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The differential equations describing the flap-lag-torsional motion of a
flexible rotor blade including third-order non-linearities were derived in (1)
for bot™ cases of nover and of forward flight [equations (5.2a-d)]. Making use
of the two boundarv conditions Gu(x =1, 1=1)=0and u(x=0, 1 =71) =0,
those equations were reduced to a set of three integro partial differential
equations written in terms of the flexural deflections v(x,7), w(x,7) and the
torsional variabl ©(x,7). These latter equations are of the form (equations

(5.10) to (5.12) in [1})

G& = h, (a = v,w) (1)
A = Q (2)
X X
For a blade with the end x = 1 free, Ga(x =1, 1 = 1) = 0. The cxpressions for

G, h (x=v,w), A

“ . n and the aerodvnamic term Q, are given in {11.

x X

Since the publication of [1] the case of hover is being addressed. Because
of two of the boundarv conditions for equations (1) are Gd(x =1, t=1) =0
for 2 = v and & = w, it is convenient to first inctegrate equations (1) from x = 1
to x = x to obtain

X
G = h dx (a = v,w) (3)

f
a 1@
It should be noted that the expressions for hu in equations (3) contain the
generalized aerodvnamic forces Qv and Qw' Explicit forms for the third order
expressions for Qv and Qw in terms of the deflections v and w, and their
derivatives, were developed bv making use of the implicit expressions given in

Chapter VI of (1],



An approximate solution to equations (2) and (3) was written in terms of

a set of orthogonal functions f, (x) and gj(x) (3 =1,2,...) as

j
tT\ n
v(x,1) -j:I E v (1) 5 wlxT) '521 £y v, (1) (4)
8, (x,7) -jgl 8y ()8, (1) (5)

and equations (2) and (3) were then reduced to a set of ordinary differential
equations for vtj' "tj and etj (3 =1,2,...yn). For this, we found it convenient
in terms of obtaining somewhat simpler "Galerkin integrals" and also in terms

of comparing the present work with that of other authors such as [2], to pre-

multiply equations (3) by fi(x) (i=1,2,...,n) to obtain

1 1 x
i £1(x)G dx = [ £1(x) / h, dxdx (6a)
0 0 1
fl X X
] - L
: t‘i(x)Gwdx éfi(x) { hw dx dx (6b)

As an illustration of the above process consider the right hand side of
equation (6a) where, as obtained from (1],

X S

h, =V =v=2ws8 =~ 2(8) | (v'v' + w'v' +%§§ | V dxidx - Q, + 0(e)

0 1

(7

Making use of equations (4) and (7), equation (6a) yields, for i = 1,2,...,n

1 L] 4c28 LY
(f) £1(x)G, dx +j[ 6, J 3 = Vg T iy 88) - = My v )
n n s 1 X 4
- 2eB) 1L Fylvygvy ¢ "tJ"tk) "= {) Fi [ Q dxdx+0()

=1 k=1 1

-3 (8)

L e e s A
SR Y- e )



An approximate solution to equations (2) and (3) was written in terms of

a set of orthogonal functions f, (x) and gj(x) (3 =1,2,...) as

j
tT\ n
v(x,1) -j:I E v (1) 5 wlxT) '521 £y v, (1) (4)
8, (x,7) -jgl 8y ()8, (1) (5)

and equations (2) and (3) were then reduced to a set of ordinary differential
equations for vtj' "tj and etj (3 =1,2,...yn). For this, we found it convenient
in terms of obtaining somewhat simpler "Galerkin integrals" and also in terms

of comparing the present work with that of other authors such as [2], to pre-

multiply equations (3) by fi(x) (i=1,2,...,n) to obtain

1 1 x
i £1(x)G dx = [ £1(x) / h, dxdx (6a)
0 0 1
fl X X
] - L
: t‘i(x)Gwdx éfi(x) { hw dx dx (6b)

As an illustration of the above process consider the right hand side of
equation (6a) where, as obtained from (1],

X S

h, =V =v=2ws8 =~ 2(8) | (v'v' + w'v' +%§§ | V dxidx - Q, + 0(e)

0 1

(7

Making use of equations (4) and (7), equation (6a) yields, for i = 1,2,...,n

1 L] 4c28 LY
(f) £1(x)G, dx +j[ 6, J 3 = Vg T iy 88) - = My v )
n n s 1 X 4
- 2eB) 1L Fylvygvy ¢ "tJ"tk) "= {) Fi [ Q dxdx+0()

=1 k=1 1

-3 (8)

L e e s A
SR Y- e )



where

1 x 1 1
Eo= - / ) [ f.dx = £,(0) [ ofax+ [ £, dx (9a)
J 0 1) o I 0 ‘
1 X X
Fog=- fer 00y fp dx dxdx (9b)
) o 10
1 X X X
My joo= = ;ofp T T [ f, dxdxdxdx (9¢)
>+ 0 1 01

2
Te 0(c”) equation (8) is of the same form as equation (B3a) in [2].

A complete set of shifted Lepenldrye polvnomials, defined in the interval

1
. . . . . .
0 x> 1 and normalized, for convenience, so that fif' dx = for 1 # j
O -
and 1 for 1 = j, was chosen as the set <fi?. In addition, neormalized non-rotating

torsional beam modes was taken as the set 1gi}. The '"Galerkir coefficients' that
appear in the reduced set of ordinarv differential equations for vti(r), wti(r)
and Fti(‘) were evaluated and stored on tape for use in the subsequent analysis

of the motion. The number of different ccefficients in the equations is consider-
ably reduced when orthogonal polvnomials is used instead of non-rotating flexural
beam nodes. Analvtical exprescsions for the coefficients, that were evaluated
recursively, were developed. As a result, the numerical value of each coefficient
obtained is essentially "exact." For thosc coefficients that were expressed as
integrals of a product of a polvnomial in x and sinax (a = (i ~ %ﬁ"), the
analvtical expressions developed contained the sum ¢° two series, one being the
product of a polvnomial in x and sin a x, and the other the product of another
pelynomial in x and cos a x. Each integration process was then transformed into

an algebraic manipulation of these series.,

- -



It is worth noting that a numbter of numerical difficulties affecting the
accuracy of several of the coefficients was initially encountered when attempting
to evaluate them numerically. At first the numerical evaluation was done by
making use of the IBM SSP subroutine DQATR. A number of coefficients were
evaluated analvtically in order to ascertain the validity of the numerical
results obtained. Use of DQATR for this purpose was eventually abandoned when
several of the numerical computations presented accuracy problems that yielded
unacceptable results. At that point we have decided to change the numerical
scheme for evaluating anv coefficient, sav a = fl g(x) dx, as a = y(1l) where
v(x) = fh g(x) dx. The coefficient o exemplifiedohere was then evaluated by

)
numeric;llv integrating the differential equation y'(x) = g(x), with y(0) = 0,
icom ¥ = 0 to x =1, The numerical integrations were performed by using the
IMSL routine DASCRU. This process vielded accurate results for a considerable
number of the coefficients with which numerical problems were encountered with
DQATR, and even required less computation time. However, it was eventually
abandoned after we have found several coefficients cetermined numerically te be

in error when a number of spot checks were made, and after several attempts to

uniformly correct the problem by re-adjusting the integration step size failed.
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