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Abstract Smn one-dimensional Green's function
A previously reported closed form solution is h radial variable in cylindrical
expanded to determine effects of isentropic mean coordinate system

flow on mode propagation in a slowly converging-

diverging duct - a circular cosh duct. On the I acoustic power flux
assumption of uniform steady fluid density, the
mean flow increases the power transmission coeffi- Im Bessel function of order m
cient. The increase is directly related to the
increase of the cutoff ratio at the auct throat. K total acoustic power across duct
With the negligible transverse gradients of the
steady fluid variables, the conversion from one k free space wave number w/cgq
mode to another is negligible, and the power
transmission coefficient remains unchanged with k_ or k&ﬁ) propagation constant of a mode or
the mean flow direction reversed. With a proper (m,n) mode in inlet
choice of frequency parameter, many different
modes can be made subject to a single value of the k+,k$ﬁ) propagation constant of a mode or
power transmission loss. The paper also describes (m,n) mode in exit
a systematic method to include the effects of the
gradients of the steady fluia variables. Lp,Lg,Lx,LS linerar operations
Nomenclature M(x) Mach number of mean flow of con-
= stant steady density fluid
A(x),A(x) functions, Egs. (61), (83)
Mo Mach number at duct throat
a effective length of converging-
diverging section M_ Mach number of uniform flow in
inlet
Bn(x),Bo(x) functions determining duct shape
with or without mean flow, M+ Mach number of uniform flow in exit
Eqs. (45), (48)
m,m' circumferential mode numbers
b(x) duct radius varying along duct
n,n' radial mode numbers
bg duct radius at throat (x = 0) =
n unit vector normal to surface
b_ radius of left hand side uniform
duct (inlet) P steady pressure in flow
b+ radius of right hand side uniform Pc steady pressure in flow of constant
duct (exit) density
c constant souna speed in isochoric Ps deviation P - P¢
flow
p acoustic pressure
Co sound speed in still fluid
Qmn normalized Bessel function corre-
D1,02,D,, constants sponding to (m,n) mode, Eq. (72)
U>’DY‘9Dt
q parameter, Eq. (56)
E hypergeometric function
R acoustic power reflection
G Green's function coefficient
_— R(x) or R(r) axial wave function, Egs. (30),
tPartially based on Consulting Reports to (40), (41)
Pratt & Whitney Aircraft (Oct. 30, 1974
and May 20, 1975). r radial variable in local spherical
*Aerospace Engineer; Member AIAA. coordinate system (dr = dx)

**Protessor of Physics and of Aeronautics
ana Astronautics. S(x,t) interaction term, Eq. (17)
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B(x)
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temporal Fourier transform of
S(x,t)

acoustic power transmission
coefficient

time

acoustic power transmission loss,
Eq. (118)

steady velocity of isentropic flow

steady velocity of constant density
fluia flow

dgeviation U - ﬁ;

acoustic velocity field

a constant, Eq. (57)

a parameter, Eqs. (45) and (46)
w with M=0

see Eqs. (105) to (109)

axial coordinate

three dimensional coordinates

dimensionless axial coordinate,
Eq. (55)

eigenvalue corresponding to a auct
mode or (m,n) mode

b(x)/bg

b+/bg

Gamma function
specific heat ratio

mode cut-off ratio at auct throat,
Eq. (120)

mode cut-off ratio at inlet,
Eq. (119)

Dirac delta function
Kronecher's delta
a parameter, 1 for M = 0, Eq. (45)

a frequency parameter, Eqs. (53)
and (122)

normalized coordinate variable,
Eq. (32)

polar angle in local spherical
coordinate system

half cone angle of duct segment,
Fige: 1

a parameter, Eq. (47)

frequency parameter, kbg/a

[ S]

2 see Eq. (12)
P acoustic perturbation of density
0p spatially varying steady density
pC constant steady density
ps deviation pg - pc
o a parameter, Eq. (66)
T i b+/b_
#(X) a Fourier transform of acoustic
velocity potential
¢ azimuthal angle variable
X see Eq. (13)
(Xt acoustic velocity potential
v axial wave function, Eq. (41)
w angular frequency
Introduction

In a previously reported investigation of
mode propagation in a nonuniform duct,1 a closed
form solution was obtained for a particular class
of converging-diverging ducts — circular cosh
ducts. These ducts are composed of two asymp-
totically uniform ducts which are smoothly coupled
through a converging-diverging section. The two
uniform duct elements can differ from each other
in cross sectional area. The duct shape can be
adjusted by means of three acuct parameters to
produce a variety of circular ducts of practical
interest. The analysis, which was previously
developed for the case of no mean flow, is here
expanded to include mean flow effects.

The mean flow under consideration is sub-
sonic, and is assumed to be isentropic. Viscous
effects are excluded from discussion. Numerical
results will be presented only for cases of low
Mach numbers, for which the steady density and
pressure hardly vary from one location to another
in the duct. However a systematic method is pre-~
sented to treat finite deviations of the steady
fluia variables from the flow of constant density.

Wave Equation

As customary, the fluid variables are first
decomposed into steady and fluctuating parts. The
steady part will be further decomposed to treat
its spatial variation. The steaay density, pres~
sure and flow velocity are denoted respectively
by pg, P and U; and the fluctuations by o,

p ana u. Retaining only the first order terms
of the fluctuations, one obtains from the con-
tinuity equation

at 0 o

0

(L+n.s)p+ype-a+:£ep «T+ (¥ +0)p =0.




And from the Euler's equation

2\ > e e 1 » P
(%T'+ 0 - v)u + (U - V)U + ;; Wp - -1—5 p=0.

(2)

Here y 1is the specific heat ratio of the fluid,
and we have used the adiabatic relation between
density ana pressure

[
s Pl (3)

Also used are the zeroth order relations

¥+ (o 0) = 0, (4)

pO(U <90+ =0 (5)

The steady variables are, in general, func-
tions of spatial coorainates in a nonuniform duct
with mean flow. The functions may be compli-
cated. However, in a subsonic flow, the major
portion of the steady variables may assume simple
coordinate dependence, and the deviations from the
simple dependence can be small. We now decompose
the steady variables further as follows:

00 = Dc * 061 (6)
P =P *P,, (7)
0= Uc + Ué. (8)

Here pc, Pc and Uc are a new set of

steady variables which are simple functions of
spatial coordinates, and pg, Pg and 55

are the deviations. In the present analysis,
pc and P are chosen to be constant and set
equal to the steady density and pressure in the
left side uniform ouct element (x < 0, or the
inlet). The variable U. is the velocity of
the constant density flow, and therefore, it is
subject to the isochoric flow condition

On inserting Eqs. (6) to (8) into Egs. (1)
ana (2), one obtains

(—ZT+UC~3)p+YPCV-G+c=o, (10)

(3 0, -$>G+(ﬁ°$)Uc+i—c$p+$x=O, (11)

(12)

B P P
x=ﬁ6°u——;(1—p—6>p+09§p). (13)
(o]

=3

With the potential flow condition v x U, one sets

U= V¥(x,t), (14)
where ¥ 1is the acoustic velocity potential.
With the substitution of this equation, Egs. (10)
and (11) are combined to yield the equation

2

2 L ¥ ~ o
”_?(a_twc v)v:S(x,t) (15)
where
P
2 EZE : Cg _ 1_%_1 Ug(x =) (16)
i} 3 . £
s-f {0 - 9e- i) 2}

Equation (15) is, strictly speaking, a homogeneous
equation for the acoustic field. It is, however,
convenient to treat it as an inhomogeneous wave
equation with the interaction term S. With

S = 0, Eq. (15) is the homogeneous wave equation
in a mean flow of constant density and pressure.
The term S represents the interaction between
the acoustic field and the mean flow field due to
the spatial variations pg, Pg and Ug of

the latter. Since no acoustic energy is created
or annihilated, the interaction accounts for the
elastic scattering of sound by the spatial non-
uniformity of the steady fluid variables.

Equation (15) is linear for the acoustic
field. Thus the temporal Fourier transform yields
Pok) + Ly (w+ il « % o(3) =5, (F)  (18)
'(-:-2-m c v OX—wx

Here

dts (19)

5,00 = 5 {t e s L @) o
(o

with
x (%) = — x(%,t) et at, (21)
|/ 2'"
gl fonarid £(%,t) et gt. (22)



Homogeneous Solutions

We consider solutions to Eg. (18) first with
the interaction term neglected. The wave equation
is then

2

v e +1—2(m+'iﬁc'$)2
(o

’ o =0 (23)

where the subscript H has been used to indicate
the homogeneous solutions. The homogeneous solu-
tions serve two purposes: First, with boundary
conditions properly satisfied, they describe mode
propagation in the duct with mean flow of uniform
density, which can be adgquate]y described by the
variables ope, Pc and Uc. It is likely

that potential flow solutions will be close to
these variables for low Mach numbers. Secondly,
the homogeneous solutions can be usea as basis
functions to construct the Green's function. With
the help of the latter, Eq. (18) can be system-
atically solved by means of the iteration-
perturbation method for cases when the deviations
of steady fluid variables are finite but small.?

Let us consider Eq. (23) in a circular duct
which is specified in terms of the radius b(x),
x being the axial coordinate variable. As in
Ref. 1, we consider first a small duct segment and
the local spherical coordinates (r,8,¢) as
illustrated in Fig. 1. The azimuth ¢, the
angle variable around the auct axis, is not shown
in the figure. The duct segment is so short that
it may be regarded locally conical. Thus the
slope, b = ab/dx, of the duct wall remains con-
stant within the segment. The origin of the local
spherical coordinate system is located at a point
on the duct axis such that the coordinate surface
8 = 8o (cone) tangentially contacts the duct
wall in the segment. The half cone angle 8,
is relatea to the wall slobe b' as

b' = tan 8, (24)

With the spherical coordinates, the isochoric flow
velocity is chosen as

t =7

£ (25)

| )
~l

where @ 1is a constant with the sign being
opposite for converging and diverging sections,
and 7 1is the radial unit vector. Equation (23)
can then be written for the spherical coordinates
as

1 R 1 3 ; 3
] e e e T e
r? ar © ar  Sin @ a8 o " %38

2 . 2

1543 1 ( i 3 )

iy & By Aepile + Spea] 4 =0 (26)
sin & 3¢ } P ¢ r2 g :

This equation can be separated into three ordinary
differential equations. With the substitution

9,(X) = R(r) 3(e) H(s) (27)

one obtains, from Eg. (26)

2
¢ .
2 2
1 d 3 dJ a m
—~— —— sin 6 + -—|J=0, (29)
sin e do de (sinze0 sin e)

2 2
2y d°R f2li e me) ARl dR
‘I-M)d—r?*[—r—~2‘k“]ar

+k2-—‘3—2R—0 (30)
r sin eo Tk

where m and o are the separation constants, and

H=ge'M (31)
with m being an integer. As for Eq. (29), it is
convenient to introcduce the normalized coordinate
variable n, defined as

_sin 8

SRS TG 30 % £0
[0}
(32)
= % for eo = 0.

vhere h dis the radial variable in the cylindri-
cal coordinate system. The value of n varies
from 0 to 1 in the duct. On the duct axis, n = 0;
and on the duct wall, n = 1. Equation (30) is
written in terms of =n as

2
i 2\ d°J il 252 2\ dJ
(1 - sin"6n ) E;? + = (1 ~ 2 sin 8,0 ) s

2
. (02_%)\3: 0. (33)

n

For a duct of slowly varying cross section

(Ib*'] << 1), sin 8g = b'. Neglecting terms
involving (b')2 and higher orders, one can write
Eq. (33) as

2 2
+%§%*(u2—22-)d=0. (34)

d

: |2

n n

This is the Bessel equation of order m, and the
physically acceptable solution is

Jd Jm(un) (35)

where Jp is the Bessel function of order m.
From the boundary condition of the hard duct wall,
one determines values of o as follows:




(i = 0k I Tel MREEE (36)

where apnp s the n-th zero of ddg(x)/dx.

Some remarks should be made on the coordinate
variable n. Unlike the variable 6, n 1is not
a local coordinate variable, but it is valid
through the entire duct. To see this, let us con-
sider two small duct segments 1 and 2, respective-
ly at x = x3 and x2. The half cone angles
of the respective segments are denoted by
60,1 and 60, 2. Assume '8g 1 > 6Q 7.
The variable "6 varies from 0 to g 1 in seg-
ment 1, and from 0 to g p in segment 2. A
value of & greater than' 6g  and less
than g 1, represents a coordinate surface in
segment i, but not in segment 2. Furthermore, two
coordinate surfaces represented by a value of
8 less than 60,25 respectively in the two
duct segments are not, in general, equivalent to
each other. On the other hand, n varies from 0
to 1 for all the duct segments. The locations re-
presented by a value of n are in one-to-one
correspondence for two different duct segments.
A coordinate surface is uniquely determined as the
locus of n = nj, n] being a constant, and
the coordinate surface spans all the duct seg-
ments, A coordinate surface with a value of g
does not intersect with any other coordinate
surface with a different value of n. The duct
wall is a coordinate surface corresponding to
n=1. We also note, from Egs. (35) and (36),
that an eigenfunction assumes the same value on a
coordinate surface n = n]. A mode is in one-
to-one correspondence with an eigenfunction. Thus,
with the use of the variable n, & mode is defined
in a nonuniform circular duct with isochoric flow
if |b'] remains small (Fig. 2).

Equation (30) governs the propagation of a
mode along the duct. The equation is first trans-
formed from the local coordinate r to the duct
coordinate x. To this end we use the relations

sin B, = b' (37)
Rkl (38)
0 &

These relations are valid for all the duct seg-
ments and the error is of order (b')2. In order
to avoid misunderstandings, a remark should be
made on Eq. (39): Eq. (30) governs the wave along
a line that is the intersection of coordinate sur-
faces ¢ = constant and n = constant (not

6 = constant). On this Tine, dr = dx Vi+ b'2,

and Eq. (39) follows. One should not attempt to
derive a similar relation by regarding r as a
function of h as well as x. Such a derivation
might lead one to an incorrect conclusion, and the
error would appear to be of order b' instead of
(b')2. Note that the origin of the local coor-
dinate system chanages with x. It cannot be over-
emphasized that R (as given in Eq. (30)) deals
with the wave field vaeriation along a line which
is the intersection of coordinate surfaces

¢ = constant and n = constant. Finally, the

use of the relations (37), (38), and (39) is very
unlikely to lead one to any asymptotic paradox.

N

Using Egs. (37) to (39), one can write Eq.
(30) as

2
2, d 2b" 2 oreag
(1_M)_dxg+[_b (1+M)+21kM] T

2 0.2
e B?- R = 0. (40)

Here we have used

M
M(x) = —?9-—
B8 (x)
8(x) = béx)
0

where bg and My are the duct radius and

the Mach number at the duct throat. For a given
B(x), M(x) is determined once Mgy is known.
Thus, for a given duct shape, My is sufficient
to specify M(x).

With the substitution

X
R(x) = ¥(x) expl-ik M{x) dxl,
b(x) V1 - M (x) Lo titx)
(41)
Equation (40) is transformed into
Syl ¥ - - Ll G
dx 1-#/) 1-M b2

where terms like b'Z and b" have been neglected.

Solutions in a Circular Cosh Duct

Equation (42) was solved exactly in a closed
form with a circular cosh duct when M = 0, in
Ref. 1. With M # 0, it is convenient to introduce
a function By(x) as follows:

2 2
1 R e MZ)’ (43)

B,(x) =
M 72
e g (1 - )

where v = kbg/a. Note that this function de-
pends on the Mach number and the frequency (v) as
well as the duct shape (8(x)). With the use of
Eq. (43), (42) is written as

2 2

d 2
—22+ k® - & By(x)| v = 0. (44)
ax b

0

The discussions thus far apply to any nonuniform
hardwall circular duct as long as b'2 and b"
are negligible.

To utilize the cosh duct solution, we set




BM(x) = BM(o) +w {coshzu sechz(ex/a - )

- sinh (2u) tanh (ex/a - u) - cosh (Zu)} . (45)

Here a is the effective length of the
converging-diverging section, ana w, u ana e
are parameters depending on M, v ana duct geo-
metry. The parameters w and u are determined
as

w= {8y00) - By(=)I0By(0) - B(-=IME (46)

1 By(0) - By(+=)
M= z‘ In m . (47)
M M

Involved in these equations are M, v and Bz

the radius ratios of the duct. For fixea values

of My and v, w and are.determl'ned from
the radius ratios B+, and vice versa. One

notices from Eq. (47) that u 1is equal to zero

for a symmetric duct (g+ = B_), regardless of
values of Mg and wv.

The parameter e s not given in a closed
form, but its value can be determined analyti-
cally. For fixed values of My ana v, the
duct ragius ratios B8x have been used for the
agetermination of w and u. The axial variation
of the radius in the converging-diverging section
will be used to adetermine e. If the value of e
were kept constant, the duct shape would depend
on M and v as can be readily seen from Egs.
(43) and (45). Thus, the value of e must be so
aetermined that the duct shape may remain un-
changea for different values of M and v. To
this end, at a properly chosen axial location in
the converging-diverging section, the duct radius
is required to be the same for all the allowed
values of Mg and v. We choose Mg = 0 as
the reference case. With My = 0, we set
e = 1, and obtain from Eq. (43)

B (x) = By(x) = 872(x), (48)

M=0

and from Eq. (45)

)

Bo(x) ] W {costho sechz(x/a =y

- sinh (2u0) tanh (x/a - uo) - cosh (ZuO)} (49)

where the subscript o indicates M = 0. Note
that Bg, wp and ug do not depend on v.

The axial location is chosen preferably in the
converging section, as x = -s. The duct radius
?t §hat location is determined from Eqs. (48) and
49):

g(-s) = { i+ w, coshzu0 sechz(s/a + uo)

sinh (2u) tanh (s/a - u ) - cosh (2“0)}1/2 (50)

With My # 0, Eq. (43) is written for x = -s as

; 1 _ 2 M=s)[2 - WE(=s)]

’-S =
n>) (1 - #2(-s)]8°(=s) (1 - M (-s)1°

(51)
and Eq. (45) is

Bh#—s) = By(0) *+ w {coshzu SeChZ(ES/a + q)

+ sinh (2u) tanh (es/a + p) - cosh (Zu)} (52)

The value of e 1is determined from Egs. (50) to
(52). There may exist more than one real solution
for ¢; the correct one shoula be determined from
physical considerations. A list of values of e
are given in Table 1, for various values of Mg
and ¢, where ¢ is a frequency parameter

defined as

1 / 2
Cie : MZ (kb0 -a 41 - Mo) (53)
$.A0

As the table shows, e

is close to unity in most

cases of interest. Also notice that e takes the
same value for all the modes at ¢ = 0. The
value of ¢ at ¢ = 0 are listed for various

values of My and 8- in Table 2.

We now return to Eq. (44).
(45) into Eq. (44) we obtain

On inserting Eq.

v [2_( 2 2
E:?-+ q vicosh™u sech®z
- sinh (2u) tanh z)] v=0 (54)
where
Z=c¢ex/a-u (55)

q2 - (ka/z)2 = (ua/sbo)2 [BM(o) - w cosh (2u)].
(56)

v = (ualebo)z W (57)

Equation (54) can be solved exactly.2 The gen-
eral solution is written as

v = Dywy(2) + Dyw,(2) (58)
Here D) and Dy are constants; and ¥
and yp are linearly independent solutions.
22 =1
""l = A(2)F 812895835 (2 %e57) ’ (59)
~ik,ale
v = A(2) (1 + e :




22 -1
F(cz-c3+1, B =ty l, 2= gy (1 2 L
(60)
where F s the hypergeometric function, and

i(k+-k_)za/2: ik, tk )al2e
A(z) = e (2 cosh z) i % (61)

' L2
ky = k 2[ _(I—ME)(k—;—)] " (62)
= +

b* = b(X = *‘”), M* = M(X = *w),

¢ = {1- ik, * K are g 01} [2 (63)
T, = {1 - illk, + k)ale - 0]} /2 (64)
ty = 1 - ik,ale (65)
o U o 1) o (66)

The constants Dj ana Dy are to be
determined from bounaary conditions at x = #w.
The asymptotic forms of the hypergeometric func-
tion are used to find

i) at x = t=

-ik,uale ik,x

\Dl =€ € 3 (67)
ik,uale —ik,x
Wz =€ e 3 (68)
ii) at x = -=

Mgg)rley + &, - £3) ik una/e*ik _x

p St 1%
r(z3)r(eg = & - &p) ik_uwafe-ik_x
p r(c3 - 53)1‘(c1 B cz) 5 ’ (69)
] R R
r(2 - g3)rley + 5, - z3)  -ik_wa/e*ik_x
Yo e, = ¢ ¥ 1)T(z) - ¢3 * 1) 2
r(2 - ¢3)r(e3 = &) = &5) Tk_wale-ik_x
3 e el *. o)

I'(l — Cl)r(l 5 ;2)

where T is the Gamma function.

Mode Propagation in Circular Cosh Ducts
With Low Mach Number Flow

As mentioned earlier, the deviations pg,
Ps and Us are negligible in cases of low
Mach numbers (M < 0.5). In these cases, the
solutions can be obtained as in Eq. (58), with the
boundary conditions to be satisfied. Note that
these solutions are the zeroth order solutions to
Eq. (18) and can be used to obtain more accurate
solutions.

Let us begin with the incident wave that is
composed of the (m,n) mode coming from x = —e:
In the incident side uniform duct (x << 0),

i an(") Sl :

b 1-M

X exp |:i<—kM_/(1 - Mg) + k’(n;))x], (71)

where
an(") = ‘]m("mn")/ Lan (72)
1 2 1/2
Lon = . Iplapan)n dn (73)
(%)
krnn = kg (74)
a = Gmn
Corresponaingly, we have
iké;)x
'J’I = e . (75)

With mode conversion neglected, the solution ¢
is given at X 2= %= 1in the form

o (=) (=)
: 1 N =ik “x
lle wix) =i T % Pale, WS (76)
(+)
g TR 4
10 w0 ™ (77)

The seconda term of Eq. (76) represents the re-
flected wave, and Eq. (77) the transmitted wave.
The constants in Eq. (58) are readily aetermined
by comparing the asymptotic expressions in Egs.
(67) to (70) with Egs. (76) and (77):

D, = 0 (78)

L Jenhete ety
F(¢3)F(C1 * Cz - 53)

1ERE (79)




The coefficients Dy and Dt are

ol eZiké;)ua/e r(cl)r(cz)r(z3 ~ B :2)
r = ey ¥ ¢, - e3)r(eg - g)t(eg - ),
(80)
(=) (+)
o e’(kmn —Kmn )“a/e r(z))r(z;) (81)

r(Cng(gl + C2 o ;3)

In Egs. (78) to (81) the parameters wu, e, ¢l
g2 and ¢3 contain the constant a: it

is to be replaced by the eigenvalue app. The
solution is

: -1/2
. img -1 2
o (AT BT L W)
X
x exp |ik M 5 dx]. (82)
1 -M
0
pt 22 -1
A(z) Tlz)s85,255 (1 +€°%)
where
& kM o
A(z) = D,A(z) expli — x + ik — dx
. ey 1o W
(83)

x_ being a large negative value of x. Recall
that n = h/b(x) and z = ex/a - u.

Green's Function and General Solutions

When the interaction term S, 1is finite
but small, Eq. (18) can be solved by means of the
iteration-perturbation method.3 To this end,
the equation is first replaced by the integral
equation

o(%) = o0 (%) +/e(;,§o)s (%,) %, (84)

Here G 1is the Green's function to be discussed,
and the function ¢ has been used for the
homogeneous solution, to let the solution satisfy
the boundary conditions.

The equation for the Green's function is

{v? + 17 (o, £l s %)2} 6(X,%,) = s(X - %) (85

c (o}

The solution can be obtained in terms of the homo-
geneous solutions with proper boundary conditions
as follows:

pes 1 im(¢-0,)
G(X,Xo) = E Z e

X Zj 0y (M0 ()G (X2%,) (86)

Here gyn 1is the one-dimensional Green's func-
tion. On inserting Eq. (86) into Eq. (85) and
using the orthogonality and the completeness of
the eigenfunctions, one obtains

2
2~ d 2b' 2 . d
(1-M)dx2*[T(1+M)-21kM]~&
u2 Y
+ {2 - ;gﬂ gmn(x,xo) =6s(x - xo). (87)

The homogeneous solution of this equation is none
other than R given in Eq. (41).

Consider the factor ¢ first. For a cir-
cular cosh duct, the homogeneous solutions
v1] and ¥ are given in Egs. (59) and (60).
The source term is non-zero only in the
converging-diverging section. Thus, the Green's
function is required to represent outgoing waves
in the uniform duct elements. Consider a new set
of homogeneous solutions ¢y and ¢ which
asymptotically behave as

s
v ) I3 e1km”)x, (e8)
i (=)
=ik
v (x) T2 HE (89)

Comparing these equations with Egs. (67) to (70),
one can readily find

'1'> = Wl, (90)

I‘(;3)I‘(;.2 = 53 % l)r(Cl o 53 g 1)
LRt (R T(e, JT(5,)T(2 = &5) ¥ae

(91)

Corresponding to these functions, the homogeneous
solutions to Eq. (87) are

i &
R, (x) bt (1 - M2) exp <—ia/ : T Z dX> v (x),

(92)
= A
R(x) = 672 (1 - ) exp (—ik/ e ax> v (x).
1-M
(93)




The one-dimensional Green's function is then ob-
tained as

R)(x) R((xo) font axae X0

1
an{*+%o) = 5 aTr,T
R((x) R>(Xo) fior X ¢ X0
(94)
where A 1is the Wronskian
'
R R
<
A = (95)
1
R R
>

The source S,, as given in Eq. (20) is a
linear function of acoustic field variables. The
latter are not known until the broblem is solved.
However, when the deviations, pg, Ps and
Us are small, the sourc ;S small. Thus, the
zeroth order solution ¢ can be used for
the acoustic field variables to com?ute S
The acoustic velocity is 6(0) = %6(0) and
the acoustic pressure is obtained from Egs. (10)
and (11) with & and x neglected.

where Lp is a linear operator defined as

4 [w, . E(L;-b“ﬂ-] i Ziz} o
It follows that

55,0) 3 Lc°(0)’ (98)

X£0) 3 LXQ,(O) (99)

Here Lg and L, are linear operators
containing the deviations of the mean fluid
variables:

£ 8 § p
2 2
a 2b' 3 3 %
Lopnlete vEm B 3 Lagp o F; (100)
6(b2 b ax ax?) 8

The source term is then

sio) a Lso(o) (102)

with the operator defined as

1 4 3 1
Ly =25 {(-1.,, U 37) L v LG}. (103)

(o}

On inserting Egs. (86) and (102) into Eq.
(84), one obtains

o(¥) = o0y + L

OIL PR B S

m'n'

where the incident wave is the (m,n) mode (see
Eq. (82)), and

X

mn;m'n'(x) i

1 27 1 —im'e
X Tﬂ 2 d¢o 3 nodno dXO e Omlnl(no)

ime
)

. (RO (x ). (105)

X G (XX

(o] mn

For an axisymmetric flow, Lg is_independ-
ent of ¢o thus one can readily obtain

m

an;m'n' 6mm' xnn' (106)
£ =/n dn/dXQ (ny)g. 4 (xs%])
nn' o 0 o “mn' Mo’ Zmptt %0

(0)
X Ls an(no)R (xo). (107)

Furthermore, if o5, Pg and Ug are in-
dependent of n and if #§ ¢ Ug = 0, one has
then -

m m

Xnn‘ e (Snnl Xnn(x), (108)

mo_ (0)

Xnn _v/-dx0 gmn(x,xo)LS R (xo). (109)

It follows that mode conversion, from one mode to
another, occurs only if the transversal gradients
of the steady fluid variables are nonnegligible.

Power Reflection and Transmission Coefficients

The acoustic power intensity in the isen-
tropic flow is given by?

2

T = <pl> + U<<p2>/ooc +0 - <pﬁ>/c)

+ oo<(U < U)ls, (110)




where < > stands for the time average. The
total power across the duct is obtained as

K=/T-ﬁdA (111)

where dA is the surface area element and n the
unit vector normal to the surface. In the uniform
duct element containing the axisymmetric mean
flow, we have

i ZWfIXh dh (112)

with the axial component Iy of the power
intensity given by

2 2 2 2.0
IX = <pu,> (I8 = M poU (<ux> Fhepi> poC>.

(113)

Let Ki, Kr and Kt denote the total

powers respectively of the incident, the reflected
and the transmittea wave. The power reflection
and reflection coefficients, R and T, are de-
fined as

R

Kp/Kys (114)

T = K /K. (115)
Using Eqs. (71), (81), (76) and (77), one can
obtain

cosh [n(k, - k_)a/e] * cosh (no)

= cosh [n(k, _ Kk _Jale] * cosh (mo) (116)

2 sinh (nk+a/e) « sinh (ﬂk_a/z)
= cosh [n(k, * k_Ja/e] * cosh (mna)

(117)

Note that R + T = 1. That is, the acoustic
energy is conserved as it shoula be in a linear
analysis of the acoustic field. The terms neg-
lected in the approximation woula not create or
annihilate the acoustic energy. They, if in-
cluded, might transfer the energy between modes or
between the reflected and the transmitted waves.
Also note that Egs. (116) and (117) are similar to
Eqs. (25) and (26) in Ref. 1. The mean flow
dependence is included only through the parame-
ters kx, ¢ and ¢. The latter are even
functions of M. Thus the power reflection and
transmission coefficients are ingependent of the
mean flow direction, the positive or the negative
x-direction.

Numerical results will be discussed in terms
of the acoustic power transmission loss (TL) in
the circular cosh ducts. The mean flow is isen-
tropic flow ana has a uniform steaay fluid den-
sity. As mentioned earlier, a uniform steaay
density is a good approximation for low Mach num-
ber flow in inlet ducts. Numerical calculation
includes the Mach numbers up to the value of 0.5
at the duct throat.

The TL is defined as

=Tk = =10 10910(T) (118)
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For the present calculation, Eq. (117) is used

for T. The TL is plotted as a function of the
throat Mach number My or of the frequency
parameter y_ or ¢. The parameter y_ is

the mode cut-off ratio referenced to the left hand
side uniform duct element, and is referred to as
the inlet cut-off ratio:

v=kb_fap1 - (119)

The inlet cut-off ratio is a convenient parameter
characterizing the modes contained in the incident
wave. The sound generated in a fan duct often
comprises many different modes. In such case, the
mode distribution can be obtained as a function of
the cut-off ratio. Another cut-off ratio useful
for discussion is that referenced to the duct
throat, given by

%y = kbo/x yl = Moz. (119)

If yo > 1, the mode is cut-on through the en-
tire duct. On the other hand, if yg < 1, the
mode that is cut-on initially (y_ > 1), is cut-
off in the converging-diveraing section. Except
for low frequencies (kby < 3), the TL 1is ap-
proximately 3 dB for yg5 = 1, independent of the
duct geometry or the Mach number. The two cut-off
ratios are related to each other as

v o) (- ST o

The parameter ¢ is defined in Eq. (53), and
can be written as

kb
o °2< _1_>. (122)
1 - M Yo

This parameter collapses the TL curves for many
different modes.

In Fig. 3,.the" Tk divided by, kb_  is
plotted as a function of y_ for the various
values of My between 0 and 0.5, and for
g_ = 1.1 or 1.3. .The other duct parameters are
a/bo =1, ¢ =1. On the top of the figure are
shown the arrow marks, each pointing to a value
of y_ which corresponds to yg = 1 with the
given value of Mgy (cf. Eq. (121). The (8,5)
mode has been used for the calculation. However,
except in the vicinity of yg = 1, the results
may be used for modes with eigenvalue from 8 to
25, within an error of 1 dB. As expected, the
TL decreases with the increasing value of «vy_
(see Ref, 1). The decreasing rate of the TL is
faster for larger Mach number. For a fixed value
of y_, the TL 1is smaller for larger Mach num-
ber. Sinee, TL/kb., is plotted in Figs 4, TL
itself is proportional to kb_ for a fixed
value of y_. It follows that, for a mode dis-—
tribution given as a function of the inlet cut-off
ratio, the converging-diverging auct contour re-
duces the transmitted sound more effectively for
cases when the distribution comprises modes of the
larger eigenvalues.




In Fig. 4, the TL/kb_ is plotted as a
function of My, for fixed values of y_. As
My increases, the TL decreases very slowly in
the beginning (Mg = 0), and then decreases at a
gradually increasing rate until My reaches a
value for which yg = 1. This mean flow depend-
ence of the TL s directly related to the change
of the cut-off ratio at the throat. As one can
notice from Eq. (112), yo increases with in-
creasing My for y_ held constant.

In Fig. 5, the TL -is plotted as a function
of ¢. Each curve, for a value of My, in-
cludes many modes with eigenvalues greater than
5. The TL increases with increasing ¢, and
becomes approximately 3 dB at ¢ = 0 independ-
ent of the Mach number and the duct parameters.
The advantage of this presentation is that almost
all the modes are subject to the same TL for a
given value of ¢. The mean flow dependence of
the TL in this figure appears misleading. How-
ever, note that, with My increasea, yg in-
creases and kbg should be decreasea to keep
¢ unchanged (see Eq. (122)).

Concluding Remarks

In an attempt to improve the understanding of
the acoustic characteristics of a fan duct system,
moage propagation has been investigatea in a par-
ticular class of converging-diverging circular
ducts - circular cosh ducts, with isentropic and
inviscid mean flow. The auct shape can be ad-
justed by means of three duct parameters, and
covers a wide range of coverging-diverging ducts
of practical interest.

On the assumption that the auct cross section
area varies slowly, an approximate wave equation
has been derived. The equation is divided into
two parts: (1) the homogeneous wave equation
involving the mean flow of uniform steady density
fluid, and (2) the interaction between the acous-
tic field and the deviation of the steady fluia
variables from the constant steaay density fluid
flow. The homogeneous equation is solved in a
closed form, and the interaction term is treated
by means of an iteration-perturbation method. The
solution of the homogeneous equation is regarded a
good approximation in cases of low Mach number
mean flow.

With the interaction neglected, a mode is
preserved, and the acoustic power transmission
coefficient increases with the mean flow in-
crease. This mean flow effect is directly related
to the change of the cut-off ratios: With the
increasing mean flow, the cut-off ratio at the
duct throat increases faster than at the uniform
duct sections (inlet and exit). For given duct
geometry and mean flow, the TL of many different
modes can be made to collapse onto a single curve
with a proper choice of frequency parameter ().
The mean flow effects remain unchanged with the
flow reversed. The interaction term needs numeri-
cal computations for its agetailed discussions.
However, the formal solution shows that a mode may
be converted to others only if the transverse
gradients of the steady fluid variables are not
negligible.
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TABLE 1. - VALUE OF e

B_ | Mp | Eigenvalue z
-0.4 -0.2 0 0.2
0.2 4,20 1.0020 |1.0014 | 1.0007
8.54 1.0020 | 1.0017 1.0010
16.53 1.0017 | 1.0015 1.0012
23.27 1.0016 | 1.0015 1.0012
1.1
0.4 4.20 0.9920 | 0.9845
8.54 0.9980 | 0.9952 .9886
16.53 -9958 1= J9937 1 .9903
231,27 .9944 | .9932 .9908
0.2 4.20 1.0039 | 1.0026 |1.0012 | 0.9997
8.54 1.0025 | 1.0019 1.0004
16.53 1.0019 | 1.0015 1.0008
23.27 1.0017 | 1.0014 1.0009
Jeed
0.4 4.20 1.0041 | 0.9948 | 0.9839 | 0.9710
8.54 .9946 [ .9895 .9778
16.53 .9897 | .9868 .9808
23.27 .9880 [ .9860 .9817

TABLE 2. - VALUE OF ¢ AT ¢ =0

Mo B_
1.1 117 1.3 1.4 1.5
0.1 1.0004 |1.0006 |1.0005 |1.0004 |1.0002
.2|1.0014 | 1.0015 |1.0012 | 1.0005 | .9998
.3|1.0008 {1.0001 | .9987 | .9971 | .9954
4] .9920 | .9875 | .9837 | .9806 " .9776
5] .9438 | .9316 | .9271 | .9244 | .9223
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DUCT SEGMENT ~

Figure 1. - Duct segment and local spherical coordinate system.

"X =0 ;

Figure 2. - Coordinate surfaces (n = 0.345, 0.719, 1) and trans-

versal shape of (1, 1) mode at various axial locations,

S 4320

Mo

"

LI 12 1.5 L3
kbla 1-Mm2

Figure 3. - Power transmission loss (TL) of (8.5) mode, divided by kb_,
versus inlet cutoff ratio (y_).



TL(dB kb

kb_laV1- M2 - 1.06
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Figure 4. - Power transmission loss (TL) of (8.5)
mode, divided by kb_, versus Mach number at
throat (M,).

TL(dB)

TL(dB)

Figure 5. - Power transmission loss (TL) versus

C. Each curve representing modes with eigen-

value greater than 3.
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