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The differential equations describing the flap-lag-torsional motion of a

flexible rotor blade including third-order non-li.nearities were derived in [1]

for bot'i cases of nover and of forward flight [equations (5.2a-d)]. Making use

of the two boundary conditions Gu (x = 1, T - T) = 0 and u(x - 0, T - T) - 0,

those equations were reduced to a set of three integro partial differential

equations written in terms of the flexural deflections v(x,T), w(x,T) and the

torsional variabl "(x,-). These latter equations are of the form (equations

(5.10) to (5.12) in [11)

G' = h	 (a = v,w)	 (1)
CL	 a

A	 = Q_	 (2)

x	 x

For a blade with the end x = 1 free, G
a 
(x = 1, T = T) = 0. The expressions for

Ga l ha (a = v,w), AA and the aerodynamic term Q,' are given in [1].

x	 x

Since the publication of [1] the case of hover is being addressed. Because

of two of the boundar y conditions for equations (1) are G 0^ = 1, T = T) = 0a

	

for a = v and a = w, it is convenient to first integrate equations (1) from x 	 1

to x = x to obtain

x
Ga =	 hadx	 (a - v,w)	 (3)

1

It should be noted that the expressions for h in equations (3) contain the

generalized aerodvnamic forces Q `. and QG . Explicit forms for the third order

expressions for Q ` and Q  in terms of the deflections v and w, and their

derivatives, were developed by making use of the implicit expressions given in

Chapter Vi of ill.
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A~ approximate .olution to equation. (2) and (3) va. written in ter.. of 

a .et of ortholonal function. fj(x) and Ij(X) (j • 1.2 •••• ) a. 

(4) 

n . 
9 (x,t) • L I j (x)9 tj (t) 
x j-l 

(5) 

and equations (2) and (3) were then reduced to a .et of ordinary differential 

equations for Vtj • Wtj and etj (j - 1.2, ••• ,n). For this. we found it convenient 

in terms of obtaining somewhat simpler "Ga1erkin integrals" and alao in terms 

of comparing the present work with that of other authors such as (2), to pre-

multiply equations (3) by fi(x) (1 • 1,2, ••• ,n) to obtain 

1 1 x 
J f' (x)G dx - J f~(x) J h dxdx 
0 

i v 
0 1 v (6a) 

1 1 x 
J f' (x)G dx - J fi(x) J h dxdx 
0 

i W 
0 1 W 

(6b) 

As an illustration of the above proce.s consider the right hand aide of 

equation (6a) where, a. obtained from (1) • 

. . 
h • v - v -v 

(7) 

Making use of equations (4) and (7), equation (6a) yields, for i - 1.2 •••• ,n 

1 
J 
o 

- v -tj 

. - 1 x 
J F' J Q dxdx+O V

4
) 

6 i 1 v 
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where

1	 x	 1	 1
r	 - J f'	 f dx = f,(0)	 f.dx +	 f,f dx	 (9a)`ij	 ()	 i 1	

J	
1	

0	
0	 1 i

1	 x x
f'.	 f ; -F ,'  dx dx dx	 (9b)

jkl	 0 1 1 0

1	 x x x

T13.iJ	
- i fi !	 ^^ f^ dx dx dx dx	 (9c)

0	 1 0 1

To 0(- - ) equation (8) is of the same form as equation (B3a) in [2] .

A complete set of shi f ted Les ,,cn!r, polynomials, defined in the interval
1

x _ 1 and normalized, for convenience, so that	 fif, dx = 0 for i # i

	

0	 J

and 1 for i = j, was chosen as the set ^f.'. In addition, normalized non-rotating
1

torsional beam modes was taken as the set ig i }. The "G alerkir. coefficients" that

appear in the reduced set of ordinar y differential equations for 
v ti (-I), "ti(-)

and ^' A-) were evaluated and stored on tape for use in the subsequent analysisti
of the motion. The number of different coefficients in the equations is consider-

ably reduced when orthogonal polynomials is used instead of non-rotating flexural

beam nodes. Anal y tical expressions for the coefficients, that were evaluated

recursively, were developed. As a result, the numerical value of each coefficient

obtained is essentiall y "exact." For those coefficients that were expressed as

integrals of a product of a polynomial in x and sin ax (a - (i - ^)-), the

ai,al y tical expressions developed contained the sum c= two series, one being the

product of a polynomial in x and Fin a x, and the other the product of another

polynomial in x and cos a x. Each integration process was then transformed into

an algebraic manipulation of these series.
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It is worth noting that a number of numerical difficulties affecting the

accuracy of several of the coefficients was initially encountered when attempting

to evaluate them numericall y . At first the numerical evaluation was done by

making use of the IBM SSY subroutine DQATR. A number of coefficients were

evaluated analyticall y in order to ascertain the validit y of the numerical

results obtained. Use of DQATR for this purpose was eventuall y abandoned when

several of the numerical zomputations presented accuracy problems that yielded

unacceptable results. At that point we have decided to change the numerical
1

scheme for evaluating any coefficient, say a = J g 	 dx , as a = )'(1) where
x	 0

,(x) _ r g(x) dx.	 The coefficient ^, exemplified here was then evaluated by
0

numericall y integrating the differential equation ) '(x) = g(x), with )(0) = 0,

0 to x = 1. The numerical integrations w-re performed b y using the

IMSL routine DASCRU. This process y ielded accurate results for a considerable

number of the coefficients with which numerical problems were encountered with

DQATR, and even required less computation time. However, it was eventually

abandoned after we have found several coefficients determined numericall y to be

in error when a number of spot checks were made, and after several attempts to

uniforml y correct the problem b y re-adjusting the integration step size failed.
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