

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

1

(NASA-CR-159095) INTEGRATtC 12STING AMC
YBRIFICATION SYSTEM fOR RESEABCd FLIG6T
SOFTWARE DESIGN DOCUMENT Ccutractor 6eport
(Boeing Coaputir Services, Inc., Seattle,
Wash.) 243 p -, 1C A1 '!/az A01	 CSCL 09B 63/61

M82-15813

Unclas
08729

NASA Contract Report ► lls9o95

Integrated Testing
and
Verification System
for

Research Flight Software

Design Document

Richard N. Taylor
Randall L. Merilatt.
Leon J. Osterweil

Boeing Computer Services Co.
Seattle, Washington 98124

m

L
L0 a
t W

0

oZ
Iz

0
U
ME

Q^
V

C0
Q
Z ^A

Contract No. NAS1-15253
July 31, 1979

P~
National Aeronautics and
Space Administration

LoV11 y Resewvh Center
Hampton, Virginia 23665
AC 804 827-3966

Page intentionally left blank

..

	

	 j
r

i

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

Design Document

By

Richard N. Taylor
Randall L. Merilatt
Leon J. Osterweil

July 31, 1979

Prepared Under Contract NASI-15253

Boeing Computer Services Company
Space and Military Applications Division

Seattle, Washington 98124

' t e

#	 For

`	 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

iis< A

V	 Z,,

PRECEDING PAGE BLANK NOT FILMED

ACKNOWLEDGEMENT

Pages 27 to 56 (Section 3.4.2.3) of this document are contained in "Anomaly
Detection in Concurrent Software by Static Data Flow Analysis," a paper
submitted for publication to the IEEE. Copyrights for that paper have been
assigned to the IEEE. The work is reused here by permission.

d

f	

P!lECEDM U PAGE BLA^^ ;

p PAGE BLANK NOT FILMED	 v

PRECEDE PAU BUM NOT FO UM

r

is

a

CONTENTS

Page

-	 INTEGRATED TESTING AND VERIFICATION SYSTEM FOR RESEARCH 1
'	 FLIGHT SOFTWARE

1.1 Summary 1
`	 1.2 Document Organization 1

1.3 Introduction 2

2.0	 SYNOPSIS OF DESIGN ACTIVITIES 7

3.0	 KEY DESIGN FEATURES 11

3.1 Tool Integration and Modularity 11
3.2 System Database 12
3.3 HALMAT 13

3.3.1	 Relating Verification Error Messages to 13
the Source Text

3.3.2	 HALMAT Monitor File 13
3.3.3 Merging HALMAT and the HALMAT Monitor File 17

3.4 Static Analysis 18

3.4.1	 Unit/Scale Specifications and Algorithms 18
3.4.2	 Static Data Flow Analysis 23
3.4.3	 Unresolved Design Issues 58

3.5 Interactive Testing System 60

3.5.1	 Design Philosophy 60
3.5.2	 System Overview 61
3.5.3	 Interactive Command Language (ICL) 62
3.5.4	 ITS Operation 71
3.5.5	 Discussion 75
3.5.6	 Conclusion 77
3.5.7	 Unresolved Design Issues 77

3.6 Dynamic Analysis 78

3.6.1	 Assertion Facility 78
3.6.2	 Assertion Language 82
3.6.3	 Statistics Gathering Language 85

(3.6.4	 Rationale 88
+ 3.6.5	 Sample Usages of the Assertion and Statistics 89

Gathering Facility
3.6.6	 Instrumentation Schema 93
3.6 .7	 Control of Instrumentation 107
3.6.8	 Unresolved Design Issues 112

i .

vii

C

r

I S

Me	 ek

3.7	 Documentation 113
3.9	 Error Class/Detection Technique Chart 116
3.9	 Modifications Required to the NASA-LaRC HAL/S 122

Front End Compiler

4.0	 VERIFICATION TO REQUIREMENTS DOCUMENT 125

4.1	 Verif ication 125
4.2	 Discussion of Investigations 127

4.2.1	 ISIS 127
4.2.2	 FSIM 127
4.2.3	 HALSTAT 129
4.2.4	 FAST 123
4.2.5	 HAWS Problem Features 129
4.2.6	 RNF 129
4.2.7	 Interpretive Computer Simulation 130

5.0	 CONCLUSION 131

5.1	 Listing of Programs and Implementation 131
Recommendations

5.1.1	 Interactive Tools 134

Appendix A:	 Introduction to the SAMM Methodology 135

Appendix B:	 System Database 139

Appendix C:	 ITS Built-in Functions 145

Appendix Dt	 SAMM Diagrams 147

Appendix E:	 Integrated Testing and Verification System for 211
Research Flight Software: Requirements
Document

CONt	 (contIM04

References	 234

vui

LIST OF FIGURES

Page

Figure 1.2-1 Phased Approach to Software Development 2

Figure 1.2-2 Lifecycle Verification 2
i

Figure 1.2-3 System Overview - Management of the 3
Software Lifecycle and Data Flows

Figure 1.2-4 Source Code Verification and Testing 5

Figure 1.2-5 Module Verification Options 6

Figure 2.1 Basis for Integrated Verification 7
Methodology

Figure 3.4.2.3.2.2-1 Example Program with Several Data Flow 29
and Synchronization Anomalies

Figure 3.4.2.3.2.5-1 Process-Augmented Flowgraph for the 33
Program of Figure 3.4.2.3.2.2-1

Figure 3.4.2.3.3.0-1 Paf for Program with Two Uninitial- 35
ization Anomalies

Figure 3.4.2.3.3.0-2 Contents of the Data Flow Analysis 38
Sets for the Paf of Figure
3.4.2.3.3.0-1

Figure 3.4.2.3.4.0-1 Paf for Program with Two Uninitial- 44
ization Errors with a Single Task

:	 Figure 3.6.6.2-1 Assertion Violation Procedure 98

Figure A-1 SAMM Activity Cell with all Possible 135
Inputs and Outputs

Figure A-2 Sample SAMM Diagram 137

LIST OF TABLES

Page

Table i Error Class/Detection Technique Chart 118

ix
t

PRECEDING PAGE @LANK NCVT FLLLMED

GLOSSARY OF TERMS

anomaly	 Dei iation from the common rule; Irregularity; Includes
both errors and "suspect" program operations.

assertion	 A statement made to Indicate the intent and nature of
a program.

avail A set of variable related information attached to each
node of a flowgraph; used during static data flow
analysis.

i
commensurate	 Two units are commensurate if there is a declared

relationship between them, such as inches = 12 feet.

concurrency	 A state in which two or more processes (programs or
tasks) can execute simultaneously.

data flow analysis Analysis of the characteristics of the flow of data
within a program whereby various classes of anomalies
are detected, such as uninitialized variables, variables
which are assigned values before the value from a
previous assignment has been referenced, etc.

dynamic analysis	 Program verification analysis which is performed during
program execution.

flowgraph	 A representation of the control flow of a program by a
directed graph.

global	 Information and/or actions which are known everywhere
in a program.

HALMAT	 HAL/S intermedidate code created by the HAL /S front-
end processor and input to the HAL/S code generator.

instrumentation	 The suite of automatically generated code which is
inserted into a program to perform dynamic analysis.

invariant	 Used with assertions to specify expressions whose val-
ues do not vary within the scope of the assertion.

keep	 A statement which is used, at execution time, to save 	 d
an intermediate value of a variable or expression.

a

live	 Similar to avail.

local	 Information and/or actions which are known only with a`
limited scope in a program."

Ulm

xi

W^ b lt,r.ia, t «rw v

.1

M:
7

a
a

monitor A statement or sequence of statements which are
automatically Inserted Into a program by analysis tools
to perform a specific dynamic analysis function.

probe	 Same as monitor.

process augmented	 A flowgraph which has been altered to represent con-
flowgraph (PAF)	 curr..nt process control flow In addition to normal

program control flow.

program call graph	 A graphical representation of the procedures/functions
which call and are called by other procedures /functions.

software development	 The entire spectrum of software development which is
III! e: cycle decomposed Into phases; phases commonly Identified

are requirements analysis, preliminary design, detailed
design, and code.

static analysis Program verification analysis which is performed on the
program text and which does not require program
execution.

symbolic execution Execution of a program where variables are assigned
symbolic values; used to construct formulas which rep-
resent the computations performed by the program.

testing	 The actual or simulated execution of a given phase
within the software development cycle.

validation The process of verifying any given phase within the
software development life cycle to the user require-
ments.

verification The process of demonstrating the internal consistency
of any given phase within the software development life
cycle and checking to insure that it successfully cap-
tures and develops the intent of its predecessor phase.

w

J

^t'

xii

i

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SDFTWARE

Richard N. Taylor
Randall L. Merilatt

Leon J. Osterweill

1.1 Summary. NASA Langley Research Center is developing the MUST
(Multipurpose User-oriented Software Technology) program to cut the cost of
producing research flight software through a system of software support tools.
Boeing Computer Services Company (BCS) has designed an integrated verification
and testing capability as part of MUST. Documentation, verification and test
options are provided with special attention an real-time, multiprocessing issues.
The needs of the entire software production cycle have been considered, with
effective management and reduced lifecycle costs as foremost goals.

Previous verification systems generally have utilized a single technique,
such as sta tic or dynamic analysis. However, thorough examination of any one
program requires the use of several techniques. Besides providing a cemprehen-
sive set of analytical techniques, the integrated capability BCS has designed takes
advantage of the complementary abilities of the different schemes in a synergis-
tic manner. A "one -tool-does-it -all' concept has not emerged though. The need
for a distributed set of tools became clear as the various usage modes present in
the MUST environment were modeled. No single sequence of testing and analysis
activities is optimally suited to all MUST requirements. Rather, for detecting
specific classes of errors under specific operating constraints, a specific combina-
tion of analysis techniques is chosen.

The concern with multiprocessing issues is motivated by the increasing
sophistication of flight hardware and software, which present difficulties such as
protecting shared data. New research was conducted into the problem of
statically detecting such errors with encouraging results. Consequently, capabil-
ities have been included in the design for static detection of data flow anomalies
involving communicating concurrent processes. Some types of ill-formed process
synchronization and deadlock also are detected statically.

Although the HAWS language is the primary subject of this design, the
algorithms developed are readily applicable to other languages. Full implementa-
tion of the designed capabilities will provide the MUST user with extremely
powerful program development tools. Such programming environments offer a
very desirable and profitable alternative to the way software is typically
produced.

c	 1.2 Document Organization. - The bulk of the design is represented by
SAMM diagram.% attached as ppendix D of this document. In discussion of this

^

! Associate Professor of Computer Science, University of Colorado

design a synapsis of the design activities is presented In Section 2 9 followed by a
discussion of key features In Section 3, where a rationale for the design decisions
Is also presented. Section 4 Indicates how the design satisfies the relevant items
In the requirements document, and explores some Items marked in the require-
ments document as requiring further examination. The requirements document Is
found In Appendix E. Concluding remarks are presented in Section 3.

Appendix A provides an introduction to the SAMM methodology, showing
how the diagrams are interpreted. Appendix B contains a presentation of the data
base envisioned as associated with the software development environment provid-
ed by MUST. Appendix C contains a description of the built-in functions which
will be available to the user of the Interactive testing system--one of the design's
tools.

1.3 Introduction. - Considered from the user's viewpoint the development of
software may be conviently decomposed into several phases, as indicated in
Figure 1.2-1. The end user determines his needs; those needs are translated into a
more formal specification and are analyzed. Preliminary design work produces
the basis of a solution to the problem. The solution is further refined at the
detailed design level. Lastly, actual code is produced to implement the solution.

END REQUIREMENTS PRELIMINARY DETAIL CODE
USER ANALYSIS DESIGN DESIGN

Figure 1.2-1 Phased Approach to Software Development

Notice that "testing" has not been included as a separate phase in this
overview of the software lifecycle. Rather, it must be stressed that testing and
verification are pervasive activities taking place throughout the development
cycle. Such activities are indicated by the diagram of Figure 1.2-2. Each phase

CONSISTENCY	 CONSISTENCY	 CONSISTENCY
	

CONSISTENCY

END	 REQUIREMENTS	 PRELIMINARY	 DETAIL
USER	 ANALYSIS	 DESIGN	 DESIGN

REQUIREMENTS	 PRELIWARY	 INCREMENTALLY
VERIFICATION	 DESIGN	 DETAILED DESIGN

VERIFICATION	 VERIFICATION

Figure 1.2-2 Lifecycle Verification

CODE

t

CODE
VERIFICATION

2

r

must be verified for internal consistency, as well as checked to ensure that It, as
a refinement, succadtlay captures and develops the intent of its predecessor.
The process of verifying any given level back to the user requirements is terms-'
validation. Thus verification Is not something which is "done" after a piece of
code Is written; on the contrary, all the tasks associated with the creation and
maintenance of software are Interwoven with various verification activities.

Figure 1.2-3 presents this view of the program development cycle in the
specific context of the MUST system. It is this overview which provides the
framework for the design of the individual verification and testing tool& Note
that management activities to control and guide the development of the software
are highlighted, with management providing direction at each phase. The :usis
for effective management Is total visibility into the developing system, and Is
obtained throw;h use of the system database, where each phase in the cycle uses
and contributes Information to It. This database Is the repository for all
information related to a software system. Note the correspondence between
Figure 1 .2-3 and the root of the SAMM model titled "System Development."

OUIREMENT
ANALYSIS	 _

SYSTEM

^•^ ^^^	 DESIGN	 BASE
DATA

SYSTEM	 — — — —,
1 DATA	 1

'BASE

MODULE
CREATION $

MANAGEMENT
TEST

INTEGRATION

AND

SYSTEM TEST

Figure 1.2-3 System Overview - Management of the
Software Lifecycle and Data Flows

3

As the primary purpose of this contract is to design tools which specifically
address the verifkatlon of HAWS code, consider Figure 1.2-4. This figure
illustrates many of the activities which are associated with verifying a module of
source code. internal verification, to be expanded upon shortly, Is per formed
first, detecting as many errors as possible. Next, the intermediate representation
of the program is targeted to the specific computer (or simulator) on which
execution is to take place. Test data Is created to validate that the acceptance
criteria are met, then the program is executed After execution, output; values
are examined as well as several aspects of the program 's performance. Analysis
may reveal the need for additional testing. if so, additional data Is generated and
the cycle repeats. (Figure 1.2-4 Is related to SAMM node CC.)

Several options are available to the user concerning the type and amount of
Internal verification to be performed. Chapter 2 elaborates on the rationale
behind providing a variety of ways in which the verification and testing tools can
be combined For the moment however, Figure 1.2-5 (a combination of aspects of
SAMM modes CBC, CCB, and CBCC) presents an overview of the facilities
available to the user. (As alluded to earlier, the verification tools operate on an
Intermediate representation of HAL /S, produced by the compiler, known as
HALMAT.)

Several tools may be Implemented to provide the facilities noted by each
box. Briefly we note that box A Is not the full HAL/S compiler, but only the front
half which checks the syntax, parses the program, and generates the
HALMAT. Box B processes program assertions (statements made to Indicate the
intent and nature of the program) having program -wide significance.
/*ASSERT GLOBAL X<=0 "i; would be an assertion in this category. Box B
would Insert the necessary monitors to check that this requirement will be met
throughout the program. if at any time it is violated, an Informative message will
be produced Non-data flow static analysis may involve the use of several tools to
perform its tasks, such as creation of helpful cross reference maps, checking for
mismatches of units among program variables (such as adding feet to meters), and
ensuring shared procedures are reentrant. Data flow analysis checks for errors
including uninitialized variables and ill-coordinated procedures. Symbolic execu-
tion determines the functional effect of a specified program path. Functional
testing allows interactive, interpretive execution of specified program segments.
Lastly, if any program instrumentation is called for, it is inserted in the HALMAT
at box F. Such Instrumentation is the executable code required to perform
verification tasks during program execution.

3 	 The following sections explain the design more fully, and indicate the
hierarchical structure of the facilities.

^	 I

4

VERIFY

INTERNALLY

ACCEPTANCE

CRITERIA
	

TARGET

HALMAT

GENERATE	
EXECUTE
	

CORRECTIONS
TEST DATA

	

ADDITIONAL	
VALIDATE

TESTING
	

ANALYZE
	

OUTPUT:

	

REQUIREMENT
	

BEHAVIOR:

TEST COVERAGE,
	 DATA VALUE

REAL TIME
	

ASSERTIONS

PERFORMHNCEo

EXECUTION TI

Figure 1.2-4 Source Code Verification and Testing

4

3

^;Sq^atgs ,RVP-ws.._,....^^^^.̂ ...' •.•^	 -^^C.^_^.:._ .R •v	 ^-::rwc`: ^^^ " ^'nr!'!°..QS'	 _-`c^'a"	 -

SOURCE CODE

HAL/S

COMPLIER
A

	

NON DATA	 DATA FLAW

	FLOW STATISTATIC
C141ANALYSIS	 ANALYSIS

INSERT

MONITORS
IF

CREATE C
FOR

IbSTRUMENI
F ASSER'

HAVIN
REGION

B

TESTl DATA

1	 •

SYMBOLIC
:XECUTION AND
UNCTIONAL
TESTING E

EXECUTION OPTIONS

Figure 1 .2-5 Module Verification Options

i

6

SECTION 2A

Srwpsis of Design Activities

As explained more fully in Appendix A, BCS has developed the Systematic
Activity Modeling Methodology (SAMM) to aid in requirements analysis and the
formalization of preliminary design. This formalism was chosen as the vehicle for
expressing the preliminary design of the MUST verification and testing capability.
In so doing hierarchical relationships among activities are clarified, data flows
and dependencies are indicated, and critical functions are identified.

A SAMM model presents a hierarchical breakdown of an activity. Initial
difficulty in using SAMM in the design of the verification and testing capability
was laid to inadequate consideration of the actual user modes which would be
present in the MUST environment. Once specific user tasks were identified
preliminary design proceeded smoothly. An outfall of this was a deepening of our
conception of how verification and testing tools should be integrated. Reference
1 [Osterweil, 1977] presents a scheme in which the techniques of static analysis,
symbolic execution, and dynamic analysis may be combined so as to provide a
single, comprehensive analysis tool.

Figure 2.1 presents the basis for the integration methodology proposed by
the paper. Static analysis begins by detecting several classes of errors.
Unfortunately some "errors" may be reported which in fact do not exist, since the
"error" lies on a path which is not executable. In addition, the static analyzer
may note statements at which an error might occur. This information can be
passed along to the symbolic executor for further analysis. Symbolic execution
may be able to determine whether or not a particular path is executable, and
indeed may show that a suspicious construct is definitely erroneous. In addition,
the symbolic executor could generate test data which would force program
execution down the erroneous (or any other requested) path. Thus a link exists to
the next phase: dynamic analysis. Using the generated test data, the program
may be executed. While execution is proceeding, information can be gathered
indicating the steps taken in the progression to the error, as well as reporting
conditions prevelant at the time of error.

SOURCE	 STATIC	 SYMBOLIC	 DYNAMIC
TEXT	 ANALYSIS	 EXECUT10N	 TESTING

Figure 2,1 Basis for Integrated Verification Methodology

7

To summarize the paper, the three techniques complement each other and
may be used In tandem. The generality and usability of the techniques vary
widely however, as does their execution cost. It was consideration of these
differences and the usage modes present in the MUST environment that led to our
revised concept of how the tools should be Integrated.

It now appears that when specific tasks In the creation and maintenance of a
program are Identified, different analysis modes arc required. Each mode Is
subject to different constraints: goal, thoroughness required, available budget and
time, degree of human Interaction, and so forth. The synergistic combination of
techniques Is still called for and profitable, but not all the techniques will be
required for any one analysis task. Rather, for each task an appropriate subset of
the techniques will be combined which optimally addresses the problem.

This modeling activity has shown the need for small, modular facilities
which may be combined in a variety of ways to accomplish many different tasks.
Each combination would be configured to meet the constraints of differing goals
and environmental (resource) requirements. Some of the modular facilities which
have emerged are as follows: a facility to process "regional" assertions, a facility
for local assertions, a tool for extracting internal documentation, one for
answering simple questions about previously written code, several simple static
analysis tools (an auditor, a units and scale checker, a cross reference map
generator, and others), a data flow analysis tool, an execution time monitoring
package, and a facility for Inserting run time monitors. Each tool meets a
particular need and, in conjunction with other tools, helps satisfy a global
verif .cation requirement.

Another dominant feature of the design is the pervasive use of a machine
readable database of program related information. This database is begun with
the requirements phase, and is updated and maintained throughout the entire
software lifecycle. As a repository for the growing knowledge about the nature
and solution of a given problem, the data base is a natural device for smoothing
the transitions from requirements to design to coding to maintenance. It is this
database which makes possible the verification and validation of each step in the
development cycle. Such a database also provides a secure foundation upon which
effective program management can be based.

The program data base concept was adopted early in the preliminary design
process, and is an outgrowth of research into software lifecycle costs performed
by members of the Space and Military Applications Division.

As verification of real time, concurrent process software is a poorly
understood aspect of error detection called for in the requirements document,
design effort was spent in basic research of the problem. It was believed that
basic principles of error detection in this area must be understood before
designing the entire verification and testing capability, to avoid any later
requirement for restructuring, and so that an estimate could be obtained
concerning the promise of analysis in this area. Significant results were obtained
indicating the techniques and principles discovered are harmonious with the error
detection techniques employed with single process programs.

E.

i^
i+

3

I
i

In particular, It was discovered that the program flow graph for a system
may be augmented with special edges indicating the concurrent processing
constraints. If slightly modified data flow analysis Is applied to this graph (called 	 j
a process-augmented flowgraph or paf) data flow anomalies occurring between
parallel processes can be detected. Importantly, this analysis can be performed
concurrently with the detection of single process errors.

Auxiliary design activities included extensive literature surveys on various
analysis techniques and further investigation Into diverse topics, such as the
University of Texas FAST system, the HAL/S compiler operation, the FSIM
compiler capability, and several existent symbolic execution systems.

l^

9

PRECEDM PAGE BLANK WT FILUED

R	 .q
SECTION 3.0

Key Design Features

3.1 Tool Inte ration and Modularity. - The dominant characteristic of
designs represented by the orm ism is that they are purpose-oriented.
Each task, or node, is present simply to fulfill the requirements of a higher level
activity. No activity is present "for its own sake." The result is that all the tools
included in the design function together for the purpose of creating better flight
software with less total effort and cost.

The usage scenarios considered during the preliminary design were the
following: creating a new software system, managing the development of a
software system, adding a new capability to an existing system, performing
"minor maintenance," documenting an existing system, module test, integration
test, and the development of software by a team of programmers. Initially each
scenario was examined separately, then jointly as similarities, dependencies, and
interrelationships were discovered.

The examination of the various user modes envisioned has resulted in the
isolation of several basic capabilities. In various combinations the capabilities
represent the environment required for each user mode. Within a particular usage
scenario, select capabilities may be side stepped in accordance with various
constraints and desires. This integration and modularity of tools is particularly
evident in the tools provided for the verification and testing of HAL/S code. For
example, the instrumentation of global assertions within a module is separate
from the instrumentation of local assertions; instrumentation of multi-module
assertions is distinct as well. Static analysis and symbolic execution rr,-iy both aid
in determining the placement of monitors (adding and deleting thern); non-data
flow static analysis may be chosen apart from data flow static analysis. Several
criteria may be involved in chosing a particular combination of tools. The type of
verification desired, execution time, memory requirements, run-time overhead,
and target machine capabilities may all affect the selection process. The
following are a few representative combinations:

1. Isolation of a particular, relatively simple, "bug": dynamic analysis and
functional testing with extensive assertion usage, placing most empha-
sis on the single suspect module.

2. Initial verification of a new piece of code: static analysis--both data
flow and non-data flow.

3. Broad based verification, with few budget and time restrictions: static
analysis, extensive symbolic execution and functional testing, and
assurance of full test coverage through dynamic analysis.

4. Isolation of a difficult functional error (e.g. , the program computes a
slightly wrong value): symbolic and functional execution of appropriate
paths, with dynamic analysis.

S. Verification of a collection of previously (Internally) verified modules, 	 A

now joined In a parallel processing environment: multi-process data
flow analysis and static checking of Integration requirements, followed
by dynamic analysis of the concurrent process characteristics (such as
process queue snapshots and monitoring for parallel processing errors).

Such a philosophy pervades the design. As automated tools are eventually
required for requirements and design specification and analysis, such construction
will be desirable and possible there as well. Indeed, the types of analysis required
for such specifications will be very similar in nature to those required for actual
code.

The most important model presented in the SAMM diagrams of Appendix D
is that of creating a new software system. By extensively decomposing it, the
scenarios of management, testing, and team development are included. Adding a
new capability to a system may be modeled by emphasizing a particular path
through the system creation model and making a few minor modifications.

The same is true for "minor maintenance." That activity implies a small change
in the design (or requirements) of a module; coding changes are made, testing and
integration is performed and the system is released. Thus in Appendix D, only two
complete hierarchies are presented: system creation and documentation. Dupli-
cation and excessive detail are thus avoided.

3.2 System Database. - As introduced in chapter 2, the concept of a
comprehensive machine readable database of program related information is
inherent to the design presented. This database forms the basis for orderly
program development and effective program management. All the information
related to a particular program is present in this database. Documents, formal
specifications, test data, program output, source cede, and management reports
are all included. Such inclusiveness allows the rapid determination of any needed
program related information. The centrality of the information prevents wasted
effort in consulting separate sources. More importantly, the database may be
systematically monitored during program development to ensure that all the
components are generated in a timely manner. This is essential as the progression
from one phase of the software development cycle to the next is dependent upon
full information being available from the previous phase.

Such considerations may be carried further with the immediate observations
that communication among development team members is increased, visibility
into the developing system is promoted, analysis may be performed and reviewed
in a systematic manner, testing activities may be scrutinized for thoroughness,
and documentation may be readily distributed and updated. Clearly management
functions are enhanced and the efficiency of the development operation is
increased.

12

A less obvious but critical outflow of the use of the system database is in
the maintenance function. The term Nnaintenance" is used to describe a variety
of activities, usually everything occurring after the Initial release of a piece of
software. Typically this includes alteration of requirements, followed by design,
coding, and testing functions. The use of the system database allows such
activities to proceed in an orderly manner as the information contained in the
database provides a complete history of the development process. Thus the effect
of small changes in the requirements may be readily traced on to the design, then
to the code, and so forth. At each stage the historical information allows the
"maintainer" to determine the impact of proposed changes. Proper development
may then proceed.

A further discussion of these concepts in a general setting is found in
reference 2 [Osterweil, Browu, and Stucki, 1978].

3.3 HALMAT. - An intermediate representation of the HAWS language,
called HALMAT, is used as the primary representation of the programs analyzed
by the various tools. In so doing, the separate tools do not have to perform any
parsing, thus saving much time and effort. Additionally, the tools are largely
isolated from syntax changes to the language.

3.3.1 Relatine Verification Error Messaxes to the Source Text. - All error
messages which the veri icationaci sties produce shoulcYbe related to the source
code, and phrased in a manner readily understood by the user. The output writer
(described in Section 3.9) produces a source listing of the compiled program,
marking each statement with a unique statement number. All error messages can
be keyed to these numbers. If the source listing is not created until after the
verification tools have been executed, the error messages from all the tools can
be included directly in this single listing.

This all may be done by working directly with the HALMAT. There exists a
one to one mapping from the HALMAT "paragraphs" to the source statements.
Even HAWS statements which do not generate any executable code (such as
declarations) create a HALMAT paragraph. Each paragraph contains a field with
the originating source statement number on it. The statement numbers also
appear on the listing.

To form comprehensible error messages the symbol table is also required.
From it (and the other tables) the symbolic variable names created by the user
may be incorporated in the messages.

3.3.2 HALMAT Monitor File. - The design presented contains several tools
which may request that monitors inserted into the program under analysis. In
addition, the integration philosophy employed allows the specification of moni-
tors to be successively refined. A specialized capability may reveal that certain
dynamic monitors are unnecessary, as the conditions prevailing at that point in
the program are known a priori.

13

The medium upon which the analysis tools operate Is HALMAT. The
monitors need to be placed within the HALMAT, and must therefore eventually be
HALMAT. To allow the flexibility needed as Indicated above. It is therefore
recommended that two files of Information be kept In parallel. One file will be
the HALMAT produced as a result of program compilation, the other will be an
evolving file of monitors. When all analysis tasks are completed and the final set
of monitors Is d:clded upon, the two files may be merged Into a single file of
HALMAT. This file Is then ready for code generation and execution.

One clear advantage of this scheme Is that the Internal pointers In the
program's HALMAT only need to be modified once. Execution of a statement In
the program may require the value of a previously computed expression. The
HALMAT contains a pointer to the statement where the expression was computed.
If a monitor Is Inserted between the expression evaluation and its use, the pointer
must be appropriately altered. With the proposed scheme this alteration will only
occur once: when the HALMAT and monitor files are merged. Any implementa-
tion restrictions concerning checksums or the number of paragraphs which may be
stored In single record may be met at this time as well.

HALMAT's paragraph notion allows the mapping between the monitor file
and the program file to be particularly simple. The SMRK instruction which
delineates the HALMAT corresponding to a single source language statement
contains the number of that statement. Thus when the compiler places ASSERT
and KEEP statements on the monitor file, it may reference them to the HALMAT
by simply including the appropriate statement number In the monitor file. Some
monitors will definitely require mapping to specific HALMAT instructions,
though. In this case a second level of mapping will be required: first, a pointer to
the proper paragraph (SMRK), second, a pointer (offset) to the proper HALMAT
operator within the paragraph.

The various records within the monitor file will evolve through several
stages. At any time the file may contain monitors in various stages of
development. The monitor file will first emerge from the complier (node
CBCAAB), and will contain a representation of the ASSERT and KEEP statements
encountered by the compiler. Such records will have expressions parsed into
HALMAT, but will not contain the logic necessary to implement the required
monitor. Node CBCB(C) performs this development. Later, the static analysers
may insert monitors which are highly "developed" - checking for a very specific
error. At a later point, these monitors may be removed, or "turned off." If a
monitor is turned off, it does not have to be removed from the monitor f Ile--a
switch may be set. Some monitors may only be developed when system level
testing is begun. In such a case they will remain unexpanded throughout mod0c,
test, and will be skipped over during the merge phase between the HALMAT and
monitor file.

Several factors enter into the specification of the structure of the HALMAT
Monitor File (HMF). Foremost is that the HMF Is an external data structure to
several tools. From Its Initial generation to Its ultimate merger with the
HALMAT file (or other disposition) several distinct tools read and update the file.

A

14

Operating system utilities may be used to preserve copies of it, and a user
Interface will use the utilities to move the HMF from tool to tool. Next, the
records on the HMF will be of several different logical types - some corresponding
to assertions, others to keeps, and so on, as mentioned.

To permit such flexibility we rfcommend the following. For this presenta-
tion we shall assume that Pascal Is the Implementation language and that only
sequential file structures are available. More sophisticated file facilities would
simplify handiing of the HMF In obvious places.

The HALMAT Monitor file may be defined as:
HALMAT Monitor File = file of integer;
Several basic routines -utilities- are then provided for convenience in marupula-
ting the file and to ensure integrity of the data structures.

The file of integer is logically b. okun down Into records. Each record has a
fixed format header, or "prologue". Each header contains a word marking the
beginning of the record and a word Indicating the length of the record (i.e. an
off set to the start of the next record). Following this is a description of the
record's contents.

The utilities, callable by any of the tools, would include procedures to 1)
read a record's prologue (and thereby discern its type), 2) skip a record, 3) skip to
the next record whose prologue met certain criteria, 4) read a record into a data
structure of appropriate logical type, and 3) write a record of a given type. (We
thus assume the ability to "translate" an integer word on the HMF into a Pascal
data type. Such a feature is given in Pascal through the use of variant records
which omit the tag field. This is akin to the PL /1 unspec feature, or the HAWS
%copy.)

A Pascal description of the logical structure of the prologue follows.

^i

13

Const

record marker = maxint ; (+ ► Note that the use of this number as the marker

Is not an Infallible guide to determining record boundaries. This must be

#	 done by counting record sizes from the beginning of the file. *)

twe
monitor level = (system, program, task, procedure, block, local) ;

monitor_types = (*The following list may be expanded as need arises *)

(Initial assert, (*the first representation of an assertion *)

Initial keep, (* the first representation of a keep *)

assert, (* an algorithmic representation of an assertion *)

keep, (* an algorithmic representation of a keep *)

elem units decl, (* elementary units declaration *)

units relationship, (* a relationship between units *)

units spec, (* a units-variable binding *)

subscript monitor, (* check for subscript out of range *)

zero divide monitor, (* check for division by zero *)

divislon_ratio monitor, (* check for bad divisor/dividend sizes *)

error monitor (* other monitors created by analysis tools *)

string = packed array (1..10) of char

(* used for tool identifiers *)

development status = (incomplete, complete) ; (* indicates whether the

monitor is ready for insertion in the HALMAT file (or output on a listing) *)

prologue =

(* ordered *) record

16

marker: Integer ; (* = record marker *)
length: integer ; (* length of the record, counting the market

monitor type: monitor types ;
active: record

switch: boolean ; (* is or is not currently active. (This
could be changed to a level Indication, If needed) *)
determinor: string (* which tool last set the switch *)

OW;
origin: string ; (* which tool was responsible for the monitor's
original generation *)
SMRK: Integer ; (* pointer to applicable SMRK in HALMAT file

SMRK offsets small int; (* offset into Interior of a HALMAT
paragraph where monitor belongs *)
levP.l: monitor level; (* highest program unit level at which this
monitor can have effect *)
status: development status ;

CIW ;

Within the scheme of a sequential file structure, all the records on the HMF
should be kept in an order corresponding to the order of the HALMAT file. Such a
restriction will simplify processing of the HMF. All monitors corresponding to a
single SMRK will thus be together. in order to maintain this order each tool
which updates the HMF must in effect create a new HMF which is equivalent to
the old HMF with the appropriate changes made.

3.3.3 Mersins HALMAT and the HALMAT Monitor File. - Several tools
modify the onitor Ffle In the course U various verification
activities. Some tools contribute new monitors, others verify that certain
previously created monitors are unnecessary. When all the modifications to the
monitor file are complete, the monitors which have been selected (Section 3.6.7)
to be inserted as inline code must be placed into the HALMAT file. The operation
is simple in concept, but many details are involved.

The merge activity is found in the SAMM diagrams at node CBCD. It will be
discovered there that two basic operations are Involved. The first is the creation
of HALMAT code to represent the algorithmic instrument required; the second is
the insertion of this HALMAT into the existing file of HALMAT (which represents
the user's program).

sr

17

Y

The HALMAT Monitor File Is structured such that the mapping between the
Instruments and the user program Is very clear. Assertions and keeps are mapped

	

4	 to their own statement number. Error monitors are mapped to the statement (or
portion thereof) to which they apply. All monitors which pertain to a given

	

E	 statement number can easily be found when processing the monitor file.

For each type of Instrument (Le. for each algorithmic Instrument) a more
or less fixed pattern of HALMAT may be used. Each pattern may be formed by
coding the algorithmic representation of the Instrument in HAWS, then putting It
through the front-end compiler (which generates the HALMAT). The HALMAT
may then be inspected and pointers to the symbol table (variable references) may
be noted. For error monitors, these pointers are the only aspect of the HALMAT
which will vary from one instance of an instrument to another. The bulk of the
HALMAT which corresponds to ASSERT and KEEP instruments will represent the
computation of the comparison or expression Involved In the statement. The
HALMAT to perform Ws computation will Uargely) be created by the front-end
compiler, at the point where it must recognize the assertion/keep statements.
Formation of an Instrument, therefore, consists of taking a HALMAT template

F '
which corresponds to the type of instrument being processed and filling in the
pointer (symbol table: references appropriately. A virtual accumulator reference
to the comparison or .-xpression computation must also be appropriately made.

The actual merge operation is similar to the formation of the instruments.
The HALMAT file may be processed sequentially from the start. If a SMRK is
encountered which has a HMF pointer to it, the instrument is placed into the
HALMAT file "at that point." Virtual accumulator references in other parts of the
HALMAT file may require alteration as a result of the insertion, however. Once
these changes have been made, processing may continue with the next SMRK.

3.4 Static Analysis.

3.4.1 Units/Scales ifications and Algorithms. - The Implementation of
this facility-will follow the recommendations of reference 3 [Karr and Loveman,
19781 very closely. The following items need to be considered.

1) Basic principles and options available to the user
2) Specification of elementary units
3) Specification of relationships among units
4) Declarations of variables having unit/scale mode
S) Algorithms for checking/enforcing adherence to unit and scale com-

mensurateness or equality
6) Issues to be resolved

Subsequent correspondence in Communications of the ACM (October, 1978)
supports the design chosen. Previous implementations have been successful and
very helpful to a wide variety of users.

18

3.4.1.1. Basic Principles and Options Available to the User.

• Error detection will not Inhibit code generation.

• There will be two basic operating modes, selected by a switch. In the
default mode the facility will require "corresponding" expressions to
have equal_ units. If equality cannot be verified, commensurateness will
be chides.

I	 Example:

DECLARE CONSTANT / 9 ELEMENTARY UNIT*/ (1), feet, Indus, volts,

watts, amps;

DECLARE /* UNIT: 'feet */ fl, f2;

DECLARE /* UNIT: inches */ 11,12;

DECLARE /* UNIT: volts*/ v;

DECLARE /* UNIT: amps*/ a;

DECLARE /* UNIT: watts*/ w;

/* RELATIONSHIPS: Inches = 12 feet; watt = volt amp; */ ;

(1) fl = 4 feet;
(2) s 1 = inches;
(3) f2 = ii + it/12;
(4) f2 ,t fl + it/3;
(S)^ = 0 amps;
(6) v = S volts;

(7) w=va
(8) w=16va

in statements (1)1 (2), (S), and (6) the units of the right side of the expression
exactly match the units of the left side: no error or message is generated.

In statement (3) the units of the expression it/12 mmi^ht be feet, considering
the relation inches = 12 feet, but, as seen in statement (4) with expression 11/3,
this is only an assumption. Does i l /3 represent 4 times i 1 converted to feet? Or
is it a logic error? In statements (7) and (8) the units of both expressions are
clearly watts - r.o ambiguity arises even though the factor 16 is involved.

Therefore, we restate our principle as follows: If, when manipulating the
units of two expressions for comparison, the application of a units relation
involving a constant is required, only commensurateness will be assured, not
equality.

Inches is commensurate with feet, but not equal. Watts are equal (and thus
obviously commensurate) with volt-amps.

19

I

I

In any message indicating two expressions are c ommemwate but not equal,
the system will indicate what (unit-less) factor must be applied to guarantee
equality. in so doing the programmer may visually assure himself that such a
factor has or has not been applied.

We note again that this is the default mode. In optional mode it Is assumed
that the programmer will not Insert ga conversion factors. The system will
determine what factors, if—any, we required and Insert them in the code
automatically. A notation wW be provided indicating what factors have been
applied.

3.4.1.2. Specification of Elementary Units and Scales.

3.4.1.2.1 Units.	 Two objectives are accomplished by the scheme for
declaring a ementary units described below:

1) The domain of units to be used In the program is defined.

2) A device for manipulating units is provided: variables having a units
attribute may be safely initialized, and the units attribute may be
"stripped off" a value when required.

Schemes Declarations of the following form must be included for each
elementary unit to be employed:

DECLARE CONSTANT / *ELEMENTARY UNIT*/

(Identity value for the type of the unit)

type declaration, list of elementary unit names;

It is anticipated that the only types to be employed will be integer and scalar, and
the identity value will therefore be one.

Example:

DECLARE CONSTANT / *ELEMENTARY UNIT*/ (!)INTEGER, apples, oranges;

DECLARE CONSTANT /*ELEMENTARY UNIT*/ (1.0) Meet, meters;

In illustration of item 2), variables possessing these unit attributes may be
assigned values in the following (safe) manners

f = 4 feet;
m = 6.23 meters;
x = 6 apples;

3.4.1.2.2 Scale. Elementary scale factors do not require declaration, as is
the case w t e ementary units. The following sr-ales are automatically declareds
the Integers 2,4,9,16,32,64.

20

_l

An Integer variable declared to passes elementary scale 4 Is to be
interpreted as possessing the value: (integer value)/4. In other words, there Is an
implied binary point 2 bits from the right end of the Integer word.

Note: If Language Change Request #147 (FIXED type) is adopted and
implemented in the Langley HAL/S compiler there will be no need for this
facility.

3.4.1.3 S ification of Relationship Between Units and Scales. After all
units to be employed in a program have been declared, relationships among them
may be set forth. Such relationships are indicated by the following statement:

/* RELATIONSHIPS: 	 list of relations	 */;

Example: /* RELATIONSHIPS: feet = 12 inches, watts = volt amps */;

Note that a relationships specification is a (null) HAL/S statement. As such
it must follow the declare section of a program or procedure. Only simple
arithmetic relationships may be declared, involving only multiplication, division,
and exponentiation. (Relations such as a=b+c do not normally have much utility in
&nginegring/scientific applications, with the possible exception of conversion from
C to F. For such conversions a sequence of relationships may be defined, which

together allow complete checking.)

The utility of constant values in relationships is subject to the consider-
ations of Section 3.4.1.1, namely if, when manipulating the units of two
expressions for comparison, the application of a units relation involving a constant
is required, only commensurateness will be assured, not equality. Relationships
between scales do not have this restriction.

/* RELATIONSHIPS: 8=4 2 */; defines a valid, useful relationship. At the user's
request, default relationships such as this could be automatically defined.

3.4.1.4 Declaration of Variables Having Units/Scale Attributes.

• Variables may have both units and scale attributes.

• All units must be declared before the variable is declared.

• No variable may have more than one unit attribute, or more than one
scale attribute.

• Declaration of variables having these attributes is accomplished by
inserting the special comments described below in with other attributes
of a declaration.

Syntax: /*UNIT: arithmetic expression involving previously declared unit(s)*/

/*SCALEs integer scale value */

21

4

These declarations may be contained in a single comment if both scale and unit
attributes are requested.

Concerning theimplementation of these features, two vectors (in the sense of the
reference) will be associated with each variable: one containing units infor-
mation, the other containing scale specifications.

3.4.1.5 Algorithms. The algorithms employed in the analysis task will be
those o t re erencelo changes are anticipated.

For the default situation described in Section 3.4.1.1, the analysis algorithm
acts within the following framework.

check expression commensurateness, ignoring any numeric factors;

if commensurate
then

if computed factor k 1
then

issue "factor requited" message;

else	
pr int factor needed

no factor needed
fi

else
print error message

fi

3.4.1.6 Issues to be Resolved.

1) The scope of declarations of elementary scale/units and relationships.
Is the scope global?

Yes: The information is, in a sense, global knowledge;
Implementation would be simpler
Other possible mode attributes such as INTEGER, SCALAR
are global.

No: Variables are not global. Should their definable attributes
be?

It may be desirable to override "global knowledge."
"Yes" is contrary to the principle of information hiding-
incompatible code could result from 2 different program-
mers.

2) Should there be a facility for making "enforced remarks about expres-
sions" in the sense of Section 6.2 of reference 3 [Karr and Loveman,
1978]?

P

22

3.4.2 Static Data Flow Analysis. - The data flow analysis techniques
described n s s n are 	 pr mar^to the work of Fosdick and Osterweil of
the University of Colorado. Most of their work, directed at the detection of
errors in FORTRAN programs, is directly applicable to HAL/S code. The
construction of the DAVE system to analyze FORTRAN programs has provided a
test bed for evaluation of the techniques and their effectiveness in detecting
anomalous data flow. The experience with DAVE allows the design of a capability
for HAL/S to be approached from a knowledgeable position.

Several items may be noted about DAVE. First, the system detected an
interesting class of errors which was of definite benefit in verifying a program.
Often the errors detected were very "simple" - yet examination revealed that
they resulted from deeper problems in the program 's construction.

Secondly, DAVE was constructed as an experimental program before some
important analysis algorithms were recognized. This revealed itself in the speed
and size of the system - it was big and slow. Students wrote much of the code,
and it evolved over a period of time. As a result, it is hard to modify to improve
its characteristics.

Thirdly, many of the error messages produced by DAVE referred to pheno-
mena which occurred only along unexecutable paths. The analyst was thus faced
with the chore of separating the true errors from the spurious. Often this was
simple, yet it represents an undesirable characteristic.

Lastly, DAVE has proved to be unwieldy in many production environments
simply because it requires the source input to be ANS FORTRAN (1966). No
language extensions are allowed.

In designing the static analyzer for HAL/S, we have taken cognizance of
these characteristics, as well as recent advances made in the area. We may
therefore describe aspects of the design as follows.

I. The static analyzer for HAL/S relies on the compiler to do all the
parsing required. The analyzer thus begins its chore with the creation of the
program flowgraphs, and the annotation of the program nodes with bit vectors
conveying information about the activities which transpire at the nodes (as
required by the analysis algorithm). Any language extensions or syntax changes
will thus have minimal impact upon the analyzer.

2. The most important part of the static analyzer is the algorithm
employed to detect the errors. The HAL/S analyzer will employ the so-called
"parallel-bit" algorithms developed by Allen, Cocke, Hecht, Ullman, and others.
These algorithms and references to them may be found in reference 4 [Fosdick
and Osterweil, 1976]. As a result, the time for analysis of a program should be on
the order of its compilation time.

3. The expressive power of HAL/S is much greater than Fortran, so the
analysis techniques have required extension. The two major additions to the
language (as far as static analysis is concerned) are the real-time, concurrent

tF
s^

w^

23

processing statements and the NAME, or pointer varlabie, capability. Of the two,
the concurrent processing features has presented the greatest challenge. The
NAME facility is just another aspect of the aUasing problem.

In response to this, considerable effort was devoted to the concurrent
proce^Ing problems, resulting In an Initial paper describing the results (refer-
ence S) [Taylor and Osterwell, 1979]. The Initial results have been further
pursued, resulting In several firm algorithms for detecting Important anomalous
conditions. The anomalies which are detected include both data flow and control
flow/synchronization errors. The design presented incorporates these results.
Further research In this area Is called for, though, as only a few concurrent
control structures have been considered to date. The latter part of this section is
a full presentation of the results obtained.

4. Since HAWS Is not a recursive programming language, the same
processing scheme may be taken as for FORTRAN programs: a "leaves-up"
approach. Thus the unresolved problem of applying static data flow analysis
techniques to recursive programs did not have to be addressed.

S.	 To prevent the generation of spurious error messages representing

f
henomena occurring along unexerutable paths, the techniques of reference 6
Osterweil, 1977b] will be employed. These techniques use the parallel-bit

algorithms in the basic analysis tasks, but a new post process is added. A
substantial improvement in the quality of error messages produced is anticipated.

More specifically, the techniques described in reference 6 have been
refined into specific algorithms which may be directly incorporated in the HAL/S
data flow analyzer. At the heart of the techniques are the same LIVE and AVAIL
algorithms which are employed in the anomaly detection process. These tech-
niques have been developed by Lee Bollacker of the University of Colorado who
has described them in a University of Colorado Technical Report (reference 29).
During the course of the design effort this general problem has been examined and
it is felt that this technical report adequately details the procedures to be
employed. It will not, therefore, be considered further here.

6. In order to generate the most helpful error messages and to provide
analysis paths for the interactive testing system (which includes a symbolic
executor), a post processor will be used to generate all messages. The parallel-bit
algorithm detects errors at nodes only. To relate those errors to the paths along
which they occur requires another technique: depth first traversal. Though this
procedure is slower than the parallel -bit algorithms, the time penalty is only
Incurred when an error is discovered. The overhead penalty should therefore be
relatively small. Interest has been shown in reducing this penalty howev r, and an
indication as to the approach to take may be found in reference 30 LGallucci,
1978]. For a detailed discussion of the depth-first algorithms, the reader is
referred to references 4, 21, and 31.

In summary, the early analysis techniques have been improved during the
last few years and these Improvements have been incorporated In the design.

I,o.. 4

24

3.42.1 Database R uimd For Static Analyzer. - The static analyser's data
base contains 0 the ormat on re ate to is operation. This database
would Include Items such as:

the flowgraphs (and pats)
live, avall, Len and kill sets
parameter list information
program call graph.

These are internal in nature. In addition, the HALMAT and symbol tables are
required for generating this information and producing the error messages. The
error messages themselves must be saved for later (possibly automatic) perusal.
These data objects are external in nature and will be contained in the ISIS, or
system, database.

The efficiency of the static analyzer and its overall capabilities depend to
some extent on the speed of accessing items stored in the internal database. Since
ISIS is not necessarily involved, it should be possible to optimize this information's
format and its retrieval. The ramifications of multi-level static analysis (i.e.
static analysis on the module level, then on the program level, then on the multi-
process level) needs to be explored, as regards the internal database.

3.4.2.2 Static Verification Of Output Assertions. - The assertion facility
presented in the design contains a construct having the following syntax:

/* ASSERT expression list OUTPUT */;

This specification gives a complete list of the expressions, usually variables, which
are "produced" or modified by a section of code. It is therefore implied that only
those expressions, and no others occurring in the current scope, will occur in
reference contexts following the OUTPUT assertion.

Such an assertion can easily be checked using static data flow analysis. The
"reference sets" associated with each node in the program flowgraph indicate
which variables are used in each statement. Following an OUTPUT assertion these
sets may be checked to verify that no variables are referenced which have been
determined to be "dead" - by their absence from the OUTPUT list.

Such an assertion also provides a basis for strengthening the other anomaly
analyses performed by the static analyzer. More specifically, one of the anomalies
the static analyzer checks for is variables which are defined but not subsequently
referenced. In other words, useless computation is detected. Such a situation
cannot normally be classified as an error. It is only "suspect". The presence of an
OUTPUT assertion increases the number of places such anomalies may be detected:
without assertions the anomaly is detected upon exit from the static scope of the
variable in question. With the assertions the anomalies may be detected at each
OUTPUT specification.

25

k°
k

I
i In a similar manner static data flow analysis can be used to verify the

correctness of INVARIANT assertions. Static analysis can be used to verify such
amertions even In the case where the protected (Invariant) region Is executing in
parallel with another process. This analysis Is performed by examining the
definition sets associated with the nodes In the program flowgraph. Where multiple
processes are active, all nodes which occur In the parallel sections are examined.

26
I

3.42.3 Static Data Flow Analysis of Concurrent Process Software.

3.4.2.3.1 Introduction. - Data flow analysis has been shown to be a useful
tool In monstrat ng a presence or absence of certain significant classes of
programming errors (reference 21). It Is an important software verification
technique, as it is inexpensive and dependably detects a well defined and useful
class of anomalies. Work to this point has been directed at the analysis of single
process programs. Data flow analysis of concurrent programs has not been
investigated. Concurrency causes difficulty in the detection of most errors which
occur in single process programs; it also creates the possibility of new classes of
errors.

One of the simplest errors which can occur in both categories of programs is
referencing an undefined variable. Another programming anomaly which may
occur in both categories is a dead variable definition. This occurs when a variable
is defined twice without an intervening reference, or if a variable is defined yet
never subsequently referenced. In concurrent software these types of anomalies
and errors can occur in more subtle ways than in single process programs. For
example, within a system of concurrent processes, one process may reference a
shared variable while a parallel process may be redefining it. It is clearly
desirable that such errors and anomalies be analytically detected or shown to be
absent from programs.

In this section, we show that data flow analysis can reliably demonstrate the
presence or absence of these and other programming anomalies for both single
process and concurrent programs. While the anomalies are of interest in
themselves, they are particularly important because experience has shown that
consideration of why they arose in the program's construction often leads to the
detection of significant design errors.

3.4.2.3.2 Example and Basic Definitions.

3.4.2.3.2.1 Programming Language Description. - In order to clarify the
types of errors we are addressing, several examples are needed. For purposes of
this presentation we shall use a slightly modified subset of HAL/S. The changes
we make (mainly to the wait statement) are minor. These changes have been
made for two reasons: the examples are more readily understandable and the
prohibition of mixing logical and's, or's, and not's in wait statements simplifies the
analysis algorithms. Note that while the analysis techniques were developed
specifically for HAWS they may be applied to other languages supporting
concurrency as well.

3.4.2.3.2.1.1 - Subset Language Statements.

1. Assignment statement. This statezi-tnt is of the form
variable = expression ;

In executing this statement, the expression is evaluated and the result is then
assigned to the variable.

27

2. Process declaration statements (program, tu% and clo
declaration of each process begins with a declaration statement. The main
program begins with a program declaration statement. Other processes begin with
a tacit declaration statement. The end of a process declaration Is marked with a
close declaration statement.

3. Schedule statement. The execution of any process except for the main
program is enabled through execution of a schedule statement. Execution of a
scloduk does not guarantee that the specified process will begin Immediately, It
merely Indicates that the process is ready for execution. The actual time of
Initiation of a process Is de,xrmined by the system scheduler. Any number of
processes may be enabled for concurrent execution, but a process may not be
scheduled to execute In parallel with itself. The schedule statement explicitly
names the process or processes to be started; run-time determination of
processes to be scheduled is not allowed.

4. Wait statement. This statement causes the executing process to wait
for another process (or processes) to terminate before continuing with its own
execution. A process has terminated when It has completed its execution and no
longer resides in the system scheduler's "ready" queue. As with the schakde
statement, the process(es) waited for is (are) named explicitly in the declaration;
run-time determination is not allowed. The statement may be formulated two
ways:

wait for process name, and procf:ss name2 ...
or wait for process—name I. or process name2 ...

When the process names are joined through logical disjunction, the wait is
interpreted as gait-for-any. As soon as one of the named processes has
terminated, the waiting process may proceed. When the process names are joined
by logical conjunction all of the named processes must terminate before the
waiting process may proceed We shall refer to this as a Walt-for-all statement.

S. Shared variables. Program variables have associated with them Algol-
like scoping rules. This scoping exists at the program level, meaning that two
processes may both access the same variable. We assume that no protection
mechanism exists.

6. Transput. Input to a program is accomplished through a read statement.
Values are output via a write statement.

3.4.2.3.2.2	 Example. - Usi:-.g the above constructs we now present an
example program Figure 3.4.2.3.2.2-1 which contains several anomalies.

A few of the anomalies are listed below.

1. An uninitialized variable (x) may be referenced at line S, as task T1 may
execute to completion before task T2 begins.'.,

28

1	 Main: program;

2	 declare Integer x,y;
/* x,y are global variables known throughout the main program and all
tasks */

3	 declare boolean flag;

4	 TI: task;
5	 write x
6	 wait for T3
7	 close T1 ;

8	 T2: task;
9	 x=5;
10	 y=6;
11	 close T2 ;

12	 T3: task;
13	 read x
14	 close T3 ;

/* end of declarations */

15	 schedule T1 ; /* first executable statement of Main*/
16	 schedule T2
17	 read flag ;
18	 if flag then x = 8;
19	 write x
20	 y=9;
21	 wait for T2
22	 if flag then y = 10
23	 write y ;
24	 wait for T2
25	 schedule T 1

26 close Main ;

i	 Figure 3.4.2.3.2.2-1 Example Program With Several Data Flow and
Synchronization Anomalies

r
0

29

2. The definitions of y as found In task T2 (line 10) and the main program
(Line 20) may be "useless", since y may be redefined at fine 229 before y is ever
referenced.

3. y Is defined by two processes which act In parallel - thus the reference at
line 23 may be to an "indeterminate" value.

4. Variable x is assigned a value by task T2 (line 9) while simultaneously
being referenced by the main program at line 19.

S. There is a possibility that task T1 will be scheduled In parallel with Itself
at line 25 since there is no guarantee that T1 terminated after Its Initial
scheduling.

6. The suit at line 24 is unnecessary as T2 was guaranteed to have
terminated at line 21, and it has not subsequently been rescheduled.

7. The emit at line 6 will never be satisfied as T3 was never scheduled.

3.4.2.3.2.3 - Event Expressions. - Clearly many of these error phenomena
are Interrelated. Hence a more precise categorization and definition system is
desirable. We shall modify some notions employed in reference 4 to gain this
precision. In reference 4 errors were described in terms of anomalous or illegal
sequences of events occurring along a path through a program.

For instance, the events, "reference", "define", and "undefine" are the
significant ones in the detection of undefined variable references and dead
variable definitions. Thus in determining the presence or absence of these errors
in •,% given program, the execution of the program is modelled as the set of all
potential execution sequences of these three events happening to each of the
program variables. In a single process program any path traceable through the
program's flowgraph is taken to represent a potential execution. Now denote the
events "reference", "define", and "undefine" by r, d, and u, respectively. Then
clearly an undefined variable reference can occur within a program if and only if
there is a path subsequence of the Form "ur" for some variable and some potential
execution. Similarly a dead variable definition is indicated by either a "dd" or
"du" path subsequence.

In a concurrent program it is more difficult to determine the potential
executions and hence the potential sequences of events. Different processes may
be executing simultaneously on different CPU's, or in some non-determinable
interleaved order on a single CPU. If these processes operate on shared data,
then the sequence of events happening to that data cannot be predicted, even
though the code for each process is known. All that can be safely assumed is that
every interleaving of the statements of all processes which can act concurrently
must be considered a potential execution. Hence the set of execution sequences
for a given concurrent program is the set of all possible sequence of events which
could result from a potential execution of the program.

30
i

Thus, for example, In Figure 3.4.2.3.2.2-1 noting that all variables are
Initially undefined and that a write is a reference, variable x may have the
sequence "urd", "udr", NO, "ur", or "u" by the time line 17 is reached. "urd"
corresponds to task Tl acting first, then T2= "udr" corresponds to T2 actually
executing before TI (there Is nothing In the program prohibiting this "u"
corresponds to tasks T1 and T2 both being ready to execute, but not actually
having done so.

3.4.2.3.2.4 - Error Cateltorization and Definitions. - Using the notation
developed above we may now formulate definitions for t er rors In which we are
Interested The following are anomalies which we wish to detect In all programs.
Their detection is more complicated In programs using concurrency constructs.

I. Referencing an uninitialized variable. An execution during which this
error occurs will have an event sequence of the form "purp"' for some program
variable, where p and p' are arbitrary event sequences.

2. A dead definition of a variable. An execution during which this anomaly
occurs will have an event sequence the form "pddp"' for some variable.

The following are errors and anomalies which we wish to detect in
concurrent code. In the following the schedule event will be denoted by an "s",
the wait by a "w". All processes will be assumed to be in state "u", unscheduled,
when not scheduled

3. Waiting for an unscheduled process. This anomaly is represented by the
event expression "pusp"'.

4. Scheduling a process in parallel with itself. This anomaly is represented
by the event expression "pssp"'.

S. Waiting for a process guaranteed to have previously terminated. The
expression "pwwplll is symptomatic of this condition.

6. Referencing a variable which is being defined by a parallel process.
There exists a schedule, s , such that for some variable both the event sequence
"psordp"' and the event sequence "ps,drp"' are possible.

7. Referencing a variable whose value is indeterminate. There exists a wait,
wp, and two separate definition points for a given variable, d and d2, such that
both the event expressions "po l d2wor" and "pdZ d l w,r" are possible.

For each of the above errors we will be interested in determining whether
they exist in the event expression at a statement (Le. the event expressions
consisting of the preceding events concatenated with the current event) or In the
event expression which represents the transformations undergone after leaving a
statement. In addition we will wish to distinguish between errors which are
guaranteed to occur and those which mi ht occur.

31

3.4.2.3.2.3 -Proltrarn Re rowtatlon. - At the heart of data flow analysis
are a gear 996 operate on an annotated graphical representation of a
program. Single process programs may be represented by a flowgraph. As
Introduced In reference E communicating concurrent process programs may be
represented by a orocess, mented flow rah or pat. A paf Is formed by
connecting the flowgr s representi1rr;^ the individual processes with special edges
Indicating all synchronization constraints. In our example language an edge must
be created for each ordered pair of nodes of the type (schedule. p name, task
p name) and (close p name, suit for p name).

Figure 3.4.2.3.2.3-1 Is a paf for the example program of Figure 3.4.2.3.2.2-1
The creation of the paf for programs in our language Is quite straightforward It
Is Important to note however that most actual languages incorporate synchroniza-
tion constructs which greatly complicate the construction of the paf. In fact, it is
Impossible to create a fixed static procedure capable of constructing the paf of
any program written in a language which allowsrun-time determination of tasks
to be scheduled and waited for. These Issues will be discussed later In this paper.

3.4.2.3.2.6 Data Flow Analysis Algorithms. - Data flow analysis algorithms
arose out of work global program optimization (references 22 and 23). Our
usage of them has a different objective, however. The algorithms are described
In detail in referents 4 and 24. The purpose of these algorithms Is to infer global
program variable usage information from local program variab le usage informa-
tion, and then to Infer verification and error detection results from the global
usage results. The local variable usage is represented by attaching two sets of
variables, en and kill, to each program flow graph node. The global data usage is
represented 	 attaching two sets, live and avail, to each node. The algorithms
pres-:nted In the references cited assure that, w they terminate: 1) a variable v
Is in the live set for node n, it and only If there exists a path, P. from n to another
node n' such that v is in theen set at n', but that v is not In the kill set of any
node along path p; 2) a variabWv is In the avail set for node n, if anTonly if, for
every path, p, leading up to n there exists a nn a n' on p such that v is in the & n
set at n', but v is not in the kill set for any node between n' and n along p.

The implications and usage of these algorithms, and the modifications
required to them as a result of concurrency considerations, will become apparent
from considering some examples.

32

!a

(1) Main: program

(4) T1: task

(12)T3: (5) ref x
task

(13)dot x

(6)wait for T3

L(l
T3

(7)close Ti

(15) scheduM T1

(16) schodule T2

(8) T2: (17) dot flag
task (18) if flag

then dot x

(19) ref x
(9) dot x

(10)def y (20) def y

(21) wait to#, T2
(22) N flag

then dot y

(23) ref y

2
(24) wait for T2

(25) schedule T1

+ (26) dose Main

Figure 3.4.2.3.2.3-1 Prooen-Augmented Flowgraph for the Program
of Figure 3.4.2.3.2.2-1	 t'

33

.23.3.0 Detection of UnhU halizatlon Errors. - Before we examine the
large examp a give In Section 3X2.3.2.2. consider the following simple example:

1 Mahe progranq

2 declare Mager x ;
3	 declare booken flag;

4	 Tit task;
3	 smite x ;
6	 close Tl ;

7	 T2: tads
3	 Mrltt x ;
9 cross T2;

10 scheduk TI
11 road flag;
12 wit for TI
13 If flag then read x
14 schedule T2 ;

13 close Main;

The paf for this program Is given In Figure 3.4.2.33.G-1. All the nodes are
annotated corresponding to the program statements.

Let us now consider the uninitialization errors which are present and how
they may be detected.

Two uninitialization errors are present in the program. When task TI is
executed the write statement will reference unlnitialized variable x. There Is no
possibility for x to have been initialized, even by the main program which is
operating In parallel with the task. When task T2 is executed, there exists a
Possibility for referencing x as uninitialized. If "flag" has the value true, x will

ve been Initialized and no error will occur. If, however, flag Is false, x will still
be uninitialized Thus we have an Instance of an error which "must" occur and an
Instance of an error which "might" occur. In addition, we may detect each of
these anomalies at two different places: the point of yr ible reference, or at the
start node. Thus we see that there are four different subcategories of the
uninitialtzed variable reference error.

The balance of this paper will be devoted to specifying algorithms for
detecting the various subcategories of this error and a variety of other errors and
phenomena of interest in the analysis of concurrent software. These algorithms
will, In general, involve the use of the LIVE and AVAIL procedures described in
Section 3.4.2.3.2.6 of this paper. It will be shown that a diversity of diagnostic
algorithms can be fashioned by using a variety of criteria for marking the nodes of
the program flowgraph with an and kill notations, and choosing suitable criteria
for Interpreting the output 	 L1VEand AVAIL procedures.

34

r

(1) Main: program

(4)T1: task

(5)ref x

(6)close T1

(7) T2: task

(8) ref x

,(9) close T2

(10" schedule T1

(11) def flag

(12) wait for T1

(13) if flag

then def x

(14)schedule T2

(15) close Main

Figure 3.4.2.3.3.0-! Paf for Program With Two Uninitialization Anomalies

35

i

For these reasons, It should be apparent that the algorithms presented here
are much Involved with placing gen and kill annotations on flowgraph nodes and
Interpreting live and avail annotations Wt subsequently appear on flowgraph
nodes. This annotation-Wormatlon will be represented by means of bit vectors,
denoted In the following way.

If an annotation criterion dictates that a particular variable, say x, Is
" ee ed" at a node n, this will be indicated by seting the value of the function
g_en(n,x) to 1. Otherwise the value of gen(n,x) is 0. The function kill(n,x) is
defined similarly. We shall assume that the program unit being analyzed has v
variables, and that a one-to-one function, f, has been defined mapping the
variables of the program unit onto the integers (1,...,V). Hence a bit vector is
defined by the values (gen(n,x), ... , gge^nn(n,x.), ... , &r(n,x)) where x. is used to
denote the variable x forwhla f(x)=i.—We use this bit vecl as the difinition of
the function GENW. KILL(n) is defined similarly.

We shall also assume that there exists algorithmic procedures, LIVE and
AVAIL, which operate upon a flowgraph containing N+2 nodes, and annotation
functions GFN and KILL defined on the N+2 nodes. We shall always assume that
node 0 represents an initialization action immediately preceding the first execut-
able statement of a program unit. Node N + 1 represents a termination action
which immediately follows all statements which end execution of the program
unit (Le. the close of the main program) or end execution of any process which is
not waited for (i.e. all process close nodes which are not joined to any wait nodes.)
LIVE and AVAIL, when executed, compute annotation functions LIVEN and
AVAIL(n), respectively, defined on the N ;2 nodes. The values of LIVE(n) and
AVAIL(n) are V-bit vectors for n between 0 and N+1. The bits of LIVEW and
AVAIL(n) are defined by live(n,x,) and avail(n,x.) respectively, where x. is the
variable x for which f(x)=i. ThE fuhctiona^pend ncies of live(n,x) and ahil(n,x)
upon gm(n,x) and kill(n,x) are as described in Section 3.4.2.3.2 .6 of this paper.

If live(n,x)=1 then we shall say "variable x is live at node n." If avail(n,x)=1
then we shall say "variable x is avail at node n."

We now begin by presenting an algorithm for detecting all statements at
which an uninitialiied variable reference "must" occur. Referring to the example
in Figure 3.4.2.3.3.0-1 we see that this algorithm is designed to detect that the
reference to x at statement 5 is a "must" uninitialized reference error.

For this and subsequent algorithms we will need to define functions REF(n)
and DEF(n) on the nodes of the flowgraph. REM) is a V-bit vector whose i-th
component is defined by -ef(n,x.). ref(n,x.) is 1 if and only if the statement
represented by node n involves a lreference to the variable x which is mapped by f
onto index value I. Otherwise ref(n,x.) is 0. DEF(n) is defined similarly. def(n,x.)
is 1 if and only if the statement represented by node n defines the vaciable l x
which is mapped by f onto the index value I. Otherwise def(n,x.) is 0. We also
define 0 to be a V-bit vector, all of whose components are 0. 1 I a V-bit vector
all of whose components are 1. i

36

a

ALGORMiM 3.1s

for n:-- 1 to N+1 do

GEN(n) := 0;

KILL(n) := DEF(n) ;

ad ;

GEN(0) := 1;

KILL(0) := 0

caU AVAIL;

for n:= 1 to N do

for i:= 1 to V do

if ref(n,i) = 1 and avail(n,i) = 1

then print("an uninitialized reference to", f-1(i),

" must occur at node ", n) ;

fi ;

od ;

ad;

It is important to observe that algorithm 3.1 is designed to assure that the
error message will only be generated when a particular variable cannot possibly be
initialized by any execution sequence leading up to the reference at the node to
which the message pertains. In particular it is important for the reader to verify
that this algorithm correctly analyzes the program in Figure 3.4.2.3.3.0-1. Figure
3.4.2.3.3.0-2 shows the contents of each set (g_en, kill, etc.) at each node upon
termination of algorithm 3.1. Note that variable x isssin the avail set at the write
node in task T 1. Also note that x is not in the avail set at the write in task T2.
Thus we are assured that an error message will be produced for the reference to x
at statement S, but not for the reference at statement 8.

We now present an algorithm for detecting "may" uninitialized variable
reference errors at a node. This algorithm is designed to detect a variable
reference occurring at a statement for which there exists an execution sequence
which leads up to the statement and which does not initialize the variable.
Referring to Figure 3.4.2.3.3.0-1 again, clearly such an error occurs at statement
5, but of more interest there is also such an error at statement 8. Algorithm 3.1
does not detect the error at statement 8, but algorithm 3.2 will.

Before presenting algorithm 3.2, we must first discuss a necessary modifica-
tion to the AVAIL algorithm. The AVAIL algorithm is devised to assure that at
termination a variable, x, will be avail at n if and only if for every possible
execution of the program leading up to n, there is a previous gen of x without an

37

NODE	 REF	 DEF	 GEN	 K1J

0	 x,flag

1

2	 ---	 ---	 ---	 ---

3	 ---	 ---	 ---	 ---

4

S	 x

6

8	 x

9

10

11	 flag	 fla

12

13	 flag	 x	 x

14

15

16

Figure 3.4.2.3.3.0-2 Contents of the Data Flow Analysis Sets for 	 ".
the Paf of Figure 3.4.2.3.3.0-1	 L-^

c	 ^
39

Intervening kill of x. For single process programs, AVAIL(n) Is computed
correctly at every flowgraph node n provided that the following equality Is
achieved at termination of the AVAIL algorithm.

AVAIL(n) = Intersect (GEN(ni) union (AVAIL(ni) Intersect not KILL(ni)))
all np

immediate
predecessors

of n
i
w

For concurrent process programs It is helpful to define a somewhat different
equilibrium condition under certain circumstances. We proceed as follows.

Suppose nw is a flowgraph node which represents a wait statement. In the
paf, G, of the program containing n w,nw will be the tail of some edges which are
usual flow of control edges, and the tail of at least one edge whose head
represents the termination activity for a concurrent task. Suppose now that
(fi)F 1 represents the set of heads of usual flow of control edges whose tails are
nw, and that (pi)p, represents the set of concurrent task termination nodes which
are the heads of edges have nw as their tails. Now create a new graph node n4
delete the edges ((f I ,nw), ... , (fF,nw)) and replace them by the edges ((f I ,ni, ...
, (fF,nJ, (nWnw)). Suppose this is done for every wait node in G. Denote the
resulting graph by G'. Now compute AVAIL(n) as usual, except use the following
equilibrium condition at the wait-for-any nodes of G' only.

(*) AVAIL(nw) = intersect AVAIL(pi) union AVAIL(n j

(pi)Pi
1

A different equilibirum condition is required at wait-for-ail nodes.

(*) AVAIL(nw) = union AVAIL(pI) union AVAIL(nj

(pi)p 1
4

39

The resulting AVAIL(n) bit vectors will be quite useful to us. Thus let us
denote by AVAIL* the algorithm which employs the starred formulas as the
equilibrium conditions for all of the wait nodes of G'. In all the algorithms which
follow we assume that graph G' has been created and that the analysis takes place
on that graph.

We can now state algorithm 3.2.

ALGORITHM 3.2:

for n := 1 to N+1 do

KILL(n) := 0 ;
GEN(n) := DEM) ;

ad ;

KILL(0) :=1 ;
GEN(0) := 0 ;

call AVAIL*
for n:= 1 to N do

for i := 1 to V do

if ref(n,i) = 1 and avail (n,i) = 0
then print("an uninitialized reference to",f-1(0,

"may occur at node", n);

ad;

od ;

Using a different algorithm we may indicate to the programmer the event
sequence associated with this anomaly. Unfortunately many such event sequences
are unexecutable. This problem and partial remedies to it are discussed elsewhere
(reference 6). In our example here, variable x is not in the avail set at either
write statement in task TI or T2. Thus the potential for error is reported at both
nodes. In this case the associated event sequences are clearly executable.

We now present an algorithm for detecting at the start node all the "must"
uninitialization errors. In the example of Figure 3.4.2.3.3.0.1 we are again
interested in detecting the error which occurs at the reference to x in statement 	 a
S, except in this case the point of detection (and error message generation) will be
the start node of the program.

Analogous to the presentation of Algorithm 3.2 we must discuss a necessary
modification to the LIVE algorithm. The LIVE algorithm is devised to assure that
at termination a variable, x, will be live at n if and only if there exists an 	 'r^N

y

40

execution sequence beginning at n such that there Is a gen of x before there Is a
kill of x. For single process programs, LIVE(n) Is computed correctly at every
Hwgraph node n provided that the following equality Is achieved at termination

1	 of the LIVE algorithm.

LIVE(n) = union (GEN(n i) union (LIVE(ni) intersect not KILL(ni)))
all nip

l
V

immediate
successors

of n

For concurrent programs it is useful to define a different equilibrium condition
which is applied only at schedule nodes.

(*) LIVE(n) = intersect (GEN(ni) union (LIVE(ni) intersect not KILL(ni)))
all nit

t
immediate
successors

of n

f	 We shall denote by LIVE* the algorithm which creates the live sets, employing (*)
at all schedule nodes of G. (A graph G' is not required in this case as a schedule
node only has a single control flow edge leaving it. All others lead to a task

{	 initialization node.)
{

s

41

ALGORITHM 3.3:

for n := O to N do

GEN(n) := DEF(n)

KILL(n) := REF(n)

ad;

GEN(N+l) := I;

KILL(N+l) := 0;

caU LIVE*

for ! := 1 to V do

If 1ive(091) = 0

then print(" an uninitialized reference to ", f-I(i),

" will occur

od ;

In the example of Figure 3.4.2.3.3.0-1 variable x will be missing from the
live set at the start, duc to the kill present at line 5. (The live set at the gait
node does contain x, however, as the error in task T2 is dependent on the
execution sequence taken.)

The detection of possible errors is achieved through the following algorithm.

ALGORITHM 3.4:

for n := 0 to N+1 do

GEN(n) := REF(n)

KILL(n) := DEF(n)

od ;

OW LIVE;

for i := 1 to V do

If live(O,i) = 1

then print (" an uninitialized reference to ", f-I(i),

" may occur

fl

0d;

f

rr
42

In our raw tired example variable x Is In the live set at the start because of
the r:ferences In both tasks. (Now note that the MraTt node has x In Its live set -
Indicating that there is an execution sequence following which encounters a
reference before any Initialization. An error In that execution sequence would
depend on x not being initialized before the malt, which of course It is not.)

To summarize briefly, two basic algorithms are involved. One computes live
sets, the other avail sets. With suitably created en and kill sets attached to the
paf and special rules applied at wait nodes during the computation of avail and at
schedule nodes during the computation of live, a comprehensive set of pro-
gramming anomalies may be detected in concurrent process programs.

This Is not the end of the problem, however.

3.4.2.3.4.0 Parcelling of Analysis Activities. - Let us now retavrn to the
example of Section 3.4.2.3.3 1 and modify the program slightly. In that example
task f2 performed the same actions as task T1. There was no need to declare two
tasks, except that it made cur analysis simpler, as we shall see. Below we show
the program written with only a single task declaration.

1 Main: program;

2	 declare integer x ;
3	 declare boolean flag;

4	 T1: task;
S	 write x
6	 close T1 ;

7 schedule T 1
8 read flag;
9 wait for T 1
10 if flag then read x
11 schedule T1;

12 close Main;

The paf for this program is given in Figure 3.4.2.3.4.0 -1. As before, the nodes are
numbered and annotated with the corresponding statements.

Note that the paf has been drawn with two edges entering the task's start
node. Suppose now that we wish to look for "must" uninitialization errors, and
detect them at the point of reference. We are therefore concerned with
computing the avail sets as described in algorithm 3.1. Using this algorithm on
the graph as shown will result in x not being in the avail set at the reference (at
line S). Thus we cannot say that whenever this node is executed an uninitializa-
tion error will result. Indeed this Is a correct statement as the second time the
task is scheduled there is only the possibility for an error at this line. This is
somewhat unsatisfactory, though, as it is clear that the first time T1 is scheduled
an error will occur, regardless of the execution sequence. We may improve the

s

43

i

(1) Main: program

(4) T1: task
(7)schedule T1

(8)def flag

(9)wait for T1
(5) ref x \ A (10) if flag

then def x

(6) close T1	 (11) schedule T1

(12) close Main

Figure 3.4.2.3.4.0-1 Paf for Program With Two Uninitialization
Errors With a Single Task

i

44

strength of our analysis In this regard by parceling thepaf and detecting the error
not at the reference, but at the point where the task Is scheduled. One cost of
doing this Is that we will not be able to point directly to the statement In the task
at which the error occurs.

Our method for doing this Is based on the technique presented by Fosdick
and Osterwell for handling external procedures when performing data flow
analysis on single process programs (reference 4). Their technique abstracts the
data flow in each procedure using the LIVE and AVAIL algorithms, and attaches
this abstracted Information to all Invoking nodes for each procedure. Data flow
analysis can then be perfomed on the Invoking procedure. We here adapt this
technique to the analysis of tasks for anomalous event sequences. The data usage
patterns within each task are determined using LIVE and AVAIL. These abstrac-
tions are attached to all schedule and wait nodes referring to each task. Analysis
of this remarked ("trimmed") graph then proceeds as described previously.

For the example of Figure 3.4.2.3.4.0-1 the analysis will proceed roughly as
follows. The algorithms 3.1, 3.2, 3.3, and 3.4 would be run for the local variables
in task Ti first. (Since there are no local variable this step is omitted.) Next T1
is annotated as described in algorithm 3.3 for global variables (in this case x). The
LIVE algorithm is run, giving the result that x is live at the task node, 4. We
consequently label nodes 7 and 11 with ref (n,x)=1, indicating that execution of
node 7 or node 11 always results in a subsequent reference to x. We can now run
algorithms 3.1, 3.2 0 3.3, and 3.4 for the variables local to Main. Algorithm 3.1
will show that x is avail at 7 indicating an uninitialized reference to x will always
occur as a consequence of executing node 7. Ideally the resulting error message
will indicate that the error actually occurs "somewhere" in the scheduled task.
Determination of the error's precise location would be relegated to a separate
(depth-first) scan of the task.

Clearly we could continue passing up data usage abstractions through an
arbitrary number of levels of task scheduling. The restriction we have to impose
on the program in order to adopt this technique is that the process invocation
graph be acyclic. In the single process program situation there is an analogous
restriction that the subroutine call graph be acyclic: recursion is prohibited. This
prohibition exists for multiprocess programs as well, but the process invocation
graph is also required to be acyclic. This is a stronger restriction as it is possible
to have a cyclic process invocation graph which does not involve any recursion,
either on the process or the subroutine level. For the moment we are satisfied
that a significant class of programs is nevertheless being addressed, but further
investigation is clearly called for here.

3.4.2.3.5.0 Additional Reference/Definition Anomalies.

3.4.2.3.5.1 Referencing a Variable While Defini 1: in a Parallel Process.-
Let us now reconsider the example of 5ection .4.2.... At lu+' 3 —,in task T1,
we have a reference to variable x which, in absence of a "fortunate" sequencing of
events, will be uninitialized when the task is first scheduled. If al orithm 3.1 is
run on the paf corresponding to this program (Figure 3.4.2.3.2.5-1), an "always"
uninitialization error will be detected at the reference. (We are assuming that
the analysis is carried out in the parcelled manner described in the preceding

45

sectlw4 as the second time the task Is scheduled the possibility exists that x will
have been defined) Would it be proper to report this as an always error? What Is
termed a "fortunate" sequence really makes this an anomaly. K Is conceivable
that known operating environment conditions guarantee that to initialization
performed by task TZ transpires before the reference In task T1. A "sometimes"
error message is unsatisfactory, though, as such "guarantees" are outside the
domain of the program. This confusion Is due to , de referencing and defining of a
variable by two processes which may be executing In parallel. This construction,
besides Impairing our other analyses in the manner described, seems Inherently
dangerous and should be reported as an anomaly In Its own right.

This anomaly may be detected In a rather naive manner given that we can
determine which sections of the program may be operating concurrently. Let us
assume that the paf Is parcelled into S subgraph% G Each section corresponds to

6ry nodes am program, tsd4
close, and wait nodes. (Our notion of a section is roughly equivalent to that of a
task which contains no wait statements.)Let us further assume that we have at our
disposal a boolean function, PARALLEL, which determines which sectionscan
execute In parallel. That Is^ PARALLEL defines a function of two varlables, I and
), such that PARALLEL(,)) Is true if and only If G and G represent sections
which might execute In parallel. It Is Important to Rote that the algorithm for
determining this Is not trivial. Indications of how such an algorithm can be
constructed may be found In references ZS and 26. Based on these assumptions we
can now state an algorithm for detecting the possibility of referencing and
defining a variable from parallel tasks or sections. Suppose the nodes of graph Gi
are numbered from n, the logical predecessor to the sections start node, to n

Wthe logical successor the sections final node. For clarity, also assurne as Wilk
that f maps all the variables of the program onto the integers 1-Y.

46

...

A lgarldwn M:

for i = Ito S do;

for j - 1101 1 do

REM it0) := REF(nito) union REF(ni,j) ;
DEF(n id DEF(nid union DEF(n, , j)

od;
od ;
for i := 1 to S do

for j:= 1 to S do
ifiAj

then If PARALLELGJ)
then If REF(n i'0) intersect DEF(no) = 1

then print (" the following may be referenced

"and defined in parallel by sections", i, "and",j);

for v := 1 to V do
If ref(n i,G ,v) = 1 and

def(n i^p,v) = 1

then print(f-1(v));

od
fi

fi
fi

od
od;

This algorithm detects the possibility of references and definitions occurring

in parallel. We can also construct an algorithm that determines when this

errs: must occur, regardless of the execution paths within the processes. The

only change required to algorithm 5.1 is in the creation of the REF and DEF

sets at the nodes ni,,. The REF sets at ni0 would be computed by an algorithm

similar to 3,3, and the DEF sets by an algorithm similar to 3.1.

47

3.4.2.3.31 Unused Variable Definttioru. - A programming anomaly not truly
erroneous t often Indicates presence of a design error is that of
unused variable definitions. The example of Section 3.4.2.3.2.2 has such an
anomal in It. Variable y Is defined both by task T2 and by the main program (at
line Y Is then possibly redefined at line 22c before ever being referenced.
(We will examine the anomalous situation which occurs at the reference to y (line
23) In the next section.) This anomaly may be detected by techniques very similar
to those presented In Section 3.4.2.3.3. Here, as with uninitialization errors,
there are four cases to examine: detecting errors which always occur through
examining all possible event sequences which follow a node, detecting the
possibility of such errors, detecting errors which always occur through examining
all event sequences preceding a node, and detecting possible errors by examining
the preceding event sequences. We present here only the algorithm for determin-
Ing the anomalous situation where a variable v Is defined at node n, yet on all
paths leading to n, v has been previously defined without any intervening
reference. Algorithms for the other three related anomalous situations should be
derivable by analogy. Not that the presence of reference-definitlon In parallel
anomalies may Impair the quality of the analysis here, like as was described
previously.

The procedure given here assumes that the program graph has been
parcelled Into task subgraphs. We assume that the process invocation graph Is
acyclic and that the labelling used in algorithm 3.1 is used here as well. This
particular error also requires that we define a new equilibrium condition to be
applied during the computation of the AVAIL sets at waft nodes. The new
condition is as follows:

(**) AVAIL(n) = Intersect AVAIL(pi) union AVAIL(nj - Intersect REFED(pi)w	 (pi)P I	 (pI)P I

This condition applies at wait-for-ant's. At trait-for-alls:

(**) AVAIL(nw) = union AVAIL(pi) union AVAIL(nw) - union REFEIxpi)
(pi)P

1	
(pi)Pi I

We shall denote by AVAIL** the algorithm which employs the double-starred
formulas as the equilibrium conditions for all the wit nodes of G'. REFED(n) Is a
V-bit vector defined during the computation of AVAIL** which is used to save the
value of some intermediate AVAIL sets.

43

...-^_< rte'+^rFr '?*11R^1^'"

^YF
Y

ALGORMU 32t
declare bit vector PROCESSED (1:S) ;

PROCESSED := 0

while PROCESSED A 1 do
for i := 1 to S do

If processed = 0 and processedt = 1 for all tasks, t,

for which Gi waits

then

{
i

r

od*
od;

processed i := I;
for j = 1 to l i do

GEN(ni^ j) := REF(ni, j) ;
KILL(n) := 0;

od ;
KILL(nid := 1
call AVAIL*;
REFED(ni i) := AVAIL(ni 1.)
for j := 1 tolls do	 ' 1

GEN(n i1i) := DEF(ni^ l) i
KILL(nij) := REMi,j)

ad;
KILL(ni3O)

call AVAIL**;

for j := 1 to I do;
if DEF(ni,j) intersect AVAIL(nij) A 0

then print(" the definition(s) at node ",n. ,1^1
"is always immediately preceded by another",

" definition. The variable(s) is (are):
fork := 1 to V do

if def(ni^ j,k)= 1 and avail(ni,j ,k)=1 then print(f-1(k));
fi;

od;
fi ;

od ;

49

i

3.4.2.3 .5.3 Referenci a Variable of Indeterminate Value. - In the above
presentation we deterred discussion of anomalous data HoW situation existing
at the reference to variable y occurring at line 23 of the example program in
Section 3 .4.1.3.2.2. Y is defined by task T2 at line 10, by the main program at line
20, and possibly again in the main program at line 22. If for the moment we
ignore the definition at line 22, then it is definitely indeterminate whether the
definition from the task or from the main program is referenced at line 23. If we
acknowledge the presence of the definition at line 22, depending on the event
sequence (namely whether variable flag is true) the reference at lire 23 may be to 	 `.
an indeterminate value.

The algorithm we now present is designed to detect indeterminate reference
anomalies which will occur regardless of execution sequence. The anomalies will
be detected at the point of indeterminate reference.

Algorithm 5.3:

declare bit vector PROCESSED (1:S)

PROCESSED := 0

while PROCESSED k 1 do

for i : = 1 to S do

if processed i = 0 and processedt = 1 for all tasks, t,

for which G i waits

then	 r

processedi

for j = 1 to I i do

GEN(nij) := DEF(ni,j)'

KILL(n i^ j) := 0;

od i
KILL(ni'0)

call AVAIL*;

DEFED(nijl) := AVAIL(ni,l.)'
for j:= 1 to i do	 1

GEN(nij) 0; KILL(nij) := DEF(ni,j);

od

for all wi?a , wait nodes in Gi do

COUNT :=0;

for all predecessor nodes, pi,a,b' of wi,a do
COUNT := COUNT vector-add AVAIL(pi,a,G);

od

50

GEN(wi,a) := 0;

for v := 1 to V do

If COUNTv greater then 1

than GEN(wi a,v)

fl ;

od

od :

call AVAIL;

for j := 1 to Ii do

if AVAIL(n) intersect REF(n) b
then print("indeterminate reference at", ni^j);

fi ;

od ;

AVAIL (nisi) := DEFED (ni,l.)

fi ;	 i	 t

od;

3.4.2.3.6.0 Process Synchronization Anomalies. - As an outgrowth of our
investigation into the detection of data flow anomalies in concurrent process
software it became clear that some forms of synchronization errors could be
detected in essentially the same manner. We have alluded to the nature of these
errors in the introduction. They w ih now be considered in detail. Note that in
form the synchronization anomalies are analagous to data flow anomalies. In
addition, as with data flow, many of the anomalies are not strictly errors, but
they are conditions wh? , may be interpreted as erroneous in the sense of
indicating deeper problems. At the very least they represent conditions which
should be clearly documented.

3.4.2.3.6. 1 Waiting for an Unscheduled Process. - This anomaly is perhaps
the most apparent, and is closest in form to the data flow anomalies already
discussed. The example of Section 3.4.2.3.2.2 contains such an error at line 6 in
task T1. Task T3 is never scheduled, yet T1 waits for it. The analogy is to
detection of uninitialized variables. As such we will present algorithm 3.1
rewritten to detect this anomaly. Thus we are interested in detecting anomalies
which must occur, and the anomaly is to be detected at wait nodes. Our notation
requires that we introduce functions SCH(n), WAIT ALL (n), and WAIT ANY(n).
All function values are T-bit vectors. We shall assume that the program unit being
analyzed has T processes, and that a one-to-one function, g, has been defined
mapping the process names onto the integers (1,...,T). The i-th component of
SCH(n) is defined by sch (n,ti). sch(n,ti) is 1 if and only if the statement

Sl

i

represented by node n schedules the task t which Is mapped by the function g onto
index value L WAIT ALL and WAIT ANY are similarly defined, for the two types
of gait statements in our language.

i

Algorithm 6.1:

for n := 1 to N+1 do

GEN(n) := 0;

KILL(n) := SCH(n)

ad ;

GEN(0) := 1;

KILL(0) := 0;

call AVAIL;

for n:= 1 to N do

for i := 1 to T do

if (wait all(n,i) = 1 or wait any (n,i) = 1) and avail(n,i)=1

then print (" the reference to process ", g-1 (i),

" at node ", nt " is to a process which has not been scheduled.");

ad
od ;

In Figure 3.4.2.3 .2.5 task T3 will be in the avail set at the node correspond-
ing to line 6, thus the error will be detected.

As may be expected, there is also an analogue to the reference -definition in
parallel condition here. The following program presents such a condition.

S

^t

52

Main: program

2	 T1: tadq
3	 a bedule T2
4	 close TI;

S	 T2: tu4
6	 /* do something +^/
7	 close T2 ;

9	 schedule T 1 ;
9	 /* do something */
10	 wait for T2

11 close Main;

In this program there is the possibility that task T2 will be scheduled before
the wait at line 10 is encountered. Our analysis described above will cause an
"always" message to be generated. Thus we need to perform "schedule/wait in
parallel" analysis to give a complete description of the situation. This would be
performed in a manner analogous to that of reference /definition in parallel
analysis.

3.4.2.3.6.2 Waiting for a Process Guaranteed to Have Alread y Terminated. -
The example of Section 3.4.2.3 .2.2 still has additional errors to consider. At line
24 the main program waits for task T2 to complete. Yet the task was already
assured to have terminated at line 21. The second wait is thus superfluous and
possibly misleading. Since our language syntax allows us to specify gait -for-all
and wait-for-any we must be careful to distinguish the errors which we will detect
and the algorithms which apply in each case. To indicate the nature of our
technique we will just consider a single case: looking for constructs which,
regardless of event sequence, assure us that at least one of the processes named
in a wait-for-all has in fact already terminated at a previous wait.

53

34

'°p""-r	 _ .'"q^wq'•Rpre+.^.'...°'.. ..-
.f_._^v'.'+5'

7r

Y

A%MlthmGb

for n := 1 to N+1 do

KILL(n) in SCH(n)

GEN(n) in WAIT ALL(n)
if the statement represented by node n Is a task statement for ti

;.	 then gen(n,ti) in 1;

fl;

04
GEN(0) in I;
KILL(0) in 0;

gaff AVAIL;
for n := 1 to N do

for 1 in 1 to T do

If avail(n,l) = 1 and wait all(n,l) = 1
then print (" termination has already been ensured for task",

g7 1(i)9 " at node ", n);

91;

ad;

od ;

In Figure 3.4.2.3.2.5-1 task T2 Is In the avail sets of all predecessor nodes of
the node corresponding to the first wait (line-1271, but is In only one of the avail
sets of the predecessor nodes of the wait at line 24. Thus the first wait is correct,
while the second Is anomalous.

The algorithm we have presented may be easily modified to detect the
possibility of anomalies. To detect anomalies occurring at wait -for-anys we must
develop new procedures to account for situations such as:

waft for T1 or T2 ;

waft for T1 or T2 ;

In the absence of other synchronization statements the second ea:it is spurious;
satisfaction of the first waft guarantees immediate satisfaction of the second.

^	 z

3.4.2.3 .6.3 Scheduling a Process in Parallel with Itself. - The last synchroni-
zation anom y whicH we shall examine is that Of scheduling a process to execute
in parallel with an already active Incarnation of the same process. In the example
of Section 3.4.2.3 .2.2 there Is an Instance of this error at line 25, where task TI is
scheduled for the -econd time (the first being at line 15). At no point In any
process, let alone before the second schedule, has T1 been guaranteed to have
terminated.

We wili present the algorithm for detecting situations where, regardless of
event sequence, termination has not been assured by the time a schedule is
reached.

Algorithm 6.3:
for n := 1 to N+1 do

GEN(n) := SCH(n)

KILL(n) := WAIT ALL(n) union WAIT ANY(n) ;
od ;

KILL(0) m 1;
vEN(0) ;= 0;

call AVAIL*;
for n := Ito N do

for i :=I to T do
if sch(n,i) = 1 and avail(n,i) = 1

then print (" termination of process ", g -
11 has never been ensured before the schedule at node ", n) ;

od ;

ad ;

If this algorithm is applied to our example an error will be detected at line
25. As may be expected, if a schedule may be performed in parallel with a emit
(on the same process) the quality of our analysis is impaired. In particular, if such
a condition exists algorithm 6.3 will detect a "for sure" error, where in fact there
is an event sequence where termination takes place.

3.4.2.3.7.0 Conclusion

3.4.2.3.7. 1 Summary. - In this section we have presented several algorithms
useful in the detection of data flow and synchronization anomalies in programs
involving concurrent processes. Data flow is analyzed on an interprocess and 	 ;^,tw s
interprocedural basis. The basis of the technique is analysis of a process
augmented flowgraph, a graph representation of a system of communicating

55

concurrent processes. The algorithms have excellent efficiency characteristics,
and utilize basic algorithms which are present in many optimizing compilers. A
procedure is outlined which allows analysis to proceed on "parcels" of the subject
program. Only the most basic synchronization constructs have been considered,
however.

3.4.2.4 Creation of the Program Flow rah and Paf. - The program
f lowgrap may be constructed directly from the MALMAT representation of the
program. The creation of the flowgraph may logically take place in twophases.
The first phase reads the HALMAT file and emits a stream of (node, node) pairs,
along with a map: (node, SMRK, operator). Each element of the map indicates
the correspondence between a node number in the flowgraph and an instruction in
the HALMAT. (The node is thus mapped to the source statements as well.) Each
node-node pair indicates an edge in the program flowgraph. The edge exits the
first named node and enters the second. The flowgraph is thus a directed graph.
The second phase of flowgraph construction consists of forming the graph
representation of the flowgraph from the sequence of edges emitted by the first
phase. The algorithm for this operation, as well as a description of the graph
representation scheme to use, may be found in Hoperoft and Tarjan, 1973
(reference 32). The representation scheme described is known as an edge list
representation.

The algorithm for the first phase will be quite simple. Several primitive
operations, such as create new node, join node to redecessor, get branch_ tar-
get node number, join none to branch target, ancenable , joining of _node to
successor will be required, as well as tables indicating, for example, the
correspondence between statement labels and node numbers, and between internal
flow numbers and node numbers. The overall algorithm will then function by
sequentially processing the HALMAT file, using a case statement to direct the
processing of each HALMAT operator. As each operator is processed and nodes
are created, the bit vectors which indicate the operations which transpire at each
node may be created as well.

In order to determine which primitive operations to apply at each operator
it must be known what HALMAT operators are generated by the compiler for each
control structure (do while, if, case, and so forth). If by no other means this may
be determined by writing a few small test programs which exercise each of the
structures, compiling them, and examining the resulting HALMAT. Analysis of the
HALMAT will indicate which operators require the introduction of edges and
which operators may be ignored (if any).

The advantages of employing an edge-list representation of the flowgraph
for the data flow analysis activities are discussed in references 4, 31, and 32.
Recall that the data flow analysis algorithms employed originated in consideration
of global flow optimization. A considerable body of literature exists on this topic
which may be consulted in matters such as these. A text has recently appeared
detailing much of this work Hecht, 1977 (reference 33).

p

56

3.4.2.5 Tracing of the Effects of Inputs and the Origins of Outputs. - Flight
software is a particularly good class of software to whichfit is formof verification
applies. The basis of the verification technique Is the knowledge that each output
from a program is (intended to be) the function of a certain, understood, set of
inputs. Conversely, each input item should affect the computation of a certain,
understood, subset of the output values of the program. The verification
technique, therefore, is to provide a "map" indicating for each input variable all
the output variables which are affected by it, and for each output value which
input variables are involved in its calculation. This "map" could, for example, be
represented by a matrix. The rows and columns would be labelled with every
external (input or output) variable of a program. A check mark at an intersection
in the program would then indicate that the two variables are involved. If rows
were labelled with input variables and columns with the output variables, scanning
across a row would reveal all those output variables which are affected by that
particular input variable. Scanning down a column would indicate for that output
variable which inputs are involved in its computation.

As in most data flow analysis anomaly detection problems there are two
varieties of the question of "involvement." One may be interested in knowing what
variables may Possiblit be involved in the computation of another variable, and
what variables are always involved in the computation of another variable.

One means of creating this matrix is to employ symbolic execution, repre-
sented in this design through the interactive testing system. Using that tool
questions such as, "For a given path, what inputs are involved in the computation
of output x?", may be answered. The procedure would be to symbolically execute
the path and examine the output formula associated with variable x. That
formula would contain all the inputs which are involved in x's computation.
Similarly the question, "For a given path, what outputs are affected by input
variable y?" may be answered using this tool. The path is executed and all output
formulas are examined. All formulas which involve y correspond to the output
values desired.

Note that we have been careful to state that such checking is pathwise
dependent. To expand the answers to a larger portion of the program requires
that more paths may be examined. With some effort this may be done using the
interactive testing tool; the effort involved may be very acceptable if the number
of decision-decision paths is relatively small. (The number of times a loop is
executed is less important, as more variables are not necessarily involved the
longer the loop is executed.) Further, the path conditions formed throughout the
testing of the program may lend themselves to "easy" analysis. For example, the
presence of a particular input may preclude execution of a segment of the
program.

Though we may use the interactive testing tool to generate (at least most)
of the results desired, that solution is unattractive for some obvious reasons.
First, the path dependencies require significant extra steps to guarantee that
complete answers have been obtained, second, the interactive tool requires user
interaction, and third, the execution time penalty may be unacceptable. An

57

alternative Is thus desirable. Examination of the problem indicates that the task Is
basically one of data flow analysis and the capability may be created within the
data flow analysis tool. This approach Is considered In more detail below.

Data flow analysis as described before examines data activities along all
paths within a program. Both "possible" and "always" data flows are considered,
as has been noticed In the formulation of the various data flow anomalies. The
new aspect of the problem which arises here is that the algorithms presented thus
far only examine the data flow of individual data items, not the cumulative effect
of several data Items. Consider the following sequence of code:

d =e;
c-d •s
b=c;
a=b;

Clearly the value of a is dependent on the value of e. Transitivity of assignment
provides us with this result. Data flow analysis, on the other hand, would indicate
that a is not used following the first statement.

The data flow analysis algorithms presented thus far (LIVE, AVAIL, AVAIL*,
etc.) may be utilized, however, to take account of transitivity. The basic
algorithm for tracing the effect of a specified input would proceed as follows.
The point of input would be marked by aen on the program flowgraph. All nodes
which (re-) define the input variable would—bee marked with a kill. AVAIL would be
run. Next the flowgraph would be remarked. For all variables v and for all nodes
no en(n,v) = def(n,v) and there exists j such that ref(n,v•) and avail(n,v•). kill(n,v)
_ n,v) and—snot there exists j such that ref(n,v_Tend ivail(n,v• . AVAIL would
then be run again. This procedure of running A IVAIL -an—Fremirking the graph
would continue until no changes were made when the graph was remarked. All
points of output would then be examined. If the output variable were avail, then
that variable is for some paths a function of the original input variaT being
examined. This algorithm is described in detail in a Ph.D thesis from Cornell
(reference 34). The reader is referred to it for addtional discussion of the precise
technique. The important thing to note is that the basic tools for constructing
such a capability are already included in the design of the static data flow
analyzer.

3.4.3 Unresolved Design Issues. - Several matters discussed in this presenta-
tion clearly warrant furthWr investigation. The most pressing need now is a
consideration of additional synchronization and communication constructs. These
will introduce new classes of errors and may require that changes be made to the
algorithms presented here.

One issue not addressed here is the creation of correct process-augmented
flowgraphs. In our subset language this was a relatively trivial task, but as
additional (real) synchronization constructs are added significant problems are
anticipated. It is not clear at this point if "correct" pafs can always be generated.
The analysis schemes may require alteration to accommodate such a situation.

53

Dynamic determination of synchronization paths has not been considered at
all here, but work has been done in this area (reference 27). Likewise recusive
procedures and processes have been precluded. Work has been done in data flow
analysis of recursiv- routines (reference 281, but it appears inadequate for the
analysis performed here.

s

59

3.3 Interactive TeR*inA System.

3.3.1 Design Philosophy. - The testing of computer programs has always
been a time consuming, tedious task. This has been due, In part, to the fact that
It has never really been determined how much testing Is required before we can be
reasonably assured that a program reliably satisfies Its requirements. Various
testing methodologies have been devised to add structure and control to the
testing process but, as yet, no single testing strategy has emerged that encom-
passes the whole spectrum of testing activltles. Rather, choosing a combination
of testing methods based upon the nature of the software being tested seems to be
the most effective approach. This principle is, of course, essentially the same as
that taken with regard to the entire spectrum of software verification activities.

Traditionally a program has been tested by selecting test data, executing	 I
the prc brae using that test data as Input, and then checking the validity of the
resulting output. Most of the automatic tools which have been developed to assist
program testing elthec aid in selecting test data or aid in checking the validity of
a program 's output. Tools which aid in controlling program execution during a
test seem to be limited only to interactive (or worse yet, batch) debugging
systems. These are usually very cumbersome to use and tend to generate a large
amount of worthless output and, therefore, are used as a "last resort". Perhaps
their worst characteristic is that there is no methodology associated with them to
guide the testing process. A haphazard approach is more of ten the rule.

Functional testing (reference 10) [Howden,1978c] has, historically, peen one
of the most used (and abused) testing methods. It is a strategy whereby a program
is considered as a "black box" or, in the mathematical sense, a function which
relates input values to corresponding output values. The set of input values
selected for a test are constructed based on the functional properties of the
program. However, the sub-functions which comprise the program '! design are
ignored during the test. Howden has altered the conventional approach to
functional testing so that those sub-functions are identified and individually
tested themselves. To evaluate this approach, he applied this technique in an
effort to detect errors in a commercially available set of standard mathematical
programs. Very good results were achieved which so far seem to indicate that
this method is at least as reliable as any other in its ability to show the presence
of program errors.

The problem with Howden 's functional testing is that a thorough knowledge
of a program is required in order to isolate the functions comprising a program
and to intelligently select test values for them. The method can also be very
cumbersome in that it is often difficult to execute only a portion of a program
and, as a result, much of the functional testing must be done by hand. The first
problem, inherent to the testing process in general, can be addressed by having
the author of the program document the program 's internal functions while they
are being written. Thus a comprehensive test plan may be created in a systematic
manner. The second problem can be dealt with mechanically and is the primary
focus of the design which will be presented here. Specifically, the design
presented is an effort to create a single tool which will aid in the three testing
activities mentioned above: selecting test data, executing the program, and
checking the output.

^..^,.,

60

The Interactive Testing System (ITS) has been designed to provide the
capabilities regt,dred to Isolate and Individually test those sub-functions which
make up the 1,jg" design of a program. It has also been designed to support any
of a variety of testing methods that the user may choose. To direct our efforts,
however, the methodology of functional testing has been considered a primary
technique. The :TS is essentis.11y an Interactive debugger which has been enhanced
to conveniently allow the execution of any part or parts of a HAL/S program
complex and to perform symbolic execution. Three existing systems were careful-
ly studied and the design presented here Is basically an amalgam of them.

Johnson's RAIDE (Run-Time Analysis and Interactive Debug Environment)
system (reference 20)[Johnson,1978Fhas supplied many of the ideas pertaining to
the interactive user interface and therting command language. Clarke's
ATTEST and AID systems (references 7,31 arke,l976) [1Vinters, Ogden, Clarke,
1978] and Hwden's DISSECT symbolic 3xecutior- system (reference 8)
[Howden,1978al have been the impetus behind the design of the symbolic
execution facility of the ITS.

3.5.2 System overview - The ITS, as its name implies, is an interactive based
system for testing H L/S computer programs. The system is designed so that a
programmer can sit at an interactive terminal and test all or part of a HAWS
program complex. The ITS will allow a programmer to execute, for example, only
a single procedure or even a single statement if he so desires. The capability to
execute an entire program is present as well. Complete user control over the
computation state gives the user the capability iv Inspect or change the value of
any variables at any point during execution.

A symbolic execution facility is also provided. Symbolic values may be
assigned to variables as can actual values. When the ITS encounters an expression
in which ene or more of the variables referenced in the expression contain
symbolic values then symbolic evaluation of the expression is performed with the
result being a symbolic expression. The user maintains control over the program
execution paths which are followed by the ITS during symbolic execution.

The next section gives the syntax and description of the Interactive
Command Language which defines the ITS user interface. The syntax follows the
same notation used by the assertion and statistics gathering language found in
Section 3.6. Some of the non-terminals are not specified but their use should be
clear from their name; others can be found in the syntax found in Section 3.6.

W.

3.5.3 Interactive Command Lmmuoze OCL)

3.3.3.1 ICL Syntax

ICL command us simple command

DOI (simple command)+ END;

simplo command uz of ter

assert
R.

assume

before

break

call

cancel

close

display

do for

execute

if

install

proc

quit
restore

save

scope

select

set

skip

when

after ::= AFTER interrupt def ICL command

interrupt def ::= stmt des , stmt des

stmt-type list STATEMENTS

stmt des ::= proc ENTRY

pro EXIT

stmt def

stmt def ::= stmt no

comp unit namestmt no

62

proc name

assert ::= ASSERT assert comparison;

assert comparison ::= comparison
quantifier comparison

g ..antifier ::= FOR ALL quantifier completion (, quantifier completion)*

EXISTS quantifier completion (, quantifier completion)
quantifier completion ::= variable (arith exp TO arith exp)

assume ::= ASSUME comparison;

before ::= BEFORE interrupt def (, interrupt def)* ICL command
break ::= BREAK ('character string')
call ::= CALL test proc name ((arg list))

arg list ::= parameter (, parameter)+^

cancel ::= CANCEL;

close ::= CLOSE test pros name

display ::= DISPLAY ((number))disp action (, disp action)* ;

disp action ::= variable

LINE (number)

PAGE(number)

COLUMN(number)

TAB (number)

PATH

CONDITION

SOLUTION

'character string'
intrinsic function (arg list)

do for ::= DO FOR temp var = arith exp do for type;
temp var ::= identifier
do for type ::= (, arith exp)*

TO arith exp (BY arith exp)
execute ::= EXECUTE;

if ::= IF comparison THEN ICL command (ELSE ICL command)
install ::= INSTALL file name ;
proc ::= test proc name: PROCEDURE ((formal arg list)) ;

formal arg list ::= formal parameter (, formal parameter)*

63

formal parameter ::= identifier
quit uz QUIT;

restore ::= RESTORE file name;
save ::= SAVE file name;
scope ::= SCOPE scope def (, scope def)* ;
scope def ::= stmt def TO stmt def

pros
select= SELECT stmt def select clause;
select clause ::= LOOP (loop list)

CONDITION (cond list)
CASE(case list)

loop list ::= loop cnt (, loop cnt)*
loop cnt ::= number

number number
cond list ::= cond alt (, cond alt)*
coed alt ::= number#T

numberfF
T
F

case list ::= case alt (, case alt)*
case alt ::= number

numberfnumber
set ::= SET variable (, variable)* set clause
set clause ::= = set expression

INITIAL (initial list)
set expression ::= expression

"symbolic value"
skio ::= SKIP skip clause
skip clause ::= number

TO stmt def
when ::= WHEN comparison ICL command

64

3.5.3.2 ICL Descri tion. - The Interactive Command Language has been
designed to provide a simple and concise method of specifying commands to the
Interactive Testing System (ITS). The syntax has been structured to reflect many
of the properties of the HAL/S language. The specific commands have been
selected to furnish the user of the ITS with the flexibilty to control the testing of
any or all parts of a HAL/S software system. Each of the ICL commands will be
described in the following paragraphs along with some examples illustrating their
use.

3.5.3.2.1 Execution Scope - The SCOPE command is used to identify those
portions of the HAL S program complex which are to be involved in the testing.
The command consists of a list of block names and/or ranges of statement
numbers within the compilation units making up the program complex. The list
can be specified in any order. The first executable statement of the first entry in
the list, however, identifies the point at which execution is to begin. Execution
stops when a statement is executed which causes a transfer of control outside of
the defined execution scope.

Examples.

SCOPE 25 TO 50;

This command specifies that only statements between statements 25 and 50
(inclusive) of the compilation unit residing on the HALMAT file will be executed.
Note that when the compilation unit name is not included in the statement
number definitions it is assumed that only one compilation unit is available for
execution by the ITS.

SCOPE NAV.25 TO NAV.50, COURSE CORRECTION;

This defines the execution scope to be statements 25 to 50 of 'NAV' and the
block labeled 'COURSE CORRECTION'. The block 'COURSE CORRECTION' may
or may not be defined in the compilation unit identified by 'NAV'. If it is not
defined in 'NAV' then it must be a unique block name throughout the entire
program complex residing on the HALMAT file. The first statement which will be
executed in this example will be statement 25 (or, if not executable, the first
executable statement following it).

3.5.3.2.2 Interrupt control commands - The ICL contains seven commands
which allow the user to interact and control the ITS during execution.

The AFTER/BEFORE commands are used to allow ICL commands to be
processed after/before execution of the specified statement or block within the
currently executing program.

The WHEN command allows ICL commands to be processed as soon as the
specified condition becomes true.	 a

The BREAK command is used to interrupt the ITS during program execution
to allow the user to stop execution and enter commands.

65
i

The CANCEL command will cancel all active Interrupts set by AFTER,
BEFORE, and WHEN commands.

The EXECUTE command causes execution to resume at the Interrupted
execution point (or at the first executable statement, if just beginning).

The QUIT command is used to terminate an ITS session.

Examples.

AFTER progl.check ENTRY BREAK 'procedure check entered;

Execution will halt with the message "procedure check entered" printed at the
user 's terminal after entry into the block labeled 'check' in compilation unit
'progl'.

WHEN x = 0 & y = 0 & z = OBREAK;
Execution will halt whenever x,y, and z all become equal to zero.

BEFORE prog. lookup ENTRY DO;
SET x = "x";
ASSUME x>0

SKIP 1;

EXECUTE;

END;

Prior to each entry into the block labeled 'lookup' in compilation unit 'prog'
the following actions will be performed. The variable x will be assigned the
symbolic value "x", x>O will be conjuncted with the current path condition, the
next executable statement willbe skipped (the statement which transfers control
to 'lookup'), and execution will resume.

3.5.3.2.3 State modification commands. - The ICL provides four commands
which are used to modify the computation state of the currently executing
program.

The SET command is used to assign actual or symbolic values to variables
within the name scope in existence at the time the SET is processed. Only
variables (simple, arrays, or structure terminals) of types integer, scalar, matrix,
and vector can be assigned symbolic values. In addition, variables of type
matrix/vector cannot have symbolic values assigned to their individual elements;
the symbolic value is associated with the name of the matrix/vector (these
restrictions will be discussed further in section 3 .5.4). The expression part of the
SET command has the same syntax and semantics as HAL /S expressions.

The SKIP command is used to reposition the statement pointer. The
statement at which the pointer is set as a result of this command will be the next
statement to be executed when execution resumes.

4	 ^

66

The SAVE command will save on the file identified by the file name the
computation state of the currently executing program.

The RESTORE command will restore the computation state from the file
identified by file name. The state must have been previously saved by the SAVE
command.

Examples.

SET X = "A";

Processing of this command will result in X being assigned the symbolic value "A".

SET A INITIAL(20#0);

'A' is an integer array of size 20. This command will initialize 'A' to zero.

SET X = (- B + SQRT(B B - 4 A C))/ 2 A;

This will assign the value of the expression '(- B + SQRT(B B - 4 A C))/2 A'
to the variable 'X'.If any of the variables in the expression have symbolic values
then the result will be symbolic.

SKIP 3;

This commmand will cause the next 3 statements in the HAWS program
being tested to be skipped. The statements which are skipped are the next three
statements in the program text, not the next three statements which would have
been executed otherwise.

SKIP TO NAV.55;

Processing of this command will reset the statement pointer to statement
number 55 in compilation unit 'NAV'. If 'NAV.55' is within the defined execution
scope then it will be the next statement to be executed. Otherwise the command
is in error.

SAVE MYFILE;

The computation state will be saved on file 'MY FILE'.

RESTORE MYFILE;

The computation state will be restored from file 'MYFILE'.

3.5.3.2.4 Display Command. - The DISPLAY command is used to output any
information contained in the computation state of the currently executing
program and in the ITS Itself. The syntax follows closely the same rules as the
HAWS write statement. In addition to displaying values of variables the
command zan be used to display a trace history of the path which has been
executed, the current path condition, and, if possible, a solution to the current

67

path condition. The ITS also provides special built-in (intrinsic) functions which
can be used to perform various DISPLAY functions such as displaying statement
execution counts, the statement number of the current statement, and the name
of the currently executing block (a list of suggested functions is provided in
Appendix C).

Examples.

DISPLAY 'X =',X 9 LINE(1)9 'Y =',Y;

Suppose that X was equal to 10 and Y had the symbolic value 'A' when the
above command was executed. The following output would be printed at the
terminal:

X=10
Y = "A"

DISPLAY 'CURRENT PATH CONDITION = %CONDITON;

This command will result in the current path condition being output to the
users terminal which could look like:

CURRENT PATH CONDITION = X >0 & X < Y do Y = 10

If there has not been any symbolic execution performed then the following would
be output:

CURRENT PATH CONDITION = TRUE

3.5.3.2.5 Path Selection. - If any variables have been assigned symbolic
values during the execution of a program it may not always be possible to
evaluate expressions associated with conditional branch/loop statements to actual
values (e.g. TRUE or FALSE). In addition, it is usually desirable to specify the
number of loop iterations to execute when a loop is encountered along a path
during symbolic execution. Using the SELECT command the user can pre-select
which branches to follow at specified conditional statements and also the number
of loop iterations to perform at specified loop statements. Section 3.5.4 contains
a detailed description of how path specification is controlled by the ITS.

Examples.

SELECT NAV.20 CONDITION (T);

Assuming that statement 20 in compilation unit 'NAV' is an IF, this command will
inform the ITS that the TRUE branch is to be followed.

SELECT 18 CONDITION (5#T,F);
SELECT 18 LOOP (5);

If statement number 18 is a DO WHILE both of the above commands will inform
the ITS that the loop should exeaite 5 times.

f,

68
a

SELECT COURSE_CORRECTION.52 CASE (1,29394);

Statement 52 in compilation unit 'COURSE CORRECTION' must be a DO CASE
statement. This command will Indicate to the ITS that case 1 should be followed
the first time the statement is executed, case 2 the second time, and so on.

SELECT 135 LOOP(2#3,1);

If statement 135 is a DO FOR then the first two times the loop is entered it will
be iterated three times. The third time the loop is entered it will iterate only
once.

3.5.3.2.6 Predicate commands. - Two commands are furnished by the ITS to
allow the user to control the evolution of the path condition associated with the
Currently executing path.

The ASSUME command is used to logically conjunct predicates (e.g. initital
conditions) to the current path condition. 11,e predicate specified on the ASSUME
command will be checked for consistency with the existing path condition. If it is
found to be consistent then the predicate will be added to the current path
condition. If, however, it is found to be inconsistent a message will be output to
the user's terminal but the path condition will remain unchanged.

The ASSERT command is used to make assertions about the computation
state of the currently executing program. If the predicate associated with the
ASSERT command cannot be evaluated to false and is consistent with the existing
path condition then no action is taken. Otherwise, an assertion violation message
is issued to the user's terminal.

Examples.

ASSERT X <0;

If X is not less than zero or X< 0 is inconsistent with the current path condition at
the time this command is processed then an assertion violation message will be
issued to the user.

ASSERT FORALL I(1 TO N) A$I = 0;

This assertion will check that the first N elements of array A are zero.

ASSERT EXISTS I0 TO N) A$I = 0;

This assertion will check that there is at least one element of array A whose value
is zero.

4 ,.	 ASSUME X >0 & X < 1;

This command will conjunct the predicate 1X>0 ac X<1' to the current path
condition if the predicate is consistent with it.

69

3.53.2.7 ICL Procedures. - The ICL allows for language extension by
providing the means w ere y the user can define testing procedures. The
pertinent commands are the PROCEDURE, CLOSE, and CALL commands. The
syntax associated with each of these commands closely resembles that of the
corresponding HAL/S statement. The procedures can be directly entered into the
ITS during a terminal session or may be entered into a system program file and
then made available to the ITS by means of the INSTALL command. Unless
previously entered on a system file, all user-defined procedures will disappear at
the end of a session.

A rudimentary parameter passing mechanism is supplied by the ICL which is
much like that found in many macro processors. The formal parameters in the
argument list of the PROCEDURE command are specified as simple identifiers
and are separated by commas. Parameters passed to ICL procedures are supplied
in the argument list of the CALL command and must be listed in the same order
as the corresponding formal parameters. ICL procedure invocation will create a
new name scope with the executing program so that any formal parameter names
which conflict with program variable names will have precedence. Choice of
formal parameter names must be carefully made in order to be able to reference
all desired program variables.

Example.

Assume the following procedure resides on file 'MYFILE'.

STUB: PROCEDURE(PROC,VALUE);
AFTER PROC ENTRY DO;

SET X = VALUE;
ASSUME X = VALUE;

END;

This procedure (along with any others defined on 'MYFILE') can be made
available to the ITS by entering the following command:

INSTALL MYFILE;

'STUB' can be invoked with

CALL STUB(COURSE CORRECTION,1.414);

When the block labeled 'course correction' is entered, this will cause X to be
assigned the value 1.414 and the predicate 'X = 1.414 1 to be added to the path
condition.

3.5.3.2.8 ICL Control Statements. - There are two control structure mecha-
nisms provided by the ICL. An IF-THEN-ELSE is used to support the conditional
execution of ICL commands. The syntax and semantics associated with it are the
same as the HAL/S IF-THEN-ELSE. iterative and discrete DO FOR loops are also
supported by the ITS. The syntax and semantics of the DO FOR command also

70

follows that of the corresponding HAL/S statement, except the conditional
WHILE/UNTIL clause is not supported. The end of the body of the loop text is
specified by the END command. Nested loops fbllow the same structuring rules as
in HAL/S. The loop control variable is a temporary variable only and is only
active during the execution of the loop. Program variables with the same name as
the loop variable cannot be referenced within the body of the loop.

These statements are most useful within ICL test procedures and furnish a
great deal of flexibilty in creating them.

Example.

DO FOR I = 1 TO 3;

DO FOR J = 1 TO 3;

IF I = J THEN

SET A$(I:J) = 1;

ELSE

END;

END;

SET A$(I:J) = U;

In this example I and J are variables used by the ITS as loop control variables. 'A'
is a matrix which will be set to an identity matrix when the above commands are
processed. Notice that the flavor of these ICL commands is very much like that
of the corresponding HAL/S statements.

3.5.4 ITS Operation.

3.5.4.1 Interpreter. - The ITS has been designed to interpret the HALMAT
produced by phase one of the HAL/S compiler. A statement pointer points to the
next statement to be executed. It is checked with the defined execution scope
before execution of the statement to determine if execution is to continue. User
interrupt control is handled by the ITS by maintaining an interrupt control list
which is also checked before execution of each statement. In this way all actions
specified by ICL commands are always performed between statement executions.
Interrupt actions associated with the execution of particular statements (e.g.
AFTER/BEFORE commands) are maintained by a list which is in statement
number order. This will allow a rapid search of this list in order to reduce ITS
overhead. The interrupt actions associated with the WHEN command are more
costly. The conditional expression associated with this command will need to be
evaluated each time any of the values of the variables referenced in the
expression changes. Although this can be a very powerful command, its use will
increase the overhead incurred in the interpretation cycle.

It is possible that during the interpretation of a program a variable will be
referenced that has not been assigned a value. If the ITS is being operated
interactively, the user will be notified of the situation and the system will stop
execution. The user may then assign a value (symbolic or actual) to the variable

71

k

and resume execution. Other options may be selected as well. At all times the
user Is in complete control over whatever actions the ITS is to perform.

3.5.4.1.1 Arithmetic. - The HALMAT intermediate language defines a com-
mand for each of the dafferent types of arithmetic operations (e.g. integer
addition, scalar addition, vector subtraction). The ITS is designed to incorporate

re

4
all arithmetic operations as individual functional modules. In addition, in order to
simulate the arithmetic defined by the architecture of the target computer, the
routines will be generalized to handle these different arithmetic properties.
Knuth (reference 40) [Knuth,1%9] supplies most of the algorithms necessary to
facilitate this design. This also will allow easy modification if, later, more
arithmetic operations are added to HAWS (e.g. fixed point arithmetic). The
target computer to be simulated will be specified by a parameter supplied to the
ITS at the time the system is invoked. As additional target computers become

r

	

	 necessary, the ITS will need to have the arithmetic modules modified to allow for
the different architectures.

3.5.4.1.2 Real-Time. - Real-time execution can only be simulated by an
interpreter and, as a result, there will be problems which will need to be solved.
The main area of difficulty lies in the interpreter's maintenance of the informa-
tion needed to control real-time execution in a manner which will not greatly
increase the speed of interpretation. Some of the items which need to be
maintained are the process queue and a "pseudo" real-time clock. Process queue
control, in all likelihood, will not be any more costiy to maintain than the one in
the existing HAL/S monitor. Simulation of the real-time clock will require
knowledge of the execution times for each HALMAT operation and, in addition,
1/0 operation timing will need to be performed (or estimated) with the clock being
updated after each operation. In any event, the overhead incurred by the
interpreter to allow it to handle real-time execution may make this feature
prohibitively expensive but it seems reasonable to expect that the actual costs,
given good design, can be kept to a minimum.

3.5.4.2 Symbolic Execution. - The symbolic execution facility is an
extension of the IT5 and, as suc , it is actually an extension of the interpreter. A
symbolic, rather than actual, arithmetic operation is performed whenever the
interpreter encounters HALMAT arithmetic operations in which one or more of
the associated operands have symbolic values. In order to identify which variables
have symbolic values, it is necessary to attach an additional attribute to them.
The attribute is simply a boolean flag which is TRUE if the value of the variable is
symbolic.

	

3.5.4.2.1 Expression Evaluation. - Evaluation of assignment statements	 j

	

containing expressions involving symbolic values will, usually, require that both	 d
actual and symbolic operations be performed. The result of this evaluation will be
an expression represented as a tree where the leaf nodes of the tree are symbolic
and actual values. For example, suppose that the following assignment is to be
executed where Y = "a", Z = 2, and N W 3:

(1) X = Y + (Z + 1)/N;

k

72

The expresslon tree prior to execution will look likes

After the expression has been evaluated the resulting expression tree will be:

+

a	 1

and this will become the symbolic value of the variable X.

5; mbolic execution ;s used to construct the formula which represents the
computation associated with a given output variable along a specified program
execution path. This formula can then be compared with the functional
specification for that particular output variable in order to determine its
correctness (or incorrectness). Visual inspection of the formulas resulting from
symbolic execution, therefore, becomes an important factor and the manner in
which symbolic formulas are output should be given caret -Al consideration.
Howden (reference 8) (Howden, 1978«] has shown that a two ^^ , ensional format
for symbolic expressions can shov; the presence of errors causeu by the incorrect
placing of parentheses. As an ex ample of this format consider again the previous
assignment statement (1) and this time let Y = "a", Z = "b", and N = "c". The
output in a one -dimensional format resulting from the command DISPLAY X;
would look like:

a+(b+ 1)/c.

In two-dimensional format the output from the command would be:

a+ b+1
c

The ITS will utilize this method. Note that this is not the same as HAL/5
iulti-line format. The exponents and subscripts associated with symbolic values

73

should be output in single-line mode so that the output formulas will not be
cluttered and also to simplify the display algorithm.

3.5.4.2.2 Path Selection. - Selection of the program execution path to be
followed ring symbolic execution can be made In two modes, static and
dynamic. In static mode, path selection is made by means of the SELECT
command. In dynamic mode the system will query the user for the value of loops
and conditional expressions which cannot otherwise be determined. If the system
is being used interactively both path selection modes can be utilized. When the
system encounters a conditional branch/loop statement which cannot be evaluated
to TRUE or FALSE a path specification list generated by the specified SELECT
commands is checked. If there is a SELECT for the statement in question then
the specified 'branch will be followed. If, however, there is no SELECT specified
then the system switches into dynamic mode and the user is queried. When the
system can evaluate the loop or predicate condition the path selection list is still
checked for t!w corresponding SELECT command. If one is found then it is
compared with the value of the conditional and if it does not agree a warning
message is issued to the user.

If the system is being used in batch, the path must be completely specified.
The ITS will terminate execution whenever a branch or loop is encountered which
cannot be determined and no SELECT has been provided for it. A warning
message will also be issued when a SELECT command does not agree with the
value of its corresponding branch/loop condition.

When a branch's true path has been selected the predicate associated with
the conditional statement is logically conjuncted with the current path condition.
If the system can determine that a particular predicate is inconsistent with the
path condition then a message is issued and execution of the path terminates. A
predicate is inconsistent if it results in an unsolvable path condition (e.g. the
predicate X < Y is inconsistent with X >I 0 do Y <3).

The system will not be able to find solutions (and, therefore, check
consistency) to predicates involving general non-linear constraints. This is due to
the unsolvability of the problem of finding solutions to arbitrary systems of
inequalities. The ITS will minimize this problem by solving the linear constraints
contained within the path predicate leaving only the non-linear constraints which
can then be DISPLAY'd by the ITS user (who might attempt to find the solution
himself).

3.5.4.2.3 Symbolic Value Assi nments. - The assignment of symbolic values
is restricted to variables of the o owing types: integer, scalar, matrix, and
vector. Structure terminals and array elements of the aforementioned types can
also be assigned symbolic values. Variables of any other types (character, bit, or
event) cannot be assigned symbolic values. The symbolic values assigned to
variables of type matrix and vector are further restricted in that elements of
matrices and vectors cannot be assigned symbolic values. The value assigned to a
matrix or vector is associated with the entire matrix or vector. This restriction is
necessary because of the matrix and vector operators (e.g. inner and outer ^y !

i

74

product) which are part of the HAL/S language. it is not at all clear how useful it
would be to perform, say, an Inner product on two matrices whose elements
consist of both symbolic and actual values. It Is clear, however, that performing
these types of operations symbolically will be expensiva. A better approach would
be to build matrix algebra operations and simplification rules into the symbolic
executor so that formulas resulting from symbolic execution Involving matrix and
vector variables would more closely resemble their mathematical counterparts.
The extension of the symbolic executor to handle matrix and vector simplification
Is a new feature unique to this particular application. This extension, however,
will be quite straightforward to Implement and should not pose any difficult
problems.

Symbolic execution is used to construct the formulas which represent the
computations associated with program variables. It is not clear how useful
formulas involving non-numeric variables would be in showing computational
errors. In addition, theta are currently (to the best of our knowledge) no symbolic
execution systems in existence which specifically address themselves to non-
numeric applications. And, in as much as real-time flight software is more
numerical in nature, it is our contention that symbolic execution should be limited
as stated above.

There are, however, some unpleasant ramifications resulting from the above
restrictions. Symbolic execution is also used to detect infeasible program
execution paths. This capability will be limited by the above restrictions. Again,
however, there are currently no existing systems which have the capabilty of
solving constraints involving non-numeric variables.

3.5.3 Discussion. - As mentioned earlier, the ITS is designed to provide a
tool to aid in the thre ; testing activities: selecting test data, executing the
program, and checking the results.

The ITS helps Ow user to select test data in several ways. Test data can be
generated by the symbolic execution facility which will cause a specified path to
be executed. Use of the ITS to test an instrumented program (HALMAT monitor
file merge performed before ITS execution) will make statement execution counts
available to the user. This will allow the user to utilize branch testing methods
which can guide him in selecting the test data required to execute any untested
code.

The total user control over an executing program provided by the ITS is
probably its most important feature. In order to have confidence that a program
operates according to its specifications it is necessary to have confidence in the
ability of the low-level functional parts to operate properly. The ability to test a
program at the lowest level of abstraction can do a great deal to increase one's
confidence in the reliability of a program.

The assertion mechanism furnished by the ITS can be used to verify that the
computation state satisfies particular constraints at particular points during
program execution. This can be used to check that outputs do agree with their

75

specifications. For example, the following assertion coddd be used after a sort
program has sorted array A to show that the array has Indeed been sorted:

ASSERT FORALL 10 TO N-1) A$(U<- A$0* 1)i .

Assertions are also useful In verifying that input parameters meet the constraints
required by their corresponding procedures. This can be useful particularly when
a large system Is being implemented where the modules comprising the system are
being developed by different analysts and It Is important to show that the module
connections are correct.

The primary utility of symbolic execution is centered around the testing of
the functional components of a program at the lowest level of abstraction
(reference 38) [Howden,1978cl A recent paper (reference 33) [Clarke and
Ogden, 19791 has, however, described a technique whereby symbolic execution can
aid in the top-down testing of programs. In the ITS this technique involves setting
a trap AFTER entry Into, as yet, uncoded (or partially coded) procedure "stubs".
The ITS ASSUME command would then be used to add the constraints which will
normally apply to the procedure to the current path condition and the SET
command would assign symbolic (or actual) values to the output variables. A
rudimentary example of this method is found in section 3.5.3.2.7 and is imple-
mented using an ICL procedure. The ITS can be a very useful tool in performing
this type of testing.

Prior to embarking on the current ITS design, the existing HAL/S 360
debugger was studied and rejected for the following reasons. Although many of
the 360 debugger's capabilities are available in the ITS, that system is only usable
in batch and, as a result, it is not possible to specify additional user control over a
program once that program's execution begins. In addition, it did not offer any of
the controls necessary to perform functional testing, let alone symbolic execu-
tion. It also is little different from conventional interactive debuggers in that it
is very good at generating a very large amount o! output.

In that the ITS is a rather ambitious design, we feel that the system should
be built in several stages. The first stage would include an interpreter capable of
performing actual interpretation of real-time HALMAT code. The symbolic
execution facility would not be included ii; the initial system but it should not be
precluded by the detailed design. The ICL is not a trivial language to parse so
that a good deal of attention will need to be given to this part of the system. In
particular, the •HEN, ASSERT, IF, and SET commands all contain expressions
which need to be parsed into an interpretable form (i.e. HALMAT). Some
restrictions on the complexity or type of expressions which can be used may be
appropriate as a result.

The second stage would add a basic symbolic executor to the initial system.
It would contain expression simplification modules but it would not check for
predicate inconsistencies nor would it attempt test data generation.

The third stage would include all of the features for symbolic execution,
i.e., consistency checking and test data generation.

76

3.5.6 Conclusion. - The design of the Interactive Testing System which has
been presented is an attempt to integrate into a single tool the features of an
interactive debugger with those of a symbolic executor. The result, however, is a
system which is more than a debugger and symbolic executor, it is a software
testing system. It is based on the concept of functional testing and its emphasis is
on te'aft and not on debugging. The design has been kept as simple as possible in
order to be as user tractable as possible. The use of the symbolic execution
facility, however, will still require a sophisticated user who has a thorough
understanding of both the capabilities of the ITS and of the inner workings of the
program being tested.

All in all, we feel that the Interactive Testing System will be a very
valuable tool in the verification of research flight software.

3.5.7 Unresolved Design Issues

3.5.7.1 Real-Time - The problems associated with the interpretation of
real-time code are discussed in Section 3.5.4.1.2. As the detailed design of the
interpreter is carried out, solutions to these problems should make themselves
manifest.

3.5.7.2 ICL Parser. - It was noted in Section 3.5.5 that some restricitons
may need to be made on the complexity, or type, of expressions which can be used
within particular ICL commands. It may be possible to utilize the routines which
are used by the front-end HAL/S compiler to parse the expressions within the
ASSERT and KEEP statements in the ICL parser. The resolution of this problem
will also become apparent as further design is completed.

3.5.7.3 Ambiguous Array References. - An ambiguous array reference
occurs when an array subscript contains a symbolic value. This situation poses
problems during symbolic execution due to the fact that it is impossible to
uniquely determine which element of the array is being referenced. Current
methods of dealing with this problem include marking variables which contain
ambiguous values, creating lists of the possible values a variable can have, or just
simply ignoring them. Research into a tractable solution to this problem is
continuing.

k

77

^..-^UPI

3.6 Dynamic Analysis.

3.6.1 Assertion Facility.

3.6.1.1 Desi n Princi le. - The Assertion and Statistics Gathering Lan-
guages Tstatements designe are general and powerful. Some of the features are
totally new to such languages; to our knowledge a system of this scope has not
been implemented anywhere. The decision to adopt such a broad design is based

't upon our principle that it is crucial to anticipate future needs and make
appropriate provisions for them. Indeed, the syntax is incompletely defined -
further consideration and experience with the provided features will dictate their
completion.

Basic features will be implemented at first. As experience guides, addition-
al features will be supported, with their implementation and integration being
able to proceed smoothly. The syntax will require no revision and previously
instrumented programs will not require any changes. In fact, programs may
contain assertions which reference (hitherto) unsupported features. Such asser-
tions serve as important documentation. When the support features they require
are provided, they then assume their rose as active monitors.

The basic ideas contained in the design were obtained from two primary
sources: reference 11 [Stucki, 19761 and reference 12 [Chow, 1976]. Both contain
excellent expositions of the utility of assertions and provide many examples.
Chow provides several examples of specialized assertion functions which may be
defined. Some of these would rt luire special implementation, but their semantics
are harmonious with the design presented. Thus they are candidates for future
inclusion in the assertion language.

3.6.1.2 Implementation. - The support of the designed features will
certainly take place in phases. Four major factors are involved.

First is the problem of determining a suitable instrumentation schema for
any given facility. For most of the facilities described, this is straightforward.
Difficulties arise though, for example, in consideration of the INVARIANT clause.
If such a clause is used in a concurrent process program, guaranteeing the
invariance of shared data may be very difficult. Perhaps more important is the
problem of discovering efficient instrumentation schemas.

The instrumentation required to implement the histogram-type information
could be provided in several ways. One alternative is to utilize the execution
monitor, as opposed to inserting special probes directly in the code. The default
compiler mode generates calls to the exec-pion monitor following each HAL/S
statement. The monitor performs any duties associated with the real time
aspects of the program, among other things. Since the "hook" to each statement
is thus automatically provided, the monitor could be modified to gather the
histogram information. Such modification is not recommended, however. Unnec-
essary overhead would result, controlling the extent of histogram-gathering would
be difficult, and dependencies would be placed on using the monitor - which

78

may be undesirable on many target computers. Much greater flexibility and
economy is achieved through the direct insertion of probes.

Another decision governs the nature of the probes which are inserted. Inline
E code may be created, or a procedure call may be used. Wine code executes

faster, but may incur a size penalty In the object program. Global declarations to
support the Instruments must be supplied by the tool, and some run time
flexibility may be sacrificed. Subroutine calls are smaller, require less "declara-
tion" effort, and greatly increase flexibility over in-line code. The execution time
penalty associated with procedure invocation may be prohibitive in many cases,
however.

In light of these considerations, it is recommended that in-line code be used
predominantly, but that the ability to use procedure calls should not be precluded.
Since the cost of procedure invocation may vary significantly from implementa-
tion to implementation (and language to language), it is also recommended that
timing studies be undertaken to aid in determining the proper mixture of
techniques. User control over the type of instrumentation to be utilized is an
important option.

Regardless of the scheme used to implement the histogram-type facilities,
two concerns must be kept in mind. It must be guaranteed that regardless of
where program termination occurs statistics will still be captured and the
interfaces with the file system must satisfy overall efficiency requirements.

All of these concerns have been addressed and are discussed at length
beginning in Section 3.6.6.

Second in the list of major implementation factors is the problem of
translating the assertions into the instrumentation required. Parsing of the
assertion itself is a problem, as sophisticated expressions may be present. Clearly
the use of compiler routines is mandated, and this should be readily accomplished
as the routines to pull the assertion out of the comment brackets will be included
within the compiler. This is discussed in Section 3.9.

Third, as noted in the description of the assertion syntax, the problem of
"specification" or denotation arises. This is with regard to path specification.
The facilities which are desired to present such a capability must be determined.
This will be discussed later.

3.6.1.3 Restrictions and Capabilities. - Much of the generality provided by
the assertion a statistics gathering statements arises from the ability to invoke
a function, in the general sense, as a part of expression evaluation. Sophisticat-
ed, tailor-made functions may be provided to perform a variety of checking
activities. These functions may be catalogued and saved for use on many
different classes of software. For example, certain functions might be
particularily useful when verifying real-time software. (Note that the real time
clock may be referenced). The instrumentation of such functions would allow
their execution to take place in "zero time" in a simulation environment. To fully
simulate a real time program, though, the timing of external interrupts must be
adjusted to compensate for the increase in actual execution time.

a

79

The caveat associated with this capability is that the functions which are
called must not have any side-effects. A program must execute with instrument-
ation identically as without. Enforcement of this rule will necessitate restrictions
on the composition of 	 Tuunctions.

A partial list of supporting capabilities follows. The most important are
discussed at length later in this document.

1. The assertion processor accepts controlling input. This allows informa-
tion such as selective instrumentation commands to override commands embedded
in the source text.

2. The selective instrumentation capabilities allow, for example, only one
module of a multi-module program to be instrumented. Even if execution halts in
an uninstrumented module, the statistics from the instrumented module will still
be gathered (assuming the instrumented module is executed at least once).

3. Standard functions may be provided to query aspects of the operating
environment. These queries allow the program to assert that it is operating under
the conditions for which it was designed. Such functions may concern physical
(hardware) characterisitics or software support. These functions will necessarily
be implementation dependent. (For example, an assertion may be made about the
target machine's word size).

4. The post processor, which prepares reports containing the statistics
gathered during execution, will allow information gathered from several test runs
to be presented in a single report. Summaries of the statistics obtained from each
run will be obtainable as well.

S. The facility which actually inserts the instrumentation provides an
indication of which assertions/keeps actually generated monitors. In addition, for
any given set of instruments the facilities should attempt to estimate at least the
increase in program size caused by inserting the instruments into the program, if
not a timing estimate too.

6. If relevant aspects of the output from test runs are retained in the system
data base, a facility may be provided which will monitor the progress of the
testing activities. Test coverage may be considered, as well as examination of
the number of assertions violated per run. It would then be possible to use
software reliability models to estimate the quality of the software. See reference
13 [Lloyd and Lipow, 1977], chapter 17, or reference 14 [Sukert, 1977] for a
consideration of this.

3.6.1.4 Notation. - The grammar used to describe the assertion and statistics
gathering languages is a variant of BNF, described below.

i) Nonterminals are underlined, e.g., assert statement

ii) Terminals composed of Latin letters are printed in upper case, e.g.,
ASSERT

80

iii) Terminals composed of special characters are printed In bold face, e.g.,

iv) Items which are optional are enclosed in parentheses, e.g., (GLOBAL)

v) Items suffixed with an asterisk N may appear zero or more times

vi) Items suffixed with a plus sign W may appear one or more times

vii) multiple productions corresponding to a single non-terminal are listed
on successive lines. The non-terminal and the ::= sign only appear
on the first production.

e.g., value	 comparison
path expression

i

81

3.6.2 Assertion Language.

3.6.2.1 Grammar.

assert statement ::= /* (special label) ASSERT (GLOBAL) ext-lo ical-exp-list */;
ext-logical-exp-list ::= ext-logical-exp (; ext-logical-exp)*
ext-logical-exp ::= value (relop value)*

expression list INVARIANT (TO special label)
expression list (NOT) IN range+
expression list OUTPUT

value ::= comparison
path expression
quantifier comparison

expression list ::= expression (, expression)*
re_lop ::= conditional AND

conditional OR
quantifier ::= FORALL quantifier completion

EXISTS quantifier completion
quantifier completion ::= integer variable range (, integer variable range)*
range ::= (constant (TO constant))
path expression ::= PATH special label WAS path

PATH path
g _ ::= to be determined
end ASSERT stmt ::= /* END ASSERT special label */ ;

invariant mark ::= /* END INVARIANT special label */ ;
statistics value ::= (name) @ (special label)

3.6.2.2 Context Sensitive Rules.

1. No two ASSERT statements may have the same special label.

2. No two invariant mark statements may have the same special label.

3. Multiple ASSERT GLOBAL/ END ASSERT statements are possible, and
nesting is not required. As the system is used and feedback obtained, such a
requirement may be added later.

82

4. The GLOBAL keyword may not be used in conjunction with the TO special
label clause, nor the OUTPUT clause.

S. To aid in efficient implementation, the number of ext-lo cal-ex s al-
lowed in a single assertion may be limited to an implementation-defined maximum.
The same is true for the number of expressions allowed in expression list and the
number of ranges allowed in a single ext-lo ical-ex Note t t such restrictions
do not affect the power of the facility--on y the ormat of the special statements.

3.6.2.3 Semantics.

1. Any and all ASSERT statements may be labeled with a Dewey decimal
number. Their instrumentation may be controlled by an external mechanism which
references these numbers.

2. The ASSERT GLOBAL statement specifies a list of conditions which must
continuously hold over a range of the program. This range is demarcated by the
ASSERT statement and the END ASSERT statement whose special labels match. if
no such END ASSERT statement exists or if the ASSERT statement is unlabeled,
the assertion applies to all program text following the ASSERT statement in the
current static scope (at the procedure, task, or program level). The expressions
listed must not reference any variables whose scope is smaller than the range of
the assertion. Note that if subscripted variables (or otherwise parameterized
expressions) are used in the assertion, the entire expression is evaluated anew each
time a check is required. Thus if the expression was A$(I) = 1, then the subscript 1
is evaluated anew at each check point.

3. A series of logical conditions may be expressed in a single ASSERT
statement. If the GLOBAL keyword is present, all the logical conditions must hold
throughout the range of the assertion.

4. Contradictory assertions may be specified for the same program region.
By definition, if both are instrumented, an assertion violation will be reported
whenever that region of code is executed.

S. Each extended logical expression which is checked may include conditional
operands (tokens such as CAND and COR may be appropriate). In the conditional
expression A conditional and B, B will be evaluated if and only if A is true. In the
conditional expression A conditional or B, B will be evaluated if and only if A is
false. Evaluation proceeds from Iet to right, with no parenthetical nesting. By
using such expressions dynamic control over assertion evaluation is achieved.
(Indeed, if the first part of the expression is evaluabee at compile time, a more
efficient form of instrumentation may be possible.)

6. "Threshold" control may be achieved in a similar manner. The special
value VIOLATE (special label) may be used within any comparison in an assertion.
Its value is the number of times the referenced assertion has been violated. If no
reference (special label) is provided, the number of violations of the current
assertion is taken.

83

7. Special values COUNT (special label) and statistics value may also be
used within any extended logical expression. COUNT refers to the execution count

of the referenced KEEP statement (if no reference Is provided, the COUNT of a
hypothetical KEEP COUNT statement which immediately precedes the ASSERT is
used.) statistics value allows the value o •: any HAL/S expression which is saved in
a KEEP to be referenced in an assertion. The optional name which precedes the
label allows a particular value to be referenced out of several saved at the KEEP
(there may have been a list of expressions to KEEP). The name supplied must be
textually identical to one of the expressions listed in the KEEL.

8. Path expressions allow assertions to be made about execution paths
previously taken and kept, or predictive assertions about what path will be followed
after checking of the assertion. Further discussion of this facility may wait until a
suitable notation for specifying a path is adopted. Such a mechanism must allow a
convenient, useful path specification to be made before program compilation.
Decisions about what is done when subroutines are called will have to be made.

9. Quantifiers on comparisons allow the formation of powerful assertions.
The quantifier completions presented allow for looping constructs. When used with
FORALL, the assertion must hold true as the integer variable assumes each of the
values specified in the range. When multiple inte er variables and ranges are
specified the assertion must hold for every combination o integer variable and
value. When used with EXISTS the assertion must hold true for at least one
integer-variable and value (or combination thereof, if several integer variable
ranges are specified).

10. The INVARIANT (TO special label) clause specifies that none of the
expressions listed in the statement will vary in value as long as control remains
within the scope of the invariant assertion. The invariant mark statement may be
used to define the end of the region throughout which the value of the expressions
must remain constant. The special label found on the TO clause and the invariant
mark must be identical. If no such mark is found, or if the TO special
label phrase is omitted, the end of the current local scope (at the procedure, task,
or program level) is used. If control enters the scope of the invariant without
"passing through" the ASSERT statement, the value of the expressions must be the
same as (invariant to) the value of the expressions the last time the ASSERT was
executed. If the ASSERT has never been executed an assertion violation will
result. The INVARIANT (TO special label) clause allows assertions which may
check for parallel processing errors. The clause is also useful for indicating what
variables are input-only to a routine. This allows protection of global variables
used in internal scopes. Procedure parameters are already protected through the
formal parameter/ ASSIGN mechanism.) If several shared variables are being
referenced in a supposedly critical region, they should not be updated concurrently.
They must remain INVARIANT to the end of the critical region. Efficient
implementation of this feature for such concurrent processing applications will
require significant study if such checking is performed dynamically. Static
verification is the preferred technique.

r*.r

f	 84

1
r

v

11. The IN rain a specification indicates that each value specified In the
expression list must—1 a within one of the ranges provided. A range may consist of
a single value. Initially, ranges may only be specified for Integer and scalar valued
expressions.

12. The expression list OUTPUT specification gives a complete list of the
expressions, usua y varia es, which are "produced" or modified by a section of
code. It is therefore implied that only those expressions, and no others to which a
definition is given in the current scope, will occur in reference contexts in the
same (static) scope following the OUTPUT assertion.

3.6.3 Statistics Gathering Language

statistics statement ::= /* (special label) KEEP GLOBAL function list */;

/* (special label) KEEP svalue list (uq alifier) */;

end keep statement ::= /* END KEEP special label */;

special label ::= integer (. integer)* (.)

function list ::= function (, function)*

function ::= COUNT ((stmt-type list))

VARTRACE (varlist)

PROCTRACE (rop clist)

SNAPSHOT

normal function

svalue list ::= svalue (, svalue)*

svalue ::= expression

COUNT

SNAPSHOT

PATH ((integer))

qualifier ::= IF comparison

stmt-type list ::= stmt-type (, stmt-type)*

stmt-type ::= ALL

ASSIGN

CALL

CANCEL

DOCASE

DOLOOP

95

pq

V

EXIT

FILE

GOTO

IF

ON ERROR

OFFERROR

READ

RESET

RETURN

SCHEDULE

SENDERROR

SET

SIGNAL

TERMINATE

UPDATE

WAIT

WRITE

Context Sensitive Rules

1. No two KEEP statements may be labeled with the same number.

2. Multiple KEEP GLOBAL / END KEEP pairs are possible, and nesting is
not required. As the system is used and feedback obtained, such a requirement
may be added.

Semantics

1. All KEEP statements may be labeled with a dewey-decimal number. As
such they are individually named and their instrumentation may be controlled in a
sophisticated manner by an external mechanism (directives to the KEEP statement
processor).

2. The KEEP GLOBAL statement specifies a list of functions which are to
be called after every (applicable) statement within the textual scope defined by the
KEEP GLOBAL statement and the END KEEP statement whose special labels
match. if no matching END KEEP is found, such a statement is gene,wed at the
end of the current textual scope (at the procedure, task, or program level).

86

i

i 3. The functions which may be Invoked at each (appropriate) statement are
(as follows:

COUNT - provides a count of the number of times each statement was
exec>>ted. The stmt-t	 list qualifier allowsthe user to restrict the types of
statements for	 this information will be kept. The default is ALL
statements.

VARTRACE - each variable listed in the function Is traced throughout the
range of the KEEP. At each point of change the variable's name and new
value is printed, along with the statement number of the statement causing
the change, and the current execution count (if kept).

PROTRACE - each procedure listed in the function is traced throughout the
range of the KEEP. At each procedure invocation the procedure's name is
printed, along with the statement number the CALL, the value of the
parameters, and the current execution count (:f kept). Printing of the
parameters may be subject to implementation restrictions.

SNAPSHOT - whenever a statement in the range of the KEEP directly causes
a change in the status of any process, a snapshot will be taken of all the
system monitor's queues. Thus an indication is given of which processes are
ready, waiting, and inactive. Depending on the implementation of the
monitor, an indication may also be given of what events (or event variables)
the waiting processes are blocked on. The snapshot will also give the
statement number of the statement which caused the snapshot to be
generated.

normal function - this is a general HAWS function which will be called after
the execution of each statement. This provision is in keeping with the overall
criterion of providing a general syntax. Implementation restrictions, as
previously mentioned, are almost certain. The function name may be followed
by a list of parameters. The scope of the parameters must be consistent with
the scope of the keep. statistics value (described in Section 3.6.2) is a legal
parameter.

4. If GLOBAL is not specified, the KEEP statement refers only to the
program state defined at the point of the KEEP.

5. svalue may be any computable expression (including HAL/S normal
functions) n —is subject to the rules provided for functions in rule 3 above.
statistics value is a legal part of an expression. COUNT has the same meaning as
noted above, but may not be qualified. Thus it refers only to the number of times
control passed through the KEEP statement. SNAPSHOT causes a snapshot to be
taken of the monitors queues as they exist at the time of execution of the KEEP.

w

	

	6. Specification of PATH will cause a record to be kept of the execution
path taken from the KEEP statement until an END KEEP statement is encountered

97

r

which has a matching MIal label. If the PATH Is qualified with an Integer n, the
path record will be Urnited to a maximum of n statements. Only the first n 	 j

statements encountered will be retained.

7. If a KEEP statement has a qualifier phrase, the Information requested
will be kept only if tim.. condition Is met. Evaluation of the condition Is subject to
the extensions and restr ;ctions applied to normal functions In rule 3 above.

3.6.4 Rationale. - There are two main motivations for the provision of the
KEEP statements. The first Is to allow assertions to reference previous values of
variables. The second motivation is to allow the user to control to some extent the
information which will be produced as a "histogram" of the programs execution.
This histogram normally contains execution counts, but may include other Items as
well.

The keeping of voluminous amounts of detail concerning a programs execu-
tion history is most closely associated with debugging systems. Such systems have
a decidely different flavor than the dynamic analysis system considered here. As
the preliminary design includes an interactive test system (SAMM node CCB),
facilities for production of such information - e. not included in this specification.
Necessarily the line drawn between the two is somewhat arbitrary, but we believe
the distinction drawn is a useful one.

L^

I

3.6.3 Sample Usattes of the Assertion and Statistics Gatherinit Facility.
t

1) /* ASSERT A=B+C; D>6; F(X)j=0 */;!

{ Three simple arithmetic relations which must be true at the point of
assertion placement.

2) /* ASSERT A> S CAND F(X) = F(Z) */;
}	 Two arithmetic relationships. The second relationship Is checked (causing

I

evaluation of the functions) if and only If A>S.

!	 3) /* ASSERT A>S CAND B<0 COR C--O */;
Three arithmetic relationships. B < 0 is evaluated if A > S. C=0 will be
evaluated if the value of the entire expression to the left of the COR is
false. The chart below indicates all possible evaluation/value combinations.

A >3 B<0 C = 0 Assertion value

T T unevaluated T
T F T T
T F F F
F unevaluated T T
F unevaluated F F

4) /* ASSERT VIOLATE <S CAND F(X)=0 */;
F(X) will only be compared with zero if this assertion has not been violated
more than 4 times.

51 /* ASSERT GLOBAL X > 0 */;
X must remain positive from the assertion through the end of the current
scope (either procedure, task, or program end).

99

6) /* 1 ASSERT GLOBAL X > 0 */;
I	 X must remain positive throughout this region

/* END ASSERT 1 */;

7) /* ASSERT A,B,C INVARIANT TO 3.1 */;
:	 A,B,C must remain unchanged In this region

/* END INVARIANT 3.1 */;

8) /* ASSERT X*Y INVARIANT */;

The value of the expression X.Y must remain constant until the end of the
current procedure, task, or program.

9) /* ASSERT X IN (1 TO 6)(12) */;

The condition 1:5 X ^ 6 or X=12 must satisfied.

10) /* ASSERT X,Y OUTPUT */;

Only variables X and Y will occur in reference contexts below this point in
the current textual scope (procedure, program, or task).

11) /* 1.1 KEEP X */;

The current value of X is retained for later use in an assertion.

12) /* ASSERT X@(1.1) = X */;

Asserts that the last value of X stored at KEEP 1.1 is equal to the current
value of X.

13) /* ASSERT @0.1) = X */;

Same as example 12). This syntax is valid if KEEP 1.1 only retained variable
X.

f^'M
L

i
i

90

i

WI

M

14) /* KEEP GLOBAL COUNT */;

An execution frequency count is kept for all statements oa

KEEP until the end of the current scope (procedure, program, or tumv.

15) /* KEEP GLOBAL COUNT (READ, WRITE, FILE) */;

An execution frequency count is kept on all input-output statements

occuring after the KEEP until the end of the current scope.

16) /* KEEP COUNT IF FLAG */;

A selective execution count will be kept for this statement. The count will

be incremented only when variable FLAG has the value TRUE.

17) /* KEEP X IF FM >5 */;

The value of X will be retained only if FM >S.

18) /* ASSERT X< 0 COR SPECIAL ERROR HANDLER(X)*/;

This example illustrates how special processing may be performed on
assertion violation. If X is not less than zero then (presumably) something

has gone awry in the program. In order to gather as much information as

possible a user-supplied function is called which may, for example, print out

a helpful message.

19) /* ASSERT FORALL d(1 TO 10), J(1 TO 5) A$(I)<B$M */;

This assertion is equivalent to the logical conjunction of the following

assertions:

A$(1)<B$(1) .

A$(1) <B$(2)

91
r

..	

_	 ..	 w^^'.-.+¢"t^^wa.•-^-r,-rn.Yr•^...,wtcrr?e'^'^.+.!wi+^'

A$(1)< B$(3)

A$(2)< B$(I)h	 A$(2)< B$(2)

E1	 '
A$00) < B$(3)

In other words, each element of A must be less than every element of B.

20) /* ASSERT FORALL I(1 TO 10) A$(I) < = A$(I+l) */; This asserts that the
first l l elements of A are sorted In ascending order.

21) /* ASSERT EXISTS N (4 TO 100) A**N = B**N+C**N*/;
This assertion declares that there exists at least 1 value of N between 4 and
100 inclusive such that A N = BN + CN, for values A, B, and C. (This
assertion will fail, of course, if A, B, and C are integers and (AXBXC) k 0)

22) /* 22. KEEP MAX(X, @(22.)) */;
Assuming that function MAX returns the larger of its two arguments, this
KEEP will retain the maximum value of X which occurs at this statement.
(MAX must also be able to detect that @(22.) is undefined on the first call

of the function. This ability is implementation dependent).

s• n̂

92

i

3.6.6 Instrumentation Schema - The assertion/keep preprocessor (SAMM
node C A will generate the following Information describing the
ASSERT/KEEP statements present In the program. This information may then be
translated Into algorithms to Implement the statements. The algorithms to be
used are presented following the Information description. Assuming Pascal as the
Implementation language, It is used as the description means.

3.6.6.1 ASSERT Information

max dewey length = 10 ; (* maximum nesting revel for special labels *)
max exp length = SO ; (* maximum number of Integer words for HALMAT

computation of an expression *)
max num expressions = 1 ; (* maximum number of expressions allowed In an

expression list *)
max num ranges = 10 ; (* maximum number of ranges which can be given in

a single range assertion *)
max num conditionals = S ; (* maximum number of relops allowed in an

ext-logical-exp *)
max num values = max num conditionals + 1 ; (* maximum number of

values allowed In an ext-logical-exp *)
max_ext logical exps = 1 ; (* maximum number of ext-logical-exps in an

ext-logical-exp-list +►)
max quantifiers = 6 ; (* maximum number of Integer variable - range pairs

allowed in a single quantifier completion *)

type

small int = 0..100; (*small integers*)
dewey_decimal = array 0.. max deweyiength) of small int; (* dewey

decimal numbers used in special labels *)
assertion type = (value, invariant, range, output); (* the basic types of

assertions allowed *)

93

relop = (sand, cor) ; (* the Internal tokens we shall use for conditlor
and/conditional or *)

constant type - (int, scalar); (* the only constant types allowed In ran

specifications *)
quantifies type = (forall, exists); (* the kinds of quantifiers possible*)

Halmat = Integer ; (* this defines what a single HALMAT word Is. This
could be defined more explicity (and possibly usefully) as a variant
record without a tag field. Each possible HALMAT word format could
then be described.*)

expression = array (l..max exp_length) of Halmat ; (* the sequence of
HALMAT words corresponding to the computation of the expression.
Special values COUNT and VIOLATE are accepted by the preprocessor
and generate special pointers into the symbol table. *)

expression—list =

record

exps: array (l..max num expressions) of expression;
num exps: integer ; (* number of expressions actually present in

the list *)
end; (* expression list record definition *)

constant =

record

case con—type: constant type of

scalar: (float: real);
int: (fixed: integer);

end; (* constant record *)
range =

record

first: constant;

second: constant;
OW;

i^

94

E

fE

1 i^

quantifier_completion
reeocd

quant var: Integer ; (* a pointer Into the symbol table Indicating
the variable used In the quantifier.*)

quart range: range; (* the range specified *)
ond; (* quantifier completion record *)

value =
record

quantifier: quantifier type; (* the nature of the quanifier pres-
ent, If any *)

num quantifier completions: small int; (* the number of ug anti-

fler completion s present*)

quant completions:	 array	 (l..max num_quantifiers)	 of
quantifier completion; (* ordered list of the quantifier

completions specified *)
value. exp: expression; (* the comparison which is quantified*)

end; (* value record *)

ext logical exp =
record

case assert type: assertion types of
value:

(num conditional ops: small int; (* number of condi-
tional operands in this ext-logical-exp*)

conditional ops : array (l..max num conditionals) of
relop; (* an ordered list of the operands
found *)

values: array (l..max num values) of value; (* a list
of the separate values *)

invariant:

(limit: dewey decimal; (* the special label of the END
INVARIANT statement (if specified) *)

95

I

Invar exps: expression list; (* the expressions which
must remain Invariant *)

range:
R

(num ranges: small int; (* the number of ranges specl-

`	 fled*)

ranges: array (1--max num ranges) of range ; (* the

ranges that were specified *)
range exps: expression list; (* the expressions to

which the ranges apply *)

output: (output exps: expression list)

end; (* end of ext-logical-exp record definition *)

initial assert =

record

SMRK_pointer: integer ; (* the SMRK of the ASSERT state-

ment*)

special label: dewey_decimal ; (* the special label on the

ASSERT*)

global: boolean ; (* whether or not the GLOBAL keyword is

present *)

count flag: boolean ; (* whether or not the assertion requires the

existance of a count-type KEEP statement before the

assertion*)

num ext logical exps : small int; (*the number of ext-loRical-

exps present in this assertion*)

ext logical exps	 :	 array	 (l..max ext logical exps) 	 of

ext logical exp; (* here is the body of the assertian *)
end (* initial assert record *)

- ..-.I

3.6.6.2 Instrumentation. - The instrumentation to be derived from this
information 1i as follows. sis for all the Instrumentation Is the simple rules
If rat assertion condition then call assertion violation ;
The assertion_vlolation procedure is largely Independent of the type of assertion.
The code to perform the necessary actions can be contained In a parameterized
Procedure. The following HAL/S procedure (Figure 3.6.6.2-1) Is an example of
such a procedure. The utility of Its parameters should be self-evident. They are
fully described In the section entitled "Control of Instrumentation." Additional
parameters could be allowed which would, for example, Indicate the value of the
expressions which did not satisfy the condition in the assertion.

It should be clear that with this Instrumentation schema (and the :ontro:
provided In Section 3.6.7) the user has full control of actions taken on assertion
violation. If instruments are left in the code executing on the flight computer the
same flexibility exists. If program termination is desired, that is possible subject
to the capabilities of the system monitor (if any). Likewise a continuing record of
violations may be kept, as long as there is a channel on which the messages may
be preserved.

3.6.6.2.1 Global parameter - The presence of the GLOBAL keyword will
require the addition of the o owing information to the above data structure.

num important vars: small_int;
important vacs: array (l..max num important_vars) of integer

(* where each integer is an index into the symbol table. Each variable
involved in the computation which checks the assertion is contained in
the list *)

The implication is that whenever any of the variables listed appears in an
assignment context in the range of the assertion, the assertion must be checked
after the assignment has been made. Such assertions must always be checked
after each procedure/function invocation as well, to ensure that the variables
involved were not altered in an illegal manner due to procedure/function side
effects. (if the absence of side-effects is guaranteed such checking may be
eliminated. The checking for side effects could be performed by the static
analyzer. The existence of such checking would be reported to the user. He would
then be obligated to remove the unnecessary checks through directives to the
HMF/HALMAT merge operation.)

3.6.6.2.2 Conditional operands. - The instrumentation of a sequence of
comparisons (values) separated by conditional operands requires the use of a
simple device.—Eppose the following sequence is to be instrumented:

c i r i c2 r2 c3
where cI , c29 c3 are comparisons and r and r2 are relops (here we shall use

97

M N M M M M M M M M M M M M N M M M M M M M M M M M M M M N M M M M M M N M MIN M M M ► ^ Mrarrr^rararrrr^rrrsrr`rsrrsrrrrr^sarrrrrrrr^-r

H M M N N MI M M M

M MrrrrrrrM•rrrrM•rr^r rI-^rrrM•rrM•^rr^rrrrrrrrrr rr

aka 11 its-------------------------- ----------------

ob
• \	 r« w

\

Juv
Z M Z M	 r
M r	 M rW

•	 M \m W r Z4 ZOg- ^	 W	 Ci

U2	 fa I-

^	 ^	 M	 tIDN W N ^ ^iAA	 ^	 ^	 ^

r	 W u	 r0W t'^Z.I1-10	 r	 7g	
ps	

O3.

rN	 H	 W N	 o ff- fz lWf^IHZS	 r	 }

r M•^ O ai2A r̂ MHMf'JMi\

I	 us	 Z 94

0 f Z^ ~ ~NI.-OO ^J WZ aUI- 	 M	 ZO	 ?f

	

-W
OS 2 0

OQ
WxW;A\s yZ^	 I!W

N	 ►-	
yy
^JArWW^	 C pr Irp r	 S	 JZ	 rQQC

	

N^^ S^ \ ^ ZO^^ZQ NW{IO Z^Z.j^ M	 O	 i

j 2 \ WI- U).-y^

	

Q^ M + RI MfmwVMrn yUy^^W f	 r^^► \JQ	 \Z	 M\ JuMI 10 >	 ^►
Q _CM* _ ► Z _ U. 1	 O M	 m	 •

W~ ^ QQ\ 9 m ^I- =W^ j x	 Q Z	 w^

U 49

^^
	 ^M Z ^

Nfj
O ^NWrr^^ +	 » J^	 r	 O

	

^Q	 W	 MMw	 e	 MN	 •	 • • r - . •	 ^ ~ =	 a	 FFaa	 ^O

W IO W W W	 JZQ ►- (^

Iw

zo	
Z46 ZZZ
r Wrl-r	 wMWy Q	 1- v^ M	 Z A M • _	 H

m M WMMN (^	 M IA M 	 M• (,	 r

^

1111%

^ C
p
_	

Qp
_w	 Q

ql	 CiC1 1C
^

1
	%I%w	 WMI► ^FMMw	 WA	 ^Q	 W

wx Q	 AQw O^.\\\\\\	 impM	 M	 d

M^IwI..I-INf9l9f1h1A1ffOf^mO000OOOOOO •+ MHM^► *n'o NN W p OvegWR 114.0.. .+.I.+..w.I...+.+.I.^ ► .^Id.A.rM aNNH 	 NN

Figure 3.6.6.2-1 Assertion Violation Procedure

99

CAND and COR). The Instrumentation requires the Introduction of a terapor#ry
boolean variable p.

The Instrumentation Is as follows:

p=cl;
It Or = CAND) and (p = true)) or

((r I = COR) and (p = false))
then p = c2 ;

U ((r2 = CAND) and (p r true)) or
((r2 = COR) and (p = false))
then p = c3;

If not p then call assertion violation

The comparisons ri = CAND and r i = COR can be evaluated at preprocessing
time. If r I = CAND and r2 = COR the following instrument sequence is
generated:

p=c1;
It p then p = c2;
U not p then p = c3;
if not p then a.R assertion violation

3.6.6.2.3 Invariant Assertions. - Invariant assertions will best be checked by
a static data flow analyzer. Checking by instrumentation is possible only in a
limited sense.

One instrumentation scheme involves the establishment of a "filter" be-
tween all active processes and memory. If one process declares an expression
invariant, then the filter does not allow any changes to any of the variables
involved In the computation of the expression, so long As the invariant clause is in
effect. (It could allow "changes" to the variables, as ;ong as the new value was
equal to the previous value.) The inefficiencies and difficulties associated with
this scheme are apparent.

Another candidate is as follows. When the invariant assertion is encoun-
tered the values of all variables involved In the computation of the expressions
are stored in temporary variables which are local to the process in which the
assertion appears. Throughout the range of the invariant assertion all references
to the involved variables are directed to the temporary variables.

l;

99

(Definition contexts In the process containing the INVARIANT clause are illegal,
of course, and are statically detected.) One problem here Is If procedure or
function Invocations are Included In either the expressions themselves or within
the range of the assertion. In the former case It may not be clear what variables
must remain constant, nor could such a restriction be enforced. In the latter case
references to Invoked variables within the procedure /function could not be
directed to the temporaries. Still another clear drawback Is that we have forced
the expressions to be invariant, rather than checked them to be so. As such the
program will behave differently with the Instrumentation than without--a viola-
tion of a basic principle. We must conclude this candidate Is unacceptable.

A third solution Is to enclose the statements comprising the range of the
assertion in a LOCK group. This Is not desirable, however, as the semantics of
the program are different when the assertion Is Instrumented, as opposed to when
it is not, as in the store-values-in-temporary-variables candidate above.

3.6.6.2.4 Range Assertions. - Range assertions are handled as follows: for
each expres Von in expression list and each range In range, the check

If not(expression >_ range.first and expression <_ range.second)
then call assertion violation;

must be generated. If the GLOBAL keyword is present the check must be made
any time an involved variable is defined within the scope of the assertion.

3.6.6.2 .5 Output Assertions. - Output assertions, like invariant assertions,
should be checked statically.

3.6.6.2 .6 uantified comparisons. - Comparisons which are quantified with
FORALL or EXISTS c auscs may be Instrumented in the following way. Each
integer variable - range pair may be translated into a loop. If several such loops
are required they must be nested integer variable (constant i TO constant2) Is
translated Into the following loop:

do for integer variable = constant I to constant? ;

If constant2 is omitted then constant is used In Its place.

The difference between FORALL and EXISTS is in the contents of the loop.
In the FORALL situation the comparison must be true for each execution of the
loop. In the EXISTS situation the comparison need only be true for one execution
of the loop. An auxiliary variable may be used to keep track of the comparison
"history".

Examples /* ASSERT FORALL 10 TO 100) AI A BI */;

do for i =1 to 100;

assert s assert and (Ai A BI) ;

If not assert then call assertion violation

t^

100

Note that If the assertion is false, and such falsehood Is established for a
small value of i, the entire bop need not be executed, and could be exited. Since
assertion violation Is (presumably) an Infrequent occurrence this does not seem to
be necessary. in the case of EXISTS quantifies, however, a partial execution of
the loop may firmly establish the validity of the assertion. Thus exi ting the loop
may substantially aid In the efficiency of the Instrumented program. Since
,functional side effects (as pertaining to the program 's execution) must not occur
as the result of checking assertions, that Is not a concern here.

3.6.63 KEEP Information.

cant

max_vartrace = 10 ; (* maximum number of variables which may be
specified for tracing in a single KEEP statement*)

maxa-proctrace = 10 ; (* maximum number of procedures which may be
specified for tracing in a single KEEP statement*)

max num svalues = 1 ; (* maximum number of svalues which may be
specified in a single KEEP statement*)

max num functions = 1 ;(* maximum number of functions (to be applied
globally) which may be specified in a single KEEP statement*)

max num^%rameters = 10 ;(* maximum number of acutal parameters which
may be specified in a function which will be called globally *)

type

stmt types = (assign, call, cancel, docase, doloop, exit, file, goto, if,
onerror, offerror, read, reset, return, schedule, senderror, set, signal,
terminate, update, wait, write); (* all the various statement types
which the user may specify to be COUNTed*)

funcdescriptor = (* description of a function cal;, with actual parameters*)
record

funcnames integer, (* pointer into the symbol table to the
function name being called*)

funcparams: array (l..max num_parameters) of lntgpr;

101

(* parameter: to the function called (pointers Into the

symbol table) (This could be extended to allow expressions 	 r

as parameters) *)

end; (*funcdescriptor record*)

Initial keep a

record
SMRK_polnters Integv; (* the SMRK of the KEEP statement*)

special label: dewey decimal ; (* the special label on the KEEP

statement (all zeroes If none) *)

can global: boolean (* whether or not the GLOBAL keyword Is

present*) of

true:
(num functions small Int; (* the number of functions listed

to be applied throughout the range*)

cointlist: set of stmt types; (* which statement types

should be COUNTed*)

vartrace: array (l..max vartrace) of Integer; (* Integer

Indices into the symbol of variables to be traced*)

proctrace: array (l..max_ woctrace) of Integer; (*Integer

indices Into the symbol table of procedure invoca-

tions to trace*)

funs: array (l..max num functions) of funcdescriptor; (*

descriptions of functions and parameters which are

applied globally *)

fakes

(nu,m svalues: small int; (* number of svalues to keep

here*)

COUNT: booleen ; (* whether or not to keep count of this

statements executions*)

PATH: Integer ; (*keep path for specified number of

statements*)

t	 iN

102

I

SNAPSHOTt bookm ; (*whetlter or not to take a snapshot
here*)

exps: array (l..max rum :values) of expresuon ; (* svab e

expressions to keep (the HALKAT representation of
the expression*

qualifier: boahm ; (* whether or not a qualifier 1s
present*)

comparison: expression; (* the qualifier specified*)
)i

end ;(*end Initial keep record definition *)

103

C

3.6.6.4 KEEP instrumentation. - The Instrumentation to be derived from
this In orma on isas	 ows.

1. Execution frequency counts. Execution frequency counts ("histograms")
are required if, for any KEEP, global = true, or global = false and COUNT = true.

The latter case is simplest so it shall be examined first. Whenever the
statement is executed a global counter of execution frequency for the statement
must be updated. The instrumentation processor is responsible for the creation of
this global counter. Since several counters will likely be needed due to KEEPS
throughout the program an array of counters is appropriate. The instrumentation
processor (node CBCD) may create this array by modifying the symbol table to
include the array. The array should have global scope. Its size may be
determined dynamically: as the instruments are generated a count is kept
indicating how large the array must be. When the instrumentation processor is
complete the array is added to the symbol table and all references to it may be
established. (A back-chain of references may be appropriate to facilitate this.)
Alternatively, a "fixed" array size may be determined before instrumentation, by
input to the instrumentation processor. References to the array may thus be
established at time of instrument creation.

If execution frequency counts are not kept "in-core" by means of an array, a
channel may be employed to write out the count information for later retrieval
and processing. Each time an instrumented statement is executed, the instrument
will write the statement number on the count channel. These numbers may be
later tabulated to obtain the frequency counts.

A second table is required in addition to that containing the execution
counts. This table indicates which entry in the table corresponds to which KEEP
COUNT statement. This is required so that upon post-processing the execution
count appropriate to the statement may be displayed along side the statement.

Recall the discussion, of inline instruments versus procedure calls. (Section
3.6.1) It is in instrumentation of execution counts that inline code shows the most
superiority. The scheme outlined here is appropriate to either technique,
however. In the case of using a procedure to perform the array update the array
index is passed as a parameter, as well as the statement number.

Insertion of instruments throughout a region of code (global parameter =
true) is accomplished in only a slightly more complex manner. Each individual
instrument is as described above; the placement of the instruments is the only
additional work required. The most sophisticated form of instrumentation
required in this vein is if a count is desired for ALL statements in a given range.

The important principle to be observed here is that not every statement
requires an instrument. Simple minded schemes which, in effect, instrument
every statement suffer from unreasonable overhead. Such a scheme (which is
definitely not recommended) could be implemented by using the system monitor
to perform the count updates, and requiring that the monitor be called after
execution of each statement. The small amount of extra work required to perform

104

Intelligent Instrumentation Is well worth It. (Additionally, the simple minded
scheme referred to would not support selective Instrumentation as required by the
KEEP language.)

Only so-called basic blocks of code require an Instrument. A basic block of
code Is a sequence of statements through which control must always pass
sequentially. Simple analysis of the program reveals those places where instru-
ments are required. Simple heuristics may be applied. The mapping required by
the post-process phase Is analogous to that described above. It must be able to
determine which counter applies to the current statement.

In summary, the following data structures are required.

max num counters = 300 ; (* the maximum number of actual counters which
are required to instrument a given program*)

counter table = array (l..max num counters) of Integer ; (*the table where

the execution frequency counts will be kept*)
counter-stmt—number—table = array ()..max num counters) co'

record
first: Integer; (*first SMRK to which the counter applies*)
last: Integer; (*last SMRK to which the counter applies*)
index: Integer; (*index to the relevent counter in the

counter table *)
end;

2. Variable tracing. All non-zero entries in array vartrace represent
variables whose evolution is to be traced throughout execution of a given region
of code. The code required is, again, simple. Whenever the variables listed occur
in assignment contexts HALMAT must be inserted following the assignment (or
return from a procedure or function call) to write the updated value of the
variable on a specified channel. The channel number may be specified by
appropriate input commands (see section 3.6.7). The statement number of the
statement which caused the change in value should also be written, in addition to
the name of the variable and Its updated value. If the current statement
execution count Is available, It should also be printed.

3. Procedure tracing. Procedure tracing is analogous to variable tracing.
Whenever a procedure pointed to from array proctrace is referenced within the

103

range of the keep, a message is written indicating: 1) the statement numb where
the call is being made, 2) the name of the procedure being called, (optionally) 3)
the value of the parameters passed, and 4) the current execution count, If
available. Channel control Is available, as In the case of variable tracing.
Implementation restrictions on the type of parameters which may be written out
may be appropriate.

4. Snapshot generation. The instrumentation required here is a call to the
system monitor, requesting it to dump a copy of the contents of Its processing
queues. This, of course, will require implementation dependent modifications to
the system monitor. The form of the call to the monitor may be implementation
dependent as well.

5. Globally applied functions. The instrumentation required here is simply
that which is used to invoke a function and preserve its value as described in 7)
below. The function to be called, or its template, must be compiled with the
program whose KEEP statements reference the function. The function's value
will be saved after execution of every statement in the scope of the keep.

6. Path tracing. Instrumentation to be determined.

7. svalue expressions. Local keeps may specify expressions to be kept
during execution. The code required to implement this is 1) that which is required
to compute the expression and 2) that which creates a "special variable" and
stores the result of the expression computation in it. This special variable is like
any other HAL/S variable, with the exception that it may only be referenced
indirectly--either through its implicit creation at a KEEP statement or through a
special value reference in a KEEP or ASSERT statement. Several such variables
are likely to be needed throughout the program, but unlike the counter variables
used to support the keeping of execution frequency counts, these variables may all
be of different type. Each of these variables could be allocated separately (i.e.,
added to the symbol table separately). To support references to the kept
expressions an internal table must be kept relating the KEEP to the special
variable. This simple scheme would be alright, except that the user may wish to
see the final values kept displayed on an annotated source listing, in the manner
that execution counts are kept. Such ability requires that the final value kept be
written on an external channel to be picked up by the listing generator (as the
counts are). The counts are all easily written out since two tables contain all the
necessary information. It is therefore recommended that a table be formed for
the kept variables, indicating their names. When program termination is reached
this table will be used inside a loop, where the body of the loop prints the special
variables. (The matter could be simplified by restricting the type of the
expressions which may be displayed on the listing to, say, integer and scalar. If
this is done, then the technique applied to execution counts may be used directly.)

8. Qualified keeps. If expressions are qualified, the portion of the KEEP
which computes and saves the expression values must be preceded by an IF check
on the comparison listed in the KEEP. Phrased in terms of HAL/S:

106

If comparison drat

do;

compute expression;

store expression value In special variable;

OW;

As alluded to during the discussion of execution frequency counts and kept
expressions, several tables need to be written out after the user's program has
finished. These tables are used as input to the annotated listing generator,
allowing the execution counts and final kept values to be displayed next to the
appropriate statement. The code to write this information out should be placed
just before every point In the program where execution may terminate. Thus even
though only a portion of the program may be Instrumented, each termination point
requires this code. Fortunately, in HAL/S such places are few in number. A
program may only terminate two ways: an error condition may not have a
recovery, or the program close may be reached. Instrumentation of the latter
calm is easy. Location of the former cases is implementation dependent, as the
handling of all error conditions is implementation dependent. When the set of
such errors is determined, their error handler may be modified to include the code
to write the tables before terminating abnormally.

3.6.7 Control Of Instrumentation - The use of special labels on the assertion
and keep statements allows their Instcumentation to be controlled externally. The
mechanism which accomplishes this is the input to SAMM node CBCD, which,
among other things, merges the HALMAT Monitor File (HMF) and the HALMAT
file. Following is a description of the input to CBCD relevant to this task. The
syntax is described first, in the same notation as employed for the assertion and
keep statements. This specification is provided down to the separator level, as
this input is not defined within the context of the HAL/S language as the assert
and keep statements were). The semantics follows, along with an indication of
how the input is processed and used.

t

i
i

i

r

107

^Y.

r

Syntax

controlling Input ::= separator* KEEP Indicator keep options separator* terminator

separator* (ASSERT) indicator assert options separator * terminator

separator u=
space

terminator

C	 indicator ::= separator * (PREFIX) separator + dewey decimal with stars separator+
I

dewey decimal with stars ::= number thing (. number thing)* (.)

number thing ::= Integer

keep options ::= instrument generation control
instrument type control
channel control
parameter control

assert options ::= separator * assert optionion (separator* , separator* assert option)*

assert option ::= termination control
instrument generation control
instrument type control
messaite control
channel contro l

termination control ::= TERMINATE
NOTERMINATE

instrument generation control ::= ON
OFF	 !

_instrument type control ::= INLINE (separator + PROCS) (separator + simulation time	 j
control)

SPECIAL
EXTERNAL

simulation time control n= TIME
NOTIME

message control ::= MESSAGE
NOM ESSAG E	 •

108

i

ti

channel control ::= CHANNEL xaarator* (separator* integer se stator'

parameter control u= PARAMETERS
^ NOPARAMETERS

integer ::= dialt (dijtlt)*

dialt u+ 0
1
2
3
4
S
6
7
9
9

Semantics

The most important aspect of this input scheme is that it allows very
flexible selection of the various assert and keep statements to which the
controlling parameters apply. The facility is perhaps best explained through the
use of examples. If indicator is 1.2 then the controlling parameters listed apply to
the statement with the special label 1.2. If the indicator is PREFIX 1.2 then the
controlling parameters apply to all statements whose special labels begin with 1.2.
Thus 1.2, 1.2.0, 1.2.1, are all Implied Using a star M within a dewey decimal is a
shorthand notation for any digit. Thus 1.2.* is equivalent to listing 1.2.0, 1.2.1,
..., 1.2.9. Similarly 1.*.4 is equivalent to the list 1.0.4, 1.1.4, ... , 1.9.4. The star
notation and the prefix notation may be combined. Since it may be desirable to
specify parameters for a class of special labels, yet invoke special parameters for
a subset of that class, a hierarchy of precedence is necessary. PREFIX notation
has lowest precedence, star notation has next higher precedence, and explicit
notation (no stars or PREFIX) has highest precedence.

Separate control is provided for the instrumentation of assertions and keeps.
Control of KEEP instrumentation is simpler. The KEEP keyword must be present,
and the following options are provided: instrument generation control, instrument
type control, channel control, and parameter control. Reg^ ar(g
instrument generation control, selection of ON causes the keep to be processed.
Selection of OFF causes the applicable keep statement(s) to be ignored in further
processing. instrument type control is as described below. channel control
directs output messages from variable and procedure tracing to the desire
channel. parameter control specifies whether, during procedure tracing, the
values of the parameters of-the procedures being traced should be written.

simulation time control determines whether or not the execution of the
inline instrumentation will affect the simulated real time clock. TIME will cause
the clock to be affected.

109

If the KEEP keyword Is not present It Is assumed that the controlling Input
statement refers to ASSERT statements. The ASSERT keyword makes this

selection explicit. Several options pertain to the processing of assertions.

Instrument generation control determines how the selected asserts are to be
processed. If ON is selected further action is subordinate to Instrument type con-
trol. If OFF Is selected the assertion Is not In any way InsertInto the code,
will It appear In the list of instruments to be placed in the code by an external
means.

instrument type control determines how the instruments which are to be
included are processed. INLINE requires that the algorithm which implements the
assertion or keep be translated to HALMAT and Inserted at the proper point into
the HALMAT Monitor File. If the PROCS parameter is present the inline
instruments will be procedure calls where appropriate, as opposed to straight-line
code. Recall the discussion of Sections 3.6.1 and 3.6.6.4. EXTERNAL requires
that the algorithm be printed out on a special listing so that the user can "insert"
it at a later point. Most often this will be used to direct the processing of
assertions or keeps which can be checked through the use of an instrumentable
interpretive computer simulator (ICS). SPECIAL requires that the algorithm (or
an indication of the algorithm) be inserted in the HALMAT through use of special
HALMAT paragraphs. Proper interpretation androcessing of these special
HALMAT statements is left to the code generators/interpreters which follow in
the processing sequence.

termination control allows the user to determine what happens when asser-
tions are vio to . If ERMINATE is selected then the users program will be
forced to terminate (abnormally) at the point of assertion violation. Control' will
return to the execution (or system) monitor at that point, if such a monitor is
present. Semantics of TERMINATE on small, dedicated computers operating
without a run-time monitor is implementation dependent.

message control determines whether or not an informative message is
generated upon assertion violation. MESSAGE indicates that one is to be
generated, NOMESSAGE implies the converse. Such selection ability is desirable
in the event that the user utilizes his own assertion violation handler (such as is
done in example 18, in Section 3.6.5, entitled "Sample Usages of the Assertion and
Statistics Gathering Facility)." If NOMESSAGE is selected only message genera-
tion is inhibited. Special value VIOLATE associated with the assertion is
incremented as usual. (If other tasks are associated with assertion violation they
would be performed as well.)

channel control allows user selection of the channel number to be used when
writing out assertion violation messages. .

As may be expected default values are available. They are as follows:

110

KEEP

ON

CHANNEL (6)

NOPARAMETERS

ASSERT

ON
INLIN E

NOTERMINATE

MESSAGE

CHANNEL (6)

Implementation

As the above described input to node CBCD is processed a tree structure
may be built which contains the parameters specified. The hierarchy of defaults,
PREFIX, star notation, and explicit directives may thus be maintained. When the
HMF is processed the parameter tree may be searched according to the special
label on the statements. Separate trees could be kept for keeps and asserts, but
better would be a single tree with dual annotations, one set for assertions, the
other for keeps.

Control of Error Monitors

Instruments may exist in the HALMAT Monitor File which do not correspond to a
labelled assertion or keep statement. These instruments are created by separate
tools, and check for various errors, the most notable of which are subscripts out
of bounds and division by zero. The user may wish to selectively control the
insertion of these instruments as well as the assertion and keep instruments. In
order to enable this a "pre-pass" mode should be supplied on the file merger tool.
This pass will simply print a numbered list of all the instruments which exist in
the HMF, along with a pointer to the HAL/S statement to which they apply. The
user may examine this list and note the numbers of instruments which should, or
should not, be inserted. These numbers are then supplied to the merge processor,
the HMF is "rewound" and the merge operation takes place in the usual manner.
The INLINE and SPECIAL modes may be desired zs well. We therefore include the
following in our control syntax:

controlling input::=
separator* INCLUDEONLY separator+ instrument .ype control separator+number list
separator* EXCLUDE separator+ number list

number list ::= separator* integer (separator* , separator* integer)*

III

3.6.8 Unresolved Design Issues - The Instrumentation required to handle
path tracing and path assertions has not yet been determined. The problem
essentially involves designing a mechanism which can efficiently maintain the
path history In such a way as to minimize the amo-.jnt of data stored (an execution
path can be quite long) and still be able to dw.:k path aswtions without a great
deal of overhead. As Is the case with all of the dynamic analysis Instrumentation,
the resource constraints of various target computers (e-g-j limited memory size
and 1/0 channel availability for the execution statistics) may Influence the
implementation decisions.

112

3.7 Documentation. - Virtually all of the tools presented In the design have,
as part of their t es, t production of different aspects of documentation. The
most obvious facilities In this area are the non-data flow static analyzers (cross
reference generator, call graph, code auditor, etc.), the comment extractor, and
the assertion facilities. The system data base Is the common repository of all
documentation produced. A powerful user Interface to It allows such documenta-
tion, generated by diverse tools, to be accessed In an efficient manner.

In particular, It is recommended that a output writer program be created
which will access and present the items In the data base. Such an output writer
should have a comprehensive scope, generating everything from the listing which
is currently produced by the compiler to the annotated source listing which
contains the execution frequency counts and KEEP values. There are two
motivations for taking this approach. First, the listing generated by the LaRC
front-end compiler is judged unacceptable in its present form. Multiline output
(subscripts and superscripts) is not supported, error messages are nigh unto
useless, and the type notation for each variable is not provided as Is done in the
Intermetrics 360 compiler. This is not to say that the solution is to copy the
Intermetrics version. Its output is deemed counterproductive in the way that
inline comments are handled. The only reasonable algorithm for printing such
comments is to transfer them directly to the output, without massaging them in
any way. Users often line up comments for special annotation purposes; the 360
compiler moves comments around in such a way as to often obliterate any
legibility that may be present in the original text. The problem is greatly
compounded when ASSERT and KEEP statements are included in the text. They
are inserted in the text as null statements. The 360 compiler moves the special
statement to the right of the listing. Long special statements are rearranged.

The second motivation for providing the output writer is that many tools
contained in this design add information to "the compiler listing." This Includes
additional cross reference maps, error messages generated by the data flow
analyzer, execution frequency counts, standards violations, and units conversions
applied. Each of these tools could gene.::te its own separate report, or post-
process an existing listing, adding new information to it. Both these approaches
have disadvantages. Most obviously is that the number of listings or documents
produced will be approximately equal to the number of tools executed. Inefficien-
cies will abound.

To alleviate the inadequacies of the compiler and avoid the inefficiencies
associated with each too' generating its own document the output writer is
proposed. The basic operating scheme would be as follows. Run as many or as few
analysis tools as are desired. Each tool deposits its "raw" information in the
system database. When all the tools have completed, the output writer is called.
Parameters to it will control which items in the database will appear on the
listing. One source listing then is generated, followed by cross-reference maps, or
whatever else has been selected. All tables, maps, errors, and so forth will be
keyed to the (one) pretty-printed source listing. The following list indicates which
data items are r-asible inputs (and outputs) of the writer tool.

+n
s

113

! r

SAMM Diagram Where Sub-Activity Data
Input Item Generated Designation Number Description

CBA A 2 Source Code

CBCAA A 3 HALMAT
6 Compilation Error

Messages
6 ASSERT/KEEP Errors

CBCCA A 3 Units/Scale Messages
3 Conversion factors

Applied
D 13 Programming Standards

Violations

CBCCAB A 2 Lodc Group Membership
Map

3 Event Variable Map
B S Shared Data Map

CBCCAE B 3 Loop Condition Alteration
Notation

C 4 Type Coercion Performed
A 7 Recursion, Unused

Procedure Messages
D 8 Miscellaneous Error

Messages

CBCCAF A 2 Reentrancy Notation
B 3 Routine Dependency

Notation
C 4 Dependency/Termination

Effects Messages

CBCCB D 7 Data Flow Analysis
Error Messages

CCD B,C 8 Raw Execution Frequency
Counts, KEEP Values

Root (Document
Existing System B 3 Internal Program Docu-

mentation

Processing dependencies (which tools have to be utilized in order to generate the
above listed information) may be determined from the SAMM diagrams. When the
tool is written and documented these dependencies should be easily ascertained by
the user. For instance, in order to extract Internal documentation no tool need be

q

114

executed, only the source code need be available. On the other band In order to
display execution frequency counts for a nm (or a series of runs) the program
must be compiled, instrumented, and executed.

A final note regarding this tool is in order here. The tool, as alluded to
above and in the discussion on execution frequency counts, must be able to display
the counts from several separate runs. Thus input parameters must provide the
tool with the tables containing the results of the runs.

Though not strictly in the realm of providing documentation tools, a
comment Is In order concerning the quality of the HAL S language documentation.
During the course of this design frequent reference was made to the language
manuals, and a sophisticated prototype tool was developed using HAL/S as the
Implementation language. This experience has shown that the manuals utilized
(HAL/S Language Specification Version IR-61-8 (June 16, 1976); HAWS Program-
mer's Guide Version IR-63-4 (June 11, 1976); HAL/S 360 User's Manual Version IR-
384 S (June 15, 1977)) were unsuitable as reference manuals for the language.
The manual organization does not lend Itself to answering questions concerninging
the language. A complete, concise description of the syntax Is not even available,
let alone a description o" the semantics. (The "Working Crammar" of Appendix G,
HAWS Language Speclf -ration, is incomplete and In an apparently random order).
It is recommended that ". small reference guide be created, with a target audience
of experienced HAL/S programmers. An appropriate model for such a document
would be the Pascal Report.

j

115

34 Error Class	 tion Technion Chart. - Table I contains a chart having
on the—;RM axisthe—;R a Ust of errors commonly oec wring during the development of
large software system:. The horizontal axis contains a list of automated tools
useful In the detection of such errors. At the Intersection of each error and tool.
an Indication is provided as to how well the tool is suited to detecting the
particular error. An empty Intersection Indicates the tool is not likely to directly
ald in the detection of the particular error. Along each row of the chart
corresponds to a single error) the tools which are appropriate for the error
detection are ranked as to their ability. One tool Is often more powerful (in a
loose sense) than others, and will detect a higher percentage of the particular
error In a given system.

This chart is useful for several purposes.

1. It Is a guide to choosing the best strategy for detecting a particular
class of errors.

2. It Is a guide to choosing an Implementation strategy. By scanning the
columns of the chart, each tool can be examined as to how many error classes it Is
suitable for detecting. If the errors are weighted as to Importance, and the
efficacy of the tool is taken Into account, an assessment of the "value" of the tool
may be made. This value may be used in determining which tools are the most
important to implement.

3. The chart gives an indication as to which errors are particularly
difficult to detect. For some errors very few tools are appropriate, and those
tools which are appropriate may not be very effective. Areas for further research
In the development of tools are therefore highlighted.

Though these utilities are not to be overly deprecated, several consider-
ations must be kept in mind when using the chart.

1. The error classification scheme used on the vertical axis is not
universally accepted, nor does it necessarily reflect the major categories which
exist on any given project. The scheme used is based mostly on a study performed
by TRW for RADC (reference 13) (Thayer, et. al, 1976). It is the culmination of
examination of five large software development projects In the DOD environment.
As such it probably is relevant to flight software projects, though there are
clearly several exceptions. The classifications have been modified slightly to
reflect the additional characteristics of flight software.

2. The list of tools which are rated is not exhaustive. A single tool may
also require several program: for an implementation. Good and bad implementa-
l .:n: exist for each toot at wr.1 It is assumed here that all the implementations
are "good" ones.

3. Any tool acting in a stand-alone capacity is not nearly as effective as a
tool embedded in a verification environment. The power of an environment is
greater than the "sum" of the lowers of the components, due to the effect of
working together. The chart attempts to rate the tools largely independently.

116

4. The ratings given In the chart are very subjective. In addition, some of
the tools described have never been Implemented In anything more than prototype
form (e.g., design simulation). The ratings therefore represent educated esti-
mates, considering both confirmed results from existing tools, and aniticipated
results from planned tools.

S. Sev_val of the tools require Intelligent use, and such use Is assumed In
the ratings. As an example, program assertions are potent ially very powerful, but
the programmer must employ much thought and cue when creating them In order
to realize their benefit.

6. The chart does not provide an effective guide to the use of tools during
program development. Specifically, detection of errors during requirements
analysis Is substantially more cost effective than detecting them during design.
Detection of errors during design is substantially more cost effective than
detecting them during coding. The same is true when comparing coding to the
traditional concept of testing. Thus using "effective" tools at coding time is no
substitute for proper analysis of requirements or design. Lastly, the class a
particular error falls Into Is not normally known until after it has been detected.

The names of the tools given along the horizontal axis are Intended to be
descriptive of the tools' functions. Those which are perhaps unclear are described
here. "Standards checker" Is equivalent to SAMM node CBCCAD, checking for
adherence to programming (coding) conventions. "Termination conditions" is
equivalent to node CBCCAEI\, checking that the body of all loops alter at least
one variable Involved In the computations of the terminatlon condition associated
with that loop. "Coercion analysis" (CBCCAEC) indicates all type coerclons
performed "Query system" (CBAC) is the FAST-like source program question-
and-answer system. "Monitors" dynamically check for violations of the "rules" of
the programming language--division by zero, for example, or subscripts out of
range. "Test coverage analysis" Is examination of the statement execution
frequency counts obtained from one or more program executions. "Performance
analysis" examines the real time behavior of the system In Its embedded
environment or In a simulation environment.

^f.

L

117

_s

"w qap s^lla^,pul 1	 ^7 ^1

s!s*w aft-moo usl 7 ^! 7

fU011—v "^, ^ C', W	 H V! N

vowl"W3 80044 At Jm^2=3 alloquulg 7^+ ^'+ .. ^ ^

rwauall+x!NI

94" O OIA&MMO axl,pul
. ,Te WMAS A,W*F
•^ s!spwy 0011 0160. CI, n ^ .. e, eo	 n

t!%Anw uo!s»o3 c	 ^ n
SMIA iWO uoq"uuol

A1943 SPAPu"S
a ^

eu!vanq all-v" ufl M N ^ M N

J843OLD xpuAS lieWed
wyua^ u6nap w SM 7 11 7 1 1»7» 1 7

,WJ!,a/^ •6aa of u6!sap 7 > »7 > > > >
a tv	 r> 77717

a uusum !ubay N 7

ss

C	 7

W ^	 $ E	 ^ ..Xi u K E
< ^	 _a,o	 ^Y3

y
^

9
`o c	 a Q a	 at

O o^^S p

y
w	 °^;	 8^ 1^

IT

03̀Z4iE

p ^ X	 3	 '̂ ^o,s w ^^^a^ - vu o m^
a	 a^^L g^ $

oa
>n	 u.2'1

<
.- er e!^ y w at ^. e^ p

 d^aacaaaa m
^ or C7 1	 o	 n19
alcamcoaam	 in w

^ er w^ 1
uOduds

M
e0

U

.Q.

C
L
u
H

O

u
ate.•

D

U

W

118

w..-^wv-.e.	 ^. .. : ^--•TT-T_t^+.r"R^^'.'t°.,,_`..+;.'±w..-.^--r -.. 	 -.^... s. ..p'..'.	 ^_^-..-. ^q!^s+^ ..^.....q.^.ri^.-r^^.e.^A^odlr^n-w.

.	 ^ 1^11gfQ M!>'fW1Ul N^7N ^ '^ 'M M N, M ^ ^ 777

4&AMW Ok4wo 1if j ' N M

fUOg1Yt1V ' " " ' '^ ^' M ^ 7	 17^
UM!UON N	 ' N

?l I"W"s 1ojn3sx3 O! IOQ tUAS N N,	 M N M	 N N N M

tnofufliftm

20149 II13N64303 aflwwl -	 7 .. N .-	 7
UMSAS A-10 7 7

a_ SItAIfW MOI j f3W .^ r	 M r	 M M
SnA ll" UO!ti809 N N

.

M!3!pUOO uogfu!uuf j

JUP44q SPJWMS

6u!4=43 spowniun

son .w.,.w^ > >
JDP943 xmuAS ip J*Uv C-4

w111JOA AUG Os aDo9 X77 ^^ 7 7777 777 ^7 7 7 77

uaSfl	 !S •^1^O ^ •	 N N PI N N ..	 ^ N ^^' ' N M

pljufA 158M OI. OWO 7
{161SfQ N N 'N N N O N

quauojonb*W , ' ..'^ N N C,4

a
PAO gb	 ag

g	 L c
g p^ sag

Iz b NE 0 n^	
£a'

t
s o
w

$.
W g

c' E .° ga -.cW g z
'z€^iir3°

C';	 ZN

^^§zds^^ g°a
a ^

o aaa»^ o aaaa	 aJa
O C?	 f?,w 1O 411w	 cuO 6000006 7 W

14N4
WWW WWW WW U. LL. V.

4?	 If f# RnU.	 W U. U. U.

119

I

L.
t

t

•a
ru
r

ro
U

W

A
bH

ASM400 w>fO.Mlw ^7^7 717 7

sMNW SKOWASM4 N	 N

sMANW dew tai

suoNAMV	 N ^' 7
YmIYOw /7	 7

^

3"P*"= im^aox3 *IIO4oAS 1>744 w

snowI1=I1N >
SWIAD II 00843NO Nx1A%W

uiMft A-0 > 77

slsApW Moll viva N " > N

`

SPAPW UOPAWO "

swilipwo UOIMIUUel N
.

A043fto 2PAPUnS

6wI-40 elf-down N ..

$dew wwwopmsoo

1e7I9e o ttgUAB 4 JOU ,

wyueA u6pep 01 §M 1 1 > ^

UDANIMU .Q-VBI A ,>7N N ps N A,^ ^^`

.g
$ IONIAGA 'eeV of AWO > 7 7

dF
USM > N	 t% N

pWWw111beV ^ N

W0 O 7^	 = a

4
aa $^

LC

Z	 r r W ^ ^ ^ W	
'y' ^ a ^ ^ 4 ^ ^ .^ it 6	 V

C^c

L.

O Z,7S2 ~M72,-

id

120

.y

9U
rpL
U
s

.17

t

F
4ar

N

U

v
tt^

E-'

}

i
S

}

I

i

JOUNWO MPMJMI

/IfAIIYV IOUIIIUO^JId

MWIUV dwwo Sol

"UOw »
WWWWI MI"MAS joinn*3 aipgluAS

+now.u^lw 777
WR+o 1193/jo*mo SxWwl

r` WMAS AAM

IIfANUV MOIA IN0 N N N

MIANUV UDIVOLO 777

SWPIPUOD U011IUIUUDI Ol

-q-9 0 "Pw1S

Guivao Ms-*nt!un

sow 	 +-SSOrJ 7

jo*u o 1n1uAS 1S.Agwo

JM1WA U14-0 01 SM

y

s UOIuInluu6l-0 7 1 77
u11u^A bad of U6II10 7

AUG

4u@uMInb$ tl 7

a

K
C
C

p
K ¢a^

W
C
O C _ cc

p0
^- C ^p

O	 O Z U, 4=

EXX

^^ i o W~ 6 C w

>tI fL YYY lL J
_"47
JJJ

121

to the NASA-LaRC HAL/S Front
- When utilized, units and scale specifications, assert statements, and keep
statements all appear embedded In HAL/S source text. They occur within inline
comments. As such, the HAL/S front end must be able to recognize them,
preprocess them In the manner described In the preceding sections, and write
them on the Initial HALMAT Monitor File. Of these activities, the most involved
activity is the parsing of HAL/S expressions occuring within the assert and keep
statements. The expressions must be translated Into HALMAT operations, with
these operations being written as components of the HMF.

A brief study of the HAL/S front end compiler was conducted to determine
the impact of the design decisions associated with the above mentioned state-
ments. The Pascal source of the LRC compiler was utilized, along with
Intermetrics document IR-182-2, "HAL/S-FC do HAL/S-360 Compiler System
Program Description", dated March 31, 1977. Several items were observed which
indicate the nature of the required work.

The current processing of inline comments is quite direct. While a
statement is being processed any inline comments encountered are accumulated in
the string buffer. A maximum of 256 characters are stored in the buffer, and no
overstrikes are allowed. (Thus with the existing system an implementation
restriction is imposed: only single line format may be used within assertions and
keeps, and the length of the statement is restricted.)

Since the comments are retained in the buffer, they are easily accessible for
the preprocessing function. Within each special statement (units, scale, assert,
keep) the number of different formats and statement types is fairly limited. Thus
no sophisticated recognition scheme is required at the top level. Substantial
complexity can be encountered, however, within the expressions occurring in the
special statements. Scanning, screening, parsing, and code generation activities
are all required at this point. Of course the existing compiler contains routines
for doing this, but they are very tightly bound to the overall compiler structure; it
appears impossible to use them directly for accomplishing this auxiliary task.

On the other hand, the compiler seems very well structured (at least in the
light of the complexity of the HAL/S language) and documented. Good formal
techniques are employed, and the levels of abstraction seem well chosen. It should
be feasible, therefore, to create new routines, not bound to the current compila-
tion task, which perform the necessary operations. These routines will be near
copies of the current routines. In some cases the existing routines may be
modified in a simple way to perform both tasks. Such a modification may be on
the order of checking a flag to determine the file on which a piece of HALMAT
should be written.

An interesting item was observed as a result of this study. The listing
generated by the LRC compiler Is the "primitive" listing available on the 360
compiler. Thus when considering the development of an output writer, it's not so
much that one is being thrown away, as it is writing one to start with. This
primitive listing generator operates essentially in parallel with the scanning
operation. See the discussion of the output writer in section 3.7. (Note that this

122

problem Is related to the quality of error messages produced by the LRC
compiler: currently only the most cryptic notation Is used.)

Another Item noted during the study was that the LRC compiler does not
currently build external templates describing procedures, tasks, etc. which may
be shared among several compilation units. Such a facility will be required to
retain the degree of checking required for such usage.

The overall impression left by Investigating the structure of the compiler is
that several changes willbe required to implement the new features, but that
such implementation will not be conceptually difficult. Several changes to the
compiler are required independently of those to support the special statements,
however, before the compiler can be considered suitable for release to the general
user. It is fortunate that relatively little effort has been expended in this
direction to date, as it will be advantageous to make all the required alterations
together, in a non-conflicting manner.

123

R,
a	 PRECEDING PAGE BLANK NOT FILMED

SECTION 4.0

Verification To Requirements Document

+ To ensure that a preliminary design satisfies the requirements document,
the two must be compared. As specification techniques and automated tools
which address this level of specification come of age, such verification will
become increasingly automated and precise. For the present however, an
informal comparison must suffice and is thus presented below. The comparison is
presented by referencing the section numbers of the functional requirements from
the requirements document and the applicable nodes from the preliminary design,
in conjunction with any discussion. Unless otherwise noted the node names are
from the SAMM decomposition of "System Creation." Those requirements which
relate directly to the detailed design are not discussed here.

4.1 Verification. - The following paragraphs begin with the requirements
document paragraph number. Only the major functional requirements are
considered, thus the paragraph numbers are not necessarily consecutive.

4.1.1 All the tools and usage modes will be callable through the ISIS user
interface, with the exception of the interactive tools. They will likely
require their own user interface. Adequate documentation and HELP
messages will be provided, but without being burdensome.

4.1.2 Only node CCB, Interactive Test, is largely designed towards an
interactive environment. Batch usable debugging and symbolic execution
features will be present, however.

4.2.2.1 Addressed by node D, Integration of Modules into System.

4.3.2.1 The HAL/S environment has been specifically addressed (note the
emphasis on the use of HALMAT). No language alterations to HAWS have
been proposed. The assertion, units, and statistics specifications are ac-
complished through the use of specially processed (and formatted` com-
ments. An enhancement will therefore be required to the HAWS front end
(represented in the diagrams by node CBCAAB).

4.3.2.2 See Section 4.2.5 of this document. Note, however, that substantial
success in attacking the aliasing problem may be made through the use of
instrumentation. See reference 16 [Huang, 1978].

4.3.3.1 With the use of node CBCAA, the LRC-HAL/S compiler front end,
all existing documentation features are retained and will not be duplicated.

:CED0Q PP-CE 11PAKK NOT PLUM 125

43.3.2 HALMAT, and augmentation thereof, Is used as a primary data
object In the design. The bulk of verification activities work from the
HALMAT directly. HALMAT has not been altered In any way. See Section
3.3.2 of this document.

4.3.4.2 Used In node Co of the Document Existing System model.

4.3.5 The targeting of HALMAT to a specific object machine Is not
specified in the preliminary design. With the exception of operating system
Interfaces (such as files needed In collecting run time statistics) verification
activities are generally Independent of a particular code generator. The
interactive test system can perform arithmetic operations which emulate a
number of target machines.

5.1.1 Maps will be produced at node CBCAAA, the compiler, and at node
CBCCAB, generate cross-reference maps.

5.1.2 Node CBCCAEC, Annotate Type Coercions.

5.1.3 Node CBAC, answer questions about specified code segments, and
node B, extract internal documentation, of the Documentation SAMM
model.

5.1.4-6 Nodes CBCCAF, Document Real-Time Aspects, and C&CCAEC,
generate cross-reference Maps.

5.1.7 Node CBAC, answer questions about specified code segments.

5.1.8 Node CBCCAFA, check shared routines for reentrancy.

5.2.1-5, 5.2.8 Node CBCC, perform internal verification, with additional
requirements for runtime checks.

5.2.6 97,9	 Node CBCCAA, check Units/Scale correctness, and node
CBCCAEB, check termination conditions.

5.2.10 Nodes CCC, target HALMAT, and DA, check for recompilation
requirements.

5.3.1 Node CBCD, instrumentation and levels on local assertions.

5.3.2 Monitors calls are created several places, but they are actually
inserted at node CBCD. Some monitors would be required in the run time
executive itself, which is not modeled in these SAMM diagrams. The
HALMAT monitor file contains the set of monitor calls.

5.3.3 triode CBCD, instrumentation and levels on local assertions.

5.3.4 Node CBCCAC, generate timing estimate for specified paths.

s

126

SA Node CCB, Interactive Test.
4.2 Discussion of Investlitatlons.

4.2.1 ISIS. - The relational database capabilities of ISIS referred to In the
requirements document were discovered to be nominal, If existent at all.
Consequently no assumption has been made In the design concerning such a
feature. The multilevel file structure provided by ISIS will satisfy most
requirf ments of the system database. Additional requirements can be met using
data structures Internal to the file structure.

Examination of ISIS's capabilities to Invoke analysis tools was difficult, as
littie or no documentation was available. Indeed, it was discovered that the
design of that capability was not complete, nor was its Implementation. One of
our original Intentions was to create a prototype system, using stubs for the tools,
to gain experience with the ISIS environment and evaluate the user-friendliness of
the entire system (how convenient the required user interaction would be). This
was impossible though, due to the state of implementation and documentation.

Probably the most disturbing discovery about ISIS was that it was designed
to Invoke batch tools alone. In order to invoke an interactive tool, either the ISIS
environment will have to be exited, the tool environment entered, and then back
to ISIS, or some other scheme used. Since interactive tools largely provide their
own environment, this is not too severe. Simple things, however, like correcting
mistyped input, may vary significantly. These are important from a human
engineering standpoint. More importantly, the question of data and database
manipulation arises. This is important considering the centrality of the system
(ISIS) database. A clean interface may prove difficult to achieve, and the
uniformity of a single interface will be lost. Once the ISIS implementation is
completed, examination will be required to determine all the implications.

4.2.2 FSIM. - FSIM's capabilities were carefully examined and were dis-
covered to be based on a single, simple, technique. In order to regulate
concurrent and real time processes the compiler associates with each HAL/S
statement an estimate of that statement's execution time. During compilation a
call to the run time monitor is inserted after the code corresponding to each
statement. The monitor, when called, adds the estimate of the just-executed
statement to its current simulated clock time. That clock forms the basis for
scheduling processes and all other activities associated with real time events.
Though the main purpose of the clock is in real time control, clearly an estimate
of the total execution time for another target machine is available by a suitable
scaling of the estimates. Before any execution is performed an estimate of the
execution time of any specified path could be formed by simply adding the
estimates associated with the statements along that path. Such a capability is
included in the design presented. Similarly, performance characteristics of a
program in various run time environments may be obtained by simply Banging the
set of monitor routines; no alteration to the target program is required once the
monitor calls have been inserted.

L

127

42.3 HALSTAT. - Several experiments were performed using lntermetric's
HALSTAT tool. No surprising capabilities were observed. The tool seems

strangely conceived as It provided both high and low level Information side by
side, viz. a code audit function listing the frequency of occurrence of each type
of HAWS statement along with a load map. Many of the features provided are
specific to IBM architecture. The preliminary design attached contains the same
functions, but separated Into several tools and made available only under
appropriate user selected environments.

4.2.4 FAST. - Due to a series of misunderstandings and complications, the
University of exaa FAST ststemevaluated only through reading the available
literature (references 17 and 19) L3ohnson, 1977] [Browne and Johnson, 19781.
Many of the basic capabilities of FAST are recognized as valuable and are
contained In the preliminary design. Specifically, the ability to make language-
oriented queries abouta given program seems quite useful. Queries can be made,
for example, about all the reference occurrences of a particular identifier. These
types of queries are frequent while modifying existing pieces of code. SAMM
node CBAC Is the tool which performs these actions, and Is designed to act in a
role supportive of modification activities. The query-type abilities of FAST are
considered the basic specifications of this tool. This tool Is regarded as having a
low implementation priority, and more detailed specifications for It may wait
until such time as they are considered important.

One significant finding from the investigations conducted is that the
analysis capabilities of the current implementation of FAST are not very
impressive. FAST does not even attempt to detect Initialization errors on an
interprocedural basis because the current algorithm would be prohibitively slow.
Indeed, intraprocedural detection of this error in noted in the documentation
[Johnson, 19771 as being very inefficient. This finding strengthens our conviction
that the functional capabilities of tools must be carefully chosen. Implementing
sophisticated analysis tasks with inappropriate algorithms is foolish. (Extravagant
claims about the implementation ease of particular tools must also be examined.)

4.2.5 HAWS Problem Features. - Several features of HAL/S have been
identif ied as presenting dif f 1251ili-e-s7or the analysis tools which have emerged
during the design process. These features are lexcribed below. It is Important to
note that only those features which present problems to the designed tools are
presented, not features which may, for example, present difficulties to a
particular coding methodology. Further, the designed tools operate on an
intermediate representation (HALMAT) of the source programs. Therefore,
problems which are strictly syntactical are precluded outright. If more analysis
tools are designed later on, additional problem-causing constructs may be
identified.

1. Real time, concurrent processing statements. These constructs pose a
whole new class of problems for existing analysis techniques. Static analysis,
symbolic execution, and dynamic analysis are all affected. The problems are by
no means unsolvable, however. They simply require that existing techniques be

123

extended. Such extensions have begun as work supporting this design effort. In
particular, significant extensions to static analysis techniques have emerged.

Within this general classification, the TERMINATE statement presents the
greatest difficulty. Its use will significantly hinder analysis activities. It is
recommended that the use of the statement be highly restricted, If not prohibited.

Cyclic scheduling of processes also presents some difficulties. Our research
activities have temporarily Ignored this feature until problems with the basic
facilities have been resolved. We do not recommend this feature be deleted,
however, as It appears quite useful. Rather, It should be noted as Inhibiting
analysis activities, until further research expands the capabilities of the tools.

2. Allasing. Allasing Is the referencing of a single object by more than
one name. Allasing can hinder static data flow analysis under certain circum-
stances. For example, if an arrayed variable Is Indexed with a value which has
been read in, analysis is hindered (reference 4) [Fosdick and Osterweil, 1976] .
The forms of allasing in HAWS which present the greatest difficulties to static
analysis are the NAME feature and global variables. The situation with
global variables is similar to FORTRAN COMMON blocks. As such, this problem
is well understood. FORTRAN does not have any analogue to the NAME feature,
however, and it therefore represents a new difficulty which requires additional
Investigation. As Huang, (reference 16) indicates, allasing presents little problem
for dynamic analysis, so the complementary use of techniques seems an appropri-
ate resolution of the problem.

3. Side effects. HAL/S functions may cause side effects when evaluated.
Since functions may be evaluated as the result of processing ASSERT and KEEP
statements, and since such statements must not cause any side effects, restric-
tions on function composition will be required in these contexts. Enforcement of
these restrictions will require additional analysis.

the assertion language
HAL/S which should be
effects may be a wise

Though this difficulty only exists as a result of
designed, it is regarded as a fundamental problem with
evaluated in other lights. A general prohibition of side
rule.

4.2.6 RNF. - The University of Illinois text processor -RNF- was used during
the per _ of—the contract to produce interim reports and documents. This
experience allowed a close look at its features. For our purposes, RNF was useful
for producing medium size documents (40 pages or so). Larger de--uments would
seem to be best handled by breaking them into smaller sections and processing
each section separately (thus reducing CPU time through a course of several
edits).

The documentation and command set are reasonable but not extravagant.
Several errors exist in the implementation, however, and processing speed is not
blinding. Remedies in these areas and extensions (e.g., superscripts and sub-

i

129

scr ^ are in progress at the University f iiltnois. When the enhanced version Is
distributed It should prove a very useful tad for maintaining and producing readily
available documentation. The Importance of providing documentation tools such
as RNF must be stressed: timely, up-to-the-minute Information Is critical during
software development, use, and modification.

4.2.7 Interpretive Computer Simulator. - It Is envisioned that interpretive
computer mu tors will play a major role in the program development-teat
cycle as applied to flight software. The first time the actual target -object code
Is used is often in an ICS. The majority of the verification tools present In this
design are independent of code generation and thus independent of ICSL (This is	 -
desirable because target machine Independence Is supported. ICSs are typically
standalone systems ; each with Its own vagaries.) The crucial verification/testing
activity which is dependent to some extent on the target machine, however, is the
use of Instrumentation. Instruments, existing Initially on the Halmat Monitor File
(HMF), represent assertions, keeps, and error monitors.

Often, ICSs are instrumentable them.-t?lves, in the sense that a very limited
amount of checking can be performed by the interpreter. Such checking is
external to the program being Interpreted. Tag fields are often used to indicate
what checks are associated with given statements in the code.

In order to provide the greatest amount of flexibility in the use of ICSs the
design presented allows instruments to be handled in several different ways.
Instruments on the monitor file may optionally be translated directly into in-line
code, be listed such that the user can translate the required instrument into an
ICS monitor, be completely ignored, or marked as special in-line code. A
description of how this selection is performed is contained in Section 3.6.7. The
fact that the user must translate a HMF monitor into an ICS monitor is due to
wide differences between ICSs. Capabilities, as well as formats, differ signifi-
cantly. If a more uniform posture was assumed by ICS systems, such translation
could be at least partially automated. Provision for this is made in the design by
allowing for special in-line code. Such code could be picked up by the code
generator and translated into the appropriate ICS commands.

Examination of three ICS systems (MCP-701, C-4000, NSSC -11) revealed that
the above approach was best, as their capabilities were so diverse or primitive as
to make identification of "special" instrument classes fruitless at this point.

c'

130

SECTION 5.0

Conchalon

BCS believes the design presented adequately satisfies the requirements of
the MUST environment. The design presented takes cognizance of problems
associated with software production through its entire lifecycle. It is sufficiently
flexible and well designed so that as additional capabilities are added, such as
those supporting tl-e automation and formalization of requirements and design
activities, their integration may proceed smoothly. Careful choice of such tools
should be made, however. to Ensure that the progression from one phase to the
next may be made naturally, with the ability to directly trace all design decisions
between phases.

The proposed programming environment, when implemented, will provide
features substantially n ►ore powerful than those found in almost any existing
software development environment. Utilization of the tools will be natural, will
increase productivity, improve sofmat a quality, and lower costs.

5.1 Listing of Programs and Implementation Recommendations. - The SAMM
model of the system development and documentation processes contain many
nodes which correspond to program units. Some of these nodes are decomposed
below the program level (in the SAMAI model) to indicate their internal structure.
Below is a list of all the programs identified, followed by a brief description
(usually just the title of the SAXIM node). Listing the programs separately does
not imply that all the tools must be invoked separately: many of the tools can be
grouped and would be involved as a system (such as those listed under the heading
of "non-data flow static analysis"). Specifying programs allows an indication of
implementation options. There are a few tools which are not found as specific
nodes in the SAMM models, but which are discussed in the text of this document.
They are described as well.

Clearly, some of the tools contained in the design are of greater importance
than others. These tool-value relationships should be reflected in the order in
which the tools are implemented. Our primary conviction is that implementation
of the static and dynamic analysis tools should proceed immediately. These tools
offer best benefit/cost ratio. Experience with prototype systems ;n this area
(DAVE, PET) and studies by Howden, as mentioned earlier, have brought us to this
conclusion. Those tools which are more specialized or less powerful should have a
lower priority. (Also involved in an implementation would be provision of general
support capabilities, such as a manager for the database described in Appendix B.)

A special note here concerns the implementation of the interactive testing
system. Previously we had been skeptical about the utility of symbolic execution
systems and even more so about interactive debuggers. As discussed in Section
3.5, this was largely due to not having a methodology to guide their use, as well as
considering them separate tools. The ITS eliminates these objections, however,
and it must be given a strong recommendation for implementation. ITS is of

131

lower priority than Or static and dynamic test tools, though, and this lower
priority is reflected in the priority numbers given below. (When considering
implementation It should be kept In mind that It would be feasible and possibly
desirable to implement the interactive test portion of ITS before implementing
the supporting symbolic execution modules.)

In the following list of programs a priority number Is attached to those
verification tools which operate on HAUS or HALMAT. Those with priority I are
deemed most important. Requirements and design oriented tools are not ranked,
nor are the utility non-verification tools (such as the compiler or loader).

SAMM Designator Priority	 Description

A	 Check internal consistency of requirements
specification

BB	 Check internal consistency of systern
design

BC	 Verify preliminary design to requirements

CAB	 Perform internal verification of module
design (if the same notation is used for
system level design, this will be the same
tool as BB).

CAC	 Verify module design to reirements
(which is the system design)

CADA	 Check module design consistency with
other modules

CADC	 Simulate design

CBB	 Verify module code to design

CBAC	 3	 Answer questions about specified code
segments (a language intelligent text editor)

CBCB	 1	 Create monitor calls from assertions having
regional significance

CBCD/DD	 1	 Instrument HALMAT for module/system
tests

CBCAAA	 Perform basic HAL/S to HALMAT transla-
tion

CBCAAB	 1	 Process (translate to monitors) local asser-
and keep statements

CBCCB/DCB	 1	 Perform data flow analysis

1+

5

132

-•

r

r ^

f

SAMM Designator Priority Description

The next eleven programs beloa :g in the group "Non data flow static analysis"

CBCCAA 1 Check correct program use of units and
scale

^- Y

bCCAB 1 Generate cross reference maps that are
not produced by the compiler

_	 4	 -	 CBCCAC 2 Generate pathwise estimate of execution
i time

CBCC 2 Check programming standards adherence/Warn
of use of dangerous constructs

CBCCAEA 1 Generate program call graph

CBCCAEB 3 Check that all loops alter their termination
conditions

CBCCAFC 1 Annotate listing with all type coercions
performed

CBCCAEE 3 Generate program unit complexity measures

CBCCAFA 1 Check shared routines for reentrancy

CBCCA:'B 1 Document the processes which are "depen-
dent"

CBCCAFC 2 Check dependent processes for unforeseen
effects when terminated

(End of non-data flow static analysis)

CCB	 2	 Perform Interactive Testing

CCC/EC	 Target HALMAT to executable/simulation
code

CCDA	 Load and produce load maps

CCDB	 Monitor HAL/S execution (System monitor)

CCEBAA	 1	 Post-process Histogram/History File

DA	 2	 Check for recompilation requirements
and merge modules into a single system

133

SAMM Deslitnator Priority 	 Description

DS	 1	 Expand calls for system level assertions/keeps

*B	 2	 Extract Internal documentation

*C	 Generate flowchart

* - Node belongs to the Document Existing System model

2	 Test Harness - composed of nodes CCA,
CCD, CCEBA, CCEA (Create test data,
Execute, Check test coverage, Check
output values). This operation may also
require a file comparator.

2	 Data Base monitor (Reports to management
on which parts of the data base are empty,
which tools have not been run, etc.)

1	 Output Writer - generates annotated source
listings

5.1.1 Interactive Tools - Only two of the code verification and testing tools
require user interaction for effective usage. Most important in this category is
the interactive test system; the other is the program query system (like FAST).
Batch implementations of these tool- would cripple their effectiveness. All the
other tools may be effectively implemented as batch tools, given the provision
tnat the output generated (such as the annotated source listing) may be conven-
iently examined from an interactive terminal. Thus it is recommended that all
the tools be implemented to operate primarily in batch mode, with the exception
of the two tools above. "Primarily in batch mode" is meant to imply that the user
should be able to create the input/controlling information to a tool interactively,
execute the tool on the input (without any user interaction during execution), and
examine the output interactively upon job completion.

Note that no statement has been made concerning the recommended
implementation of the requirements and design analysis tools. Only when their
design is further developed may such recommendation be made.

{

134

^	 I

Appendix A: Introduction to SAMM

INTRODUCTION TO THE SAMM ME=THODOLOGY

Appendix A

SAMM (reference 19) [Stephens and Tripp, 19781 is a BCS developed
formalism whose purpose is to model a system through a layered structure of
activities and data flow. A SAMM representation is primarily composed of a tree
structure, which describes the context of a diagram in a system, and an activity
diagram, describing the activity -data flow relationships of a system. The
functional activities of a system are focussed upon, and these activities are
hierarchically decomposed, resulting in the tree structure. Data values flow
between boxes (called cells or tree nodes) which represent the activities.

SAMM diagrams indicate the tree structure (hierarchical decomposition)
through the systematic use of node labels. Each node in the tree is uniquely
labeled in such a way that the designation of each node indicates its parent node,
as follows. Each individual node in the tree may only be decomposed into a
maximum of six subnodes, indicated by the letters A -F. The subnodes of the root
node are labeled by single letters (indicating the first level of decomposition).
Thus they may be designated A, B, C, D, E, and F. If node A is further
decomposed into seven nodes, their designators will be AA, AB, AC, and so on to
AF. Two letters indicates the second level of decomposition. The designators of
the ancestral nodes of a given activity are thus explicit. For example, node
BCAD has as its immediate parent node BCA, whose parent is BC, whose parent is
B, whose parent is the Root.

Data items in SAMM diagrams are indicated by a name and number. Only
data numbers are used when indicating flow among activity cells; they are
correlated to the data names in the Data Table (part 1 of the Activity Data Flow
Diagram). Data items transput by an activity are of two categories: "forward"

FORWARD
INPUT

FEEnHACK
OUTPUT

FORWARD

OUTPUT
FEEDBACK
INPUT

Figure A-1 SAMM Activity Cell With All Possible
Inputs and Outputs

135

Appendix As Introduction to SAMM

and "feedback." Forward output Items exit the activity cell from the right,
forward input Items enter the cell from the top. Feedback output exits from the
left, and feedback input enters from the bottom. See Figure A-1. Feedback
Items allow the modeler to depict data flow loops and mutual dependencies. With
data flow paths connecting the nodes of the hierarchical breakdown, a directed
graph is formed. Figure A-2 contains a sample SAMM diagram consisting of four
activities and eight data items. Items 1 and 7 are external inputs; item 6 is an
external output.

The formalism chosen is amenable to automated input, data management,
and verification. BCS is currently creating tools to perform such tasks. One such
tool is SIGS (SAMM Interactive Graphics System), which allows graphical entry
and manipulation of SAMM diagrams. In addition to utilizing the easy entry and
automatic checking facilities, the designer may sit at a graphics terminal and
experiment with a design, considering several design alternatives. For each
alternative the consequences and requirements associated with the changes are
easily perceived. SIGS and the SAMM m:-th- q. ology are excellent tools for
capturing requirements, and thus represent a potential candidate for inclusion in
the MUST environment. Inclusion would substantially aid in the automation of
node A, Analyze Requirements, of the attached model of "System Creation."

The SAMM methodology used in the accompanying forms is slightly modified from
that described in the reference. As noted above, SAMM focusses on the
hierarchical breakdown of activities. A breakdown of data objects is inherent
in this as well, but the logical structure of the system data may not conveniently
conform to the tree structure. At least it may be difficult to grasp all the data
relationships present in the tree structure. Thus a data base model has been
developed as well, and is presented in Appendix B. The non-standard notation
arises when referencing this database. Feedback input items which appear 'but of
thin air" denote information being used from the database. Database inputs enter
activity cells from the bottom; outputs (which are only entered in the database
and do not immediately participate in the model) exit from the right. Such
notation is only used where standard SAMM conventions would be awkward or
unduly lengthy.

136

Appendix At Introduction to SAMM

Figure A-2 Sample SAMM Diagram

137

PRECEDING PAGE BLANK NOT FILMED

Appendix B: System Database

SYSTEM DATABASE

Appendix B

The database envisioned as associated with the MUST programming
environment Is described below. The ad hoc notation used Is for tutorial purposes,
resembling a Pascal type definition. The keywords employed are taken from
Pascal and have similar semantics. Comments are enclosed in braces (()). Words
in upper case are either reserved keywords, such as TYPE, RECORD, a ► id END, or
reference defined types, such as INTEGER, TEXT, and FOLDER. Types are not
necessarily defined before they are used. Words in lower case are identifiers, and
are used as field identifiers, type names, and variable names.

Examples:
TYPE (keyword)

mytype = (type being defined)
RECORD keyword

code: (field identifier)
CODE; (type defined elsewhere)

count: (field identifier)
INTEGER; (type defined elsewhere (in this

case by the system))
END; (keyword - end of definition of mytype)

yourtype = (type being defined)
MYTYPE; (type defined elsewhere, namely,

right above)

The database is described through the definition of type SYSTEM DATA
BASE. Not all types referenced in its definition have been fully eefined. The
reader 's intuition is relyed upon to provide an adequate definition for those types
which fail in this category. Some types obviously have a fuller definition than
others, such as CRITERIA, but to dwell on them would divert attention from the
basic goal of this presentation.

r

flA6^̂ 	139

Appendix B: System Database

TYPE system data base =
RECORD

system requirements: REQUIREMENTS; (see expansion below)
design:
RECORD

document: DOCUMENT;
formal statement:

RECORD
number of modules: INTEGER;
module: ARRAY [l..number of modules] OF

RECORD
requirements: REQUIREMENTS;
design: DESIGN; (see expansion below)

END (module record) ;
integration: IDAP; (how the modules are held

together and interact.
(overall design))

END (formal statement record)
decisions: HISTORY;
management: FOLDER;
acceptance criteria: CRITERIA (which pertains to the

design as a whole);
simulation: SIMULATION (of the whole design) ;

END (design red);
modules: ARRAY 	 of modules] OF

RECORD
documentation: CO')E DESCRIPTION;
code: CODE; (expanded below)
test driver: CODE;
results: ARRAY [!..number of test cases] OF

RECORD
purpose: TEXT;
input: INPUT;
output: OUTPUT;

END (results record)
END (modules record)

integration: CODE DESCRIPTION (same type of documentation
as found in the modules record, but here at a

higher level and (possibly) with some
additional items);

system test:
RECORD

management: FOLDER;
number of test scenarios: INTEGER
transput: ARRAY [!..number of test scenarios] OF

RECORD
purpose: TEXT;;
input: INPUT;
output: OUTPUT;

W
1

140

Appendix B: System Database

number of configurations: INTEGER ;
(A configuration Is a collection of module Intermediates
(possibly at different levels) which together form a
complete, coherent, system. The number of configurations
is a function of the number of Intermediates per module,
where each Intermediate corresponds to a different
level of Instrumentation.)

system performance: ARRAY [l..num of configurations]OF
RECORD

configuration description:
ARRAYLI..number of modules] OF INTEGER
(Where the integer is the number of the

intermediate chosen)

monitor/performance data: OUTPUT (system level);
(module level performance stored at module
level in modules.code.lower levels.etc.)

END (performance record) ;
END (transput record) ;

END (system test record) ;
END (system data base record) ;

code =
RECORD

source: HAL/S;
first intermediate: HALMAT (output from the first half of

the compiler);
basic monitor file : MONITOR FILE;
lower levels: TARGET CODE;

END
target code =

RECORD
number of intermediates: INTEGER (each corresponds to

different levels of instrumentation which have been
inserted);

intermediates: ARRAY [l..number of intermediates]OF
RECORD

description: TEXT (indicating what instrumentation
has been inserted. Note that intermediate code
resulting from the expansion of assertions at the
integration step is stored here, as well as levels
expanded solely at the module level);
intermediate: HALMAT
target:

RECORD
number of targets: INTEGER (This structure level

reflects the MUST environment option of targeting
a single HAL/S program to several object machines.

141

t

Appendix B: System Database

This level of structure Is optional and may well
be omitted);

targets: ARRAY. [!..number of targets] OF
RECORD

code: LOWL(an unspecified low level

pert: PERFORMMAAN8CE (this Is the output
specific to a particular machine/OS/
instrumentation combination, and Is
described below) ;

load info: LOADRELATEDOUTPUT; {such as
maps)

END {targets record } ;
END {target record };

END {intermediates record)
END {targetc:ude record definition};

performance
RECORD

(number of test cases: INTEGER
data: ARRAY [!..number of test cases] OF

MONITORING INFO; depending on the program, such as if
there are parallel or real time features, this could
contain some stuff normally found in modules [].
results ;)

END {performance record)

code description =
RECORD

decisions: HISTORY;
management: FOLDER;
external: TEXT;
internal: TEXT;
flowchart: GRAPH;
static analysis:

RECORD
non-data flow: TEXT and GRAPHs;
data flow: TEXT;

END {static analysis documents};
END {documentation record } ;

requirements
RECORD

document: DOCUMENT;
formal statement: SAMM (or similar vehicle which must be

relatable to the design vehicle(s) };
management: FOLDER;
acceptance criteria: CRITERIA;

END {requirements record } ;

142

P!

Appendix B: System Database
1

design -
RECORD
documents DOCUMENT;
formal statement: IDAP (or similar vehicle which must be

relatable to the requirements and code
vehicles);

decisions: HISTORY;
managements FOLDER;
acceptance criteria: CRITERIA;
simulation: SIMULATION OUTPUT

END (design record);

history = TEXT; (which indicates how the current level of specification
was arrived at from the previous level, including why
particular choices were made)

folder = TEXT; {all management related information governing development
of this particular phase, such as reviews, status
reports, action items, and the like }

e ^'
S

143

PRECEDM PAW BLANK NOT FLMeD

Appendix Cs ITS Functions

ITS FUNCTIONS

E
Appendix C

E	 FUNCTION NAME ARGUMENTS DESCRIPTION

r	 NEXT STMT none Returns	 the	 state-
- ment number of the

next statement which
will be executed.

CURRENT—BLOCK none Returns the name of
the block (procedure,
function, etc.) which
is currently being ex-
ecuted.

CURRENT UNIT none Returns the name of
the currently execut-
ing compilation unit.

COUNT(N) N: statement number Returns the execut-
ion count for state-
ment N when execut-
ing an instrumented
program.	 (current
comp. unit)

STMT—TEXT(N) N: statement number Returns	 the	 state-
ment text for state-
ment N of the cur-
rent comp. unit.

DEFINED(var) var: variable name Returns TRUE if var-
iable	 'var'	 has	 a
value.

SYMBOLIC(var) var: variable name Returns TRUE if var-
iable 'ear's	 value	 is
symbolic.

In addition to these functions, all of the HAL/S built-in functions are also
available to the user of the ITS.

145

c'i'ZCWM PAN BUUVK NOT MUM

Appendix Ds SAMM Diagrams

SAMM DIAGRAMS

Appendix D

147

I

ORONAL FACE ISOF POOR QUALITY
Appendix D: SAMM Diagrams

I .•

r	 ^	 C
S	 S	 r	 .,C
^ ^ C	 Y ^	 YY

_C	 !	 • 4 s ^ ^O
»

^	 a^ N
M

t
»
 sI	 y^	

^Q{ }

s
p1	

g
yp .,

	

g	 JS

V	 ^ s	 A x ,r	 A	 » ^

^Hi lei IjI PISal	 ̂.^
I
	 ^

N
N

a

149

s
W

Appendix D: SAMM Diagrams

t
0

N

Z
F

O

O

M

► ^ r ^ N^^^P ~ C

x

ww	 x
V N w	 Ac O ^

r^ ^ L ^^ A C M M

M N ^ V W OI ^ ^•

M	 `^N	 ^
r ^

V	 ^	 w^: ^ ^^.^^ olioL

q = o	 3 u o

149

r.

Appendix D: SAMM Diagrams

i'

t

$ ^ CI _
M``

N
^ O

Y
N

Cw

L

T Q
4N N Y T ♦i

4u C
w

O
^_ e q

O J

T

r
9p^
C

ECm

Z^
^+

A q 01 p>p ^ C

7 Yg
`

OOOGOO
L ^

^ G

wY
CL

.. . L

< u ^' au+

i

r

t
!$

^

a
W
^

Ĥ

h

G rd
T N 3	 nu w^	 q ^'	 V

b
O ^^ L

y N	 C N!
r ^ T N Q1 V ^ QI r
Y O N Y

g8 yyq Y Y Tyy $87

w C	 N S d N 0 S

c^ O MC T
4

Q L

K S

Q
W

F

t F

^

O

J

I
4

e

150

r

Appendix Ds SAMM Diagrams

I<

r
q M

a
C
r

M

C
CO

Z

r

0^1 ^

N

>

Y
V •r

u a
N L^

GG
y
► v

to	 CL

Ic

Y

`
'a

cc
Pq
^,

^1
VIA VU Y C

o
 ra pyY	 V^ Y(Y

! V
C y

7
J rp^

V
Yy

4Vp

t cr
u

CL ► + M N S M

f+ N
I. > W

N N M O

C o
> .^ N M tf #A 40

9

$

4
i

S

151

r .^

\
0

^
§ v

S # f §
^ ^ n ^ ^

&^&

S ®t c
I C S

" " 2 _

^
^
§

^
Z _
O _j

^
V
(A
W
^

^
^

^
Q

«

(>

k

Appendix DlSAMM Diagrams

-

Appendix D SAMM Dagams

,2 I©

S-6 5 .
- 	 Sig

^
'32

^2^	 n
au

«	 t 22S
^.	 22

^\a

to

§ ` k2

/ ^ k c k k ' nc 2., _ IS u _ if n _
' ° — % 0 _ I . §
k "; tC a a % a
@ §_ o 2 b t U

2
CIO

n 2 2} a/ a§ . -

I § u
^

& I # &
n °

_
C

0
- —

_
c u

CL
a

06
a

#
& n § u _ u e n

$ § c 2 f t
- c o

|
|$^ . n c n z & ^ _ |
j- n § & 2 ©

&
S
3

I a&
n

4" n ' n
2

u'
`n 	 > 2	 121%	 n a 2 §

| °ul||^ a
~ - ® - S ^ N C"o§

2^ k
»

! @I§
«

^
4 _ - in _ ^ n _ S .4 | n $

§ & k | a

\f

153

N
T	 •

t
N 3w, r

N N
T
Ty

•+ A	 N

"- N
41g

f

I

t

Appendix D: SAMM Diagrams

N

M

f`N
N

•rN
,ww W
(A

W
O ^-

_E

NW0

Q

ml

m

t

f

t 134

N
rl

d

r
7

m
N y

1,ZQ N

_W ^ O
^ d

>D .ti
C
C.

Ny
O

u

r}

I

t
I

M

i

r

{
I

G

1

I

i

'A'+►'q+/^''^v^r^.-z,^„'rr'r'.171k..	 . ^	 : _...,t..,.-...t.^,	 c.,,-n	 -.^-•-^Rra'. : :-r- • ..:.-v ^•-'-_-^.o

Appendix Ds SAMM Diagrams

13I
J

O

P`-

o
C

1CC0
O^
N
41
>, ML CA

^ ^
r

yy7
d L

r
>d̂

1•^

C v
o.

dN yd OD U
01	 d
r

7

O

u
wY

_O
_N
>

^

p61

U

061NQ

MN

s

 O ~

01

41
N

8r _o
b ^+ y

1
. _U

b-

r
O ONy> C
YVt O
d
^

L

C

_N
>

M
d
C

Ny
'C
d
^
77

Z

OrM,OV
Y
V

N

m7L	
O,

V Nr CC8

Y
w ur

^
yy

_O
C
N

N 8
> _N

^ >
$ L
N

C QOr iA^
L
O, 7
N N

^Ci	 8

N_

a	 Nr	 F
L	 Y

MMM

L

C
y	 a u
 C	 i0

o r	 ^ N
U d	 O
v”	 L

r	 FCC

_N V ^ O ^C

O U W M oC—	 0
M N c _VCL

0	 IV	 C	 O.>	 V	 '►61	 y	 ^e	 r0	 ^1r^	 10 `^	 6
C _W r	 N
r
y 7
	 ,0 t

O	 Z O

{^^ r
qa^

u
r

^ w

N L
f.	 O

YO La
N 0
d M
[>tl O
M

C
r0

Vr-+

s

L7Ow

^

4

M

L
NC'r

M

J

N^u1

 N

p

ur

GN

O.r
_N

y>
L
C

^C
AN

L
M

Q 10 IA A Ch .-r NW

G

lie F r+ N Nf f Aft ,O m M 01 0 ..4-, .Ni iii 4w .fir

I

s

155
	 ;i

Z,

Appendix D: SAMM Diagrams

C1

3413N
N rO H

tt.

L L N

4	 ^

MI

L 'D4f^u

5

f"

r
c

^y

V
r

yLp
N !yQj L

C
O C LO C N q N

10

Y M N C N C 0N

F̂ ^ C
01 O+ O

N >̂ r> M rC 7 7̂ r> >̂ ^ C r	 N
r $ g O4O

v^ V
L

^ r^ q ^`
d d V rW O

N
OrN

7 OYN
OrN

OrN
rLr y V p1r

`^iifiii W 7 77
y^ tya^

r

y
^ O ^

y
^ P

^ 8
7 C

'=0
^ ^ ^ N ^ OL M ^ N OG ^ V Z

f W

.r N 9A A O
_ N

01	
-I

N
3 o

.^ N Iq qr V) 1D t% co at
H	 .Nr

^ F a
8

136

^
^
§ ^ g	 ^ §

&
rL c

^

k ^ ®^ t a ^
^	 ^ ^ '	 ^ ^ s n ^

|	 t	 31- « $ t §
_

i	 §
|

4A
|^l^|[K

§̂ be -̂ _	 _ _ 4.4^

-
a

t
|
,

^
_ «

I

$

|
|
8

»sz^: ^.

prix D SAMM Diagrams

;

|
	

137

yyN
tJ

NM

V

V

f

W

ccaZ W
OF
t f')

to

Yy
M
w
0

Mu
MMw
Y
Nw ^^

Y
U
w
i

± M^
r r

'^ N L

N
a

M ^ M
u ,r
w ^ u

N r.
c
N

F^ N w

81

t

133

,,Vw

Wc

a

p

Appendix D: SAMM Diagrams

Appendlx D: SAMM Diagrams

1

'g^^ Na
C M y01 N

^

p1N C C
`^ZO N1^ r1 a1 1 ^^ ^ AY OI Cp
^ .^

CCO p1
g IF

N
Y

N pl
N r N

N
r
7

^

r

r

^'

^ ~

N
}^

C
r

N

/y70}jj

^yG1

`
^j ĵ

^
^j

^ ^
a

.

N G	 171

C	 r

L

ON	 C L.	 L > ±

do
{11

1- dY O ^ O ^ O
Cq

L ^ "
Y	 111	 C	 ^ r 	 V	 'r

L

N 1	 C ~	 N

W	
L 44 pNC

r r r .{^^ 1^^ y Nadi yCCO^ ^ yMC1

^	

J	

^^^ C Y^ > ^ O Z n^ S J ^+

1

LAJ
{{Wjj	

.Nr 4" -0 in	
In

N 4"	 q* 4n .r

O
N M•	 An	 10 A M	 .^./	

N M

^	 E

139

M

Appendix D: SAMM Diagrams

N^ + ^ A N L N N r ^ ^

L^ O 1^ T r
	 C^ L ~^	 N	 C1 1 J

r.

1

160

AEI Dn SAMM Diagrams

^ ^ a

7. I n ^ $ ^

4..
16

IB

^ I .

E
^ ^ n ^ _

_ p
_ •

40

E

-
41 n

i
::

to

A

a

% ^f f
to

/ ^ & n ^ 2 ,_
^

^
_ ^ n

^
_ ^ _ ^

^
-

^

W\

§|

^
a

I

^
Z
0 2

O

^
^

!

^

161

i

	

Appendix D: SAM M Diagrams 	 f

r.	 NI	
w b s

M 	 1

J Y

^.	 I	 o	 ^ r

	

N	
^̂

^{F1

N r ^	
^. Tr

N

a^^	 ^;¢ g,	 ^ 8s
rJ	 C C ^ L r ^ ^	 ^' ^ r r
Za	O	 ^	 rY+	 `•►r w

y.	 ^	 r	
{`aL
	

Y
e	 r	 7	A ^ u _Y y r^^ 9 ^I	

O A N
+ 	`

v	 ^=' C	 b	 y	
O	 C `n	 yu^

Y M N N
1.Wa	 !^ r	 _ yptlpQa	 L1 C1 `i	

O^ L L	 N ^1 1 1- P ^ — 4A 0 i1̂ 	 ~ _ 1r r	 N	 r	 r N ^
Y¢
10 ~ r

is

I t ^ N W	 ^ ^ r	 ^^
1 M' y Y M	 ♦♦ O^	 N	 ++

on An

162

i

Appendix D: SAMM Diagrams

a^
Vi c

I^r
r

A
 y •

[tell ^	 C N Cn}0 i t

	

	 r	 r

J

t r M on ^► 	 1A t
a

163

N 1

O >T T

r ^ 4

OY .3
CL

O ^°+ a

c .'- Y b u
O v

Y t or N
-0

t L T0

p
Y N Y N

t Y M^ ^ ^O
Y
en

^
O

C
T

i N F/
Y^ H N C r !^
r ^ Y .r Y ^ O
L J A Y M N

I^
t
X71 r T

N 4 Y^^
gV sL NY ^ ^ m

^O Y Y NL r t 7 • p
c -

p
L .im iv

F— CI
O U-1. Y M s

}

H
V
Q

Appendix D: Sj

WJw
d

y^Z lu

O f"

E F-

y
W
0

a

164

M1

a
Cac

O

LA

J r

H<

^

a
SS

^
^^ ^

W
J W

N
L

H
^

^ AN q78
6.

i a1Or ^^ a o
E v

L.
7

4j
O

C16
B

41
c C L

i v
N

v

W Z to d

t^g J W
a N d 1!f M d

< .,r N Pf d 1!f 10 1^

I
A

4	 t

Y
	

i

Appendix D: SAMM Diagrams

c

165
^3f
i

Appendix D: SAMM Diagrams

r
F
L

I

I

1 21 <	 m.

^!Y

..

t

r
N
C

W
J►w
d

V

N2 W
O H

Y/
UA

Q

^t

t

i

U
m
v

A ^+ O

o .+

L C mw N N
c y i

^ u d

c -C'w A
c u +-
in G 4+Y c

cc v x c c
1

d
Ld

e Q
Q̂

Y i'.- L N
4+ L N ccy

1 cL

c W O
d N L t4.0 a f- c

d
0 c

d C+i iO Y C
C^ c

C
>

V N
d

N
ar	 u

LyOW N Vol q

P

166

H
W_

f

O
W
f
Q
JwHN

O:
w

E

t

Appendix Ds SA

i

•	 i

YI
z

O

V
ail

r
QO

10
m
IS

X C

d O
CL

.- a
vi nc
N N

O

n aA+
L A
^ N q

CL d

4j
c L c
r d •-

N N
N 1^

C q _V
O
V t
N r

.^	 N

r-

0

M

o. +- o rd
q N r

_N ^+	
My

t O c V
H V q 1A

t

Y9

C

167

ff 't

m

u

u ^r o

N q r N
++ Y Cc

IM t

~
^+

{A M N r 3 i
vo

A s ACL yo
CC 0

4AQ CC 4JL L 9 L L t

J

^
d N N 41 y 0

O^
N ♦+

T
C

^ ^ gyO.
N i

N
r

N

W
a a

N d

E ,O
N

C N N
A
N

♦+
C

Y
I N

C
d Y N

u
y ^ r

O N H N
44 ti

LLL
W M M

`
G

O
r

1-
^.1	 C

a= <r c d e

W
co co

n I^ ^ W
4c

u
O

^,
`^
`

O
.-^ N N to r-

t :

9
O

g
Y

Fr4i
y.

Appendix D: SAMM Diagrams

168

k

Appendix D: SAMM Diagrams

Ix

n ^ ^ ^

cro

c 7 $
® o 2 ^ `

n a . — — n

k vo : k
_

E a
| ^ CL _\

__

$

2 k [^ ^ n 3 ^ n ^ I
^

$
$
a

^ § K ~ q
n ^ g

in ^ f
R a i

04 ® 4" _	 in	 to r^ © -

169

4
{

Appendix Ds SAMM Diagrams

Nr G^
gyC^

CCĈ^

' N

4A dOIY

=
{7

w
t^ ^C01

NN

_ H^0 q
` OJ C S

A <

O
u

L
m

In

44J

 `N

MW N

N
•+

y
NyYqC

Y ^.,
0y =9
(9M6	 0

r L

001

PAC
L 	 a+

O we	
O	 Y	 Nr

M 0	 r r	 N ^

N	 q L	
r	 O
a ^► 	 r N	 N^"' Z	 ^O	 b1	 N	 q	 CI	 NN Q_	 Y > N	

^F ~	 C rO	 LNJ	 y t	 C	 r gyp.

« t

	 M-	

M	 r
d+	

A
N	 ^ LGo ..- N	 7	 M	 yy

V 'Q	 r	 q a C C	 G •	 >
d 4+	 Oy	 r O	 N

Q	 N q ^yy	 U pyL qN
~̂ j M p	 V	 . I= r

CA	 r ^uu L d	 m C Y C L U	 L N C C	 Ny 	 L.
O	 C O	 01	 O r	 01 M	 _^	 p^ Q r	 O^ N ^J

jO	 N O N	 N N N d C	 d^	 6 i^	 c N	 r gap{	 -^	 q	 N	 O ^- dl Yy- •r	 N	 C q q Q. N O	 Y

ae	 V.	 ^ N W ^	 ^ ^ > L	 01 N N _O i^ r q
s I f	 d	 1- N L Y	 q 01 41 Y C NC a O^ M C OLi CP	 C
nn I d$ Q	 pN O r	 C	 O u	 N	 C C q	 p^	 LO	 L

4 L u N̂y w	 L	 N w t 8 r	 q	 L

W

 -,j pp^

S Z	 2 da > E W OC 4 VI O V Z O H f.^ ! O —W 	 J y pL

co	 40 1fl	 V a f i0 f f w 	 w w V N 10	 pp W

C o 0
N	 f" f	 u, ^ r. eq a o ..• N m f u+ w i. ao at o

9
a	 I

4	 '

s

r

170

2 n \ §
^ §A
k \^ f 2
© -.c
`

2
k> £ _.

n2
« c n

G k u '
a . § a§ :3

B 9. o ?A 28L. w ^ 7..
Z :6 4M 4 § c - $ §

CL E2 n % CL W S C

k k>
> o
^

^ 2u
k
-

§̂

k
^
§

^

Z .
0

rc
V̂
W
O

^
^

^
Q

^̂

Appendix D SAMM Diagrams

:2
n

'121 c

171

N
r

O 402uT
C
c

8.4.
°g cc^yy

W

O
N O
	 M^

^vMa^'
W

CO)

V

°

> e

;^ot
ACM

W
8

H

Wc
Z
O
_P
G
ZO
V
H

O z Ci

W
OO
2'

0

}
H

f

Appendix D: SAMM Diagrams

t

172

i

Appendix D: SAMM Diagrams

4"1

66 9

a`

lrFp

t

^
CA

'r	 A

pg
Z L i A
W < A	 V

V	 d

°W
1L

A 0p 0 2 21^
^	 7

L	 > Y^
OC ^ O^	 O

r

^liM
^ S

I
t..t

1^^~
Im

s
O ` F

.r ^ CO CO ^ ^ w¢

i7 ^ atO

F .+ N M ^f 1ff

^S

173

Wu

mWWW
K
N
OI
OCu
WH
WS

CA Wto
z W0-0

 --

V

W

a

Appendix D: SAMM Diagrams

wo

F^t	 I

r w

	

0 ^	 O N	 r	 ! ^ r
O C r	 M	 y n F

 o^ g 	 i ` g O
d N	 tMwy a.r	 8r	 w ^_ c v ^ c
L O N ^ r. A	 N~ a
A v °^ A c	 4,	

°'	 u
N •r o	 S	

C
p
	 l

F

C116
^1 W	 N	 ^O	

p

	

N> ww
e++	 Q v	

q» Y O U

i J w L N	 °^ 7 q O.

	

e
	

•^•

>	 A	 ! N	 M	 g
tl

y{yC!̂ O	
L	

y M
CCi N O V L	 O O.

	
++	 C K - Y

>	 4.	 Y	 >
CL	 0

y	 r

N	 A	
Q	 V. ,0 O N

QQ

	 vv	 r ..
NQ q ^ ^ ^ Y ^	 N N ~p ^ ^ v

> MV C »ww r .	 at C	 Y q r	 TC _^	 •r .r

	

A c	 u

IM	

S $	 ►̂ 	 O

o a

i t	 g c aUJ	 J9s
Vy
	 aa

n
nn
n 	 r	 1p1	 mf

8 C^

	

^ W J ^ u^ N H^ O	 ^ O. P L C O w

174

9

App+andix D: SAMM Diagrams

I
f

e

e

i(

1.
^

^

^
^

}1 QQ
y v ^ ^ N y

N N

Lp
w
/1 M

OT C

}
u
O

g
C

^1 'r'
^=j11„LiLir

4

s L S EC w
p^

T
q

••
pp

^+
^'g
uH tp

t
"̂C" M

w
CC

^
N
w

C
N
r

C
^+ w

01

T P
M

^^ ^ p p^ .i T N ^ N w
I.-c" t 8

Il Vt ^ ti ^+ ^ A ^ N ^ W ^ W ^ ^ `^

If ^ z

tj
s

c
H

N N 1+! f
v v

^ at N

175

ti

Appendix Ds SAMM Dlagrams

N
VI

V L

T

L	 gw 4	 '^

T^^ode
I	 o ^	 8

d r V	 •

^	 n
0

1411-

y^Z
O^

LU0

a

^Jv

{^tyri^

176

Appendix Ds SAMM Diagrams

	

V r ^•	 Y

w t	 "

r	 r M	 ^
M	 C	 N

w
t	 i+	 N r

	

 ^ Y	 s, p	 Y
Jw^

	

n o w r	 _

M	 r	 r .	 .+

	

'^ ^ w Y Y ^ A ^ w	 v

	

N > C	

N	 C^	 Nw:

M ^	 r

Z
O

c^

0

4

O

177

^

N
r

i0 V
N

d V •+ L O

L r M^ W > N

^ d c v
IM °o.

C c D t1.
V A a N

L
4j u

c
O

r
K C j r M a

v `^') y° T^
d O o O

u
t

a
to

^
\ Y T ;

a+
4

L

4j 4j

3
w

W ^'

Vyy

C M

y
4J

L

tU

y O
4

_V W E C E C
t J

{{J
^ ql d V O N ►-

`	

^: 0 W 2 ^-ci N
Vo

S y 4-o La ^ 4v

Z
_ W

0
QV
8

/ ^ O
rt N M to tp

O

N

O_

0u

Appendix D: SAMM Diagrams

I

179

v
0
N

YI

Y N

C .- O
.L., c Y d uc a cd O q S

^ L q d^

q
L q O C'N^+ L L r7 C q

L a^i
c
awl

8
A u °c^ N L ^i v qo

+L+ c w v0c g o od :+ N Y — 0q
L O C i^ v 40

L NL ^+ C ^ 40.O q
V- d Y O N v

7 L d A ^Nd ^
t
3 W t t ^+̂ OC

C Y N Y V ^ r
4j vC-

y
C L

E
C L 01 N

C
q

L y 6 N L N
i+

^
^

N
d 3^

YYy
2 y Ny

q
L 'C

^ L > Li 1 1 1 1

d
AN

^ Y QV ^
H t

^ u
N

CA
Z
_C

V
chW
A

I_

Q

4I
UV
m
U

r

r

Appendix D: SAMM Diagrams

r'

r

179

Appendix D SAM M Diagrams

•
_

_ § _n

^ \7^ n ^^
) at© a&^ I

_ ._L ^a
44

• w a&
CL

^n2^

a£ E

u

. ^

n

\ 	 / ®^ / f \	 t	 nT
§ § zc e »] 7n

^ n / § 2 K	 2 1
§	 .0° a	 _	 $

_ a i n _	 o

& k	 k 2 k , 'o M a§
$ o =06	c 	 , to t	 t

§ 	 ©	 cr a

	

^ ^ ^ n o ^ ^ ^	 §
0 o ® k I ®

	CL a 0. -J 0. S. , n C $ ^	 $
|222	 ,
| n ^_^ $ _	 a Q
i n

^^
K w	 _	 ._	 _	 ®	 itLu
	 $

k	 @	 o §§	 '	 .
:

lab 2
	 - _ in	 _ to N. co	 ®	 S	 8$

`	 n 	 {!
^

!8
^

i
^

PvPw%

[|

Appendix D SAMM Diagrams

,	 |

^	 .	 |

/	 is

,^	 !

^
û _

Cc

Cn

^
Ic C

CL
c

ISV -CU ^ S§ ^
n ' _

|||§
x o

^
: ®

^ ^-^

| }^|; ^
2 ou & c
n

k 7 4
,

a n §

!/

. n

n

^
§

-

§

^

-w
E

- - - - -

o
-

o
CY - - ®

§

k

^

$
^

;

|)

1n 1

t

e

}

Appendix D: SAMM Diagrams

i

S	 C
N	 ^

H
=	 C	 ^

E r
a
S _	 r L

so CW °C c s uO
W

61 O
V

q q
vH ° M

N

c ° .+ o -A
g

c7 r N 4-C
O

Cn
c

â1	 d
E	 1Y 61

a t N ^^^	 ! 0 H

m
p N

It SIE o
LL,

O
L
a

O
L
CL.

L
C q
Q >

p
n I	 `
=	 I ^

W

0
^ rf a ^ ao

V
^ ` N N cq <

°.c

I
v

qQ4

182

Appendix Dn 5AMM Dlag ams

t
^

(
^

i

_

^ u

22

LU^
- ^§^_

cc -j^ k
^^#§
tc wu w^ 40VI E

t «
WW 0 _^o=^
nD

WL"= ^ccz^z
-
_ n k ^^_^

uB^^i ^ —.

°3^ ^

u	 n
a §'	 $	 n 	 ©
n ^	 ^ v	 § ^ ^ ^

» ^	 _	 _^	 V c	 n
§	 2	 ^	 7 g k	 e

4-0 ©40f	 ''o» §	 # &

p §	 k	 /	 4A} A ̀I.- ;	 f
§ a 4-0	 4j	

G k	 k	 CL

	

E	 n 	 1--o @
n 	 ..	 ,. a \ k &

S. 4LPI

|^|	 $
^;;!§	 ^ k	 k ^ £ ^ ± © _ — 9 ^ ` ^ n

n .!« §	 - Q 7 Q _	 8 0
i | ^ 2S14.'	 It«	 « 40u	 _	 t

k n & 4-P % n 	 ƒ	 2
| n ^^«	 _

-	 40 _ ^	 at-4

k^I^
,n K k § - in - _ _ r^ co _ o ^

491,

^

^
I
$
^

183

t Y NC_O N+- Mq 1
N ^_ i^ q^+ a+ t a1 ^ , O

4+ 4+ a U L •q+4j A N Y N 10 a s Y N
N Oe r 7

733 ti
«r

i

M C u
ql M F = u i v L 7O cis 4 F` N

S , 1^
L

^1 SI 4+ /jC q 7 U d M M C Y
.r..

Yqag N •° t r aq/ SSS 1^ ^I-
in y on Agy

p. 06 4J

i+ ° C C A c d C 4_N V L
da CL 00 06

t
4A

d
C
o

4P ^+ 4j
N L H

C Ol q I 4-0
N C N +.. V L Uq !0̂ ,+ O•^

to- op 4J MI CO 4+ N q N.0 C q q d
C 'Z U_ a •.-

, c ~ Y r N> N t
^

i'
c 0

N
vo+ ^ s v

^yy
p^y

$r 1^ $r ^

`rW
L

Y•r .y N
C

2 C
J+

H
L ^ L

a,
M

3
M
'A C Iri '^ C

Y > y
c

r _ O Oc N r NN
:

N qV ^1F Or
w D t o T } -C cc

2 41
°

^i es^ D i+ V V O q
C ^ ^ ^+ r'•^ L

N A N CI Y. 1^ i^q «+ s
$' " tCM

C N s^C N ~ C 3 1 ',O N•r O 9 d
NL M 1 •d q

O
41 W

C'O

C

7 ; •N M 7 4-P lT C r2 C

Y10
O

,LrO

T
McOf

^ SSA C 40 ^ ^C
Q
C. v

C Q C N V r rL"LL q IQyC1
d r 4J i 4J V i N G > q yyL _ C
M y

W q 441,
i
M

p1 v y^11L S E VYf
NW

6
yy
i cp a°I

8q' 7V Cp

^

LU t7 0 w ti t .^. O L L O Y ys,rl• y Y
H
Q O s

d

Appendix D: SAMM Diagrams

P

N
H
N
W

W

4.

4HF
aJ
S

H
2
W

C
H

''ww N
YI na

Z
O

W'

~)

V
W0

ci
Q

i

i

}

194

Appendix D: SAMM Diagrams

2 a	 €	 g
C

p1 Q
	 L	 C

.-` C r61	 M
q

Y	
+c	 C NC	 _

 ^1

c 4a
A uy^	 pd^ p^ C ^+	 N uW

2	 N a C v 2	 ^O	 G	 L CO M^ 1. iC O C

F	

Q 	 w

Iwo 2 L o 7	 7	 P	 Q C, ^+ V LVO	 C	 Q	 CI	 •.•
4.

N N L	 L	 N	 N W 4	 Q t
y

	 rr

O	 T E Y C t	 ^1	 ,1 CCCC	 L7 M Q A N V
N1076 N 0^ V	 7V	 ! ff	 C	 L a

7	 L 0^ E r	 C	 ^o	 N	 ^ O^ y0 N^	 ^C N	 0 L	
N Lpp.^^	 'O L O: V	 CC	 CC

G r C OL	 a N	 V >	 d L YI O TC O

I`	
r A a	C C C V r

	 V M D MC ^ O N'p d y V •r C	 V	 r O i ^O	 r y

	

61
j
 • i0	 ^Cp pC^ N N N	 ,i N 1^

41 41	 so 4j

IV	 0IUV
4j	 a
uli	 ^Cp 7 CC J	 C C	 61	 7 r0 K ^p̂^p 90	 O	 C1	 h C	 J ^" ^O	 h O O Q W S i N W	 L/ "'• N

a o► en v	 o	 v4n

N PI if 4.1	 F^ cc 01	 ^	 C4 	 qr

c

s

Y

195

w
on I

B w 1. g'
° u O L

Y

ryyy^^
Y A v ^i^r

M W pM
d N^

p
L i[7̂ H dO1 y

dq
W

_

L T N L ^L .per 0 Cat O u 2¢>d ^+ w• a G
q N $ r Y- •r r~ q
p rr qV qY O N

v
qv M

q NNN O.O. Y V O
Q dC 7

N
d yy t

Cp
.L MN

q̀
q d d M r Y

Oq L C L to.. q
L

7
q

N^ ^ O ^ Y•^ ^ ^
N N N M C y

V q D q q N y^ ^+Y
>

yY
4J

Y
L
W

NC! Lq

Z q V C t N •T q
♦+ c c q V N q r +r

k b 2 yyy
y N ~ v N C

N
f*-

a# C
N N V >1 a

4., q V
d

N
N 1^ M

Y
N

6 ; d C m 4: O
c mN q QY 4j

y v
(^L^1

v	 .•
°

L N
N r ►,. IJ	 O >

..^ yC
>

!-- y ^ j u L M v N q ^

d

Nd

Z W
O F

W
Q

4

ulV

Appendix Ds SAMM Diagrams

a	 u

136

i

r

Appendix Ds SAMM Diagrams

s
N

W "Al WlWM N O Z
H t H

10r W
H

V W ^
N N ~7.[̂ ^S WN
N

f
W W ►-

Vf
v2c

^
^m

^W ^N~ 1A

N

<

^ ^

U. VI

fWf
11 •+

C,JO OL

> J ►^ S^	

dOdCCC

N_
kn

c^
u

vW O
N tj ^_. Ch

Or

x	

Cp C

	
^ L

a^	 q

N	 _ d	 N ^	 • O
d 0	 W	 r^ q	 4 C	 O

d	 ^~ M M r 01	 r

g	 ^	 N '^ Q^	 L	 ^	 O^	 7ftT^l N L	 ^- CQr	 .CC^ ^
C

L	 v	 CI Y >

W !^ 8 O	 O	 O	 v	 yy^ W Ly ^n O N	 N	 i0	^' ^ ^ ^ ^ ^ Y 'r 4 Y N O^	 N	 P CI ^	 ^ N	 >
y	 ^t

	

N C
C CO L

g
^ a 4 /0 yN 0

^p
7 	N^ O S H

O
C	 V N

L̂ Y	 yN	W Q r V O V ^ CN Y
yy
. C J^ ^ ^ ^ N

C

N G1 7 w	 ^ Q^ rl
W^ N^ v^ O W V ^ V d q C O y Y^ ^ N̂ry d ^ Y yy

CLe ^-+	 ^' g
a

N	 H r My/ N O M O L N	 N	 _r N > +J N

2p0^	
00

l
ilt
 Q	 L	 K^J N 7C /0 ^0	 O C	 Y)(M	 i0	 ` Ny

1Ji ^	 V- ^ S ^ W d T ^ i..i 	 N W {r Y d ^ V ^ d QH^ C7

Y i I ' >̀ ' N W

}

Q ^^ ^ N N f	 01 O^ A 07

I	 ydi O

• { ^`^ ^ .r	 N n9 f N ^O 1^ ^ a n^i 	 .~-r .Ni .Nr	 ^	 .Ni .^i ^ ^ .Pi
C OV

197

,I
d

v

Apperdix Ds S,AMM Dlagrama

188

w

ac

^ dZ W
0^

rc

M•

0H
Wc

^ia

M

Mr

4M a

«►

C

O M
to

s►N

O
J

V
E N

a
O

L

^
c
11

V
7

^ Mc

^ v

r C

r ^
^ ~++

Y L
3.
6j

uw

r	 ^1

u +
N
Y

V

V

N ^
r

I.-	 i`k

do	 Lm

Appendix Ds SAMM Diagrams

W

u

vl

}

`r

V

a

199

FTC	

----- _.. _ . __....._	 ---	

_ -^_ ,. ,T,,.^-9.	

^----	

^--^--.---^--•-.-a,--.-.^

F

r	 '

Appendix D: SAMM Dlagmms

k

$ o t
An

..

u	 v~i `	 ao
^	 s$	 r

wi
r.1

&n
I d

r ., a	 r.,

^

VI ylzy^

re
N N

	

	 v	 A

H
W	 •

__j
b	 '

~	 ^	 NY
^ u	 A

N O	 N W
=	

C
O	 J	 G	 N N

Q	
r^	 N	

X11

	

j y	 . y d	 C	 M	 r	 N 7
IN

d N C	 W	 M N
Ea qq	 pp

r
O C	 a M w	 M AV ^i M	 M

nr G V A ttt777 ^ ^ ^ ^Y rp V ^ ^ N
c

0
c
N ` ^LLL M

l
i J	 ^C ^ ^ N V^^^ L ~ V N O r M O g C C ^	 ^
ftt

	 Yy+ .r• M ^, M	 MCC L N cO ^	 ^	 r ^	 v

1 ,i	 N
N

L	
O.	 V u .2 	 M 0+ 0

.. ^	 ^	 •	
Y M	 O O^ p

• 1 r	 V	 pN Ep {^ r	 p^	 d i	 {`I	 N V	 .̀cQfY	 G L	 M I.i	 ` w iL 10 r C± ^J	 r	 Y;^	 1^	 ^ ^r	 M .+	 YI Vf 41, ^ W d O	 J J

u	 a

pv M1% to Go N w N N 0% at
!^ •	 O	 !

V	 ..^	 N	 M40	 N	 10 A m A O •a N f" ♦ N 00 1, 4•	 '^	 i	 .r .r .r .r -4 ..^ .+ r •r
F a

I

e^

190

Appendix D: SAMM Diagrams

J

1

1

ya
0

E
ME

i

MoJIt 4b

T
w ^ w

o
tr

e
~ N Y w

M ^ ^ ^N CQN

i^

IL

IH T

N r
w

it ^ ^ r

r Tr0 r T

O L
^1

Z '^' N

E s

w

8

O C v .+

> s i

^rt ^

^a
s ^}

s^	
191

1

Appendix D: SAMM Diagrams

0

.	 W=^	 gNy

^FF
tj ass

a^WyygZ^^	
^N

W ^ W

i

Zc
WLL.

x f- L.^W _
WNV

N

(J

^?

Ila,%
1^	 , 4 g

Ii
J

I 'I

Fri, r^

Ŝ
 N
W^

^
a
<

M
{{^,,^101

V

M

N̂

Nr

ĈO

i
qd

N
C
^̂

'O
Ou

1 +

4y1
CI

J!+

O
•

O^
v

C

^

M
CC

Na

y^
•+

4
N

L

q
os

C^V
d
Ĵ

•

 p^
v

q
87
Ld

"^
N

W

4"
(JN

L

d

^I^1Ŵ

V
C

'r-d4^

Or

^

'S

7Z

L

c+r

N̂1	 •+V

7

yN

r q
A^s

^
q

O
r

QE^

O4a

N
N
q
^
^Y

r

Q
V
Ji:J

pLp1
Ld

q

F^

Cr
W

^ wyA N r r1 N rl N H nil r

V
//

W

W
^

^
^ .(N PI O Yf 10 f^ W O► O

^ .Nr .
I+fi .fl

`f

I

3

192

Appendix D: SAMM Diagrams

SrY
3r..

u

	

Y	 rr r r V

u n N N
it t ^ 8 `	 d	 c ^	 .^!

_	 O	

Y	 CI a+ Y & CpC	
V Y rQp `^	 r Y O Y	 N O ^^ Y

n ^^ H Y^^ N Y r Y M u^ +^
nnn I,

N
A

xa ^ aid u
dd d N

i 6 !•< N	 A 00 1D ^
W	 "q

1 ^ O

	

H .^ N :w	 of	 P. go 4%
I

R

!4
^
i
8

193

Appendix D: SAMM Diagrams

M..

v

4 41

y
Z
_O

U9

Q

Na yN7 y

r r..	 p
A ^+	 CC

^ q
Y

>	 o

^ r	 ^
^". N rr	 N
i	 > r
M ^ y.

W L •.^

194

p.,
/

r

Appowlix D SAMM Diagrams

^u	 ^

B ^_ 	 9 &lug

-&
U n
Uj
o

—

^

|,f§ k	 ^ ^ ^ 2 R R ^ ^ , n 	 n

|
§	 _ a n @ a _ f a ^

\^ 2 n _ n ^ ^ ^ 3 _ _ »

.
^ K 2 -	 ® ^ q	 `^

'	 g	 `	 !
in 	 2 _ _ _ _ _ f^ e _ 0 q	 .|

n

195

NZ
O

V

Wa

a

a
a

Appendix D: SAMM Dlagrams

v'r .-.
L 1

=	 P

.^ aqp. ry L	 e

11111/11

€ o ° ` g
N L N t

> 41_	 4a	 40
c	 L u .-^	 aL

N H M pd 1^ Cy

'^	 yq4 p1L̂	 > r

L
; M Y T P +I Lq

q
ui vcP	

q 41 cq r T	
C

1
•

^
aF

O O vS 6 y7

g
4
1 ^ x Y ^ 1̂ ^ MM

S ^^^So O L!	 q	 q
ate+ Yr Y	 V ^	 L̂I
> ^	 Nr̂
	

^1	 pppw111 	

1L

N O Q ^^ ^ C ro v

kr

I	 u

O W

g v
r P>
O

"'	 N
N	 01
HPN ^
L ^+

r
N

u LT ev

01

M/
r

r

s

Y
n
10

yyo a
L q

^
r

^1 P
L

P uj P

r

s
P

0
r+ S
Y

7Ê
L̂
¢1

}
Q

P NM
q ^

O

O

>
^

N

1.-o
41

_ m

196

a ..

L

Appendix D: SAMM Diagrams

C	
^'

8 g=

\ N

L	 .^i A p a	 0

•,	 `r ^ N M	 • off %0 I- a	 A O	 .

O

197

WWu
i.i

2

i

Appendix Ds SAMM Diagrams

M

M	 S	 ^ r

q r N r
r

tl L

w^ N O N M ~►̂
u	 r	 •r

.-	 N	 NA	

r A ^	 +!	 M 01

N
A ^O wl O^ wl N .^

O
•^ ^ •r N 1q ^ N 10 f^

8

is

N
v ^ r ~ M

o

	^ ♦ N	 _ MY c c^ ^ M O O

v	 N	 ^1 ^ ^ !t	 A N N^ ^ r ^_v	
$

11 V"
	 N fH f to	 00	 9%.

'tl

^l

t^
t
t

V

3

Appendix D: 5AMM Diagrams

a

199

i

I
•	 i

Appendix D: SAMM Diagrams

u

5
C^
J

^ C
r	 ^	 •rte

3P

(̂t .r N fq ♦ Y/

a

200

11

App"x D: SAMM Diagrams

Y

YCr

eO
^Or 0

t1 •^N N

v

^Ô COY N
r	 •

N Cr
M

o
Y

O

co
z 4
O ^

FA
rc

9W
O

201

J

'r

tV

M
•	 #A	

^!

J

N
~Au

•	 1A	 6	 MO

^

O

Y	 '
•	 N	 r

i

N J	 ~u r

N^OMMKi ~

^4 L

ti

O M

a	 ^
ĈC	 XN11 yy^^ Î

^ ^ ^	 ,
H	

^ u	 V ^ rsC	
y`j	 ^ '^ ^

V r ^ O^^ s ^	 8
r

d	

ej

of O

202

App000ft Ds SAMM Diagrams

s
•	 Y s

_Y

` g

opt s 	 1. M	 w

A
• N

t .r N	 N gyp^ 	 W	 10 N.

203

Appendix D: SAMM Diagrams

$
S 8 ^

1^ Y V

t r

•
O r N

t Y ^ ^ C	 M

, 5 sr'^
N	 N

i^

	

• M Yf ^O A r .y b	 = i

^•
	 ^

"^ N w1 • Yf 10	 ^ O A

00	 a	 ^.

OMMM PAN is

OF PON QUALM

M.

O

N ^ C r.- u a o

o ^' c r
.

N Y
L I/1 O
M

a

Wi Q

O
W

^ g
N Wd
Z W
O ^_

'V
W

Q

t

205

Z

W

r `ling- .

I

Appendix D: SAMM Diagcains

	

g	
^	 I

M	
rCQ

A ^
	 g	 r Nc

r r	 ♦L
0^	 N	 rN^ N	 r ; N

S t u C d i a	 s
r	 *p C

^ i0 N	 i0 ^	 L	 ^ Y^ O MG	 ^	 u N

4A	 u	 2%

La

1^	 q V N w .r^^ r	 M^	 sr sg

}	 N .01 S H	 W Z	 C

^^	 W	
RM cc 1A 0 N	 ♦	 at

H	 ^1 ^ N	 r1

^^	 ^ ^ .^ N P'f ♦ Yf ^O r`	 N O► O .r	 3
GG	 ^ •~^	 3

206

r r

Y

> CT

M ^ N

C $
s ^

O w
M TN

r_

Ir

Z W09

0

4

WI

t

Appendix D: SAMM Diagrams

207

B

C
^

.

^	 ^§ f	 c I.-

2 n 	 a ?A.

|
o	 C _ |

: k § kk f	 w n n

|	 |^ § §	 a	 %J a

!
a G a

|
!^
}

^
'

^	 ^ ^p.	 E ^ - _ _ _ _ _ ^ n ^ n $̂
nn 2 §«^ l8

T-.F,^.	 ,....

---T —
r
+
C

r

v^ MCCO
Y

d ~
•

t
~L g L ^NN ^

^
ww

N
C ^

t
^+

g

^T _O L ^ L

^ ^ w ^ ^ V MCI 3
O T

W

v
v ^ s r ^ .r ^

Lt^1 r w O N

q r^ rO Y
qqY
OO

^ `6̀ I
^+
rS

C
OT 4c

Ny
w T

9

g
+„+ r

^ v
r O Y „^, w

r s 9
.t̂ NA ^ •

Ta.rV V LV L
1^

.ê
w N w QI

1fA1
5.
i ^',

G

GL .rJ AwL

♦
v

M
`

g ^ ^+ 7

m

!w O
W

0
E I-

rc0
co

0

4

;F

i

Appendix O: SAMM Olagmms

N II

gl
^I
«

W

M

^ ^

F.

PRECEOINO PAGE BLANK NOT FIL=

Appendix Et Requirements Document

Appendix E

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

REQUIREMENTS DOCUMENT

Contract Number NASI - 15253

t	 May 1978

Prepared by:

Boeing Computer Services Company
Space do Military Applications Division

P.O. Box 24346
Seattle, Washington 98124

R.

211

a

Ir	 1^

Appendix E: Requirements Document

i^
page

1.0 PROBLEM STATEMENT	 214

2.0 GOAL	 214

3.0 AUDIENCE	 214

3.1 Programmers 214
3.2 Program Managers 214

4.0	 ENVIRONMENT 214

4.1 User Community 214

4.1.1	 Problem Orientation 214
4.1.2	 Interactive and Batch Operation 215

4.2 Research Flight Hardware and Software 215

4.2.1	 Hardware 215
4.2.2	 Software 215

4.3 MUST 216

4.3.1	 Interactive Software Invocation System - ISIS 216
43.2	 HAL/S 216
4.3.3	 HAL/S Compiler System 217
4.3.4	 Documentation Capabilities 217
4.3.5	 Meta-Assembler 217
4.3.6	 Interpretive Computer Simulator 218
4.3.7	 HALSTAT 218

5.0	 FUNCTIONAL CAPABILITIES 219

5.1 Documentation 219

5.1.1	 A Cross Reference Map 219
5.1.2	 Implicit Type Conversions 219
5.1.3	 Extraction of Internal Documentation 220
5.1.4	 Process Dependency Documentation 220
5.1.5	 Event Scheduling Statement Cross Reference 220

212

i%

Appendix E: Requirements Document

CONTENTS (Carom"

page

3.1.6	 Call Graph 220
3.1.7	 Query Facility 220
3.1.E	 Reentrancy Notation 220

3.2 Verification 220

3.2.1	 Detection of illegal Data Usage 220
3.2.2	 Detection of Unexecutable Code 223
3.2.3	 Deadlock Detection 223
3.2.4	 Illegal COMPOOL Data Usage in a 224

Multitask Environment
3.2.3	 Data Inconsistencies Resulting From the 226

Termination of Dependent Processes
3.2.6	 Units Specification 227
3.2.7	 Scaling and Precision Specification 227
3.2.8	 Violation of Language Restrictions 228
3.2.9	 Alteration of Termination Conditions 228
3.2.10	 Consistency of the Load Module 228

3.3 Testing 228

t 3.3.1	 Histogram Coverage 228
3.3.2	 General Monitoring 228
3.3.3	 Assertions 229
33.4	 Timing Assessment 230

f	 3.4i Debugging Tool 230

6.0	 DESIGN/IMPLEMENTATION PLAN 231

6.1 Simple Documentation 231
6.2 Local Information 231
63 Multi-Procedural Information 232
6.4 Separate Compilation/Multi-Processing 232

Information
6.3 Debugging/Performance Estimate 233
6.6 Difficult Issues 233

213

j

Appendix E: Requirements Document

1.0 PROBLEM STATEMENT

The production of rellabio software =.s In general, a difficult, slow, and
expensive process. Tools and methodologies addressing this issue are recent,
often fragmentary, and rest: cted In scope and applicability. Production of
reliable flight software Is more difficult yet, as real time and multi-task
requirements compound the problem. Advanced teals are required to aid In the
timely production of reliable, real time, flight systems.

2.0 GOAL

The study's goal Is to benefit the NASA researcher by designing a unified set
of automated tools within the MUST programming environment to aid In the
documentation, verification, and testlr^g of flight software.

3.0 AUDIENCE

3.1 Programmers. The capabilities provided by the verification system will
be of greatest utility to programmers writing the flight software. All capabilities
will be of interest.

3.2 Program Managers. Program managers will primarily be interested In
aspects ofthe documentation produced, though the generic verification capabil-
ities will be of interest as well, as they may in principle be applied to
requirements and design analysis. This latter ability is not considered fundamen-
tal to the problem at hand, but the algorithms employed by this work will be
d irectly applicable in the verification of a suitable specification language.

Documentation features of interest include statistics charting a program's
execution history and an indication of coding practices employed in terms of some
predefined parameters.

4.0 ENVIRONMENT

Several environmental considerations will affect the design of the verifica-
tion and testing system. First are the characteristics of the user community.
Second are the general characteristics of research flight hardware and software.
Third are the characteristics of the MUST program and its constituents.

4.1 User Community.

4.1.1 Problem Orientation. The users of the MUST system are researchers
devoted to addressing particu l NASA problems As engineers and programmers
they are familiar with computing concepts and may effectively use sophisticated
tools without extensive "handholding."

214

Appendix Fs Requirements Document

4.. In, a X4^B%stdb 2neratj n. Mat users will heavily-More the
interactive sestures of MUSTi MOO the verussatM and teetMg qq► should
be oriented this way. Batch usage Is still preferred by some, howerar, so the
capabilities must be effectively usable in both modes.

4.2 Research Flight Hardware and Software.

4.2.1 Hardware.

4.2., 1.1,_ FI ^t Computers. Flight computers tend to be anall, one-of-a-
kind macnunea, though more advanced machines are appearing. They often have
little supporting software and place tight space and time constraints on aWka-
Lions programs. Assembly language coding is most often the rule and absolute
patches are by no means unlanown. Floating point features are often absent, or If
present, unacceptably slow. Thus the use of hardware real arithmetic Is often
circumvented by software fixed point computations which invite scaling and
precision errors.

4.2.1.2 Ground Based System. Large general purpose computer systems are
available to NASA researchers for ground based support. MUST is hosted on such
a system (a large CDC machine supporting the programming language Pascal).

4.2.2 Software.

4.2.2.1 Research Orientation. Since the subject software Is research
orlenteds rapid evolution Iscommon, with the attendant requirement of constantly
updated documentation. Further, rapid evolution requires the rapid production of
correct code. Often a multidisciplinary team of researchers will address a single
problem. Utilizing the verification and testing capabilities should aid In the
smooth integration of lndW-idehtly produced pieces of software.

4.2.2.2 Real Time Constraints. Supporting flight operations requires the
software to operate within strict real time bounds. For example, on board
equipment may produce a signal which must be processed ten time a second.
Many such constraints may reside with a large system, requiring complex
scheduling of functions.

s	 4.2.2.3 Paralleltions and Data Pools. In response to real time
4 constraints, or for logical clarity, a system ;nay be constructed with several

Independent, Poly parallel, modules accessing a common data base. A typical
model might Involve navigation, guidance, and display modules, while the data
base would contain global parameters, such as position, attitude, and speed.
Programming concerns would Include data base consistency and prope r ordering of
module executions, as each module needs the guarantee that the data base is fully
updated when accessed, and that necessary Information is t and correct.
The actual Implementation of such a system may involve a single processor being
time shared among the modules, or each module executing on a separate
processor.

213

Appendix E: Requirements Document

43 MUST. The above eahsideratans have, of coharsa^ been the moUvatlonal
and gu In the design of the MUST prcrgrammIng environment, In which
this verification and testing system wig be Imbedded. Its Important components
are described below.

43.1 Interactive SoftwareknMgtkM System - The use of ISIS as tht
primary user Interface, Invokirig tools and managing data, makes It an Important
point of Integration. Since the user sees MUST, and therefore the verification and
testing capability, through ISIS, the design and use of the system must be
consistent with the ISIS philosophy, presenting nn Implementation or Invocation
peculiarities. The output produced by various aspects of the verification and
testing facility will be entered, for example, as books In an ISIS library.

The relational data base capabilities of ISIS may prove to be especially
useful In holding representations of a user program. As futher descriptions of ISIS
become available, this will require investigation.

4.3.2 HAL/S.

4.3.2.1 General Charactersitics. The HAL/S language Is by far the largest
environmental concern. As the pr me programming language of the MUST
environment, the verification and testing system will be closely focussed an It.
Particular attention will be paid to the real time features of HAL /% as real time
Issues and shared data pools are critical In flight software, as noted above. These
general t4wactertstics wig most profitably be addressed within the specific
semantics of the HAL/S language and run time environment, yet the algorithms
developed and used will be general in character. This Is a natural approach, but Is
especially Important In view of the fact that the new Department of Defense
programming language may be adapted for NASA use withln a few yerrs. Th.
NASA standarO version of HAWS Is used by MUST. Any language additions -,r
alterations will require coordination with the language standard control group.

43.2.2 EMulge Richness. The HAWS language is quite rich In program-
ming cons:ructs - perhaps too rich. Several constructs have somewhat awkward
semantics, and special cases are frequent. Examination of the language features
will be necessary, therefore, to see If any pose particularly difficult problems for
the verification and testing capability, such as adversely affecting the detection
of certain classes of errors. On this basis a decision will be made as to whether
the verification capability should take cognizance of those Identified features.
An example Li this category is the NAME facility. Either spurious error messages
will be generated or some error phenomenr. may be missed If names are used
without restraint. The problem Is one of aliasing, and no satisfactory solution yet
exists.

4.3.2.3 Implementation 	 t Features. Several language limitations
and opera ons are implementation detineA W7" the exact operation of the
real time executive. Implications of this when concerned with the validity of
identical HAL/S programs running on different machines will be examined.

216	
It

t

r

Appendix Es Requirements Document

4.3.3 HAWS Compiler System.

43.3.1 Chec &M Documentation. Some checking and documentation
features exist as normal part: of the compiler. Unless there Is strong reason to
act otherwise, these capabilities should be retained andnot duplicated. As an
example, the Symbol and Cross Reference Table lists all points where variables
are referenced.

4.3.3.2HALMAT. The HAL/S compiler systems produce a fairly high level
intermediate anguage, HALMAT. This language may well be suitable as a
primary Input to the capability, allowing most of the verification and testing
functions to be separate from the verification and testing compiler Internals, but
still utilizing the compiler's syntax analysis capabilities. HALMAT currently has
several unused operation codes which may be utilized by the verification
capability to communicate new high level "statements," such as assert to the
analysis modules. Doing so should require only minor changes to the coder.

4.3.3.3 Pascal Implementation. The portion of the compiler which
generates FI.% as een translated by NASA-Langley from the original
XPL/360 version to CDC Pascal. Comprehensive documentation Is available for
this implementation.

4.3.3.4 Functional Simulation - FSIM. Though not a part of the NASA
Pascal be HALIS compiler, FSIM Is av ble on some Intermetrics compilers.
Some of its features, such as provision of an execution time estimate, seem quite
useful. FSIM's full capabilities will be examined to see if It should be Interfaced
with the verification and testing facility, or if perhaps the most valuable features
should be made a part of the verification features directly.

4.3.4 Documentation Capabilities.

43.4.1 RNF. RNF is the Pascal based text processing system used by
MUS . RNF provides extensive features for formatting text into justified
paragraphs, pages, lists, and so forth. A simple macro facility is also included.

4.3.4.2 Grayhlcal Code Representation. A Pascal based facility provides
another component of the documentation system. Given a description of (almost)
anyprogramming language and a program written In that language, the system
will produce a structured flowchart of that program. Some Interface/modifica-
tion of this system may be required. If. for example, assertions or unit specifica-
tions are to appear In the diagrams.

4.3.3 Meta - Assembler. MUST's meta-assembler is a facility which might
allow HALMAT to be targeted to several different computers. Verification and
testing functions which are closely tied to specific implementations may require
Interface with the meta-assembler, or possibly knowledge of what the meta-
assembler actually produces.

217

Appendix Et Requirements Document

4.3.6 Into retive Computer Simulator. This system allows a bit-by-bit
simulation of an actuW target program to be run on the large computer hosting
MUST. Some of the run time tests may be suitable for inclusion here, and
statistics could be gathered from a simulation run. Further examination of the
system's capabilities and potential will be required.

4.3.7 HALSTAT. Since in-line code and absolute patches may still be used
In the MUST HAL environment, cognizance should be taken of tools available to
analyze the consistency of actual load modules. Such a tool, HALSTAT, has been
produced by Intermetr" In its current form it may not be suitable for direct
Inclusion In the sysum, but Its capabilities bear close examination.

'I

213

Appendix Es Requirerents Document

SA FUNCTIONAL CAPANUSM

Functional capabilities can be broadly divided into to three categories of
drcuncentatIoN verlfication, and testing. This division Is based upon the type of
Information produced, and not necessarily on the verification and testing methods
used. Indeed, detection of certain types of errors may involve the interaction of
several different verification and testing cgabUhies, or the use of existingtools,
such as the compiler.

3.1 Documentation. Note that some capabilities here may already be
prov by the comp er systems inclusion here Is for completeness sake, and does
not Imply duplication.

5.1.1 A Cron Reference Mao This :s a table which for every variable a+d
label, sho las the location and nature of every reference and deiMitbn. As such It
should be a useful aid to debugging and desk checking, as well as a tool for
standards checking.

HAWS has a number of functional classes of variables. Special prominence
shall be given to each of the classes below. Each of these specialized c e am
references is Intended to focus attention on a different aspect of the program's
structure and functioning. As such they should facilitate speclalized debugging,
testing and analysis of the program.

5.1.1.1 LOCK Gran Variables. All variables of each LOCK group will be
liste& For each variable there will a list of the UPDATE blocks accessing the
variable.

3.1.1.2 COMPOOL Variables. All variables of each COMPOOL will be
fisted. Into o re erence	 de tion for each variable will be enumerated.

3.1.1.3 , EVENT Variables. All accesses to each EVENT variable will be
listed.

3.1.1.4 Unprotected Shared Data. Notation will be produced for all
variables are shared among processes, yet which do not berg to a LOCK
group or a COMPOOL.

3.1.2 Implicit T Conversions. Documentation will be produced to
descrUM case:where operand types are not properly matched and are auto-
matically coerced Into matching. Often such coercions are not Intended by the
programmer and produce erroneous results. Hence this documentation is intended
to call to the programmer's attention possible unexpected consequencesof
existing code.

219

Appendix E: Requirements Document

Imbedded commentary and reWmattli
supplied Internal commentary may 1
assertions. The assertion capability
document.

cumentation. A facility for extracting
^Tt to^extwnal documentation will be
ke the form of comment statements or
is outlined In a later section of this

5.1.4 Process Dependency Documentation. A representation will be given
indicating the des of program and task processes. A dependent process
may continue to exist only as long as its parent; if the parent terminates, so does
the dependent, whether or not it is finished As discussed later, this may cause
errors. A clear statement of such dependencies will enable the programmer to be
aware of all the process interrelationships.

5.1.5 Event Scheduling Statement Cross Reference. A table will be
provided showing where allevent scheduling statements appear in a body of
program text. The event scheduling statements are: SCHEDULE, TERMINATE,
WAIT, and CANCEL. SET, RESET, and SIGNAL may also be considered in this
category. If a programmer or analyst is shown where all of these statements are
located, it becomes easier to grasp and analyze the real time structures of the
program. Thus this documentation should aid debugging, desk checking and test
design.

5.1.6 Call Graph. A representation of the calling structure of the program
will be given. This representation will show where each procedure is called, and
what procedures are used within a given procedure.

5.1.7 Query Facility. A feature will be provided enabling the programmer
to assess the impact of proposed coding changes, in tt a sense of knowing what
modules/procedures will be affected by changing a given piece of code. This
feature may also be used to determine what sections of code were executed in
establishing the values of a given set of variables at a given point in the program.
This query facility is thus a more sophisticated version of the call graph
mentioned above, enabling the user to obtain more detailed information in
response to more detailed requests. The exact capabilities to be provided will be
determined later. The University of Texas FAST system will be examined as a
source of model features.

5.1.8 Reentrancy Notation. All procedures used in a multiprocessing
situation will be examined for reentrancy. Any characteristics which inhibit
reentrancy will be noted This checking will involve examination if sub-
procedures used and any update blocks present.

5.2 Verification. Verification is the process of provinq the absence or
showing the presence of program errors. No technique exists (or can exists to
fully verify a program, but the following classes of errors will be detected.

5.2.1 Detection of Illegal Data Usage. This includes errors such as
referencing an undefined variable, and definition /redefinition anomalies.

220

f

.

Appendix E: Requirements Document

5.2.1.1 Detection of Undefined Variables.
Example:

PROC: PROCEDURE;

DECLARE INTEGER, I, J INITIAL (lh
324-

CLOSE PROC;

Variable I is referenced before it is defined; possibly the programmer meant the
declaration to be: DECLARE INTEGER, J, I INITIAL (1);. The reference to the
undefined variable I would be caught by simple static analysis.

5.2.1.2 Definition/Redefinition Anomalies. An example definition/redefi-
nition anomaly follows:

PROCI: PROCEDURE;

DECLARE INTEGER, K, L, M, N;
DECLARE ...

K=M+1;
L=N+M;
K = (M+N) L;

CLOSE PROCI;

The assignment statement K = M + 1; is useless in this context, as K is redefined
two statements later, without being referenced in between. The presence of such
a statement does not make the program erroneous, but it does suggest the
computation performed is not the one intended. Since this anomaly would be
flagged as a result of a static analysis scan, the programmer would be wise to
review the code in question.

221

Appendix E: Requirements Document

Definition/Undefinition anomalies can take several forms and Involve vari-
ables in virtually all classes. All such errors will be detected.

5.2.1.3 Hle al Data Usage Across Procedure Boundaries. The above data
i flow anom 'es, using an undefined variable an redefining a variable,

can be detected by the static analyzer across procedure boundaries as well. Full
recognition Is made of a program's branching logic. The above examples are
illustrative only, and do not reflect the complexity of errors which are detectable.
The following program illustrates how an error may occur across procedure
boundaries.

FOO: PROGRAM;

DECLARE INTEGER, I, 31, N;

BAR: PROCEDURE ASSIGN (X);

DECLARE INTEGER, X;
X=X+1;

WRITE (5)'THIS IS THE', X,'-TH TIME;

CLOSE BAR;

I = 0;

READ (4) N;

A: IF N 0 THEN

CALL BAR ASSIGN (I);

ELSE

CALL BAR ASSIGN (3);

3 •. 0; .

B: CALL BAR ASSIGN (3);

GO TO A;

CLOSE FOO;

222

Appendix Fa Requirements Document

Suppose -1 13 the first value read for variable N. Then In the statement labeled As
BAR will be called with 3 as its argument. 3 Is unlnitialired at this point, and
BAR has not been called before. Thus the assignment statement In BAR
references an undefined variable. Static analysis will detect this and flag It as a
possible error. The call to BAR at B Is correct however, as 3 Is defined at this
point, regardless of the value read for N. No error flag will be raised at that
point.

r
+ 52.2 Detection of Unexecutable Code. A programmer may unknowingly

create a section of code to which there Is no path, either when originally writing a
program or performing maintenance on an existing program. Static analysis
coupled with symbolic execution can detect a large number of these situations.
Consider the following code fragment:

DO FOR I=1TO10;

If I = 10 THEN GO TO OUT;

END;

X=X+10;

OUT: Y=Y+10;

Clearly the statement X = X + 10; is unexecutable. This condition will be
detected by the verification and testing capability. It should be noted, however,
that not all unexecutable paths will be detected, as this is precluded by
theoretical results (namely, that the halting problem is unsolvable).

5.2.3 Deadlock Detection. A HAWS multitask program may be written so
that a cyclic wait (deadlock) situation occurs. Consider the following example.

223

t
i

Appendix E: Requirements Document

DECLARE EVENT LATCHED, EV1 9 EV2;

T1:TASK; a

/* some computation */`
RESET EV2;
WAIT FOR EVI;
SET EV2;

CLOSE TI;
T2: TASK;

/* somewhat less computation */
RESET EV 1;
WAIT FOR EV2;
SET EVI;

CLOSE T2;

SET EV 1;
SET EV2;

SCHEDULE T1 PRIORITY (50);

SCHEDULE T2 PRIORITY (50);

Depending upon the actions of the real time executive, events EV2 and EVI may
be reset by tasks T1 and T2 (respectively) "simultaneously." In the absence of
external influences, both tasks will wait indefinitely, essentially for each other.
This simple example of potential deadlock can be detected statically, as can some
more complex examples. For some situations, however, symblic execution may be
required to attempt to generate conditions under which deadlock can occur.
Other examples may require instrumentation for monitoring these conditions at
run time. This distribution of error detecting capabilities among several
verification and testing tools is expected to be common in the facility designed.

5.2.4 Illegal COMPOOL Data Usage in a Multitask Environment. A group of
processes may be structured such that compool data is properly defined and used
only if the processes execute in a certain order. The possible existence of
conditions under which this ordering could be violated will be noted.

Example:

COMMONt COMPOOL;

DECLARE INTEGER, I, J;

224

Appendix E: Requirements Document

CLOSE COMMON;

BAZ: PROGRAM;

DECLARE INTEGER, M, N;
/* compool template also included */

INIT: TASK;

I =0;
CLOSE INIT;
USE: TASK;

1=I+1;
CLOSE USE;

I

READ (4) M, N;
E

SCHEDULE INIT PRIORITY (hi);

SCHEDULE USE PRIORITY (N);

CLOSE BAZ;

{ In this example the scheduling of WIT and USE depend upon variables M and N. If
N M, USE will execute first, causing an uninitialized variable to be used. As
with deadlock, the detection of this type of error will be distributed among

a several functions. Compool data membership and usage is documented, as are the
statements controlling the execution of processes. Static detection of ordering
requirements will generate a message, and run time instrumentation may be
inserted to check for actual violation.

223

Appendix E: Requirements Document

3.2.5 Data Inconsistencies Resultim From the Termination of Dependent
Processes. The program will examined to see what types of-errors may occur
when— the parent of a dependent process Is terminated, causing Its sons to be
terminated as well. Warnings of inconsistencies In shared data which may aria
will be provided. The following example Indicates such an Inconsistency.

ONE—OF—TWO: PROGRAM;

.

UPDATE POSITION: TASK;

/* reference compool */

CLOSE UPDATE POSITION;

TERMINATE;

CLOSE ONE OF TWO;

DATA BASE: COM POOL;

CLOSE DATA BASE;

TWO OF TWO: PROGRAM;

NAVIGATION: TASK;

/* reference compool */

226

Appendix E: Requirements Document

CLOSE NAVIGATION;

CLOSE TWO OF TWO;

Suppose that task UPDATE POSITION Is executing when Its parent, ONE OF
TWO, reachesthe TERMINATE statement. If the task is only partially done, the
data base will be left In an Indeterminate state. If TWO OF TWO's NAVIGATION
task then accesses the data base, erroneous results will ensue. Warning of such a
situation will be provided by the static analysls, and run time checks may by
Inserted for monitoring.

5.2.6 Units Specification. A facility will be added to the HAWS language
(possibly as a specially processed comment) to allow the programmer to specify In
what units the value of a variable Is assumed to be stored This declaration will
be specified at the point of normal declarations. Checking for consistency will be
performed at procedure bounarles; checking may be attempted during expression
evaluation.

Examples

Declare speed ante er /* units: feet/second */;
ec are velocity *units: furlongs/fortnight */;

Declare height /* units: cubits */

5.2.7 Scaling and Precision Specification. On machines with inadequate or
non-existent floating point units, scaler computation may be performed using
fixed point quantities where the programmer keeps track of the Implied decimal
(or binary) point. The declaration of this convention will be done in a manner
analogous to the units specification. Checking of proper scaling and precision will
be performed throughout expression evaluation as well as across procedure
invocation boundaries.

A sample declaration might appear as follows:

Declare float3 integer /* scale: 3 */;

implying that float3 has three digits to the right of an Implied binary point. Only
variables with compatible scales could be added and subtracted. In assignment
context the resulting scale from expression evaluation would be checked for
compatibility with the declared scale of the receiving variable.

The precise form of the declaration will be determined later.

227

Appendix E: Requirements Document

5.24 Violation of LlMaje Restrictions. Language violations which will be
checked here Include division by zero and exceeding the maximum subscript of a
matrix. Of course It may not be possible to completely verify that these will not
occur before actual program execution; for some Instances run time monitors will
be required.

5.2.9 Alteration of Termination Conditions. A common programming error
Is the writing of to loops, when suc act on Is not Intended. This often
occurs because the variables Involved In the termination condition are not altered
during execution of the body of the loop. A check will be made to verify that
such a change Is possible; If not, a warning message will be printed. It should be
stressed that such checking will not be Infallible In the detection of Infinite loops,
It will only be an aid.

5.2.10 Consistency of the Load Module. Since a HAL/S load module may be
a colgRiGin—of several separately comp programs and data pools, checks will
be made to guarantee that uniform descriptions of compools and common
procedures are used by all programs. This is especially Important In view of the
fact that non-HAL code may be present, including some absolute patches. In
addition, a reference map will be produced showing the locations of all variables.
The HALSTAT tool will be carefully examined for guldsnce when considering the
provision of these features.

5.3 Testing. Testing includes all activities taken at or near run time.

5.3.1 Histogram Coverage. A histogram will be produced showing the
execution frequency for all statements of a program. Untested statements are
thus apparent, and an indication of branch paths taken will be provided. (This
information serves as an important guide to optimization as well.)

5.3.2 General Monitoring. Many capabilities are possible in this classifl-
cation, with the following being among the most important.

5.3.2.1 Event Variable Activit . A report would be produced indicating at
what times, with respect to the real time clock, the values of event variables
changed, and to what values they were changed. Since program and task names
have process events associated with them, this report would also Indicate the
times of their entering and departing the process queue.

5.3.2.2 Process Queue Snapshots. At specified intervals or times a snapshot
would be produced showing what processes were currently in the queue, and in
what state: active, wait, ready, or stall. If stalled, an Indication would be given
as to the condition causing the stall.

5.3.2.3 Selective Variable Monitoring. At each point of change a message
would be produced indicating the newvaTie of the variable and the statement
number causing the change.

'	 228

Appendix E: Requirements Document

A report similar to
t procedures had been

called, from where, and the values of the parameters.

5.3.3 Assertions. Assertions are statements which allow the user to
describe the expected behavior of a program. As "statements," they could be
Inserted In HAL/S programs as specially processed comments or even as a now
HAL/S statement type. The actual syntax will be decided upon during the design
phase. The basic Asxrt statement, possibly phrased as assert < boolean
expression >, when Instrumented, Is semantically equivalent tome executable
statement:

IF NOT < boolean expression > THEN SEND ERRONJ;
where ER_^=j corresponds to assertion—violation. A simple use of this assert
statement might appear as follows:

CALL SUB1 ASSIGN (X);
Y=14.0N+33;

ASSERT (X+Y < 3);

Z=3/(X+Y);

Presumably when the code was written the programmer was aware that his
calculations "guaranteed" X + Y < 3. Indicating that by an assert statement
documents his understanding whik inserting a check for errors which may have
arisen due to later modifications (such as to SUBI), misunderstandings, Imple-
mentation errors, and so forth.

More advanced assertion statements will allow checking of a range of
variables and values, and over a program region. An assertion in this category
might appear as assertlg obal values (x,y) (1:10); indicating that If the values of
variables x and y ever deviate from the range 1 to 10 in any region of the
program, the assertion has been violated. The instrumentation for such as
assertion would involve checking the values of x and y at each point they are
changed, to assure they lie in the proper IntervaL

229

Appendix Es Requirements Document

The actual design of the specific assertion statements to be implemented is
a requirement of the study. Of a particular interest to the real time programmer
will be assertions Involving event variables, to assert (and thus check for) proper
event sequencing. Note that the error handling capabilities provided by HAWS
may enable much of the assertion checking Instrumentation to be Implemented
within the HAWS language.

Overall, the assertion facility should contain the following features.

1) The notion of a region over which the assertion Is valid. This may be a
single statement, or an entire procedure. The translator must determine all
the relevant points at which to check the assertion.

2) Levels of assertions. The ability to suppress checking (instrumentation) of
assertions below a certain level should be provided as a compile-time option.

3) Some quantifiers which may apply to the boolean expression. The full power
of first-order predicate calculus would be desirable, but at least a "W" should
be supplied.

4) An "invariant" clause, to allow statements such as assert x+y invarian for a
specified region.

S) A threshold concept. The user would be enabled to specify a limit on the
number of times a particular assertion may be violated, before some drastic
action (such as terminating the program) is taken.

5.3.4 Timing Assessment. A capability will be provided for estimating the
execution time of a given program on a given machine. Input would be required,
of course, describing the target machine.

5.4 Debugging Tool. The verification tools provided are envisioned as
Interfacing with a program debugging tool. Such a tool would permit the
generation of program snapshots, setting of checkpoints, and dynamic alteration
of variable values. The tool will be highly interactive, but shall be usable from
batch as well. Additional capabilities may be added as the design of the tool and
its relationship to the verification facility is elaborated. (Some of the functional
capabilities listed above, such as variable evolution tracing, may be included as
part of the debugging tool.)

230

t
e

i

.wn._.__ _.

'a

Appendix E: Requirements Document

6.0 DESI WNFLEMMAMN PLAN

It is not envisioned that all the above capabilities will be implemented at
once. A phased implementation Is anticipated, with Increasingly powerful (and
thus Increasingly expensive) verification capabilities being added at each step.
With this In mind, the capabilities have been divided Into six categories, based
upon utility of the features to the user and the scope of analysis required. The
categorisation is not rigid, in that the distinction between some categories for
certain features is somewhat arbitrary. A first implementation would almost
certainly go beyond implementing only category one; most likely the first three
categories would be produced

The design of the verification and testing capability will accommodate such
an implementation. The design produced should be easily amenable to expansion
or contraction of capabilities. Thus, for example, If only category one and two
features were desired, the implementation should succeed well without the
presence of any category three capabilities. The categories are hierarchical,
however, in that an implementation of category four could assume the presence of
the first three.

6.1 Simple Documentation.

i	 Cross reference maps

Variable

Lock Croup

COM POOL

Shared Data

Event Scheduling Statements

Process dependency

Implicit type conversions

Extraction of internal documentation

Call graph

6.2 Local Information.

Histograms

Symbolic post-mortem dump

231

.4

Appendix Ft Requirements Document

Local assertions: boolean expresslons

threshold

quantifiers

Intraprocedural detection of:

uninitialized variables
definition/redefinition anomalies

Run time monitors for zero division, overflow, etc.

Variable and procedure monitoring

Scaling specification and Intra-procedural checking
Simple detection of unexacutable code

6.3 Multi-Procedural Information.

Units specifications and interprocedural checking
Scale specifications and interprocedural checking
Interprocedural checking of:

uninitialized variables
definition/redefinition anomalies

Regional assertions
Load module analysis

6.4 Separate Compilation/Multi-Processing Information.

FAST-like query facility
Reentrancy checking

Illegal COMPOOL usage
Termination of dependant processes

Event chronology

Queue snapshots

W
	 Simple Deadlock detection

t;^

232

Appendix Ei Requirements Document

6.3 Dabua joWPerformance Extimates.

General debugging system:
br+eakpolnts
traces

f

	

	 variable alteration
Check of termination conditions
Timing estimate

6A Difficult issues.

Refinement of above analysis:
Unexecutable code
Definitionlredifinition anomalies
Uninitialized variables
Deadlock detection
COMPOOL usage
Violation of language rules

C

233

REFERENCES

1. [Osterweil, 1977a] Osterweil, Leon J., "A Methodology for Testing Computer
Programs," Proceedings AIAA Conference on Computers in Aerospace,
Los Angeles, California, pp. 52-62 (October 1977).

2. [Osterweil, Brown and Stuck!, 19781 rlsterw,tll, Leon J.; Brown, John R.;
Stucki, Leon G., "ASSET: A Lifecycle Verification and Visibility
System," in Proceedings COMPSAC 78, Chicago, Illinois pp. 30-35
(November 1978).

3. [.'.- > r ai,d Lo^ •eman, 1978] Karr, Michael and Loveman, David B., "Incorpo-
► at;or. of Units into Programming Languages," Communications of the
ACM, Vol. 21, No. 5, pp. 385-391 (May 1978).

4. [Fosdick and Osterweil, 1976] Fosdick, Lloyd D. and Osterweil, Leon J.,
"Data Flow Analysis in Software Reliability," Computing Surveys, Vol. 8,
No. 3, pp. 305-330 (September 1976).

5. [Taylor and Osterweil, 19781 Taylor, Richard N. and Osterweil, Leon J. "A
Facility for Verification, Testing, and Documentation of Concurrent
Process Software," in Proceedings COMPSAC 78, Chicago, Illinois, pp. 36-
41 (November, 1978).

6. [Osterweil, 1977b] Osterweil, Leon J., "The Detection of Unexecutable
Program Paths Through Static Data Flow Analysis," Department of
Computer Science Technical Report No. CU-CS -110-77, University of
Colorado; Boulder, Colorado (May 1977).

7. [Clarke, 1976] Clarke, Lori A., "A System to Generate Test Data and
Symbolically Execute Programs," IEEE Transactions on Software Engi-
neering, Vol. SE-2, No. 3, pp. 215 -222 (September 1976).

8. [Howden, 1977] Howden, William E., "Symbolic Testing and the DISSECT
Symbolic Evaluation System," IEEE Transactions on Software Engineering,
Vol. SE-3, No. 4, pp. 266-278 (July 1977).

9. [Howden, 1978a] Howden, William E., "DISSECT - A Symbolic Evaluation and
Program Testing System," IEEE Transactions on Software Engineering,
Vol. SE-4, No. 1, pp. 70-73 (January 1978).

10. [Howden, 1978b] Howden, William E., "Functional Program Testing," Pro-
ceedings COMPSAC 78, Chicago, Illinois, pp. 321 -325 (.'November 1978).

A. [Stucki, 1976] Stucki, Leon G., "The Use of Dynamic Assertions to Improve
Software Quality, MDC G6588, McDonnell Douglas Astronautics Com-
pany-West November 1976).

t

234

124 [Chow, 1976] Chow, T. S., "A Generalized Assertion Language," Proceedings
of the 2nd International Conference on Software Engineering, San Fran-
cisco, CA, pp. 392-399 (October 1976).

13. [Lloyd do Lipow, 19771 Lloyd, D. K. and Lipow, M., Reliability: Management
Methods, and Mathematics. Second edition, published by the authors,
Redondo eac , CA, 1977.

14. [Sukert, 19771 Sukert, A. N., "A Multi-Project Comparison of Software
Reliability Models," Proceedings, 1977 Computers in Aerospace Con!er-
ence, L.A., CA, pp. 413-421 (October 1977).

15. [Thayer, et. al., 1976] Thayer, T. A., Lipow, M., Nelson, E. C., "Software
Reliability Study;' TRW-SS-76-03, TRW Defense and Space Systems

f Group, Redondo Beach, California (March 1976).

i 16. [Huang, 1978] Huang, J. C., "Detection of Data Flow Anomaly Through the
Use of Program Instrumentation," Technical Report UH-CS-78-4, De-
partment of Computer Science, University of Houston (July 1978).

17. [Johnson, 19771 Johnson, David B., "Program Analysis with the Aid of a Data
Management System," Masters' thesis, Department of Computer Science,
The University of Texas at Austin (August 1977).

I& [Browne, & Johnson, 19781 Browne, J. C. and Johnson, David B., "FAST - A
Second Generation Program Analysis System," Proceedings of the 3rd
International Conference on Software Engineering, Atlanta, Georgia, pp.
142-148 (May 1978).

19. [Stephens and Tripp, 1978] Stephens, Sharon A. and Tripp, Leonard, "Re-
quirements Expression and Verification Aid," Proceedings 3rd
International Conference on Software Engineering, Atlanta, Georgia, pp.
101-108 (May 1978).

20. [Johnson, 1978] Johnson, Mark Scott, "The Design and Implementation of a
Run-Time Analysis and Interactive Debugging Environment," Doctoral
thesis, Department of Computer Science, University of British Columbia
(1978).

21. [Osterweil and Fosdick, 1976] Osterweil, L. J. and Fosdick, L. D. "DAVE-
A validation, error detection, and documentation system for FORTRAN
programs," Software-Practice and Experience, Vol. 6, 473-486 (1976).

22. [Allen, 1969] Allen, F. E. "Program Optimization," in Annual Review in
Automatic Programming, Pergamon Press, New York, pp. 239-307 (1969).

23. [Allen and Cocke, 1976] Allen, F. E. and Cocke, J. "A program data flow
analysis procedure," Communications of the ACM, Vol. 19 9 no. 3, pp. 137-
147 (March 1976).

235

a ..

24. [Hecht and Ullman, 1975] Hecht, M. S. and Ullman, J. D., !'A simple
algorithm for global data flow analysis problems," SIAM Journal of
Computing, Vol. 4, pp. 519-332 (December 1973).

25. [Riddle, et-al., 19771 Riddle, W., Bristow, G., Drey, C. and Edwards, B.,
"Anomaly Detection In Concurrent Programs," Department of Computer
Science Technical Report, #ECU-CS-147-79, University of Colorado,
Boulder, Colorado (January 1977).

26. [Peterson, 19771 Peterson, J. L., "Petri Nets," Computing Surveys, Vol. 9, 	 4
Number 3, pp. 223-252 (September 1977).

27. [Reif, 1978] Reif, J., "Data Flow Analysis of Communicating Processes,"
University of Rochester (1978).

28. [Barth, 1978] Barth, J. M., "A Practical Interprocedural Data-Flow Analysis
Algorithm,"Communications of the ACM, Vol. 21, No. 9, pp. 724-736
(September 1978).

29. [Bollacker, 1978] Bollacker, L. A. "An Algorithm for Detecting Unexecut-
able Paths Through Program Flow Graphs," Department of Computer
Science Technical #ECU-CS-112-78, University of Colorado, Boulder, Colo-
rado (January 1978).

30. [Gallucci, 1978] Gallucci, M., "Report on Path-Generating Algorithm," De-
partment of Computer Science Internal SVG memo # E93, University of
Colorado, Boulder, Colorado (May 1978).

31. [Osterweil, 1975] Osterweil, L. J., "Depth-First Search Techniques and
Efficient Methods for Creating Test Paths" Dept. of Computer Science
Technical Report #ECU-CS-077-75, University of Colorado, Boulder,
Colorado (August 1975).

32. [Hoperoft and Tarjan, 1973] Hoperoft, J. and Tarjan, R., "Algorithm 447:
Efficient Algorithms for Graph Manipulation" Communications of the
ACM, Volume 16, No. 6, pp. 372-378, (June 1973).

33. [Hecht, 1977] Hecht, M. S., Flow Analysis of Com uter Programs, Elsevier
North-Holland, New York, ISBN 0-444-00216-2 1977 .

34. [London, 19771 London, T., "The Semantics of Information Flow," PhD
Thesis, Department of Computer Science, Cornell University (1977).

35. [Clarke and Ogden, 1978] Clarke, Lori and Ogden, Neal, "Top-down Testing
with Symbolic Execution" Digest for the Workshop on Software Testing
and Test Documentation", Ft. Lauderdale, Florida (December 19781.

36. [Howden, 1977b] Howden, William E., "Symbolic Testing - Design Tech-
niques, Costs and Effectiveness" National Bureau of Standards, NBS-
GCR-77-89 (May 1977).

WPM

236

37. [Winters, Ogden, Clarke, 19781 Winters, Daryl; Ogden, Neal; Clarke, Lori, "A
Definition of AID, The ATTEST Interface Description Language" COINS
Technical Report 78-15, University of Massachusetts, Amherst, MA
(December 1978).

38. [Howden, 1978c] Howden, William E., "An Evaluation of the Effectiveness of
Symbolic Testing", Software-Practice and Experience, Vol. 8, pp. 381-397
(1978).

39. [Hall, 1971] Hall, Andrew D. Jr., "The Altran System for Rational Function
Manipulation - A Survey," Communications of the ACM, Vol. 14, No. 8

(August 1971)

40. [Knuth, 19691 Knuth, Donald E., The Art of Computer Programming Vol. 2,
Seminumerical Algorithms, Addison-Wesley, Reading, Mass. (1969).

t

i
i

a
i

c

237

	1982007940.pdf
	0008A02.TIF
	0008A03.TIF
	0008A04.TIF
	0008A05.TIF
	0008A06.TIF
	0008A07.TIF
	0008A08.TIF
	0008A09.TIF
	0008A10.TIF
	0008A11.TIF
	0008A12.TIF
	0008A13.TIF
	0008A14.TIF
	0008B01.TIF
	0008B02.TIF
	0008B03.TIF
	0008B04.TIF
	0008B05.TIF
	0008B06.TIF
	0008B07.TIF
	0008B08.TIF
	0008B09.TIF
	0008B10.TIF
	0008B11.TIF
	0008B12.TIF
	0008B13.TIF
	0008B14.TIF
	0008C01.TIF
	0008C02.TIF
	0008C03.TIF
	0008C04.TIF
	0008C05.TIF
	0008C06.TIF
	0008C07.TIF
	0008C08.TIF
	0008C09.TIF
	0008C10.TIF
	0008C11.TIF
	0008C12.TIF
	0008C13.TIF
	0008C14.TIF
	0008D01.TIF
	0008D02.TIF
	0008D03.TIF
	0008D04.TIF
	0008D05.TIF
	0008D06.TIF
	0008D07.TIF
	0008D08.TIF
	0008D09.TIF
	0008D10.TIF
	0008D11.TIF
	0008D12.TIF
	0008D13.TIF
	0008D14.TIF
	0008E01.TIF
	0008E02.TIF
	0008E03.TIF
	0008E04.TIF
	0008E05.TIF
	0008E06.TIF
	0008E07.TIF
	0008E08.TIF
	0008E09.TIF
	0008E10.TIF
	0008E11.TIF
	0008E12.TIF
	0008E13.TIF
	0008E14.TIF
	0008F01.TIF
	0008F02.TIF
	0008F03.TIF
	0008F04.TIF
	0008F05.TIF
	0008F06.TIF
	0008F07.TIF
	0008F08.TIF
	0008F09.TIF
	0008F10.TIF
	0008F11.TIF
	0008F12.TIF
	0008F13.TIF
	0008F14.TIF
	0008G01.TIF
	0008G02.TIF
	0008G03.TIF
	0008G04.TIF
	0008G05.TIF
	0008G06.TIF
	0008G07.TIF
	0008G08.TIF
	0008G09.TIF
	0008G10.TIF
	0008G11.TIF
	0008G12.TIF
	0008G13.TIF
	0008G14.TIF
	0009A02.TIF
	0009A03.TIF
	0009A04.TIF
	0009A05.TIF
	0009A06.TIF
	0009A07.TIF
	0009A08.TIF
	0009A09.TIF
	0009A10.TIF
	0009A11.TIF
	0009A12.TIF
	0009A13.TIF
	0009A14.TIF
	0009B01.TIF
	0009B02.TIF
	0009B03.TIF
	0009B04.TIF
	0009B05.TIF
	0009B06.TIF
	0009B07.TIF
	0009B08.TIF
	0009B09.TIF
	0009B10.TIF
	0009B11.TIF
	0009B12.TIF
	0009B13.TIF
	0009B14.TIF
	0009C01.TIF
	0009C02.TIF
	0009C03.TIF
	0009C04.TIF
	0009C05.TIF
	0009C06.TIF
	0009C07.TIF
	0009C08.TIF
	0009C09.TIF
	0009C10.TIF
	0009C11.TIF
	0009C12.TIF
	0009C13.TIF
	0009C14.TIF
	0009D01.TIF
	0009D02.TIF
	0009D03.TIF
	0009D04.TIF
	0009D05.TIF
	0009D06.TIF
	0009D07.TIF
	0009D08.TIF
	0009D09.TIF
	0009D10.TIF
	0009D11.TIF
	0009D12.TIF
	0009D13.TIF
	0009D14.TIF
	0009E01.TIF
	0009E02.TIF
	0009E03.TIF
	0009E04.TIF
	0009E05.TIF
	0009E06.TIF
	0009E07.TIF
	0009E08.TIF
	0009E09.TIF
	0009E10.TIF
	0009E11.TIF
	0009E12.TIF
	0009E13.TIF
	0009E14.TIF
	0009F01.TIF
	0009F02.TIF
	0009F03.TIF
	0009F04.TIF
	0009F05.TIF
	0009F06.TIF
	0009F07.TIF
	0009F08.TIF
	0009F09.TIF
	0009F10.TIF
	0009F11.TIF
	0009F12.TIF
	0009F13.TIF
	0009F14.TIF
	0009G01.TIF
	0009G02.TIF
	0009G03.TIF
	0009G04.TIF
	0009G05.TIF
	0009G06.TIF
	0009G07.TIF
	0009G08.TIF
	0009G09.TIF
	0009G10.TIF
	0009G11.TIF
	0009G12.TIF
	0009G13.TIF
	0009G14.TIF
	0010A02.TIF
	0010A03.TIF
	0010A04.TIF
	0010A05.TIF
	0010A06.TIF
	0010A07.TIF
	0010A08.TIF
	0010A09.TIF
	0010A10.TIF
	0010A11.TIF
	0010A12.TIF
	0010A13.TIF
	0010A14.TIF
	0010B01.TIF
	0010B02.TIF
	0010B03.TIF
	0010B04.TIF
	0010B05.TIF
	0010B06.TIF
	0010B07.TIF
	0010B08.TIF
	0010B09.TIF
	0010B10.TIF
	0010B11.TIF
	0010B12.TIF
	0010B13.TIF
	0010B14.TIF
	0010C01.TIF
	0010C02.TIF
	0010C03.TIF
	0010C04.TIF
	0010C05.TIF
	0010C06.TIF
	0010C07.TIF
	0010C08.TIF
	0010C09.TIF
	0010C10.TIF
	0010C11.TIF
	0010C12.TIF
	0010C13.TIF
	0010C14.TIF
	0010D01.TIF
	0010D02.TIF
	0010D03.TIF
	0010D04.TIF

