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1. Introduction 

It is well recognized that composite laminates are susceptible to 

damage result~ng from impact of foreign objects. In general, hard and 

soft objects result in different failure modes. If the object is rela

tively rigid and small, then the contact time is short and extensive 

damage occurs in the neighborhood of the contact region. The extent of 

damage obviously depends on the contact force between the object and the 

target composite. An accurate account of the contact force and indenta

tion is necessary to quantify the impact damage. 

Direct measurement of the dynamic contact force is not an easy task 

due to the wide range of impact velocities and other parameters, and 1imi-

tations of experimental techniques. The objective of this study is to 

determine experimentally static indentation laws for epoxy-based composite 

laminates in contact with steel balls and then model them in power laws. 

The most famous elastic contact law, F = ka3/ 2, was derived by 

Hertz [1] for the contact of two spheres of elastic isotropic materials 

based upon theory of e1 asti city. "The contact between a sphere and a 

half-space is a limiting case. Since this contact law is derived based 

upon the contact of elastic spheres, one faces several uncertainties when 

applying it to laminated composites. First, most laminated composites in 

use can not be adequately represented by a half-space. Second, the aniso

tropic and nonhomogeneous property of laminated composites may alter the 

form of the law. Third, the strain rate which is not accounted for 

by the Hertzian law may have significant effects on the F - a relation. 

Except for the strain rate effect, the first two uncertainties may be 
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cleared by analyzing the exact contact problem of a sphere pressed into a 

laminated composite by using three-dimensional elasticity. However, experi

ence tells us that analytical solutions for such contact problems are 

extremely difficult to obtain especially if permanent deformations are to 

be accounted for during unloading. Since unloading paths are important as 

far as the local damage zone is concerned, in this study, an experimental 

approach is taken to determine the law of contact for composites. However, 

the strain rate effect is neglected. 

2. Hertzian Law of Contact 

When two solid bodies are in contact, deformation takes place in the 

contact zone and the contact force results. Once the contact force is 

obtained, conventional methods for stress analysis can be used to find the 

stress distribution in the bodies. Determination of the contact force-

indentation relationship often becomes the most important step in analyz

ing the contact problem. 

A special case of the Hertz contact problem is the contact of an 

elastic sphere and an elastic half space. The contact force F and the 

indentation depth a have the relation 

F = k a 3/ 2 (l) 

where 

(2) 

. , 
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In equation (2), Rs is the radius of the sphere, v is the Poisson's ratio, 

E is the Young's modulus, and subscripts sand t indicate the sphere and 

the target, respectively. Equation (1) is usually called the Hertzian law 

of contact for a sphere in contact with a half-space. 

The 1.5 power given by equation (1) ,was found to be valid by Willis 

[2] for a rigid sphere pressed on a transversely isotropic half-space. A 

modified contact law with 

(3) 

was employed by Sun [3] for a study on impact of laminated composites. In 

equation (3), Rs ' Vs and Es are the radius, the Poisson's ratio and the 

Young's modulus of the isotropic sphere, respectively, and E2 is the modulus 

of elasticity transverse to the fiber-direction in the fiber-reinforced 

composite. 

A more general form for the contact law was proposed by Meyer [4] as 

F = k an (4) 

which has been found suitable for many static indentations. It is obvious 

'that when n = 1.5 and k given by equation (2) this relation reduces to the 

Hertzian law for isotropic bodies. 

Permanent indentation in composite targets often takes place even at 

relatively low loading levels. Thus, the aforementioned indentation laws 

for elastic bodies are valid only for the loading process. To account for 

the permanent deformation, the following power law was suggested by Crook 

[5]. 
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F = F [(a - a )/(a - a )]q mom 0 
(5) 

where F is the maximum contact force just before unloading, a is the m m 
indentation corresponding to F , and a is the permanent indentation dur-m 0 

ing this loading-unloading cycle. This unloading law was used by Barnhart 

and Goldsmith [6] for impact of a steel ball onto an armor plate. 

3. Experimental Procedures 

The experimental set-up is shown schematically in Fig. 1. The 

indentation was measured by a dial gage that permits reading up to 1/5000 

in. The dial gage was mounted on a ·C· bracket fixed to the loading piston 

so that only the relative displacement between the indentor and the beam 

was recorded. The load applied pneumatically was measured using a load 

cell and a strain indicator. Two steel balls of diameters 6.35 mm 

(0.25") and 12.7 mm (0.5") were used as indentors. In all tests the beam 

was clamped at both ends. 

Two types of laminated composites have been tested, namely glass/epoxy 

and graphite/epoxy. The glass/epoxy was Scotch Ply 1002 by the 3M Company. 

It contained 100°-plies and 990°-plies which alternate in the layup with 

one 0°-ply on top and on at the bottom. The thickness of the beam was 

4.83 mm (0.19") and the width 38.1 mm (1.5"). The graphite/epoxy specimens 

were [0/45/0/-45/0]2s laminates. The thickness was 2.·54 mm (0.1 in .. ). Two 

specimen widths were considered, namely 25.4 rom (1.0 in.) and 38.1 mm (1.5 in.). 

Their material properties are given as follows: 

-' . .; ." 
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Glass/Epoxy: 

El = 39.3GPa (5.7 x 106 psi) 

E2 = 8.27GPa (1.2 x 106 psi) 

G12 = 4.14GPa (0.6 x 106 psi) 

v12 = 0.26 

Graphite/Epoxy: 

El = 120.7GPa (17.5 x 106 psi) 

E2 = 7.93GPa (1.15 x 106 psi) 

G12 = 5.52GPa (0.80 x 106 psi) 

v 12 = 0.30 

5 

(6) 

(7) 

where subscripts 1 and 2 indicate directions parallel and perpendicular to 

the fiber, respectively. 

Data were recorded in steps of about 2 to 5 units in the dial gage. 

Readings on the dial gage and strain indicator were taken about 10 to 20 

seconds after the load was increased by one step. 

4 Experimental Results and Modeling 

4.1 Loading Curve 

(A) Glass/Epoxy 

For the glass/epoxy laminate, three sets of loading data were obtained 

for each span with a 6.35mm (0.25") diameter indentor. These data were used to 

determine the best fit for the power law, equation (4), using the least square 

method. A typical set of the data is presented in Fig. 2. The power indexes 
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for all three cases appear to be rather close to that of the classical Hertzian 

law for isotropic solids, i.e., n = 1.5. For this reason, we set n = 1.5, 

and then determined the contact coefficient k by using the least square fit. 

One of the resulting curves is shown in Fig. 3. The curves seem to fit the 

data very well also. 

Table 1 summarizes the indentation law (the loading portion) obtained 

from the experimental data for the glass/epoxy laminate. It is interesting 

to note that with n = 1.5, the values of k for different spans are almost a 

constant. This may be taken as an indication that the indentation law is 

independent of span. In other words, the bending stress in the range of 

these experiments does not influence the contact rigidity. 

In Table 1, the modified Hertzian law, equation (3), is also presented 

using the material constants given in equation (6). It is found that the 

value of k is higher than the experimental values. However, it does provide 

a good estimate of the contact behavior. 

(B) Graphite/Epoxy 

For the 6.35 mm (0.25 11
) diameter indentor, three sets of data were 

obtained for each span, while for the 12.7 mm (0.5") diameter indentor, 

except for one case, two sets of data were collected. The value of n was 

set equal to 1~5. The values of k fitted using each set of unloading data 

and all three (or two) sets of data are presented in Table 2. The corres

ponding modified Hertzian law are also shown in Table 2 for comparison. 

In Figs. 4-7 four typical sets of the experimental data are compared with 

the loading curves predicted by the power law. 
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From the values of k for the two indentors, it was found that k for 

12.7 mm (0.5 11
) indentor is about 1.8 times larger than that for the 6.35 mm 

(0.25 11
) indentor. According to the Hertzian law, k is proportional to the 

square root of the diameter of the indentor and the increase in the k value 

should be 1.414. 

From the experimental results, it is difficult to assess the effect 

of the specimen width. However, the variation in k for the 12.7 mm (0.5 11
) 

indentor with respect to span and width seem to be smaller than that for the 

6.37 mm: (0.25 11
) indentor. 

4.2 Unloading Curve 

(A) Glass/Epoxy 

From the test results we observed that permanent deformation occurred 

after an indentation test at very low load levels. The unloading paths 

were very different from the loading path as can be seen from Fig. 8. 

The unloading curves were modeled by using equation (5) in which q and a 

were determined from experimental data. Since the permanent indentation 

ao was difficult to measure, the whole set of data for each unloading 

o 

was taken to determine q and ao by the least square method. The results 

showed that the values of q thus obtained varied between 2.0 and 3.0. It 

was found that q increased as the loading level increased. For q = 3.0 

and q = 2.5, equation (5) seems to fit the overall data quite well as 

shown by Figs. 8-9. However, if q = 3.0, the value of a o might become 

negative in some cases. For this reason, q = 2.5 was chosen. 

It should be pointed out that the value of ao obtained in this manner 

may not be the true permanent indentation. It is a value which can make 



the power law given by equation (5) fit the total data in an unloading 

path. 
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Since a o depends on where the unloading begins, it seems that many 

unloading tests have to be performed in order that the unloading law given 

by equation (5) can be useful. 

and Fm must be established. 

In other words, the relation between a o 

where 

Setting q = 2.5, we rewrite equation (5) in the following form 

F = s (a - a )512 
o (8) 

(9 ) 

is an unloading rigidity. A fitting of the data can be obtained by fixing 

the value of s in all the unloading paths for finding a o. In doing so, we 

imply that the unloading rigidity s remains unchanged. Such assumption will 

greatly simplify the modeling of unloading. With this in mind, it is assumed 

that 

is a constant for a given material system and size of the indentor. 

From the loading curve we have 

F = k a 3/2 
m m 

By combining equations (9) through (11) the following equation is 

obtained 

(10) 

(11) 

... 

:;" : 
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2/5 a /a = 1 - (a /a) o m cr m (12) 

This equation can be used to calculate ao as a function of am' 

From equation (12) it is easy to see that 

a > 0 as a > a o - m - cr ( 13) 

i.e., when indentation passes the value acr then permanent deformation 

occurs. To avoid results which are not physically meaningful, we set 

Hence, according to this model, acr can be regarded as the 'yield ' point 

in indentation. 

Since the energy dissipation in each loading-unloading cycle is of the 

main interest in this study, it is sensible to select ao in the unloading 

law so that the area under the unloading curve is equal to that calculated 

from the experimental data. One set of the unloading curves predicted by using 

the unloading law with this "area fit" is presented in Fig. 10. If these 

values of ao are substituted into equation (9), a range of value for s 

is obtained. By using the averaged value for s, the value for acr 
is obtained from equation (10) as following 

a = 10.16 x 10-2mm (4.0 X 10-3 inch) cr (14 ) 

The corresponding a can then be obtained from equation (12). The unloading 
o 

curves corresponding to those shown in Fig. 10 using this acr are shown in Fig. 

11. These curves seem to yield good agreement with experimental data. It 

was noted that a small variation in acr would not have any appreciable effect 

on the unloading curve. 



10 

Table 3 summarizes the comparison of the areas under the unloading 

curves predicted by the direct area fit and the use of acr ' The values 

of a o obtained from the two approaches are also listed for comparison. 

The approach using acr is found to be adequate in estimating the area 

under the unloading curve. 

(B) Graphite/Epoxy 

For the graphite/epoxy laminate, again q = 2.5 was used for the unload

ing law. Figs. 12-13 show some of the experimental data and the predicted 

unloading curves using values of ao obtained by matching the area under 

the unloading curve. 

The best value of acr for graphite/epoxy was found to be 

a cr = 8.03 x 10-2 mm (3.16 x 10-3 inch) (15 ) 

for both sizes of indentor. The unloading curves predicted by using this 

a cr value corresponding to the cases presented in Figs. 12-13 are presented 

in Figs. 14-15. Excellent agreement with experimental results was noted. 

The results for the 6.25 rrun(0.25") and 12.7 mm(0.5") indentors obtained 

according to the above two approaches are summarized in Table 4·and Table 5, 

r~spectively. Note that the loading curves in Figs. 12-15 were plotted 

using a particular set of loading data for each case rather than the aver

age value. 

The fact that a cr is not dependent on the indentor size is interest

ing. This may imply that acr is a material property similar to the yield 

stress for mild steel. 
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4.3 Reloading Curve 

In the case where multiple impacts occur, the reloading behavior must 

be modeled. The reloading experiment was performed only on the graphite/epoxy 

laminate with the 1.27 cm (0.5") diameter indentor. 

The reloading law was assumed to be in the form 

F = k1 (a - ao)p (16) 

where kl is a reloading rigidity. From the experimental data, p = 1.5 seemed 

to have fitted the data best. 

It was observed that when the loading level was not too high, then the 

reloading curve always returned to where the unloading began. If such 

condition is imposed on the reloading law given by equation (16), then we 

have 

(17) 

Thus the reloading rigidity k1 is determined if the unloading condition 

(Fm, am' and ao) is specified. In other words, there is no need to perform 

reloading experiments to find the reloading rigidity kl . 

Figs. 16-17 show typical experimental data and the predicted reloading 

curves obtained according to equations (16-17). Good agreement is noted. 

Table 6 shows a number of values of kl computed according to equation 

(17). It is seen that these values are quite close to the loading rigidity 

k for small ao. However, for higher loading levels, a substantial deviation 

exists between these two values. 
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5 Discussion 

From the results for the graphite/epoxy laminate, some scatter in the 

value of k in the loading law is noted even when the same material properties, 

indentor, and loading condition are used. This could be attributed to local 

material nonhomogeneity in the composite. 

Being accustomed to the use of stress-strain relation to describe solid 

material properties one would attempt to modify the loading law into a simi-

lar form. A natural step that one would take is to divide the contact force 

F by a reference area and the indentation a by a reference length. Using 

the projection of the contact area, 2nDsa, as the reference area and the 

critical indentation acr as the reference length, we obtain from the inden

tation law the following 

(18 ) 

Such form does not offer any advantage over the original form. 

If the reference area nDsacr ' the projection of the contact area when 

a = a ,is used instead, then the indentation law can be modified into cr 

F' = k' (a 1)3/2 (19 ) 

where 

F' = F/(Dsacr ) (20) 

k' = k 1/2/D acr S (21) 

a l = a/acr (22) 

.; - .' 
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Note that F' has the unit of stress. Values of k' for the graphite/epoxy 

laminate are summarized in Table 7. 

From equation (21), it is evident that k' becomes a constant if k is 

13 

proportional to the diameter of the indentor. From our experimental data for 

the two indentor sizes, it appears that k is proportional to (Os)0.85 as 

opposed to (Os)0.5 predicted by the classical Hertzian law. More experimental 

data from more indentor sizes are needed to establish the relationship between 

k and the size of indentor. 

In summary, we have established loading, unloading and reloading laws 

for glass/epoxy and graphite/epoxy laminates in contact with steel balls. 

For loading and reloading, 1.5 power laws seem to fit the data and for 

unloading, 2.5 power seems adequate. By using the critical indentation, 

a cr ' permanent indentations a o can be related to the unloading force Fm, 

and consequently only one unloading curve has to be established experimentally. 

Further, since a cr seems to depend only on the material properties, only one 

unloading test needs to be conducted for each material system. For reloading, 

if equation (16) is employed, no unloading tests are needed to establish 

the unloading law. 
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Table 1-Loading law F=k~n for glass/epoxy with 6.3S mm 
diameter indentor, F in N and a in mm (F in 1b and a in 
inch); . 

G1assiEpoxy:[(0/90)4/0/90/0/(90/0)4] 
. " 

Span. mni (in.). SO.8 (2.0) 101.6 (4.0) 152.4{6;O) 

Least ,n 1.54 1.54 .' 1.66 ... 
Squares k, N/minn 1.70 x 104 1.71 x 104 2.00 x 104 

Fit (lb./inn) (S.57x10S) (5.60x10S) (6.SSx105) 
. '. 

loS n 1.S loS 1.S .. 
Power k, N/mm1.5 1.60 x 104 1.61 x 104 1.60 x 104 
Fit (lb/in. 1.S) (4.62x10S) (4.63x10S) (4.59xl05) 

Modifi ed F = 1.90 x 104 a 1.5 • F in N; ~ in mm 
Hertzian (F = 5.46 x 105 ~ 1.5 • F in lb. ~ in inch) 
Law, Eq. 

Es = 207 GPa (30 x 106 psi). Vs = 0.3 
(3) 

6 . . 
E2 = 8.27 GPa (1.2 x 10 psi); Rs~~.17~mm(0.~25in) 

16 
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Table 2-loadin9 law F=ka1.5 for [0/45/0/-45/0]2s graphite/epoxy; F in N and a in mm (F in lb and 
a in inch). 

Ball Dia. mm (in.) 6.35 0.25) 12.7 (0.50) 

Span, ""! (in.) 50.8 (2.0) 101.6 (4.0) 50.8 (2.0) 101.6 4.0) 

Width, mm (in.) 25.4(1.0) 38.1(1.5) 25.4(1.0) 38.1(1.5) 25.4(1.0) 38.1(1.5) 25.4(1.0) 38.1(1.5) 

2.00 1.82 1. 78 2.14 3.30 3.36 3.33 3.68 

k, (5.77) (5.23) (5.14) (6.17) (9.51) (9.67) (9.59) (10.59) 

104 N/mm1.5 
\ 2.13 1.83 1.82 2.20 3.59 3.31 3.18 3.48 

(lOS lb/in.1.5) (6.13) (5.27) (5.23) (6.34) (10.33) (9.53) (9.15) (10.01) 

2.06 1.fl5 1.83 2.32 3.56 

(5.92) (5.33) (5.28) (6.68) (10.24) 

k, Group Fit 2.06 1.85 1.81 2.19 3.47 3.34 3.23 3.60 
104 N/nm1.5 

(5.94) (5.33) (5.22) (6.29) (9.98) (9.62) (9.30) (10.37) 
(105 lb/in.1.S) 

Modified F = 1.82 x 104 a1.5 F = 2.57 x 104 a1•5 

Hertzian (F = 5.24 x 105 a1.5) (F = 7.41 x 105 a1•5) 

law, Eo.(3) Es = 207 GPa (30 x 106 psi), Vs = 0.3, E2 = 7.93 r,Pa (1.15 x 106 psi) ---- .. : .. _._-.-._. 

" 

I 
1 

I 

I 

I 

i 
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Table 3-Va1ues of 00 and area under the unloading curve by different fits for glass/epoxy 

"n:ln rrm (in.) 50.8 (2.0) 101.6 (4.0) 152.4 (6.0) 

k, N/mm1•5(lb/in. 1•5) 1.60 x 104 (4.62 X 105) 1.61 X 104 (4.63 X 105) 1.60 X 104 (4.59 X 105) 

Fm, N 529 842 1513 2206 460 1362 1964 3104 518 1016 1594 2037 

(lb) (119) ( 189) (340) (496) ( 103) (306) (442) (698) ( 116) (228) (358) (458) 

-2 
om' 10 rrm 10.3 14.0 20.7 26.6 9.40 19.3 24.6 30.1 10.2 16.0 21.5 25.3 

(10- 3 in.) (4.05) (5.52) (8.16) (10.5) (3.69) (7.59) (9.69) (11.9) (4.01) (6.28) (8.48) (9.98) 

Area 1.24 3.38 4.27 7.70 0.30 3.12 6.71 9.42 1.17 2.49 6.53 8.69 

-2 
00' 10 nln Fit (0.49) (1.33) ( 1.68) (3.03) (0.12) (1. 23) (2.64) (3.71) (0.46) (0.98) (2.57) (3.42) 

(10-3 in.) 
° 0.56 cr 1.70 5.13 8.53 0.0 4.37 7.34 10.6 0.0 2.64 5.59 7.77 

Fit (0.22) Ico.6]} (2.02) (3.36) (0.0) (1.72) (2.89) (4.18) (0.0) ( 1.04) (2.20) (3.06 

Area. Area 137 256 712 1194 119 628 1016 1570 133 390 683 970 

10-2 rrm-N Fit (121 ) (227) (630) ( 1057) (105) (556) (890) (1390 ) ( 118) (346) (605) (859) 

(10-4 in.-1b) ocr 155 296 674 1142 123 581 969 1481 150 387 726 1024 

Fit (137) (262) (596) (1011) (109) (514) (858) (1311) ( 133) (342) (643) (906) 

...... 
co 

I' 
. ' 



Table 4-Values of a and area under unloading curve by different fits for 
graphite/epoxy witho 6.35 mm (0.25 in.) indentor 

-
Span, mm (in.) 50.8 (2.0) 101.6 (4.0) 

Width, rrm (in.) 25.4 (1.0) 38.1 (1. 5) 25.4 (1.0) 38.1 (1.5) -
k, N/mm1.5 (lb/in. l •5) 2.06xl04 (5.92xl05) 1.85xl04 (5.33 x 105) 1.83xl04 (5.28 x 105) 2.32xl04 (6.68 x 105) 

Fm' N 668 934 1223 273 561 997 408 612 844 277 662 1210 

(1 b) ( 150) (210) (275) (61.3) ( 126) (224)' (91. 7) (138) (190) (62.3) ( 149) (272) 

am ' 
1O-2mm 10.2 12.7 15.2 6.00 9.70 14.2 7.90 10.4 12.9 5.20 9.30 14.0 

(10- 3 in.) , (4.01) (5.01) (6.00) (2.37) {3.831 (5.61) (3.121 (4.08) 1(5.06) (2.06) 1(3.68) (5.50) 
-2 Area 0.94 1.80 2.79 0.05 0.43 2.13 0.00 0.41 1.55 0.00 0.61 1.85 ao' 10 mm 

I 

Fit (0.37) (0.71) (1.10) (0.02) (0.17) (0.84) (0.00) (0.16) (0.61) (0.00) (0.24) (0.73) 
(10-3in. ) 

! acr 0.91 2.13 3.45 0.00 0.71 2.92 0.00 1.02 2.21 0.00 0.56 2.77 
I 

Fit (0.36) (0.84) (1. 36) (0.00) (0.28) (1.15) (0.00) (0.40) (0.87) (0.00) (0.22) ( 1.09 1 
, 

Area Area 188 291 435 46.5 149 345 92.2 174 272 41.4 165 418 

10-2 mm - N Fit (166) (258) (385) (41.2) (132) (305) (81.6) (154) (241) (36.7) (146) (370) 

(10-4 in.-1b) (lcr 177 282 412 46.9 144 323 92.2 164 257 41.4 166 387 

Fit ( 156) (250) (365) (41.5) (128) (286) (81 .6) (145) (227) (36.7) ( 147) (342) 
.. 

f 

--' 
\D 
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Span, mm(in.) 

Width, mm (in.) 

k, N/~1.5(lb/in.l.5) 

Fm' N 

(lb) " 

am' 10- 2 IT111 

(10-3 in) . 

-2 
0

0
, 10 mm Area 

Fit 

(10- 3 in) (lcr 

" " Fit" 

Area. Area 

Fit 

10-2 
IT111 - N ocr 

(10- 4in.-lb) cFit 

Table 5-Values of a and area under unloadinQ curve by different fits for 
graphite/epoxy withO 12.7 mm"(0.5 in;) indentor 

50.8 (2.0) 101.6 (4.0) 

25.4 (1.0) 38".1" (1.5) 25.4 (1.0) 38~ 1 (1.5) 

3.56xl04 (10.24xl05) 3.31xl04(9.53xl05) :3.18xl04(9.15xl05) " 3.60xl04(10.37xl05) 

425 955 1479 719 1320 1645 227 791 1239 267 900 1285 

(95.5) (215) (333) (162) (279) (370) (51 ) (178) (279) (60.1) (202) (289) 

5.10 9.00 12.0 7.80 11.7 13.5 3.70 8.50 1.15 3.80 8.60 10.8 

(2.01) (3.53) (4.73) (3.07) (4.60) (5.32) (1.46 ) (3.35) (4.53) (1. 50) (3.37) (4.27) 

0.00 0.76 2.18 0.03 1.30 2.31 0.05 0.56 1.65 0.00 0.03 1.35 

(0.00) (0.30) (0.86) (0.01) (0.5]) (O.9]) (0.02) (0.22) (0.65) (0.00) (0.01) (0.53) 

0.00 0.38 1. 78 0.00 1.68 2.51 0.00 0.20 1.55 0.00 0.20 1.22 

(0.00) (0.15) (0.70) (0 . .9.9l.. (0.66) (0.99) (0.00) (0.08) (0.61) (0.00) (0.08) (0.48) I 

63.4 224 415 159 392 527 23.7 180 349 29.0 220 348 

(56.1) (198) (367) (141 ) (347) (466) (20.9) (159) (309) (25.7) ( 194) (308) 

63.4 234" 432 160 379 516 24.0 188 353 29.0 214 353 

( 56.1) (207) (382) (142) (335) (457)" 
~"-"-. -- - ---

(21.2) (166) 
.----.....:.-.. 

(312) (25.7) (190) (312) 

r, 

N 
a 



... 
. I CJ Cl CJ CJ 

Span, mm (in.) 

Width, rom (in.) 

Table 6-Compartson of loading rigidity k and reloading 
rigidity kl for graphite/epoxy with 12.7 mm (0.5'in.) indentor 

50.8 (2.0) 101.6 (4.0) 

25.4 (l.0) 25.4 (l.O) 38.1 (1. 5) 

k, N/mm1.5 (lb lin. 1•5) 3.56x104 (10.24x105) 3.18x104 (9.15xl05) 3.60xl04 (10.37x105) 

F m' N 428 955 1479 227 791 1239 267 900 1285 
(1 b) (95) (215) (333) (51) (178) (279) (60) (202) (289) 

-2 5.11 8.97 12.0 3.71 8.51 11.5 3.81 8.56 10.8 am ' 10 mm 

(10- 3 in.) (2.01) (3.53) (4.73) (1. 46) (3.35) (4,53) (' .5) (3.37) (4.27) 

ao' 10-2 mm 0,0 0.76 2.18 0.05 0.56 1.65 0.0 0.25 1.35 

(10-3 in.) (0.0) (0.30) (0.86) (0.02) (0.22) (0.65) (0.0) (0.01) (0.53). 

104 N/mm1.5 3.68 4.06 4.80 3.24 3.53 4.01 3.59 3.61 3.67 
I k, , 

(l05 1b/in. 1.5) (10.6) (11.7) (13.8) (9.33) (10.2) (11.5) (10.3) (10.4) (10.6)1 

, . 

N ....... 



Ba11·Di,meter mm In. 

Span, mm (in.) 

Hi dth, mm 

( in. ) 

k I , GPa 
(105 psi) 

I 

Table 7-Va1ues of k for graphite/epoxy (Equation (19)). 

6.35 (0.25) '12.7 (0.50) 

50.8 (2.0) 101.6 (4.0) 50.8 (2.0) 101.6 (4.0) 

25.4 38.1 25.4 38.1 25.4 38.1 25.4 38.1 

( 1.0) ( 1.5) (1 .O) (1 .5) (l.0) ( 1.5) ( 1.0) ( 1.5) 

0.92 0.81 0.81 0.98 0.77 0.74 0.72 0.81 

(1. 34) (1.18) (1.17) (1.42 ) (1.12) (1.08) (1 .05) (1.17) 

, 0. 

N 
N 



;" 

\1 C ., 

BRACKET 

Fig. 1 Indentation test set-up 

LOAD CELL 

INDENTOR 

CLAMPED 
SPECMEN 

DIAL 
GAGE 

. 
23 



24 

800.0 -r----_.__----r--------r-----r------r----"""rT- 3600. 
10.00 15.00 20.00 

(0.01 MM) 

3200. 
700.0 

2800. 

600.0 

2'fOO. 

500.0 

a::l 
2000.,-.. 

~ 
:z 
lO 

W 'WO.O .-
3: 

U 
a:::: 
~ u.. 

UJ 
:z 

1600. -

300.0 

1200. 

200.0 
600. 

100.0 

O.O~~--_.__---~--~~--____r---__r_---_r o. 
0.00 2.00 4.00 6.00 8.00 

INOENTATION(O.OOl IN) 
10.00 12.00 

Fig. 2 - Least-square fit for loading for glass/epoxy with 50.8 nm{2")
span and 6 •. 35 nm (0.25") diameter indentor. 
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Fig. 3 - Least-square fit for loading with n = 1.S for glass/epoxy with 
50.8 min(2 11 )-span and 6.35 11111(Q..25 11

) diameter indentor. 
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Fig. 4 - Least-square fit for loading with n = 1.5 for graphite/epoxy· 
with 50.8 mm{2")-span 25.4 nm-width, and 6.35 rrm (0.2S") 
indentor. 
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Fig. 5 - Least-square fit for loading with n = 1.5 for graphite/epoxy 
with 101.6 mm(4")-span, 25.4 mm-width, and 6.35 mm(0.25") 
indentor. 0 
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Fig. 6 - Least-square fit for loading with n = 1.5 for graphite/epoxy 
with 50.8 nm(2")-span, 25.4 mm(l")-width, and 12.7 rml(0.5") 
indentor. . 

.. 
~ 

.. 
" 

-

.. 



: 

29 

qOO.O,-------~------r_----~------~------~----~~ 

.00 2.50 5.00 7.50 10.00 
(0.01 MM) 

350.0 lSOO. 

l'KlO. 
300.0 

1200. 

250.0 

,..... 
ID 1000.,...,. 
-' z 
W 200.0 

~ 
t-

U :J: 
0:: w z 
~ u.. 000.-

150.0 

SOO. 

100.0 
400. 

50.0 
200. 

O.O~~----._------r_------r_----~------~------~ o. 
0.000 1.000 2.000 3.000 q.Ooo 

INDENTATI~N(O.OOl IN) 
5.000 6.000 

Fig. 7 - Least-square fit for loading with n = 1.5 for graphite/epoxy 
with 101.6 mm{4"}-span, 25.4 mm{l"}-width, and 12.7 mm{0.5") 
indentor. 
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Fig. 8 - Unloading curves f.or glass/epoxy with q = 2.5, 50.8 mm{2")
span and 6.35 mm(0.25") indentor. 
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Fig. 9 - Unloading curves for glass/epoxy with q = 3.0, 50.8 mm{2")
span, and 6.35 mm{0.25") indentor. 
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Fig. 10 - Unloading curves for glass/epoxy with 50.8 mm{2")-span and 
6.35 mm(O.25) indentor using area fit. 
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Fig. 11 - Unloading curves for glass/epoxy with 50.8 mm(2")-span and 
6.35 mm(0.25") indentor using a = 0.102 mm(0.004"). . cr 
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Fig. 13 - Unloading curves for graphite/epoxy with 50.8 ITIl1(2")-span. 
25.4 nvn(l"}-width. and 12.7 mm(0.5") indentor using area fit. 
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Fig. 14 - Unloading curves for graphite/epoxy with 50.8 111TI(2")-span, 
25. rnm(l")-width, and 6.35 mm(0.25") indentor using a cr = 
0.0803 nun(0.00316"}. 
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