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1. FORWORL

This semiannual technical report cowers the work performed by Honey-

well Rlectro-Optics 00erations, Le::O,ngton, Massachusetts from January 1, 1981

to June 30, 1981 under the NASA sponsored program entitled "Defect Ch pt stry and

Characterization of ()Ig,Cd)Te' t on Contract NAS8-33245. The objective of

this program is to study and formalize the defect chemistry of (Hg,Cd)Te and to

evaluate and select characterization methods for the material.

The principal investigator is Dr. H.R. Vydyanp.th providing the over-

all technical direction for the program. Assistance with the experimental work

Is provided by 3,C. Donovan, P. Crickard and A. Barnes. R.A. Lancaster and

L.A. Nelson generously furnished all the crystals required for the program.
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II. INTRODUCTION

At the end of the first eighteen month period of the program the

Jefect structures of undoped 
Hg0.8Cd0.2Te 

(S), undoped H90.6Cd0.4Te (S)

copper and indium doped 
Hg0.8CdO.2Te 

(S) were established. These results
were reported in the semiannual technical report covering the period of January

1979 to June 1980. Details of the doping behavior of Iodine doped Hg0 , 8Cd0.2Te
were reported in the Semiannual technical report covering the period of

July 1, 1980 to December 31, 1980. This semiannual report details the work

performed from Janv:iary 1, 1981 to June 30, 1981. During this six month, period
the defect structure of phosphorus doped Hg O.8CdO.2Te has been investigated

in detail. Single crystal samples of phosphorus doped 
Hg0.8Cd0.2Te 

were

annealed at tempera tures varying from 450cC-,^O%oc in various Hg atmospheres.
The samples were quenched to room temperature from the annealing temperatures.

Hall effect and mobility measurements were performed at 77K on all these

samples. The results indicate the crystals to be p type for a total phosphorus

concentration of 10 19cm- 3 in all the samples. The hole concentration at 77K
increases with increasing Hg pressures at 450°C and 500°C contrary to the

observation in undoped crystals. Also, at low Hg pressures the concentration

of holes in the phosphorus doped crystals is lower than in the undoped crystals.

The hole concentration in all the samples is lower than the intrinsic carrier

concentration at the annealing temperatures. The hole mobility in the doped

crystals is similar to that in the undoped crystals. All these inferences have

led to the establishment of a defect model according to which phosphorus behaves

as a single; acceptor interstitially and occupying Te lattice sites while it

acts as a single donor occupying rig lattice sites. Most of the phosphorus

appears to be present as neutral (PHgPi ) x species at intermediate Hg pressures
whereas at low Hg pressures a majority of it is present as (PHgVHg)' and

(PH9VHg)1 species. Equilibrium constants have been established for the

incorporation of all the phosphorus species. These constants satisfactorily

explain all the experimental results.
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D.A. Nelson and R.A. Lancaster, Journal of Electrochem. Soc. 126, 371C

(1979).

(3) 'Defect Studies in Hg 0.8Cd0.2Te l H.R. Vydyanath, presented at the
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pounds", University of Lancaster, U.K. April 14-16, 1980.

(4) 'Lattice Defects in Hg l_XCdxTe Alloys' I-Defect Structure of undoped

and copper doped Hg0.8Cd0.2Te l H.R. Vydyanath, J. Electrochem. Soc.

128, 2609 (1981).

(5) 'Lattice Defects in Hgi_xCdxTe Alloys' II-Defect Structure of Indium
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H.R. Vydyanath, J. Electrochem. Soc. 128, 2619 (1981).
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,.	 Soc. 128, 2625 (1981).

(7) 'Doping behavior of Iodine in Hg0,8Cd0.2Te l H.R. Vydyanath and F.A. Kroger,
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(8) 'Mode of Incorporation of Phosphorus in Hgp .8Cdo .2Te' H.R. Vydyanath and
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(9) 'Role of lattice Defects in Undoped and Doped Hgl_xCdxTe Alloys' H;R.

Vydyanath HCT Workshop Minneapolis, October 28-30, 1981.
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III. TECHNICAL DETAILS

The work performed from January 1, 1981 to June 30, 1981 resulted in the

establishment of a defect model for phosphorus (loped HgO.8CdC.2Te. The

technical details of the work are described in the form of a paper entitled

w

	 'Mode of Incorporation of Phosphorus in HgC.8CdC.2Te' which is being submitted

to the Journal of Applied Physics for publication. The paper describes the

background material, the experimental details and analysis of the data. The

mass action constants arrived at for the incorporation of phosphorus in

HgO.8Cdd.2Te together with the values of the constants for the intrinsic

excitation process and the incorporation of the doubly ionized native acceptor

defect (established in one previous semiannual report) satisfactorily explain

the experimental results for phosphorus doped Hg C,8CdO.2Te crystals.

3
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Mode of Incorporation of Phosphorus in Hg o, sCd o. 2Te*

H.R. Vydyanath and R.C. Abbott

Honeywell, Inc.

Electro Optics Operations

2 Forbes Road

Lexington, Mass. 02173
E

Single crystal samples of phosphorus doped Hp n, 8Cd o, 2Te were

annealed at temperatures varying from 450°C to 600°C in different partial pres-

sures of Hg.	 Hall effect and mobility measurements were performed on the

samples cooled to room temperature. All the samples were found to be p-type

with the hole concentration being much less titan the total amount of phosphorus

present in the crystals. The hole concentration was found to increase with in-

crease in partial pressure of Hg in contrast to the behavior observed in

undoped crystals. Also, the hole concentration obtained in the doped samples

at low Hg pressures was less than that in undoped crystals.	 The 77 K hole

;nobility of the doped samples was similar to that of undoped sampois. Al 

these inferences indicate that phosphorus behaves amphoterical'y in

Hg o.gCdo. 2Te (s) acting as a single acceptor occupying interstitial and

tellurium lattice sites at high Hg pressures and as a single donor occupying Hg

lattice sites at low Hg pressures; at intermediate Hg pressures, the majority

of the phosphorus appears to be present as electrically neutral pairs formed

from the association of the interstitial and substitutional phosphorus species,

(PPHg) x .	 At low Hg pressures, a large fraction of the phosphorus

appears to be present as (PHgVHg)' and (PHgVHg)'.

i
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Thermodynamic constants evaluated for the incorporation of the various phos-

phorus species satisfactorily explain the experimental results.

Key words: 11-VI	 compounds, Hg o. eCd o. zTe, 	 phosphorus	 doping,	 hole	 mobil-

ity, defects, ionized impurity scattering.

* This work was supported by NASA under contract NAS8-33245.
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I. INTRODUCTION

The mode of incorporation of phosphorus in CdTe has been studied in

detail by Selim and Kroger [1] who correlated their own electrical data with

thr, diffusion and solubility data of Nall and Woodbury [2] to arrive at the

defect state. According to their findings, phosphorus behaves amphcterically

in CdTe acting as an accepter interstitially (P;) and on Te lattice sites

( P 'Te) and as a triple donor on Cd lattice sites ( PCd ); at high phosphorus

concentrations, a large fraction was found to be present as neutral associates

(PCdPi) x .	 In this paper we have undertaken to examine the role of

phosphorus in iigo.8U 0.2Te via Hall effect and mobility measurements on

phosphorus doped crystals quenched from 450-600°C subsequent to anneals in dif-

ferent partial pressures of Hg. The results indicate that the behavior of

phosphorus in Hg o. eCd o. 2Te is similar to that established for CdTe [1]

except that all the electrically active phosphorus defect centers in

Hg o. eCd o.2Te appear to be only singly ionized.	 At tow Hg pressure, phos-

phorus is incorporated as a single donor occupying Hg lattice sites (PHg) and

at high Hg pressure as a single acceptor on interstitial sites (Pl-) and Te

lattice sites (P'Te ). At moderate Hg pressures, a large fraction is found to

be present as neutral pairs (PHgPi) x .	 At low Hg pressures, electri-

cally active associates (PHgVHg)" and (PHgVHg)* appear to be present in

appreciable concentrations.	 The equilibrium constants established for the

incorporation of the various phosphorus defects explain the experimental

results satisfactorily.
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I1`. EXPERNENNTAL

A.	 Preparation of the Phosphorus Doped Crystals

A phosphorus doped Hgo. eCd o. je ingot wos grown by the solid

state recrystallization method [3]. Phos phorus corresponding to a concentra-

tion of 10 1 9 cm- 
3 

was added to the starting charge.	 Single crystal slices

were then cut from the boule. The slices were lapped, polished, etched in Br

methanol and rinsed in 0I water prior to the anneals.

$, Hg Vapor Anneals

The samplas were annealed in evacuated quartz ampoules containing

some Hg to obtain the desired Hg pressure [4]. to isothermal anneals, the par-

tial pressure of Hg was dependent on the amount of Hg and the vol ufne of the

ampoule. In non-isothermal anneals, the partial pressure of Hg was determined

+	 from the temperature of the Hg. The limits of Hg pressure-within which

Hg o.eCdo.2Te(s) is stable--were obtained from the partial pressure data of

Tung et al. [5]. In order to assure ourselves of equilibration within reason-

able annealing times, the sample thicknesses were restricted to less than 0.04

cm. Annealing times ranged from 72 hours at 550 to 600 °C to 7 days at 5000C and

approximately 4 to 6 weiks at 450°C, These annealing times appeared to be

satisfactory for complete equilibration. Subsequent to the equilibration in Hg

vapor, the ampoule containing the sample was quenched in ice water.

a
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C. Electrical Measurements

Hall effect and electrical resistivity rtxasurements were carried out

using the Ilan der Pauw method [6]. Magnetic field strengths of 400 gauss and

,1^ 1	4000 gauss were used for the measurement of the Hall coefficient,

D. Chemical Analysis

The concentration of phosphorus in the samples was mass spectrograph-

ically analyzed (Photometrics Inc., Woburn, Mass.) and the concentration deter-

mined from the analysis was close to what had been added to the starting

charge within ± 20%.

III. Result"

Only those Hall effect data where the Hall coefficient did not vary

with the magnetic field were used in evaluating the carrier concentration.

.	 This procedure ensured that the samples did not exhibit mixed conduction [7]

and thus an unambiguous evaluation of the carrier concentration was possible.

The carrier concentration was evaluate d using the expression:

1
n or p: RNq

Figure 1 shows the Hall coefficient as a function of the temperature

of measurement from temperatures below 77 K to 300 K for phosphorus doped

samples annealed at various temperatures in different partial pressure of Hg.

The data indicate that the phosphorus centers are all ionized at 77 K;

9
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therefore all the Hall measurements wore carried out at 77 K and the resulting

hole concentration was assumed to give a measure of the concentration of the

defects at the higher annealing temperatures.

Figure 2 shows the hole concentrations obtained in samples doped with
N

1019 cm- 3 of phosphorus which were annealed at various temperatures in differ-

ent partial pressures of Hg; the data shown in Figure 2 are replotted in

Figures 3 through 6 for different temperatures of anneal. 	 Additional data

shown in these figures include the hole concentration and hole mobility

obtained in the undoped samples as well rs the hole mobility in the phosphorus

t doped samples, all of which are plotted as a function of the partial pressure

of Hg.

Several inferences can be made from the results of Figures 2
t

through 6. They are:

r

(1) The hole concentration in the phosphorus doped samples is lower

than the total concentration of phosphorus in the samples and

p ower	 than	 the	 intrinsic	 carrier	 concentrations	 for

'	 Hg o. BU o.2Te(s) at the temperatures of annealing reported

here [4].

(2) The hole mobility in the phosphorus doped samples increases with

increasing partial pressure of Hg Just as is the case for

the undoped samples.

4+
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(3) The hole concentration in the phosphorus doped samples increases

with increasing partial pressure of Hg; the hole concentrations

at high Hg pressures are higher than found in the undoped

crystals.

(4) The hole concentration in the samples annealed at 500°C and

450°C under very low Hg pressures is less than that obtained in

the undoped samples for comparable annealing conditions.
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equation are all listed in Table z. Only those defects which were found to be

important as a result of the present work are shown in Table I. Table II lists
the exponents of the partial pressure of H9 and the phosphorus concentration

for all the defects for various approximations to the electroneutrality condi-

tion and the phosphorus balance equation.
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B. Choice of a Defect Model

Based on the fact that P belongs to group V, Hg to group II and Te to

group VI, a number of different phosphorus species can be expected depending on

the type of lattice sites occupied. These are;

Interstitially	 Pi, P1	
^a^^

.., Pi
	

(Acceptors)

Substitutionally	 P* , PH9 and PH; * 	(Donors)
(occupying Hg lattice site)

Substitutionally	 PTe	 (Acceptors)
(occupying Te lattice site)

Pairs - a)	 (P i PHg ) x , (P i P Hg) ' , (P i PHg )

III
(P i PHg )	 , (Pi PHg) ll , (P i P Hg )	 , (Pi PHg)

b ) ( P H9 VHg)X , (P Hg VHg ) ' and (PH9VHg)

C) (PHg PTe ) x , (P Hg PTe ) 0 and (P HgPTd o"

The data shown in Figures 3 through 6 indicate that the hole mobility

values obtained in the phosphorus doped samples are comparable to those in the

undoped samples for similar partial pressures of Hg and temperatures of anneal-

ing even though at high Hg pressures, the hole concentrations in the phosphorus

doped samples are higher than in the undoped samples. This inference already

precl Aes the possibility of the presence of multiply electrically charged

phosphorus species in large concentrations since such species can be expected

to behave as much stronger scattering centers than the singly charged species,

23
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thus causing the hole mobility in the phosphorus dope(, samples to be consider-

ably lower than the hole mobility in the undoped samples contrary to the

experimental results. The species of interest are reduced to

^	 xP i' PHg' PTO ( P HgV Hg)	 ( P H9 V H9 ) ' ( P Hg PTe) , ( P i P H9), (P Hg V Hg ) x and

( PHg PTe) x. 	The fact that the hole concentrations obtained in the 	 phos-

phorus doped samples are much "Cower than the total phosphorus concentration in

'	 the samples (10
19
 cm 3 ) indicates that most of the phosphorus is present as

neutral	 species	 in	 the	 form	 of	 (PiPHg ) x,	 (PHgVHg)x	 or

(PHgPTe) x -	 it is also to be noted that the hole concentrations obtained

in the phosphorus doped samples (Figures 2 through 6) are smaller than the

intrinsic carrier concentrations to be expected at the temperatures of anneal

reported here [4].

The choice of a defect model is reduced to:

(1) [e' ] _ [h. ] _ 3K i * f (PHg) and [(P Hg P Te )x] ` [PTot /2 ]

(2) [e' ] _ [i-^ ] = 3K i * f ( P Hg ) and [(P Hg V Hg ) x ] _ 
[?Tot ]

k

and	 (3) [e' ] _ [h ' ] = VKi * f (P Hg ) and [(PiPHg)x ] ` [P ToP

k

The expected power dependences of the various defects on the partial pressure

of Hg for the above defect model situations are listed in Tableii. Models 1

and	 2	 for	 which	 [PTot/2 ]	 s	 [(PHgPTe)x]	 or	 [(PHgVHg) x ]!s predict

much stronger dependences of [PHg] on PHg and the search did not result in

a consistent set of mass action constants for the incorporation of the various

phosphorus species which could explain the experimental results of Figures 3

e
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through 6. The third defect model forwhich [e' ] _ [h ") - Ai * J(P Hg)

and I (Pi PHg) x ] R [PTot]/2 successfully explains the experimental re-

sults of Figures 3 through 6; for such a situation it can be deduced from the

mass action relations of Table I that

[ p i ] a PHg `/ 2 ^ PHg I a PHg / 2 r [PTe ] a PHg'/ 2y [(PHg V ) ^ ] ^'
 P89-3/1Hg 3/ 2

and [(PHgVHg)') a pHg.3/2. 	 These exponents are listed in Table I.T.

It should be mentioned here that although our initial considerations for the

electrically active phosphorus species were restricted to the simple species,

Pi g , PHg and PTe, it was immediately realized that the experimental

results	 warrantee;	 the	 introduction	 of	 the	 species	 (PHgVHg)'	 and

(PHgVHg)' also.

The parrs (PHgVHg)' are

PHg ... and VHS whereas

formed from the association of the species

PHg and VHg make up the pairs (PHgVHg)'.

The explanation for the presence of appreciable concentrations of

(PHgVHg)' without the presence of large concentrations of isolated

p,, @• species lies in the fact that the donor energy level of the PH*g

species (which upon ionization gives PHg' ..) may lie outside the forbidden

gap (in the valence band) and pairing may bring its level to within the gap

[13] Examples of such level variations upon pairing have been found by us

earlier for Cds: Ag [14 J and Si: Se [151.
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C• DEFECT MODEL CALCULATIONS AND COMPARISON WITH
EXPERIMENTAL RESULTS

In this section we examine the validity of the proposed defect model

for phosphorus doped Hgo, eCd o, 2Te from a comparison of the electrical data

with those one calculates from the defect model. Although the defect model

arrived at in the previous section took into consideration the mobility data

also, it will become apparent from discussions in this section that the agree-

ment between the experimental values and calculations (based on the defect

model) is better fcr carrier concentration than for hole mobilities.

C.1 Analysis of the Carrier Concentration

According to the defect model deduced in the previous section, the

phosphorus	 species	 of	 interest	 are	 Pi,	 PHg ►	 PTe +	 (PHgVHg)^f
(PHgVHg)' and (PiPHg)x.

The complete electroneutrality condition is written as

[e' , + 2 [VHg^ + [Pi I + [PTe + [ (PH9 V Hg ) +^ ` [h ' + [PKg + l(PHg VHg )	 (1)

Expressing all the species in terms of [h'), pHg and [(PiPHg) x l via
the mass action relations listed in Table 1, we get;

	

K i	
2 KVH[(PiP H )x 

11/2 
pH 

1/2

h . + pHg [h-12 + Kp (PiPHg) X Kp/2 ln,M..^.._
B

1/2

	

+	 KP Te 	 pHg 3/ 2 [ (Pi 
PNg )r

i	 h•
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+ Kp (PH VH ), KpH ( (F) P ) x 1 1/2 K"

[h*) pHg 3 2

[h	
KpH [h * ) [ ( P i P 49 ) x )1/2
^	 .^_._

A 1^2
Hg

K1/ H VH ) `1h+) [( P i PHg)x )1/2	
o

	

PH9 312
	

- (2)

The phosphorus balance equation is written as;

CP i I + 1p H ) + IN') + [( P Hg VHg) + )

+ [(P Hg VHg )•) + 2 [(PiPHg)x) - [PTot ]	- (3)

The	 concentrations	 of	 the	 species	 Pi',	 P"e I ,	 (PHgVHg) i ,	 PHg

and (PHgVHg)' are respectively given by the III, IV, V, VII and VIII terms

of equation (2).

The concentration of holes obtained in the crystals cooled to 77 K is

given by P(77 K) . [ P i ) + [PTe ) + [(PHg VHg) ^) + 2 [VH9

— [P H9 ) - [ (P HgVHg) 0 )
	

(4)

(The assumption made here is that the electrons and holes recombine during

quenching and only the atomic defects are frozen in 18-9).)
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The concentrations [Pi i ^, [Rte'	 L(P Hg VHg) 10 2 [V H9 1 P

[PHgI and ( ( PHgVH9 ) 0 	in equation 4 ar% respectively given by the 11I,

IV, V, 11, VII and Yt11 terms of equation (2).

Of	 the	 mass	 action	 constants	 Ki,	 KVHg,	 KpHg ,	 KpTe,

Kp(p Hg VHg
) `
	 and	 K(PHg`!Hg)',	 Ki	 and	 K O H1 0	 are	 known	 from

earlier work on the undoped crystals [4) and are given by:

K i - 9.16 x 10 ``0 exp (-0.57 eV/ KT )cm-6	-- (5)

and

KVHg X 1.58 x 1069 exp (-2.24 eV/ KT )cm-9
 atm	 -- (6)

With the knowledge of the constants Ki and KVHg and IPTotI - 10' 9CM' 3,

a procedure of t rial and error was used to arrive at the values of the other

mass action constants such that a solution to equations 2 and 3 yielded hole

concentrations at 77 K (using equation 4) which agreed best with the

experimentally observed values; the concentrations of all the defects present

in the crystal are also momediately obtained from the various terms in equation

(2). The hole concentrations calculated from the defect model are shown in

Figures 3 through 6 as solid lines; the agreement between the calculations and

the experimental values appears satisfactory particularly at 450 C and 500 C.

The agreement is not as good at 550 C and 600 C probably due to quenching

inefficiency 141 at the higher temperatures. The calculated defect isotherms

for various annealing temperatures are shown in Figures 7 through 10. The
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Figure 8. Calculated Concentrations of e'], [h` 	 (VHg]. {Pi'],
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defect isotherms show the concentration of the electrons, holes and the various

phosphorus defect species as a function of the partial pressure of Hg. The.

calculated hole concentrations expected at 77 K along with the experimental

values are also indicated in the figures.	 It is apparer;t from the defect

isotherms that the crystal is essentially intrinsic at the annealing tempev -

ture except at Hg pressures close to Hg saturated or TO saturated conditions

indicated by the phase boundary limits io the figures. It should also be noted

that most of the phosphorus is present as neutral (P;PHg) x	almost

throughout the existence region of the crystal except at Fig pressures close to

the Hg saturation and Te saturation conditions where the electrically active

phosphorus species become significant in concentration. The calculated hole

concentrations at 77 K are extremely sensitive to the value of the total

r	 phosphorus concentration in the crystals at the lowest Hg pressures where the

crystals .Ire very closely compensated (Figures 7 through 10) and the 1101c

concentration in the cooled crystals is much smaller than the concentration of

.the electrically active native as well as phosphorus defects.

The mass action constants for the incorporation of the various phos-

phorus Species resulting from the present work are listed in Tab a III.
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C. 	 Coulombic Values for the Pairing Constants Kp(pip Hg ) x and

Kp(pHgVHg )

The pairing constant is given by Kp . Kp exp (-Hp/KT) 	 The

Coulombic value for the enthalpy of pairing is given by

H	 -Z IZA	 [ref. 13]	
(7)

P	 er

Where 7 1 and Z 2 refer to the charges of the two species comprising the pair,

and r to the distance between them.

Noting that rp _ P '^ 3.23 A and
i	 Hg

rPHg - VHg = 4.5 A

HP(P i HgP ) x	 -0.252 ev

and	 HP()
H9 Hg

V ) s -0.36 ev

while analyzing the Hall effect data, the constants Kp(piPH 
g 
)x aid

K P(pHg vHg) , were chosen such that their temperature dependences Caere

close to the above Coulombic values (Tattle In). The preexponent or the entropy

term P,Ko) is expected to be ` 4.0 [133. However, as can be noted from Table

II :L the preexponents needed to explain the experimental results are much larger

than 4 particularly for Kp(pipHg)X.
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C.3. Analysis of the Hole Mobility

It is known from the results of previous work [4] that ionized impur-

ity scattering contributes to the mobility of holes at 77 K in

Hg o. sCd o. 2Te.	 Similar to the procedures used previously, [4] we have

undertaken to calculate the hole mobility due to ionized impurity scattering

which is then used to calculate the overall mobility by reciprocally combining

the mobility due to lattice scattering with the mobility due to ionized

impurity scattering.	 The number of ionized impurity scattering centers

obtained at different Hg pressures for different temperatures of anneal as

calculated from the defect model is shown in Figures 
7 

through 10.

For a non-degenerate semiconductor with parabolic bands the mob ility

due to ionized impurity scattering as given by the Brooks Herring Expression is

u I r 2 7/2 ff -3/2 (kT)s/2 (c0cS) 2 (mo) •-1/2 
( m

*/mo)- 1 /2 N I-1 ^log e ( l+b) - b) -1
TTU

where b - 14 m  (m*/mo) k2 ('c0c s)

(8)
P 2 h 2 p'

I

and 	 `P+ (NA - ND -P) (P+ ND ) /NA	 (9)

In the above expressions, k is the Boltzmann's constant, T is the

temprature, co is the free space permittivity, Es is the static dielectric

constant, % is the free electron mass, (m*/mo) is the effective mass ratio

for, holes, NI is the number of scattering centers given by the total number

of ionized '.anors and acceptors, a is the electronic charge and A is the

planck's constant.
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with T = 77 K, (m*/mo) (holes) - 0.'^

the mobility due to ionized impurity svwvwul 111y Wv.%O,,,,.;,

u1 : 10 21 N 1 ' 1 loge (1+b) - -lb—+b^1	
(10)

and b = 1.05 x 10 19/p'	 (11)

for undoped crystals N I	 4 ( V II J	 (l 2)

for phosphorus doped crystals

N I	 (P i I + (PTe J + ( Phg J + ( ( P Hg VHg ) ^) + (CPHg VNg )	 + 4 ^VN9	 (13)

The multiplying factor of 4 for the species VHg arises in expressions 12 and

13 for N1 since these centers are doubly charged (z=2) and hence faur times

as strong in scattering as the singly charged centers. Since the defects are

completely ionized at 77 K in both the undoped crystals and the phosphorus

iopel crystals (Figure 1)

p'	 p (77 K)	 2 [V"Hg ] (anneal temperature) for the undoped crystals

and p ' _ p (77 K)	 CP i + + ^PTe^ + EC P VHg)^]+ 2 CV H9J - [P .	 - (( P VNg)61

for the phosphorus doped crystals.
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From the values of p (77 K) for the phosphorus doped crystals and the

concentrations of all the defects as a function of the partial pressure of Hg

as given by the defect isotherms of Figures 7 through 10, the hole mobility due

to ionized impurity scattering was calculated by reciprocally adding the lat-

tice mobi lity and the mobility due to ionized impurity scattering. From the

results on undoped crystals, the hole mobility due to lattice scattering was

assumed to be - 700 cm z/vsec at 77 K for Hg 0. 9Cd p. 2Te [4]. The restil is

are shown in Figures 11 through 14 where calculated hole mobility is shown as a

function of the partial pressure of Hg for various temperatures of anneal; the

experimentally measured hole mobilities are also shown in the figures. From

the figures, it is apparent that the trend in the variation of the calculated

hole mobility as a function of the partial pressure of Hg agrees with the

experimental results for the phosphorus doped crystals as well as the undoped

crystals. The calculated values for the phosphorus doped crystals decrease

drastically at the lowest Hg pressures since the total number of charged

defects increases rather strongly under Ng deficient conditions (Figures 7

through 10); in addition, the expected hole concentrations at these low Hg

pressures are much lower than for the undoped crystals particularly at 480°C

and 500°C. The re4uced screening (due to the low hole concentrations) of the

coulombic field of the ionized scattering centers along with the rather high

concentration of charged defects explains the drastic decrease of the calcu-

lated hole mobility at the lowe't Hg pressures. However, the experimental hole

mobilities are larger than the calculated values at the lowest Hg pressures.

The discrepancy can be qualitatively explained by assuming that a fraction of

the charged phosphorus defects precipitates during cooling. More sophisticated

calculations are needed to explain the results better.
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D. Comparison with the Defect Stare in Phosphorus Doped CdTe

The defect model established in the present work for phosphorus doped

11gp .8Cdp.2Te is very similar to the one established for phosphorus doped CdTe

[1]. lu both Hg0.8Cdp .2Te and CdTe, phosphorus occupies interstitial and Te

lattices acting as an acceptor while It acts as a donor occupying metal lntticr

sites. The difference however is that isolated phosphorus donor species are

found to be triply ionized in CdTe * [l] whereas in HgC,8Cd0.2Te it is found to

be present only in the singly ionized state, Considering that the band gap of

HgC,8CdC.2Te is only 0.1 eV compared with the value of 1.6 eV for CdTe it is

understandable that the energy levels of the doubly and triply ionized states

of the phosphorus donor species could lie below the valance band edge in

YRgO.8CdO.2Te whereas they lie within the gap in CdTe. In both Hg O.8CdO.2Te and

CdTe a large concentration of phosphorus is found to be present as neutralr

pairs (PHgP i ) x and (PCdP i ) x respectively. At low Hg pressures a considerable

fraction of phosphorus is found to be present as (PHgVHg)° and (PHgVHg )' in

(Hgo.8Cd0.2)Te whereas similar species (pCdVCd)I 
and 

-(PCdVCd)' 
have not been

reported for CdTe (1].

y
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V. SUMMARY

Phosphorus doped Hgo. eCd o.2Te single crystals were annealed at

450°C to 600% in different partial pressures of Hg. Hall effect measurements

were made on crystals quenched to room temperature after the anneals.	 The

results tyre explained on the basis of a defect model in which phosphorus

behaves ampheterically acting as a single acceptor in interstitial sites at

high IIg pressures and occupying TO lattice sites (Pi and PT e) and as a

single donor occupying Hg lattice sites (PHg). Most of the phosphorous

appears to be present as neutral pairs (PiPHg) x it moderate Hg pressures

while a considerable fraction also exists paired witi , the native acceptor

defects (PHgVHg)' and (PHgVHg)' at low Hg pressures. Equilibrium

constants for the incorporation of the various phosphorous species have been

evaluated.
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IV. SUMMARY

`	
The work performed on this program so far has resulted in the estsb-

f`	 lishmrnt of the defect models for undo ed 1190.8 
Cd

0.2 
Te and undoped

. 	̂
p

Hgo'6Cdo.4Te. The mechanisms of incorporation of copper, indium, iodine and

r	 phosphorus in HgC.8CdC.2Te have also been established. In the next semiannual
a

report, the details of incorporation of gold in Hg C.8CdO.2Te will be discussed.

i
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