the point shown in Figure 14. The elements that have failed

are blacked out.

After crack growth had ceased, monotonic loading of the composite was

continued to an average applied stress level of 107.2 ksi without further

element failures. As loading progressed, the aluminum matrix elements

adjacent to the fiber nearest the discontinuous fiber experienced increasing

amounts of plastic straining. The shaded elements in Figure 14 are those

in the plastic stress range at an average applied stress level of 107.2 ksi.

An examination of the in-plane components of stress for these elements

revealed that in the elements nearest the crack tip, shear stress was of

the greatest magnitude. In the plastically strained elements farthest

from the crack tip, tensile stress, parallel to the fiber axes, was again

the major stress component, although the shear stress level was still high.

As the crack formed and grew, the load level in the broken fiber

decreased relative to that of the intact fibers, as expected. The pattern

of crack growth exhibited by this analysis, and the manner in which each

element was deformed and failed primarily by shear stress, is very similar

to experimental results obtained by Awerbuch and Hahn (16]. In their

study, center-notched tension specimens of unidirectional boron/aluminum

were tested. Microscopic examination of the failed test .specimens revealed

crack growth in the aluminum matrix adjacent to the last cut boron fiber

on either side of the notch. These cracks appeared to propagate parallel

to the fiber .es, and were accompanied by long zones of plastic shear

deformation in the matrix, also running parallel to the fiber axes.

At an average applied stress of 107.2 ksi, Element No. 136, located

between the two continuous fibers (see Figure 6), failed in hydrostatic
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tension. Subsequent load redistributions resulted in total failure of the

aluminum matrix. At this load level, the fiber adjacent to the discontinuous

fiber was carrying, a great deal more road than it would have were there no

g broken fiber. The aluminum matrix, loaded primarily due to strain compat-

ibility with the boron fibers and by Poisson effects, is predicted to rupture

F	 when the analysis is confined to the boundaries of these smaller finite

element models. For a longer finite element model with a higher percentage

of continuous fibers, higher average applied stress levels can be sustained

without failure, as will he shown later, and further growth of the crack will

occur.

The composite stress-strain response is plotted in Figure 15, as a

measure of the strain energy capacity of this 45' section boron/aluminum

composite in which one fiber out of three is discontinuous. It will be

noted that the rata of energy absorption with increasing stress after

crack initiation is considerably greater than that exhibited up to the point

of initial failure. That is, the slope of the stress-strain curve is le:;s.

From this plot it is obvious that plastic: deformation and crack growth are

important considerations in the evaluation of the effects of flaws in

composite materials.

The large amount of straining of the total model that takes place

during crack formation and propagation will also be noted in Figure 15. This

further illustrates the effect and extant of the crack growth illustrated

by Figure 14. Finally, the loss of some of the broken fiber's effectiveness

in carrying the applied load is clearly illustrated in Figure 15 by the

significant reduction in the composite modulus after crack formation. This

change in modulus is particularly dramatic in this case because of the high

q
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percentage (33 percent) of discontinuous fibers, the extent of crack propa-

gation, and the relay	 .- short axial dimension of the model being investi-

gated.

6.3.2. Crack Initii ion AR4 _PTREagatfon_jg_the_90n SActAon Qongltudiaa
htodc I

Wbon the 90* section longitudinal model was loaded in a direction

parallel to the fiber axes, with one fiber broken, a large stress concen-

tration occurred at the crack tip, as was the case with the 45* section

longitudinal model. However, the composite axial stiffness of the 90*

section model is considerably greater than that of the 45* section model,

due to the larger fiber volume fraction of the 90* model.

The closer proximity of an intact fiber with th. broken one in the 90*

model results in a greater shear stress gradient at the end of the broken

fiber tbAn was seen in the 45 * model. As a result, crack Initiation occurev.;

at an average applied stress level of 37.1 ksi, due to the failure of

Element No. 2, as defined In Figure 7. Subsequent load redistributions re-

sulted in a series of a single element failures, until finally t' 	 'lure

of Element N" . 42 triggered the failure of Element Nos. 53, 54, and 55,

with Element Nos. 65, 66, and 67 failing after that. At this point, crack

propagation ceased, with plastic deformation around the crack tip and along

the fiber progressing as the load level was increased to 84.0 ksl. Figure

16 illustrates the pattern of crack growth and plastic deformation at this

level of applied stress.

Tn comparing Figure 16 with Figure 14, the difference in the shape

and extent of the crack is as obvious as the difference in load level.

The higher shear stress gradient brought about by the closer fiber spacing
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causes varlier crack initiation, but the crack appears to be promptly con-

tained by a large zone of plasti,cally deformed matrix. A strong similarity

between the two is shown by the pattern oi plastic deformation and in the

fact that it is due primarily to shear, particularly in the vicinity of the

crack tip. Again, the plastic deformation appears to progress down the

boundary of the unflawed fibd, r adjacent to the broken fiber, which is con-

sistont with the pattern observed in the 45* model, and with the experiments

of Awerhuch and 11ahn [16].

At an average stress level. of 84.1 ksi, Element No. 78 failed (see

Figure 7), and subsequellL Clellielit failures resulted in the crack pattern

shown in Figure 17. At this point, tile "crack" was over 5 fiber diameters

Jong, extending, to the opposite boundary of the finite element model. The

broken f[bor Is carrying very little load undet this condition, as It is

now onl y connected to the remainder of the model by a single node point -it

tile right boundary. With continued loading, the last of the matrix elements

adjavonL to tho broken fiber failed at 98.0 ksi, and their release of

onergV triggered the rupturing of Element No. 134 (see Figure 6) by hydro-

static tension.

The onergy absorption capacity of the flawed 90 * section model of a

boron/aluminum composite is indicated by the stress-strain plot of Figure

18. Very little pure straining takes place in the initial stage of crack

growth, as depicted by Figure 16. Both Figures 15 and 18 are plotted

to the same scales of stress and strain so that the composite axial stiff-

nesses of the 45 0 and 90 0 section mo&!Is may be compared visually. As

was the case with the 45* section model, tile 90' section model exhibits

a reduction of stiffness after crack initiation and propagation, due to a

0
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I , , .	 , , I	 el lect IVt'll,':'	 „I	 the dist-ollt intioll.: I illcr.	 Howevt'I, till', tit II lllvs!t

h-m I i', I or I t'ss pronoun, ed ill t he 90' sett ion nn',le l , Is wotl ld he e>,pvcl t',l

with its much smalIcr Initial crack formulation.

Axi.II Load ln1^ --of l.on
-
 atudinaI MotleIs wltlt 12.5 Percent 1)iscontinuous

} i I)-c,l'
.__-_._	 ------- ------ ---- ------- -._^^_.------^. _ .

er ^

I. Crack lit 	 and ProJ►_tmtio-t in the 45° Sect-ion LonR itud Ina I

rho 45 0 section longitudinal model was loaded axi.illy with one hor,tn

t 1 her again t reated as d iscont inuous.	 I► last is dct t'rmat ion around the st ress

content rat it'll caused b y the f iher discont inuit y was t irst observed at all

.tverapw .11 1 111 fed st re-cs level of IS.0 ks i .	 Load ing; w;is cont rolled unt i I an

initial l.lilul-e occul ► • ed at an ;Ipl+lied stress Ievcl of 75.1 kst, which is

cottsider.ibl\ • hig',ht't than the 64.1 ksi level at which first failure occurred

in t he 445° mode! st udit'll in Sect ion 0.3.1. 	 In add it it ► n, -lnl y one element

laded, tilt' crack t il l bring; temporaril y "blunted" t►v this failure.	 The

state (if stretis ill 	 aluminum matrix gust prior It' the initial failur,'

i-: cie.lrl y Illustrated ill 	 contour plots fit 	 19 through 22.

Mtt h,ulg,,h .Ill y or al I of the various stress and st r.t i n components can he

plotted by the computer program, contours of constant octahedral shear

stress, octalit'dr.11 -:hear strain, m.lximum principal stress, and in-plane

sne.Ir stress have been selected here as being; the most useful in studying;

the .Ixial loading of unidirectional composites containing defects. Note

t hat t he tit , t Owd ra I shear st resses i it 	 i mire 1 1) have been norm, l ized w i s h

`	 respect	 to the octahedral shear vie Ill	 strength	 of	 tilt• (,061-'1'b	 aluminum

itllot,.	 In this wav,	 the region of	 plastic	 deform.Ition call he	 readily

disterned, as anv contour value equal	 to one del ines a hiastic	 -.one hound
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It will be noted that at an average applied stress level of 75.1 ksi, the

plastic zone is on the order of one fiber diameter in length. The state

of stress In the fibers ,just prior to crack initiation is also of great

interest; this is illustrated quite effectivel y in Figure 23. In this

figure. the stress level of each of the fibers in the model is plotted as

a function of distance from the site of the fiber discontinuity. As

expected, '.he broken fiber picks up load fairly quickly via shearing stresses

in tale matrix, attaining E9 percent of the load level of the 
most 

remote

fibers at 8.2 fiber diameters (end of model) from the plane cf the dis-

continuit y . Of special Interest is the affect the broken fiber has on its

nearest neighbor, and to some extent, the next fiber also. These fibers

must make up for the lost load carrying cap;-city of the composite in the

region of the fiber discontinuity, with the adjacent fiber carrying 10

percent more load than the remote fibers. It will also be noted that the

remote fibers gradually increase in loading as a function of distance from

the site of the tther break, while the two closer fibers tend to unload.

At an average applied 
ox 

stress of 76.0 ksi. crack growth involving

the failure of 82 elements took place. This process required 16 redistribu-

Lion steps, i.e., tile: failure of one group of elements would trigger the

failure of additional element~, causing the crack to continue to propagate

at the constant. load level. The state of stress in the matrix just after

this period of crack growth Is shown in Figures 24 through 27. Note that

the size and shape of the crack is plotted as well as the contour values.

Note also the reduction in the size • of the plastic region, as -hown in

Figure 24, and the increased stresses in the matrix between the other

fibers, especially the shear stress. The fiber loading plot of Figure 28
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corresponds to the state of stress and deformatior of Figures 24 through 27,

,ind t he most change caused by t he clement f a i lures appears to be t he reduced

IoadIng of the broken fiber. While it is still loaded to almost the same

percent at the right boundary of the model, the slope of it g loading curve

I.-; somewhat lese rear the break site.

The next set of figures, Figures 29 through 33, are pl!ts corresponding;

to an average applied stress of 97.4 ksi. At this load level, further crri,k

gr(lwth was Immanent,	 It will be noted that the region of plastic deform,i-

tion has enlarged considerably, and that the loading of the broken fiber

at 8.2 fiber diameters from the plane of discontinuity is now only 86 percent

of the load carried by the two most remote fibers, Fibers 4 and S. An in

In the load resulted in only one additional element t,iilure, however, and

crack prol.ag;ation did not resume until an average Stress level of 183 ksi

had been attained.

At an ap p lied composite Stress of 183 ksi. crack prepagation involviul;

L69 elements and 11 stages of growth at constant stress occurred. The

results of this growth are ilivstrated in Figures 34 through 38. What is

most s:ynificant about this stage of the loading of this model is that the

extensive growth of the primar y crack has resulted in such it high, localized

stress in the adjacent fiber that two large matrix elements between it and

the next intact fiber have ruptured. As Figure 38 illustrates, the adjacent

fiber (Fil ^r 2) is now carrying about 14 percent more stress thar, Fibers 4

and 5, ..nd appears destined to fall well before Fibers 3, 4, and 5.

The 45° section longitudinal model continued to absorb loading up to an

average stresa level of 208.5 ksi with no further failures. The analvsi,:

was terminated at this point. In Figure 39, the stress-strain plot of the
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1	 2	 3	 4	 5	 6	 7
COMPOSITE STRAIN,EX (10-3 in/in)

Plot of Applied Stress versus Composite Strain for the 45° Section
Longitudinal Nodal, 12.5 Percent Discontinuous Fibers.
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6 

This dependence is what makes the use of a two-dimensional formulation so
Lotal composite is presented, reflecting the occurrences of crack propaga-

difficult to correlate to actual conditions, as there is no practical way
tion and the .associated decreases in composite modulus.

of manufacturing most unidirectional composites in which every fiber is
The process of modeling stress redistributions due to crack growth

equidistant from each of its nearest neighbors. 	 As was discussed in
involves many cycles of the numerical solution procedure, and when this

Section 4 . 1, it is possible that specialized test specimens, used in
is coupled to the incremental loading o f an analytical model which experi-

conjunction with the axisymmetric analysis, could lead to the determination
F	 ences localized plastic deformation at a small fraction of its total load

M
of an average, i.e., effective, fiber spacing, thus allowing the present

capacity, computer time requirements become very large. 	 For example, the
generalized plane strain formulation to more accurately model square and

M	 analysis of the 45° longitudinal section model discussed in this section
rectangular fiber arrays.

required 9,577 seconds of running time on the CDC Cyber 760 computer and

^I Because of its much higher apparent fiber volume, shear loading of the
f	 372 thousand words of Bore storage. 	 When one considers that, in the

matrix between the broken fiber and its nearest neighbor in the 90°
present example, plastic deformation began at an applied stress level

section longitudinal model is more severe than in the 45° section longi=
of 18 ksi, and at ax - 208.5 ksi total failure had not yet occurred,

k
tudinal model.	 As a result, the initial stress concentration caused by

I \	the complexity of the problem being analyzed can be appreciated.
the broken fiber is more pronounced, and initial element failure in the

6.4.2.	 Crack Iniciation and Propagation in the 90° Section Longitudinal 90° section model was observed before a plastic region of any significant
Model

extent could form around the crack tip.	 This failure occurred at an

The 90° section longitudinal model was loaded to a maximum of 208.3
average applied stress level of 24.9 ksi. 	 The matrix stress contour

ksi, during which five periods of crack growth were observed, but catas-
lots for the composite justp	 p	 ^	 prior to this event are presented in

trophic failure of the composite did not occur.	 In the discussion that
Figures 40 through 43.	 The single element failure at this applied stress

follows, contour plots and fiber loading diagrams are presented to 	 illus-
level appears to have very effectively "blunted" the , 	 a.,	 as the next

trate some of the more interesting points in the loading history of this 	
failure did not occur until an average applied Stress level of 84.0 ksi

model. While a great many similarities between the response of the 45° 	
had been attained. At this point, one addition.' 	 Sent failed, again

and 90° section longitudinal models exist, a careful comparison will in-	
temporarily blunting the crack. Figures 44 through 48 illustrate the

dicate the differences in crack growth pattern, stress distributions, 	
state of stress in the matrix and the loading of the various fibers at

fiber loading, and load levels at which they occur. Such a comparison 	
this load level just prior to the failure o f the f cond clement. At this

confirms the fact that there is a strong dependence of the results on 	
point there is a fairly extensive zone of p: itic deformation around the

fiber spacing when plastic deformation and crack growth are considered.

I LI
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This dependence is what makes the use of a two-dimensional formulation so

difficult to correlate to actual conditions, as there is no practical way

of manufacturing most unidirectional composites in which every fiber is

equidistant from each of its nearest neighbors. As was discussed in

Section 4.1, it is possible that specialized test specimens, used in

conjunction with the axisymmetric analysis, could lead to the determination

of an average, i.e., effective, fiber spacing, thus allowing the present

generalized plane strain formulation to more accurately model square and

rectangular fiber arrays.

Because of its much higher apparent fiber volume, shear loading of the

matrix between the broken fiber and its nearest neighbor in the 90°

section longitudinal model is more severe than in the 45° section longi-

tudinal model. As a result, the initial stress concentration caused by

the broken fiber is more pronounced, and initial element failure in the

90° section model was observed before a plastic region of any significant

extent could form around the crack tip. This failure occurred at an

average applied stress level of 24.9 ksi. The matrix stress contour

plots for the composite just prior to this event are presented in

Figures 40 through 43. The single element failure at this applied stress

level appears to have very effectively "blunted" the a, 	 as the next

failure did not occur until an average applied r tress level of 84.0 ksi

had been attained. At this point, one addition. 	 ' lent failed, again

temporarily blunting the crack. Figures 44 through 48 illustrate the

state of stress in the matrix and the loading of the various fibers at

this load level just prior to the failure of the s cond clement. At this

point there is a fairly extensive zone of p: ltic deformation around the
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crack tip. Also, the shear stress Levels in the matrix between ^uter

94

fibers are much hii;her, Lind display some gradation. Of particular interest

is the fiber loading, nlot, Figure *r9. In this 90 0 section model, the

effect of the broken fiber is confined to a smaller region than for the

45° section model (se Figure 28), with the adjacent fiber being loaded

more than 20 percent higher at the plane of the break than the far field

average. The more romoto fibers are much less affected. At 8.2 fiber

diameters, the broken fiber is almost fully loaded.

The next stage of crack growth occurred at ox - 85.4 ksi, involving

102 elements which failed in 9 intervals of constant stress crack

propagation. The tip of the resulting crack advanced along the boundary

of the adjacent fiber, as is also suggested by the final shape of the

crack, shown in Fig;urcs 49 through 53. It will be noted in Figure 49

that the matrix has been unloaded to the point that once again there is

no plastic deformation. In all these respects, the results of the 90°

section model differ frorn those of the 45° section model.

Loading was then increased monotonically to a level of 1.45.4 ksi,

at which point one more element failed. Again, the states of stress

and strain in the matrix and fibers have been plotted so that one can

contrast them to the situation that existed just after this particular

crack was formed. These results Are presented in Figures 54 through 57.

At thiG point there is a very extensive zone of plastic deformation, and

the effects of the crack on the fiber loading are not nearly so localized.

At a load level of 146.8 ksi, extensive crack growth again occurred.

A total of 83 elements and 10 intervals of constant stress crack propaga-

tion were involved in this process. The shape of the resulting crack,
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along with contours of normalized octahedral shear stress, are presented

in Figure 58. Tt will be noted that once again the crack has grown through

the previous region of plastic deformation, and little or no plastic

deformation remains after this process. In Figure 59, the affect of the

crack growth on the fiber loading call 	 seen. The two nearest fibers

become affected near the plane of the fiber break, and in addition, the

two more remote fibers begin to display the same pattern as the closer

fibers, i.e., increasing load in the vicinity of the flaw, decreasing

as the axial distance from the break site increases.

Continued loading of the 90° section model to 208.3 ksi produced no

additional element failures, at which point this computer run was

terminated. The last states of stress to be plotted were at an average

applied stress of 193.3 ksi. These are presented in Figures 60 through

63. A plot of the composite stress versus strain for this example is

presented in Figure 64.

6.5. Crack Initiation and Propagation in the Transverse Section Model,
Loaded Transverselyy

Stress increments CT  were applied to the right hand boundary of the

transverse model shown in Figure 11. Plastic deformation of the aluminum

matrix began at the fiber-matrix interface at a point about 30° from the

positive x-axis, i.e., Element Nos. 88 through 91 (see Figure 11). As

loading increased, these elements became even more highly stressed.

However, at 58.4 ksi, Element No. 81 ruptured in a hydrostatic tension

failure node. This failure triggered the failure of Element Nos. 83 and

85, whereupon further strain energy redistribution was required. Crack

propagation progressed along; the fiber-matrix interface, terminating at
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the point shown in Figure 65. This failure pattern agrees very well with

that presented by Adams [4j in his 1973 study of crack propagation in a

transverse section of a unidirectional boron/aluminum composite. His

effort involved an analysis scheme with a constant displacement rather

than a constant stress loading procedure, a finer mesh finite element

representation, and smaller loading increments than were used in the present

analysis. Adams also typically observed initial failure at matrix elements

along the fiber-matrix interface at a point approximately 30° from the

x-axis. However, his analysis did not include a hydrostatic failure mode,

which could explain the slight difference in the location of crack initia-

tion observed in the present study.

The loading increment following the 58.4 ksi load level resulted in

further element failures, with the crack progressing along the fiber-matrix

boundary. While this example was undertaken primarily for the purpose

of comparing results of the present analysis with those of Adams [41, it is

clear that the effects of disbonds, local matrix voids, and other manu-

facturing flaws on the transverse strength of a unidirectional composite

could also be characterized. With larger finite element arrays, constructed

to simulate such flaws, manufacturing cycles of compression and thermal

loading could be imposed to determine the residual stresses caused by

these detects, and their effects on subsequent service loading and envi-

ronmental exposure.

6.6. Axial Loading of the Axisymmetric Longitudinal Model

Numerous computer runs, involving a variety of finite element models,

were made to verify the correctness and accuracy of the axisymmetric
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analysis program under rill possible combinations of olement geometry,

material types (i.e., elastic isotropic or transversely isotropic, and

plastic isotropic) and loading. When all difficulties had been identified

and corrected, a series of runs was made, employing the finite element

model shown in Figure 13. Three different variations of this model were

employed in this preliminary study, aimed primarily at assessing the

effect of thickness of the annular sheath of aluminum on the response of

the single broken fiber configuration. The first model studied represents

the condition of minimum fiber spacing in a 55 percent fiber volume, square

array, unidirectional composite. This results in ,j model in which the

broken fiber has a rather thin sheath of matrix around it, the ratio of the

fiber radius to the Local model radius (r f /rm) being 0.714. Another model

studied was the case of maximum fiber spacing in the 55 percent fiber

volume, square array composite, wherein the ratio of the fiber radius to

the model radius is 0.424. Finally, after studying the results of runs

using the first two models, it was decided to increase the thickness of

the matrix in the maximum fiber spacing model by 50 percent, to further

investigate the effect of matrix thickness in this particular configura-

tion (r f /rm W 0.330).

Tile results of this study Are summarized in contour plots for each

model configuration, with normalized octahedral shear stress, octahedral

shear strain, maximum principal stress, and in-plane shear stress being

the parameters plotted.

Figures 66 and 67 reprecent the case of minimum matrix thickness.

It can be seen immediately that a rather small portion of the cross section

of the model perpendicular to the applied load is aluminum matrix. Since
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the average stress is applied to the entire circular cross section, there

is an immediate stress concentration at the z - 0 plane (see Figure 13)

due to an appreciable reduction in net cross-sectional area caused by the

fiber discontinuity. This, and the presence of the penny-shaped crack,

r `,
also a result of the fiber discontinuity, caused initial plastic deforma-

tion at the crack tip at an average applied stress of only 7 ksi. Continued

loading resulted in a first failure in the matrix aL an applied stress

of 1.7.4 ksi. Failure of the first element triggered the failure of three

additional elements along the z a 0 boundary, the plane of the fiber dis-

continuity. This resulted in a further reduction of net section at the

z = 0 boundary, and a subsequent adjustment increment caused the crack to

grow radially to the edge of the model, representing total failure and

thus terminating the analysis. Tide contour plots Of Figures 66 and 67

represent the state of octahedral shear stress and strain in this model

just prior to crack initiation.

In the case of the axial loading of the maximum fiber spacing

model (r f /rm = 0.424), plastic deformation at the crack tip did not occur

until an average applied stress of 13 ksi had been reached. Continued

Loading resulted in a first failure, or crick initiation, at a stress

level of 32.3 ksi. As was the case with the minimum thickness model, the

crack immediately grew through the region of plastic deformation, and

the resulting reduction in the net section area of the model caused total

failure. The contours of constant octahedral shear stress and strain

for the maximum fiber spacing model just prior to crack initiation are

presented in Figures 68 and 69.



Contours of Constant Octahedral Shear Stress (Normalized by
Dividing by the Matrix Yield Value of 17 ksi) and Octahedral
Shear Strain, Maximum Fiber Spacing Model (r f /rm = 0.424),
Average Applied Stress,a z 0 32 ksi.
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For the thickest model run (rf /rm 0 0.330), plastic deformation w

first observed at an average applied stress of 15 ksi. Initial crack

formation occurred at an average applied stress of 37.2 ksi; the conto

plots of stress and strain just prior to this crack initiation are pre

sented in Figures 70 and 71. It wilt be noted that the region of plan

deformation around the crack tip involves more than a third of the mat

thickness, as was the case for the two models discussed above. As in

previous cases, this relatively low fiber volume model representation

suffered catastrophic failure once the crack had been initiatee..

To provide further insight to the response of the axisymmetric

model, the displacement of the broken fiber ends relative to each other

has been plotted in Figure 72 as a function of the average applied stress

level for the three model configurations discussed above. This plot

clearly illustrates the variation in overall stiffness and load carrying

capacity of the model as a function of matrix thickness. Experimental

measurements could readily be made using test specimens of these configu-

rations, and results compared with those shown in Figure 72.
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SECTION 7

CONCLUSIONS AND FUTURE WORK

At the end of the second year of this continuing investigation for

NASA-Lewis, the analytical tools required to perform the title study are

now well in [land. Although improvements can, and will, still be made in

both the generalized plane strain and axisymmetric analyses and related

computer programs, they are presently fully operational. In addition,

the three-dimensional finite element analysis, although developed as part

of another program [7], has also gust become operational. This analysis

will also be fully available to tale present NASA-Lewis study, as required.

Obviously, analysis methods have advanced significantly during the past

two years.

The numerical examples presented in this report are intended to

demonstrate thv capabilities of the analyses, and to provide at least a

preliminary indication of the influence of a broken fiber on local stress

states, and overall performance of the composite.

To date, only pre-existing fiber breaks have been modeled. It will

be relatively straightforward to extend this to the analysis of composites

having weak sites distributed arbitrarily along the fibers. The numbers

and severity of these weak sites can be established from available experi-

mental data for boron fibers. This will lead to the study of interactions

between closely spaced fiber breaks occurring under an applied stress.

In terms of maximizing energy absorption during plastic deformation

d subsequent crack propagation, it is anticipated that a detailed studv

ing the generalized f' )e strain analysis will lend to guidelines for

signing boron/alum	 composites with controlled defects fabricated
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into the material. This will result in trade-offs between composite stiff-

ness and ultimate strength, and ertrgy absorption during the fracture

process. The three-dimensional analysis can be used to confirm the ade-

quacy of the (two-dimensional) generalized plane strain analysis in per-

forming these studies.

Experimental verification of the analytical work already completed,

and to be undertaken during the next year, is alzo required. The axi-

symmetric analysis was developed primarily with this in mind. It will be

relatively simple to fabricate single-fiber composites, i.e., single

boron fibers surrounded by a uniform annular sheath of aluminum matrix

m"terial. Either a break can then be induced in the fiber before mechanical

testing, or fibers known to have statistically weak sites can be used.

Wben these single fiber composites are loaded in axial tension, the change

in the gap between ends of the Tiber break can be experimentally monitored

(using X-rays, an extensometer, etc.). As indicated in Figure 72, these

changes are predicted to be relatively large, on the order of 0.002" to

0.010" at failure.

It was noted in Section 6.6 that crack initiation in the single fiber

axisymmetric models lead to immediate catastrophic failure of the single-

fiber composite. This was in contrast to the results presented in Section

6.4 for the a.:ially loaded, longitudinal section models using the gen-

eralized plane strain analysis. There, the many surrounding unbroken

fibers were able to absorb the energy released by the crack formation.

I"	 Both analyses are presently set up to hold a constant average applied

stress during the crack propagation and subsequent -djustment increments.

Ba ,sed upon the results of Section 6.6, it would be better to perform the

r



single-fiber composite experiments under displacement control rather thi

load control. Then, when plastic deformation, crack initiation, and

subsequent crack propagation occurs, the average applied stress will drop,

allowing the crack to be arrested. Crack opening displacement measurements

can then be made before an additional increment of composite displacement

is applied.

Addition of a constant displacement loading schema to the existing

axisynmetric analysis will involve some modifications of the computer

program.

In conclusion, analysis methods are now well-established. Use of

these analytical. tools in performing detailed parametric studies remains

to be completed. In conjunction with these analytical studies, experi-

mental verification also remains as an important task.
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APPENDIX A

EVALUATION OF INTEGRAL COEFFICIENTS

FOR THE GENERALIZED AXISYMETRIC ELEMENT STIFFNESS MATRIX

In Section 4.2.2, it was shown that a critical step in forming

the exact element stiffness matrix for a toroidal finite element of tri-

angular cross section is the integration of the product of the strain-

displacement relationships and the constitutive relationships over the

volume of the element, as described by Eq. (20). This operation led to

the six integral relationships given in Eq. (24). In this appendix, a

procedure for evaluating the three integrals having r terms in their

into Brands is presented. The three integrals to be evaluated are repeated

here, i.e.,

I	 I J •r drdz
r

1, fj.!l, drdz
.

2
1
6 

m
 

f(r drdz
r z

(A-1)

Tn figure A-1, a planar section of the element is shown for

reference to geometrical. considerations in evaluating Equations (A-1).



130

e

5

►w 	1
z M m23r + b23

3(r3 ► z3)

z	 m 12 r + b 12	 i 

(r

	

1,
z
	2(r2 z2)

z-m31r+b31 7/1	 ^^	
^•. r,u

,r

FIGURE A-1. Geometric Definition of the Triangular Element in the

r-z Plane.

As Figure A-1 indicates, the triang?e, i, is defined by the lines

boundtng its sides, i.e., L12 , L23 , and L 31 , each of which 'Ls

descr 4 b ed by the equation shown. For example, line L 23 is expressed as

z m m23 r + b 23
	

(A-2)

where m23 is the slope of L 23 and b23 is its z-intercept, defined as

z - z
Az	 3	 2

-23 Ar	 r3 - r2

(z2r3	 z3r2)

b23	 (r3 - r2)

(A-3)
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The equations for the other two lines and their coefficients can

be obtained by a cyclic permutation of the indices of Eqs. (A-2) and (A-3),

i.e., 1 + 2 -* 3 1-1. Equations (A-1) can be directly integrated with
t °t	 1

	

respect to z to yield	 j

1,-I I d r
r

z 2
I5	 Zr dr
	 (A-4)

r

I6 	 J

3

3r 
clr

r

Equations (A-2) are substituted into Eqs. (A-4) to give

31(r 21 r

lI4	

fr

r r(m31r+b31)dr+1 t(m23r+b23)dr+^ (m12r+b12)dr
1	 r3

I M r31 (m r+b ) 2dr+ r2? (m +b ) 2dr+ r11(m r+b ) 2dr (A-5)5	 jr 2r 31	 31	 ^r ..r 23+b 23	 2r 12	 12
1	 3	 r2

j
IF	

r3 1 

31 31
(m r+b ) 3dr+ r2 1

r 3r (m23 +b23	 r 3
) 3dr+frl r (m12r+b12) 3dr

3r	 ^	 J 
rl	 3	 2
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Equations (A-5) can now be expanded and integrated term-by-term with

respect to r fairly easily. The details of this operation are, however,

quite lengthy, and the results only are presented below. In each case,

only the first term is shown, the second two terms being obtained by a

cyclic permutation of the indices, as described in Section 4.2.2.

I4 - c `b 12-b31 )
 lnr1+('212-m31)

I 5 . c 2
(b12-b

31)lnrl+(m
l2bl2 m31b 31)r1 + 4('212-'231)x1
	

(A-6)

I6 . Fd 3(b12-b 31)lnrl+^;m12b12 m31b31)r1 + 2 (M12b12 m31b31)r1

+ 9('212-m31)rl+

The expressions for I 4 , I59 I6 derived above are valid for the most

general triangular geometries, i.e., when rl , r 2 , and r 3 are distinct

and not equal to zero. For certain orientations of the element, Eqs. (A-6)

are not valid; these orientations are described and dealt with in Appendix

B.

By substituting the expressions for the slopes and z-intercepts of

the various triangle sides into Eqs. (A-6), then collecting and rearrang-

ing terms somewhat, the expressions in Eqs. (26) through (28) are obtained.
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However, it was found that computer programming of these integrals is

easier and more direct when they are left in the form shown above. This

is especially true when logical decisions regarding special element ge-

ometry are programmed.

fi

1



APPENDIX 8

NUMERICAL DIFFICULTIES WITH SPECIAL GEOMETRICAL

CONFIGURATIONS OF THE AXISYMMETRIC ELEMENT

The expression for the six integrals required for a full axisymmetric

element stiffness matrix, as given in Eqs. (25) through (28), are valid

for the most general geometries, i.e., when r i , r 2 , and r3 are distinct

and nonzero. However, there are three situations which require special

treatment. These are:

• When one of the node points of the triangle lies on the axis

of rotation, i.e., r = 0.

• When any two of the node point radii of the triangle are equal

but nonzero.

• When any two node point radii are zero.

Each of these three cases are dealt with in the subsections that follow.

B.L. One Note Point Radius Equal to Zero

In examining the expressions for I 4 , I 5 , and I 6 (Section 4.2.2 or

Appendix A), it can be seen that logarithmic terms are involved. When

a node point is located on the axis of rotation, its corresponding log-

arithmic term becomes infinite. However, by examining the logarithmic

term of interest and its coefficient, which consists of the z-intercept

terms of the two lines converging on the node point in question, it is

obvious that the intercept for both of these lines is the same. In other

words, the limit of the logarithmic term and its coefficient can be shown

to exist by an application of L'Hospital's rule (17), and this limit is

4

3

A
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always equal to zero. Accordingly, whenever the argument of a logarithmic

term is equal to zero, the term and its .oefficient are simply deleted.

B.2. Two Node Point Radii Egnal but Nonzero

When two nodal radii of an element are equal, the element side

between them is parallel to the axis of rotation, and the expressions for

mij and b ij , the slope and z-intercept of that side, become infinite. For

example, if r 2 0 r3 , an examination of Eqs. (A-3) quickly confirm the

problem. This singularity is easily removed by considering the form of

the integrals in Eqs. (A-5), in which the integrations with respect to r

have yet to be performed. Note that the integrals involving m23 and b23,

the terms in question, also have limits of r 2 and r 3 . Thus, the integral

is identically equal to zero and these terms can be omitted. In the

implementation of the formulas given by Eqs. (A-6), this objective is

accomplished by defining the m and b terms of element sides parallel,

to the z-axis to be zero, i.e.,

For r  = r1,

mil = bij = 0

	 (B-1)

B.3. Two Node Point Radii Equal to Zero

When two of the element node points, say Node 1 and Node 3, lie on

the axis of rotation, as indicated in Figure B-1, we observe

rlr3=0

F1 ' &3
	

0
	

(B-2)

ul=u3=0

-- J



r,u

z,w

3

1

u1 0

wl

u2

w2

u3^0

w3

1 0 0 0 0zl

0 0 0 1 0 zl

1 0 0 0r2 z2

0 0 0 1 r 2 z2

1 0 0 0 0z 3

0 0 0 1 0 z3

0

E2

0

C4

	 (B-3)
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FIGURE B-1. Element Node Point Identification.

When the above relations are substitute into Eq. (13) we have

or

(6) i - [T00]{&i)
	

(B-4)
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and the assumed displacement field takam, the form

U	 2r

w^ f,4+f,3r+t,6z	 (B-5)

Applying the strain-displacement relationships of Eqn. (3) yields

err	 0 1

e z2	 0 0

Yrz	 0 0

C00
	 0	 1

0

0	 0 0 0 E2

00	 0 0 1

0	 0 1 0

1
C4

0	 0 0 0 CS

(B-6)

or

IL') i s (C00 1( )i

where (C0Q 1 is the shape matrix for an element with two node points whose

radii are zero. By substituting this shape matrix into Eq. (21) and

performing the indicated multiplication and integration, we obtain the

element stiffness matrix for this geometry. In the case of an elastic,

isotropic material, we have

0	 0	 0	 0	 0	 0

21 1 0	 0	 0 2vI1

_	
2^ 

(1	

0 0 0 0

(koo^i (l+v)-2v)(B-7)0	 0	 0

SYIM 111C(_ - v)110

(1-v)11
{	 a
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Similarly, for a transversely isotropic material in the elastic Mange,

0	 0	 1 0 1 0	 0	 a

2(1-swIP	 1 0 1 0 I	 0	 (v+?^/ )tt

(k I.L•t	 ^	 oto o  ̂o

0	 0	 0	 (B-8)

snmrrstc	 ,tl ^^ 0

where the quantities Q, T, and F are as defined in Eq. (29). For an

isotropic material in the plastic range we have, for two nodal radii

equal to zero,

2At koo 1 1 (^)

0 1	
0	

0
	

_0	
0

52 +S 2 s	 I	 I	 $22:11-112533	 I	 x11012*x22`3]
t`A-(	 1111	 0	 0	 -(	 )I1	 (AaA -(	 )Its

4_
^0	 0	 0

SYMMKIC	 (' _	 )1 1	 j	 -( 1i22 )I1

(B-9)

«Here A, A', and B are defined in Eq. (30).

The special form of the strain-displacement matrix, as given in

Eq. (B-6), also requires that the back substitution matrices for each

type of material response be re-derived. These are presented below.

For an isotropic material in the elastic range we have,
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0 1 0 0	 0

E	 0 2v 0 0	 0
(Boo 1 1 " (1 + v)(1 - 2v)	

1-2v0 0 0 0 ( 2)

0 v 0 0	 0

v

(1-v)	 (B-10)

0

V j

For the elastic, transversely isotropic case,

0 (1-T+ F) 0 0	 0	 (v+T)

E 0 (v+T+ F) 0 0	 0	 (1-T)
IBoo I i Q

0	 0	 0 0 2(l v)	 0

0 (1-T+ F) 0 0	 0	 F

(B-11)

where T, F, and Q are as defined in Eq. (29).

For an isotropic material in the plastic range,

2

0	
2A-(S11+S11S33)	 0 

0 -S11S12 A'- S11S22
B	 B	 B

2
O A+A'-(S 11S22SS22S33) 0 0
	

B 

-
S 22 	 A- 22522

E
(Boo^i	 1 + v 0	 - S11S12-S12 S 33	 0 0 (1 - S12 ) _ S22S12

B	 2	 B	 B

2

0	
2A-(511533+533)	

0 0 - 
5 33512 A _ 522533

B	 B	 B

with A, A', B, and 
Sij 

having the same definitions as presented in

Eq. (30).

l

(B-12)



APPENDIX C

LOAD APPLICATION IN THE DISPLACEL,, NT FORMULATION

It	 OF THE FINITE ELEMENT ANALYSIS

A detailed description of the axisymmetric analysis was presented

in Section 4. The generalized plane strain analysis was included in the

first-year report (1]. Details of the computer programming were presented

in Appendix A of that report. Of particular interest, however, is the

method of load application.

The present finite element analyses are displacement formulations,

which is ideal in terms of accounting for the symmetry boundary conditions

associated with the periodic arrays assumed. However, this presents a

difficulty in terms of load application, since it is desired to be able

to specify applied stress increments rather than applied displacement

increments. In early works (4-6,8,9] this problem was handled by solving

a series of displacement boundary value problems for each increment, one

displacement boundary value problem for each component of loading incre-

ment to be applied, viz, ax , ay , az , 6T, AM. These individual solutions

were then scaled as required and sanarimposed to obtain the actual solution

for the increment. Since it is the matrix inversion associated with the

solution of each boundary value problem which consumes most of the computer

time, doing this a number of times within each increment was very inefficient.

Using a method introduced by Branca [10], it is possible to solve

for any combination of mechanical (ax , ay , a z Y and hygrothermal (AT, AM)

loadings in one step. This technique was incorporated into the basic

micromechanics analysis when it was first formulated by Miller and Adams [2].
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It conti.nues to be used in tine present program versions described in this

report, having been refined and improved a number of times. A brief

description of thin "Branca" technique, as used in the present program,

will be included here, for reference.

The .application of mechanical tractions to the finite element model

is considerably simplified by taking advantage of the rearrangement of the

global stiffness matrix [K], and the total force vector, M, using the

method of Branca [10]. The displacement boundary conditions for the re-

peating unit finite element model were specified in order to maintain

continuity of the material continuum while satisfying symmetry requirements.

Specifically, referring for example to figure G, displacements in the x-

direction of node points along the tight-hand vertical boundary must be

uniform. Likewise, displacements in the y-direction of the upper hori-

zontal boundary must be uniform, and the displacements of all node points

in the z-axis direction must be uniform (the generalized plane strain

condition). Whoa, the overall force-displacement equation of the system is

considered, i . e . ,

^i

M - [K] P)	 (C-1)

one can see that all of the boundary node points involved in mechanical

loading will have identical displacements with respect to the direction

of the load application. These identical displacements allow combining of

certain terms in the global stiffness matrix that result in the replace-

ment of the applied forces on boundary nodes by zeroes, in the manner

described by Branca [10]. Successive modification of the global stiffness

matrix for each boundary node point displacement results in the following

form of Eq. (C-1) for the simultaneous application of uniform values of

i
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ax , (I y , and 0 z for an array of n nodal points

0	 k11 k12 k13 ... k1(2n+1.)	 S1

0	
k22 k23 ...
	 62

0	
k33	 a3

(C-2)

Fx	
-	

62n-1

Fy	 -	 `S 2n

F 
	 symmetric	 -	 `S2n+1

where Fx , Fy , and Fz are the total applied loads in the x, y, and z direc-

tions, and ,.r(, defined, tur n unit thickness model, as

1,	 cr b	 i
x	 x

F

	

y = a y a	 (C-3)

I'z " ozab	 1

where a and b are the lengths of the region of analysis (e.g., Figure 6)

in the x and y directions,respectively. Modification of the global stiff-

_,	 ness matrix is accomplished by summing the stiffnt-ss coefficients of tin-

knoxm but equal boundary displacements throughout the system of equations.

This results in a set of three equations, representing the forces along the

three moving boundaries of the model., which are placed in the last three

n.
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columns of the global stiffness matrix, outside of the bandwidth of a

normal stiffness matrix. Another summation is now performed on the coef-

ficients in these three equations corresponding to equation number's repre-

senting loaded boundary nodes. These coefficients are all added to the

terms in the last three rows of the three outside columns, which nou

represent the total applied loads in the x, y, and z directions. 'lie

system of linear, simultaneous equations that results front 	 process

involves a stiffness matrix that is no longer symmetric, and whose

bandwidth has been violated. To further complicate matters, the banded

portion of this stiffness matrix must be stored in rectangular form, as

described by Zienklewicz [121, to minimize the core storage requirements

of the system ► of equations. The coefficients for the summation of force=

equations are stored along side the rectangulurized, ljpper triangular

portion of the stiffness matrix.

This system of equations is solved using a highly specialized form

of Gaussian elimination in which the stiffness matrix and the load vector

must be further modified. This solution technique requires a great deal

more bookkeeping than is the case for more conventional applications of

the Gaussian elimination technique. The important advantage of this

procedure, however, is that it allows the simultaneous application nt

external tractions in all three coordinate directions, and the application

of thermal or moisture loads in a single step.

1 7-	 It

1 A


	0025A02.pdf
	0025A03.pdf
	0025A04.pdf
	0025A05.pdf
	0025A06.pdf
	0025A07.pdf
	0025A08.pdf
	0025A09.pdf
	0025A10.pdf
	0025A11.pdf
	0025A12.pdf
	0025A13.pdf
	0025A14.pdf
	0025B01.pdf
	0025B02.pdf
	0025B03.pdf
	0025B04.pdf
	0025B05.pdf
	0025B06.pdf
	0025B07.pdf
	0025B08.pdf
	0025B09.pdf
	0025B10.pdf
	0025B11.pdf
	0025B12.pdf
	0025B13.pdf
	0025B14.pdf
	0025C01.pdf
	0025C02.pdf
	0025C03.pdf
	0025C04.pdf
	0025C05.pdf
	0025C06.pdf
	0025C07.pdf
	0025C08.pdf
	0025C09.pdf
	0025C10.pdf
	0025C11.pdf
	0025C12.pdf
	0025C13.pdf
	0025C14.pdf
	0025D01.pdf
	0025D02.pdf
	0025D03.pdf
	0025D04.pdf
	0025D05.pdf
	0025D06.pdf
	0025D07.pdf
	0025D08.pdf
	0025D09.pdf
	0025D10.pdf
	0025D11.pdf
	0025D12.pdf
	0025D13.pdf
	0025D14.pdf
	0025E01.pdf
	0025E02.pdf
	0025E03.pdf
	0025E04.pdf
	0025E05.pdf
	0025E06.pdf
	0025E07.pdf
	0025E08.pdf
	0025E09.pdf
	0025E10.pdf
	0025E11.pdf
	0025E12.pdf
	0025E13.pdf
	0025E14.pdf
	0025F01.pdf
	0025F02.pdf
	0025F03.pdf
	0025F04.pdf
	0025F05.pdf
	0025F06.pdf
	0025F07.pdf
	0025F08.pdf
	0025F09.pdf
	0025F10.pdf
	0025F11.pdf
	0025F12.pdf
	0025F13.pdf
	0025F14.pdf
	0025G01.pdf
	0025G02.pdf
	0025G03.pdf
	0025G04.pdf
	0025G05.pdf
	0025G06.pdf
	0025G07.pdf
	0025G08.pdf
	0025G09.pdf
	0025G10.pdf
	0025G11.pdf
	0025G12.pdf
	0025G13.pdf
	0025G14.pdf
	0026A02.pdf
	0026A03.pdf
	0026A04.pdf
	0026A05.pdf
	0026A06.pdf
	0026A07.pdf
	0026A08.pdf
	0026A09.pdf
	0026A10.pdf
	0026A11.pdf
	0026A12.pdf
	0026A13.pdf
	0026A14.pdf
	0026B01.pdf
	0026B02.pdf
	0026B03.pdf
	0026B04.pdf
	0026B05.pdf
	0026B06.pdf
	0026B07.pdf
	0026B08.pdf
	0026B09.pdf
	0026B10.pdf
	0026B11.pdf
	0026B12.pdf
	0026B13.pdf
	0026B14.pdf
	0026C01.pdf
	0026C02.pdf
	0026C03.pdf
	0026C04.pdf
	0026C05.pdf
	0026C06.pdf
	0026C07.pdf
	0026C08.pdf
	0026C09.pdf
	0026C10.pdf
	0026C11.pdf
	0026C12.pdf
	0026C13.pdf
	0026C14.pdf
	0026D01.pdf
	0026D02.pdf
	0026D03.pdf
	0026D04.pdf
	0026D05.pdf
	0026D06.pdf
	0026D07.pdf
	0026D08.pdf
	0026D09.pdf
	0026D10.pdf
	0026D11.pdf
	0026D12.pdf
	0026D13.pdf
	0026D14.pdf
	0026E01.pdf
	0026E02.pdf
	0026E03.pdf
	0026E04.pdf

