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FOREWORD

This report summarizes the work performed by Materials Sci-

ences Corporation (MSC) under NASA Contract No. NAS1-15841. Dr.

John Davis was the Technical Representative for the NASA Langley

Research Center. The authors express their appreciation to Dr.

Davis and to Mr. Gary Farley for their assistance in connection

with the experimental data summarized in NASA TP 1867.

-111-



-IV-



TABLE OF CONTENTS

Page

INTRODUCTION ......................... !

NON-L.INEAR LAMINATE BEHAVIOR ................. 4

ISOTHERMAL STRESS-STRAIN CURVES .............. 5

LAMINATE THERMAL EXPANSION ................. 6

Free Thermal Expansion .................. 7

Thermal Expansion Under Load ....... ........ 9

THERMAL CYCLING ...................... 11

Free Thermal Cycling ................... 12

THERMAL CYCLING UNDER LOAD ................. 13

VISCOELASTIC ANALYSIS OF GRAPHITE /POLYIMIDE LAMINATES .... 15

STRESS RELAXATION IN LAMINATES ............... 15

VISCOELASTIC RESPONSE TO THERMAL CYCLING. . . ........ 19

DISCUSSION ......... ................. 22

CONCLUSIONS .................. . ....... 26

REFERENCES ..................... ' ..... 27

FIGURES ............. .............. 28

APPENDIX A. NON-LINEAR THERMOELASTIC
LAMINATE ANALYSIS .......... ...... 51

APPENDIX B. STRESS RELAXATION IN LAMINATES ..... .... 66

APPENDIX C. THERMAL CYCLING OF
VISCOELASTIC LAMINATES ...... . ....... 76

-v-



-VI-



LIST OF FIGURES

Figure Page

1. Load Temperature Space - Load Paths 28

2. Stress-Strain Response of a Quasi-Isotropic
[0/145/90] Laminate at 24°C (75°F) 29s

3. Stress-Strain Response of a [±30] Laminate at
24°C (75°F) ? 30

4. Stress-Strain Response of a [±60] Laminate at
24°C (75°F) f 31

5. Free Thermal Expansion of a [0/90] Laminate 32
S

6. Free Thermal Expansion of a [±30] Laminate 33
S

7. Free Thermal Expansion of a [±60] Laminate 34
S

8. Transverse Stress-Strain Response of
Graphite/Polyimide 35

9. Thermal Expansion of a [0/90] Laminate with a
Constant Axial Load of 290 MPa (42 ksi) 36

10. Thermal Expansion of a [±60] Laminate with a
Constant Axial Load of 16 MPa (2.34 ksi) 37

11. Thermal Expansion of a [+30] Laminate with a
Constant Axial Load of 105 MPa (15.24 ksi) 33

12. Thermal Expansion of a [0/90/±45] Laminate
with a Constant Axial Load of 159 MPa (29 ksi) . . . . 39

13. Thermal Expansion of a [±45] Laminate with
a Constant Axial Load of 290 MPa (42 ksi) 40

14. Thermal Cycling of a [±45] Laminate 41
o

15. Thermal Cycling of a [±45] Laminate Under a
Constant Axial Load of 34 .MPa (5 ksi) 42

16. Thermal Cycling of a [0/+45/90] Laminate
Under a Constant Axial Load of f38 MPa (20 ksi). ... 43

17. Figure Geometry 44

18. Relaxation Modulus Master Curve for Graphite/
Epoxy, Reference Temperature 177°C (350°F) 45

-vii-



LIST OF FIGURES (Continued)

Figure Page

19. Time-Temperature Shift Factor Curve for
Graphite/Epoxy. . 46

20. Stress Response of a [0/90] Laminate for
Cycling Between -18°C and 177°C (0°F and
350°F) 47

21. Stress Response of a [0/90] Laminate for
Cycling Betwwen -73°C and 2§4°C (-100°F
and 400°F) 48

22. Stress Response of a [0/90] Laminate for
Cycling Between -157°C and §32°C (-250°F
and 450°F) 49

23. Strain Response to Thermal Cycling 50

C-l. Shift Factor 85

C-2. Time-Temperature Curve 86

-viii-



INTRODUCTION

Fiber composite materials are finding applications under in-

creasingly severe load and environmental conditions. Development

of polyimide matrix materials has significantly increased the

temperature range over which polymeric matrix composites can be

used. As a result, the dimensional stability of laminates of

such material and the possibility of damage resulting from thermal

stresses induced by temperature changes must be considered. A

preliminary study conducted to evaluate these problems provided

indications that material non-linearity due to high stresses and

time dependent material behavior may both have significant influ-

ence on the laminate thermal expansion coefficients and on the

stress-strain behavior of such laminates. The present program

was undertaken to examine these effects for practical laminate

configurations subjected to realistic environments.

Determination of the thermoelastic properties of fiber com-

posite laminates on the basis of the thermoelastic properties of

the constituting laminae and their stacking sequence is a routine

procedure used by composite materials analysts. Even when the

thermoelastic properties of the laminae are temperature dependent,

the determination of laminate properties is of conventional na-

ture, provided the laminae are elastic at all temperatures. How-

ever, unidirectional composites exhibit non-linear behavior when

subjected to axial shear stress, or to transverse stress, partic-

ularly at elevated temperatures.

In recent years, non-linear mechanical properties of lamin-

ates have been successfully incorporated into laminate analysis,

primarily in the isothermal case. In the case of Boron/Epoxy and

Graphite/Epoxy layers, room temperature non-linearity is exhibited

primarily in shear and transverse tension and compression. Room

temperature laminate stiffness properties are affected by this

non-linearity, but not drastically.

The situation appears to be significantly different in the

case of laminates subjected to large temperature changes. This



is due to two phenomena. The first is that non-linear behavior

of a unidirectional lamina results from matrix non-linearity

which increases significantly with temperature. The second is

that large thermal expansion coefficients exist in directions

normal to the fibers of a unidirectional laminae. Therefore, as

a result of temperature changes, large transverse stresses or

strains will be induced even for a fiber-dominated laminate. It

is to be expected that non-linearity in the fiber direction can

be neglected since the fibers remain stiff and elastic. However,

non-linear effects of the stress-strain relation in a direction

transverse to the fibers, and in shear, both increase with tem-

perature and have to be considered. Moreover, these transverse

and shear effects are not superposable, but are interactive; i.e.

the non-linear shear strain depends also on the transverse strain

and vice versa. These non-linearities may have a very signifi-

cant effect upon thermal expansion coefficients even when the

effect upon laminate stiffnesses is small.

A procedure for extending the earlier non-linear analysis of

mechanical response of laminates to include thermal effects has

been outlined in the preliminary study of the present subject

area. During the present phase of the program, this procedure

has been developed into an automated analysis computer code

called TENOL. The analysis procedure treats a general state of

plane stress existing in the individual layers of an arbitrary

laminate. The individual plies are taken as elastic in the fiber

direction and as having a non-linear stress-strain response for

loads transverse to the fibers and for axial in-plane shear.

These non-linear stress-strain relations are represented by Ram-

berg-Osgood curves. All material properties are assumed to be

temperature dependent. The analysis procedure is described in

the following section, "Analysis." A detailed description of the

code, including the User's Guide, is presented in an appendix.

The analysis was utilized to study the response of various

laminates of graphite and polyimide under conditions of in-plane

load and uniform temperature cycles. A complementary experimental



program was performed at the NASA Langley Research Center and

experimental results were compared with analytical predictions.

This is discussed in the section "Thermal Expansion of Graphite

Polyimide Laminates."

Another aspect of material behavior which is of possible

importance is the time dependence of the properties of the poly-

imide matrix. The effects of this are creep deformation and

stress relaxation in the laminae of which a laminate is composed.

The magnitude of these effects increases with temperature. The

internal laminate stresses produced by loads and temperature

changes are reduced by stress relaxation; the rate of reduction

being dependent on the rate of reduction with time of the relax-

ation moduli of the laminate at the relevant temperature. It is

thus seen that material time dependence is another factor whose

importance must be evaluated for stress analysis and design of

laminated structures.

A preliminary viscoelastic analysis has been conducted in

order to evaluate the relaxation time of a laminate as a function

of the relaxation behavior of the unidirectional ply material.

Application of this methodology was made for two practical en-

vironmental conditions for a quasi-isotropic [0/±45/90] laminate.
o

First the effect of stress relaxation on the residual stresses due

to the fabrication curing cycle was examined, then the effect of

stress relaxation on the response of the laminate to thermal cy-

cling representative of the temperature cycles of a satellite in

stationary orbit. This material is discussed in the section,

"Stress Relaxation in Laminates." Details of the methodology used

in the viscoelastic analysis is presented in an appendix to the

report.



NON-LINEAR LAMINATE BEHAVIOR

The effects of the non-linearity of unidirectional graphite

polyimide upon thermal expansion of laminates have been investi-

gated in a preliminary fashion in reference 1. The non-linear

thermal mechanical behavior was modeled in a Ramberg-Osgood form

and the non-linear interaction effects between shear stress and

transverse stress were taken into account by a generalization of

a method developed in reference 2. A general scheme for apply-

ing thermal elastic non-linear analysis to laminates was pre-

sented. That approach has been utilized herein to develop a

general purpose non-linear laminate analysis code for studying

combined effects of temperature and membrane loading. The for-

mulation is based upon the following assumptions:

1. At the lamina level, the thermal and mechanical strains

are superposable, i.e. the total strain can be obtained

by the sum of the free thermal strain and a stress re-

-lated mechanical strain.

2. The lamina stress-strain relation, though non-linear,

is elastic. A 'total1 stress-strain relation is written

for the orthotropic lamina assuming a state o'f plane

stress.

3. Stress-strain response of the lamina can be approximated

by Ramberg-Osgood parameters at different temperatures.

4. All stresses and strains are measured in reference to a

stress free state in the laminate at some temperature.

Analysis is restricted to symmetric laminates only. Mem-

brane loads are applied to the laminate. The equilibrium equa-

tions, along with the compatibility conditions that the strains

in all plies are equal, are used to establish the governing equa-

tions. This results in a non-linear set of equations for the ply

stresses in terms of the elastic moduli, Ramberg-Osgood parameters,

and the applied loads at the temperature of analysis. These



equations are solved using the Newton-Raphson iterative procedure

assuming the linear elastic solution as an initial guess.

The coefficient matrix of the system of equations set up at

the analysis temperature depends only on the material properties

at that temperature and hence, is unique. The solution of this

system is also unique. This implies that if a laminate is in a

state represented by point A (fig. 1) in the load temperature

space, the resulting stress state is independent of the path fol-

lowed to that point from the reference stress free temperature.

Hence, paths 1, 2, and 3 (fig. 1) are equivalent. This formula-

tion can be used to predict the stress state at any point in the

load temperature space, hence any load path. Commonly used load

paths that can be analyzed and easily verified experimentally are

laminate response to a pure thermal load, to a pure mechanical

load, to a constant thermal and varying mechanical load, to a

constant mechanical and a varying thermal load, etc.

The computer program resulting from this study is described

in Appendix A, which also contains a User's Guide for the soft-

ware .

ISOTHERMAL STRESS-STRAIN CURVES

Stress-strain curves at different uniform temperatures were

obtained experimentally by NASA. For comparison, the computer

code TENOL was utilized to calculate laminate stress-strain re-

lations based upon various assumptions as to stress free tempera-

ture. Although all strains are calculated by the program with

reference to 0 strain at the stress free temperature, the results

are plotted in the form of difference of strain at the test tem-

perature with 0 load and with each applied load at the same test

temperature. This provides for a direct comparison between the

analysis and the experiment.

For correlation purposes, calculations were made for a
quasi-isotropic [0/±45/90]s and angle plies of [±30]g and [±60]g

graphite polyimide laminates subjected to axial tensile loading.



Two different stress free temperatures were utilized in the cal-

culations; room temperature and 316°C. Calculations for the

quasi-isotropic laminate are shown in figure 2, along with the

experimental results. As indicated, the initial strain at the

test temperature has to be subtracted from all of the calculated

strains.

The response predicted with both the stress free tempera-

ture assumptions is almost linear elastic and correlation between

the experimental data and both the predictions is extremely good.

The response of the [±30] and [±60] Gr/Pi laminates predicted
• D O •

has been presented with the experimental results in figures 3

and 4, respectively. The response predicted for each of the lam-

inates is non-linear, and correlates well with the experiments,

and the effect of the stress free temperature is negligible. The

accuracy of the predicted response, both for linear elastic and

non-linear behavior is an encouraging step in the validation of

the formulation.

LAMINATE THERMAL EXPANSION

Knowledge of the laminate thermal expansion behavior is es-

sential for the design of space structures for dimensional stabil-

ity in extreme environments. In an earlier study, (ref. 1) material

non-linearity was shown to have significant effects on the laminate

thermal expansion coefficient.

When composite laminates are fabricated, individual plies

are laid up in the required stacking sequences and the layup is

cured at some elevated temperature. At some high temperature and

time the laminate is stress free. Subsequent cooling to room tem-

perature results in residual stresses and strains. These stresses

relax in time so that the laminate on reheating becomes stress

free at some lower temperature. Because of this time dependence,
/

the analysis was conducted assuming two different stress free tem-

peratures. One was assumed to be 316°C, approximately the stress

free temperature of a freshly fabricated Gr/Pi laminate, and the



other 24°C, corresponding to significant relaxation of the curing

stresses.

In this report, the thermal expansion behavior of Gr/Pi lam-

inates subjected to four different loading conditions was analyzed

They are:

1. Free thermal expansion,

2. Thermal expansion under constant load,

3. Thermal expansion under free thermal cycling,

4. Thermal expansion with thermal cycling under constant

load.

Particular attention-was given to the effect of material non-

linearity and stress free temperature.

Free Thermal Expansion

The axial response of the [0/90] , [±30] , and the [±60]s s s
laminates subjected to a thermal loading was predicted. Results••

for the two stress free temperatures and test results are pre-

sented in figures 5, 6, and 7. These three laminates show dif-

ferent trends. Of interest are the influences of material non-

linearity and stress free temperature.

The cross-ply laminate subjected to a pure thermal load has

the same thermal expansion characteristics as the [±45] laminate
S

or a quasi-isotropic [0/90/±45] laminate, hence figure 5 can be
s

used to represent the response of any of these laminates. The

shear stresses in this set of laminates are zero, hence the only

non-linearity that can affect the response is due to the trans-

verse stress, <?„„. Since the stress-strain behavior of the

Graphite/Polyimide system transverse to the fibers was found to

be nearly linear (fig. 8), non-linear material behavior is not

expected to affect the response significantly, as can be seen in

figure 5. For a given stress free temperature, the linear elas-

tic prediction and the non-linear prediction from TENOL have very



small differences. This result differs from that of the earlier

study, wherein the transverse stress-strain curve showed signifi-

cant non-linearity.

The stress-free temperature does affect the predictions. For

the 0/90 laminate (fig. 5), the effect is on the order of 20%.

For this laminate, the experimental result approximates the cal-

culated value for a stress free temperature (SFT) of 24°C within

10%. For most of the temperature range, the experimental result

lies between the calculated values for SFT values of 24°C and

316°C.

The [+60] laminate behavior (fig. 7) is quite different
s

from that of the cross-ply laminate. This laminate is predicted

to have an approximately constant coefficient of thermal expansion

over the temperature range from room temperature to 316°C, for

both stress free temperature assumptions. The experimental curve

also follows the same trend, and lies within approximately 10% of

the calculations for SFT = 24°C. However, it does not lie between

the two predicted curves. Changing the stress free temperature,

however, does affect the thermal expansion in magnitude, but not

the trend. The room temperature stress free temperature gives a

better correlation with experimental results. The shear and

transverse stresses are still small enough for material non-lin-

earity to have no effect.

The [±30] laminate response is different from both the
S

[±60] and the [0/90] laminates. The maximum axial thermal ex-
s s

pansion over the whole range is very small compared to the axial

thermal response of the [±60] laminate. The trends predicted
o

with the two stress free temperatures are the same as those ex-

perimentally determined. The material non-linearity has little

effect due to the relatively small transverse and shear stresses.

Because of the inherently small strain, the change in stress

free temperature produces a large percent change in the strain

and, hence, in the thermal expansion coefficient. The coeffi-

cient is very small up to 191°C when compared to either the uni-

directional input or the other laminates.

8



The code TENOL calculates the correct trends for the free

thermal expansion coefficient, or the strain as a function of

temperature response, and there is better correlation with exper-

imental data for the analysis assuming a stress free state at

room temperature. Percentage differences are not meaningful be-

cause of the very low expansion strains. Non-linear material

behavior has little or no effect on the material response because

of small shear stresses and a low non-linearity in the transverse

direction for Graphite/Polyimide.

Thermal Expansion Under Load

In many practical applications, thermal changes take place

in a structure subjected to load. Thus, an important problem is

the influence of material non-linearity and temperature dependent

properties upon the laminate thermal expansion behavior. To study

the effects associated with combined loading and temperature

change, a series of laminates including [0/90] , [0/90/145] ,
o S

[±30] and [±60] were analyzed (see figs. 9-12). Strain re-
s s

sponse as a function of temperature under applied load was pre-

dicted over the temperature range room temperature to 316°C.

Calculations utilized the two stress free temperatues used in

the free thermal expansion case. Applied stresses of approximate-

ly 40% of the design allowables were utilized in the calculations.

For the cross-ply laminate under an axial load, neither the

mechanical load nor the thermal load induce shear stresses in the

plies. Induced transverse stress in the 90° ply is large, but,

since transverse stress behavior shows only a small amount of non-

linearity, no significant differences are calculated between the

non-linear and the linear elastic solutions. The effect of the

stress free temperature is less than 10% which is not as severe

as in the free thermal expansion case. As can be seen from fig-

ure 9, the experimental data lie between the non-linear predic-

tions of the two stress free temperatures for over 60% of the



temperature range. The predicted room temperature strain values,

however, do not match with the experimentally obtained strain.

There does not appear to be an obvious explanation for this dis-

crepancy.

In the [0/90/145] laminate, an axial load of 159 MPa re-s
suits in a maximum stress of about 69 MPa transverse to the fibers

in the 0° or 90° plies and an 18 MPa shear stress in the 45° plies

at room temperature. With the Ramberg-Osgood parameters, a of

207 MPa and T of 86 MPa, these stresses will not cause signifi-

cant non-linearity. A non-linear analysis at this load level

will yield results similar to the linear elastic analysis, as can

be seen from figure 12. The effect of the stress free tempera-

ture is similar to the case of the free thermal expansion (see

fig. 9). Experimental data were not available for correlation.

The [±60] laminate with a load of 16 MPa was analyzed.
S

The maximum transverse and shear stresses induced are about 48

MPa and 17 MPa, respectively, in the 60° ply, and these are not

high enough, even with interaction, to produce any significant

non-linear effect. The change in stress free temperature af-

fects the thermal expansion predictions, as can be seen in fig-

ure 10, and the experimental data are bounded by the two non-

linear predictions. The trend of the laminate expansion is dif-

ferent from that of the cross ply or the quasi-isotropic laminate.

The next case analyzed was the [±30] laminate under a con-
S

stant axial load of 105 MPa. At 316°C, even though the trans-

verse stress is predicted to be only about 21 MPa, the maximum

shear stress is predicted to be about 17 MPa. With the T of

20 MPa, non-linear effects due to shear are significant, as can

be seen from figure 11. The 316°C stress free temperature pre-

dictions of the non-linear and linear elastic behavior are quite

different, due to the non-linear and temperature dependent be-

havior of the Graphite/Polyimide. The experimentally observed

strain is within the two stress free temperature predictions

over about 2/3 of the analysis range, but is different from

either prediction at room temperature.

10



The thermal expansion curves under load are generally in

the range of the analytical calculations, with the most pro-

nounced discrepancy being the differences between calculated and

experimental values of strain at room temperature resulting from

the application of load on the [±30] and on the [0/90] lami-s s
nates. No explanation exists for this discrepancy. It should,

however, be noted that the stress-strain curve obtained from a

test of a [±30] laminate at room temperature (described earlier)
S

gave a strain much lower than the reported strain in the experi-

ment described in this section.

In addition, it should be noted that whereas the free ther-

mal expansion curves were generally in good agreement with the

calculations based on a stress free temperature equal to room

temperature; here, for certain laminates under load, the agree-

ment is better with the assumption of a 316°C stress free

temperature.

It should also be noted that transverse stress-strain

curves for the basic unidirectional ply material' were generally

nearly linear to failure. Ramberg-Osgood stress-strain curves

were fitted to these transverse stress-strain data using a least

squares fit and no terminating strength value was introduced to

the curve. If calculated tension stresses were in excess of the

material strength of 69 MPa (a condition which can exist in lami-

nates - particularly when there is a relatively high stress free

temperature), the stress-strain representation that was used

would be in error. In general, it would be reasonable to expect

in-situ microcracking for transverse stresses greater than the

ply strength. Such an accumulation of microcracks could result

in an apparent non-linear transverse stress-strain behavior,

which was not modeled by the present analysis.

THERMAL CYCLING

Space structures, such as geostationary satellites, undergo

thermal cycling with the temperature changing from 316°C during

11



the day to -157°C at night. Laminate response to cyclic loading

is, therefore, of interest. This part of the report deals with

the thermal expansion behavior of composite laminates subjected

to thermal cycling. Analyses were conducted for free thermal ex-

pansion and expansion under load. There is an inherent problem

in conducting these analyses. Cycling requires the inclusion of

residual stresses in the formulation. If the analysis is based

on an incremental stress-strain relation, the inclusion of resid-

ual stresses is a relatively straightforward procedure. The code

TENOL, used for the analyses in this report, is based on a total

stress-strain relation. Such a formulation is path independent,

the stresses and strains being calculated from compliances at

the final state of load and temperature, regardless of how that

state is reached. Hence, at a given state of load there is a

unique state of stress. In cycling in the presence of inelastic

behavior, the stresses and strains for a given load state depend

on the path. So inherently, a total stress-strain formulation

based analysis cannot be used to predict cycling response in the

presence of any inelastic behavior. Here, a cyclic load analysis

is simulated by two separate analyses: one linear elastic, and

the other non-linear. The linear elastic analysis is translated

appropriately to present the unloading phase of the load cycle.

Laminate response for thermal cycling with and without load was

predicted.

Free Thermal Cycling

A [±45] laminate was chosen for the analysis. The results
' "

of the non-linear and linear elastic analysis are presented in

figure 13 for stress free temperatures of 316°C and room tempera-

ture. It can be seen that there is little difference in the

thermal expansion behavior due to non-linear behavior (this was

observed earlier for the [0/90] laminate which has the same frees
thermal expansion characteristics). Therefore, if the stress

12



free temperature is constant, the analysis predicts little or no

hysteresis. For these assumptions, the thermal expansion coeffi-

cient remains the same when heating or cooling.

It should be noted that the magnitude of total free thermal

strain between any two.temperatures may depend upon the value of

the stress free temperature (e.g. figs. 5, 6 and 7). Thus, if

there is a change in SFT after a cooling cycle, a subsequent re-

heating cycle will not produce the same total strain change as

the initial cooling cycle. If the assumption is made that the

stress free temperature varies during the heating and cooling

phases of the cycle, the analysis predictions will depend upon

such changes. The thermal expansion response of the [±45]s
laminate for different stress free temperatures appropriately

translated is different even for linear elastic behavior. Thus,

a change in the stress free temperature during the thermal cycle

would result in an apparent hysteresis. This is demonstrated in

figure 14. Here it is assumed that a heating cycle is conducted

starting with a SFT = 24°C. If the stresses relaxed after such .

a cycle, the subsequent cooling cycle would result in the strain

vs. temperature curve shown for SFT = 316°C (translated to match

the initial 316°C calculation).

THERMAL CYCLING UNDER LOAD

As was shown earlier, the thermal expansion characteristics

of Gr/Pi laminates are affected by material non-linearity to a

varying degree, dependent on the magnitude of the induced shear

stress. A [±45] laminate, when axially loaded, represents a
S

stress state of almost pure shear. Therefore, material non-

linearity can be expected to significantly affect the laminate

response. The thermal expansion response of a [±45] laminate
S

loaded axially with a = 34 MPa was predicted using TENOL (fig.
X

15). Due to the large mechanical strains, the effect of chang-

ing the stress free temperature can be neglected. The linear

13



elastic response is quite different from the non-linear predic-

tion, the difference increasing at higher axial loads. In the

heating cycle, the laminate is losing its stiffness and also

becoming more non-linear as the temperature increases. Note

that for the [±45] laminate, the non-linear calculation showss
a monotonically increasing curve of strain with temperature.

This is quite distinct from the thermal expansion without load,

in which the thermal strain increases and then decreases. In

view of this, the agreement between experiment and analysis for

the heating portion of the cycle is good. There is a question

as to what analysis should be used during the cooling cycle.

The argument can be made that since the strains are decreasing

due to a stiffening of the material as the temperature comes

down, that this unloading analysis should be an elastic analy-

sis. That is the basis for the calculated value shown in figure

15.

There are two discrepancies between analysis and experiment

during the cooling cycle. First of all, there was a significant

amount of strain taking place at the 316°C temperature before

the cooldown started. This is not accounted for in the analy-

sis. For the experiment, it is assumed to be a time dependent

strain rather than any non-linearity associated with stress. The

second difference is that, on cooling, the experiment showed es-

sentially no change in strain during the cooldown cycle and ;the

analysis shows a strain reduction during that cycle. It is also

possible that there are time dependent phenomena influencing the

entire cooldown cycle, but that is speculative.

14



VISCOELASTIC ANALYSIS OF GRAPHITE/POLYIMIDE LAMINATES

When composite laminate structures are utilized in extreme

thermal environments there exists the possibility of time depen-

dent response of the material. In general, the matrix material

is the source of the time dependent response. The fibers are

generally elastic. This results in a unidirectional lamina

which will be elastic in the fiber direction and perhaps visco-

elastic in the transverse direction. The importance of this

behavior will increase at elevated temperatures, particularly

near or above the matrix glass-transition temperature. The

present study was directed toward an evaluation of the influence

of such time dependent behavior upon the laminate response.

Creep deformation and stress relaxation are results of this time

dependence. One problem that needs to be addressed is predict-

ing behavior of a laminate given the time dependence of the uni-

directional laminae, particularly the relaxation time. Another

is the laminate response to thermal cycling. The following sec-

tion deals with these problems.

STRESS RELAXATION IN LAMINATES

The purpose of this analysis is to predict the characteris-

tic relaxation time of a laminate given the relaxation behavior

of the unidirectional material. Since this report deals with

laminate response to thermal loads, the stress relaxation behav-

ior of the thermally induced curing stresses is analyzed. A

methodology has been developed and demonstrated with a sample

analysis. Certain simplifying assumptions were made to obtain a

closed form solution. The methodology followed is to express

the plane stress equations in a time dependent form and apply

lamination theory in the Laplace'transformed plane. The appro-

priate constitutive relation has to be used to describe the

material behavior, and is usually obtained from curve fitting

the experimental data for the material. A quasi-isotropic lam-

inate has been used to demonstrate the analysis procedure.
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A quasi-isotropic laminate subjected to a pure thermal load

has a very simple state of strain due to various symmetries. In

a laminate (fig. 17) the strains in any layer are given by:

£ij(t) = e(t)6i;. ; i,j = 1,2 (1)

where 6.. is Kronecker delta.

Since there are no shear strains present in the orthotropic lam-

inae, there are no shear stresses. The viscoelastic effects,

therefore, are primarily due to the stresses transverse to the

fibers. It is assumed that there is no viscoelasticity in the

fiber direction, nor for the associated Poisson's effects.

Stress-strain relations for a layer, with the stress constant in

time are:

£22 = - i

where:

<J> - analysis temperature

<f> - stress free temperature,
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The beginning of the relaxation process is defined to begin

at time equal to zero at room temperature $ . The elastic moduli

E and v. can be assumed to be constant, and the only time depen-
f\ J\

dent modulus to be E . The plane stress relations can;.then be

transformed into the viscoelastic relations using hereditary in-

tegrals , and they become:

a (t) v

-Ti E^ a22(t) + aA
A(|)H(t)

VA t da

£22(t) = - i all(t) + Vt)a22(0) + Q / AT(t-T) -

aTA<J)H(t) (4)

where H is the Heaveside unit step function.

They can be reduced to linear equations by applying Laplace

transform. Due to various symmetries, in the [0/±45/90] lami-s
nate, there is only one stress. This stress is determined by

lamination theory in terms of E,, v,, &T. These calculations

have been presented in Appendix B, and the resulting expression

for the transverse stress in any layer is given by:

_L /c\- —- - . (5)
A A' T ' 1

rr S T _ _ ^ . -., /__ X ~~ •
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To be able to calculate inverse transform of this equation

and obtain a closed form solution for the stresses, a simple

Maxwell behavior for the material is assumed; i.e.:

the characteristic relaxation being

The stress a22 can then be backtransformed to yield the

characteristic .time t for the laminate to be (from Appendix B)

E 2v E
fcr ' V1 + ir + -}-

The stresses in the laminate therefore relax slower than those

in the unidirectional laminae.

The above analysis is at an elementary level. The mate-

rial behavior can be expected to be more complex than the sim-

ple Maxwell type assumed. Hence, the lamination theory solution
k

for the stress a-2 is likely to be of a form that cannot be in-

verted easily or exactly, and some approximate numerical tech-
]̂

nique will have to be used. Variation of a in time has then

to be plotted and the characteristic time determined. A simpler

inversion technique can be used with a quasi-state assumption,

as done by Kibler (ref. 3). The present analysis is a demonstra

tion of the analysis procedure for the simplest case possible.
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VISCOELASTIC RESPONSE TO THERMAL CYCLING

The significance of material viscoelasticity in the response

of a composite space structure subjected to daily temperature cy-

cles has been treated as an example of this effect. Thermal

strain was evaluated for an environment in which the temperature

changed from -157°C to 316°C and back to -157°C in a period of

one day. Here again, the simplest case was chosen to demonstrate

the analysis procedure. The procedure used was developed in ref-

erence 4, and was adapted for the present program.

A cross-ply laminate subjected to a purely thermal load was

analyzed. There are no shear stresses induced in the laminate

due to the loading, and the material behavior in the fiber direc-

tion is assumed to be elastic. The viscoelastic laminate re-

sponse is due to behavior transverse to the fibers. The expan-

sion coefficients a , a , and the modulus in the fiber direction
X"l X

EA are assumed to be constant. An elastic solution for the

stress a * is:

o„ E A<}>
2 - ^ . (9)(a.-OA l 1 +

The behavior of E in time has to be known throughout the temper-

ature range. This is achieved in a compact form for a thermo-

rheologically simple material by shifting the compliances at vari-

ous temperatures and times. The analysis is then conducted by

defining a reduced time parameter with a time temperature shift

factor and a compliance master curve (refs. 5,6). The relaxation

process is assumed to occur quasi-statically so that the compli-

ance is a simple reciprocal of the modulus. This static equation

can be written in the form of a heriditary integral, and that

integral evaluated by direct integration numerically using the
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time/temperature shift factor and the compliance master curve.

The resulting equations can be found in Appendix C.

The principal difficulty in the analysis was the lack of

experimental data for Graphite/Polyimide. Master curves and

shift factor for Graphite/Epoxy were available from two sources

(refs. 3,7). The master curves from tests by Brinson (ref. 7)

extended over a somewhat larger range and were extrapolated and

used (fig. 18). Two different shift factor curves (fig. 19),

one of them from reference 7, were used and the laminate cycled

in those temperature ranges. Numerical integration was carried

out assuming a constant rate of change of temperature in all

the cases analyzed.

The higher shift factor (b=.071) corresponds to a greater

viscoelastic behavior. When the laminate is cycled between -18°C

and 177°C (fig. 20) at the highest temperature, the maximum

stress (relative to -18°C) is not as large as the linear elastic

prediction and at the end of one complete cycle there is a re-

sidual stress. This stress increases slightly in the next

cycle. There is little difference between the two shift factor

predictions. When the range of the cycling is between -73°C

and 204°C, however, the two predictions begin to show a small

difference (fig. 21) . The residual stress at the end of the

first cycle is larger and grows faster at the end of each cycle

than in the lower temperature range. The maximum stress also

is not as large, due to some relaxation at high temperature

(fig. 22).

When the range of the cycling is extended from -157°C to

232°C, there is significant relaxation behavior and at the end

of the first cycle a large residual stress is predicted. The

maximum stress also is much smaller than the linear elastic

prediction and though the trend in the predictions of the two

shift factor assumptions is the same, there is a difference in

the magnitude predicted.
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Such a prediction of the stress is translated into a strain

temperature plot and presented in figure 23. It is qualitative

in nature because of the uncertain material properties, as is

most of this analysis. Let us consider the cross-ply laminate

being cycled between -157°C and 316°C. The assumption of con-

stant aA, aT and moduli would predict a strain response between

e, and £„ for all cycles in a linear elastic prediction. Since

the unidirectional material is viscoelastic at higher tempera-

tures, there will be some stress relaxation and the stress mag-

nitude and hence the strain will be less than the linear elastic

prediction. In the cooling part of the cycle, at the higher

temperature there is still some viscoelastic behavior; however,

below a certain temperature, these effects are not as signifi-

cant and the predicted response will be parallel to the linear

elastic prediction. This results in a larger strain at -157fC

than at the beginning of the cycle. This behavior is repeated

in the next cycle, and the maximum stress and strain are smaller

and the strain at -157°C even larger. Such a behavior would

suggest that there will be very small stresses at the higher

temperature and a shift of the range over which the strains vary,

A laminate which is initially cycled over a temperature range

.causing strains of +e, and -e_ will approach a steady state

solution of cycling between strains of 0 and e + e . This will

affect the dimensional tolerances and the way they are specified

in the design for such a structure. Even though this conclusion

is based on Graphite/Epoxy properties, and an elementary analy-

sis, it is valid for any composite laminate made from a constit-

uent material that has significant viscoelastic behavior in the

range of the thermal cycling.
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DISCUSSION

The basic concern associated with stress dependent non-

linearity was that the matrix dominated stress-strain relations

of the unidirectional laminae .could be expected to be non-linear

to a significant degree. This expectation was supported by pre-

liminary experiments conducted in an earlier program (ref. 1).

However, in the present study it was found that the current sam-

ples of the material, although showing significant non-linearity

when subjected to shear stresses, did not show any significant

non-linear behavior when subjected to stresses transverse to the

fiber direction.

It should be noted that there can be differences between

lamina stress-strain' behavior obtained from unidirectional mate-

rial, as opposed to the in-situ lamina stress-strain behavior.

A unidirectional ply subjected to transverse tensile stress has

a low resistance to crack propagation in a direction perpendicu-

lar to the applied load. As a result, an initial flaw can propa-

gate indefinitely and cause failure. When this same ply is lo-

cated in a laminate, the effect of the initial crack in the ply

is suppressed by transference of stress to adjacent layers

through interlaminar stresses. There exists the possibility that,

within a laminate, transverse tension behavior might show the ef-

fect of non-linear behavior due to an accumulation of cracks

parallel to the fibers as a result of the ply transverse stresses.

There is no evidence that this occurred in the present tests. It

should also be noted that the shear stress-strain curves were ob-

tained from ±45° tensile coupons in which there is the opportuni-

ty for transverse cracks to accumulate, demonstrating the effect

discussed above. Whether or not this was the cause of the non-

linear shear stress-strain behavior cannot be determined from

the experimental data obtained herein.

In any event, since most practical laminates are constructed

with at least three fiber directions, shear strains induced with-

in individual plies due to both load and thermal stresses tend to
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be small. Because of this, and since the material did not exhibit

non-linearity transverse to the fibers in the basic material, the

effect of non-linear stress-strain curves upon the observed thermo-

elastic behavior of the laminate studied herein was minimal. This

effect may be regarded as a minor effect for practical laminates

of this carbon-fiber/polyimide composite.

A related phenomenon was observed to have a significant ef-

fect; namely, the influence of temperature dependent properties

upon the observed thermomechanical behavior. Prediction of ther-

mal expansion characteristics and solution of any thermal stress

problem for a composite laminate having temperature-dependent prop-

erties requires knowledge of the laminate stress free temperature.

Solution of the thermoelastic, temperature-dependent problem re-

quires definition of the stress free temperature state, knowledge

of the mechanical properties at the final temperature and defini-

tion of the total free thermal expansions of the ply material

when subjected to a temperature change from stress free tempera-

ture to final temperature. With this information the stresses

and strains at any final temperature can be determined. The cal-

culated laminate thermal expansion curves shown in figures 5-7,

based on two different stress free temperatures, show that there

is a substantial percentage difference between the two sets of

calculations. Although laminate thermal expansion coefficients

for this case are small, such behavior can be of significance in

the design of dimensionally stable composite structures.

The second major area of concern was the possibility of time

dependent behavior of these high temperature composite materials.

Polymers subjected to stresses and strains at temperature levels

approaching the glass transition temperature can be expected to

show viscoelastic or similar time dependent response characteris-

tics. As a result of this, a series of calculations were carried

out to quantify the nature of this effect. In the absence of

direct experimental data on the viscoelastic characteristics of

23



the particular carbon fiber/polyimide matrix composite under con-

sideration, representative data were taken from the literature in

these calculations.

The first problem studied was the stress relaxation in lami-

nates. The problem considered was the rate of relaxation of the

stresses induced by the curing process; such residual stresses

existing in a laminate which is not subjected to any load and is

held at a constant temperature. The laminate treated was a

quasi-isotropic laminate. The results are identical for a 0/90

or ±45° laminate. A closed form solution was found for the case

where the material properties can be adequately modeled by

Maxwell behavior. In this case, the relaxation time for the

laminate was found to be slightly larger than the relaxation

time for the laminae material. However, the difference between

the two is small.

In order to assess the significance of material viscoelas-

ticity in the response of a practical structure, the same lami-

nate was analyzed for temperature cycles from -157°C to +316°C

over a 24 hour period. This was representative of a composite

space structure in orbit. The results indicated that the total

amplitude of the change in strain during a single temperature ex-

cursion from minimum to maximum remained essentially constant

while the mean value shifted. The laminate approached the case

of a steady state cycle wherein the maximum strain was zero, and

the minimum strain was negative. The significance of this is

associated with the question of dimensional stability: the po-

tential problem being that the actual range of dimensional

change during service can differ significantly from the dimen-

sional changes measured during initial cycling tests of the "as

manufactured" structure.

Finally, one additional concern should be recognized; stress

relaxation has the effect of changing the stress free temperature

of a laminate. Changes in stress free temperature have been shown
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to change the subsequent response characteristics of a laminate

subjected to a temperature change. Hence, additional uncertainty

exists with regard to dimensional stability.
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CONCLUSIONS

An evaluation has been conducted of the effects upon the

behavior of carbon-fiber/polyimide-matrix composite laminates

of material non-linearity due to either: high lamina stresses/

or time-dependent lamina material behavior.

Based on the results of the present study, it appears that

non-linearities due either to stress or time dependent effects

do not appear to be of major practical importance for conven-

tional high temperature composite structures. However, the ef-

fects of time dependent characteristics and temperature depend-

ent properties can be of significance in understanding the be-

havior of dimensionally stable structures designed for long

lifetimes.
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Figure 17. Laminate Geometry
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APPENDIX A

NON-LINEAR THERMOELASTIC LAMINATE ANALYSIS

TENOL FORMULATION AND PROGRAM DESCRIPTION

Introduction

The TENOL program codifies a thermoelastic, non-linear, plane

stress laminate analysis wherein the temperature-dependent non-

linear behavior of the laminae under in-plane shear and transverse

stresses are taken into account. Both the underlying analytical

development and the computer program are sufficiently general to

enable the user to study the non-linear behavior of a symmetric

laminate subject to any combination of temperature, in-plane shear

and biaxial loadings. Contained in this document are a detailed

description of the input required to use the program and a brief

outline of the theoretical development on which the program is

based. The reader is referred to references A-l and A-2 for the

complete analytical development. Portions of these references are

reproduced herein.

In most unidirectional fiber-reinforced materials, the trans-

verse extensional and particularly the in-plane shear behavior are

non-linear. This non-linearity increases with temperature and is

very prominent at elevated temperatures. The program TENOL allows

for non-linear representation of the stress-strain behavior by

Ramberg-Osgood approximations. The introduction of these non-

linear constitutive relationships into a lamination theory analysis

leads to a set of non-linear equations with the laminar stresses as

unknowns. The program then solves this set of equations utilizing

the generalized Newton-Raphson iterative procedure, yielding the

laminae stresses and strains corresponding to the applied boundary

conditions.

The theoretical development for this non-linear laminate anal-

ysis incorporates a thermoelastic total deformation theory with the

Ramberg-Osgood constitutive relations to formulate the governing

equations at the final temperature of the laminate. At a given
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temperature, the compliance tensor is assumed to be the sum of two

tensors; the components of one are the usual components associated

with linear, orthotropic, plane stress elasticity theory, while

the second tensor contains the non-linear elements. By assuming a

quadratic interaction of the stress components, and requiring the

constitutive relationship to reduce to the relationships for the

uniaxial stress cases of in-plane shear and transverse extension,

the elements of the non-linear compliance tensor are explicityly

determined.

Having the non-linear laminae constitutive relations, the

usual methods of laminate theory are then utilized to obtain the

governing non-linear equations for the laminate. As in linear

laminate theory, the strains of the individual laminae are first

rotated to a common set of laminate axes, and the laminate compat-

ibility relations requiring the corresponding strains of the in-

dividual laminae to be equal are then employed. In addition,

equilibrium at the laminate boundaries is invoked. In this way,

the required number of equations involving the unknown laminae

stresses are formulated.

The program solution procedure for the -set of .non-linear

equations involving the laminae stress components is a IKtewton-

Raphson technique generalized to accommodate systems of equations.

The starting point for the solution procedure is taken as the

solution of the associated linear laminate problem, where the

associated linear problem is obtained by ignoring all non-linear
•

terms.

Incorporated into the program are three different failure

criteria: maximum stress, maximum strain and a quadratic inter-

action criterion. All or any of these may be employed :by the user,

Derivation of Governing Equations

In the usual plane-stress, linear, thermoelastic, laminate

analysis, the laminae stress-strain relationships are first writ-

ten with respect to the longitudinal and transverse fiber direc-

tions. These laminae relationships are then transformed to a
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common set of laminate axes and the laminate constitutive rela

tionships are then developed by enforcing strain compatability

In this non-linear laminate analysis an entirely analogous pro

cedure is followed. The laminae non-linear, stress-strain re-

lationships are first written for the N laminae with reference

to their respective natural axes, and then transformed to a

common set of laminate axes. Enforcement of compatibility be-

tween adjacent laminae as well as equilibrium at the laminate

boundaries leads to the governing non-linear equations.

Let the strains be separable into linear, non-linear and

free thermal parts:

allAT

£22 = £22 + £22

£12 ~ £12 + £12

where primes designate the linear parts and the double primes

designate the non-linear parts, and the subscripts 1 and 2

refer to the longitudinal and transverse directions, respective-

ly. The linear parts of the strain components are related to

the stress components by the usual orthotropic, plane-stress,

elasticity constitutive relationship:

V
21

a22

an + i— a (A-2)

12 2G12(T)
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For the uniaxial stress states of transverse extension and

in-plane shear, the non-linear parts of the strain components are

related to the stress components by the relationships:

„ a „ „ a
e

n-1
22 "22

22 e22(T)

(A-3)

m-1

12 2G12 f2

where the values of n, m, f, and f~ are obtained from curve-fit-

ting, unidirectional, experimental data and may vary with temper

ature. It is assumed that in the longitudinal direction, the

non-linear part of the strain component is zero:

The relationships between the non-linear parts of the strain

components and the stress components for cases of combined

transverse-extension and in-plane-shear stresses are determined

by using a generalization of J2 (ref. A-l) theory in addition to the

requirement that these relationships reduce to equations (A-3) for

uniaxial states of stress. The resulting equations are:

„ a~9 a0_ 2 a 2 2^i
e _ 22 22 , 12 2

(A'5)

22 £22
(T) fl f2

12 2G12(T) f
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Equations (A-2) and (A-5) comprise the total non-linear, stress

strain relationship for the laminae.

The governing equations are formulated so that the three

stress components in each lamina are the unknowns. Thus, for

an N-layered laminate, the problem is formulated in terms of 3N

unknowns. To obtain solutions, 3N equations are then required,

and these equations consist of three equilibrium equations and

3(N-1) compatibility equations satisfying strain compatibility

between adjacent laminae. The three equations of equilibrium

for a laminate under a combined state of stress are:

N (k)Z a_V t. = Ni
k=l 1]- k

K \ = N22

N

Z v io12 k 12

where N..,, N_2 and N _ are the applied stress resultants, t, is

the thickness of the kth lamina, and subscripts 1 and 2 denote

the laminate axes. The 3(N-1) equations of strain compatibility

are:

P(k) = _(k
11 11

£22 "22
(A-7)

£12} = ei2"1>

k = 2,3,...,N .
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Equations (A-6) and (A-7) are the 3N equations required for

the solution of the non-linear laminate problem. When the

stress-strain relations given by equations (A-2), (A-4), and (A-5)

are transformed to the laminate reference axes and substitute in-

to equations (A-7), the governing equations can be expressed in

functional form as:

2
F, (o-if tfof . .., 0, , ...) = 0
X -1 ^ L (A-8)

. k = 1, 2, ..., 3N .

Method of Solution

Solutions of equations (A-8) for the 3N stress components

are obtained by employing a Newton-Raphson iterative scheme.

The functions F, are first expanded in Taylor series about an
JC

approximate set of initial stresses, a.. Considering only the

first order terms of these series:

Fk =
3Fk

80.
D

o
0 .

. A 0 .

j,k = 1, 2, ..., 3N . (A-9)

By writing, A a. = a. - a, where a. are the solution values,

equations (A-9) can be rewritten to give:

a. = a° - * . F°
D D 3o k

j,k = 1, 2, ...,3N. (A-10)
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For clarity, the notation in equations (A-10) is, in expanded

form:

/o, N

a . (A-ll)

V
a!

(A-12)

(A-13)

and,

3a.
oaj 9F,

_i • • •
?2

72
r2 '"

a . = a .
D D

(A-14)

57



The solution for a. in equation (A-10) may be taken as the

approximate, initial stress values for the next iteration step,

and this process repeated until a result is obtained within some

desired accuracy. After the stresses are obtained and trans-

formed to the laminae natural axes, the corresponding laminae

strains are determined from equations (A-l), (A-2), and (A-5).

Computer Program

The flow chart for the computer program is shown in figure

A-l. The major sections of the program are the formation of the

governing equations, the Newton-Raphson solution procedure and

the failure checks.

Using the computer program notation, the governing equations

take the form:

[A]- SG + B = SCO (A-15)

where SG and SGO are the stress solution vector and the applied

stress vector, respectively. A is a matrix of constant elements

which are the coefficients of the linear terms in the solution,

and B is a vector containing the non-linear terms in the solu-

tion. The set of equations (A-15) are equivalent to equations

(A-8). If in equation (A-15) the vector B is set to zero, the

resulting equation:

[A]• SG = SGO (A-16)

is the linear laminate solution. The stress vector, SG", as

determined from equation (A-16) is taken as the initial approx-

imation for the stress vector in the Newton-Raphson procedure.

For the Newton-Raphson procedure, it is necessary to form-

ulate the derivative of ([A]• SG + B) in equation (A-15) with

respect to a. as well as the vector:
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DC = ([A]• SCO + B - SCO). (A-17)

The vector DC corresponds to the vector F| in equation (A-10),

and an explicit evaluation of DC is obtained by using the current,

approximate value for the solution stress vector, SC. The deriv-

ative of ( [A] • S~G + B) is designated DB~ in the computer program,

and is equivalent to the matrix (3F,/3a.)a? in equation (A-10).K D D
An explicit evaluation of DB is also obtained by using the current,

approximate value for the solution stress vector, SG.

In the program, the external loading is applied in increments.

The approximate solution stress vector for the first load incre-

ment and the first Newton-Raphson iteration is determined from

equation (A-16). For the second and third load increments, the

approximate solution stress vectors for the first iteration are

taken as the final solution stress vectors from the previous in-

crements. Solutions for subsequent load increments are initiated

by the following algorithm:

(SGi 1> INITIAL

(FACTOR) = *
(i-1)

FINAL * (FACT°R)

(A-18)

FINAL" (SGi-l> FINAL
(SGi)FINAL

The convergence and divergence criteria employed in the pro-

gram are contained in the following expressions:

(SG..,, - SG. )/SG.i+l i i

(SG.,, - SG.)/SG.i+l i ' i

< e
(A-19)
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where SG. and SG. , are the solution vectors obtained from the
1 -3 +4

ith and i+lth iterations. Usually values of 10 and 10 are

taken for e and A, respectively. However, the other values may

be input as data to the program. In addition, the maximum num-

ber of iterations to be allowed is input as data. 10 iterations

have been found to be sufficient for most problems.

The program contains three failure criteria: maximum

strain, maximum stress, and a quadratic interaction criterion.

After a solution is obtained for each load increment, any or all

of these failure criteria may be applied to check for laminae

failure.

The maximum stress and maximum strain failure criteria

check, respectively, the laminae stress or strain values in the

fiber, and transverse fiber directions against the material

allowables. These allowables are input to the program as data.

The quadratic criterion is given by:

(A-20)
Ai2aLLaTT + VLL + VTT

where the coefficients are functions of the allowable stress:

A = 1 B = -I - -i
11 Ftpc <

 Bll t pc
L L L L

B.. = -4 r (A-21)22 Ftpc -22 t pc
T T T

»1,- —44 /T,s,
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t cF and F are the allowable tension and compression stresses in
t cthe longitudinal direction, F and F are the allowable tension

and compression stresses in the transverse direction, and F is

the allowable shear stress. The coefficient A,,, is input as

data to the program, or a default null value is used.

If a failure criterion is satisfied at the end of a load

increment, the program determines the failure load through lin-

ear interpolation. If all failure criteria are being checked,

and not all indicate failure during the same load increment,

the program continues loading until all criteria indicate

failure.

It is possible to input the experimental values of the

elastic properties and strengths only at selected temperatures.

If the analysis temperature is different from these tempera-

tures, the properties are linearly interpolated at that temper-

ature, and the governing equations set up.

TENOL PROGRAM USERS GUIDE

Program Description

The logic of the analysis code, simplified in the form of

a flow chart, can be seen in figure A-l. The code was struc-

tured such that an existing code, NOLIN, could be used, with

some modifications, to solve the non-linear equations with the

Newton-Raphson iterative procedure. .It consists of a main rou-

tine, an interface routine, and modified NOLIN. The equations

are set up at the analysis temperature in the main routine us-

ing properties linearly interpolated in the interpolation rou-

tine. A more sophisticated interpolation scheme can be incor-

porated very easily into the program. The interface is a

translation table to make modifications to the variables for

compatibility with the modified NOLIN. All data are input in

the form of a single NAMELIST called DATA.
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Input Description

The initial data require a message of five cards of alpha-

numeric descriptive information describing the problem being

solved and printed as a title on the output. These five cards

may be left blank, but must be included ahead of the first

NAMELIST deck in the data. This descriptive message is read

only once at the beginning of the program execution. The mul-

tiple case feature of running successive computations is

accomplished by supplying multiple NAMELIST data sets with the

changed variables indicated.

The following is a description of the input variables re-

quired for execution of the program. Where appropriate, de-

fault or suggested values are indicated. The following data

are supplied through NAMELIST "DATA":

Program Option Parameters

LTYPE: Load type sentinel

LTYPE = 1: Load purely mechanical.

LTYPE = 2: Load purely thermal.

LTYPE = 3: Load thermomechanical.

Solution Accuracy Parameters

KSGM: Number of load increments; maximum is 50 increments

IT: Maximum number of Newton-Raphson iterations;

default if 100.

EPS: Convergence criteria for Newton-Raphson analysis;

default value is 10

UPBD: Divergence criteria during Newton-Raphson analysis;

default value is 20000.

INMT: Incrementation estimate method; default value is 2.
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Laminate Description

NMAT: Number of different materials in the laminate;

maximum is 5.

NLAY: Number of laminate layers; maximum is 20.

THICK(L): L = 1, NLAY; thickness of each layer.

THETA(L): Orientation of each layer in degrees.

MATYPE(L): Material kind of each layer.

Thermal Properties

SFT: Stress-free temperature.

NTEMPP: Number of temperatures at which data is input;

maximum is 8.

TEMPP(I): 1 = 1 , NTEMPP; temperatures at which data is input,

NALP: Number of temperatures at which AL/L points are

input; maximum is 20.

ALPT(I): 1 = 1 , NALP; number of temperatures at which AL/L

points are input; maximum is 20.

Material Property Input

In this set of variables, 1 = 1 , NTEMPP and J = 1, NMAT.

TE11(I,J): Material longitudinal modulus.

TE22(I,J): Transverse modulus.

TG12(I,J): Shear modulus.

TV12(I,J): Major Poisson's ratio.

TS11T(I,J): Longitudinal tensile strength.

TS11C(I,J): Longitudinal compressive strength.
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TS22T(I,J):

TS22C(I/J):

TS12(I,J):

TEP11T(I,J)

TEP11C(I,J)

TEP22T(I, J)

TEP22C(I,J)

TGAMA(I,J) :

TA12(I,J) :

TSTY(I,J):

TSCY(I,J):

TTY(I, J) :

TXM(I,J):

TXN(I,J):

Transverse tensile strength.

Transverse compressive strength.

In-plane shear strength.

Longitudinal tensile strain.

Longitudinal compressive strain.

Transverse tensile strain.

Transverse compressive strain.

In-plane shear strain.

Interaction term for quadratic interaction

criteria; default value is 0.0.

Ramberg-Osgood tension constant.

Ramberg-Osgood compression constant.

Ramberg-Osgood shear constant.

Ramberg-Osgood shear exponent.

Ramberg-Osgood tension exponent.

For these variables, K = 1, NALP and L = 1, NMAT.

ALPHA1(K,L): AL/L value in the longitudinal direction,

ALPHA2(K,L): AL/L value in the transverse direction.

Applied Loading and Failure Criteria

SOU:

S022:

S012:

Initial axial stress applied to laminate.

Initial transverse stress applied to laminate,

Initial shear stress applied to laminate.

64



IFCN: Failure criteria sentinel

IFCN = 1: Ultimate stress.

IFCN = 2: Ultimate strain.

IFCN = 3: Quadratic interaction.

IFCN = 4: All failure criteria.

STIFF: Ratio of final to initial laminate stiffness which

constitutes failure due to stiffness reduction;

default value is 0.10.

TEMP: Temperature at the end of the first load step.

STEMP: Temperature change in the subsequent load steps.

SMLT: Scaling factor yielding the subsequent load incre-

ments based on initial stress loads.

Calculation of Ramberg-Osgood Parameters

Ramberg-Osgood parameters are used to curve fit the experi-

mental stress-strain data; the strain expressed as a polynomial

of the stress. The code RAMOSG can be used for this purpose.

Input to the program is in the form of engineering strains, and

moduli, and is approximated by a least square curve fit of the

type:

e-| (1+ f^)
y

The program output is the strength parameter a and the exponent

n. There is an option that permits treating n as an input quan-

tity with a being calculated by the program. Input is in the

form of a namelist INPUT. Data for different stress-strain

curves can be input in namelists one after another if a set of

Ramberg-Osgood parameters is required.
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Input

EMOD:

N:

STRS(I) :

STRN(I) :

IEXP:

Engineering modulus (transverse or shear).

Total number of stress points input.

Ith stress point, naximum of 50.

Ith engineering strain point, maximum of 50.

Ramberg-Osgood exponent.

IEXP =0: if exponent is to be calculated by program.

REFERENCES

A-l. Hashin, Z., Bagchi, D., and Rosen, B. W., "Non-linear
Behavior of Fiber Composite Laminates," NASA CR-2313,
April 1974.

A-2. Kibler, J. J., "NOLIN - A Non-linear Laminate Analysis
Program," NASA CR-2410, February 1975.
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APPENDIX B

STRESS RELAXATION IN LAMINATES

This section gives in detail the analysis procedure followed

to determine the characteristic time for stress relaxation in a

laminate, given the unidirectional lamina behavior. It consists

of developing the plane stress-strain relations in the form of

hereditary integrals, taking their Laplace transforms and applying

lamination theory. The viscoelastic behavior has to be modeled

from experimental data and lamination theory results back trans-

formed into the time domain. Such an analysis is conducted for a

quasi-isotropic [0/90/±45] laminate subject to a pure thermals
loading.

In the [0/90/+45] laminate, the thermal loading does not in-
O

duce any thermal shear stresses or strains in each ply. The state

of stress or strain is greatly simplified due to various symmetries.

Due to the absence of shear, the unidirectional stress-strain re-

lation for the unidirectional lamina becomes:

(B-l)

VA °2?•**• i £* £* t /i i \

All the moduli in the 'above plane stress relations are con-

stant in time. For the viscoelastic analysis, the axial modulus

and Poisson's ratio can be assumed to be constant in time. If a

and aT are assumed to be constant, and there is viscoelastic be-

havior only in the transverse direction, then the above equations

can be used to express the time dependent equations using heredi-

tary integrals. If the relaxation process is defined to begin at

time zero at temperature <)> / the viscoelastic relations for time

dependent stresses become:
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- ET °22(t) + aAA* H(t)

(B-2)

s22(t) = - - an(t) + £T(t)a22(o)

aTA<f> H(t)

where e (t) is the creep compliance and H(t) the Heaviside unit

step function.

The Laplace transform of a function f(t) is defined as:

f(s) = / f(t)e~stdt. (B-3)

n:

Transforming these equations using this definition results

(s) VA ^
T -- 17 °22(s)
r\ A

(B-4)

£22(s) = - — o + seT(s)a22(s) + a A<f> -

Now:

se (s) =
sET(s)

E_ - relaxation modulus
T

v

•"• £ ( S ) = -

a22(s)

sET(s)
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Solving for a and o

2 ET

(aAEA+VAaTSET)}

(B-5)

2 T

These are the viscoelastic stress-strain relations for any

lamina in the [0/90/±45] laminate. These have to be transformed
s

into the laminate coordinate system using the usual tensor trans-

formations. Since the shear stresses are zero, these become:

(B-6)

where

"o.. - stresses with laminate coordinates

a.. - stresses with material coordinates

6, - orientation of the kth layer.
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These relations are used to transform the stresses in each

lamina:

°22 = °22

Si = a2

(B-7)

4 1 ,4 4 . 4^
°11 = 2 (0ll+a22 ) = °22'

Equilibrium requires that for plies of the thickness the

equilibrium equations become:

S lko..}hk = a..h = 0.
k=l D D

1' j. 1 2 ^13 .,1 4
4 all + 4 all + 4 all + 4

I (011+022' + l'lall+a22>

i 2 1 3 3 1 4 4
and o22 + o.^^ + ^ (°n+a22^ + 2~ ^all+a2
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Since all the laminae are made from the same material, in the

material coordinate system:

, °11 = °11 = °11 = all (B~9)

and

°22 ~ °22 = °22 ' °22- (B

Substituting these equalities in the equilibrium equations

results in:

°Il + °22 + I «'[l+a22) + \ (a'll+a22> = °

i i
i.e. a,, + a22 = 0.

Also:

ell = Ell = ell = ell = ell (B

and

• - •

In the laminate coordinates the strains in all the layers

are equal. i.e. :

- Si
and

£22 = £22 = £22
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The strain transformation equations for this laminate are:

Si

For the [0/90/±45] laminate, the strains in the laminate
o

coordinates are:

£22 £22 ~ £22

2 = 2 _ 2
22 22 E22 el

Substituting these in

£22 £*

Taking Laplace transforms of

and

£22

The unidirectional viscoelastic stress-strain relations then

simplify to:
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2 T ~ ~ A ^

AS ET )022 = <VV8ET)E

Substituting into

Ac}) ,
e = s {aA

1 + 2V +

and the stresses:

an = s x -^-E- = s x -—: —
1 + 2VA + -^ '

 1 + VA + EAS6T

(B-16)
^ ^

°22 = -all'

The stresses have now been solved for in the 's1 plane in

terms of the constants E , a , a , A<J> and va and the transformf\ f\ ± A

time dependent compliance. This is obtained from experimental

data, and is different for different material. It can be obtained

from curve fitting the data with a series of exponential functions,

or modeled with various spring-dashpot models. The model param-

eters are then determined experimentally. The exact back trans-

formation of the stresses into real time may not be possible for

some of the forms of e (t) and approximate numerical techniques

may have to be used.



For the sake of demonstration of the methodology, a simple

Maxwell model was assumed for obtaining e (t) . The stresses can

then be easily obtained by back transforming (eqn. B-

A Maxwelll material can be characterized by the constitutive

relation:

°22 A °22
£22 = I- + ^

Applying Laplace transformation, this equation becomes:
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/\ . ^ -i /N /\ /S.

• £22 = (E + i ) a22 = S6Ta22

s -• • se -T ET snT ET snT

Substituting t , the characteristic time, defined as

t =
r

(B-18)



Introducing this form of the creep compliance in equation

a _ A<J> v~~ — x
22 s E

! + 2vA +

. . EA(aT"aA)= - A<p

sd+2vA+^)

EA(aT-aA)
E* EA/ErA . A 1

EA/ET

Back transforming, the stress response in real time

becomes:

E (a -a ) E /EA T_ i +

1 + 2V. + — r A A 1
A ET

exp - -

TT

*.t :: ̂
 + 2VA + VET

r r VET

(l+2v )E
= t x (1 4- —̂̂ )

r EA
*
t > t .r r
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Laminate stresses, therefore, relax at a slower rate than the

unidirectional lamina stresses. The above methodology demonstrated

the procedure to be followed for obtaining the relaxation behavior

of the stresses in a laminate. In general, the application of

lamination theory in the transformed plane is much more complicated

due to the presence of shear moduli. The layers are also at dif-

ferent angles and the transformation of the stresses and strains

from the material to the laminate coordinates results in further

complications. As explained earlier, the inversion also has to be

done numerically, and the stresses plotted against time, to deter-

mine the characteristic relaxation times. A simpler approach could

be the assumption of quasi-elastic behavior. The compliance and

moduli are then simple reciprocals of each other, and the stresses

can be obtained by direct integration. Such an approach has been

followed by Kibler (ref. B-l).

REFERENCE

B-l. Kibler, K. G., "Effects of Temperature and Moisture on the
Creep Compliance of Graphite-Epoxy Composites," Reprint.
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APPENDIX C

THERMAL CYCLING OF VISCOELASTIC LAMINATES

This section describes in some detail the formulation used

for.evaluation of the effects of stress relaxation during thermal

cycling. It is merely to demonstrate a methodology, and many

simplifying assumptions have been made to reduce the complexity

of the resulting equations. This formulation is a modification

of the analysis of viscoelastic effects made in reference C-l,

and the detailed formulation can be found in that reference.

The principal assumption is that the material behavior can be

assumed to be linearly viscoelastic, and that the correspondence

principal can be applied. Therefore, the stress and strain be-

havior in the Laplace transformed domain can be obtained by

merely rewriting the elastic results with the operational

modulus.

Viscoelastic behavior is temperature dependent, and hence,

in making calculations at different temperatures in the thermal

cycle, different properties have to be used. These calculations

can be greatly simplified if the material can be characterized

as thermorheologically simple. This assumption means that if

the relaxation function of the material is plotted against time

from experiments performed at a particular temperature, the mate-

rial response in time at a different temperature can be obtained

by merely shifting the relaxation function to the left or right

along the time axis. For example, the response function at tem-

perature <j> can be obtained from the function at temperature <j)

by shifting that curve by a_ (<{>), figure C-l, or at temperature

<j>2 by shifting the curve at <j)Q by a (<)>„). ' Thus the material can

be completely characterized by a response function at some tem-

perature, if the amount by which this curve needs to shifted at

various temperatures is known, i.e. if the variation of the

shift factor in temperature is known. That relaxation function

is known as the master curve, and the temperature at which it is

plotted, the reference temperature. The time for the function
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to attain a certain value is temperature dependent, so the master

curve has to be drawn against "reduced time1 £, defined to be:

-

such that ET(5) = Ê t,̂ ),

4>0 = the reference temperature such that a (<{>„) =1.

In the present analysis a cross-ply laminate subject to

thermal cycling was modeled with lamination theory. A state of

plane stress is assumed to exist and the lamina strain is assumed

to be :

°E7 - 22

and (C-2)

£22 = Vi2 ~¥ + -f:+ V*-

In a cross-ply laminate, subject to a pure thermal load, the

state of stressand strain is simplified greatly by various symme-

tries. There is numerically only one stress and one strain to be

solved from lamination theory, and the result for the stress is:

VET

EAwhere E, =A 1 + 2v,



The axial modulus E and the Poisson's ratio and the expan-
£\

sion coefficients are assumed to be constant in time, so the only

modulus that changes in time is E . Applying the correspondence

principal to this equation, the stress behavior in the Laplace

transformed plane can be written as:

ElmAT
— (C-4)

aT ~ aA 1 + E

where the Laplace transformed stress a is defined:

a = /e~p a (?)d? ' ' (C-5)

and E_ the operation modulus as E = pE .

Let a modulus function be defined such that

(P) = - - . (C-6)

for a unit step change in the temperature A<j>/ represented by the

Heaviside function H(^); then

a = pf ( p ) A < j > = f (p) (C-7)
- aA .

or

= f (?) by inversion. (C-8)
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For an arbitrary temperature history (C-7) can be general-

ized to:

/ f (£-£•) JL. [AT(?')]<U' . (C-9)
0 QQ

Hence, if f(C) can be obtained, the stress can be calculated by

direct integration. If the 0° ply is assumed to be rigid with

respect to the 90° ply (i.e. E- » £„) equation (C-6) reduces to

f(0 = ETU).

The function f(5) is calculated as follows. Let:

o
f U) = E gU) (C-10)

where g(C) = x

ET
o (

o • ET
E = a constant chosen such that h(0) = 1, and 6 = —^ .

EA

Substituting (C-10) in (C-9) :

80



Now h(£) is the normalized relaxation modulus master curve. The

real problem is obtaining this curve from experimental data that

are in terms of the creep compliance. There are various methods

to do this, like the direct method (ref. C-2) or by the quasi-

elastic method (ref. C-3). In this report the latter was used

because of its simplicity. The relaxation modulus by this

method is just the reciprocal of the creep compliance.

The integral in (C-ll) is evaluated as follows. The exper-

imental data for the variation of the shift factor a_ with tem-

perature has to be curve fitted. As seen in figure C-2, a lin-

ear variation of log a can be assumed, i.e.

a (4>) = e- . (C-12)

The temperature time relationship is piece-wise linear in

time intervals t., ... t., t. , for the laminate (fig. C-2).

For t± < t < ti+1:

dt
= tan 4,. = C. = "

*

T(t) = T± + Ci(t-ti)

AT(t) =
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Use of equations ( C - 2 ) , (C-12), (C-14), and (C-15) yield:

r i dt' , , dt'
aT[T(f (] t / a T l T ( f ) ] (16a)

r [aT[T

Also:
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! Cn

(17a)

Z d ; i > 1 (17b)
n=l



For

Substitution of (C-18) in (C-ll) and use of (16a) yield:

=S. . _ , (C-19a)

a (t) t
-^ - =S.(t) + / (C-19b)

for t > t. and £ > £ .
i i

Also:

S1(t) = 0 (C-20a)

S, (t) = Z e (t)
n=l n

; i > 1 (C-20b)

n

(C-20c)
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?(t')]Cidt' ; t > t. (C-20d)

n

The integral in (C-ll) can now be evaluated by numerical

methods and use of (C-19b), (C-20b), and (C-20d).
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Time

Figure C-2. Time-Temperature Curve
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