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SECTION 1
INTRODUCTION

Large heat-rejection iadiators of advanced design will be
required for future systems where large amounts of power are
generated in space. High-temperature radiators will be needed
for solar- and nuclear-powered heat engines where the amount of
heat rejected is typically large compared with the power generated.
Lower-temperature radiators will be needed to cool concentrating
photovoltaic systems and to reject heat from systems where power
is used in space, including manned stations and industrial pro-
cessing operations. These lower-temperatureAradiators will require
large radiating areas in order to compensate for the reduced radia-
tion intensity which, at 316 K, is 100 times lower than 1000 K.

In order to establish these large radiators in space, they must
be either deployed or assembled on-orbit after being transported
from Earth in a compact packaged condition by a vehicle such as
the Shuttle. The economic practicality of these large systems

depends on the development of very lightweight radiators which can
be established readily in space.

In order to reject heat to space, the radiator must provide
a surface area with a view of space and a means of efficiently
distrikuting the heat over this surface area. The trend in the
development of advanced radiator designs has been to consider
heat-pipe and fin designs with fluid-loop headers. The radiators
are initially oversized so that the loss of some heat pipes due to
micrometeoroid da.age leaves sufficient operating area at the end
of a specified mission life. Fluid-header pipes are heavily
shielded to avoid this type of damage. These radiators use a
combination of pumped £fluid, heat pipes, and conduction to dis-
tribute the heat. The tubes and fins provide the radiating
surface area. Boeing's Space Power Satellite (SPS) design for a




thermal heat engine includes a large radiator with a specific mass
of slightly less than § kg/m2 of raciating surface (ref. 1).
Somewhat lighter radiators have been developed for small heat
loads, but the proposed SPS design probably has the lightest mass
achievable for a very large system using this type of technology.

There is another class of heat-rejection devices referred to
as moving radiators. These devices distribute the heat over the
radiating surface by repeatedly moving the surface past a contact
with the heat source. They operate in a manner similar to a disc
brake where the rotor is heated by friction at the point of contact
with the brake pads and subsequently cooled by convection and
radiation. Weatherston and Smith are credited with the first
suggestion to use a moving belt radiator in space (ref. 2). The
belt surface prcvides the radiating area, and the heat is supplied
to the belt by one or more heated rollers. Their preliminary
calculations indicated that the radiator system specific mass
equivalent to 2.5 kg/m2 could be achieved with this concept. This
is a significant 65-percent reduction from the Boeing design ref-
erenced above. The belt radiator also appears to br. a design that
could be stored efficiently and subsequently deployed for use in
space.

Recently, John Hedgepeth sugjested the concept of another
type of moving radiator which uses a stream of small particles
to radiate the heat (ref. 3). The particles would be captured,
reheated, and subsequently rejected at two or more stations work-
ing in cooperation with each other. Preliminary calculations
conducted at Astro Research Corporation (Astroc) indicate that a
heat-rejection system specific mass below 1.5 kg/m2 is potentially
achievable with this technique (ref. 4). Subsequently, Mattrick
and Hertzberg have pointed out that small liquid droplets can be
formed and propelled by pumping a fluid out in narrow streams
(ref. 5). The instability of the narrow streams causes them to
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break up into droplets, as observed in the operation of a shower
head. They have also identified a number of liquid metals with
very low vapor pressures which can be used with an acceptably
smell penalty in evaporation losses.

This report summarizes a study by Astro of several moving
radiator configurations. Droplet-stream radiators suitable for
operation at peak temperatures near 300 and 1000 X have been
studied using both freezing and nonfreezing droplets. Moving-belt
radiators have also been investigated for operation in both tem-
perature ranges. The potential mass and performance characteristics
of both concepts have been estimated on the basis of parametric
variations of analytical point designs. These analyses have
included all consideration of the equipment required to operate
the moving radiator system and have taken into account the mass
of fluid lost by evaporation during mission lifetimes. -

Preliminary results of this study, presented at a midterm
review held at NASA MSFC on 1l December 1980, indicated that the
low-temperature droplet-stream radiator appeared to offer the
greatest potential for improvement over conventional flat-plate
radiators. Since it appeared that this type of radiatoxr would
also require the lowest development cost, the decision was made
to concentrate on this system in finishing the study and this is

reflected in this report.




SECTION 2
DROPLET-STREAM RADIATORS

Mattrick and Hertzberg have shown that the liguid mass re-
quired in a radiating droplet stream is very small compared with
conventional flat-plate radiator system masses, even when evapor-
ation losses are taken into account. The use of liquid droplets
in a particle-stream radiator provides feasible methods of forming
the droplets in a stream, collecting them with a centrifuge, and
reheating them in a heat exchanger. 1In order to make a fair com-
parison with existing systems, the masses of the equipment re-
quired to spray and collect the droplets need to be established
and added to the fluid mass. As part of this study, we developed
a preliminary analytical model of a droplet radiator system with
the intention of minimizing the total mass of the system by an
appropriate selection of geometry, stream size, drcplet size,
droplet velocity, etc. Both freezing and nonfreezing dropiets
have been considered.

2.1 AHNALYSIS

A cylindrical geometry was selected for the droplet stream
for compatibility with a spinning collector and to minimize the
size of the droplet generator, which would appear to be the most
dense piece of the equipment. One possible configuration, illus-
trated in Figure 1, shows two stations working in cooperation with
each other. The analysis, which is reported in reference 6,
included several important assumptions which are discussed in the
following paragraphs.

An average view factor for the droplets has been conserva-
tively estimated by calculating the view factor of space for a
droplet in the center of the stream surrounded by a uniform
density of equal-diameter droplets. 1In reality, the droplets



near the edge of the stream would cool slightly faster than those
on the inside, uniess the diameters were deliberately adjusted to
compensate for the differences in view factor. External radiation
loads on the droplets have not been taken into consideration.
Since it is unlikely that the droplets would have a low ratio of

solar absorptivity to thermal emissivity, a low temperature stream
must be shielded from solar radiation.

The mass of the reheating station, including droplet genera-
tion and collection equipment, is assumed to be proportional to
the circular cross-section area of the stream. The area density
of this equipment is represented by the parameter m.. The addi-
tional pump mass required to form the liquid jets is assumi3d to
be proportional to the two-thirds power of the liguid volume flow
rate. A parameter mp represents this effect. The mass of fluid
within the reheating station is assumed to be a fixed fraction £

of the mass of the fluid stream itself.

In addition to the above assumptions, the kinetic energy of
the droplets is restricted to a small fraction y of the haat
released in each traverse. This is done to limit the pump power
required to maintain the droplet stream. In the case of the non-
freezing droplets, the temperature drop had to be limited to some
value above the freezing temperature of the material. The result-
ing expression for the total specific mass of the system, including
fluid to make up evaporation losses, for the nonfreezing case is
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which is obtained by differentiating an earlier expression with
respect to the length-to-diameter ratio ir order to establish the
value of L/D which minimizes the mass of the total system. The
parameter B in the above equation depends on the emissivity and
view factor as evaluated in reference 6, and t is the length of
the mission. This expression can be used to determine numerically
the value of the final temperature Tz which minimizes the system
mass for fixed values of the other parameters and properties of
the selected fluid. However, it was observed that as the total
heat-rejection rate is increased in numerical examples, the value
of L/D, which results in a minimum system mass, becomes very large.
If L/D is restricted, a slightly different eguation results.
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The results for a freezing droplet stream are much simpler
because of the constant temperature process. For the fixed L/D
case, the specific mass can be expressed as
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2.2 NUMERICAL EXAMPLES

Both nonfreezing and freezing droplets at temperatures near
300 and 1000 K, respectively, were considered in our studies. The
fluids were selected on the basis of low vapor pressures and ap-
propriate freezing points. Gallium and aluminum with freezing
temperatures of 303 and 933 K, respectively, were selected as
examples of freezing droplets. Dow 705 silicone oil and tin were
selected for use as nonfreezing droplets at low and high tempera-
tures. The properties of these fluids are well known, except for
their emissivities, when formed into very small droplets. As a
starting point, the emissivities of the metal droplets were assumed
to be 0.2, and the emissivity of the silicone was assumed to be
0.7 after pigmentation. It has been suggested in reference 5 that
carbon or some other material might be used to darken the ligquid
metal surfaces up to a value of 0.8, but considering the number of
other undemonstrated features cof the droplet-stream radiator, this
optimistic value was nut used in the present examples.

In order to evaluate the numerical examples, it was necessary
to select values for several of the parameters. For each fluigd,
two cases were considered: one with parameters which are believed



to be optimistic, and a second case with parameters which are
beliaved to be conservative. Future point design studies will
provide a more rational basis for establishing these paramrsters.
Three of the parameters were varied in these two cases with the
folloewing values sclected for each:

PARAMETER CASE 1I CASE II
8 Nonfreezing 0.10 0.20
B Freezing 0.20 0.30
m, 40.0 kg/m? 100.0 kg/m?
ag 100u.0 kg/s2/3/m?  2500.0 kg/s?/3/m?

The ratio of the kinetic energy to the heat rejected for flight
was selected as 0.005 in each case. The L/D ratio was limited to
a maximum of 250.

The results of the numerical analysis are shown in Figures
2 through 1ll1. The total heat-reijection rate per stream was varied
between 10 kW and 10 GW for each fluid. The minimum specific mass
occurred near 100 kW for each examule, except for the freezing
aluminum droplet system which had a minimum in the region of 1 GW.
The characteristics of each of thece examples are tabulated in
Tables I and II for both the cases described above. The high-
temperature examples are strongly dependent on the l2ngth of the
mission as shown in Figures 2 and 3 because of the large evapora-
tion rates. The =rsults show a distinct advantage for freezing
droplet streams wher the mission is 10 years long or less. The
Case I results indicate that the ncnfreezing droplets would require
a lighter system if the mission was to extend beycnd 15 years. A
comparison between both types is shown in Figure ¢ for a lifetime
of 20 years.

The low temperature results of the examples are only sligh+ly
affected by evaporation losses, »nd, as shown in Figure 5, the
nonfreezing droplets of silicone appear to offer a slight advantage
over the freezing gallium droplets. 1If the parameters chosen here



prove to be realistic, these results indicate that either system
would have a mass that is an order of magnitude smaller than exist-
ing systems. This is clearly illustrated in Figure 6 where the
specific masses of various droplet stream systems are compared.

2.3 PARAMETRIC VARIATIONS

One of the reasons for an analytical study was to establish
the effect of various parameters in a cdroplat-stream radiator
system. The influence of the various parameters on the specific
mass of a silicone droplet-stream system is shown in Figures 6
through 11. 1In Figure 6, the influence of variations vf the two
mass parameters m, and mp are shown. Since the fluid mass is a
small part of the system total, variations in 8 have a much smaller
influence on the total mass. The influence of the thermal emis-
sivity € is shown in Figure 8, where it is evident that the

system specific mass is still very much smaller than that of flat- -

plate radiators oven with low values of the droplet thermal emis-
sivity. The effects of limiting I./C are illustrated in Figure 9,
and the influence of the limitation on stream kinetic energy is
shown in Figure 1C. The influence of the temperature level of
this type oi system is illustrated in Figure 1ll1. The evaporation
of the silicone o0il droplets becomes significant if the peak
temperature 1is increased bevond 300 K.

The comparison betv.een freezing and nonfreezing droplet-
stream radiators shows relatively little difference in performance,
particularly in the 300 K examples. Since they both indicate the
possibility of substantial improvements over conventional systems,
it is our recormendation to pursue further development of the non-
freezing system since it appears to be easier to collect liquid
droplets rather than sclid particles. The relative scarcity of
gallium probably makes it an impractical choice of €luid in any
case.




2.4 COMPONENT DESIGN CONSIDERATIONS

There are two components of the droplet-stream radiator system
which require new technology: the droplet generator and the droplet
collector. 1In contrast, the pumping and internal heat exchanger
components can be the same as those which might be used with con-
ventional flat-plate radiators. The following discussion is
limited to consideration of systems which would operate at low
and moderate temperatures, and at 300 K in particular. High-
temperature systems must deal with the corrosive characteristics
of liquid metals at those temperatures, a problem which is not
discussed here.

2.4.1 Droplet Generator

The basic concept of the droplet generator is identical, in
principle, to the shower head that utilizes a large number of small
holes to generate a droplet stream. Birch and McCormack {ref. 7)
and others have shown that droplets of uniform size and spacing
can be generated in this type of device by imposing small mechan-
ical vibrations at an appropriate frequency. Lack of this capa-
bility appears to eliminate most other nozzle designs since they
do not have the ability to produce a well-defined stream. Even
the proposed approach, without the applied vibration, will produce
a variety of droplet sizes and velocities. A well-defined strean
is essential to this system since small differences in direction,
associated with the formation of a variety of droplet sizes,
greatly increase the required collector area or result in an un-
acceptable fluid loss rate.

The low mass of the droplet stream is a direct result of
very small droplet diameters which, in the case of the Dow Silicone
fluid, have been estimated at 40 um in Table I. This droplet size
requires orifice sizes near 20 um which is in the rance currently
used in ink jet printers. Reference 8 discusses the use of sharp
edge square orifices, etched in single crystal siliccne wafers,
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with sizes between 15 and 40 pym. Eight of these orifices, on
0.3-mm centers, produced streams of water solution inks that were
parallel within 1 mrad. It is conceivable that many of these
thin wafer strips containing 10 to 100 orifices each might be
mounted in an array to form a large stream. In order to generate
the number of droplets implied in Table I, the array would need
to contain approximately 1.4 x 10s orifices.

The combination of small crifices, moderate velocities, and
high viscosity associated with the silicone fluids will result
in very small Reynolds numbers at the orifices. It can be shown
that for Reynclds numbers below 10 the ratio of static head to
kinetic energy of the stream at the orifice is approximately
given by the equation

2AP
eV

(<5}
)}

L8]
o”|

where the Reynolds number is based on the orifice diameter. The
Reynolds number for the case described in Table I is about 3.5,
which means that the pumping power required to generate the stream
would be 19 times the rate of kinetic energy generation. If this
is multiplied by the value of vy = 0.5 percent (assumed in the
analyvsis), the pumping power would be nearly 10 percent of the

rate of heat rejection. This is not acceptable in space <cystems
where typic2" -nergy conversion efficiencies are about tlhe same
value. Two additional problems are associated with the extremely
small orifices: the power required to overcome surface tension
effects, and the necessity of filtering the fluid to avoid blockage
of the orifices.

In order to investigate an analytic point design that might
eliminate the above problems, the parametric eguations were used
to evaluate a new example which is similar to the previous Case I1I
except that y was reduced to 0.0005 which is one-tenth the original

assumed value. The results of this numerical example are shown
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in Table III for values of L/D equal to 100 and 250, and total
heat rejection rates of 100 kW and 250 kW per stream. The result-
ing droplet sizes range from 20 to 370 um in diameter with signif-
icant reductions in the required pumping power and moderate in-
creases in the total specific mass. In addition, the number of
orifices required is reduced by an order of magnitude.

2.4.2 Droplet Collector

The droplet ccllector must perform three functions:

® Collect the droplets without splashing
® Coalesce the drcplets into a fluid stream
® Develop sufficient hydraulic head to feed a pump

A number of different concepts potentially capable of meeting
these requirements have been identified. Mathematical Sciences
Northwest, working under an Air Force subcontract with Professor
A. Hertzberg at the University of Washington, has identified eight
candidate approaches which are shown in Figure 12. Our preference
i.s for a nearly flat spinning conical disc as shown in Figure 13.
The disc surface would be coated with a material intended to sup-
press splashing, and a stationary collector at the rim would com-
bine with the spinning disc to create a centrifugal pump. This
pump would be used to feed another, probably a positive displace-
ment device driven by the motor used to spin the disc.

Considerable design and experimental work will be required to
develop the droplet collector system. T. Mattick, an associate
of A. Hertzberg at the University of Washington, has begun both
analysis and experimental work on the problems associated with
splashing.

2.5 DEPLOVMENT TECHNIQUES

It appears that the droplet-stream radiators are most suit-
able for large, relatively quiet spacecraft. If solar power is

12
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being used, the large Sun-oriented collection areas probably en-
sure the appropriate conditions and provide a shield from direct
solar illumination of the droplet stream. 1I1f, for example, solar
cells are being used to generate 200 kW which must ultimately be
rejected, the total blanket area will be approximately 2000 mz.
A configuration for the solar array and radiator system might look
like the one illustrated in Figure 14 where the array is protected

from heating by thin aluminized plastic film reflectors.

It is assumed that the structure supporting the droplet-
stream radiator will have other primary purposes. 1In the above
case, it would be used to deploy and support the solar array.
The main requirements of the droplet stream system will be for
very accurate alignment which might be provided by an active
control system. A laser beam and detectors could be used to
operate a two-axis positioning system. Thin droplet generator
and collector systems of 1l-m diameter are easily packaged in the
Shuttle cargo bay.

Once deployed, the droplet generator and its matching droplet
collector must be ccaxial with an error in the angular position of
the droplet generator of less than 1 mrad. Increases in this
error would require a larger droplet collector with an associated
mass penalty. Angular rotation, or translation, rates of the
spacecraft structure will also place reaquirements on the collector
diameter. For example, a droplet stream with a length of 210 m
and a velocity of 7 m/s will take 30 seconds for the droplets to
travel from the generator to the collector. An angular rotation
rate of 1 x 107>
the collector of 0.63 m unless the direction of the droplet

rad/s would cause an error in stream position at

generator had been adjusted in anticipation of the rotation.

Cne of A. Hertzberg's students has devised a unigue version
of the droplet radiator stream which results in a flat spiral as
shown in Figure 15 (appeared originally in ref. 9). This approach

minimizes the overall dimensions of the svstem and provides a
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methced of operating a single flat stream. It appears to be less
sensitive to angular motions of the spacecraft, although it is
equally sensitive to translational movements.

2.6 START-UP AND SERVICING TECHNIQUES

The start-up conditions in a droplet radiator require careful
consideration, especially if the fluid is frozen prior to appli-
cation of the heat load. Whatever the start-up scheme, a frozen
or gelled material might initially limit the amount of heat that
can be applied. The fluid could be initially contained in an
accumulator which surrounds the heat exchanger or its supply
piping. The preheated fluid could then be fed to the main pump
while isolating the collector with a one-way flow valve. However,
depending on the fluid, consideration must be given to the initial
low temperatures encountered in the droplet generator and collector.
The fluid could be recovered during a shut-down procedure by
diverting the pumped fluid from the droplet generator to an
accumulator.

A similar approach could be used to provide make-up fluid
to the system. Prepressurized containers of replacement fluid
could be periodically attached to the system, using appropriate
guick-connect fittings, at the same location in the system as the
initial fluid resevoir.

2.7 VARIABLE HEAT LOADS

There are several techniques that might be used to handle
variations in heat load. 1If ¢he fluid is not inclined to freeze,
the system might be left to change its mean temperature without
changing the fluid flow rate. Ctherwise, temperature-controlled
valves could be used to bypass portions of the droplet-generating
system and reduce the number of droplets in the stream as the heat
load is reduced.



2.8 NEW TECHNOLOGY REQUIREMENTS

Several advances in present technology are required to reduce
the concept of a droplet-stream radiator to practice. They in-
clude:

® Development of droplet generator systems capable of

producing a large number of directionally accurate

streams of droplets with diameters in the range of
50 to 500 um

® Development of droplet collector systems suitable
for operation in the zero-qravity, vacuum environment
of space

® Identification of fluids suitable for efficient

operation at mocderate heat rejection temperatues

and establishment of their thermal emissivity

properties as small droplets
It appears that these key experiments can be accomplished in
vacuum chambers on the ground. 1I1f, for example, the droplet col-
lector can be operated against the gravitation field, a great
deal of confidence would be developed about its chance of suc-
cessful operation in space. In order to create the appropriate
droplet velocities at the collector, the droplet generator might
be placed very close below the collector and pressurized to pro-
vide an initial velocity excess.

2.9 OTHER RESEARCH

A. Hertzberg and his associates at the University of Washing-
ton are conducting parallel studies on droplet radiator systems
with financial support from NASA and the Air Force. They are
particularly interested in the use of liquid metals in conjunction
with heat engine power systems. A recent report on their activities
is contained in ref. 10.
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SECTION 3
MOVING-BELT RADIATORS

In order to compare the potential performance of moving-belt
radiators with droplet-stream radiators, Astro has considered two
types of moving belt designs as previously reported in ref. 1ll.

A design suitable for low-temperature operation, with the belt
heated by contact with a drum, is illustrated in Figure 16, and a
design suitable for high-temperature use, with the belt heated
directly by the fluid, is illustrated in Figure 17. A parametric
analysis was completed for both approaches with the mass of the
belt, drum, anéd heat exchanger taken into account. The results
of the analysis are briefly summarized below.

3.1 HEATED-DRUM BELT RADIATORS

The concept of heating the belt by contact with the drum is
considered suitable for low-temperature operation where a low
vapor pressure grease, such as silicone, could be used to enhance
the heat transfer rate. Several belt materials were considered,
and results are shown in Table IV for belts of aluminum, Kapton,
and beryllium each rejecting 100 kW per belt segment with an
initial fluid temperature of 300 K. The results indicate that
the specific mass can be arbitrarily reduced by using thinner
belts as illustrated for Kapton in Figure 18. Moving-belt
radiators become more mass efficient, under the assumptions of
our analysis, as they become smaller which is shown in Figure 19.
Moving-belt radiators might be suitable for Shuttle-related heat
rejection systems where the anticipated operaticnal lifetimes are
relatively short and tue need for supplemental heat rejection is
usually in a range between 10 and 100 kWw.

16



3.2 CONVECTION-HEATED BELT RADIATORS

The high-temperature belt design considered the use of direct
convection heating, as originally proposed by Weatherston and
Smith in ref. 12. This design adds the complication of sealing
against the moving belt with the benefit of very high heating
rates at the interface between the belt and the fluid. A single
design was considered for operation near 1000 K using beryllium
for both the belt and the heat exchanger. The results for one
example are shown in Table V. The variation in the total specific
mass with the peak operating temperature is shown in Figure 20.

3.3 OPERATIONAL CONSIDERATIONS

The moving-belt radiators discussed have very competitive
specific masses as compared with droplet-stream radiators. They
also are relatively easy to deploy and start up since the belts
can be temporarily rolled up for transport in the Shuttle.

Initial low temperatures are unlikely to degrade the belt material
so long as the storage radius is not too small relative to the
material thickness. Moving belts should accommodate variations in
heat load without difficulty. The main concerns with these de-
signs are listed in the following section.

3.4 NEW TECHNOLOGY REQUIREMENTS AND KEY EXPERIMENTS

Several technology issues require resolution before moving-
belt radiators can be considered for long-term operation in space.
The key issues include:

® Heat transfer rates between heated drums and thin belts

(Will a grease enhance these rates over the long term?)

® Lifetime of belts (loads on thin belts must be limited
to avoid plastic deformation)

® Lifetime of seals on heated drum systems

17



® Lifetime of seals and fluid loss in direct convection
systems
Experimental evidence is needed to resolve these issues and
verify potential solutions to the problems.

3.5 WET BELT DESIGN

The material contained in this report was presented at NASA
MSFC as part of a final review of the contract. At that presenta-
tion, Gene Commer of NASA pointed out that if a silicone grease
coating is acceptable for the low-temperature, heated-drum belt
design, then direct convection heating of the belt with a silicone
fluid should be considered. The seals would not have to operate
perfectly since the evaporation losses should be acceptably low,
based on the droplet-stream calculations. This suggestion should
lead to lower masses than those predicted by the current analysis
since the high-temperature example has shown the significance of
eliminating the drum mass.

18

i g



SECTION 4
CONCLUSIONS

Moving radiators have the potential of significantly reducing
the mass of heac rejection systems in space. Although significant
technical challenges remain to be satisfied by the develcpment of
technology, the development of practical hardware is feasible.

Low-temperature droplet-stream radiators, using dyed non-
metallic fluids, can be used to radiate large amounts of waste
heat from large space facilities. Moving-belt radiators are suit-
able for use on a smaller scale, radiating as few as 10 kW from
Shuttle-related operations. If we assume that appropriate seal
technology can be developed, moving-bel: radiators may prove to be
important for high-temperature systems as well.

Both types of moving radiators require substantial experi-
mental verification and new detailed design of components. Most
of the experimental work can be completed in Earth-based vacuum
and thermal vacuum chambers. The most challenging requirement is
the development of a low-mass droplet collector, including ap-
propriate experimental demonstrations.

The development costs associated with the technology require-
ments should be moderate. Although it is difficult to predict the
rate of technical progress that will be achieved, we estimate that
work leading to a demonstration of an engineering model in space
should cost less than one million dollars for either system.

Section 2 of this report contains information previously
published in ref. 13.
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TABLE I.

NONFREEZING LIQUID DROPLET STREAM RADIATORS

PARAMETER CASE I CASE II
Dow 705 Sflico?e 0il - Tl = 300 K
T = 20 years, Q = 100 kW
Fluid spec.fic mass, MF/Q 0.071 0.092 kg/kW
Station specific mass, %c/o .276 .638
Pump specific mass, MP/Q i .093 .258
Evaporation specific mass, ﬁE/Q _.027 031
Total specific mass, MT/é .467 1.019 kg/kw
Stream length, L 230 224 m
Stream diameter, D 0.92 0.90 m
Length~to-diameter ratio, L/D 250 250
Droplet radius, a 29 26 um
Temperature at end of stream, Ty 233 243 K
Stream velocity, V 33.2 30.9 m/s
?in - Tl = 1000 K, 1 = 20 vyears,
Q = 100 kw
Fluid specific mass, M./Q . 0.0123 0.0137 kg/kwW
Station specific mass, Mc/Q .0131 .0298
Pump specific mass, Mp/é . .0237 .0609
Evaporation specific mass, M;/Q _.0146 .0153
Total specific mass, MT/Q .0637 .1197 kg/kWw
Stream length, L 51.0 48.7 m
Stream diameter, D 0.204 0.195 m
Length-to-diameter ratio, L/D 250 250
Droplet radius, a 8.6 9.6 um
Temperature at end of stream, Tz 510 530 K
Stream velocity, V 35.7 35.0 m/s
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TABLE II. FREEZING LIQUID DROPLET

STREAM RADIATORS

PARAMETER CASE I CASE II
Gallium - Tl = 303 K, 1= 20 years,
Q = 10 kW
Fluid specific mass, Mp/Q 0.044 0.048 kg/kw
Station specific mass, MC/Q . 348 .871
Pump specific mass, MP/Q ] .076 .189
Evaporation specific mass, ME/Q .0 .0
Total specific mass, MT/Q .468 1.108 kg/kw
Stream length, L 83.3 83.3 m
Stream diameter, D 0.333 0.333 m
Length~to~diameter ratio, L/DP 250 250
Droplet radius, a 1.2 1.2 um
Stream velocity, V 28.3 28.3 m/s
gluminum - Tl = 933 K, 1 = 20 years,
Q = 1000 kw
Fluid specific mass, My/Q 0.0040 | 0.0043 kg/kw
Station specific mass, MC/Q .0039 .0097
Pump specific mass, Mp/Q ) .0108 .0269
Evaporation specific mass, ME/Q .0618 .0618 .
Total specific mass, MT/Q .0805 .1027 kg/kWw
Stream length, L 76.4 76.4 m
Stream diameter, D 0.306 0.306 m
Length-to-diameter ratio, L/D 250 250
Droplet radius, a 32 32 um
Stream velocity, V 62.4 62.4 m/s

e and e Wil StV sl . L
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TABLE III.

DOW 705 SILICCNE OIL, T; = 300 K,

T = 10 YEARS, vy = 0.0005.

. L/D = 100 L/D = 250
PARAMETER i :
= 100 kW | 2 = 500 kW = 100 kW | @ = 500 kw

M Q, ka/kW 0.32 0.58 0.34 0.60
Mc/é, kg/kW 1.46 1.58 0.68 0.79
M /Q, kg/kW 0.29 0.15 0.09 0.05
M/Q, kg/kW | 0.02 0.02 0.01 0.01
M./Q, kg/ky 2.09 2.32 1.12 1.45
L, m 137 318 234 531
D, m 1.37 3.18 0.94 2.12
T,, K 252 243 234 231
v, m/s 6.3 6.9 7.4 7.6
a, um 48 166 91 187
Re 1.8 4.8 4.1 8.6
zvﬁf, 3 1.8 0.7 0.8 0.4
oV
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TABLE V. PERFORMANCE DATA FOR A TYPICAL
CONVECTION-HEATED BELT RADIATOR.

Belt material

Chamber material

Belt thickness, tb

Chamber wall thickness, tc
Thermal emissivity

Heating fluid

Fluid temperature, Tf

Mean belt temperature, T
Belt specific mass, Mb/é .
Chamber specific mass, MC/Q
Fluid specific mass, Mf/?
Total specific mass, MT/Q
Belt velocity, V

Total heat rejection rate, Q

.

Belt width, D
Belt length, L
Chamber height, H

Beryl
Beryl

lium
lium

0.1 mm

2.0 mm

0.8 (

one side)

Sodium

1000
963 K
4.75
0.58
0.02

K

1073 kg/kwW

1073 kg/kw

5.35
10.7

1000
below

3.91
25.6
0.13

x
X

x 1073 kg/kw
x 10°° ka/kW

m/s

kW for dimensions

mm
m

mm
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Specific mass, MT/é (kg/kw)

Figure 2.
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Specific mass, M./Q (kg/kW)
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Figure 8. Influence of emissivity on the svecific
mass of a radiating droplet stream, T = 300 K.
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Figure 15. Rotating boom droplet radiator.
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Figure 18. Variation of heated-drum belt radiator' _
specific mass with heat transfer coefficient.
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