NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE.ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Real Time Simulation of Computer-Assisted
Sequencing and Scheduling of Terminal Area Operations
Final Report

Roger G. Dear, Associate Professor
Department of Management Science
California State University, Fullerton
January 31, 1981

Funds for the support of this study have been allocated by the
NASA-Ames Research Center, Moffett Field, California, under
Interchange No. NCA2-OR253-801.
Table of Contents

I. Introduction 1

II. Graphical Display of Constrained Position Shifting 3
 1. Introduction 3
 2. Program Overview 4
 3. Instructions For Running a CPS Demonstration 7
 A. Program Preparation 8
 B. Simulation Input Parameters 8
 C. Scope Information 9
 D. Output Information 10
 4. CPS - Sample Demonstration 13
 A. The Setup 13
 B. The Output 14
 C. CPS Demonstration - Photographs 18
 D. CPS Demonstration - Limitations and Extensions 19
 E. CPS Demonstration - Program Description 21

III. Implementation of Computer-Assisted Sequencing and Scheduling 26
 1. Introduction 26
 2. Time-Based Control - System Overview 27
 3. Operational Comparison of FCFS and CPS Strategies 32
 4. Implementation-Related Design Considerations 36
I. INTRODUCTION

Descent guidance of aircraft into high density terminal areas presents the Air Traffic Control (ATC) system with two major concerns—safety and efficiency. Safety is quite naturally the first and foremost concern, while overall system efficiency becomes more and more important as fuel costs and demand for services increase. Moreover, efficiency and safety are interrelated, especially during peak periods. Poor system performance will likely result in additional congestion which will, in turn, produce additional safety-related problems. Recent advancements in navigation and guidance indicate that an aircraft, if properly equipped, can reduce its terminal area fuel consumption and improve its delivery accuracy to the runway. All aircraft, however, are users of the ATC system and must receive ATC clearances in order to execute advanced approaches. The accommodation of these approaches by the ATC system requires a high degree of coordination between final, approach and en route controllers. The controllers may be aided in this task by digital computers. Of particular interest are the potential improvements in system efficiency that may be derived from assisting the controllers with their minute-to-minute decision-making task of sequencing and scheduling arrivals at the runway. The sequencing and scheduling task is of interest because runway utilization is affected by the specific order in which arrivals are served. This is a consequence of the FAA's weight dependent safety separations and also from the differences in aircraft approach and landing velocities.

One decision methodology, termed Constrained Position Shifting
(CPS) has been proposed [1] to sequence and schedule arrivals in a more efficient manner than first-come, first-serve. The CPS methodology essentially determines local derandomizations of the arrival stream whereby all aircraft are subject to a fundamental service constraint. This constraint requires that every aircraft be assigned to land within a pre-specified number of positions from its first-come, first-serve position with respect to arrival at the runway (FCFS-RW). As a consequence, this maximum position shift (MPS) constraint allows the controllers (computers) to resequence the aircraft in a manner that improves overall efficiency while ensuring that no aircraft is inordinately displaced.

In the joint research Interchange Number NCA-OR253-7, the CPS algorithm was adapted so as to be compatible with the real-time simulation facility of the NASA-Ames Research Center's Aircraft Navigation and Guidance Branch. One major accomplishment of this Interchange Number NCA2-OR253-801 was the development of an event-to-event simulation which graphically displays the CPS methodology. The scenario adopted by this demonstration simulation was that of the Denver terminal area (actually a region within a radius of approximately 123 n.m. from Denver's Stapleton Airport). This region and route structure is identical to that selected in the joint NASA/Ames-FAA Technical Center real-time simulation study of profile descents undertaken in July and August, 1977 [2].

A detailed description of the CPS demonstration program plus sample output will be presented. Following the description of the simulation this report will present a discussion on insights gained in
regard to the implementation of the CPS methodology into the updated ATC system. Finally, thoughts on the incorporation of the CPS methodology into the next phase of real-time simulation will be offered.

II. GRAPHICAL DISPLAY OF CONSTRAINED POSITION SHIFTING

1. INTRODUCTION

This section describes the event-to-event simulation developed to demonstrate the CPS methodology on a graphical display. The CPS methodology will generally improve system efficiency whenever runway utilization is dependent upon the specific sequence of arrivals at the runway. This sequence dependence is the rule rather than the exception. A minimum interarrival time separation may be determined for any two successively arriving aircraft. This time separation is a function of the type, weight, capability, and route of both the lead and following aircraft. The CPS methodology will offer improvement over simpler strategies such as first-come, first-serve at the runway (FCFS-RW) unless this minimum time separation is identical for each possible pair of arrivals. Previous fast-time simulations have demonstrated the potential gains of the CPS methodology [1]. Considerable delay reduction is indicated, especially during peak periods. The aircraft in these prior simulations were differentiated by their landing velocities and weight category (light, conventional and heavy). The demonstration simulation described here expands the
CPS methodology to include a three dimensional route structure. As previously mentioned, the terminal area waypoint and route structure is identical to that adopted in the joint NASA-FAA real-time simulation of profile descents into Denver's Stapleton Airport. Flight tracks from the real-time simulation are employed as "nominal" flight paths for the CPS demonstration.

The simulation program described here is written in FORTRAN on a PDP 11/40 computer which drives an Evans and Sutherland "Picture System". The graphics system is connected to three CRTs. The next section offers an overview of the simulation program. Then, instructions for running a CPS demonstration are presented, followed by output and observations from sample runs comparing system performance of the FCFS-RW service discipline to the CPS strategy with a maximum position shift of 4. Limitations and possible extensions to the simulation are then discussed. Finally, a description and listing of the program is provided.

2. PROGRAM OVERVIEW

The CPS demonstration simulation may be summarized as follows:

Thirty aircraft arrive in a random fashion (to be described later) into the Denver control area en route to Stapleton Airport. The aircraft flight paths are reproduced from one run of the NASA-FAA profile descent real-time simulation of July 1977. The aircraft identification, position, altitude, and velocity are indicated on the graphical display. The data are updated every four seconds (or any
multiple of four seconds if so selected at run time). Table #1 presents data on the aircraft in the simulation (type, weight, theoretical mix percentage, route number, entrance direction, entrance altitude, and velocity, landing velocity, nominal flight time, and whether the aircraft flies a profile descent).

Table #1 - Aircraft Data

<table>
<thead>
<tr>
<th>A/C</th>
<th>A/C Type</th>
<th>APPROX Route</th>
<th>ENTER ALT (FT)</th>
<th>ENT ALT VEL (KTS)</th>
<th>LAND VEL (KTS)</th>
<th>FLIGHT TIME (m)</th>
<th>PROFF DESC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC10</td>
<td>HEAVY</td>
<td>SW</td>
<td>37,000</td>
<td>490</td>
<td>152</td>
<td>27m 0s</td>
<td>YES</td>
</tr>
<tr>
<td>B737</td>
<td>CONV</td>
<td>SE</td>
<td>27,000</td>
<td>460</td>
<td>146</td>
<td>27m 12s</td>
<td>YES</td>
</tr>
<tr>
<td>B727</td>
<td>CONV</td>
<td>NE</td>
<td>35,000</td>
<td>475</td>
<td>146</td>
<td>23m 44s</td>
<td>YES</td>
</tr>
<tr>
<td>DC9</td>
<td>CONV</td>
<td>NW</td>
<td>31,000</td>
<td>470</td>
<td>146</td>
<td>24m 56s</td>
<td>YES</td>
</tr>
<tr>
<td>CV5B</td>
<td>CONV</td>
<td>W</td>
<td>21,000</td>
<td>295</td>
<td>141</td>
<td>34m 56s</td>
<td>NO</td>
</tr>
<tr>
<td>DHC6</td>
<td>LIGHT</td>
<td>N</td>
<td>9,000</td>
<td>153</td>
<td>100</td>
<td>40m 52s</td>
<td>NO</td>
</tr>
</tbody>
</table>

Note that there are six types of aircraft, with each type entering the region from a different direction. The selection of only one type of aircraft for each route was made partly for simplicity, partly due to computer memory limitations, and partly due to the fact that many of the aircraft on the computer tape were instructed to break their profile descents and follow vectoring commands instead. The computations required to schedule different aircraft on the same route are nearly identical to those required for aircraft on different routes. For an explanation, see Section II.E, describing the
The simulation contains an automated scheduler which determines the tentative runway assignment times by employing the CPG algorithm with a MPS value that is input at run time. The scheduler takes into account the aircraft routes, nominal arrival times at the runway, and weight. Assignment times are calculated such that the FAA minimum horizontal separation standards for co-altitudinal aircraft is never violated. Table #2 presents the minimum separation standards employed in the simulation.

Table #2 - Minimum Separation Standards (n.m.)

<table>
<thead>
<tr>
<th>FOLLOWING AIRCRAFT</th>
<th>LIGHT</th>
<th>CONV</th>
<th>HEAVY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD AIRCRAFT</td>
<td>LIGHT</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CONV</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HEAVY</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Whenever a new arrival enters the Denver control area the automated scheduler must revise its tentative assignment times. At some point in time as an aircraft travels towards the runway the scheduler will change its tentative runway assignment time to a final (fixed) assignment time. The finalization of an aircraft’s runway assignment time takes place when one of the following two events occur:

a) The entrance of any new arrival will not change the aircraft’s current assignment; or
b) The aircraft is within a pre-specified lead
time from the runway. (A fifteen minute lead time is selected here as a reasonable value, although a simple software revision will change this lead time to whatever value desired.)

Delay is unavoidable whenever the aircraft compete for runway assignments. Holding stacks, path stretching and speed reduction are typical procedures for delay absorption. The simulation identifies delay absorption by holding the delayed aircraft in place and blinking its symbol on the display. This simplification is necessary because all aircraft must follow their predetermined data tracks. All delay, however, will be absorbed prior to the final fifteen minutes of flight. Consequently, the aircraft are under strategic control in the region nearest the airport. This illustrates one advantage of the CPS methodology, namely that the delay will be absorbed in the outer regions of the control area where there is less traffic and the aircraft are relatively fuel efficient.

Finally, when all aircraft have arrived at the runway, the simulation will output relevant statistics for the run. The next section presents instructions for running the CPS demonstration.

3. Instructions For Running a CPS Demonstration

This section presents instructions and information necessary to run a demonstration of the CPS methodology. The following section will present results from one such demonstration.
A. - Program Preparation

1. Insert disk titled "ROGER DEAR - CPS DEMO" into the PDP-11/40
2. Boot the system
3. Type .R CPSDMO and then RETURN
4. To re-run it is usually necessary to re-boot the system. If a system error occurs, try again. It should run the second time.

B. - Simulation Input Parameters

Six input parameters are requested at run-time. They are:

1. **SEED** - This is any positive integer. The seed number sets the random number generator. Runs may be reproduced with minor variations. (see NOTE at the end of this section)

2. **AIRCRAFT POSITION UPDATE** - This must be a multiple of 4. The six aircraft data tracks have positional information every 4 seconds. A larger update value will speed up the run. A typical update value might be 28 seconds.

3. **FINAL STATISTICS** - If a '1' is typed here, only final statistics will be output. If any other number is typed, then arrival information, tentative scheduling assignments and final assignments will also be output. A '1' is recommended.

4. **INITIAL DELAY** - This must be non-negative. The first aircraft to reach the runway (not necessarily the first aircraft entering the terminal area) will be delayed by the amount input (in seconds). In this manner, an initial busy period may be established.
3. **ARRIVAL RATE** - This must be non-negative. Arrivals on the same route are separated by a minimum of 92 seconds and the greatest interarrival time (into the terminal area) equals three minutes. Thus this input parameter does not correspond to an exact terminal area arrival rate, but to an approximate value. A large aircraft position update value will also reduce the effective arrival rate. A value between 35 and 45 is appropriate.

6. **MPS VALUE** - This parameter determines the maximum allowable number of positions that any aircraft may be shifted from its FCFS-RW position. If MPS = 0, then the arrivals are FCFS-RW. A value of MPS = 4 is appropriate for the CPS run. (An MPS value greater than 4 will increase the computational load considerably.)

NOTE - if the input values for the SEED, UPDATE, INITIAL DELAY and ARRIVAL RATE are the same, then an identical stream of aircraft will be generated. For a typical demonstration, it is suggested that the same parameters are input, first with MPS = 0 and then with MPS = 4.

C. **Scope Information**

Three scopes are used for this simulation. They are:

1. **The Approach Scene** - The approach scene for the Denver terminal area is on the right hand scope in the controller room.

2. **The Final Scene** - The final controller's scene is located on the left hand scope in the controller's room.
3. Backup Scope - The black and white scope by the terminal may be used to display either the approach or final scene. If the function Switch 1 is set, then the backup scope will show the approach scene. If Switch 1 is not set, then the final scene will be displayed.

Other Switches

Two other switches may be used for the demonstration.

SWITCH 3 - If Switch 3 is set, then a region indicating an extension of the runway is displayed on both approach and final scenes.

SWITCH 6 - If Switch 6 is set, then the run will be frozen after the next update. To continue the run, merely turn Switch 6 off and hit RETURN. If desired, the simulation can step through the run by leaving Switch 6 set and hitting the RETURN for each update.

D. - Output Information

At the conclusion of the run, output information is sent to the line printer. An explanation of the output is as follows:

1. LAND# - The order of the arrivals at the runway is listed.

2. ENT# - This number identifies the order in which the aircraft enter the terminal area.

3. FCFS# - This number identifies the First-Come, First-Serve number of the aircraft with respect to arrival at the runway. If MPS equals 0, then LAND# and FCFS# are identical.
4. ID - The airline tag is randomly selected. The number following the tag is the same as the aircraft's ENT#. The aircraft is of standard size unless the ID is followed by an "L" (signifying a light aircraft) or an "H" (signifying a heavy jet).

5. ROUTE - Six aircraft types and routes are represented here. The routes, aircraft types and the theoretical percentages for each type are as follows:

ROUTE 2 - DC10 (Heavy) - From the southeast - 25%
ROUTE 4 - B737 - From the northwest - 20%
ROUTE 7 - B727 - From the northeast - 20%
ROUTE 10 - DC9 - From the southeast - 15%
ROUTE 12 - CV58 - From the west - 10%
ROUTE 14 - DHC6 (Light) - From the north -10%

6. ENTER - This number is the aircraft's terminal area entrance time (in seconds).

7. NOMARR - This is the aircraft's nominal arrival time at the runway (in seconds).

8. SCHED - This is the aircraft's scheduled arrival time at the runway (in seconds).

9. DELAY - This is the aircraft's delay (which equals the difference between the aircraft's scheduled runway assignment time and the aircraft's nominal runway arrival time).

10. TYTOGO - This is the flight time remaining for an aircraft that has received its final assignment at the runway.
11. DF_LADS — This is the amount of delay that the aircraft has absorbed prior to receiving its final assignment.

12. DEL200 This is the amount of delay that the aircraft must still absorb after receiving its final assignment and prior to arriving at the runway.

NOTE — All aircraft will receive final assignments at least 15 minutes prior to touchdown at the runway. This lead time parameter is fixed, but may be altered by a software change.

Other Output

The output also includes the total delay for all 30 aircraft, the average delay for each aircraft, and the effective terminal area arrival rate, which signifies how many aircraft enter the system per hour.

If the response to the question regarding the output of final statistics only is anything other than a "1", then the simulation will output information on each aircraft as it enters the terminal region (identification, route, first-come, first-serve number at the time, and the nominal arrival time at the runway). In addition, the revised tentative assignments are listed. Information is also output whenever a tentative assignment is finalized. This information includes the aircraft identification, route, FCFS-RW number, time when final assignment was delivered, runway sequence position, scheduled arrival time, total delay, delay already absorbed, and delay to be absorbed. Appendix #1 includes a complete output for the demonstration described in the next section.
4. **CPS - SAMPLE DEMONSTRATION**

This section presents a sample demonstration of the CPS methodology as adapted to the Evans and Sutherland graphics system. The demonstration consists of two nearly identical simulation runs which differ only in the value selected for the MPS parameter. In the first run MPS is set equal to 0, which corresponds to sequencing the arrivals in their FCFS-RW order. The second run will select a MPS value of 4. Differences in the two runs will be observed in order to gain insight into the characteristics of the CPS methodology. In addition to the standard output, photographs of the displays at selected times throughout the two runs will be included.

A. **The Setup**

The responses to the input questions are the same for the two runs (with the exception of the MPS value). Consequently, the arrival process (entrance time, aircraft type, route, etc.) will be identical for each run. These input values are as follows:

1. **SEED** - The seed number for this demonstration is 1777. The resultant traffic mix is:

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>AIRCRAFT TYPE</th>
<th>SIZE</th>
<th>NUMBER GENERATED</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>DC10</td>
<td>HEAVY</td>
<td>7</td>
<td>23.33</td>
</tr>
<tr>
<td>4</td>
<td>B-37</td>
<td>CONV</td>
<td>7</td>
<td>23.33</td>
</tr>
<tr>
<td>7</td>
<td>B727</td>
<td>CONV</td>
<td>8</td>
<td>26.67</td>
</tr>
<tr>
<td>10</td>
<td>DC9</td>
<td>CONV</td>
<td>3</td>
<td>10.00</td>
</tr>
<tr>
<td>12</td>
<td>CV58</td>
<td>CONV</td>
<td>2</td>
<td>6.67</td>
</tr>
<tr>
<td>14</td>
<td>DHC6</td>
<td>LIGHT</td>
<td>3</td>
<td>10.00</td>
</tr>
</tbody>
</table>
2. UPDATE INTERVAL - The update interval equals 8 seconds.

3. ARRIVAL RATE (approximate) - The input value for the arrival rate is 45 aircraft per hour. The arrival process is not quite Poisson since aircraft that are on the same route must be separated initially by 92 seconds. Also, the maximum interarrival time is set to three minutes. As a consequence, the thirty aircraft in the demonstration all arrive within 35 minutes, which corresponds to an effective arrival rate of 52.84 aircraft per hour. The value selected is on the high side, since heavier arrival rates illustrate the differences between FCFS-RW and the CPS methodology more dramatically.

4. INITIAL DELAY - An initial delay of five minutes is selected. A positive initial delay forces the first aircraft to be delayed which establishes an initial busy period. Since the simulation run is limited to thirty aircraft, the use of an initial delay will more accurately represent peak period conditions.

B. The Output

Tables #3 and #4 present the summary output for the FCFS-RW run (MPS = 0) and the MPS = 4 run respectively. (Appendix #1 contains the complete output for each run.)

A number of observations and comments are in order. First, notice that in the MPS = 4 run the average delay for an aircraft was reduced from 237.20 seconds to 194.53 seconds (an approximate savings of 18%). The savings were realized by a more effective utilization of
Table #3 - Summary Output: FCFS - RW

<table>
<thead>
<tr>
<th>SEED #</th>
<th>UPDATE INTERVAL</th>
<th>8 ARRIVAL RATE</th>
<th>45 MPS</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND#</td>
<td>ENT#</td>
<td>FCFS#</td>
<td>ID</td>
<td>ROUTE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TW 3</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>TW 2H</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>CO 6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>TW 4</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>CO 7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>7</td>
<td>UA10</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>CO 8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>9</td>
<td>CO12</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>10</td>
<td>WA 9</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>12</td>
<td>WA14</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>14</td>
<td>CO15H</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>15</td>
<td>FL18</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>18</td>
<td>T'' 5L</td>
<td>14</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>20</td>
<td>CO22</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>21</td>
<td>FL27</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>22</td>
<td>UA24H</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>23</td>
<td>CO25</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>24</td>
<td>TW20</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>25</td>
<td>TW26</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>26</td>
<td>FL28</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>27</td>
<td>TW29H</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>23</td>
<td>28</td>
<td>UA23</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>29</td>
<td>WA21L</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>WA30L</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL DELAY = 7116

MAXIMUM NUMBER OF POSITION SHIFTS = 0

EFFECTIVE ARRIVAL RATE INTO THE TERMINAL AREA = 52.84 PER HOUR

AVERAGE DELAY PER AIRCRAFT = 237.20 SECONDS
Table #4 - Summary Output - MPS = 4

SEED # = 1777 UPDATE INTERVAL = 8 ARRIVAL RATE = 45 MPS = 4

<table>
<thead>
<tr>
<th>LAND#</th>
<th>ENT#</th>
<th>FCFS#</th>
<th>ID</th>
<th>ROUTE</th>
<th>ENTER</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
<th>TYTOCO</th>
<th>DELABS</th>
<th>DEL2GD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>10</td>
<td>8</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
<td>1276</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TW</td>
<td>3</td>
<td>10</td>
<td>256</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
<td>1194</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>TW</td>
<td>4</td>
<td>10</td>
<td>384</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
<td>1189</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>CO</td>
<td>6</td>
<td>7</td>
<td>428</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
<td>1204</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>CO</td>
<td>7</td>
<td>7</td>
<td>520</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
<td>1236</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>7</td>
<td>UA10</td>
<td>10</td>
<td>7</td>
<td>680</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
<td>1212</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>TW2H</td>
<td>2</td>
<td>2</td>
<td>188</td>
<td>1808</td>
<td>2224</td>
<td>416</td>
<td>1312</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>CO</td>
<td>8</td>
<td>4</td>
<td>544</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
<td>1276</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>9</td>
<td>CO12</td>
<td>4</td>
<td>7</td>
<td>800</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
<td>1204</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>10</td>
<td>WA9</td>
<td>4</td>
<td>636</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
<td>1268</td>
<td>132</td>
<td>84</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>4</td>
<td>728</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
<td>1252</td>
<td>196</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>12</td>
<td>WA14</td>
<td>4</td>
<td>936</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
<td>1236</td>
<td>124</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>4</td>
<td>852</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
<td>1268</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>15</td>
<td>FL19</td>
<td>7</td>
<td>1212</td>
<td>2636</td>
<td>2772</td>
<td>136</td>
<td>1260</td>
<td>40</td>
<td>96</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>18</td>
<td>TW5L</td>
<td>14</td>
<td>400</td>
<td>2852</td>
<td>2868</td>
<td>16</td>
<td>1324</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>CO15H</td>
<td>2</td>
<td>1008</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
<td>1208</td>
<td>0</td>
<td>308</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2</td>
<td>1100</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
<td>1124</td>
<td>176</td>
<td>132</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2</td>
<td>1192</td>
<td>2012</td>
<td>3120</td>
<td>308</td>
<td>1176</td>
<td>216</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2</td>
<td>1312</td>
<td>2532</td>
<td>3212</td>
<td>280</td>
<td>1196</td>
<td>260</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>20</td>
<td>CO22</td>
<td>7</td>
<td>1540</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
<td>1264</td>
<td>0</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>21</td>
<td>FL27</td>
<td>7</td>
<td>1888</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
<td>1240</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>24</td>
<td>TW20</td>
<td>12</td>
<td>1336</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
<td>1220</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>23</td>
<td>CO25</td>
<td>4</td>
<td>1732</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
<td>1204</td>
<td>0</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>25</td>
<td>TW26</td>
<td>4</td>
<td>1856</td>
<td>3488</td>
<td>3612</td>
<td>124</td>
<td>1220</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>26</td>
<td>FL28</td>
<td>4</td>
<td>1948</td>
<td>3580</td>
<td>3684</td>
<td>104</td>
<td>900</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>22</td>
<td>UA24H</td>
<td>2</td>
<td>1704</td>
<td>3324</td>
<td>3752</td>
<td>428</td>
<td>1328</td>
<td>0</td>
<td>428</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>27</td>
<td>TW9H</td>
<td>2</td>
<td>2044</td>
<td>3664</td>
<td>3844</td>
<td>180</td>
<td>900</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>23</td>
<td>28</td>
<td>UA23</td>
<td>12</td>
<td>1656</td>
<td>3752</td>
<td>3976</td>
<td>224</td>
<td>1120</td>
<td>0</td>
<td>224</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>29</td>
<td>WA21L</td>
<td>14</td>
<td>1360</td>
<td>3812</td>
<td>4072</td>
<td>260</td>
<td>1160</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>WA30L</td>
<td>14</td>
<td>2052</td>
<td>4504</td>
<td>1504</td>
<td>0</td>
<td>896</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL DELAY = 5836

MAXIMUM NUMBER OF POSITION SHIFTS = 4
EFFECTIVE ARRIVAL RATE INTO THE TERMINAL AREA = 52.84 PER HOUR
AVERAGE DELAY PER AIRCRAFT = 194.53 SECONDS
the runway. Note, for instance, that WA21L is the 29th and last aircraft in the busy period for both runs. In the FCFS-RW run, WA21L is scheduled to land at 4160 seconds, as compared to 4072 seconds in the MPS = 4 run. Thus the same 29 aircraft are serviced faster in the MPS = 4 case, which implies an increase in capacity. (If the busy period were to continue, additional arrivals would benefit from this 88 second improvement in runway utilization.) The potential increase in capacity that results from employing the CPS methodology is closely related to the range of minimum interarrival time separations between successively arriving aircraft. For example, if all aircraft interarrival time separations are identical, then there would be no possible improvement over FCFS-RW. In general, the CPS methodology will be more likely to shift an aircraft with a large range of interarrival time separations. For instance, as a consequence of the weight-dependent separation distances established for following heavy jets, the CPS methodology will tend to "bunch" heavy jets together wherever possible. Whether or not a bias exists towards forward or rearward shifts can not be determined until the specific traffic mix is known. The "bunching" together of heavy aircraft is evidenced in the MPS = 4 run. In this particular sample, the "bunching" is accomplished via rearward shifts, although in other circumstances forward shifts would be utilized. Notice that five of the seven heavy jets are shifted rearward and that all other aircraft are either sequenced in their FCFS-RW position (17 aircraft) or are shifted
forward (8 aircraft). In peak periods, the improvements in runway utilization will typically offset any delay caused by rearward shifts. For instance, WA29H is sequenced 27th in both runs. The MPS = 4 run, however, schedules WA29H 88 seconds sooner than the FCFS-RW run. Light and slow aircraft will also experience a greater extreme of position shifts, although the limited demonstration presented here has too small a sample to produce any observable trends.

C. CPS Demonstration - Photographs

In order to illustrate the progress of the aircraft through the terminal area, this section presents photographs taken at four identical time instants selected from each demonstration run. Actually, five photographs are presented from each run. At 28 min 16 sec (1696 sec) snapshots of both approach and final displays were taken. Only the final display is seen in photographs taken at 41 min 36 sec (2496 sec), 54 min 24 sec (3264 sec) and 59 min 4 sec (3544 sec). The approach scene includes a region of approximately 250 square n.m., while the final region contains approximately 90 square n.m. For reference, a 3 n.m. cross is shown in the left center of the displays. Photographs numbered 1 through 5 correspond to the FCFS-RW run, and those numbered 6 through 10 correspond to the MPS = 4 run. The approach display is seen in photographs 1 and 6. Twenty-three aircraft may be identified, although those aircraft in the near vicinity of the runway are better observed in the final scene photographs numbered 2 and 7 respectively. Note that the aircraft
shown in the final scenes are all properly separated by the automated scheduler (recall that the final 15 minutes of flight is essentially strategic). In comparing the two sequences of photographs, one might observe that there is little to distinguish between the two runs. This point is significant in the respect that the CPS methodology need not place an extra burden on the final controllers (as compared to sequencing in a first-come, first-serve manner). In other words, provided that the aircraft absorb their delay fifteen minutes prior to touchdown, the MPS = 4 sequence is no more complicated than FCFS-RW. As a matter of fact, the MPS = 4 sequence might even be easier to implement, since the CPS methodology will tend to group similar aircraft together, whereas the FCFS-RW sequence is subject to all the vagaries of the random arrival process.

D. CPS Demonstration - Limitations and Extensions

This section presents a discussion on limitations and possible extensions to the CPS demonstration simulation as currently configured. Section III will also discuss extensions, but in reference to the design of a real-time simulation study. Future extensions to this simulation may nevertheless be useful as a developmental aid for a real-time simulation study. Three major limitations of the current simulation are discussed below. In addition, an attempt is made to estimate the effort required to expand the simulation.

The first major limitation is related to the number and mix of aircraft. The use of six aircraft types arriving from separate
directions has succeeded in providing sufficient diversity to offer a good overview of the CPS methodology. For more realism however, extensions should be performed that will allow more than 30 aircraft in a run and will include a traffic mix more representative of the region to be simulated. The addition of more aircraft will require a simple software change. Adding more aircraft types and/or routes is conceptually easy, but it is doubtful that the PDP-11/40 could handle many more data tracks without exceeding its memory limits. Also, an expansion of the scheduling subroutine is required for each additional aircraft type and/or route.

The second major limitation to the CPS demonstration is related to the fact that the CPS algorithm is totally automated. In order to implement the CPS methodology, it will be necessary to develop an interactive decision-making process with the controller. This includes procedures for the controller to input requests and constraints that the computer will consider when determining its tentative assignments. In addition, a controller-computer interface will be necessary to finalize the runway assignments. The programming effort required for this extension is quite large. The general scheduling problem with controller interaction is non-trivial for all but the simplest types of constraints. Also, it will be necessary to add another display that will present the scheduling information to the controller. Once again, it is doubtful that the PDP-11/40 could handle the added software on a stand-alone basis.
The third major limitation to the current demonstration is related to the actual flight paths placed on the graphic displays. Since the flight paths are pre-determined and fixed, the only way to delay an aircraft has been to literally stop it in its track until its delay period had elapsed. Other aircraft that were following the delayed aircraft would have to be held as well in order to avoid overtaking. The expansion of the simulation to include realistic and variable flight paths would require access to a pseudo-pilot routine such as that employed in the joint NASA-Ames - FAA real-time simulations. Towards this end, the CPS demonstration has been designed to interface directly with the Sigma computer that drives the pseudo-pilots. Only minor modifications will be required to display the pseudo-aircraft, but a considerable effort will be required to adapt the scheduler. Another major task will be the development of ATC procedures for delay absorption.

To summarize, most extensions to the current simulation require either considerable additional programming or access to larger computers or both. One area of interest which could support independent investigation is the development of the controller-computer interface required for interactive sequencing and scheduling.

F. CPS Demonstration - Program Description

This section describes the demonstration program. Appendix #2 contains a complete listing of the main program and the subroutines.
In addition to the main program, 17 subroutines are included. These subroutines fall into one of five categories: 1) initialization; 2) display processing; 3) aircraft control; 4) sequencing and scheduling computations; and 5) output control. Table #5 lists and briefly describes the subroutines associated with the first three categories, and Table #6 does the same for the last two categories.

Table #5 - Subroutine Description
Categories 1), 2), and 3)

1) Initialization Subroutines -

SPINIT - This subroutine sets up the direct access files for the six types of aircraft.

SETUPR - This subroutine requests the input parameters for a demonstration run.

2) Display Processing Subroutines -

BLDESX - This subroutine draws the routes and waypoints on the Evans and Sutherland graphical displays.

ACDRAW - This subroutine draws the proper aircraft symbols and flight data tags on the displays.

FRMSGX - In the profile descent simulation, this subroutine drew the flight data table on the display. In the demonstration program, FRMSGX does not process any data.

3) Aircraft Control Subroutines -

SIGIOX - In the profile descent simulation, this subroutine controlled the PDP link to the Sigma computer (and the pseudopilots). In the demonstration simulation SIGIOX calls subroutine UPDB.

UPDB - This subroutine updates the aircraft positions as referenced by the direct access files. Also, aircraft that have landed are removed by UPDB.

GENERB - This subroutine randomly selects the characteristics of the next arrival.

INITDL - This subroutine determines if a new arrival must incur an initial delay.
Table #4 - Subroutine Descriptions

Categories 4) and 5)

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORT</td>
<td>This subroutine sorts the latest arrival into its FCFS-RW position.</td>
</tr>
<tr>
<td>GETSET</td>
<td>This subroutine determines the set of aircraft that are to be scheduled during an iteration of the CPS algorithm.</td>
</tr>
<tr>
<td>GETPRM</td>
<td>This subroutine selects the next permutation to be tested from the set of aircraft determined by GETSET.</td>
</tr>
<tr>
<td>FEZTST</td>
<td>This subroutine tests the latest permutation to determine whether or not it violates any of the sequencing constraints.</td>
</tr>
<tr>
<td>SKEDUL</td>
<td>This subroutine schedules the runway assignment times for each feasible permutation. The schedule upholds the FAA minimum separation distances for co-altitudinal aircraft.</td>
</tr>
<tr>
<td>COMPAR</td>
<td>This subroutine tests and saves the best of the feasible permutations.</td>
</tr>
<tr>
<td>MKEFNL</td>
<td>This subroutine determines when an aircraft is to receive its final assignment.</td>
</tr>
</tbody>
</table>

5) Output Control Subroutine —

<table>
<thead>
<tr>
<th>SUBROUTINE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTR</td>
<td>This subroutine controls the data that are output during and after the simulation run.</td>
</tr>
</tbody>
</table>

The program also includes a number of subroutine calls and commands that control the Evans and Sutherland "Picture System". Table #7 lists without explanation those system commands that are utilized in the demonstration program to drive the graphical displays. For additional information, refer to the proper "Picture System" operations manual.
The subroutines in category 4) are nearly identical to those written for the CPS algorithm under Interchange No. NCA-OR233-7. There is, however, a significant change in the scheduling subroutine, SKEDUL. Consequently, this subroutine will be described in greater detail. Basically, the scheduling subroutine determines the runway assignment times for a particular feasible permutation of arriving aircraft via an interactive process. To elucidate, the runway assignment time for a following aircraft depends on the type and route of both the lead and following aircraft, and the runway assignment time of the lead aircraft. The routes of the lead and following aircraft are important because the point of closest approach between the aircraft must be determined. In the CPS demonstration simulation, the closest approach between two successively arriving aircraft will occur at one of six merge points (including the runway). If the following aircraft is overtaking the lead aircraft, then the merge point will be at the runway. If the lead aircraft is faster, then an opening situation exists, and the closest approach will occur at the first intersection of the aircraft routes. The closest approaches are defined in the subroutine SKEDUL by the array MERGE.

Table 47 - Picture System Commands

<table>
<thead>
<tr>
<th>PSINIT</th>
<th>CHAR</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>START</td>
<td>READ</td>
</tr>
<tr>
<td>NUFRAM</td>
<td>SCOPE</td>
<td>ENCOD</td>
</tr>
<tr>
<td>VWPORT</td>
<td>WINDOW</td>
<td>DRAW2D</td>
</tr>
<tr>
<td>ISWSET</td>
<td>MOVETO</td>
<td>LINTO</td>
</tr>
<tr>
<td>TEXT</td>
<td>BLINK</td>
<td></td>
</tr>
</tbody>
</table>
Once the point of closest approach has been established, the
interarrival time separation is determined by calculating the
difference between the following aircraft’s travel time to the runway
and the lead aircraft’s travel time to the runway, assuming that the
aircraft start at their point of closest approach. (Of course, the
following aircraft will be behind the lead aircraft by the appropriate
FAA separation minimum.) The remaining travel time for each aircraft
type at each merge point is contained in the array TYT000. A third
dimension is required to differentiate between the various FAA
separation minima that might be in effect. A parameter SEP is
utilized to distinguish between these minima. When SEP equals 1, the
time to travel is calculated from the merge point. A SEP value of 2
corresponds to following a conventional aircraft, while SEP=3
corresponds to following a heavy jet, and finally SEP=4 corresponds to
following a light aircraft. In order to add more aircraft types or
different types of aircraft on the same route it is necessary to
determine the merge points for the added aircraft with every other
aircraft in the system. Also, the remaining travel time from any
merge point must be calculated for each separation minimum. While
these calculations are straightforward, there is a definite increase
in the time required to set up the terminal area scenario.
III. Implementation of Computer-Assisted Sequencing and Scheduling

1. Introduction

The air traffic control system which incorporates computer-assisted sequencing and scheduling will evolve from the current system with one fundamental difference—the control of the aircraft will be in a time-based frame of reference as opposed to the current distance-oriented reference. This section examines the system requirements necessary to support computer-assisted sequencing and scheduling. Also presented is an overview of a time-based system from the perspectives of both pilots and controllers. For simplicity, the overview will initially assume that the aircraft will be sequenced and scheduled in their first-come, first-served order with respect to arrival at the runway (FCFS-RW). Next, the system characteristics for FCFS-RW will be compared to those resulting from more efficient sequencing strategies. Finally, some implementation-related design considerations will be discussed.

In a time-based control system the aircraft will be instructed to reach a particular point in the airspace at a given point in time. As a consequence, the effectiveness of a time-based control concept will in large measure be dependent upon the aircraft delivery accuracy (in space and time). Technological advances in the fields of communication, data processing and navigation may be utilized to provide the necessary accuracy. For instance, a digital data link between the pilots and controllers may be used to reduce pilot
response time to commands. This data link can also exchange a wealth of other information. As a consequence the system's surveillance and tracking capabilities may be greatly enhanced. Processed data might be unlinked to the aircraft to offer ground-based assistance to aircraft lacking sophisticated navigational instrumentation. A cockpit display of traffic information is another system capability. Such a display might be used to assist in the safe separation of aircraft and in the maintenance of the orderly flow of traffic. Instrumentation such as area navigation (RNAV) will also assist the pilot in delivery accuracy. Those aircraft equipped with four dimensional area navigation (4D-RNAV) will be able to traverse the terminal area with little controller intervention. Aircraft without 4D-RNAV may still be controlled in time, provided that the ATC system's data processing and communication capabilities are employed to supplement the aircraft's own navigational system. The instrumentation required for these applications are either available today or may be available in the near future. The next section explores the general characteristics of a system designed to incorporate these technological advancements.

2. Time-Based Control - A System Overview

This section presents an outline of the proposed time-based control system from the perspectives of both the arriving aircraft and the controllers. For this discussion it is assumed that the aircraft are capable of sufficient delivery accuracy to permit time-based
control. In general, aircraft that have greater variability in delivery may be dealt with by increasing the surrounding time buffer that the automated scheduler establishes for safety. An added time buffer, however, might increase delays to such an extent as to make the time-based approach undesirable. (Only a full-blown analysis of a specific system will provide the answer to this question.) This discussion also assumes that the aircraft are to be sequenced in a first-come, first-serve manner (FCFS). To be precise, the FCFS discipline requires the specification of a reference point in the airspace (e.g., the point of system entrance, the runway threshold, the outer marker, etc.). In general, the arrival sequence (and system efficiency) is influenced by the reference point selection. This is a consequence of the variations in aircraft capabilities and approach routes. Since the runway is the system's bottleneck, FCFS-RW will be the FCFS discipline with the greatest runway capacity. The system overview is independent of the FCFS reference point, although the aircraft delay will be sensitive to this selection. The following is a general overview, since any attempt to identify system specifications at this stage of development is premature. To begin, the sequence of events from the perspective of an arriving aircraft is as follows:

1. Approximately 25-40 minutes prior to the arrival at the runway, the ground-based computer requests any updates to the current data on aircraft type, capabilities and approach route.
2. If there is sufficient congestion such that delay is unavoidable, then the aircraft will receive instructions to absorb the delay while at the higher altitudes (where the aircraft is relatively fuel efficient).

3. Following the initial delay absorption (if any), the aircraft receives its descent clearance on a specified route. A tentative arrival time is provided and if so equipped, the aircraft’s on-board navigational system will determine the aircraft’s most efficient trajectory. A cockpit display of traffic might be employed to help one aircraft follow another.

4. Approximately 15 to 20 minutes prior to touchdown the aircraft receives its final runway assignment time. The assignment will become finalized if either a) no other aircraft can enter the system with a earlier FCFS number or b) a predetermined lead time has been reached. If the aircraft’s final assignment time differs from its current tentative assignment, the aircraft will either utilize its on-board navigational capabilities or controller commands or both to revise its current trajectory.

5. The final 15-20 minutes of flight is essentially automatic. The pilot might employ a cockpit display of traffic to monitor the surrounding aircraft and inform the controller of any difficulties. Otherwise, the aircraft will follow its revised trajectory until touchdown (or until the final controller activates alters the aircraft’s final approach).
Now consider an aircraft’s progress through the terminal area from the controller’s perspective. Once again it is assumed that the aircraft are capable of accurately following the controller’s commands. The sequence of events as seen by the controller is as follows:

1. Approximately 25-40 minutes prior to arrival at the runway the ground-based computer requests an update to the aircraft’s data file. The file contains information regarding the aircraft’s type, capabilities and approach route.

2. The ground computer next calculates the aircraft’s nominal arrival time at the runway and determines the amount of unavoidable delay (if any). Unavoidable delay may be defined as that delay which must be incurred under normal circumstances. The controller will supply the pilot with instructions as to how the delay should be absorbed.

3. The arriving aircraft’s FCFS sequence is determined and its tentative runway assignment time is calculated by an automated scheduler. The automated scheduler utilizes the aircraft size, type, route, and capability data to compute runway assignment times that uphold the FAA’s minimum separation requirements and also provide a sufficient buffer to account for delivery inaccuracies.

4. The tentative assignment times are finalized by the controller approximately 15-20 minutes prior to touchdown. Either the predetermined lead time has been reached or the entrance of additional aircraft will not alter the aircraft’s current runway assignment time.
5. After the final assignment has been provided, the final controller might revise the aircraft's trajectory, but in general the final controller will primarily monitor the aircraft with final assignment times to ensure that they remain on schedule.

These two perspectives have assumed that the aircraft are sequenced by a FCFS discipline (with respect to a given reference point). For any particular sequence the automated scheduler will determine the aircraft runway assignment times such that safe separation is always maintained. A revision to the current FCFS sequence might be required when a relatively fast aircraft enters the system. (That is unless the FCFS reference point is the system entrance.) When such a situation arises the automated scheduler must also revise its assignment times. Aircraft with FCFS arrival times less than that of the fast new arrival will retain their current assignment, while aircraft with greater FCFS arrival times will be shifted rearward by one position. As a consequence, the airspace may be viewed as consisting of an inner strategic control region and an outer dynamic control region. Aircraft in the inner region will have fixed assignment times while aircraft in the outer region have tentative assignment times. The boundary between the two regions will be determined by the time required for the fastest aircraft to fly the shortest arrival route. If the boundary is too close to the runway, the controllers may wish to define their own boundary by requiring the aircraft to receive their final assignments a given lead time prior to
touchdown. The effect of such a lead time would be to stabilize the inner region at the possible expense of sequencing arrivals in something other than a strict FCFS order. (This situation arises whenever a new arrival has a FCFS number lower than that of an aircraft that has already received its final assignment.) Since the FCFS discipline with a non-zero lead time results in general resequencing and rescheduling, and since the resulting sequence might not be strictly FCFS, the question arises as to whether other sequencing disciplines might be utilized with similar characteristics but greater efficiency. These other strategies might consider the aircraft operating characteristics that the FCFS discipline does not (such as weight class differentiation). The next section explores the system characteristics of more flexible sequencing and scheduling disciplines, such as Constrained Position Shifting (CPS). Of particular interest are the differences and similarities between the CPS disciplines and FCFS as perceived by the controllers and pilots.

3. Operational Comparison of FCFS and CPS Strategies

The first-come, first-serve strategy is perceived as a 'fair' and efficient service discipline. Such a strategy may be observed in numerous service systems (e.g. banks, post offices, theatre box offices, etc.). In terms of efficiency, when individual service times are independent and stationary, then the total FCFS service time for a given set of customers will be no greater than any other sequencing strategy. In the ATC system, however, service times will be
independent only if all aircraft have the same operating characteristics. Due to the differences in aircraft velocities and the FAA's weight dependent separation minima, the total service time for a particular set of arrivals will generally depend upon the specific runway sequence selected. As a result, sequencing strategies such as Constrained Position Shifting (CPS) will, when compared to FCFS reduce average delay and increase runway capacity. In other words, FCFS may be 'fair', but not necessarily efficient. This section compares the operational characteristics of FCFS-RW to the CPS methodology. Of interest are the adaptations required to implement the CPS methodology as opposed to FCFS-RW (as described in the previous section). Recall that the CPS strategy establishes a maximum position shift (MPS) parameter which limits the number of positions that any aircraft might be shifted (forward or rearward) from its FCFS-RW position. The MPS constraint will cause a local 'derandomization' of the arrival stream that will typically reduce total delay and increase aircraft throughput. In actuality, the FCFS discipline is a CPS strategy with MPS=0. Thus this discussion will focus on the system response as MPS increases from 0. A representative value for the MPS parameter in an actual system might be 4 or 5. MPS values much greater than 5 tend to be inequitable, i.e., the average delay for certain classes of aircraft will increase rather than decrease.

Operationally, when an aircraft enters the system the pilot is
concerned with the aircraft's runway assignment time and how much delay might be incurred. The pilot is not necessarily interested in the aircraft's FCFS-RW number. This is especially true when employing CPS, since it is quite possible for an aircraft to be shifted rearward and yet have an earlier runway assignment time. For the most part, the pilots will not perceive any major differences in operations when MPS increases from 0 to 4 or 5. There will be the potential for some aircraft to have greater delay with a larger MPS value because of the possibility of rearward shifts. The increase in maximum delay can be upper bounded by $MPS \times T$, where T represents the maximum interarrival time separation between successively arriving aircraft. For example, if T equals 3 minutes and $MPS=4$, then 12 minutes is a conservative upper bound on the additional delay that any aircraft might receive. During periods of heavy traffic it is quite likely that the increases in aircraft throughput with CPS will more than offset any increases in delay caused by rearward shifts. Another effect of increasing the MPS value will be a change in the boundary between the inner and outer control regions. As MPS increases the potential for resequencing also increases and consequently the runway assignments will be finalized later - thereby moving the inner region boundary closer to the runway. An appropriately selected lead time might minimize this effect. In regard to traffic flow, the CPS methodology might actually make the pilots' merging tasks easier. This is due to the tendency for the CPS methodology to group like aircraft. This clustering effect may aid
traffic flow since it is generally easier to follow an aircraft with a similar velocity profile, especially when assisted by a cockpit display.

The differences in the FCFS-RW and CPS disciplines are more pronounced for the controllers than the pilots. Actually, the differences are significant in the outer control region but not the inner control region. In the inner control region, all aircraft have received their final runway assignment times, and since these aircraft will not be resequenced, the service discipline will no longer be a factor. In the outer control region the aircraft receive tentative assignments. When a new aircraft enters the system the tentative assignments may have to be revised. Utilizing the FCFS-RW strategy the resequencing and rescheduling is straightforward. All aircraft with nominal arrival times greater than that of a new arrival will be shifted rearward one position. The resequencing task becomes more complex when a non-zero MPS is employed. The MPS value places a constraint on the extent of shifting from FCFS-RW, and in general, more than one feasible sequence will exist. As a consequence, the controllers must specify the criteria to be used to determine which of the feasible sequences are most favorable. This specification may be accomplished either implicitly (by supplying objectives and weights to the automated CPS algorithm), or explicitly (by designing an interactive algorithm which solicits added constraints or objectives from the controllers). The controllers will be able to adjust their
tentative assignments for practical reasons when a non-zero MPS value is employed, while using the FCFS-RW strategy the controllers will be a passive element in regard to the sequencing decisions. Of course the algorithms developed to interact with the controllers must be carefully designed and tested to ascertain their potential for both efficiency and successful implementation. The final section will offer insights into the design of this interactive system.

4. Implementation-Related Design Considerations

A successful time-based control system must combine the best elements of both computers and controllers. The data processing capability should be utilized to rapidly determine the best sequence and schedule subject to particular controller-imposed constraints. The controller should be utilized to supply those constraints that, based upon experience, will result in an orderly flow of traffic. In addition to determining effective decision-making objectives, the designer of the time-based ATC system must be concerned with a number of implementation problems. Of course extensive system development and testing is necessary prior to any actual implementation. Some of these issues pertain to the design of a general ATC system, while other questions must be related to the particular terminal area system to be designed. This section concludes by listing some of these implementation concerns.

1. What procedures are the aircraft to follow to absorb delay? How will these procedures depend upon the amount of delay; the aircraft’s
2. How accurately are the nominal flight paths followed? What should be done with an aircraft that falls behind schedule? Are there any speed-up procedures? How far behind schedule must an aircraft be before the tentative sequence is revised?

3. How should the system handle missed approaches? What protocol should be adopted to resequence missed approaches? What will happen to the assignments and flight paths of the other aircraft?

4. How does the system respond when an aircraft has an emergency situation? Can priority service be provided when necessary? What will happen to the other aircraft in this situation?

5. What happens in the event of a computer outage or a runway closure? What protocol will be established for the aircraft to follow? How should the system restart itself once the problem has been resolved?

6. What minimum instrumentation should be required before an aircraft is permitted to enter a high density terminal area? How will the system mix the lesser equipped aircraft with those that are more advanced and sophisticated? Are any special procedures required?
Bibliography

SEED # = 1777 UPDATE INTERVAL = 8 ARRIVAL RATE = 45 MPS = 0

NEW ARRIVAL AT 0 --
ID = UA 1 ROUTE = 10 FCFS# = 1 NOMARR = 1504

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 188 --
ID = TW 2H ROUTE = 2 FCFS# = 2 NOMARR = 1808

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 2H</td>
<td>1808</td>
<td>1972</td>
<td>64</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 256 --
ID = TW 3 ROUTE = 10 FCFS# = 2 NOMARR = 1752

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 3</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>1940</td>
<td>132</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR UA 1 (ROUTE = 10 FCFS# = 1):
CLOCK = 336 POSITION = 1 SCHED = 1804
DELAY(T01) = 300 DELAY(ABS) = 0 DELAY(TG0D) = 300

NEW ARRIVAL AT 384 --
ID = TW 4 ROUTE = 10 FCFS# = 4 NOMARR = 1880

TENTATIVE AIRCRAFT ASSIGNMENTS
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>TW 3</td>
<td>1752</td>
<td>1972</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>1940</td>
<td>132</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>TW 4</td>
<td>1880</td>
<td>2052</td>
<td>172</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW 3 (ROUTE = 10 FCFS# = 2)
CLOCK = 392 POSITION = 3 SCHED = 1872
DELAY(TOT) = 120 DELAY(ABS) = 0 DELAY(TOGO) = 120

NEW ARRIVAL AT 400 --
ID = TW 5L ROUTE = 14 FCFS# = 5 NOMARR = 2852

TENTATIVE AIRCRAFT ASSIGNMENTS
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>1940</td>
<td>132</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>TW 4</td>
<td>1880</td>
<td>2052</td>
<td>172</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 428 --
ID = CO 6 ROUTE = 7 FCFS# = 4 NOMARR = 1852

TENTATIVE AIRCRAFT ASSIGNMENTS
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>1940</td>
<td>132</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2056</td>
<td>204</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>TW 4</td>
<td>1880</td>
<td>2124</td>
<td>244</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW 2H(ROUTE = 2 FCFS# = 3)
CLOCK = 432 POSITION = 2 SCHED = 1940
DELAY(TOT) = 132 DELAY(ABS) = 0 DELAY(TOGO) = 132

FINAL ASSIGNMENT FOR CO 6 (ROUTE = 7 FCFS# = 4)
CLOCK = 464 POSITION = 6 SCHED = 2056
DELAY(TOT) = 204 DELAY(ABS) = 0 DELAY(TOGO) = 204

NEW ARRIVAL AT 5:20 --
ID = CO 7 ROUTE = 7 FCFS# = 6 NOMARR = 1944

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>TW4</td>
<td>1880</td>
<td>2124</td>
<td>244</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>CO7</td>
<td>1944</td>
<td>2196</td>
<td>252</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW 4 (ROUTE = 10 FCFS# = 5)
CLOCK = 526 POSITION = 4 SCHED = 2124
DELAY(TOT) = 244 DELAY(ABS) = 60 DELAY(TOGO) = 184

NEW ARRIVAL AT 544 --
ID = CO 8 ROUTE = 4 FCFS# = 7 NOMARR = 2176

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>CO7</td>
<td>1944</td>
<td>2196</td>
<td>252</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>CO8</td>
<td>2176</td>
<td>2268</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 636 --
ID = WA 9 ROUTE = 4 FCFS# = 8 NOMARR = 2268

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>CO7</td>
<td>1944</td>
<td>2196</td>
<td>252</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>CO50</td>
<td>2176</td>
<td>2268</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>WA9</td>
<td>2268</td>
<td>2340</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 680 --
ID = UA10 ROUTE = 7 FCFS# = 7 NOMARR = 2104

TENTATIVE AIRCRAFT ASSIGNMENTS
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>CO7</td>
<td>1944</td>
<td>2196</td>
<td>252</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2268</td>
<td>164</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>WA9</td>
<td>2268</td>
<td>2412</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO7 (ROUTE = 7 FCFS# = 6):
CLOCK = 688 POSITION = 7 SCHED = 2196
DELAY(TOT) = 252 DELAY(ABS) = 164 DELAY(TOGO) = 84

NEW ARRIVAL AT 728 --
ID = WA11 ROUTE = 4 FCFS# = 10 NOMARR = 2360

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2268</td>
<td>164</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>WA9</td>
<td>2268</td>
<td>2412</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA11</td>
<td>2360</td>
<td>2484</td>
<td>124</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR UA10 (ROUTE = 7 FCFS# = 7):
CLOCK = 760 POSITION = 10 SCHED = 2268
DELAY(TOT) = 164 DELAY(ABS) = 80 DELAY(TOGO) = 84

NEW ARRIVAL AT 800 --
ID = CO12 ROUTE = 7 FCFS# = 9 NOMARR = 2224

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>CO8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>CO12</td>
<td>2224</td>
<td>2412</td>
<td>108</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>TW3L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>
FINAL ASSIGNMENT FOR CO 8 (ROUTE = 4 FCFS# = 8)
CLOCK = 802 POSITION = 8 SCHED = 2340
DELAY(TOT) = 164 DELAY(ABS) = 0 DELAY(TOGO) = 164

FINAL ASSIGNMENT FOR CO12 (ROUTE = 7 FCFS# = 9)
CLOCK = 848 POSITION = 12 SCHED = 2412
DELAY(TOT) = 198 DELAY(ABS) = 48 DELAY(TOGO) = 140

NEW ARRIVAL AT 052 --
ID =WA13 ROUTE = 4 FCFS# = 12 NOMARR = 2494

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2300</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA13</td>
<td>2484</td>
<td>2628</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 936 --
ID =WA14 ROUTE = 7 FCFS# = 12 NOMARR = 2360

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2528</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR WA 9 (ROUTE = 4 FCFS# = 10)
CLOCK = 944 POSITION = 9 SCHED = 2484
DELAY(TOT) = 216 DELAY(AJS) = 116 DELAY(TOGO) = 100

FINAL ASSIGNMENT FOR WA11 (ROUTE = 4 FCFS# = 11)
CLOCK = 944 POSITION = 11 SCHED = 2556
DELAY(TOT) = 196 DELAY(ABS) = 98 DELAY(TOGO) = 100

NEW ARRIVAL AT 1008 --
ID =CD15H ROUTE = 2 FCFS# = 14 NOMARR = 2628
TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2434</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2768</td>
<td>140</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>TW5L</td>
<td>2852</td>
<td>2936</td>
<td>84</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR WA14 (ROUTE = 7 FCFS# = 12):
CLOCK = 1064 POSITION = 14 SCHED = 2628
DELAY(TOT) = 268 DELAY(ABS) = 124 DELAY(TOGO) = 144

NEW ARRIVAL AT 1100 --
ID =CO16H ROUTE = 2 FCFS# = 15 NOMARR = 2720

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2768</td>
<td>140</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>CO16H</td>
<td>2720</td>
<td>2860</td>
<td>140</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>TW5L</td>
<td>2852</td>
<td>3026</td>
<td>176</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1192 --
ID =CO17H ROUTE = 2 FCFS# = 16 NOMARR = 2812

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2768</td>
<td>140</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>CO16H</td>
<td>2720</td>
<td>2860</td>
<td>140</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CO17H</td>
<td>2812</td>
<td>2952</td>
<td>140</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>TW5L</td>
<td>2852</td>
<td>3120</td>
<td>268</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR WA13 (ROUTE = 4 FCFS# = 13):
CLOCK = 1208 POSITION = 13 SCHED = 2700
DELAY(TOT) = 216 DELAY(ABS) = 144 DELAY(TOGO) = 72
NEW ARRIVAL AT 1212 --
ID = FL18 ROUTE = 7 FCFS# = 15 NOMARR = 2636

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2768</td>
<td>140</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>FL18</td>
<td>2636</td>
<td>2884</td>
<td>248</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>2952</td>
<td>232</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3044</td>
<td>232</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>TW5L</td>
<td>2852</td>
<td>3212</td>
<td>360</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO15H(ROUTE = 2 FCFS# = 14)
CLOCK = 1216 POSITION = 15 SCHED = 2768
DELAY(TOT) = 140 DELAY(ABS) = 0 DELAY(TOGO) = 140

FINAL ASSIGNMENT FOR FL18 (ROUTE = 7 FCFS# = 15)
CLOCK = 1304 POSITION = 18 SCHED = 2884
DELAY(TOT) = 246 DELAY(ABS) = 64 DELAY(TOGO) = 184

NEW ARRIVAL AT 1312 --
ID = UA15H ROUTE = 2 FCFS# = 19 NOMARR = 2932

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>2952</td>
<td>232</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3044</td>
<td>232</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>TW5L</td>
<td>2852</td>
<td>3212</td>
<td>360</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA15H</td>
<td>2932</td>
<td>3280</td>
<td>348</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1336 --
ID = TW20 ROUTE = 17 FCFS# = 20 NOMARR = 3432

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>2952</td>
<td>232</td>
</tr>
</tbody>
</table>
17 17 CO17H 2812 3044 232
18 18 TW5L 2852 3212 360
19 19 UA19H 2932 3280 348
20 20 TU20 3432 3432 0

NEW ARRIVAL AT 13:50 —
ID = WA21L ROUTE = 14 FCFS# = 21 NOMARR = 3812

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>2952</td>
<td>232</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3044</td>
<td>232</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>TW5L</td>
<td>2852</td>
<td>3212</td>
<td>360</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3280</td>
<td>348</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>TU20</td>
<td>3432</td>
<td>3432</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>WA21L</td>
<td>3812</td>
<td>3812</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO16H (ROUTE = 2 FCFS# = 16):
CLOCK = 1392 POSITION = 16 SCHED = 2952
DELAY(TOT) = 232 DELAY(ABS) = 140 DELAY(TOGO) = 92

FINAL ASSIGNMENT FOR CO17H (ROUTE = 2 FCFS# = 17):
CLOCK = 1432 POSITION = 17 SCHED = 3044
DELAY(TOT) = 232 DELAY(ABS) = 180 DELAY(TOGO) = 52

FINAL ASSIGNMENT FOR TW5L (ROUTE = 14 FCFS# = 18):
CLOCK = 1512 POSITION = 5 SCHED = 3212
DELAY(TOT) = 360 DELAY(ABS) = 0 DELAY(TOGO) = 360

NEW ARRIVAL AT 15:40 —
ID = CO22 ROUTE = 7 FCFS# = 20 NOMARR = 2964

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>14</td>
<td>UA19H</td>
<td>2932</td>
<td>3260</td>
<td>332</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>472</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>TU20</td>
<td>3432</td>
<td>3464</td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>WA21L</td>
<td>3812</td>
<td>3812</td>
<td>0</td>
</tr>
</tbody>
</table>
FINAL ASSIGNMENT FOR UA19H (ROUTE = 2 FCFS# = 19):
CLOCK = 1544 POSITION = 19 SCED = 3280
DELAY(TOT) = 348 DELAY(ABS) = 204 DELAY(T000) = 144

NEW ARRIVAL AT 1656 --
ID = UA23 ROUTE = 12 FCFS# = 22 NOMARR = 3752

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>432</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>TW20</td>
<td>3432</td>
<td>3464</td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>WA21L</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1704 --
ID = UA24H ROUTE = 2 FCFS# = 21 NOMARR = 3324

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>432</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>UA24H</td>
<td>3324</td>
<td>3464</td>
<td>140</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>TW20</td>
<td>3432</td>
<td>3596</td>
<td>164</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>WA311</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1710 --
ID = CO25 ROUTE = 4 FCFS# = 22 NOMARR = 7364

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>432</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>UA24H</td>
<td>3324</td>
<td>3464</td>
<td>140</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>CO25</td>
<td>3364</td>
<td>3580</td>
<td>216</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>TW20</td>
<td>3432</td>
<td>3648</td>
<td>216</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>CO21</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>
NEW ARRIVAL AT 13:28 --
ID =TW26 ROUTE = 4 FCFS# = 24 NOMARR = 3489

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>432</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>UA24H</td>
<td>3324</td>
<td>3464</td>
<td>140</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>CO25</td>
<td>3364</td>
<td>3580</td>
<td>216</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>TU20</td>
<td>3432</td>
<td>3648</td>
<td>216</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>TU26</td>
<td>3488</td>
<td>3720</td>
<td>232</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>UA23</td>
<td>3752</td>
<td>3788</td>
<td>36</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>WA21L</td>
<td>3812</td>
<td>3884</td>
<td>72</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 18:00 --
ID =FL27 ROUTE = 7 FCFS# = 21 NOMARR = 3312

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3396</td>
<td>432</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FL27</td>
<td>3312</td>
<td>3468</td>
<td>156</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>UA24H</td>
<td>3324</td>
<td>3536</td>
<td>212</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3652</td>
<td>268</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>TU20</td>
<td>3432</td>
<td>3720</td>
<td>288</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>TU26</td>
<td>3488</td>
<td>3792</td>
<td>304</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>UA23</td>
<td>3752</td>
<td>3860</td>
<td>108</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>WA21L</td>
<td>3812</td>
<td>3956</td>
<td>144</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO22 (ROUTE = 7 FCFS# = 20):
CLOCK = 18:00 POSITION = 22 SCHED = 3396
DELAY(TOT) = 432 DELAY(ABS) = 0 DELAY(TOGO) = 432

FINAL ASSIGNMENT FOR FL27 (ROUTE = 7 FCFS# = 21)
CLOCK = 19:04 POSITION = 27 SCHED = 3448
DELAY(TOT) = 156 DELAY(ABS) = 0 DELAY(TOGO) = 156

FINAL ASSIGNMENT FOR UA24H (ROUTE = 2 FCFS# = 22)
CLOCK = 19:44 POSITION = 24 SCHED = 3536
DELAY(TOT) = 164 DELAY(ABS) = 48 DELAY(TOGO) = 164
NEW ARRIVAL AT 1940 --
ID =FL28 ROUTE = 4 FCFS# = 26 NOMARR = 3980

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3652</td>
<td>208</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>TW27</td>
<td>3432</td>
<td>3720</td>
<td>288</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3792</td>
<td>304</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>FL28</td>
<td>3500</td>
<td>3864</td>
<td>284</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>UA23</td>
<td>3752</td>
<td>3932</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>WA21L</td>
<td>3812</td>
<td>4028</td>
<td>216</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO25 (ROUTE = 4 FCFS# = 23):
CLOCK = 2016 POSITION = 25 SCHED = 3652
DELAY(TOT) = 288 DELAY(ABS) = 0 DELAY(TOCC) = 288

NEW ARRIVAL AT 2044 --
ID =TW27H ROUTE = 2 FCFS# = 27 NOMARR = 3664

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3720</td>
<td>288</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3792</td>
<td>304</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>FL28</td>
<td>3500</td>
<td>3864</td>
<td>284</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>TW29H</td>
<td>3664</td>
<td>3932</td>
<td>268</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>UA23</td>
<td>3752</td>
<td>4064</td>
<td>312</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>WA21L</td>
<td>3812</td>
<td>4160</td>
<td>346</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 2052 --
ID =WA30L ROUTE = 14 FCFS# = 30 NOMARR = 4504

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3720</td>
<td>288</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3792</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>FL28</td>
<td>3580</td>
<td>3864</td>
<td>204</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>TW29H</td>
<td>3664</td>
<td>3932</td>
<td>268</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>UA23</td>
<td>3752</td>
<td>4064</td>
<td>312</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>WA21L</td>
<td>3812</td>
<td>4160</td>
<td>348</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>WA30L</td>
<td>4504</td>
<td>4504</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW20 (ROUTE = 12 FCFS# = 24):
- CLOCK = 2672
- POSITION = 20
- SCHED = 3720
- DELAY(TOT) = 288
- DELAY(ABS) = 0
- DELAY(TOGO) = 288

FINAL ASSIGNMENT FOR TW26 (ROUTE = 4 FCFS# = 25):
- CLOCK = 2160
- POSITION = 26
- SCHED = 3792
- DELAY(TOT) = 304
- DELAY(ABS) = 92
- DELAY(TOGO) = 212

FINAL ASSIGNMENT FOR FL28 (ROUTE = 4 FCFS# = 26):
- CLOCK = 2248
- POSITION = 28
- SCHED = 3834
- DELAY(TOT) = 284
- DELAY(ABS) = 160
- DELAY(TOGO) = 124

FINAL ASSIGNMENT FOR TW29H(ROUTE = 2 FCFS# = 27):
- CLOCK = 2336
- POSITION = 29
- SCHED = 3932
- DELAY(TOT) = 268
- DELAY(ABS) = 0
- DELAY(TOGO) = 268

FINAL ASSIGNMENT FOR UA23 (ROUTE = 12 FCFS# = 28):
- CLOCK = 2392
- POSITION = 23
- SCHED = 4064
- DELAY(TOT) = 312
- DELAY(ABS) = 36
- DELAY(TOGO) = 276

FINAL ASSIGNMENT FOR WA21L(ROUTE = 14 FCFS# = 29):
- CLOCK = 2912
- POSITION = 21
- SCHED = 4160
- DELAY(TOT) = 348
- DELAY(ABS) = 0
- DELAY(TOGO) = 348

FINAL ASSIGNMENT FOR WA30L(ROUTE = 14 FCFS# = 30):
- CLOCK = 3608
- POSITION = 30
- SCHED = 4504
- DELAY(TOT) = 0
- DELAY(ABS) = 0
- DELAY(TOGO) = 0
SEED # = 1777 UPDATE INTERVAL = 8 ARRIVAL RATE = 45 MPS = 4

NEW ARRIVAL AT 8 --
ID =UA 1 ROUTE = 10 FCFS# = 1 NOMARR = 1504

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 188 --
ID =TW 2H ROUTE = 2 FCFS# = 2 NOMARR = 1808

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 2H</td>
<td>1808</td>
<td>1872</td>
<td>64</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 256 --
ID =TW 3 ROUTE = 10 FCFS# = 2 NOMARR = 1752

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 3</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>1940</td>
<td>132</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 384 --
ID =TW 4 ROUTE = 10 FCFS# = 4 NOMARR = 1880

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
</tbody>
</table>
TENTATIVE AIRCRAFT ASSIGNMENTS

NEW ARRIVAL AT 400 --
ID = TW 5L ROUTE = 14 FCFS# = 5 NOMARR = 2852

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 1</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>TW 2</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>TW 3</td>
<td>1600</td>
<td>2006</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>TW 5</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 428 --
ID = CO 6 ROUTE = 7 FCFS# = 4 NOMARR = 1852

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 1</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>TW 2</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>TW 3</td>
<td>1806</td>
<td>2006</td>
<td>277</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 520 --
ID = CO 7 ROUTE = 7 FCFS# = 6 NOMARR = 1944

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UA 1</td>
<td>1504</td>
<td>1804</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>TW 1</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>TW 2</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>TW 3</td>
<td>1806</td>
<td>2006</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>TW 5</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>
5 6 CO 7 1944 2084 140
6 3 TW 2H 1808 2152 344
7 7 TW 5L 2852 2852 0

FINAL ASSIGNMENT FOR UA 1 (ROUTE = 10 FCFS# = 1):
CLOCK = 528 POSITION = 1 SCHED = 1804
DELAY(TOT) = 300 DELAY(ABS) = 0 DELAY(TOCO) = 300

NEW ARRIVAL AT 544 --
ID = CO 8 ROUTE = 4 FCFS# = 7 NOMARR = 2176

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>TW 3</td>
<td>1752</td>
<td>1872</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>TW 4</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>CO 7</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2152</td>
<td>344</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>CO 8</td>
<td>2176</td>
<td>2268</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 636 --
ID = WA 9 ROUTE = 4 FCFS# = 8 NOMARR = 2268

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>TW 3</td>
<td>1752</td>
<td>1872</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>TW 4</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>CO 7</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2152</td>
<td>344</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>CO 8</td>
<td>2176</td>
<td>2268</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>WA 9</td>
<td>2268</td>
<td>2340</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 690 --
ID = UA 10 ROUTE = 7 FCFS# = 7 NOMARR = 2104
Tentative Aircraft Assignments

<table>
<thead>
<tr>
<th>Land#</th>
<th>FCFS#</th>
<th>ID</th>
<th>Nomarr</th>
<th>Sched</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>TW</td>
<td>1752</td>
<td>1872</td>
<td>0:00</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>TW 4</td>
<td>1880</td>
<td>1940</td>
<td>6:00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>16:00</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>CO 7</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2224</td>
<td>416</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO 8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>WA 9</td>
<td>2268</td>
<td>2412</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

Final Assignment for TW 3 (Route = 10 FCFS# = 2)

Clock = 688 Position = 3 Sched = 1872
Delay(Tot) = 120 Delay(Abs) = 0 Delay(Togo) = 120

New Arrival at 728 --

ID = WA11 Route = 4 FCFS# = 10 Nomarr = 2360

Tentative Aircraft Assignments

<table>
<thead>
<tr>
<th>Land#</th>
<th>FCFS#</th>
<th>ID</th>
<th>Nomarr</th>
<th>Sched</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>TW 4</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>CO 7</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2224</td>
<td>416</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO 8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>WA 9</td>
<td>2268</td>
<td>2412</td>
<td>144</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA11</td>
<td>2360</td>
<td>2464</td>
<td>124</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

Final Assignment for TW 4 (Route = 10 FCFS# = 5)

Clock = 768 Position = 4 Sched = 1940
Delay(Tot) = 66 Delay(Abs) = 12 Delay(Togo) = 48

New Arrival at 800 --

ID = CO12 Route = 7 FCFS# = 9 Nomarr = 2224

Tentative Aircraft Assignments
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>CO 6</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>CO 7</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2224</td>
<td>416</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO 8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>CO12</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA 9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO 6 (ROUTE = 7 FCFS# = 4)
CLOCK = 808 POSITION = 6 SCHED = 2012
DELAY(TOT) = 160 DELAY(ABS) = 0 DELAY(TOGO) = 160

FINAL ASSIGNMENT FOR CO 7 (ROUTE = 7 FCFS# = 6)
CLOCK = 848 POSITION = 7 SCHED = 2084
DELAY(TOT) = 140 DELAY(ABS) = 20 DELAY(TOGO) = 120

NEW ARRIVAL AT 852 --
ID = WA13 ROUTE = 4 FCFS# = 12 NOMARR = 2484

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>TW 2H</td>
<td>1808</td>
<td>2224</td>
<td>416</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO 8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>CO12</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA 9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA13</td>
<td>2484</td>
<td>2628</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>TW 5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW 2H (ROUTE = 2 FCFS# = 3)
CLOCK = 912 POSITION = 2 SCHED = 2224
DELAY(TOT) = 416 DELAY(ABS) = 0 DELAY(TOGO) = 416

NEW ARRIVAL AT 736 --
ID = WA14 ROUTE = 7 FCFS# = 12 NOMARR = 2560
TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>UA10</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>CO8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>CO12</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>260</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>TW5L</td>
<td>2852</td>
<td>2852</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR UA10 (ROUTE = 7 FCFS# = 7):
- CLOCK = 944
- POSITION = 10
- SCHED = 2156
- DELAY(TOT) = 52
- DELAY(ABS) = 26
- DELAY(TOGO) = 24

NEW ARRIVAL AT 1008:
- ID = CO15H
- ROUTE = 2
- FCFS# = 14
- NOMARR = 2628

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>CO8</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>CO12</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>260</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>CO11</td>
<td>2628</td>
<td>2692</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>WA13</td>
<td>2484</td>
<td>2812</td>
<td>328</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>TW5L</td>
<td>2852</td>
<td>2908</td>
<td>56</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO8 (ROUTE = 4 FCFS# = 8):
- CLOCK = 1064
- POSITION = 8
- SCHED = 2340
- DELAY(TOT) = 164
- DELAY(ABS) = 0
- DELAY(TOGO) = 164

NEW ARRIVAL AT 1100:
- ID = CO16H
- ROUTE = 2
- FCFS# = 15
- NOMARR = 272
<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>C012</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>C015H</td>
<td>2628</td>
<td>2696</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>C016H</td>
<td>2720</td>
<td>2788</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2904</td>
<td>420</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>TW5L</td>
<td>2852</td>
<td>3092</td>
<td>148</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 11:92 --
ID =C017H ROUTE = 2 FCFS# = 16 NOMARR = 2812

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>C012</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>C015H</td>
<td>2628</td>
<td>2696</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>C016H</td>
<td>2720</td>
<td>2788</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>C017H</td>
<td>2812</td>
<td>2880</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2996</td>
<td>512</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>TW5L</td>
<td>2852</td>
<td>3092</td>
<td>240</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR C012 (ROUTE = 7 FCFS# = 9):
CLOCK = 1208 POSITION = 12 SCHED = 2412
DELAY(TOT) = 188 DELAY(ABS) = 4 DELAY(TOGO) = 184

NEW ARRIVAL AT 12:12 --
ID =FL18 ROUTE = 7 FCFS# = 15 NOMARR = 2636

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>WA9</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>LAND#</td>
<td>FCFS#</td>
<td>ID</td>
<td>NOMARR</td>
<td>SCHED</td>
<td>DELAY</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>WA14</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>WA13</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>FL18</td>
<td>2636</td>
<td>2772</td>
<td>136</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>TW5L</td>
<td>2852</td>
<td>2868</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>WA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>TW20</td>
<td>3432</td>
<td>3432</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>WA21L</td>
<td>3812</td>
<td>3812</td>
<td>0</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1340
ID = WA21L ROUTE = 14 FCFS# = 21 NOMARR = 3812

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>18</td>
<td>TW5L</td>
<td>2852</td>
<td>2868</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
</tr>
<tr>
<td>LAND#</td>
<td>FCFS#</td>
<td>ID</td>
<td>NOMARR</td>
<td>SCHED</td>
<td>DELAY</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>TH20</td>
<td>3432</td>
<td>3432</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>WA21L</td>
<td>3812</td>
<td>3812</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR TW 5L (ROUTE = 14 FCFS# = 18):
CLOCK = 1544 POSITION = 5 SCHED = 2868
DELAY(TOT) = 16 DELAY(ABS) = 0 DELAY(TOGO) = 16

NEW ARRIVAL AT 1656 --
ID = UA23 ROUTE = 12 FCFS# = 22 NOMARR = 3752

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>TH20</td>
<td>3432</td>
<td>3432</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>WA21L</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1704 --
ID = UA24H ROUTE = 2 FCFS# = 21 NOMARR = 3324

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>14</td>
<td>CO15H</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>UA24H</td>
<td>3324</td>
<td>3396</td>
<td>72</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>TH20</td>
<td>3432</td>
<td>3520</td>
<td>96</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>UA33</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>WA21L</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>
FINAL ASSIGNMENT FOR CO15H(ROUTE = 2 FCFS# = 14):
CLOCK = 1728 POSITION = 15 SCHED = 2936
DELAY(TOT) = 308 DELAY(ABS) = 0 DELAY(TOBO) = 308

NEW ARRIVAL AT 1732 --
ID =CO25 ROUTE = 4 FCFS# = 22 NOMARR = 3364

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3228</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>CO25</td>
<td>3364</td>
<td>3400</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>21</td>
<td>UA24H</td>
<td>3324</td>
<td>3536</td>
<td>212</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>WA21L</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1056 --
ID =TW26 ROUTE = 4 FCFS# = 24 NOMARR = 3488

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>CO25</td>
<td>3364</td>
<td>3400</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>TW26</td>
<td>3488</td>
<td>3540</td>
<td>52</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>UA24H</td>
<td>3724</td>
<td>3602</td>
<td>284</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>UA23</td>
<td>3752</td>
<td>3752</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>WA21L</td>
<td>3812</td>
<td>3848</td>
<td>36</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 1488 --
ID =FL27 ROUTE = 7 FCFS# = 21 NOMARR = 3312
TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>16</td>
<td>CO16H</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>CO17H</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FL27</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>UA24H</td>
<td>3324</td>
<td>3608</td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3724</td>
<td>236</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>JA23</td>
<td>3752</td>
<td>3792</td>
<td>40</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>WA21L</td>
<td>3812</td>
<td>3888</td>
<td>76</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO16H (ROUTE = 2 FCFS# = 16):
- CLOCK = 1904
- POSITION = 16
- SCHED = 3028
- DELAY(TOT) = 308
- DELAY(ABS) = 176
- DELAY(TOGO) = 132

FINAL ASSIGNMENT FOR CO17H (ROUTE = 2 FCFS# = 17):
- CLOCK = 1944
- POSITION = 17
- SCHED = 3120
- DELAY(TOT) = 308
- DELAY(ABS) = 216
- DELAY(TOGO) = 92

NEW ARRIVAL AT 1948 --
- ID = FL28
- ROUTE = 4
- FCFS# = 26
- NOMARR = 3580

TENTATIVE AIRCRAFT ASSIGNMENTS

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2932</td>
<td>3212</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FL27</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3612</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>UA24H</td>
<td>3324</td>
<td>3600</td>
<td>258</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>FL28</td>
<td>3580</td>
<td>3796</td>
<td>216</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>UA23</td>
<td>3752</td>
<td>3864</td>
<td>112</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>WA21L</td>
<td>3812</td>
<td>3960</td>
<td>143</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR UA19H (ROUTE = 2 FCFS# = 19):
CLOCK = 2016 POSITION = 19 SCHED = 3212
DELAY(TOT) = 260 DELAY(ABS) = 260 DELAY(TOGD) = 20

NEW ARRIVAL AT 2044 --
ID = TW29H ROUTE = 2 FCFS# = 27 NOMARR = 3664

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FL27</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3612</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>UA24H</td>
<td>3324</td>
<td>3680</td>
<td>356</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>TW29H</td>
<td>3664</td>
<td>3772</td>
<td>108</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>FL28</td>
<td>3580</td>
<td>3888</td>
<td>308</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>UA23</td>
<td>3752</td>
<td>3956</td>
<td>204</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>WA21L</td>
<td>3812</td>
<td>4052</td>
<td>240</td>
</tr>
</tbody>
</table>

NEW ARRIVAL AT 2052 --
ID = WA30L ROUTE = 14 FCFS# = 30 NOMARR = 4504

<table>
<thead>
<tr>
<th>LAND#</th>
<th>FCFS#</th>
<th>ID</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>CO22</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>FL27</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>TW20</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>CO25</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>TW26</td>
<td>3488</td>
<td>3612</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>FL28</td>
<td>3580</td>
<td>3684</td>
<td>104</td>
</tr>
<tr>
<td>26</td>
<td>22</td>
<td>UA24H</td>
<td>3324</td>
<td>3752</td>
<td>428</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>TW29H</td>
<td>3664</td>
<td>3844</td>
<td>180</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>UA23</td>
<td>3752</td>
<td>3976</td>
<td>224</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>WA21L</td>
<td>3812</td>
<td>4072</td>
<td>260</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>WA30L</td>
<td>4504</td>
<td>4504</td>
<td>0</td>
</tr>
</tbody>
</table>

FINAL ASSIGNMENT FOR CO22 (ROUTE = 7 FCFS# = 20)
CLOCK = 2064 POSITION = 22 SCHED = 3528
DELAY(TOT) = 364 DELAY(ABS) = 0 DELAY(TOGD) = 364
FINAL ASSIGNMENT FOR FL27 (ROUTE = 7 FCFS# = 21):
CLOCK = 2160 POSITION = 27 SCHED = 3400
DELAY(TOT) = 88 DELAY(ABS) = 0 DELAY(TOGO) = 88

FINAL ASSIGNMENT FOR TW20 (ROUTE = 12 FCFS# = 24):
CLOCK = 2248 POSITION = 20 SCHED = 3468
DELAY(TOT) = 36 DELAY(ABS) = 0 DELAY(TOGO) = 36

FINAL ASSIGNMENT FOR CO25 (ROUTE = 4 FCFS# = 23):
CLOCK = 2336 POSITION = 25 SCHED = 3540
DELAY(TOT) = 176 DELAY(ABS) = 0 DELAY(TOGO) = 176

FINAL ASSIGNMENT FOR TW26 (ROUTE = 4 FCFS# = 25):
CLOCK = 2392 POSITION = 26 SCHED = 3612
DELAY(TOT) = 124 DELAY(ABS) = 4 DELAY(TOGO) = 120

FINAL ASSIGNMENT FOR UA24H (ROUTE = 2 FCFS# = 22):
CLOCK = 2424 POSITION = 24 SCHED = 3752
DELAY(TOT) = 428 DELAY(ABS) = 0 DELAY(TOGO) = 428

FINAL ASSIGNMENT FOR FL28 (ROUTE = 4 FCFS# = 26):
CLOCK = 2784 POSITION = 28 SCHED = 3684
DELAY(TOT) = 104 DELAY(ABS) = 104 DELAY(TOGO) = 0

FINAL ASSIGNMENT FOR UA23 (ROUTE = 12 FCFS# = 28):
CLOCK = 2856 POSITION = 23 SCHED = 3976
DELAY(TOT) = 224 DELAY(ABS) = 0 DELAY(TOGO) = 224

FINAL ASSIGNMENT FOR WA21L (ROUTE = 14 FCFS# = 29):
CLOCK = 2912 POSITION = 21 SCHED = 4072
DELAY(TOT) = 260 DELAY(ABS) = 0 DELAY(TOGO) = 260

FINAL ASSIGNMENT FOR TW29H (ROUTE = 2 FCFS# = 27):
CLOCK = 2944 POSITION = 29 SCHED = 3844
DELAY(TOT) = 180 DELAY(ABS) = 180 DELAY(TOGO) = 0

FINAL ASSIGNMENT FOR WA30L (ROUTE = 14 FCFS# = 30):
CLOCK = 3608 POSITION = 30 SCHED = 4504
DELAY(TOT) = 0 DELAY(ABS) = 0 DELAY(TOGO) = 0
<table>
<thead>
<tr>
<th>LAND#</th>
<th>ENT#</th>
<th>FCFS#</th>
<th>ID</th>
<th>ROUTE</th>
<th>ENTER</th>
<th>NOMARR</th>
<th>SCHED</th>
<th>DELAY</th>
<th>TYTOGO</th>
<th>DELABS</th>
<th>DEL2GO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>UA</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>1504</td>
<td>1804</td>
<td>100</td>
<td>1276</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>TW</td>
<td>3</td>
<td>10</td>
<td>256</td>
<td>1752</td>
<td>1872</td>
<td>120</td>
<td>1184</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>TW</td>
<td>4</td>
<td>10</td>
<td>384</td>
<td>1880</td>
<td>1940</td>
<td>60</td>
<td>1180</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>CO</td>
<td>6</td>
<td>7</td>
<td>428</td>
<td>1852</td>
<td>2012</td>
<td>160</td>
<td>1204</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>CO</td>
<td>7</td>
<td>7</td>
<td>520</td>
<td>1944</td>
<td>2084</td>
<td>140</td>
<td>1236</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>7</td>
<td>UA10</td>
<td>7</td>
<td>8</td>
<td>680</td>
<td>2104</td>
<td>2156</td>
<td>52</td>
<td>1212</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>TW</td>
<td>2H</td>
<td>2</td>
<td>186</td>
<td>1008</td>
<td>2224</td>
<td>416</td>
<td>1312</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>CO</td>
<td>8</td>
<td>4</td>
<td>544</td>
<td>2176</td>
<td>2340</td>
<td>164</td>
<td>1276</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>9</td>
<td>CO12</td>
<td>7</td>
<td>8</td>
<td>800</td>
<td>2224</td>
<td>2412</td>
<td>188</td>
<td>1204</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>10</td>
<td>WA</td>
<td>9</td>
<td>4</td>
<td>636</td>
<td>2268</td>
<td>2484</td>
<td>216</td>
<td>1268</td>
<td>132</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>WA11</td>
<td>4</td>
<td>728</td>
<td>2360</td>
<td>2556</td>
<td>196</td>
<td>196</td>
<td>1252</td>
<td>196</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>12</td>
<td>WA14</td>
<td>7</td>
<td>936</td>
<td>2360</td>
<td>2628</td>
<td>268</td>
<td>1236</td>
<td>124</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>WA13</td>
<td>4</td>
<td>852</td>
<td>2484</td>
<td>2700</td>
<td>216</td>
<td>1268</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>15</td>
<td>FL18</td>
<td>7</td>
<td>1212</td>
<td>2636</td>
<td>2772</td>
<td>136</td>
<td>1260</td>
<td>40</td>
<td>96</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>18</td>
<td>TW</td>
<td>5L</td>
<td>14</td>
<td>400</td>
<td>2652</td>
<td>2868</td>
<td>16</td>
<td>1324</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>CO15H</td>
<td>2</td>
<td>1008</td>
<td>2628</td>
<td>2936</td>
<td>308</td>
<td>1208</td>
<td>0</td>
<td>308</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>16</td>
<td>CO16H</td>
<td>2</td>
<td>1100</td>
<td>2720</td>
<td>3028</td>
<td>308</td>
<td>1124</td>
<td>176</td>
<td>132</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>17</td>
<td>CO17H</td>
<td>2</td>
<td>1192</td>
<td>2812</td>
<td>3120</td>
<td>308</td>
<td>1176</td>
<td>216</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>UA19H</td>
<td>2</td>
<td>1312</td>
<td>2932</td>
<td>3212</td>
<td>280</td>
<td>1196</td>
<td>260</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>20</td>
<td>CO22</td>
<td>7</td>
<td>1540</td>
<td>2964</td>
<td>3328</td>
<td>364</td>
<td>1264</td>
<td>0</td>
<td>364</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>21</td>
<td>FL27</td>
<td>7</td>
<td>1888</td>
<td>3312</td>
<td>3400</td>
<td>88</td>
<td>1240</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>24</td>
<td>TW20</td>
<td>12</td>
<td>1336</td>
<td>3432</td>
<td>3468</td>
<td>36</td>
<td>1220</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>23</td>
<td>CO25</td>
<td>4</td>
<td>1732</td>
<td>3364</td>
<td>3540</td>
<td>176</td>
<td>1204</td>
<td>0</td>
<td>176</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>25</td>
<td>TW26</td>
<td>4</td>
<td>1856</td>
<td>3488</td>
<td>3612</td>
<td>124</td>
<td>1220</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>26</td>
<td>FL28</td>
<td>4</td>
<td>1948</td>
<td>3580</td>
<td>3684</td>
<td>104</td>
<td>900</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>22</td>
<td>UA24H</td>
<td>2</td>
<td>1704</td>
<td>3324</td>
<td>3752</td>
<td>428</td>
<td>1328</td>
<td>0</td>
<td>428</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>27</td>
<td>TW29H</td>
<td>2</td>
<td>2044</td>
<td>3664</td>
<td>3844</td>
<td>180</td>
<td>900</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>23</td>
<td>28</td>
<td>UA23</td>
<td>12</td>
<td>1656</td>
<td>3752</td>
<td>3976</td>
<td>224</td>
<td>1120</td>
<td>0</td>
<td>224</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>27</td>
<td>WA21L</td>
<td>14</td>
<td>1360</td>
<td>3812</td>
<td>4072</td>
<td>160</td>
<td>1160</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
<td>WA30L</td>
<td>14</td>
<td>2052</td>
<td>4504</td>
<td>4504</td>
<td>0</td>
<td>896</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL DELAY = 583s

MAXIMUM NUMBER OF POSITION SHIFTS = 4

EFFECTIVE ARRIVAL RATE INTO THE TERMINAL AREA = 52.84 PER HOUR

AVERAGE DELAY PER AIRCRAFT = 194.53 SECONDS
C* THIS IS THE MAIN PROGRAM

C* INITIALIZE E&S
CALL PSINIT(3, 0)
CALL CHSET(1, 1, 0)
CALL PUSH
CALL STARTC

C* DISPLAY NEW E&S FRAME.
CALL BLDFRX
CALL HUFRAME
CALL STARTC

C* CHECK FOR ANY OUTPUT
CALL GUR

C* CHECK FOR THE END OF THE RUN
IF (DELTAN.EQ.9999) GOTO 999

C* UPDATE ALL DATA
CALL FRMSBX
GO TO 2
CONTINUE
REWIND 6

999 CALL HUFRAME
STOP
END
SUBROUTINE SPINIT
C
C* SET UP THE DIRECT ACCESS FILES OF THE SIX AIRCRAFT TYPES
C
OPEN (UNIT=2, NAME='DC10.2', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC2
OPEN (UNIT=34, NAME='B737 4', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC34
OPEN (UNIT=22, NAME='B727 7', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC22
OPEN (UNIT=59, NAME='DHC6 14', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC59
OPEN (UNIT=72, NAME='CV58 12', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC72
OPEN (UNIT=85, NAME='DC9 10', TYPE='UNKNOWN')
1 ACCESS='DIRECT', RECORDSIZE=3, ASSOCIATEVARIABLE=IREC85
RETURN
END
C
C
C*THIS FUNCTION IS NEEDED TO ACCOMODATE MORE THAN 100 AIRCRAFT
C
C
INTEGER FUNCTION ROW(N1)
ROW=MOD(N1+100,100)
IF (ROW EQ 0) ROW=100
RETURN
END
C THIS IS A SUBROUTINE TO SET UPDATING PARAMETERS
C FOR A STAND-ALONE RUN
C
SUBROUTINE SETUPR
C
IMPLICIT INTEGER (A-Z)
C
COMMON/SETUP1/UPDATE, DELTA, ARRDATE, CLOCK
C
COMMON/SETUP2/SUPREZ, BAKLOG
C
COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RECLGC(30),
LENGTH(85), NXTARR, RAN1, RAN2, ENTRNUM, LSTARR(14),
NXTYP, NXTIPA, NXRTRT, TYTODG(6, 6, 4)
C
COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNM(30), BSTOFF
1, MXPERM, TOTLCM, ENTRWF(30), ENTRWS(30), ORDROW(10)
2, MORE, NXTROW, LNDCLS(30), PERNM(9), ASNNUM(30), NOPERM
3, FSTMPM, AMOUNT'9), SWITCH, BSWI, BSTORM(10), TIE, OFFRT, PRIORT
4, ASSYGN(30), NMTYM(30), ASNTYM(30), INFEAS, BSTASN(10)
5, FRSTPE, SEPMIN(3, 3), FINAL, FENRTU(30), LEADTM, MPS, NMTST
6, MXPFCM, ENRTYM(30)
C
DATA RAN1, RAN2, ENTRNUM, CLOCK/4*0/
C
TYPE 1009
1009 FORMAT(' SEED = ?')
ACCEPT 1002, SEED
IF(SEED EQ 0)GOTO 1010
C DISCARD THE FIRST "SEED" RANDOM NUMBERS
DO 1011 I=1, SEED
X=RAN(RAN1, RAN2)
1011 CONTINUE
101C CONTINUE
C TYPE 1000
1000 FORMAT(' HOW MANY SECONDS BETWEEN A/C POSITION')
C
TYPE 1001
1001 FORMAT(' UPDATES? (MUST BE A MULTIPLE OF FOUR)')
55 ACCEPT 1002, I
1002 FORMAT(I7)
 IF(MOD(I,4).EQ.0)GOTO 50
 TYPE 1003
1003 FORMAT(' THAT IS NOT A MULTIPLE OF 4. PLEASE TRY AGAIN')
 GO TO 55
50 UPDATE=I/4
 NXTARR=1
 I=0 'UPDATE E&S AS SOON AS POSSIBLE
60 DELTA=I*1000
 TYPE 1013
1013 FORMAT(' TYPE 1 TO OUTPUT FINAL',
 ' STATISTICS ONLY')
 ACCEPT 1002,SUPREZ
70 TYPE 1014
1014 FORMAT(' HOW MUCH IS THE INITIAL DELAY (IN SECONDS)?')
 ACCEPT 1002,BAKLOG
 IF(BAKLOG GE.0)GOTO 75
 TYPE 1015
1015 FORMAT(' INVALID ANSWER: CANNOT BE NEGATIVE')
 GOTO 70
75 TYPE 1007
1007 FORMAT(' WHAT IS THE APPROXIMATE ARRIVAL RATE(A/C PER HOUR)?')
 ACCEPT 1002,ARATE
 ARRATE=ARATE*1.25
 TYPE 1012
1012 FORMAT(' ENTER MPS')
 ACCEPT 1002,MPS
 PRINT 1016,SEED,NXTARR,ARATE,MPS
1016 FORMAT(' SEED =',I6,' UPDATE INTERVAL =',I4,
 ' ARRIVAL RATE =',I4,' MPS =',I3)
 RETURN
END
SUBROUTINE BLDESY

IMPLICIT INTEGER (A-Z)

COMMON/SIGCOM/N1234, I1HOUR, M1NSEC, NACTV, IQACTV(30),
1 I1X(30), I1Y(30), I1ALT(30), IHG(30), IPACTV(30), KODERT(30),
1 N4321, IFLASH(30), ISP(30), IMSC(30), IQACTV(30), NARV,
1 I1QARV(10), I1TPARV(10), I1FFARV(10), I1STA(10), I1TARV(10),
1 MSG1, MSG2, IKNT, IZER0, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)

COMMON/DISPLY/T1ME, TABLE1(10, 35), TABLE2(20), FEDFIIX(6),
1 ACTVT1, TIMET1B(8), TAGTBL(8, 30), MSGTR1(9, 30), LIMSG

COMMON/SCOPES/INAS, IFAS, I1BUS

COMMON/DSPDAT/ACTIVE(30), ALFF(30), I1LEA1D(2, 30), LEADER(2, 3)

COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK

DIMENSION ICRS(8), ICRSF(8), WA1YTA(2, 70), WA1YTF(2, 25),
1 I1RNWYA(4), I1RNWYF(4), I1WP5(2, 5), I1RG12(2, 8)

DIMENSION IACTAC(30), I1WP1(2), I1WP2(2, 4),
1 I1WP3(2, 4), I1WP4(2, 4), I1RG12A(2, 4)

DIMENSION C(5)

BUILD THE MAP AND WAYPOINTS

DATA ICRS/-25536, 364, -25536, -364, -25900, 0, -25171, 0/

DATA ICRSF/-850, 1579, -850, 850, -1215, 1215, -486, 1215/

DATA WA1YTA/-19845, -23955, -18118, -22228, -16464, -20428, -14810,
1 -18629, -24003, -18264, -21815, -17218, -19577, -16124, -17437,
1 -15054, -20890, -12524, -19893, -8439, -28770, 4961, -26362, 5447,
1 -23979, 5958, -21571, 6444, -10263, 8852, -15735, 20285,
1 -16756, 22471, -17826, 24709, -18823, 26897, -2140, 20550,
1 6414, 28892, 8536, 26484, 8706, 24052, 8852, 21596,
C DISPLAY THE Ti E
C
C HOURS=CLOCK/3600
MIN=CLOCK/60-HOURS*60
SEC=CLOCK-HOURS*3600-MIN*60
ENCODE(2.102,C(1))HOURS
ENCODE(2.102,C(3))MIN
ENCODE(2.102,C(5))SEC
102 FORMAT(I2)
C(2)=':'
C(4)=':'
DO 900 I=1,2
CALL SCOPE(IBUS) !TURN ON BACKUP SCOPE
IF(I.EQ.2)GOTO 901
C SET UP NORTH SCOPE
CALL SCOPE(-IFAS) !TURN OFF FINAL SCOPE
CALL SCOPE(INAS) !TURN ON APPROACH SCOPE
IF(ISWSET(1).EQ.0)CALL SCOPE(-IBUS) !TURN OFF BACKUPSCOPE
CALL VWPORT(-2048,2047,-2048,2047,255,255)
CALL PUSH
GOTO 902
C SET UP FINAL SCOPE
901 CALL SCOPE(-INAS) !TURN OFF APPROACH SCOPE
CALL SCOPE(IFAS) !TURN ON FINAL SCOPE
IF(ISWSET(1).NE.0)CALL SCOPE(-IBUS) !TURN OFF BACKUP SCOPE
CALL VWPORT(-1224,1224,-1366,1366,255,255)
CALL WINDOW(-1362,7077,-3283,6129)
CALL PUSH
C DISPLAY WAYPOINTS AND RUNWAY
902 CALL POP
DO ,90 J=1,2
CALL DRAW2D(WAYPTA,70,4,2,0)
190 CONTINUE
IF(I.EQ.2)GOTO 903
CALL DRAW2D(IRNWYA,2,2,2,0)
CALL DRAW2D(ICRS,4,0,2,0)
IF(ISWSET(3).NE.0)CALL DRAW2D(IRG12A,4,2,2,0)
CALL CHAR(1,1,0)
CALL MOVETO(-30000, 30000)
CALL TEXT(10, C)
CALL CHAR(0, 0, 0)
GOTO 904

903 CALL DRAW2D(ICRSF, 4, 0, 2, 0)
 CALL MOVETO(IRNWFY(1), IRNWFY(2))
 CALL LINETO(IRNWFY(3), IRNWFY(4))
 DO 200 J=1, 2
 CALL DRAW2D(WAYPTF, 25, 4, 2, 0)
 CALL CHAR(0, 0, 0)
200 CONTINUE
 CALL CHAR(1, 1, 0)
 CALL MOVETO(-1300, 6100)
 CALL TEXT(10, C)
 IF(ISWSET(3). EQ. 0) GOTO 904
 CALL DRAW2D(IRG12, 8, 2, 2, 0)
 DO 76 J=1, 10
 CALL DRAW2D(IWP5, 5, 4, 2, 0)
76 CONTINUE

904 IF(IDSPBC. EQ. 0) GOTO 192
 IF(IFLSEH. NE. 0) CALL BLINK(1)
 IWP1(1)=IXB !IXB IN E&S BITS
 IWP1(2)=IYB !IYB IN E&S BITS
 CALL DRAW2D(IWP1, 1, 4, 2, 0)
 CALL BLINK(0)
 IWP2(1, 1)=IXC+486 !IXC IN E&S BITS
 IWP2(2, 1)=IYC+486 !IYC IN E&S BITS
 IWP2(1, 2)=IXC-486 !CONVERSION FOR FINAL MIGHT NOT
 IWP2(2, 2)=IYC-486 !BE 486 BUT K(1) WITH K(1)=486
 IWP2(1, 3)=IWP2(1, 1)
 IWP2(2, 3)=IWP2(2, 2)
 IWP2(1, 4)=IWP2(1, 2)
 IWP2(2, 4)=IWP2(2, 1)
 CALL DRAW2D(IWP2, 4, 0, 2, 0)

192 CONTINUE
CALL PUSH
DO 905 J=1, 30
CALL. POP
CALL PUSH
SUBROUTINE ACDRAW(I1, J1)

IMPLICIT INTEGER (A-Z)

COMMON/SIGCOM/N1234, I HOUR, M NSEC, NACTV, I GACTV(30),
 I X(30), I Y(30), I ALT(30), I HG D(30), I PACTV(30), I KDERT(30),
 I N 4321, I FLASH(30), I SPD(30), I MSG(30), I GACTV(30), N ARV,
 I GARV(10), I PARV(10), I FFARV(10), ISTA(10), ITARV(10),
 I MSG1, MSG2, IKNT, IZERO, IXB, IYB, I XC, IYC, IFL SH, ID SPBC, IDUM(32)

COMMON/DSPDAT/ACTIVE(30), ALFF(30), I LEAD(2, 30), LEADER(2, 3)

COMMON/INFO/ ACID(50), ALINE(5), SIZE(3)

COMMON/HOLD1/NXTNL, MINTRP, HOLD(30), NXSTAR(30), FINASN(30)
 , LSTREC(14), STOPAC(30), NEWOUT

COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNU(30), BSTOFF
 , M XPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDROU(10)
 , M ORF, N XTROW, LNDCLS(30), PERM(9), ASNUM(30), NOPERM
 , FSTMDR, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRT, PRIORT
 , AS SYGN(30), NQ M YM(30), SN TYM(30), INEAS, BSTASN(10)
 , F RSTPE, SEPMIN(3, 3), FNAL, FENNU(30), LEADTM, MPS, NMTEST
 , M XPFAC, EN TYH(30)

DIMENSION ACRFT1(10), ACRFT2(10), ITAG(4), LINE(2)

DATA ALINE, SIZE/ 'CG', 'UA', 'FL', 'TW', 'WA', 'L', ' ', 'H'/

REAL D2R, XALF

DATA ACRFT1/500.0, -1000, 500.0, -1000, 1000, 500.0, -1000, 0/
DATA ACRFT2/144.0, -286, 139.0, -278, 288, 139, -288, 0/
DATA LINE/480, 120/
DATA ITAG/4*0/
DATA D2R/, 01745/

DRAW THE AIRCRAFT ON THE DISPLAY
XALF=ALFF(J1)*D2R
LDR=ILEAD(I1, J1)
ITAG(3)=LDR*SIN(XALF)
ITAG(4)=LDR*COS(XALF)
IX1=ITAG(3)+IX(J1)+LINE(I1)
IY1=ITAG(4)+IY(J1)-LINE(I1)
CALL MOVETO(IX1, IY1)
IF(I1.EQ.1)GOTO 20
IF(IX1.LT.-1362. OR. IX1.GT.7077. OR.
1 IY1.LT.-3283. OR. IY1.GT.6129)GOTO 10
20 CONTINUE
CALL CHAR(0, 0, 0)
CALL TEXT(2, ACID(J1))
IT=IPACTV(J1)
ENCODE(2, 103, ARNUM)FENTNU(J1)
CALL TEXT(2, ARNUM)
CALL TEXT(1, SIZE(IT))
103 FORMAT(I2)
IY2=IY1-LINE(I1)*2
ENCODE(3, 102, ALTAG)IALT(J1)
102 FORMAT(I3)
CALL MOVETO(IX1, IY2)
CALL TEXT(3, ALTAG)
IX2=IX1+5*LINE(I1)
ENCODE(3, 102, SPDTAG)ISPD(J1)
CALL MOVETO(IX2, IY2)
CALL TEXT(:, SPDTAG)
10 CONTINUE
CALL TRAN(IX(J1), IY(J1), 0)
CALL DRAW2D(ITAG, 2, 2, 0)
IT=IHGD(J1)/182
IF(IT.GE.-90)A=IT+90
IF(IT.LT.-90)A=IT+450
IF(A.LE.180)ITT=182*A
IF(A.GT.180)ITT=182*(A-360)
CALL ROT(-ITT, 3)
CALL ROT(16384, 3)
IF(IFLASH(J1).NE.0)CALL BLINK(1)
IF(HOLD(J1).NE.0)CALL BLINK(1)
IF (STOPAC(J1).NE.0) CALL BLINK(1)
IF (I1.EQ.1) CALL DRAW2D(ACRFT1, 5, 2, 0, 0)
IF (I1.EQ.2) CALL DRAW2D(ACRFT2, 5, 2, 0, 0)
CALL BLINK(0)
RETURN
END
SUBROUTINE FRMSGX
C
IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, IHOUR, MNSEC, NACTV, IGACTV(30),
 1 IX(30), IY(30), IALT(30), IHGD(30), IPACTV(30), KODERT(30),
 1 N4321, IFLASH(30), ISPD(30), IMSG(30), IGACTV(30), NARV,
 1 IQARY(10), ITPARV(10), IFFARV(10),ISTA(10), ITARV(10),
 1 MSG1, MSG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
COMMON/DISPLY/ TIME, TABLE1(10, 35), TABLE2(30), FEDFIX(6),
 1 ACTVT1, TIMETB(8), TAGTBL(8, 30), MSGTBL(9, 30), LIMSG
C
DIMENSION RUTEID(2,1!)
C
DATA BLANK2/ ' ' /
C
C* GET THE UPDATED INFORMATION
C
CALL SIGIOX
C
C* BUILD TAG TABLE
C
CALL FILL(240, BLANK2, TAGTBL(1, 1))
C
C* GET TIME
C
 ENCODE(2, 1002, TIMETB(1)) IHOUR
 TIMETB(2)= ' '
 ENCODE(2, 1002, TIMETB(3)) MNSEC/60
 TIMETB(4)= ' '
 ENCODE(2, 1002, TIMETB(5)) MOD(MNSEC, 60)
 MSGLIN=0
 LIMSG=0
C
C* A/C DATA
C
 IF(IAC.LT.16) GO TO 25
 DO 18 IAC=1, NACTV
TAGTBL(1, IAC)=IQACTV(IAC)
ENCODE(2, 1002, TAGTBL(4, IAC))IPACTV(IAC)
ENCODE(3, 1003, TAGTBL(5, IAC))IALT(IAC)
ENCODE(3, 1003, TAGTBL(7, IAC))ISPD(IAC)

18 CONTINUE
25 CONTINUE
RETURN
1002 FORMAT(I2)
1003 FORMAT(I3)
1095 FORMAT(I5)
END
SUBROUTINE SIGIOX

C
IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, I HOUR, MNSEC, NACTV, IGACTV(30),
1 IX(30), IY(30), IALT(30), IHGD(30), IPACTV(30), KODERT(30),
1 N4321, IFLASH(30), ISP(30), IMSG(30), IGACTV(30), NARV,
1 IQARV(10), ITPARV(10), IFFARV(10), ISTA(10), ITARV(10),
1 MSG1, MSG2, IKNT, IZERO, I XB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK
C
COMMON/DSPDAT/ACTIVE(30), ALFF(30), I LEAD(2, 30), LEDER(2, 3)
C
C* DELTA=0. SO UPDATE AS FAST AS POSSIBLE
C
700 CALL READC(NUM)
 IF(NUM LT DELTA)GOTO 700
C
C* CHECK FOR ANY FINAL ASSIGNMENTS
C
 CALL MKEFNL
C
C* GET NEW POSITION DATA; REVISE TENTATIVE SCHEDULE IF REQUIRED
C
 CALL UPD8
C
RETURN
C
END
SUBROUTINE UPDB

IMPLICIT INTEGER(A-7)

COMMON/SIGCOM/N1234, IHOUR, MNSEC, NACTV, IGACTV(30),
1 IX(30), IY(30), IALT(30), IHDG(30), IPACTV(30), KDERT(30),
1 N4321, IFLASH(30), ISPD(30), IMSG(30), IGACTV(30), NARV,
1 IQAVR(10), ITPAVR(10), IFFAVR(10), ISTA(10), ITARV(10),
1 ISG1, ISG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLASH, IDSPPC, IDUM(32)

COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK

COMMON/DSPDAT,ACTIVE(30), ALFF(30), ILEAD(2,30), LEADER(2,3)

COMMON/UPD81/UNITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTRNUM, LSTRARR(14),
2 NTTYP, NTTIPA, NXTRUT, TTYQGO(6,6,4)

COMMON/HOLD1/NXTFNL, MINTRP, HOLD(30), NXSTAR(30), FINASN(30)
1 ,LSTREC(14), STOPAC(30), NEWOUT

COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNUM(30), BSTOFF
1 ,MXPERM, MTGLAC, ENTRWF(30), ENTRWS(30), ORROW(10)
2 ,MORE, NXRROW, LNDCLS(30), PERM(9), ASNUM(30), NOPERM
3 ,FSIMOR, AMOUNT(9), SWITCH, BSTSW1, BSTORD(13), TIE, OFFRT, PRIORT
4 ,ASSYGN(30), DOMTYM(30), ASNTYM(30), INFEAS, BSTASN(10)
5 ,FRSTPE, SEPMIN(3,3), FINAL, FENTNU(30), LEADTH, MPS, NMTEST
6 ,MXPAC, ENTEYM(30)

DATA IGACTV, IFLASH, IGACTV, IPACTV, KDERT/60*0, 30*1, 60*2/
DATA LENGTH/0, 405, 19*0, 356, 11*0, 408, 24*0, 613, 12*0,
1 524, 12*0, 374/
CLOCK=CLOCK+UPDATE*4

C* CHECK FOR A NEW ARRIVAL
C
IF(CLOCK GE NXTARR)CALL GENERB
D0 14 1=1,14
LSTREC(I)=700
14 CONTINUE
C
C* DETERMINE THE AIRCRAFT POSITION ON THE DISPLAY
C
DO 915 M=1,ENTNUM
IF=M
K1=ROW(I1)
K=ENTRWS(K1)
STOPAC(K)=0
IF(ACTIVE(K).EQ.0)GOTO 915
RUT=ROUTE(K)
TY=ACTYPE(K)
ENDHLD=0
IF(FINASN(K).EQ.0)GOTO 10
IF(HOLD(K).EQ.0)GOTO 10
IF(CLOCK.GT.NXSTAR(K))ENDHLD=1
IF(ENDHLD.NE.0)HOLD(K)=0
LSTREC(RUT)=RECLOC(K)-UPDATE
IF(HOLD(K).NE.0)GOTO 915
10 CONTINUE
U=UNITFL(K)
R=RECLOC(K)
IF(ENDHLD.EQ.0)GOTO 12
T1=(LENGTH(U)-R+1)*4
T3=ASYSYM(K)-CLOCK-T1
T4=T3/4
T=MOD(T4,UPDATE)
R=R-T
LSTREC(RUT)=699
12 CONTINUE
SEP=2
IF(IPACTV(K).EQ.1)SEP=4
IF(IPACTV(K).EQ.3)SEP=3
T2=TYGR0(TY,1,SEP)
L1=LSTREC(RUT)
IF(R.GT.L1-T2)STOPAC(K)=1
IF(R.GT.L1-T2)R=L1-T2
I=RECLOC(K)
LSTREC(RUT)=R
C* CHECK FOR AN AIRCRAFT LANDING
C
 IF (R GT LENGTH(U)) GOTO 916
 IF (R LT 1) R = 1
 READ(U'R) IX(K), IY(K), IALT(K), ISPDA(K), IHGD(K)
 RECLOC(K) = R + UPDATE
 GOTO 915

916 ACTIVE(K) = 0 ! REMOVE AIRCRAFT
 NACTV = NACTV - 1

915 CONTINUE
 RETURN
 END
SUBROUTINE GENORB
C
IMPLICIT INTEGER(A-Z)

COMMON/SIGCOM/N1234, IHOUR, MNSEC, NACTV, IGA(CTV(30),
1 IX(30), IY(30), IALT(30), IHGD(30), IPACTV(30), KODE(30),
1 N4321, IFLASH(30), ISPD(30), IM(3G(30), IGA(CTV(30), NARY,
1 IARRV(10), ITPARV(10), IFFAVR(10), ISTA(10), ITARV(10),
1 MS(1, MSG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)

COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK

COMMON/DSPDAT/ACTIVE(30), ALFF(30), ILEAD(2, 30), LEADER(2, 3)

COMMON/UPDB1/UNITFL(30), ACYP(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTRNUM, LSTARR(14),
2 NXTYP, NXTIPA, NXTRUT, YTGO(6, 6, 4)

COMMON/CPS/ORDER(10), FCFSN(9), COUNT, FRSTNU(30), BSTOFF
1, MXP(1EM), TOTLAC, ENTRWS(30), ENTRWS(30), ORDROW(10)
2, MCOME, NXTRW, LNDCLS(30), PERM(9), ASNUM(30), NOPERM
3, FSTMR, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRUT, PRIORT
4, ASSYGN(30), NMTYM(30), ASNTYM(30), INFAS, BSTASN(10)
5, FRSTPE, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTAST
6, MXPAC, ENTYM(30)

COMMON/HOLD1/NXTFNL, MINTRP, HOLD(30), NXSTAR(30), FINASN(30)
1, LSTREC(14), STOPAC(30), NEWOUT

COMMON/INFO/Acid(50), ALINE(5), SIZE(3)

DATA LSTARR, NXTYP, NXTIPA, NXTRUT/14*92, 2, 2, 7/

DATA MPS/0/

DIMENSION RUTES(6), TYPES(6)

REAL CMRPRB(6)
DATA CUMPRB/.25,.45,.65,.75,.85,1.0/
C
DATA RUTES.TYPES/2,4,7,14,12,10,3,2,2,1,2,2/
C
REAL X,RAN,ALOG,ENTINT
C
IF(ENTNUM.EQ.30)RETURN
IF(ENTNUM.EQ.0)GO TO 150
155 CONTINUE
NEWOUT=1
SEP=2
IF(NXTIPA.EQ.1)SEP=4
IF(NXTIPA.EQ.3)SEP=3
ENTNUM=ENTNUM+1
J=ROW(ENTNUM)
FINAL=J
REWIND 7
ENTRWF(J)=J
FRSTNU(J)=ENTNUM
FENTNU(J)=ENTNUM
ACTYPE(J)=NXTTYP
IPACTV(J)=NXTIPA
ROUTE(J)=NXTTYP
C
C* SELECT AN AIRLINE TAG
C
150 X=RAN(RAN1,RAN2)
IT=10*X
ITT=MOD(IT,5)+1
ACID(J)=ALINE(ITT)
X=RAN(RAN1,RAN2)
C
C* SELECT AN AIRCRAFT TYPE (LIGHT, CONVENTIONAL OR HEAVY)
C
DO 50 I=1,6
IF(X.LT.CUMPRB(I))GO TO 100
50 CONTINUE
100 NXTTYP=I
IF(I.EQ.2)NXTTYP=3
IF(I EQ. 3) NXTTYP=2
NXTIPA=TYPES(I)
NXTRUT=RUTES(I)
IF(ENTNUM. EQ. 0) GO TO 155
RJ=ROUTE(J)
JT=LSTARR(RJ)
LSTARR(RJ)=NXTARR
UNITFL(J)=(ACTYPE(J)-1)*15 + RJ
RECLOC(J)=(CLOCK-NXTARR)/4+1
U=UNITFL(J)
ENTTYM(J)=NXTARR
NOMTYM(J)=LENGTH(U)*4+NXTARR
NACTV=NACTV+1
ACTIVE(J)=1
ILEAD(1, J)=LEADER(1, 2)
ILEAD(2, J)=LEADER(2, 2)
X=RAN(RAN1, RAN2)

C* DETERMINE THE INTERARRIVAL TIME
C
ENTINT=-3600. *ALOG(X)/ARRATE+2
IF(ENTINT GT 180)ENTINT=180
ENTCNT=ENTINT/4
IF(ENTCNT EQ. 0)ENTCNT=1
NXTARR=CLOCK+ENTCNT*4
IT=LSTARR(NXTRUT)+92
IF(NXTARR-IT LT. 0)NXTARR=IT

C* START THE CPS ALGORITHM
C
CALL SORT
360 CALL GETSET
B4=0
DO 350 K1=1, MXPFAC
CALL GETPRM
IF(B4 EQ. 1)GOTO 500

C* DETERMINE THE INITIAL DELAY
C
500 CALL INITDL
 D4=1
500 CONTINUE
 CALL FESTST
 IF(INFEAS.NE.0) GOTO 350
 CALL SKEDUL
 CALL COMPAR
350 CONTINUE
 CALL STORE
 IF(MORE.NE.0) GOTO 360
 RETURN
 END
SUBROUTINE INITDL

C IMPLICIT INTEGER(A-Z)
C
C COMMON/SIGCOM/N1234, I HOUR, MNSEC, NACTV, IQACTV(30),
1 IX(30), IY(30), IALT(30), IHGD(30), IPACTV(30), KODERT(30),
2 N4321, IFLASH(30), ISP(30), IMSG(30), IQACTV(30), NARV,
3 IQARV(10), ITPARV(10), IFFARV(10), ISTA(10), ITARY(10),
4 MSG1, MSG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
C COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), N TARR, RANI, RAN2, ENTRNUM, LSTARR(14),
2 NTTYP, NXTIPA, N XTRUT, TYT0G0(6, 6, 4)
C
C COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNU(30), BSTOFF:
1 , MXPERM, TO T LAC, ENTRWF(30), ENTRWS(30), ORDRW(10)
2 , MORE, N TXROW, LNDCLS(30), PERM(9), ASNNUM(30), NOPERH:
3 , FSTMOR, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRUT, PRIORT
4 , ASSYGN(30), NOMTYM(30), ASNTYM(30), INFEAS, BSTASN(10)
5 , FRSTPE, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6 , MXPFAC, ENTTYM(30)
C COMMON/INTDL1/MERGE(14, 14), INITDL(30), INTASN(30)
C
C COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK
C
C COMMON/SETUP2/SUPREZ, BAKLOG
C
C COMMON/INFO/AJ(50), ALINE(5), SIZE(3)
C
C DIMENSION B4(10)
C
C DETERMINE IF AN INITIAL DELAY IS INEVITABLE
C
S = 0
INITIAL = ORDRW(10)
IF (MXPERM .GE. 0) GOTO 10
INITDL(FINAL) = BAKLOG
GOTO 310
10 IF (MXPERM .EQ. 0) GOTO 200
I3=ROUTE(FINAL)
K3=ACTYPE(FINAL)
DO 100 I=1,MXPERM
J=ORDROW(J)
K=ACTYPE(J)
IF(I NE I3)GOTO 100
S=S+1
B4(S)=J
100 CONTINUE
INTASN(INITAL)=ASNTYM(INITAL)
DO 12 J=1,MT
MNT=S+1
IF(JJ EQ 1)J1=INITIAL
IF(JJ NE 1)J1=J2
IF(JJ NE 1)J2=FINAL
I1=ROUTE(J1)
I2=ROUTE(J2)
K1=ACTYPE(J1)
K2=ACTYPE(J2)
IF(I PACKT(V)1)EQ.1)SEP=4
SEP=2
M1=MAXO(M2, M3)
I1=PACKT(V)1)YTEGOG(K2, 1, SEP)
15 T3=YTEGOG(K2, IT, SEP)*SEP
U2=UNITY(J2)
M2=LENGTH(J2)*4-T2
GOTO 12
20 INTASN(J2)=M1
M4 = ENTLYM(J2) + M2
M5 = INTASN(J1) - T1
M6 = M5 + T3 - T2
M7 = MAXO(M4, M6)
INTASN(J2) = MAXO(M1, M7 + T2)

12 CONTINUE
INITDL(FINAL) = INTASN(FINAL) - NC:TYM(FINAL)
3:0 CONTINUE
RETURN
END
SUBROUTINE SORT

 IMPLICIT INTEGER(A-Z)
 COMMON/CPS/ORDER(10), FCFSNUM(9), COUNT, FRSTNU(30), BSTOF
 MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDRW(10)
 MORE, NXTROW, LNDCLS(30), PERM(9), ASNNUM(30), NOPERM
 FMSTMD, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRT, PRIOR
 ASYGN(30), NOMTYM(30), ASNTYM(30), INFEAS, BSTASN(10)
 FRSTPE, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
 MXPFAC, ENTYM(30)

 COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
 LENGTH(95), NXTARR, RAN1, RAN2, ENTNUM, LSTARR(1),
 NXTYP, NXTIPA, NXRUT, TYTOGD(6, 6, 4)

 FMSTMD=0
 MORE=0
 J=FINAL
 DO 91 N=1, ENTNUM
 IF(ENTNUM-N.EQ.0)RETURN
 KK=ENTNUM-N
 K=ENTRWF(KK)
 IF(NOMTYM(J).GE.NOMTYM(K))RETURN
 FMSTMD=1
 MORE=1
 NXTROW=K
 FRSTNU(J)=FRSTNU(J)-1
 FRSTNU(K)=FRSTNU(K)+1
 JJ=ROW(FRSTNU(J))
 ENTRWF(JJ)=J
 KK=ROW(FRSTNU(K))
 ENTRWF(KK)=K
 91 CONTINUE
 END
SUBROUTINE GETSET
C
C IMPLICIT INTEGER(A-Z)
C
COMMON/CPS/ORDER(16,FCFSNM(4),COUNT,FRSTNU(30),BSTOFF
1 ,MXPERM,TOTLAC,ENTRWF(30),ENTRWS(30),ORDROW(10)
2 ,MORE,NXTROW,LNDCLS(30),PERM(9),ASSNUM(30),NOPERM
3 ,FSTMOR,AMOUNT(9),SWITCH,BSTSWI,BSTORD(10),TIE,OFFRT,PRIORT
4 ,ASSYN(30),NMTYM(30),ASNTYM(30),INFEAS,BSTASN(10)
5 ,FRSTPE,SEPMIN(3,3),FINAL,FENTNU(30),LEADTM,MPS,NMTEST
6 ,MXPFA,ENTTYM(30)
C
COMMON/UPDBL/UNITFL(30),ACTYPE(30),ROUTE(30),RELOC(30),
1 LENGTH(35),NXTARR,RAN1,RAN2,ENTNUM,LSTARR(14),
2 NXTYP,NXTIPA,NXTRUT,TYTOGO(6,6,4)
C
NMTEST=0
IF (FSTMOR .EQ. 0) GOTO 431
FSTMOR=0
GOTO 421
431 IF (MORE .EQ. 0) GOTO 421
FINAL=NXTROW
IF (FRSTNU(NXTROW).EQ.ENTNUM).AND.MORE=0
IF (MORE .EQ. 1).AND.NXTROW=ENTRWF(FRSTNU(FINAL)+1)
421 LAST=FRSTNU(FINAL)
MXPERM=MINT(MPS+1,LAST-2)
MXPFA=1
IF (MXPERM.LE.0) GOTO 320
DO 340 K1=1,MAXPERM
MXPFA=K1*MXPFA:
340 CONTINUE
320 FRSTPE=1
NPERM=0
K=MAX0(LAST-MPS-2,1)
M=ROW(K)
IF (LAST .EQ. 1).AND.ENTRWS(1)=FINAL
INITIAL=ENTRWS(M)
ORDROW(10)=INITIAL
ORDER(10)=FRSTNU(INITIAL)
IF(MXPERM.GE.0)GOTO 101
NOPERM=1
RETURN
101 ORDROW(MXPERM+1)=FINAL
ORDER(MXPERM+1)=LAST
IF(MXPERM.GT.0)GOTO 10
NOPERM=1
RETURN
10 MM=0
71 JJ=1,100
I=ROW(LAST-JJ)
IF(ASNNUM(ENTRWF(IT)).LE.K)GOTO 71
MM=MM+1
AMOUNT(MM)=1
PERM(MM)=MM
FCFSNM(MM)=FRSTNU(ENTRWF(IT))
IF(MM.EQ.MXPERM)GOTO 441
71 CONTINUE
441 RETURN
END
SUBROUTINE GETPRM

C

IMPLICIT INTEGR(A-Z)

C

COMMON/CPS/ORDER(10), FCFSNUM(9), COUNT, FRSTNU(30), BSTOFF
1 , MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDRION(10)
2 , MORE, NTRROW, LNDCLS(30), PERM(9), ASNNUM(30), NOPERM
3 , FSTMR, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRUT, PRIORT
4 , ASSYGN(30), NMTYMN(30), ASNTYM(30), INFEAS, BSTASN(10)
5 , FRSTPE, SEP MIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6 , MXPFA, ENTTYN(30)

C

COMMON/UPD81/UNITFL(30), ACYTYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(B5), NTTARR, RAN1, RAN2, ENTRNUM, LSTARR(14),
2 NXTYP, NXTIPA, NXTRTT, TYTGOO(6, 6, 4)

C

COMMON/SETUPJ/SUPREZ, BAKLOG

C

IF(MXPERM .NE. -1)GOTO 310

C

* A DELAY IS INTRODUCED FOR THE FIRST ARRIVAL

C

ASNTYN(FINAL)=NMTYMN(FINAL)+BAKLOG
ENTRWS(FINAL)=FRSTNU(FINAL)
ASNNUM(FINAL)=FRSTNU(FINAL)
RETURN

310 IF(MXPERM .EQ. 0)RETURN
 IF(FRSTPE .EQ. 0)GOTO 300
 FRSTPE=0
 GOTO 20

300 IF(MXPERM .EQ. 1)GOTO 60
 IF(MXPERM .GT. 2)GOTO 50
 IF(NUM .EQ. 2)GOTO 60

50 KT=0
 IF(MOD(NUM, 2) .EQ. 0) KT=1
 IT=PERM(1+KT)
 PERM(1+KT)=PERM(2+KT)
 PERM(2+KT)=IT
 IF(NUM NE 6)GOTO 30
IF(MXPERM.EQ.3)GOTO 60
AMOUNT(4)=AMOUNT(4)+1
IF(AMOUNT(4).LE.4)GOTO 70
80 COUNT=COUNT+1
 IF(COUNT.GT.MXPERM)GOTO 60
 AMOUNT(COUNT)=AMOUNT(COUNT)+1
 IF(AMOUNT(COUNT).GT.COUNT)GOTO 80
 IT=COUNT-1
 DO 90 I=4,IT
 AMOUNT(I)=1
90 CONTINUE
70 KT=COUNT-1
 IF(MOD(COUNT,2).EQ.0)KT=COUNT+1-AMOUNT(COUNT)
 IT=PERM(COUNT)
 PERM(COUNT)=PERM(KT)
 PERM(KT)=IT
20 COUNT=4
 NUM=0
30 NUM=NUM+1
 DO 2 J=1,MXPERM
 IT=FCFSNM(PERM(J))
 JT=ROW(IT)
 ORDRW(J)=ENTRWF(JT)
 ORDER(J)=IT
2 CONTINUE
RETURN
RETURN
60 TYPE 44
44 FORMAT(' TOO MANY PERMUTATIONS')
RETURN
END
SUBROUTINE FEZTST
C
IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, I HOUR, MNSEC, NACTV, IGACTV(30),
 1 IX(30), IY(30), IALT(30), IHGD(30), IPACTV(30), KODERT(30),
 1 N4321, IFLASH(30), ISPD(30), IMSG(30), IGACTV(30), NARV,
 1 IQARV(10), ITPARV(10), IFFARV(10), ISTA(10), ITARV(10),
 1 MSG1, MSG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK
C
COMMON/DSPDAT/ACTIVE(30), ALFF(30), ILEAD(2,30), LEADER(2,3)
C
COMMON/UPD81/INITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
 1 LENGTH(85), NXTARR, RAN1, RAN2, ENTNUM, LSTARR(14),
 2 NXTYP, NXTIPA, NXRUT, TYTC(30)6,6,4:
C
COMMON/CPS/ORDER(10), FCFSNUM(9), COUNT, FRSTNU(30), BSTOFF
 1, MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDRW(10)
 2, MORE, NXTROW, LNDCLS(30), FERM(9), ASNNUM(30), NOPERM
 3, FSTMOR, AMOUNT(9), SWITCH, BSTSWI, BSTUDD10, TIE, DFRUT, PRIORT
 4, ASSYGN(30), NOMTYM(30), SNTYM(30), INFEAS, BSTASN(10)
 5, FRSTPE, SEPMIN(5,3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
 6, MXPAC, ENNTYM(30)
C
COMMON/HOLD1/NXFTNL, MINTRP, HOLD(30), NXSTAR(30), FINASN(30)
 1, LSTREC(14), STOPAC(30), NEWOUT
C
COMMON/INFO/ACID(50), ALINE(5), SIZE(3)
C
INFEAS=0
IF(MXPERM LE 0)RETURN
DO 14 I=1,MXPERM
J1=ORDROW(I)
IF(FINASN(J1).EQ.0)GOTO 15
IF(ORDER(I).NE.FRSTNU(J1))GOTO 231
15 CONTINUE
IF(ORDER(I).GT.FRSTNU(FINAL)-MXPERM-1+I+MPS)GOTO 231
IF(ORDER(I).LT.FFSTNU(FINAL)-MXPERM-1+I-MPS)GOTO 231
14 CONTINUE
 IF(MXPERM.EQ.1)RETURN
 IT=MXPERM-1
 DL 24 I=1,IT
 JT=I+1
 DO 24 J=JT,MXPERM
 IF(ORDER(I).LT.ORDER(J))GOTO 24
 IF(ACTYPE(ORDROW(I)).EQ.ACTYPE(ORDROW(J)))GOTO 231
 24 CONTINUE
 RETURN
231 INFEAS=1
 RETURN
END
SUBROUTINE SKEDUL

C IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, I HOUR, MNSEC, NACTV, IGACTV(30),
1 IX(30), IY(30), IALT(30), IMED(30), IPACTV(30), KINDERT(30),
1 N4321, IFALIGH(30), ISPD(30), IMSG(30), IGACTV(30), NARV,
1 IQAVF(10), ITPAVF(10), IFFAVF(10), ISTA(10), ITARV(10),
1 MSG1, MSG2, IKNT, I ZER0, IXB, I YB, I XC, I YC, I FLSH, IDSPB, IDUM(32)
C
COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RELOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTRUM, LSTARR(14),
2 NXTYP, NXTIPA, NXTTRT, TYTOGO(6, 6, 4)
C
COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNU(30) BSTOFF
1, MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDROW(10),
2, MORE, TXTROW, LNDCLS(30), PERM(9), ANNUM(30), NPERM
3, FSTNOR, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRT, PRTORT
4, ASSGN(30), NOMTYM(30), ASNTY(30), INFES, BSTAS(10)
5, FRSTE, SEPTRN(3.3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6, MXPFAC, ENTTYM(30)
COMMON/INTD1/MEG(14, 14), INITDL(30), INTASN(30)
C
DATA TYTOGO/6*0, 59, 60, 70, 55, 59, 0, 75, 74, 111
6, 0, 0, 72, 0, 0, 0, 71, 74, 161, 3*0, 178, 0, 45, 47, 47, 2*0, 43, 45,
1 17, 18, 23, 17, 17, 72, 73, 72, 90, 68, 73, 0, 86, 85, 135, 0, 0
2, 0, 3*0, 84, 68, 169, 3*0, 188, 5*0, 76, 0, 23, 29, 29, 36, 22, 28, 76,
3 81, 80, 106, 76, 83, 0, 93, 92, 147, 0, 0, 86, 3*0, 92, 98, 172, 3*0,
4 194, 4*0, 88, 0, 0, 17, 18, 18, 18, 17, 17, 72, 73, 72, 88, 68, 73, 0, 86, 74,
5 129, 0, 0, 83, 3*0, 84, 68, 1*7, 3*0, 188, 0, 59, 60, 59, 70, 56, 59/
C
DATA MERGE/17*0, 2, 0, 2, 0, 0, 4, 0, 5, 0, 6, 15*0, 2, 4*0
1, 3, 0, 0, 2, 0, 0, 6, 29*0, 2, 0, 3, 5*0, 2, 0, 6, 29*0, 4, 0, 2
2, 0, 0, 2, 4*0, 4, 0, 6, 15*0, 5, 0, 2, 0, 0, 4, 0, 0, 6, 15*0, 6, 0
3 ,6, 0, 0, 6, 0, 6, 0, 0,
C
C SCHEDULE THE AIRCRAFT, TAKING INTO ACCOUNT THE SEPARATION

C MINIMA AND ROUTE MERGER POINTS

C
IF(MXPERM LT 0)RETURN
I3=ORDROW(10)
ASSYGN(I3)=ASNTYM(I3)
IF(ORDER(I3), EQ.1)GOTO 16
I=ORDER(10)-1
IT=ROW(I)
J=ENTRWS(IT)
16 'MT=MXPERM+1
DO 12 JJ=1, MMT
IF(JJ EQ.1)I=10
IF(JJ .NE. 1)I=JJ-1
J1=ORDROW(I)
J2=ORDROW(JJ)
I1=ROUTE(J1)
I2=ROUTE(J2)
K1=ACTYPE(J1)
K2=ACTYPE(J2)
SEP=2
IF(IPACTV(J1), EQ.1)SEP=4
IF(IPACTV(J1), EQ.3)SEP=3
M2=NOMTYM(J2)
M3=ASSYGN(J1)+TYTOGO(K2,1,SEP)*4
M1=MAX0(M2,M3)
IF(I1 EQ.I2)GOTO 20
IT=MERGE(I1, I2)
T1=TYTOGO(K1, IT, 1)*4
T2=TYTOGO(K2, IT, 1)*4
IF(T2 GE T1)GOTO 15
20 ASSYGN(J2)=M1
GOTO 12
15 T3=TYTOGO(K2, IT, SEP)*4
U2=UNITFL(J2)
M2=LENGTH(U2)*4-T2
M4=ENTTYM(J2)+M2
M5=ASSYGN(J1)-T1
M6=M5+T3-T2
M7=MAX0(M4, M6)
ASSYGN(J2)=MAX0(M1, M7+T2)
12 CONTINUE
SUBROUTINE COMPAR

C IMPLICIT INTEGER(A-Z)

C COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTT(30), BSTOFF
1 MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDROW(10)
2 MORE, NXTROW, LNDCLS(30), PERM(9), ASNNUM(30), NOPERM
3 FSTMOR, AMOUNT(9), SWITCH, BSTSW1, BSTOPD(10), TIE, OFFRT, PRIORT
4 ASSYGN(30), NOMTYM(30), ASNTYM(30), INF2AS, BSTASN(10)
5 FRSTPE, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6 MXPFAC, ENTTYM(30)

C COMMON/UPDB1/UNITFL(30), AC TYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTNUM, LSTARR(14),
2 NXTYP, NXTIPA, NXTRUT, TYTOGO(6, 6, 4)

C IF(MXPERM .EQ. -1) RETURN
IF(MXPERM .LE. 1) GOTO 33
NMTEST=NMTEST+1
IF(NMTEST .EQ. 1) GOTO 63
IF(ASSYGN(FIN;L).GT.BSTASN(MXPERM+1)) GOTO 13

63 DELAY=0
SWITCH=0
IT=M XPERM+1
DO 23 I=1, IT
SWITCH=SWITCH+IABS(ORDER(I)+(FRSTNU(FIN) MXPERM-1+1))
TT=M A X(0, ASSYGN(ORDROW(I))-NOMTYM(ORDROW(I)))
DELAY=DELAY+TT

23 CONTINUE
IF(NMTEST .EQ. 1) GOTO 33
IF(ASSYGN(FIN) LT BSTASN(MXPERM+1)) GOTO 33
IF(DELAY GT BSTDEL) GOTO 13
IF(DELAY LT BSTDEL) GOTO 33
IF(SWITCH .GT. BSTSWI) GOTO 13
IF(SWITCH .LT. BSTSWI) GOTO 33

53 TIE=TIE+1
GOTO 13

33 TIE=0
BSTDEL=DELAY
BSTSWI=SWITCH
BSTASN(10)=ASSYGN(ORDROW(10))
BSTASN(MXPERM+1)=ASSYGN(FINAL)
BSTORD(MXPERM+1)=ORDROW(MXPERM+1)
IF(MXPERM.LT.1)RETURN
DO 43 I=1,MXPERM
BSTORD(I)=ORDROW(I)
BSTASN(I)=ASSYGN(ORDROW(I))
43 CONTINUE
13 CONTINUE
11 CONTINUE
RETURN
END
SUBROUTINE MKEFNL
C
IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, IHOUR, MNSEC, NACTV, IQACTV(30),
1 IX(30), IY(30), IALT(30), I:SD(30), IPACTV(30), KODERT(30),
1 N4321, IFLASH(30), ISPD(30), IMSG(30), IQACTV(30), NARV,
1 IQARY(10), ITPARV(10), IFFARV(10), ISTA(10), ITARV(10),
1 MSG1, MSG2, IKNT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK
C
COMMON/SETUP2/SUPREZ, BAKLOG
C
COMMON/HOLD1/NXTFN, MINTRP, HOLD(30), NXSTAR(30), FINASN(30)
1 , LSTREC(14), STOPAC(30), NEWOUT
C
COMMON/HOLD2/TYMFIN(30), TY2FIN(30), TY2FLY(30), DLTOGO(30)
C
COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTNUM, LSTARR(14),
2 NXTYP, NXTIPA, NXRUTY, TYTOGO(6, 6, 4)
C
COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNU(30), BSTOFF
1 , MXPERM, TOTLAC, ENTRFW(30), ENTRWS(30), ORDRW(10)
2 , MORE, NXTROW, LNDCLS(30), PERM(9), ASNNUM(30), NOPERM
3 , FSTMOD, AMOUNT(9), SWITCH, BSTSWI, BSTORD(10), TIE, OFFRT, PRIORT
4 , ASSYCN(30), NOMTYM(30), ASNTYM(30), INFEAS, BSTASN(10)
5 , FRSTP, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6 , MXPAC, ENTTYM(30)
C
COMMON/INFO/ACID(50), ALINE(5), SIZE(3)
C
DATA. NXTFN, MINTRP, FINASN, HOLD/1, 1424, 200*0/
C
C* DETERMINE IF ANY TENTATIVE ASSIGNMENTS CAN BE FINALIZED
C
IF(ENTNUM EQ 0)RETURN
DO 10 J=1, ENTNUM
I=ENTRWS(J)
IF(FINASN(I).NE.G)GOTO 10
U=UNITFL(I)
R=RECLOC(I)-UPDATE
T1=(LENGTH(U)-R+1)*4 'CHECK +1
IT=J+MPS+1
IF(IT.GT.ENTNUM)GOTO 15
JT=ENTRWF(IT)
IF(CLOCK+MINRP.GT.NQMTYM(JT))GOTO 16
15 CONTINUE
IF(T1.GT.900)GOTO 10
16 CONTINUE
FINASN(I)=1
TYMFIN(I)=CLOCK
TY2FIN(I)=CLOCK-ENTTYM(I)
TY2FLY(I)=ASNTYM(I)-CLOCK
DLTOGO(I)=ASNTYM(I)-CLOCK-T1
T2=DLTOGO(I)/(UPDATE*4)
NXSTAR(I)=CLOCK+T2*UPDATE*4
HOLD(I)=1
IF(DLTOGO(I).LE.0)HOLD(I)=0
DELAY=ASNTYM(I)-NQMTYM(I)
IF(SUPREZ.EQ.1)GOTO 10
I1=IPACTV(I)
DELABS=DELAY-DLTOGO(I)
PRINT 1000,ACID(I),FENNU(I),SIZE(I1),ROUTE(I),FRSTNU(I),
1 CLOCK,I,ASNTYM(I),DELAY,DELABS,DLTOGO(I)
1000 FORMAT('0 FINAL ASSIGNMENT FOR ',',A2,I2,A1,
1 ' (ROUTE =',I3,' FCFS =',I4,');'/
2 ' CLOCK =',I6,' POSITION =',I4,
3 ' SCHED =',I6,' DELAY(TOT) =',I6,' DELAY(ABS) =',
4 I6,' DELAY(TOTO) =',I6)
10 CONTINUE
RETURN
END
SUBROUTINE OUTR
C
IMPLICIT INTEGER(A-Z)
C
COMMON/SIGCOM/N1234, IHOUR, MNSEC, NACTV, IQACTV(30),
1 IX(30), IY(30), IALT(30), IHOD(30), IPACTV(30), KODERT(30),
1 N4321, IFLASH(30), ISPD(30), IMSG(30), IQACTV(30), NARY,
1 IQARV(10), ITPARV(10), IFFARV(10), ISTA(10), ITARV(10),
1 MSG1, MSG2, IKRT, IZERO, IXB, IYB, IXC, IYC, IFLSH, IDSPBC, IDUM(32)
C
COMMON/SETUP1/UPDATE, DELTA, ARRATE, CLOCK
C
COMMON/SETUP2/SUPREZ, BAKLOG
C
COMMON/HOLD2/TYMFN(30), TY2FIN(30), TY2FLY(30), DLTGO(30)
C
COMMON/DSPDAT/ACTIVE(30), ALFF(30), ILEAD(2, 30), LEADER(2, 3)
C
COMMON/UPDB1/UNITFL(30), ACTYPE(30), ROUTE(30), RECLOC(30),
1 LENGTH(85), NXTARR, RAN1, RAN2, ENTNUM, LSTARR(14),
2 NXTYP, NXTIPA, NXTRUT, TYTOGO(6, 6, 4)
C
COMMON/CPS/ORDER(10), FCFSNM(9), COUNT, FRSTNU(30), BSTOPF
1 , MXPERM, TOTLAC, ENTRWF(30), ENTRWS(30), ORDRW(10)
2 , MRRF, NXRROW, LDCLS(30), PERM(9), ASNNUM(30), NOPERM
3 , FSTR, OR, AMOUNT(9), SWITCH, BSTR, BSTOPG(10), TIE, OFFRUT, PRICRT
4 , ASSYN(30), NMTYM(30), ASNTYM(30), INFES, BSTRASN(10)
5 , FRSTPE, SEPMIN(3, 3), FINAL, FENTNU(30), LEADTM, MPS, NMTEST
6 , MXPAC, ENTYM(30)
C
COMMON/INFO/ACID(50), ALINE(5), SIZE(3)
C
COMMON/HOLD1/NXTFLN, MINTRP, HOLD(30), NxSTAR(30), FINASN(30)
1 , LSTREC(14), STOPAC(30), NEWOUT
C
REAL X1, X2, X3
C
IF(SUPREZ EQ. 1)GOTO 84
IF(NEWOUT NE. 1)GOTO 84
C* PRINT THE NEW ARRIVAL INFORMATION (IF DESIRED)
C
IT=ROW(ENTNUM)
I1=IPACTV(IT)
PRINT 1009, ENTYM(IT)
1009 FORMAT('NEW ARRIVAL AT', I6, '--')
PRINT 1010, ACID(IT), FENTNU(IT), SIZE(I1), ROUTE(IT),
1 FRSTNU(IT), NOMTYM(IT)
1010 FORMAT('ID =', A2, I2, A1, ' ROUTE =', I3, ' FCFS =',
1 I4, ' NOMARR =', I6/
HEAD=1
DO 83 I=1, ENNUM
J=ENTRWS(I)
IF(FINASN(J).EQ.1: GOTO 83
IF(HEAD.EQ.0) GOTO 443
HEAD=0
PRINT 100B
100B FORMAT('0', 10X, 'TENTATIVE AIRCRAFT ASSIGNMENTS'// 'LAND
FCFS '
1 ' ID NOMARR SCHED DELAY'/)
443 DELAY=ASNTYM(J)-NOMTYM(J)
J1=IPACTV(J)
PRINT 453, I, FRSTNU(J), ACID(J), FENTNU(J), SIZE(J1),
1 NOMTYM(J), ASNTYM(J), DELAY
453 FORMAT(2X, I3, 3X, I3, 5X, A2, I2, A1, 3(3X, I6))
83 CONTINUE
NEWJ1=0
84 CONTINUE
IF(ENTNUM.LT.30) RETURN
IT=ENTRWS(30)
C
C* CHECK FOR THE END OF THE RUN
C
IF(CLOCK.LT. ASYGN(IT)) RETURN
DELTA=-9999
C
C* PRINT OUT FINAL STATISTICS
C
IF(SUPREZ.EQ.1)GOTO 85
PRINT 1001
1001 FORMAT('1 LAND ENT FCFS ID ROUTE ENTER',
1 ' NOMARR SCHED DELAY TYTGO',
2 ' DELABS DEL2GO/')
GOTO 86
85 PRINT 1011
1011 FORMAT('0 LAND ENT FCFS ID ROUTE ENTER',
1 ' NOMARR SCHED DELAY TYTGO',
2 ' DELABS DEL2GO/')
86 CONTINUE
T=0
DO 100 J=1,30
IT=ENTRWS(J)
DELAY=ASNTYM(IT)-NOMTYM(IT)
T=T+DELAY
I1=IPACTIV(IT)
MM=DLTGO(IT)
MN=DELAY-MM
PRINT 1000, J, FENTNU(IT), FRSTNU(IT), ACID(IT), FENTNU(IT), SIZE(I1),
1 ROUTE(IT), ENYYM(IT), NMTY(IT), ASNTYM(IT), DEL.Y,
2 TY2FLY(IT), MN, MM
1000 FORMAT(2X, I3, 5X, I3, 5X, I3, 6X, A2, J2, A1, 5X, I2, 2), 7(I6, 3X))
 IF(J. NE. 30) GOTO 100
PRINT 1002, T
1002 FORMAT(' TOTAL DELAY = ', I7)
X1=ENTY(30)-UPDATE*4
X2=108000./X1
PRINT 1006
1006 FORMAT('
PRINT 1003, MPS
1003 FORMAT(' MAXIMUM NUMBER OF POSITION SHIFTS = ',', I3)
PRINT 1004, X2
1004 FORMAT(' EFFECTIVE ARRIVAL RATE INTO THE TERMINAL AREA = ',
1 F7.2, ' PER HOUR')
X3=T/30
PRINT 1005, X3
1005 FORMAT(' AVERAGE DELAY PER AIRCRAFT = ', F7.2, ' SECONDS')
100 CONTINUE