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Abst r act 

A previously reported closed form solution is 
expanded to aetermine effects of isentropic mean 
flow on mode propagation in a s low ly converging­
diverging duct - a circular cosh auct . On the 
assumption of uniform steady fluid density , the 
mean flow increases the power transmission coeffi­
cient. The increase i s directly related to the 
i ncrease of the cutoff ratio at the ouct throat . 
With the neg lig ible trans verse grad i ents of the 
steady fluid variables , the conversion from one 
maoe ta anather is negligible, and the power 
transmission coefficient remains unchanged with 
the mean flow ai rection reversed. With a proper 
choice of frequency parameter , many different 
modes can be made subject to a single value of the 
power transmission loss. The paper also describes 
a systematic method to incluoe the effects of the 
gradients of the steaay fluio variables . 
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sponding to (m , n) mode , Eq. (72) 

parameter, Eq. (56) 

acoustic power reflection 
coefficient 

axial wave function, Eqs. (30), 
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acoustic power transmiss ion loss, 
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specific heat ratio 

mode cut-off r atio at ouct throat , 
Eq . (120) 
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Kronecher's delta 

a parameter, 1 for ~I = 0, Eq . (45) 

a frequency parameter, Eqs. (53) 
and (122) 

normalized coordinate variable, 
Eq . (32) 
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Fig. 1 
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acoustic perturbation of density 
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a parameter, Eq. (66) 
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a Fourier transform of acoustic 
velocity potential 

azimuthal angle variable 

see Eq. (13) 

acoustic velocity potential 

axial wave function, Eq . (41) 

angular frequency 

Introduction 

In a previously reported investigation of 
mode propagation in a nonuniform duct,1 a closed 
form solution was obtained for a particular class 
of converging- diverging ducts - circular cosh 
ducts . These ducts are composed of two asymp­
totlcally uniform ducts which are smoothly coupled 
through a converging-diverging section. The two 
uniform duct elements can differ from each other 
in cross sectional area . The ouct shape can be 
adjusted by means of three auct parameters to 
produce a variety of circular ducts of practical 
interest. The analysis, which was previously 
developed for the case of no mean flow, is here 
expanded to include mean flow effects. 

The mean flow under consideration is sub­
sonic, and is assumed to be isentropic. Viscous 
effects are exclUded from discussion . Numerical 
results will be presented only for cases of low 
Mach numbers, for which the steady density and 
pressure hardly vary from one locat ion to another 
in the duct . However a systematic method is pre­
sented to treat finite deviations of the steady 
fluid variables from the flow of constant density. 

Wave Equation 

As customary, the fluid variables are first 
decomposed into steady and fluctuating parts. The 
steady part will be further decomposed to treat 
its spatial variation. The steaoy density , pres­
sure ana flow velocity are denoted respectively 
by Po , P and U; and the fluctuations by p, 
P ana u. Retaining only the first order terms 
of the fluctuations , one obtains from the con­
tinuityequation 

(~ + 0 at 
-+) -+ • v p + yP v u + (9 • O)p O. 

(1) 

.. 



And from the Euler's equation 

"v)u" 1 vP 
( d

at 
+ 0 • V1u + (u • + - Vp - --P P 

) Po YP o 
O. 

(2) 

Here y is the specific heat ratio of the f l uid , 
and we have used the adiabatic re l at ion between 
density ana pressure 

(3) 

Also used are the zeroth order relations 

(4 ) 

P (0 • v)O + vP = 0 o (5 ) 

The steady variables are , in general , func­
tions of spatial cooroinates in a nonuniform duct 
with mean flow . The funct ions may be compl i­
cated. However, in a subsonic flow, the major 
portion of the steady variables may assume simple 
cooroinate dependence, ana the deviations f r om the 
simpl e depenoence can be small. We now decompose 
the steady variables further as follows: 

Po = Pc + Po' 

P = Pc + Po' 

n=n +0. c 0 

Here Pc , Pc and Dc are a new set of 
steady variables which are simple functions of 
spatial coordinates, and Po' Po and Uo 
are the deviations . In the present analysis , 
Pc and Pc are chasen to be constant and set 
equal to the steady density and pressure in the 
left side uniform ouct element (x < 0 , or the 
inl et). The variable Uc is the velocity of 
the constant density flow, and therefore, it is 
subject to the isochoric flow condition 

(6) 

(7) 

(8) 

~ . n = 0 (9) c 

On inserting Eqs. (6) to (8) into Eqs. (1) 
ana (2), one obta i ns 

e + ar nc • -V)p + yP c-V U + £; 0 , 

(" + ar °c • -V)U + (u . v)Oc + .L vp + 
Pc 

vx = 0, 

where 

+ • (pO) + yp
6
v • U + U vP 0' £; V 

0 

(10) 

(11) 

(12) 

3 

0 Po ( Po) o~~p) . (13) x = · u - -l - -p+ 
0 2 Pc 

Pc 

With the potential flow condition 
+ 
v x 

+ 
u, one sets 

(14) 

where , is the acoustic velocity potential. 
With the substitution of this equation, Eqs. (10) 
and (11) are combined to yield the equation 

(15) 

where 

(16 ) 

(17) 

Equation (15) is, strictly speaking , a homogeneous 
equation for the acoustic field. It is, however, 
convenient to treat it as an inhomogeneous wave 
equation with the in teraction term S. With. 
S = 0, Eq. (15) is the homogeneous wave equatlon 
in a mean fl ow of constant density and pressure. 
The term S represents the interaction between 
the acoustic field and the mean flow field due to 
the spatial variations Po' Po and Uo of 
the latter . Since no acoustic energy is created 
or annihilated, the interaction accounts for the 
elastic scattering of sound by the spatial non­
uniformity of the steady fluid variables. 

Equation (15) is linear for the acoustic 
field . Thus the temporal Fourier transform yields 

Here 

5 (x) = ~ {(- iw + Cc w c 
(20) 

with 

1 
=--

/

'" (+ ) iwt 
_'" x x,t edt, (21 ) 

~ (x) 1 1'" ~(x, t) e iwt dt. 
w = ~ _'" 

(22) 



Homogeneous Solutions 

We consider solutions to Eq. (18) first with 
the interaction term neglected . The wave equation 
is then 

(23) 

where the subscript H has been used to indicate 
the homogeneous solutions. The homogeneous solu­
tions serve two purposes: First, with boundary 
conditions properly satisfied , they describe mode 
propagation in the duct with mean flow of uniform 
density, which can be adequately described by the 
variables Pr., Pc and Uc. It i s likely 
that potential flow solutions will be close to 
these variables for low Mach numbers. Secondly , 
the homogeneous solutions can be useo as basis 
functions to construct the Green ' s function . With 
the help of the latter, Eq. (18) can be system­
atically so lved by means of the iteration­
perturbation method fOr cases when the de vi ations 
of steady fluid variables are finite but sma11 .2 

Let us consider Eq. (23) in a circular duct 
which i s specified in terms of the radius b(x), 
x being the axial coordinate variable . As in 
Ref . 1, we consider first a small duct segment and 
the local spherical coordinates (r,6,~) as 
illustrated in Fig . 1. The azimuth ~ ,the 
angle variable arouno the ouct axis , i s not shown 
in the figure. The duct segment is so short that 
it may be regarded locally conical. Thus the 
slope, b = ob/dx, of the duct wall remains con­
stant within the segment. The origin of the local 
spherical coordinate system i s located at a pOint 
on the duct axis such that the coordinate surface 
6 = 60 (cone) tangentially contacts the duct 
wall in the segment. The half cone angle 60 
is relateo to the wall slobe b' as 

b' = tan 6
0

, (24 ) 

With the spherical coordinates, the isochoric flow 
velocity is chosen as 

c c 
~ n 
r-

/ 
(25) 

where n is a constant with the sign being 
opposlte for converging and diverging sections, 
ann r is the radial unit vector. Equation (23) 
can then be written for the spherical coordinates 
as 

1 {~r2 ~ + _1_ ~. ~ 
~ ar ar sin 6 as Sln e ae 

1 a
2

} 1 ( in a ) 2 + ~ ~ 40H + Z W + - - 40 = 0 
Sln e a$ c r2 ar H 

(26) 

This equation can be separated into three ordinary 
differential eouations . With the substitution 

(27) 

one obtains, from Eq . (26) 

(d
2 2) df2 + m H = 0, 

1 d . e dJ + ( a 
2 

_ m
2 

) J STri6 as s 1 n as ----:-z:- ~ 
sin 6

0 
sin 6 

(28) 

0, (29) 

where m and a are the separation constants, and 

The solution to Eq. (28) is 

H = e im$ (31) 

with m bein9 an integer. As for Eq. (29), it is 
convenient to introduce the normalized coordinate 
variable n, defined as 

sin 6 
n=sins

o 

h 
= 0 for 

for 

(32) 

where h is the radial variable in the cylindri­
cal coordinate system . The value of n varies 
from 0 to 1 in the duct . On the duct axis, n = 0; 
and on the duct wall, n = 1. Equation (30) is 
written in terms of n as 

(
2m2) + a - ~ J = O. (33) 

For a duct of slowly varying cross section 
(lb'l « 1), sin 6 0 = b'. Neglecting terms 
involving (b,)2 and higher orders , one can write 
Eq. (33) as 

(34) 

This is the Bessel equation of order m, and the 
physically acceptable solution is 

(35 ) 

where Jm is the Bessel function of order m. 
From the boundary condition of the hard duct wall, 
one determines values of a as follows: 
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Q = Qmn , n = 0, 1, 2 ... (36) 

where Qmn is the n-th zero of dJm(x)/dx . 

Some remarks should be made on the coordinate 
variable n. Unlike the variable e, n is not 
a local coordinate variable, but it i s val i d 
through the entire duct. To see this, let us con­
sider two small duct segments 1 and 2, respective­
ly at x = Xl and x2 . The half cone angles 
of the respective seqments are denoted by 
eO 1 and eO 2· Assume -eO 1 > eO 2. 
The variable ' e varies from'O to eO 1 in seg­
ment 1, and from 0 to eO,2 in segment 2. A 
value of 6 greater than eO 2 and less 
than eO 1, represents a coordinate surface in 
segment 1, but not in segment 2. Furthermore , two 
coordinate surfaces represented by a value of 
e less than eO 2, respect ively in the two 
duct segments are not, i n genera l, equivalent to 
each other. On the other hand , n vari es from 0 
to 1 for all the duct segments. The location s re­
presented by a value of n are in one-to-one 
correspondence for two different duct segments . 
A coordinate surface i s uniquely determined as the 
locus of n = Dl, nl being a constant, and 
the coordinate surface spans al l the duct seg­
ments . A coordinate surface with a value of n 
does not i ntersect with any other coordinate 
surface with a different value of n. The duct 
wall i s a coordinate surface corresponding to 
n = 1. We also note, from Eqs . (35) and (36) , 
that an eigenfunction assumes the same value on a 
coordinate surface n = Dl. A mode is in one­
to- one correspondence with an eigenfunction . Thus, 
with the use of the variable n, a mode i s oefined 
in a nonuniform circular duct with i sochoric flow 
if J b'J remains small (Fig . 2) . 

Equation (30) governs the propagation of a 
mode along the duct . The equation i s first tr ans­
formed from the local coordinate r to the duct 
coordinate x. 10 this end we use the relations 

b 
r = V 

d d 
(Jr=(fX 

( 37) 

(38) 

(39) 

These relations are valid for all the duct seg­
ments and the error is of order (b ' )2 . In order 
to avoid misunderstandings , a remark should be 
made on Eq. (39): Eq. (30) governs the wave along 
a line that is the intersection of coordinate sur­
faces ~ = constant and n = constant (not 

~-~ 

e = constant) . On this line , dr = dx }II + b12 , 
and Eq. (39) follows . One should not attempt to 
derive a similar relation by regarding r as a 
function of h as well as x. Such a derivation 
might lead one to an incorrect conclusion, and the 
error would appear to be of order b ' instead of 
(b ' )2. ~ote that the origin of the local coor­
dinate system changes with x. It cannot be over­
emphasized that R (as given in Eq. (30)) deals 
with the wave field variation along a line which 
is the intersection of coordinate surfaces 
~ = constant and n = constant . Fi nally, the 
use of the relations (37), (38) , and (39) i s very 
unlikely to lead one to any asymptotic paradox. 

Using Eqs. (37) to (39), one can write Eq . 
(30) as 

(l - M2) d
2
R + [~ (1 + H2) + 2ikMl ~~ 

dx 2 b 'J 

Here we have used 

Mo 
M(x) = ~ 

S (x) 

s(x) = b~X) 
o 

where bo and Mo are the duct radius and 
the Mach number at the duct throat. For a given 
s(x), M(x) is determined once Mo is known. 
Thus, for a given duct shape , Mo i s sufficient 
to spec ify M(x) . 

With the substitution 

R(x) ( J
x 

ljJ(x) exp -i k 

b(x) )/1 - M2(x) 

M(x) \ 
- M2(x) dJ, 

(41) 

Equation (40) is tran sformed into 

::~ · [c ~ ,,), -~ :: ] .. 0, (42) 

where terms like b '2 and b" have been neglected. 

Solutions in a Circular Cosh Duct 

Equation (42) was solved exactly in a closed 
form with a cir~ular cosh duct when M = 0, in 
Ref . 1. With M '" 0, it is convenient to introduce 
a function BM(X) as fo ll ows : 

(43) 

where v = kbo/Q. Note that this function de­
pends on the Mach number and the frequency (v) as 
well as the duct shape (s(x)) . With the use of 
Eq. (43), (42) is written as 

(44) 

The discussions thus far apply to any nonuniform 
hardwall circu lar duct as long as b '2 and b" 
are negligible. 

To utilize the cosh duct solution, we set 



- sinh (2~) tanh (Ex/a - ~) - cosh (2~)} (45) 

Here a is the effective length of the 
converg i ng-diverging section , ano w, ~ ana E 
are parameters depend i ng on M, v ana duct geo­
metry. The parameters w and ~ are aetermined 
as 

Involved in these equations are M, v and s± 
the radius ratios of the duct . For fixea values 
of Mo and v, w and ~ are determined from 
the radius ratios S±, and vic; versa . One 
natices from Eq . (47) that ~ is equal to zero 
for a symmetric duct (S+ = s_), regardless of 
values of Mo ano v. 

The parameter E is not given in a closed 
form, but its value can be determined analyti ­
cally. For fixed values of Mo and v , the 
duct radius ratios s± have been used for the 
oetermination of w and ~ . The axial variation 
of the radius in the converging-diverging section 
will be used to aetermine E. If the value of E 
were kept constant, the duct shape would depend 
on M and v as can be readily seen from Eqs . 
(43) and (45). Thus, the value of E must be so 
aetermined that the duct shape may remain un­
changea for aifferent values of M and v. To 
this end, at a properly chosen axial location in 
the converging- diverging section, the auct radius 
1S requ1red to be the same for all the allowed 
values of Mo and v. We choose Mo = 0 as 
the reference case . With Mo = 0, we set 
E = 1, and obtain from Eq. (43) 

(48) 

and from Eq. (45) 

B (x) = 1 + w {COSh2~ sech2(x/a - ~ ) o 0 0 0 

- sinh (2~o) tanh (x/a - ~o) - cosh (2~o)} (49) 

where the subscript 0 indicates M = O. Note 
that Bo, Wo and ~o do not depend on v . 
The axial locat ion is chosen preferably in the 
converging section , as x = - s o The duct radius 
at that locat ion is determined from Eqs . (48) and 
(49): 

sinh (2~0) tanh (s/a - ~o) - cosh (2~o)} 112 (50) 

With ~o -j 0, Eq. (43) i s written for x = - s as 

6 

1 2 M2(- S)[2 - M2(_S)] 
[1 _ M2(_S)]s2(_s) - v [1 _ M2(_s)]2 

and Eq . (45) is 

BM( - S) = BM(o) + w {COSh2~ sech2(Es/a + p) 

+ sinh (2~) tanh (Es/a + p) - cosh (2~)} 

(51) 

(52) 

The value of E is determined from Eqs. (50) to 
(52) . There may exist more than one real solution 
tor E; t he correct one shoula be determined from 
physical considerations. A list of values of E 
are given in Table 1, for various values of Mo 
and ~ , where ~ is a frequency parameter 
def i ned as 

c = _ 1 - 2 (kbo - a ~~) 
1 _ M " . - "0 

o 

(53) 

As the table shows, E is close to unity in most 
cases of interest . Also notice that E takes the 
same value for al l the modes at ~ = O. The 
value of E at ~ = 0 are listed for various 
va l ues of Mo and s_ in Table 2. 

We now return to Eq. (44) . On inserting Eq. 
(45) into Eq . (44) we obtain 

- sinh (2p) tanh z)] '" = 0 (54) 

where 

z=Ex/a - ~ 

Equation (54) can be solved exactly.2 The gen­
eral solution i s written as 

Here D1 
and 1JI2 

and D2 are constants; ana "'1 
are linearly independent solutions. 

- ik+a/E 

"'2 A(z) (1+e2z) 

(55) 

(56) 

(57) 

(58) 

(59) 



", 

where F is the hypergeometric function, and 

A(z) 
i (k+-k )za/2E i(k++k )a/2E 

e - (2 cosh z) - , 

= 1 ~ M2 [1 2J 1/2 
k± (1 - N;) ( k ~ J ' 

± 

b± b(x = ±=), M± = M(x = ±=), 

~l = { 1 - i[(k+ + kJa/E 

~2 = { 1 - i[(k+ + k )a/E 

1/2 
o = (4v cosh2~ - 1) 

+ oJ} / 2 • 

- oJ} / 2 

(60) 

(61) 

(62) 

(63) 

(64 ) 

(65) 

(66) 

The constants D1 ana D2 are to be 
determined from bounaary conditions at x = ±=. 
The asymptotic forms of the hypergeometric func­
tion are used to find 

i) at x = += 

-ik+~ a/E ik+x 
1/11 e e (67) 

ik+~a/E - ik+x 
1/12 = e e (68) 

ii) at x = -= 

r(~3)r(~1 + ~2 - ~3) - ik_ua/E+ik_x 
r('1)r( '2) e 

r(2 - ~3)r(~1 + ~2 - ~3) -ik ua/E+ik x 
r('2 - '3 + I) r(~l - '3 + I ) e - -

where r is the Gamma function . 

7 

Mode Propagation in Circular Cosh Ducts 
Wlth Low Mach Number Fl ow 

As m~ntioned earlier, the deviations P6 ' 
P6 and U6 are negligible in cases of l ow 
Mach numhers (Mo < 0.5) . In these cases , the 
so lu tions can be obtained as in Eq. (58) , with the 
boundary conditions to be satisfied. Note that 
these solutions are the zeroth order solutions to 
Eq . (18) and can be used to obtain more accurate 
solutions . 

Let us begin with the incident wave that is 
composed of the (m,n) mode coming from x = -=: 
In the incident side uniform duct (x « 0) , 

( im$ 1 
4>1 = Qmn n) e --~--

b~ 

x exp [ ;(-kt~_/(1 M~) + k (-)) x] mn ' 

where 

Corresponaingly, we have 

With mode conversion neglected , the solution 1/1 
is given at x ±"±= in the form 

lim 1/I(X) 

i k(+)x 
lim 1/I(x) = 0 e mn 
X+= t 

(71 ) 

(72) 

(73) 

(74 ) 

(75 ) 

(76) 

(77) 

The second term of Eq. (76) represents the re­
flected wave , and Eq . (77) the transmitted wave . 
The constants in Eq . (58) are readi ly aetermined 
by comparing the asymptotic expressions in Eqs . 
(67) to (70) with Eqs. (76) and (77): 

(78) 

(79 ) 



r-

The coefficients Dr and Dt are 

i(k~~)-k~~))~a/E r(~I)r(~2) 
Dt = e ~,--,c-=r""=--:;--::-=---:-T 

r(~3)r(~1 + ~2 - ~3) 

In Eqs . (78) to (81) the parameters ~, E, q, 
~2 and ~3 contain the constant Cl: it 
i s to be replaced by the eigenvalue Clmn ' The 
solution is 

where 

A(z) 

x exp ( "kj X ~ dJ' 1 - N 
o 

A ( z) r (~1 ' ~2 ' ~3; (1 + e2 z) -1) 

( 

kM 
D1A(z) exp i ~ x_ + ik 

1 - M 

x_ being a large negative value of x. Recall 
that n = h/b(x) and z = Ex/a - ~ . 

Green's Function ana General Solut ions 

(80) 

(81 ) 

(82) 

(83) 

When the interaction term Sw is finite 
but sma 11, Eq. (18) can be so 1 ved by means of the 
iteration-perturbation method . 3 To this end , 
the equation is first replaced by the integral 
equation 

$(x) = $(O)(X) + f G(x,xo)\(xo) d3Xo (84) 

Here G is the Gre~n's function to be discussed, 
and the function $(0) has been used for the 
homogeneous solution, to let the solution satisfy 
the boundary cond iti ons . 

The equation for the Green's function is 

+ 1 ( + '''u 2 w 1 
C C 

+) 2} + + ) + +) 9 G(x,xo = 6(X - Xo (85) 

The solution can be obtained in terms of the homo­
geneous so lutions with proper boundary conaitions 
as follows: 

8 

G(x , x ) 1 I 
im «1>-<1>0 ) 

=z; e 
0 m 

x I Qmn ( n) Qmn ( no) gmn (x, Xo ) 
n 

Here gmn is the one-dimensional Green's func­
tion . On inserting Eq . (86) into Eq. (85) and 
us ing the orthogonality and the completeness of 
the eigenfunctions, one obtains 

fl -M2) L + [~ (l + M2) - 2ikMJ ~ l d/ b dx 

(86) 

+ ( 2 _ Cl2~n)1 g (x ,x) = 6(X - x ) . (87) 
\ b Jmn 0 0 

The homoaeneous solution of this equation is none 
other than R given in Eq. (41) . 

Consider the factor ~ first. For a cir­
cular cosh duct , the homogeneous solutions 
1/11 and 1/12 are given in Eqs. (59) and (60). 
The source term is non-zero only in the 
converging-diverging section . Thus, the Green ' s 
function is required to represent outgoing waves 
in the uniform auct elements. Consider a new set 
of homogeneous solutions 1/1) ana 1/1< which 
asymptotically behave as 

(88) 

-ik(-) 
( ) X +-a> mn 

~< x ----+ e (89) 

Comparing these equations with Eqs. (67) to (70), 
one can readily find 

(90) 

r(~3)r(~2 - ~3 + l)r(~1 - ~3 + 1) 
~1 - r( ~1 )r(~2) r(2 - ~3} 1/12 ' 

(91 ) 

Corresponding to these functions, the homogeneous 
solutions to Eq . (87) are 

-1 2 -1 M ( Ix ) 
b (1 - M) exp -i~ 1 _ M2 dx 

(92 ) 

b-1 (1 _ M2r1 exp (ik J X ~ dX) ~«x). 
\ 1 - tvl 

(93) J 



The one-dimensiona l Green ' s funct i on is then ob­
ta ined as 

{ 

R (x) 
1 > 

9mn (X,Xo) = x A(X ) 

o 0 R (x) 
< 

for x < Xo 

S(O) = L ~(O) 
w 5 

(102) 

wi t h the operator defined as 

Ls = ~2 {(-i W + Uc ~J Lx + !c L6}' (1 03 ) 

(94) On in sertin9 Eqs. (86) and (102) into Eq. 

where ~ is the Wronskian 

, 
R R 
< < 

(95) 

The source Sw' as 9iven in Eq. (20) i s a 
linear function of acoust ic field variabl es . The 
l atter are not known until the problem is so lved . 
However, when the devi at ions , Po , Po and 
U6 are small , the sou rc~ i s smal l. Thus , th e 
zeroth order so luti on ~\O) can be used for 
the acoustic field . var! ab l ~$ t o c2mpute Sw' 
The acoustic veloc1ty 1S u\ O) = v~\O ) , and 
the acoustic pressure i s obtained from Eq s . (10) 
and (11) with ~ and x neglected . 

where Lp is a linear operator def i ned as 

{(h)2 ipc c KU 

It follows that 

~ (0) 
w 

Here L~ and Lx are linear oper ator s 
contain1ng the dev iati ons of the mean flui d 
vari ab l es : 

The source term is then 

.. 
'I, 

(96) 

(97) 

(98) 

(99) 

(100) 

(101 ) 
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(84), one obtains 

im' ~ 
e Om ' n' (0) Xmn · m ' n ' (x) , , x 

where the incident wave is the (m,n) mode (see 
Eo . (82)) , and 

(1 04 ) 

(1 05 ) 

For an axisymmetric flow, Ls i s .independ­
ent of ~o thus one can read ily obta1n 

Xmn;m' n' 

Furthermore, if 
dependent of 0 
then 

/I XnJ 
mm' nn' 

x L ° (0 )R(O)(Xo) ' s mn 0 

P6 , P/I and .. U6 are in­
and if n' U/I = 0 , one has 

xm =f dX 9 (x , x )Ls R(O)(x o) ' n n 0 mn 0 

(106 ) 

(1 07 ) 

(l 08) 

(109 ) 

I t follows that mode conversion , from one mode t o 
another , occurs on ly if the transversal 9r ad i ents 
of the steady fluid va ri ab les are nonne9l i9ibl e .3 

Power Reflection and Transmission Coeff i cient s 

Th e acoustic power intensity in the i sen­
tropic flow is given by4 

! .. +( 2 2 '" ..) = <pu> + U <p >/poc + u • <pu>/c 

(110) 



where < > stands for the time average . The 
total power across the duct is obtained as 

K ; .I t . n dA ( 111 ) 

where dA is the surface area element and n the 
unit vector normal to the surface. In the uniform 
duct element containing the axisymmetric mean 
flow, we have 

with the axial component Ix of the power 
intensity given by 

Ix ; <pu x> (1 + M2) + PoU «u~> + <p2> p;c2). 

Let Ki, Kr ana Kt denote the total 

(112) 

(113) 

powers respectively of the incident, the reflected 
and the transmittea wave. The power reflection 
and reflection coefficients, Rand T, are de­
fined as 

Using Eqs . (71), (81), (76) and (77) , one can 
obtain 

R 
cosh [n(k+ - k_)a/e] + cosh (no) 

cosh [n(k+ _ k_Ja/e] + cosh (noJ 

(114 ) 

(115 ) 

(116) 

(117) 

Note that R + T ; 1. That is, the acoustic 
energy is conserved as it shou1a be in a linear 
analysis of the acoustic field . The terms neg­
lected in the approximation wou10 not create or 
annihilate the acoustic energy . They, if in­
c1uaea, might transfer the energy between modes or 
between the reflected and the transmitted waves . 
Al so note that Eqs. (116) ana (117) are similar to 
Eqs . (25) and (26) in Ref. 1. The mean flaw 
depenaence is inc1uaed only through the parame­
ters k±, e ana o. The 1 atter are even 
functions of M. Thus the power reflection and 
transmission coefficients are inaependent of the 
mean flow direction, the positive or the negative 
x-direction. 

Numerical results will be discussea in ternls 
of the acoustic power transmission loss (TL) in 
the circular cosh ducts . The mean flow is isen­
tropic flow ana has a uniform steady fluid den­
sity. As mentioned earlier , a uniform steaay 
aensity is a good approximation for low ~ach num­
ber flow i n inlet ducts. Numerical calculation 
includes the Mach numbers up to the value of 0.5 
at the duct throat. 

The TL is defined as 

. TL ; -10 log10 (T) (118) 
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For the present calculation , Eq . (117) is used 
for T. The TL is p10ttea as a function of the 
throat Mach number Mo or of the frequency 
parameter y_ or ~ . The parameter y_ is 
the mOde cut- off ratio referenced to the left hand 
side uniform duct element, and is referred to as 
the inlet cut-off ratio: 

(119) 

The inlet cut-off ratio is a convenient parameter 
characterizing the modes contained in the incident 
wave . The sound generated in a fan duct often 
comprises many different modes. In such case, the 
mode distribution can be obtained as a function of 
the cut-off ratio . Another cut-off ratio useful 
for discussion is that referenced to the duct 
throat, given by 

Yo; kbo /a ~· (119) 

If Yo > 1, the mode is cut-on through the en-
t ire duct. On the other hand, if Yo < 1, the 
mode that is cut-on initially (y_ > 1), is cut­
off in the converging-diverging section. Except 
for low frequencies (kbo < 3), the TL is ap­
proximately 3 dB for yo; 1, independent of the 
duct geometry or the Mach number. The two cut- off 
ratios are related to each other as 

The parameter ~ is defined in Eq . (53), and 
can be written as 

~; ~ (1 - ~). 
1 - M2 Yo 

o 

(121 ) 

(122 ) 

This parameter collapses the TL curves for many 
different modes . 

In Fig . 3, the TL oivided by kb_ is 
plotted as a function of y_ for the various 
values of Mo between 0 and 0.5, and for 
6_ ; 1.1 or 1.3. Jhe other duct parameters are 
a/b_ ; 1, ~ ; 1. On the top of the figure are 
shown the arrow marks, each pointing to a value 
of y_ which corresponds to yo; 1 with the 
given value of Mo (cf. Eq . (121) . The (8,5) 
mode has been used for the calcu l ation. However 
except in the vicinity of Yo; 1, the results ' 
may be used for modes with eigenvalue from 8 to 
25 , within an error of 1 dB . As expected , the 
TL decreases with the increasing value of y_ 
(see Ref . 1) . The decreasing rate of the TL is 
faster for larger Mach number. For a fixed value 
of y_, the TL is smaller for larger Mach !'lum­
ber . Slnce, TL/kb_, is plotted in Fig . 4, TL 
itself is proportional to kb_ for a fixed 
value of y_. It follows that, for a mode dis­
tribution given as a function of the inlet cut-off 
ratio, the converg i ng-diverging auct contour re­
duces the transmitted sound more effectively for 
cases when the distribution comprises modes of the 
larger eigenvalues . 



I n Fig. 4, the TL/kb_ is pl otted as a 
f unc t ion of Mo, for f i xed values of y_. As 
Mo i ncreases , the TL decreases very sl owly i n 
the beginning (Mo ~ 0) , and the n oec reases at a 
gradual ly inc reasing r ate unti l Mo r eaches a 
value for which Yo = 1. This mean f l ow depend­
ence of t he TL i s di rect ly re l ated to the change 
of the cut-off ratio at the th roat . As one can 
notice f r om Eq . (112) , Yo inc reases with in­
creasing Mo for y_ held constant . 

In Fi g. 5, the TL is plotted as a funct ion 
of ~. Each curve , for a value of Mo, in­
cludes many modes with eigenva l ues greater than 
5. The TL increase s with i ncreas i ng ~,and 
becomes approximately 3 dB at ~ = 0 independ­
ent of the Mach number and the duct par ameters . 
The advantage of this presentation is that almost 
all the modes are subject to the same TL for a 
gi ven value of. ~ ' . The mean f l ow dependence of 
the TL 1n th1S f 1gure appears mi s leading . How­
ever , note that, with Mo increaseo, Yo i n­
creases and kb o should be dec reasea to keep 
~ unchanged (see Eq . (122)) . 

Concluding Remarks 

In an attempt to improve the understand i ng of 
the acoustic characteristics of a fan duct system, 
moae propagation has been investigatea in a par­
t icular class of converging-diverging circular 
ducts - circular cosh ducts , with isentropic ana 
inviscid mean flow . The ouct shape can be ad­
justed by means of three duct parameters , and 
covers a wide range of coverging-diverging ducts 
of practical interest . 

On the assumption that the auct cross section 
area vari es slowly, an approximate wave equation 
has been derived . The equation is divided into 
two parts: (1) the homogeneous wave equation 
involving the mean flow of uniform steady density 
fluid, and (2) the interac ti on between the acous­
tic field and the deviation of the steady fluio 
variables from the constant steaay density fluid 
flow . The homogeneous equation is solved in a 
closed form, and the interaction term is treated 
by means of an iteration-perturbation method . The 
solution of the homogeneous equation i s regarded a 
good approximation in cases of low Mach number 
mean flow . 

Wi th the interaction neglected , a mode is 
preserved , and the acoustic power transmission 
coeffiCient increases wi th the mean flow in­
crease. This mean flow effect is directly re l ated 
to the change of the cut- off ratios: With the 
increasing mean f low, the cut-off r atio at the 
duct throat increase s faster than at the uniform 
duct sections (inlet and exit) . For gi ven duct 
geometry and mean flow , the TL of many different 
modes can be made to collapse onto a s i ngle curve 
with a proper choice of frequency parameter (~) . 
The mean flow effects remain unchanged with the 
flow reversed . The interaction term needs numeri­
cal computations fo r its aetailed discussions . 
However, the formal solution shows that a mode may 
be converted to others only if the transverse 
grad i ents of the steady fluid variables are not 
negligible . 
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TABLE 1. - VALUE OF £ 

8 - Mo Ei genva lue ~ 

-0.4 -0 .2 0 0.2 

0.2 4.20 1. 0020 1.0014 1. 0007 
8.54 1. 0020 1. 0017 ! 1. 0010 

16 .53 1.0017 1.001 5 1. 0012 
23 . 27 1. 0016 1. 0015 1.0012 

1.1 
0.4 4. 20 0.9920 0.9845 

8 .54 0.9980 0.9952 

1 
. 9886 

16.53 . 9953 .9937 .9903 
23 .27 .9944 .9932 . 9908 

0 .2 4. 20 1. 0039 1. 0026 1.0012 0.9997 
8 .54 1. 0025 1.001 9 

1 
1.0004 

16 .53 1.0019 1.0015 1.0008 
23 . 27 1.0017 1. 0014 1.0009 

1.3 
0.4 4.20 1. 0041 0.9948 0.9839 0.9710 

8 .54 . 9946 .9895 

l 
. 9778 

16.53 .9897 .9868 .9808 
23. 27 .9880 .9860 .9817 

TABLE 2. - VALUE OF £ AT ~ 0 

MO 8_ 

1.1 1.2 1.3 1.4 1.5 

0.1 1.0004 1.0006 1. 0005 1.0004 1.0002 
.2 1. 0014 1. 0015 1.0012 1. 0005 .9998 
.3 1.0008 1.0001 .9987 .9971 .9954 
.4 .9920 .9875 .9837 .9806 .9776 
.5 .9438 .9316 .9271 .9244 .9223 
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