
AgRISTARS

Supporting Research

TECHNICAL REPORT

t82" 10001
SR-EL-04065

NAS9- 15476

A Joint Program for
Agriculture and
Resources Inventory
Surveys Through
Aerospace
Remote Sensing
AUGUST 1981

DEVELOPMENT AND EVALUATION OF AN

AUTOMATIC LABELING TECHNIQUE FOR

SPRING SMALL GRAINS

ERIC P. CRIST AND WILLIAM A. MALILA

2sERIM
ENVIRONMENTAL RESEARCH
INSTITUTE OF MICHIGAN
ANN ARBOR, MICHIGAN

UCB
SPACE SCIENCES LABORATORY
UNIVERSITY OFCALIFORNIA
BERKELEY, CALIFORNIA

fUASA



NOTICES

Sponsorship. The work reported herein was conducted by the
Environmental Research Institute of Michigan under Contract NAS9-
15476 for the National Aeronautics and Space Administration,
Johnson Space Center, Houston, Texas 77058. I. Dale Browne was
Technical Monitor for NASA. Contracts and grants to the Institute
for the support of sponsored research are administered through the
Office of Contracts Administration.

Disclaimers. This memorandum was prepared as an account of
Government sponsored work. Neither the United States, nor the
National Aeronautics & Space Administration (NASA), nor any per-
son acting on behalf of NASA:

(A) Makes any warranty expressed or implied, with respect to
the accuracy, completeness, or usefulness of the infor-
mation, apparatus, method, or process disclosed in this
memorandum may not infringe privately owned rights, or

(B) Assumes any liabilities with respect to the use of, or
for damages resulting from the use of any information,
apparatus, method, or process disclosed in this
memorandum.

As used above, "person acting on behalf of NASA" includes any
employee or contractor of NASA, or employee of such contractor, to
the extent that such employee or contractor of NASA or employee of
such contractor prepares, disseminates, or provides access to any
information pursuant to his employment or contract with NASA, or his
employment with such contractor.

Availability Notice. Request for copies of this memorandum
should be referred to:

National Aeronautics & Space Administration
Scientific & Technical Information Facility
P.O. Box 33
College Park, Maryland 20740

Final Disposition. After this document has served its purpose,
it may be destroyed. Please do not return it to the Environmental
Research Institute of Michigan.



TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No.

SR-E1-04065
4. Title and Subtitle

Development and Evaluation of an Automatic
Labeling Technique for Spring Small Grains

7. Author(s)
Eric P. Crist and William A. Malila

9. Performing Organization Name and Address
Environmental Research Institute of Michigan
Infrared and Optics Division
P.O. Box 8618
Ann Arbor, Michigan 48107
12. Sponsoring Agency Name and Address

NASA/Johnson Space Center
Houston, Texas 77058

Attn: I. Dale Browne/SG3

3. Recipient's Catalog No.

5. Report Date

June 1981
6. Performing Organization Code

8. Performing Organization Report No.
152400-3-T

10. Work Unit No.

11. Contract or Grant No.

NAS9-15476
13. Type of Report and Period Covered

15 November 1979 - 31
December 1980

Technical Report

14. Sponsoring Agency Code

15. Supplementary Notes

Mr. Thomas Pendleton/SH2, served as NASA Technical Coordinator of the
effort, which was carried out as a part of the Supporting Research
Project of the AgRISTARS program.

16. Abstract

A labeling technique is described which seeks to associate a
sampling entity with a particular crop or crop group based on similar-
ity of growing season and temporal-spectral patterns of development.
Human analysts provide contextual information, after which labeling
decisions are made automatically. Results of a test of the technique
on a large, multi-year data set are reported. Grain labeling
accuracies are similar to those achieved by human analysis techniques,
while non-grain accuracies are lower. Recommendations for improve-
ments and implications of the test results are discussed. This re-
search was carried out within the Supporting Research Project of the
AgRISTARS program.

17. Key Words

AgRISTARS, Crop Inventory, Landsat,
Temporal Profile Fitting, Machine
Labeling, Spring Grain Labeling

18. Distribution Statement

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pagi's

xi + 69

22. Pric-f



Page intentionally left blank

Page intentionally left blank



SR-E1-04065
NAS9-15476

TECHNICAL REPORT

DEVELOPMENT AND EVALUATION OF AN AUTOMATIC

LABELING TECHNIQUE FOR SPRING SMALL GRAINS

BY

Eric P. Crist and William A. Malila

This report describes results of research carried out in
support of the Area Estimation Design Element of the Supporting
Research Project.

Environmental Research Institute of Michigan
P.O. Box 8618

Ann Arbor, Michigan 48107

June 1981

iii



Page intentionally left blank

Page intentionally left blank



PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace

Remote Sensing program, AgRISTARS, is a six-year program of research,

development, evaluation, and application of aerospace remote sensing for

agricultural resources, which began in Fiscal Year 1980. This program

is a cooperative effort of the National Aeronautics and Space Admini-

stration, the U.S. Agency for International Development, and the U.S.

Departments of Agriculture, Commerce, and the Interior. AgRISTARS con-

sists of eight individual projects.

The work reported herein was sponsored by the Supporting Research

(SR) Project "under the auspices of the National Aeronautics and Space

Administration, NASA. Dr. Jon D. Erickson, NASA Johnson Space Center,

succeeded by Robert B. MacDonald, was the NASA Manager of the SR Project

and Thomas Pendleton was the Technical Coordinator for the reported

effort.

The Environmental Research Institute of Michigan and the Space

Sciences Laboratory of the University of California at Berkeley comprise

a consortium having responsibility for development of corn/soybeans area

estimation procedures applicable to South America within both the Sup-

porting Research and Foreign Commodity Production Forecasting Projects

of AgRISTARS..

This reported research, directed at the labeling of small grains in

multi-date Landsat data, was performed within the Environmental Research

Institute of Michigan's Infrared and Optics Division, headed by Richard

R. Legault, a Vice-President of ERIM, under the technical direction of

Robert Horvath, Program Manager, and Dr. William A. Malila, Task

Leader.
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1.0

INTRODUCTION

Crop acreage estimates made using Landsat (or indeed any remotely

sensed data) invariably require, at some point, association of a crop

label or labels with some sampling entity (e.g., pixel, field, cluster,

etc.). The accuracy with which this association is made clearly has a

substantial impact on the accuracy of the acreage estimates produced.

In the Large Area Crop Inventory Experiment (LACIE), the labeling step,

which was carried out through manual analysis of imagery and associated

information, was found to be both time-consuming and a source of con-

siderable error.

To the degree that sensor limitations or imperfect spectral sep-

arability of crops are the causes of labeling errors, new techniques

can offer little hope of substantial improvements in accuracy. How-

ever, that portion of the labeling error associated with the labeling

techniques themselves, or with human limitations, might be reduced

through new approaches to labeling. An obvious candidate for improving

both the objectivity and the timeliness of labeling decisions is auto-

mation of much of the labeling process.

The technique described herein is a response to the need for a

faster, more accurate, and more objective labeling procedure. Human

analysts are utilized only to set up the system and provide contextual

information which can be used to adjust the labeling procedure to local

conditions; the labeling decisions themselves are left to the machine.

In addition, this procedure is intended to provide a demonstration

of some of the applications of what we have called profile technology,

that is, the use of features derived directly or indirectly from char-

acterizations of the continuous patterns of temporal-spectral crop de-

velopment [1].
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We do not, however, put this technique forward as the final and

best use of profile technology, but rather as a first generation tech-

nique, a demonstration of concepts, that can be used to more fully

understand profiles and their uses, and thereby to develop improved

labeling techniques.

Similarly, while fully automatic labeling procedures may be desir-

able in terms of efficiency, the complexity of some of the decisions

which must be made, particularly those made on a more general level,

probably precludes replacing human analysis entirely at this time.

Again, the technique presented here is intended to provide some start-

ing point for the development of later procedures which can more fully

utilize the particular contributions both the human and the machine can

bring to the -labeling process.

Finally, the procedure as described and tested is focussed on the

identification of spring small grains (principally spring wheat,

barley, and oats). The underlying concepts, however, are more generally

applicable and could be used in techniques to label other agricultural

crops.



2.0

DESCRIPTION OF PROCEDURE

2.1 GENERAL CONCEPTS

Basic to most labeling techniques which operate on Landsat data are

the presuppositions that at least some crop groups or cover types ex-

hibit distinct and characteristic temporal patterns of spectral develop-

ment, and that at least some of these pattern differences are detectable

at the resolution of the Landsat multispectral scanners. Manual tech-

niques have depended on human analysts to detect these patterns and

pattern differences from the available Landsat acquisitions [2]. How-

ever, at least two factors hinder the ability of humans to accurately

carry out this process. First, the Landsat observations are fairly

widely spaced discrete samples from what are for the most part continuous

spectral development patterns. As a result, much of the necessary

information must be inferred from the available data. Second, samples of

a particular crop may vary considerably, over a small region, in terms

of stage of development and, therefore, spectral appearance on any given

day. The combination of sparse observations and variation in development

stage can result in samples of a single crop type showing little apparent

spectral similarity.

By characterizing the continuous patterns of which the Landsat ob-

servations are samples, one can address these problems, particularly>

though not exclusively in automated procedures. Techniques of this

general type have achieved promising results [3]. The labeling techni-

que presented here is another of this class of approaches. Specifically,

it uses the characterizations of spectral development, termed profiles,

both to adjust for planting date differences within a crop and to assign

crop labels to unknown samples.



The central element in the procedure is a group of profile sets re-

presenting spectral development of a number of crops in the domain des-

cribed by Tasseled-Cap Greenness and Brightness (physically interpretable

linear combinations of Landsat MSS band values - see Reference 4). These

profile sets were developed using spectral data from fields of known crop

type, sampled from the U.S. Northern Great Plains over three growing

seasons. The actual profile sets are shown in Figures 1 and 2.

The profile sets serve as reference standards to which each unknown

sampling entity is compared. For each profile set, a series of com-

parisons is carried out. First, a temporal shift is determined which

maximizes the cross-correlation of the data points to the Greenness

profile [5]. This provides an estimate of the date of spectral emergence,

and indirectly of the start of the growing season of the target field.

The temporal shift estimate also provides a means of normalizing the

planting dates of fields of a single crop type, and thereby minimizes

one major source of spectral confusion.

After estimating and applying the temporal shift, a multiplicative

scale factor is computed, again using the Greenness profile. This scale

factor is applied to normalize the magnitude of the Greenness develop-

ment profile which is strongly influenced, within a single crop type,

by the percentage of ground covered by green vegetation (which is itself

influenced by such factors as planting density, fertilization, and

moisture availability).

With both adjustments made, a goodness-of-fit of the data to the

Greenness profile is computed, and similarly, using the Greenness pro-

file temporal shift, a fit or correlation of the Brightness data to the

Brightness profile is computed.

The shift, Greenness fit, and Brightness correlation are used to

compute a probability associated with the crop represented by the pro-

file set and the sampling entity, and this combined probability serves
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as the basis for labeling decisions. More detailed description of the

steps of the procedure is provided in Section 2.3. In a different appli-

cation of this procedure, one might use different or additional features

to compute the requisite probabilities.

2.2 RECOMMENDED ENVIRONMENT

The concept of comparing unknown samples to static representations

of crop spectral development necessarily requires that all sources of

spectral variation other than crop type be eliminated or minimized. As

a result, this procedure was developed and tested using data normalized

with respect to haze, sun angle, and sensor calibration, and screened

for clouds, cloud shadows, etc., using algorithms developed at ERIM [4].

By the same reasoning, pixels that are a mixture of more than one

crop type will not be as readily labelable as those which are pure with

respect to crop type. In an effort to remove mixture pixels from con-

sideration, and also to smooth some of the extraneous variability among

pixels in a single field, an ERIM-developed spectral-spatial clustering

algorithm, SUPERB, was used to provide sampling entities (quasi-fields

or blobs) for labeling [6].

It should be expected that the performance of this or any similar

technique would degrade if such normalization and clustering steps were

omitted.

2.3 SPECIFIC STEPS

Appendix A presents a flow diagram of the major elements in the

labeling procedure.

2.3.1 ANALYST FUNCTIONS

The focus of the labeler development reported here was on the

machine aspects of the procedure. As a result, the functions assigned

to a human analyst are only defined in general terms.



Acquisition Selection

A human must decide which acquisitions to process. This selection is

based on considerations such as apparent growing season, presence of

clouds or haze, view angle similarity, spacing, etc. No specific process

has been laid out for this procedure.

Crop Calendar Adjustment

Beginning with either historical or model-derived crop calendars, the

human must develop estimates of the time of spectral emergence of the

crops represented by profile sets. This is a combination of image inter-

pretation, computer data analysis, and use of historic or expected crop

calendar relationships between crops. While no technique has been defined

for the specific application described in this report, a similar procedure

has been developed for use in U.S. 1981 corn/soybeans pilot experiment

[7]. Eventually one might utilize outputs from meteorologically based

crop calendar models.

The expected output of this step is estimated mean days of spectral

emergence for all crops or crop groups represented by profile sets.

2.3.2 PRELIMINARY PROCESSING STEPS

Data Transformation

All spectral data are transformed using the Tasseled-Cap transfor-

mation [4] . Only Brightness and Greenness values are retained.

Acquisition Check

Both mathematics and common sense require that some minimum number

of vegetated acquisitions be available for a sampling entity before it

can be labeled using this technique. That minimum number is set at

three. The determination of whether or not a particular acquisition is



vegetated is based on a simple thresholding in Greenness. "Bare soil"

data typically range between 25 and 35 counts of Greenness (with 32-

count offset applied); the lower end of the range was used as the

threshold value. If a sampling entity has less than three acquisitions

with Greenness greater than 25, it is labeled "unknown".

Maximum Greenness Check

Those targets which have at least three vegetated acquisitions are

also required to have one acquisition with Greenness greater than 35.

This requirement accomplishes two purposes. First, it screens out

fields with abnormally low green vegetation development. Such fields

are unlikely to exhibit the same spectral characteristics as healthy

fields of the same crop. Second, it eliminates fields which, although

they have passed the acquisition number requirement, lack acquisitions

in the time period during which the crop is well-developed. Again,

targets failing to meet the requirement are labeled "unknown".

2.3.3 CROP CALENDAR EVALUATION

(Steps described in Sections 2.3.3 through 2.3.5 are carried out

for each of the profile sets used in the procedure.)

Shift Estimation

The day of maximum green development is estimated through a tech-

nique called crop calendar shift estimation [5]. The Greenness values

of the target are compared to the Greenness profile being considered,

and a temporal shift is selected which maximizes a cross-correlation-like

factor. The shift algorithm also makes additional checks on acquisition

number and spacing. After a temporal shift based on an initial rough

estimate of the day of peak Greenness, it checks to see that there are

at least three acquisitions spaced more than ten days apart.



This constraint is the result of observations that pairs of data

obtained from consecutive passes of different satellites do not carry

the weight of more widely-spaced acquisitions and, in fact, tend to

behave in the procedure as one acquisition. If a target passes this

test and a shift is estimated, the test is applied again using the

final shift estimate. If there are too few sufficiently-spaced ac-

quisitions available, an "unknown" label is assigned.

It should be noted that for this and all subsequent steps, Green-

ness values are reduced by 25 counts. This brings the "bare soil"

Greenness to near zero, and both downweights the importance of fitting

at low signal values and allows for application of the multiplicative

scaling previously mentioned.

Probability Computation <„•

The shift estimate is compared to an expected shift for the crop,

which is derived from the expected mean day of spectral emergence, as

provided by the analyst. The difference between these two values is

used to assign a probability, based on an empirically-defined probabi-

lity distribution. The distribution is a modified normal with mean

zero and standard deviation 14 days, but with an equal probability of

.99 assigned to all values within one standard deviation (+ or - 14

days) to reflect the range of planting dates which are typically ob-

served for a single crop in a sample segment.

2.3.4 COMPARISON TO GREENNESS PROFILE

Computation of Scale Factor

As previously described, a multiplicative scale factor is computed

to maximize the fit of the shifted data values to the Greenness profile.

The scale factor is computed by

10
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Scale = - — (1)
IF.*G.

where

F. = profile value at time T.

G = data value at time T.

Since planting and harvesting methods and field conditions can cause

more variations in Greenness values at the tails of the profile, a better

scaling can be computed if those values are excluded. Therefore the

scale factor is based only on those acquisitions which fall at least 20

days from either end of the profile. If one or no acquisitions meet

this criterion, an "unknown" label is assigned.

Greenness Profile Fit

A chi-squared fit is computed for the scaled data and the profile,

as

(F - sG )2

Fit = E— * - ^_ (2)

where

F. = profile value at time T.

G = data value at time T.

s = scale factor

0 2 = expected variance about profile at time T.

The variances used were determined using data of known crop type

from the 26 segments comprising the developmental data set.

11



A probability is then determined for the computed fit, with degrees

of freedom equal to one less than the number of acquisitions used.

2.3.5 COMPARISON TO BRIGHTNESS PROFILE

While the characteristics of Greenness profiles and crop Greenness

development allow for relatively simple scaling and fitting, the same

tasks using Brightness profiles are not so straightforward. Since

Brightness is (as was intended) strongly influenced by soil character-

istics, the early and late season portions of Brightness profiles, where

soil is the dominant scene component, vary considerably. In addition,

at least some of the Brightness profiles exhibit more complex shapes

than the Greenness profiles. Finally, variations in the amount of

vegetative cover, which result in a simple reduction in amplitude of

the Greenness profile, have widely varying effects on Brightness pro-

files, since they primarily affect the amount of soil viewed.

Since adjustment for within-crop variations in Brightness spectral

development cannot be readily accomplished, the assumptions necessary

for use of a chi-squared test, particularly that of a normal distribution

of data about the mean on any given day, are not justified, and use of

the chi-squared test is inappropriate.

For this labeling technique, the simplifying assumption is made

(based on empirical evidence) that the characteristic shape of the

Brightness profiles for the various crops will be detectable most of the

time even with the described variations in actual Brightness values. In

order to compare overall profile shapes rather than actual values, a

cross-correlation calculation is made as follows:

E fi*8i
R = -̂i— (3)

12



where

f = (profile value at time t.) - profile mean

g = (data value at time t.) - data mean

and n
Z (profile value at t.)

Profile mean = n

where

n = number of data values used

The probability associated with the calculated cross-correlation is

determined using empirically derived cumulative distributions of cross-

correlation of known grain data (from the developmental data set) to the

grain profile.

2.3.6 CALCULATION OF COMBINED PROBABILITY

The three probabilities associated with each profile set are combined

into one probability using Fisher's omnibus procedure [8]*. This test,

which assumes independence of the individual statistics, has the advantage

of retaining the same level of significance in the combined statistic as

that of the individual statistics. The combined test statistic is of the

form

3
T = -2 I w.lnP.

where

w. = weight assigned to the i test

P. = probability associated with the i test

Suggested by Dr. Jack Tubbs, University of Arkansas.

13



Using a chi-squared test, the combined probability of T is deter-

mined, with degrees of freedom

3
DF = 2 E w. (5)

1-1 1

The individual statistics are weighted by their importance as

discriminants. There are no inherent constraints on the values of the

weights and they need not sum to one.

If the combined probability exceeds a threshold value, the crop

represented by the profile set used is considered probable enough to be

retained as a candidate. Otherwise, the crop is rejected.

2.3.7 LABEL ASSIGNMENT

When all profile sets have been evaluated, a labeling decision can

be made. This may be either a single label based on the most probable

profile set, or a set of probabilities associated with the ensemble of

profile sets whose probabilities exceeded the defined acceptance thres-

hold. The selection of one or the other of these alternatives is a

function of the proportion estimation procedure which utilizes the

labels.

14



3.0

DESCRIPTION OF TEST

A test of the labeling technique was carried out on an independent

data set in order to evaluate and understand its performance.

3.1 DATA SET

A total of 38 5x6-mile sample segments were used, spanning the same

three years as the developmental data set. The segment locations are

shown in Figure 3.

The SUPERB clustering algorithm was applied in its supervised mode,

such that only pixels of the same crop type could be placed in the same

blob. This was done to isolate the labeling performance from the effect

of mixed blobs. However, a test of the performance on such mixed blobs

would be a useful exercise in the future.

3.2 ANALYSES TO BE CARRIED OUT

3.2.1 LABELING ACCURACY

The accuracy with which the technique identified grain and non-

grains was determined using a number of different procedure configurations

(see Section 3.3). For the most part, determination of accuracy was

based on the most probable crop rather than on the set of probabilities.

Non-grain accuracy was based on failure to choose the grain profile,

rather than selection of the correct non-grain crop profile.

In addition to an overall accuracy evaluation, the significance of

effects related to growing year, agrophysical stratum unit, and number

of available acquisitions was assessed. Year and agrophysical unit

should affect crop spectral characteristics, relative spectral differences

between crops, and relative crop calendar differences, all of which

15
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FIGURE 3. LOCATIONS OF TEST AND EVALUATION SEGMENTS

16



should affect labeling accuracies. The number of acquisitions available

should be directly related to accuracy, since more acquisitions should

provide a better characterization of the temporal-spectral development

of the target field.

3.2.2 LABELING ERROR CHARACTERIZATION

A related area of analysis involved determining the nature of the

errors made. Of interest were the relative probabilities of grains being

called one of the non-grains, and vice versa.

3.2.3 QUALITATIVE COMPONENT EVALUATION

In addition to the more quantitative evaluations described above, a

qualitative evaluation was included in the test to answer less easily

defined questions related to the underlying concepts and techniques.

These were primarily focused on the use of profiles as features, use of

profiles as the basis for labeling procedures, and use of crop calendar

shift.

3.3 PROCEDURE CONFIGURATIONS

Some elements of the labeling techniques were either modified in

order to isolate effects of errors in various parts of the procedure or

applied with several different parameter sets to determine optimum con-

figurations.

3.3.1 CROP CALENDAR ADJUSTMENT

While the impact of errors in estimating mean days of spectral

emergence is of great importance, it is first important to understand

the behavior of the technique given good estimates of spectral emergence

days. Thus ground truth information was used rather than analyst inter-

pretation in this test.

17



Expected mean days of spectral emergence were determined for each

segment by applying the crop calendar shift technique to all data of

each crop type. The results of this process were histogrammed and,

where enough data were available for a particular crop in a particular

segment, an estimate of the central tendency of the distribution was made.

Where too few data were available, historical relationships, results from

similar segments, or average results for several segments were used to

fill in the expected spectral emergence days.

3.3.2 PROFILE SETS

As shown in Figure 1, the entire set of profiles developed for the

labeling procedure represents six crops or crop groups. Similarities

among certain of the crops, however, suggest that they could be more

frequent sources of error than others. Specifically, grasses and flax

have spectral characteristics and development patterns that are most

similar to the spring small grains, and are thus most likely to be con-

fused with grain. As a result, the procedure was applied with all six

profiles (listed in Table 1), all profiles except grass, all except

flax, and all except grass and flax.

Even crop profiles that are substantially different from the grain

profile set will tend to draw some blobs away from the grain profile.

It is therefore likely that elimination of any profile set would result

in some increase in grain labeling accuracy. It might be possible, based

on historical information, to omit profile sets representing crops un-

likely to occur in the segment of interest. The results of such a pro-

cedure were simulated by re-running the labeling procedure with the four

profile combinations described above, but also omitting any crop (except

grain and grass) which had five or fewer blobs in the segment (using

ground truth information). Grain and grass were never excluded in this

mode since grain is the crop of interest, and grass could never be

ruled out as a possibility.
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TABLE 1. CROPS REPRESENTED BY PROFILE SETS

Spring Small Grains

Grasses

Sunflowers

Corn

Soybeans

Flax

TABLE 2. TEST STATISTIC WEIGHTINGS EVALUATED

(first value applies to Greenness Fit, second
to Brightness Correlation, third to Crop

Calendar Shift)

1-0-0 1-1-0 1-1-1

0-1-0 1-0-1 1-1-2

0-0-1 0-1-1 1-2-3
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3.3.3 TEST STATISTIC WEIGHTINGS

As previously described, the three pieces of information used in

making labeling decisions (crop calendar shift, Greenness Fit, and

Brightness correlation) can be weighted to reflect confidence or impor-

tance. Nine weightings, placing different emphasizes on the three

factors, were used (see list in Table 2). Each factor was used

alone, all pairs were used, and a selected group of weightings using

all three factors was used. This last group was selected based on re-

sults obtained in the developmental data set, which suggested that the

shift estimate was of greatest importance, followed by Brightness and

then Greenness.

3.3.4 PROBABILITY THRESHOLDS

The minimum combined probability used to select candidate profiles

as described earlier, was set at a number of different levels: 0.0,

.25, .33, .50, .667, and .75. One would expect higher thresholds to

reduce errors of commission relative to the grain profile, but increase

errors of omission. The range of thresholds was included to evaluate

the best mix between these two error rates.

20



4.0

TEST RESULTS AND EVALUATION

4.1 ABILITY TO ASSIGN LABELS

As previously described, there is a required minimum number of

acquisitions for any particular sampling entity to be labeled. If a

blob fails this criterion for any of the profile sets, it can only be

labeled based on partial information. Since the grain profile spans the

shortest amount of time of all the profiles used, it is most likely to

be rejected from consideration due to the acquisition availability con-

straint. If labels were assigned in cases where blobs could not

be compared to every profile, many grains with poor acquisitions would

be labeled non-grains. Instead, such blobs were called "unlabelable".

Since the developmental data set tended to have more acquisitions

available per segment, determination of the percentage of "labelable"

blobs was based on the combined development and test data set (64 seg^

ments). For this data set, 57% of the blobs could be labeled. However,

considered individually, most segments were either "labelable" or not.

Sixteen of the segments had less than 20% of their blobs labeled, while

31 of the 64 had more than 80% of their blobs labeled.

4.2 LABELING ACCURACY

Table 3 shows the grain/non-grain accuracies for the various con-

figurations used. Grain labeling accuracies reached 86%, but errors of

commission were also high with the same configuration. In general,

errors of commission and omission were inversely related.

Overall accuracies (grain and non-grain) reached 74% (Table 4), while

the best mix of accuracies occurred at about 69% correct for grain and 72%

correct for non-grain. Similar results were observed in Phase 3 and Trans-

ition Year 1978 in the LACIE [9,10] with analyst-intensive procedures.
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TABLE 3. GRAIN/NON-GRAIN ACCURACIES

Threshold

Grain

.22

.43

.35

.36

.37

.48

.47

.47

.48

0.0

Other

.87

.72

.75

.81

.83

.72

.79

.78

.76

0.5

Grain

.15

.41

.35

.30

.32

.47

.41

.44

.47

Other

.94

.74

.76

.88

.90

.73

.85

.83

.79

0.

Grain

.12

.38

.35

.26

.29

.46

.39

.42

.46

667

Other

.95

.77

.76

.91

.91

.74

.87

.84

.80

Threshold

Grain

.53

.59

.83

.64

.84

.86

.85

.86

.86

0.0

Other

.66

.54

.33

.62

.40

.33

.41

.35

.34

0.5

Grain

.36

.52

.79

.50

, '-65

.79

.68

.74

.77

Other

.85

.65

.48

.80

.73

.52

.73

.66

.60

0.

Grain

.30

.45

.79

.43

.58

.73

.62

.69

.74

667

Other

.89

.72

.48

.86

.80

.59

.79

.72

.66

Using All
Profiles

Weighting

1-0-0

0-1-0

0-0-1

1-1-0

1-0-1

0-1-1

1-1-1

1-1-2

1-2-3

Excluding
Grass and

Flix
Profiles

Weighting

1-0-0

0-1-0

0-0-1

1-1-0

1-0-1

0-1-1

1-1-1

1-1-2

1-2-3

Note: "Grain" includes all blobs with Ground Truth of Spring Wheat,
Durum Wheat, Barley, and Oats .

"Other" includes all blobs with other Ground Truth classes ex-
cept "Problem Field", "No Ground Truth", and "Mixture".
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TABLE 4. LABELING RESULTS FOR
ALL PIXELS COMBINED

All Profiles Used No Grass or Flax Profiles

Thresholds

Weighting

1-0-0

0-1-0

0-0-1

1-1-0

1-0-1

0-1-1

1-1-1

1-1-2

1-2-3

0.0

.68

.63

.63

.68

.70

.65

.69

.69

.68

0.5

.71

.65

.64

.71

.73

.66

.72

.71

.70

0.667

.71

.66

.64

.72

.73

.66

.73

.72

.70

Thresholds

0.0

.62

.56

.48

.62

.53

.48

.54

.50

.49

0.5

.71

.61

.57

.71

.71

.60

.72

.69

.65

0.667

.71

.64

.57

.73

.73

.63

.74

.71

.68
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On a segment-by-segment basis, however, accuracies varied con-

siderably. Tables 5 and 6 and Figure 4 present these results. Neither

year, agrophysical stratum unit, or the number of available acquisitions

were shown to be significant with respect to grain labeling accuracy.

This result is surprising, since logical connections exist between

these factors and the labeling technique (see Section 3.2.1). One ex-

planation for the lack of significance may be that the acquisition place-

ment is critically important (see Section 4.4.2), and overshadowed the

influence of the factors tested.

4.3 LABELING ERROR CHARACTERIZATION

4.3.1 ERRORS OF OMISSION

Accuracy by Type of Grain Crop

Only three of the spring small grains had enough data to support

analysis: Spring Wheat, Barley, and Oats. Durum Wheat was only repre-

sented by a few blobs in two segments, and therefore could not be

evaluated. Of the three crops, Oats showed the worst labeling results,

usually several percentage points below Wheat. When the test-statistic

included all three features (Greenness, Brightness, and shift) Barley

was most often correctly labeled, though again by only a few percentage

points. Those Spring Wheat blobs that were correctly labeled, however,

seemed to fit the grain profile better than did the other grain crops.

When the probability threshold was increased from 0.0 to 0.5, the per-

centage of Spring Wheat blobs still called grain decreased less than did

the percentage for Barley or Oats. There were too few strip fallow

grain blobs to allow separate evaluation of this category.
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TABLE 5. SELECTED LABELING
RESULTS BY SEGMENT

All Profiles
Weighting: 1-1-1

(Only segments with 10 or more
Grain Blobs Labeled)

Segment

1380

1394

1498

1521

1542

1567

1614

1618

1619

1637

1661

1663

1675

1676

1725

1731

1755

1800

1811

1842

1913

1942

1948

Threshold

Grain

.56

.56

.44

.86

.28

.11

.28

.42

.23

.75

.52

•71

.51

.50

.57

.13

.12

.52

.52

.08

.44

.27

.50

0.0

Other

.99

.84

.83

.63

.89

.97

.75

.91

.94

.75

.59

.95

.52

.83

.60

.91

.89

.51

.54

.99

.55

.94

.87

Grain

.47

.55

.33

.81

.20

.07

.24

.41

.22

.71

.49

.60

.49

.42

.28

.13

.12

.47

.37

.08

.31

.27

.19

0.5

Other

.99

.91

.89

.67

.93

.99

.89

.92

.98

.85

.78

.98

.56

.85

.70

.91

.90

.57

.63

1.00

.69

.95

.97

0

Grain

.41

.55

.17

.78

.20

.07

.23

.41

.21

.69

.46

.57

.46

.33

.20

.13

.12

.42

.36

.08

.27

.27

.13

.667

Other

.99

.91

.93

.67

.93

.99

.89

.92

.98

.88

.82

.98

.58

.85

.72

.91

.90

.62

.68

1.00

.74

.95

.98
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TABLE 6. SELECTED LABELING
RESULTS BY SEGMENT

No Grass or Flax Profiles
Weighting: 1-1-1

(Only segments with 10 or more
Grain Blobs Labeled)

Segment

1380

1394

1498

1521

1542

1567

1614

1618

1619

1637

1661

1663

1675

1676

1725

1731

1755

1800

1811

1842

1913

1942

1948

Threshold

Grain

.75

.88

1.00

.97

.79

.21

.99

.92

.57

.98

.96

.95

.92

.50

.96

1.00

.82

.86

.71

.30

.78

.98

.88

0.0

Other

.97

.39

.08

.25

.42

.92

.03

.55

.66

.11

.07

.87

.06

.83

.05

.39

.25

.16

.34

.99

.24

.59

.45

0.5

Grain

.59

.82

.61

.91

.64

.14

.76

.87

.53

.87

.57

.78

.82

.42

.57

.93

.60

.58

.51

.27

.39

.85

.22

Other

.99

.79

.79

.42

.82

.97

.72

.79

.92

.75

.73

.98

.22

.85

.22

.59

.73

.48

.56

1.00

.61

.77

.96

0

Grain

.53

.78

.39

.88

.44

.11

.65

.86

.51

.80

.49

.71

.72

.33

.44

.80

.56

.51

.47

.27

.32

.79

.13

.667

Other

.99

.84

.89

.50

.85

.98

.75

.81

.96

.84

.78

.98

.34

.85

.29

.74

.77

.56

.62

1.00

.69

.80

.98
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Major Error Sources

By far the most common confusion profile set for grains was that

representing grass. In every configuration grass was the second most

frequently chosen profile after grain. With no probability threshold, as

much as 44% of the grain sample was assigned to the grass class (depend-

ing on test-statistic weighting). Flax was the second most commonly

chosen confusion profile, attracting as much as 25% of the grain sample.

Both of these results were expected, since the profile shapes for the

three crops were very similar (see Figure 1).

When the grass profile was omitted, grain labeling accuracies in-

creased by about 15 percentage points, while omission of the flax profile

resulted in an increase of 10 percentage points. When both profiles were

omitted, grain labeling accuracy increased approximately 30 percentage

points. While these figures varied somewhat with thresholds and test-

statistic weightings, the trends were very stable.

The other crop profiles were much less likely to draw away grain

samples. Even when the grass and flax profiles were omitted from the

procedure the corn, sunflower, and soybean profiles each drew only 2-6%

of the grain sample.

4.3.2 ERRORS OF COMMISSION

The primary sources of error related to non-grains called grain

were the same crops that captured most of the grain samples: grasses

and flax.

The grasses class, which was comprised of all blobs assigned ground

truth labels of grass, hay, pasture, and idle fallow, had around 25% of

its members labeled grain, or 50-75% if the grass profile was omitted.

Broken down further, the four major elements of the class had approxi-

mately the same accuracies. It should be noted, however, that the
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pasture class comprised 65% of the total grass blobs, and 80% of the

total interior pixels of this class. Thus in terms of absolute numbers,

pasture was the most important source of erroneous grain labels. A

technique to detect pasture prior to the labeling process, perhaps based

on the irregular field shapes typical of the class, could increase

accuracy considerably. Table 7 shows the results obtained when Pasture

blobs are designated Other. The results can be compared to those pre-

sented in Tables 3 and 4.

Flax was called grain 40-50% of the time, while 15-20% of the corn

and soybeans blobs were labeled grain. Although 30-60% of the sunflower

blobs were called grain, this may not accurately indicate the spectral

confusion between these crops. Even sunflower data were not called sun-

flowers very"frequently, suggesting that the sunflower profile set was

not in fact a good representation of sunflower spectral development; the

confusion, given a good sunflower profile, would probably have been less.

Labeling accuracy for two other important crops was also evaluated:

winter wheat and alfalfa. Although it is planted in the fall, the

development of winter wheat in the spring is very similar to that of

spring wheat, so one might expect that winter wheat would frequently be

called a spring grain in this procedure. However, on the average, only

about 20% of the winter wheat blobs were called spring grains. The

majority of winter wheat blobs best fit the corn profile, and thus were

labeled other.

The cutting cycles of alfalfa can produce a wide range of spectral

patterns for alfalfa blobs, some of which could easily be mistaken for

grain. Nonetheless, two to three times as many alfalfa blobs were

labeled grass as were labeled grain. Only about 20% of the alfalfa

blobs received grain labels. However, this number increased substan-

tially, to about 60%, when grass and flax profiles were omitted.
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4.4 QUALITATIVE COMPONENT EVALUATION

4.4.1 CROP CALENDAR SHIFT

The concept of crop calendar shift estimation relies on the assump-

tion that the span of the growing season can be determined from the few

scattered acquisitions available. In particular, it depends on the

ability to detect a peak Greenness. Examination of histograms of the

shift estimates by ground-truth class suggests that for the most part

the technique performed as intended. Figure 5 provides illustrations

of "good" results, and the normal-like distributions one would expect

for planting dates in a given region.

In other segments, however, shift estimates for a given crop type

varied considerably (Figure 6). Such results tended to occur when there

were few acquisitions available in the growing season, when the acqui-

sitions were spaced such that large gaps in coverage were apparent, or

when the crop of interest showed unusually little green development.

All of these conditions affect the spectral features used to estimate

crop calendar shift. While it could be the case that planting occurred

in an unusual pattern in the particular segment, it is most likely that

the algorithm was fooled by noise, too little information, or information

of low quality.

This conclusion can be confirmed by looking at the fit to the

Brightness profile. While the shift estimate maximizes Greenness corre-

lation, and thus should provide a somewhat reasonable Greenness fit, the

fit to the Brightness profile, with a shape that differs substantially

from that of the Greenness profile (at least for spring grains), would

be expected to be worse with inaccurate shift estimates. Figure 7 illus-

trates that for the spring small grains, that is indeed what happens.

One sees a reduced incidence of high probability fits to Brightness as

the deviation from the mean or expected shift increases.
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Segment 1614
xxx 5x 5 Small Grains
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X
x x x x x x x x x x x x
x y x x x x x x x x x x
x x x x x x x x x x x x

x x x x x x x x x x x x x
x x x x x x x x x x x x x x x

X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X

•*• » * • * • * » » • * • » + » * * * • * • * » + »* + » + » • » + » » « • » * •

-140 -170
Estimated Shift

Segment 1380
>< Soybeans
X
X X
X X
X X
X X

XXX
XXX X
X X X X X
X X X X X X

X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

x x x x x x x x x x x
X X X X X X X X X X X

x x x x x x x x x x x x x
x x x x x x x x x x x x x x

X X X X X X X X X X X X X X X X X
XX X X X X X X X X X X X X X X X X X X X XX
XXX X X X X X X X X X X X X X X X X X X X X X X X X X

+ + + «.» + + «-«. + ** + +*4-*-*-*- + »**-* + 4-»** + '»- + » * » * + 4 - * - + *

-135 -175
Estimated Shift

FIGURE 5. CROP CALENDAR SHIFT HISTOGRAMS - GOOD RESULTS

32



O (0
o c
00 iH
.H tfl

M
4J CJ
pj
<U H
B i-H
bo eg
CD 0
co co

x x x

X
X

X
X
X

X X
X

XX
X X

X
x x x x

xxx
X X
XX

xxxxx
x x x x x x x
x x x x x x x

x x x x x
X X
X X

x x x
X X

X X
X
X

x x x x
x x x

X
X X

X
X

m
4 i-H

4 '
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4
4

4

•4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

+ 0
4 O

4J
4-1
•H

co

-o
0)
4-1
(8

•H
4J
co
w

oo co
-3- -H
i-H <fl

4J O
c
4) .-H
S iH
bO to
O S

X
x x x x
x x x x

X X
x x x x
x x x x

XX
X X
X X

X X

X

X

X X
X
X

xxx
X

x x x x x x
X

x x x x
X X

x x x x x x
x x x x x x x x

x x x x x x x x x
X X X X X
x x x x x

x x x x
x x x x x x x

x x x x x
X X X X

X X X X X
X

X X
x x x
x x x

X

4

4

4

4

*
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1

4J
U-l
•H

co

•a
0)
4J
COs
•H
4J
co
w

m
00

1

w

u
PH

§

33



15 .

10

O'
H

0

Symbol
Deviation from
Expected Shift

0-10 days

>10 days

.5

Brightness Correlation

1.0

FIGURE 7. BRIGHTNESS CORRELATION AS RELATED TO DEVIATION FROM
EXPECTED SHIFT. (Grain Data Fit to Grain Profile)
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While the crop calendar shift procedure seems for the most part

to be providing adequate information, it is limited by the spectral data

available to it, and as a result is itself limited to segments which

provide a good set of acquisitions. The problem of little or no green

development will be addressed in the next section.

4.4.2 PROFILES AND PROFILE FITTING

Greenness

The most basic assumption of the labeling technique presented in

this report is that data of a particular crop type do follow a

characteristic pattern of spectral development. In terms of Greenness,

this assumption is clearly supportable. Figures 8 and 9 show shifted

data for two crops from all the test segments combined. While indi-

vidual trajectories are not traced in the figure, it is clear that the

data as a whole do follow a general pattern, and indeed follow a differ-

ent pattern based on crop type. Such results have been observed before

[6,11]. Nevertheless not all blobs said to be of a given crop type in

the ground truth information follow the expected pattern of Greenness

development. Figures 10 and 11 illustrate this fact. Whether the

cause of these spectral patterns is misregistration, ground truth errors,

cultural factors such as abandonment and early cutting, or environmental

factors such as drought and hail damage, the patterns deviate enough

from a "normal" profile that the fields probably would not be detectable

as grains in any procedure based on multitemporal spectral analysis.

An additional issue raised by these data relates to their treatment

in tests such as this, or in operational systems. Some odd profiles are

the result of ground truth errors, and clearly "errors" in labeling

such data may not be errors at all. Where misregistration is the cause

of deviant spectral development patterns, the "true" label of a blob
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is ambiguously defined. The incidence of such ambiguous labels can be

minimized through use of a spectral-spatial clustering algorithm like

SUPERB, but where they do occur, their treatment is a problem more com-

plex than simply assigning the "correct" label.

The third case is that in which cultural or environmental influences

have substantially altered the physical and, therefore, the spectral

character of the field. In many of these cases it is probably not de-

sirable to label a field as a normal crop, since it will add little or

nothing to the final production of the region. While this is dependent

on the yield estimation component of the system, and is thus, to some

degree, beyond the scope of this work, it again influences the evaluation

of test results for labeling techniques. If grain fields that have been

green chopped for silage or extensively damaged by hail are not going

to contribute to the production figure, then the "correct" label for

such fields may not be grain but rather non-grain.

Brightness

As previously described, Brightness development over time is a

more complex process than Greenness development. The interaction of

soil and plant canopy results in greater variability in spectral

patterns exhibited by a single crop, and particularly in Brightness

values early and late in the season. This situation is clearly illus-

trated in Figures 12 and 13. At the same time, however, patterns in

Brightness development are important for crop discrimination, as des-

cribed in Section 4.5.2.

There is clearly a need for more work in this aspect of the labeling

process, in terms of characterizing the shapes of crop Brightness pro-

files, detecting those shapes in data of unknown type, and adjusting ex-

pectations in response to soil Brightness and crop condition changes.
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Acquisition Dependence

A key element of profile fitting already mentioned is the spacing

and frequency of acquisitions. Profile-based procedures such as this

one may work well or poorly, entirely as a function of the set of

available data acquisitions. Two reasonably different profiles may

look very different (Figure 14a) or identical (Figure 14b) depending

on where the acquisitions fall. This problem, while very significant,

is largely outside the control of any labeling procedure. It does,

however, point out both the need for frequent coverage and an inherent

limitation in multitemporal spectral analysis techniques. The problem

may be aggravated by automated profile-based labelers, which must

operate on a simpler level than the human mind, but it is a factor in

all labeling techniques.

4.5 EVALUATION OF PROCEDURE CONFIGURATIONS

4.5.1 PROFILE SETS

Section 3.3.2 describes the various sets of profiles evaluated.

Previous sections have already discussed the influences of some of the

described variations. The general trend through all eight sets tested

was a decrease in errors of omission and an increase in errors of com-

mission as the number of non-grain profiles was reduced. This is par-

ticularly true for the grass profile, which attracted many blobs from

many other crop groups, as well as many grains. The best results,

based either on combined grain/other accuracies or on the best mix of

accuracies for the two crops, were achieved when both the grass and

flax profiles were omitted.

The subsetting intended to simulate that which could be done using

historical statistics had the same effect as omission of other profiles,

but the relative gain, weighting grain accuracy against non-grain accu-

racy, was of uncertain significance.
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4.5.2 TEST STATISTIC WEIGHTINGS

Section 3.3.3 describes the various weightings evaluated. When

used by themselves or in most pairs, the three features (Greenness,

Brightness, and shift) yielded worse results than when all three were

used. When only one was used, the best grain labeling accuracies were

obtained with Brightness correlation, and the worst with Greenness fit.

The explanation for the superiority of Brightness as a single discriminant

may have to do with the Brightness dip which occurs in grains around

the time of heading (see Figure 15). This dip is not apparent in any

of the other crops for which profiles were constructed. The dip proba-

bly results from a combination of shadowing effects from the heads,

and the more opaque quality of the heads. Although there are problems

associated with Brightness as a discriminant (see Section 4.4.2), it

nonetheless produced the best single feature results.

Figure 16 illustrates a likely explanation for the low accuracies

achieved with Greenness fit used alone. When shifted so that their

peaks line up, the Greenness profiles of all the crops look very similar,

varying primarily in their temporal spread. Since the tails of the pro-

files tend to be the most noisy, it could be expected that many grain

blobs would fit the longer profiles fairly well simply as the result of

a higher than expected early or late Greenness value.

In this test, grain labeling accuracies were maximized by those

weightings which downplayed Greenness fit and emphasized Brightness

correlation and shift: the 0-1-1 and 1-2-3 weightings achieved the

best results (refer to Tables 3 and 4). These weightings were also

best for maximizing overall accuracy (grain and non-grain) when all

profiles were used. However, since the flax and grass profiles resemble

grain most in Greenness, omission of one or both of these profiles
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allowed the emphasis on Greenness fit to be increased. When both were

excluded, the 1-1-1 and 1-1-2 weightings produced the best results

(see Tables 3 and 4).

4.5.3 PROBABILITY THRESHOLDS

Any increase in the probability threshold will almost certainly

reduce the number of blobs assigned to a crop code. In terms of grain

vs. non-grain, a higher probability threshold will result in a purer

sample (decreased errors of commission) but also increase errors of

omission.

Of the thresholds considered (see Section 3.3.4), the 0.5 and 0.667

values were found to be best in terms of both accuracy with which a

crop was called itself (grain called grain, corn called corn, etc.)

and overall grain/non-grain accuracy.

The incremental change in grain accuracy can be compared to that

in non-grain accuracy as a further evaluation of the probability thres-

holds. Comparison of the 0.0, 0.5, and 0.667 thresholds showed a sub-

stantial gain achieved when going from the 0.0 to the higher levels,

particularly in configurations excluding the grass and flax profiles.

The incremental gains or losses incurred by moving from the 0.5 to 0.667

levels appear insignificant, although the highest total labeling accu-

racies for all data regardless of type were achieved with the 0.667

threshold. In terms of overall grain and non-grain accuracies, the best

threshold was either 0.5 or 0.667, depending on the test statistic

weighting used (see Tables 3 and 4). Different effects were also ob-

served between individual segments (Tables 5 and 6).
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5.0

CONCLUSIONS

A labeling technique requiring minimal analyst resources has been

developed and tested on an extensive and independent data set. Results

of that test suggest that the technique, as it is currently defined, can

achieve spring grain labeling accuracies similar to those achieved with

analyst-intensive techniques, though with lower non-grain accuracies.

Among the procedure configurations tested, the best labeling

accuracies were obtained using:

Profile Sets: Exclude grass and flax

Test-Statistic Weighting: 1-1-1

Probability Threshold: .667

Some other statistic weightings, particularly those that increase

emphasis on Brightness, should be considered in the future.

Test results also suggest that the accuracy of the technique could

be substantially improved through particular modifications. These

modifications, and some implications of the test for profile-based

labelers and multitemporal labeling techniques in general, are described

below.

Modifications Suggested

As detailed in Section 4.3.2, the pasture class is a major source

of erroneous grain labels. As suggested in that section, a fairly

simple technique, based on either visual or digital detection of field

shapes, could be used to identify the pasture class prior to labeling,

and so allow substantial improvements in non-grain labeling accuracy.

It is clearly desirable that such a technique be developed and added

to the labeling procedure as described in this report.
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The second major area of interest is that of characterizing and

using Brightness development patterns in labeling. There are several

obstacles to effective use of this information, but the importance

of Brightness as a discriminant feature, described in Section 4.4.2,

provides ample incentive to address the problems.

As a whole, our understanding of Brightness and its relationship

to crop physical characteristics is less developed than that of Greenness.

This understanding, and the resultant development of techniques for de-

tecting soil Brightness and crop condition and using that information

to adjust expected crop Brightness profiles, could allow substantial

increases in the ability of this or similar labeling techniques to

accurately detect grains, and perhaps other crops as well.

Other Implications

The test and evaluation of this labeling procedure on a large

data set has raised several issues which relate to the whole discipline

of crop identification using Landsat. First, only about half of the

blobs in the entire data set of 64 segments met the acquisition require-

ments for labeling. One might conclude from this fact that profile-based

techniques are impractical for use in area estimation systems due to

their acquisition constraints. We suggest, however, that the mathe-

matical requirements imposed by this procedure are in fact indications

of practical requirements for any labeling procedure, that while an

analyst or simple classifier may produce labels using less information

than the three acquisitions required by this technique, they will be

unable to produce accurate labels in most such cases. Others have ob-

served similar limits [9,10].

Clearly, then, there is a need to design systems which can provide

more frequent coverage, and also to develop procedures that can extract

the maximum information possible from the limited set of available

acquisitions.
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A second implication relates to any multitemporal analysis tech-

nique which assumes characteristic patterns of temporal-spectral develop-

ment for crop classes. Results described earlier clearly indicate that

at least some data of a particular crop class (as identified in ground

data) show little if any similarity to the expected spectral develop-

ment pattern. Those deviations caused by errors in the ground data or

misregistration of data between dates are beyond the control of labeling

techniques, but are probably an insubstantial portion of the total. The

remainder of the unexpected patterns either point out an inherent flaw

in the pattern matching approach, or suggest the need for finer defini-

tion of the crop classes. While there is a range of spectral development

patterns one would expect from normal fields of a given crop type, our

understanding of the effects of crop variations on spectral development,

particularly with regard to Tasseled-Cap Greenness, leads us to conclude

that the deviant patterns observed represent not a normal range of varia-

bility, but the result of drastic cultural or environmental events (e.g.,

green chop for silage, abandonment, hail damage). Fields altered so

significantly will contribute little if anything to regional crop pro-

duction, and as a result, are probably best assigned to the non-grain

(or non-crop of interest) category. Thus it can be said that this and

similar techniques best detect "producing grains" (or other crops)

rather than all fields containing plants of a given species. As an

input to a crop production estimation system, this is probably more

useful information.

The test and evaluation reported herein has provided an indication,

though not an absolute proof, of the utility of multitemporal profiles

and related features as the basis for automatic labeling techniques.

Techniques such as this one, which use the integrative powers of the

human analyst to provide a context within which a more efficient and

objective computerized technique can assign labels, show great promise

51



for advancing the accuracy and efficiency of this most difficult step

in crop area estimation systems. With the understanding provided by

this and similar tests, combined with continual advances in our under-

standing of features in Landsat data and their relationship to crops and

crop condition, substantial improvements in the state-of-the-art of

labeling should be possible.
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APPENDIX A

GRAIN LABELER FLOW DIAGRAM

Reference
Section

©

1.3.2 Q

©

©

©

©

Analyst-Specified
Expected Mean Days

of Spectral Emergence
for Each Crop

/ Read in \
/ Spectral ValuesN
\of Next Target/

Evaluate Greenness
for each Acq.

• Omit Acq'3 with
Greenness < 25

. Determine Highest
Greenness

Less than
3 Acq's with
Green > 25

Subtract 25 from
All Greenness

Values
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2.3.5

©

Scale All Acq's
in Profile Range
(Determined in

Step (9))

Compute Chi-Squared
Fit of Data to
Profile:

Fit
- sG )

F - profile value

s • scale factor

Gi » data value

a 2 = variance

Compute Chi-Squared
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Acquisitions - 1.

JLE
For Each

Brightness Profile)
in Set

Combine
i Probs,
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Profile,

R -

f. - Profile Value - Profile Mean
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2.3.6

Compute Probability
of Cross-Correlation
Based on Historical

Distributions

Next
Brightness]
Profile

NOTE: Where more than one Brightness profile are
present in a profile set, select the one
with the greatest cross-correlation.

Compute Combined
Test Statistic
According to

Fisher's Omnibus
Procedure

wi lnpi
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for Label
Assignment
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Compute Combined
Probability of
"T" with

robability
> Threshold

Value
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2.3.7

One or Mor
Probabilities >

Threshold

Select Most
Probable Crop
as Winner, or
Pass Along All
Probabilities
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