
NASA-CR-159152

r 9'<?.? (JOG 7q LI/
NASA C01"f"fO<1rf"nr R e.nort 159152

(NASA-CR-159152) FUNCTICNAL DESCRIFTICN Of
THE ISIS SYSTEM (Viz:ginia Univ.J 28 f
HC A03/MF AOl CSCi OYD

GJ/b 1

FUNCTIONAL DESCRIPTION OF THE ISIS SYSTEM

w. Joseph Berman

UNIVERSITY OF VIRGINIA
Charlottesville, Virginia 22904

N82-15t14

UncIil::
08730

NASA Contract NASl-14862
October 1979

•,
\

LAr-/GLEY RESEARCH CEt>lTf:R
LIBRARY, NASP.:

}-lAW:TO!.J, V.IRGINIA;

NI\S/\
National Aeronautics and
Space Administration

langley Research Center
Hampton Virginia 23665

II
;'

Functional Description Qf ~ ISIS System

1. Introduction

The development of software for avionic and aerospace
applications (flight software) is influenced by a unique
combination of factors. This combination of factors includes
the length of the life-cycle of each project, the necessity of
cooperation between the aerospace industry and NASA, the need
for flight software to be highly reliable, the increasing
complexity and size of flight software, the high quality of the
programmers and the tightening of project budgets. The
Interactive Software Invocation Syste~ (ISIS) is designed to
overcome the problems created by this combination of factors.

The life-cycle of flight software is usually several years.
During this period, there is a need for a stable software
development environment. Furthermore, flight software for NASA
is usually a cooperative effort between one or more aerospace
contractors and one or ~ore NAS~ centers. This cooperation
would be significantly simplified if the software development
environment were transportable. ISIS achieves stability and
transportability by having a minimal dependence upon its host
operating system and by being written in the higher-order
language PASC~L.

Flight software must be highly reliable. Consequently,
large quantities of information are required during the
specification, design, integration and testing of flight
software. This information includes data which is organized
into tables (e.g., sensor characteristics) as well as textual
data (e.g., source code). ISIS includes a powerful data editor
to manipulate this diverse data, and a sophisticated file
manager to facilitate the storage and retrieval of this data.

-1-

As the reliability and power of flight computer .Iarrlwar~

have increased, the tasks assigned to the flight computer have
significantly increased in complexity and scope. In order to
generate the necessary software, assembly language is bein~

dropped in favor of higher-order languages (HOLs). In addition,
many new tools have been developed for assisting in the process
of writing correct software. The ISIS text editor has been
designed for the new capabilities of expression (e.g., mnemonic
names of arbitrary length and non-rigid format) that are found
in HOLs, and ISIS has a simple, yet sufficient, capability for
"invoking" software tools.

The real-time aspect of flight software makes it difficult
to write. While the introduction of IlOLs and tools will help,
it will remain true that flight software requires specialized
programming skills. In order to attract and retain high quality
programmers, high salaries are common. At the same time,
however, flight software projects are under strict budget
requirements. This suggests that the software development
environment should facilitate programmer productivity as much as
possible. ISIS increases programmer productivity by being
highly interactive, and by having a consistent, easy-to-use
unified command language.

1.1 Development of ISIS

A contract was awarded to Dr. W. Joseph Berman at the
University of Virginia to develop an engineering prototype of
ISIS. The design and implementation of ISIS was evolutionary in
nature. Preliminary versions of ISIS were installed at Langley
Research Center (LaRC) to allow testing of the "feel" and
effectiveness of both the functional capabilities of the system
and the command syntax. Once sufficient capabilities were
available, ISIS was used to complete its own implementation.

ISIS was originally developed under the CDC NOS-BE
operating syste~ at the University of Virginia and the CDC NOS

-~- ! .

1.2 operating system at LaRC. The transportability of ISIS is
being tested by efforts to rehost it to an IBM 370 system and to
a PDP-II machine. Further research is planned into allowing
ISIS to be distributed over several processors.

1.2 Organization of the Report

This report presents an overview of the capabilities of
ISIS and the flavor of the language syntax. It contains actual
examples of ISIS operation, but is not meant to be complete or
to be used as a guide for system operation. The~ User1s
Manual contains a detailed description of how to access ISIS
and of the complete syntax for all system commands. The~
User1s Manual, instead of this document, should be used to
answer detailed questions regarding ISIS operation.

Chapter 2 of this report presents an overview of the
capabilities of ISIS. It includes a discussion of the system1s
structure, the basic functions of each system component, and
examples of command language syntax. Chapter 3 is an example of
how ISIS can be used; it illustratea how ISIS was used to
develop itself and includes a sample file management
organization and a sample interactive session. In Chapter 4,
the underlying stability and transportability of ISIS are
investigated. Finally, Cha?ter 5 presents the current status
and future plans for ISIS.

3-

I
'·

'l'~"

I
I~'

"

f,\
~J

I~,.
~

)

v
.

.I

" .

.~

.~,

2. A Functional Overview of ISIS

ISIS is an interactive software development environ.dent.
It is powerful enough to handle almost all data management
requirements of the software developer, yet it can easily be
used by clerical personnel. This flexibility is achieved by
having a uniform, integrated interface betwee~ ISIS and the
user.

In order to present a uniform interface to the user, the
ISIS command language is an interactive programming language.
This language is patterned after PASCAL and gives the user such
familiar constructs as declarations, assignments, conditionals,
loops and input/output statements. Hodifications to the PASCAL
syntax are minimal and all are motivated by the demands of a~

interactive environment.

In addition to traditional programming constructs, ISIS
includes statements for controlling the three special functional
components of ISIS. These co~ponents are the text/data editor,
the file manager and the tool invoker. Because these components
are totally integrated within ISIS, the user can freely intermix
statements controlling these components. This is a major
advantage over the use of a set of independent tools to perform
these same tasks.

2.1 Flow of Control and Data within ISIS

There are many interrelationships ~mong the interactive
programming language, the text/data editor, the file manager and
the tool invoker. Figure 2.la sho\vs the flow of control in
ISIS. This is a simple tree structure in \·,hich the user always
communicates control information to ISIS via the interactive
programming language.

Figure 2.lb shows the flow of data in ISIS. This diagram
is complicated by the data transfers which can be initiated.

..

·.,

User
I
't'

Interactive Programming
/ Language \

/ I \
/ I \

J' I ~
Text/Data Editor I File Manager

I
f

Tool Invoker
I
t

Software Tools

Figure 2.la. Flow of Control in ISIS

-------------- User
/ I

I t
I Interactive Programming
I 'Language ~

I / t \
1/\
r r I ~

Text/Data Edi tor ~--------+-------->-File Nanager
\ I ~
\ I /

\ I /
~ r /

Tool Invoker /
I /
I /r J

Software Tools

Figure 2.1b. Flo~ of Data in ISIS

-5-

. ,." ,-..--:.~: ...~_-.~~I .. - ..~ ._.

1
I

I
i
J
1

The user supplies data for the INSERT, REPLACE and MOu:~Y

statements of the text/data editor (see secticn 2.3). Data is
transferred between the text/data editor and the file manager in
response to the USE and SAVE statements (see Section 2.4). Data
from the text editor can also be moved to the tool invoker via
the RUN statement (see Section 2.5). Finally, software tools
can access and update an ISIS library by use of the ISISGET and
ISISPUT utilities (sec Section 2.6).

2.2 The ISIS Interactive Programming Language

The user communicates with ISIS via "commands", where a
command is defined as a sequence of one or more "statements".
Figure 2.2 is a list of the programming statements currently
implemented in ISIS. These statements are in two distinct
categories. The declarative statements (ABBREV, TYPE, VAR and
ERASE) are executed as soon as they are parsed. For the other
statements, intermediate-language code is generated as the
statement is parsed. When the entire command has been parsed
and no error has been encountered, the generated code is
executed.

As indicated in Figure 2.2, there are some interesting
differences between PASCAL and ISIS. These differences are
discussed in the following paragraphs.

The ISIS interactive prograr,lnling lan<Ju;1ge supports the
PASCAL concept of types. In ISIS, the built-in types include
INT (PASCAL's INTEGER), REAL, BOOL (PASCAL's BOOLEAN) and
STRING. STRINGs are arbitrarily-long character sequences since
fixed-length strings are difficult to use in un interactive
~nvironment. As in PASCAL, these simple types ~ay be combined
to forlil complex data structures by use of the ARRAY and RECORD
type constructors.

Because of the diversity of allowed data types and the
desire to allow the use of nnemonic identifiers, all variables

-6-

t ... tVdz'"V'bMYW·)· se he) M" . , C"<"""~'-"""ht" "1' .. , ~l- t , ___s_

'.)
(,,

.! ~

Declaratiye statements

ABBREV AB,ABR:ABBREV
TYPE VECTOR:ARRAY [1 •• 9]
VAR Ml,M2 :VECTOR
ERASE ABR,VECTOR,Ml

Code-Generating statements

Assignment Statement:

OF INT
{* statement verb abbreviations
{* ~ype for future use, as in PASCAL'

1
{* Variables of specified type
(* Eliminate ABBREV, TYPE or VAR

Ml[TRUNC{LN{EXP(3)))] := Ml[TRUNC{LN(EXP(3)))] + 1

Control Statements:

LOOP EXITIF I>"; I ·- 1+1; J := J-l; EX r TI F J <fJ ; END.-
REPEAT EXITIF I>"; I ·- 1+1; J .- J-l; UNTIL J<O.- .-
h'IIILE I<=fJ DO I ·- 1+1; J : = J-l; EXITIF J <fJ; END.-
FOR I := I TO 0 DO J := J-l; EXITIF J<O; END

IF (1<0) AND (J >(3) THEN
I := 1+1; J ·- J-l;.-

ELSE
I : = I-I; J ·- J+l;·-

END

Compile-and-Execute Statements:

XEQ II := 17; PRINTLN I'
EXEC

(* Do statements in STRING
(* Do statements in ACTIVE text frame

Terminal Input/Output Statements:

ASK S,IVALUE TO 8E ASSIGNED TO S = I (* Prompt for terminal input
PRINT lINT 1=', I, I; REAL R=I, R:l2:4 (* Terminal output
PRINTLN I; BOOL D=', 13, '; STRING S=I, S (* Carriage Return at end

Figure 2.2. ISIS Programming Statements

-7-

j
.J
.1
II

OF POOR QUALITY

must be declared. However, the user does not have to u: ,.; . .i. tl Y
declare all of his variables: if an undeclared identifi~~ ~s

encountered during parsing, the user is prompted for the
identifier's declaration. Another modification of the PASCAL
use of identifiers is that identifiers must be explicitly
ERASEd. This is because of the lack of block structure during an
interactive sessi0n.

In PASCAL, each control structure allows only one
statement. This restriction is circumvented by use of Lhe
BEGIN/END compound statement. In ISIS, each control structure
allows multiple statements, has its own terminator, and may
have "EXITIF condition" clauses among its controlled statements.

tvhile user-defined procedures and functions similar to
those of PASCAL are part of the ISIS design, they have not yet
been implemented. There are, however, two statements which are
similar to "parameterless procedures". The XEQ statement causes
ISIS to treat the contents of a STRING variable as a command to
be executed. The EXEC statement causes the contents of a text
frame (see Section 2.3) to be treated as a command.

In contrast to PASCAL, there are two sets of input/output
statements in ISIS. The ASK/PRINT statements are used to
communicate with the user at the terminal, while the READ/HRI'l'E
statements are used to communicate with an editor frame (see
Section 2.3).

Since PASCAL is a programming language which is compiled
as a batch process, some information kept by the compiler is
either inappropriate to display or is displayed in tabular for8.
In an interactive environment, the user often needs to gain
c,.ccess to this information. The slIm; statement is used in ISIS
to display this information. Figure 2.3 lists several of the
opt ions of the SHO\v s ta temen t.

"I/,"

"'
".-. -.
).; !

...;.'
1.'; {
.f',

System Information

SHO\'l RESERVED
SHOH STATENENTS

SHOt'! SETS
SHOW CLEARS
SHOt.; SHOWS
SHOH OPTIONS

SHOt.; ID id(s)

(* Displays the ISIS reserved words
(* Displays the ISIS statement verbs

(* Displays the options of the SET verb
(* Displays the options of the CLEAR verb
(* Displays the options of the SHOW verb .
(* Displays the options for editor output :1

(* Displays the current use of the specified "I
(* abbreviation(s), type(s), variable(s) or frame(s))l

Programming Information

SHOH P.BBREVS
SHOt.; TYPES
SHOt·] VARS

(* Displays the current user-declared abbrevi~tions

(* Displays the current user-declared types
(* Displays the current user-declared variables

Figure 2.3. The SHOH Statement

-9-

.. '

2.3 The ISIS Text/Data Editor

The ISIS text/data editor is a line editor similar to the
WYLBUR system developed at Stanford University. This editor
was chosen as the best editor for the slow (300-1200 baud)
terminals used at Langley Research Center. The ISIS editor has
several improvements over the WYLBUR editor. The most
important of these is the ability to edit mUltiple "frames"
simultaneously.

A "frame" is a named unit of storage that consists of
"items" that are always maintained in ascending order by their
associated item-numbers (in the range 0.000 to 999.999). An item
is either a STRING or a RECORD, and all of the items of a frame
must be of the same type. If they are all STRINGs, the frame is
a "text frame" and the data editor is called a text editor. If
the items of a frame are RECORDs, the data editor resembles a
simple version of a Relational Database system (this option has
not yet been fully implemented).

The text editor allows the user to edit several frames
simul taneously. Two frames, SHOHN and t'1ORK, are pr edecla red by
the system; the user may use the FRANE statement to create
additional frames. Since a user will typically edit one frame
at a time, ISIS allows the user to identify this frame as being
ACTIVE. Unless a frame is referenced in a statement using a
prefix of the form "fra~e-id/", the ACTIVE frame is used for all
editing statements.

Fi~ure 2.4 illustrates the operations which may be
performed on a frame. Text to be stored in frames may be
entered from the terminal (INSERT) or by use of the WRITE
statement. When replacing, modifying, deleting or retrieving,
the affected items may be specified by constraints on both the
items' numbers and their contents (including column
restrictions). A special retrieval statement is the FOREACII
[,tatement, an iterative stater.lent similar to the l-iHILE
statement. On each itcr~tion, the next item satisfying the

-1 (J-

...... __..... _ ..~~.....~_._~...'~._-~l_·

",.'

FRAME DATA,AUX,BLD:STRING
ERASE DATAJAUX
ACTIVE BLD

Declaratiye statements

Code-Generating Statements

Item Entry Statements:

WRITE 'A NEW LI~E' ,.L+l
INSERT 1.5, 2.1/2.4/.1

Item Editing Statements:

(* Create editing frames of specified type
(* Eliminate frames
(* Specify the ACTIVE editing frame

(* vlrite a new item at end of frame
(* Prompt user for 1.5, 2.1, 2.2, 2.3, 2.4

I
.~

REPLACE
l10DIFY
J\DD

CHANGE

4
• F (4)
1*1 AT 1 IN ALL
,*' TO 1 + 1 IN. L : M

(* Get replacement for item 4
(* Get alterations to first 4 items
(* Place a * in column 1 of every item
(* All * in the last item become +

Item Removal Statements:

DELETE NOT 1*'
VOID

(* Remove all items which do not contain *
(* An efficient form of 'DELETE ALL 1

Item Retrieval Statements:

i.COUNT 1*1 IN 10/100
LIST '*' AND NOT 1**1(1)
READ S,.F

(* Tally items in items 10 thru 100 with *
(* Print iteras with * but not ** in column 1 I;·

I'
(* Read first i tern and place in var iable S 1\

FOREACH S IN .F(20) DO
PRINTLN .K,LEN(S)

END

(* Iterate for the first 20 iteras
(* Print itera-number and item's length

Item r.ianipulation Statement:

MOVE 1/5 TO .L+l//l
COpy 2/4 TO 5.1//.1
REKEY ALL TO 10//10

(* Reposition items 1 thru 5 to end of frame
(* Duplicate items 2 thru 4 at 5.1 by .1
(* Resequenced item-nur.1bers are 10,20,30, ..•

~.,

Figure 2.4. Frame Editing Statements

-11-

1
·f

II
.~l_

retrieval criteria is assigned to an ISIS var.iable and ca.: be
processed using the ISIS programming language. Items can also
be COPYed and MOVEd, even from one frame to another.

Frames are only used for temporary stor~Je. In order to
retain the editted data, it is Ilecessary to SAVE a frame as a
page in an ISIS library using the ISIS file manager.

2.4 The ISIS File Manager

The file manager controls access to a hierarchical file
structure. In contrast to other file systems, the ISIS
hierarchy is of fixed depth and each level has a name. The
highest level of the hierarchy is the "library". Within the
library are the "shelf", "book", "chapter" and "page" levels. A
frame is stored as a page in this structure. Pages are
identified by names of the form:

library.shelf.book.chapter.page

Figure 2.5 lists the statements which relate to an ISIS
library. The SHO~1 PAGES statement displays the contents of an
ISIS library. The output generated by this statement is
controlled by the optional specification of shelf, book, chapter
or page identifiers. The effect is to perform a pattern-~atch

over the library's directory.

The USE state~ent is used to retrieve data fro~ an ISIS
library and place it in a fra8e for editing. In transferring
the contents of the page to the frame, the pagename is
associated with the frame. This name may be changed by using
the SET NAME and CLEAR NA1IE statements, and its current value
may be determined by SHOW NAME. This na~e is important because
the SAVE dnd SAVE* statements use this name to determine the
page in which a frame will be stored. All of these frame/page
statements may be prefixed by a frame-id to access a frame other

-12-

Code-Generating statements

SET NAHE SYSLIB.ISIS.SOURCE.IPL.HEAD
SHOW NAHE
CLEAR NAME

Directory Display statement:

SHOW PAGES SYSLIB.ISIS.SOURCE••

Frame/page Interaction Statements:

USE SYSLIB.ISIS.SOURCE.IPL.TAIL

(* Display pages which match pattern

(* Transfer from pase to frame

(* Change pagename of frame
(* Display pagename of frame
(* Set pagename of frame to nil

SAVE
SAVE*

Page Removal Statement:

PURGE SYSLIB.ISIS.SOURCE.IPL.BAD

Index Statements:

(* Transfer from fra~e to page
(* Overwrite page in library

(* Eliminate page from library

(* Cisassociate
(* Eliminate an index
(* Eliminate indexing

SHOVI IlJDEXES OVER SYSLIB
SHO\v INDEX HOLD
SHOH INDEXES ON SYSLIB.ISIS.SOURCE.IPL.TAIL

SET INDEX HOLD ON SYSLIB.ISIS.SOURCE.IPL.TAIL (* ~ake association)

(* Displai' indexes in use 1
.~

(* Display pages with index :1
(* Display indexes on page 1

j
{
l

CLEAR INDEX HOLD ON SYSLIB.ISIS.SOURCE.IPL.TAIL
CLEAR INDEX HOLD
CLEAR INDEXES ON SYSLIB.ISIS.SOURCE.IPL.TAIL

Figure 2.5. File Managing Statements

-13-

than the currently ACTIVE frame.

The PURGE statement eliminates a page from a library. if
this is the last page of a chapter, the chapter is also
eliminated. This process is continued through the book and
shelf levels.

In addition to a hierarchical storage organization, the
ISIS file manager allows "indexing". An index term is a keyword
that m~y be associated with one or more pages using the SET
IND~X statement. There are no limits on the ~umber of in~ex

terms over a library, on the number of pages which can be
inde~ed py a single tetm, nor on the nu~ber of indexes whi~h may
be associ a ted with a given page. The SHOW INDEX and SHO~'l

INDEXES statements allow display Of the index terms and their
curre~t associations. The CLEAR INDEX and CLEAR INDEXES
statements can be used to disassociate index terms from pages.

2.5 The ISIS Tool Invoker

The tool invoker is used to send text~al information to the
host computer's internal reader. This is a primary mechanism
for creating extensions to the standard ISIS system. Chapter 3
includes an example of the use of this mechanism.

There are three statements that form the basis of the tool
invoker. The RUN statement causes textual information to be
appended to a special sequential file. Before this file can be
submitted to the host operating system, it must form an
acceptable input to the host operating system. This typically
means that it includes job control statements specifying the
sequence of tasks to be performed.

The SEND statement causes the contents of the RUN file to
be submitted to the host operating system's batch internal
reader. This mechanism initiates a batch program which will be
executed separately [rom the ISIS interactive session, possibly

-14-

on a different computer. Because the user can continue his
interaction with ISIS in parallel with the execution of his
tool, this approach is very attractive if the tool does not
involve user interaction. Another advantage is that existing
tools can easily be made available to ISIS users. The only
problem is that of accessing ISIS libraries from the tool. This
is accomplished by use of the ISIS utilities ISISGET and ISISPUT
(see Section 2.6).

If a tool requires user interaction, it could be
implemented using the ISIS interactive programming language.
This alternative will be more attractive when user-defined
procedures and functions can be "compiled" into thG ISIS
intermediate language. However, existing interactive tools and
large, complex interactive tools cannot use this alternative.
Instead, they can use the STOP:SEND statement.

The STOP statement is used to terminate an ISIS session.
If this statement has the option ":SEND", the termination of
ISIS is accompanied by the submittal of the RUN file to th~ host
operating system's interactive internal reader. This
initiates 'n interactive program which temporarily replaces
ISIS. t1hen this tool reaches completion, it can return to ISIS
via the host operating system. The advantage of this approach
is that, as with batch tools, the tool is essentially
independent of ISIS. The disadvantage is that the user will
probably perceive a distinct change in the style of his dialogue
with the system, contradicting the ISIS goal of uniformity. As
with batch tools, interactive tools can gain access to ISIS
libraries by use of the ISIS utilities ISISGET and ISISPUT (see
Section 2.6).

2.6 The ISIS Utilities

Currently, there are three ISIS utilities. Of these,
ISISGEN is used least frequently. It simply creates a new ISIS
library. The other two utilities are ISISGET and ISISPUT.

-15-

.~~
-.'

j

.J

....~..

j
"1

.~~.'.~.;.
"j
1
1
J
I

j
1

.j

1
1

I
1
!

ORlmNAL PAGE IS
OF POOR QUALITY

ISISGET is used to retrieve textual data stored in an .JIS
library. The inputs to this program are the name of a local
file into which the text is to be placed and the name of a
page. ISISGET retrieves the specified page and writes it ~s a
standard sequential file in the local file.

ISISPUT reverses the processing of ISISGET. It takes the
textual contents of a local file and stores it in a named page.
If the page already exists, it is overwritten.

-16-

I,
I·

"
"~ ~

3. Using the ISIS System

In order to show how ISIS might be used to solve some of
the problems of software development, this chapter discusses how
ISIS is being developed using ISIS. All of the data concerning
ISIS is stored in the "SYSLIB" library. Since SYSLIB contains
data on several software projects, the ISIS information is
stored on the "ISIS" shelf of SYSLIB.

3.1 Storing the ISIS Source

The "SOURCE" book on the "ISIS" shelf contains all of the
source code for ISIS. This book consists of 11 chapters and a
total of 64 pages (see Figure 3.1). The chapters are based
upon the functional organization of the ISIS software. Some of
the pages contain part of a routine (e.g., IPL.HEAD), some
contain a routine (e.g., PROGRA~t.FATAL) and some contain several
routines (e.g., ITEM.UTILITY). The pages containing only a part
of a routine are used as part of a special technique that avoids
having to recompile all of the ISIS source whenever only a few
routines are modified. The rule used to create the remainder of
this structure is that several short routines accessing a single
data structure are stored together to simplify editing.

There are two important reasons why this structure is
only two levels deep. First, this structure reflects the highly
modular design of the ISIS software. Second, this structure
makes it easier to remember where a particular routine is
located since the "SYSLIB.ISIS.SOURCE." part of the page name is
the same for all of these source pages.

3.2 Control of the ISIS Tool Invocations

The "CONTROL" book on the "ISIS" shelf contains several
pages uith job control statements. Each of these pages
corresponds to a particular tool iflvocation used in creating

-17-

'~'..~, ..•.
j

"'~

','

~i

~\
;..

.~

t
'i

"

-18-

Figure 3.1. Contents of SYSLIE.ISIS.SOURCE BOOK

~..
I

.'

ORIGINAL PAGE IS
OF POOR QUALITY

!0:, CON STTY PE VARAN D FOR WAR t DEC'. '.'. J. . J •
INITIALIZATioN (EXCEPT PROGRAMMING 1.:\:Jr:L.l\uE)
I F ~. ATAL ERR 0R DE TECIf ED, PO STHO RE.: DU1·1 P
ISIS MAIN PROGRAM

* READONLY VARIABLES (E.G. TIME DATE)* DATASET I II F0, ACCESS, ST6REA 11 D CLEA R
, RUN AND SEND COUTROL
• HASHCODE CALCULATIOUS FOR EDITOR
• TERMINAL INTERACTIOU: SYSIN AND SYSLU
• ACCESS AND PACK TIME/DATE
• DISK BLOCK READ WRITE AND ADD
• ASK QUESTION ANb ACCEPT YES/NO RESPONSE* PASCAL INTERFACE TO OPERATING SYSTEM

if:,,; BUFFER CONTROLPRINT BUFFER CONTENTS
DATASET CONTROL
DATASET BLOCK READ WRITE AND ADD
UPDATE AVAILABLE SPAct IN A BUFFER

• TEMPORARY-STRING COUTROL
• ALLOCATION L SETUP

t
COPY L ETC.

'PRINT DUMr LENG H ORu ETC.
• COMPAhE, CONCATEIJATE~ SUBSTRING t ETC.
• CONVERT FROM EDITOR ~ORHAT TO S RING

!:
'* AVAILABLE SPACE CONTROL

ACCESS, ADD~ REPLACE, DELETE FROM BUFFER
ACCESS AN ENTRY
ADD, REPLACE AND REMOVE OF AU ENTRY

1

*:. NODE BUFFER PACK/UNPACK
ACCESS A NODE
ADD L REPLACE AND REMOVE OF A NODE
REK~Y OF THE NODES

, STRIP BLANKS, ETC.
* READ AN ITEM FOR TERMINAL OR FILE
• ADD NEW ITEMS TO DATASET
• MASTER CONTROL FOR EDITOR STATEMEUTS
• REMOVE ITEMS AFTER A MOVE STATEMENT

~
*: READ AND WRITE FOR TEXT FRAMES

TAG PROCESSIUG
VERSIOIJ PROCESSING

• BLOCK-VECTOR DIRECTORY PROCESSING
, PAGE NMl ESE ARC H AlJ D 0UTPUT
• PROCESSING OF PAGE DIRECTORY LEVELS
* PAGE SEARCH USING PAGENAME
* PAGE DIRECTORY PROCESSING
• INDEX PROCESSING

, PUSH AND POP OF VIRTUAL MACHINE STACK
* ALLOCATE VARIOUS VIRTUAL RESOURCES
f STORE/RESTORE PROCESSING
! PRINT VALUES (SIMPLE AND COMPLEX)
• IDENTIFIER INFORMATION OUTPUT
, SET STATEMENT PROCESSING
, CLEAR STATEMENT PROCESSING
* PR!~7 INFORMATION OR PLACE IN SHOWN FRAME

f DECLARATIONS FOR ISIS VIRTUAL MACHINE
, ACCESS VIRTUAL MACHINE INFORMATION
* VIRTUAL MACHINE PROCESSOR
• SY1JTAX ERROR HESSAGES* TOKENIZATION OF COMMAND INPUT

1

'1 IDENTIFIER PROCESSING (BINARY TREE)

,
lI, ERASURE OF AN IDE!:TIFIER

CODE GE~ERATION JURING PARSING
PARSE A COI-lMAND

<', INITIALIZE THE PROGRAMMING LANGUAGE PhRSER
(PARSE/EXECUTE CYCLE

IPL

PllUGRAH
HEAD
INIT
FATAL
TAIL

SYSTEf.I
VARS
DATASET
SEND
HASH
TER/'!
TII'IE
BLOCK
YESNO
PASINTF

BASE
BUFFER
DUI1P
DATASET
BLOCK
AVSPUPD

STRING
TEHP
UTILITY
SINGLE
DOUBLE
ITEH

ENTRY
FREE
BUFFER
ACCESS
UPDATE

UODE
UDBUF
ACCESS
UPDATE
REKEY

ITEI1
UTILITY
IIJ PUT
ADD
ACCESS
RE/10VE

EDITOR
TEXT
TAG
VERSIO/I

LIBRARY
BVD
PAGE
LVL
DIRLOC
DIR
INDEX

IPLBASE
PUSHPOP
ALLOC
STORE
PRINT
ID
SET
CLEAR
SHOH

HEAD
SHOH
EXECUTE
ERROR
TOKEllIZ
ID
ERASE
GEIJOP
PARSE
IIJIT
TAIL

and maintaining the ISIS system. Figure 3.2 is a listing of
one of these CONTROL pages. Coding of these pages requires
expertise in writing job control statements; however, once they
are written, they should not have to be redone unless there is a
change in the host operating system. These pages are under the
control of the BUILD pages described in the following paragraph.

The "BUILD" book on the "ISIS" shelf contains several EXEC
pages. When they are EXECed, they obtain the appropriate
CONTROL page, ask the user for additional information, and
create a RUN file. The user can then use either the SEND or
STOP:SEND statements to invoke the tool. Figure 3.3 is a
listing of the BUILD code associated with the CONTROL
information of Figure 3.2. These pages require expertise in
writing ISIS commands; however, once they are written, they are
an easy-to-use mechanism for making standard tool invocations.

3.3 A Typical Interactive Session

Figure 3.4 shows how the SOURCE, CONTROL and BUILD pages
lilight be used in a typical session. First, the HORK frame is
used to hold the source code while it is being editted. Once
this editing is completed, the appropriate BUILD page is loaded
into the vlORK frame and EXECed. The BUILD code then creates the
CONTROL frame to hold the CONTROL page and asks the user for
information which is added to the CONTROL frame. Once this
frame is completed, its contents are transferred to the RUN
file. In this case, a batch execution of the tool is invoked.

-.19-

y

"

COmlEN'l' •
COMMENT. ACCESS THE PASCAL COMPILER AND COMPILE THE SOURCE
COmlENT.
ATTACH,PASCAL=PASCALR,PASLIB=PASLIBR/UN=LIBRARY,NA.
LIBRARY,PASLIB.
DEFINE,OUT=SYSOUT/M=W,NA.
ATTACH,OUT=SYSOUT/M=W,NA.
PASCAL,IN,OUT,F=120000.
CmmENT.
COMMENT. STORE THE RELOCATABLE OBJECT DECKS IN A SYSTEM LIBRARY
COl-U-tENT.
ATTACH, ISISOBJ/M=W,NA.
LIBEDIT,I=0,P=ISISOBJ,N=ISISLGO,L=1,B=LGO,C.
Cor'll-lENT.
COMMENT. LOAD THE RELOCATABLE OBJECT DECKS TO FORM IXIX
cmU·lENT. IXIX IS THE EXPERHlENTAL VERSION OF ISIS
com1ENT.
HAP,OFF.
GET,SEGIN,ISISIO/NA.
DEFINE,IXIX/H=W,NA.
ATTACH, IXIX/H=I'l,NA.
SEGLOAD(I=SEGIN,B=IXIX)
LOAD(ISISOBJ,ISISIO)
NOGO.

Figure 3.2. Listing of SYSLIB.ISIS.CONTROL.PASCAL.LOAD

-20

- ;

~..

. ,

ERASE S,K,CONTROL: VAR S:STRING: VAR K:KEYi FRAHE CONTROL:STRING
REPEAT

ASK S, IFUNCTION «?> FOR HELP) «CR> TO ABORT): '
IF S= I?' THEN (* ~'iANTS HELP

SHOW PAGES SYSLIB.ISIS.CONTROL.PASCAL.
ELSE

IF S<>" THEN (* GET CONTROL CARDS
XEQ CAT('CONTROL/USE SYSLIB.ISIS.CONTROL.PASCAL.',S)
(* ADD ACCOUNTING INFORMATION
CONTROL/IVRITE I ISIS ,T77 ,C~1l20000. BERHAN/DAHACS', .01
ASK S, I PASSWORD: 'i (* PASSWORD IS ONLY VOLATILE INFO
CONTROL/WRITE CAT('USER,4600001, ',CAT(S, I. I)) ,.02
CONTROL/WRITE 'CHARGE,M46GOI,ISIS.',.03
(* CREATE CONTROL CARDS TO FORM SOURCE FILE
CONTROL/WRITE 'COMMENT. ' ,.04
CONTROL/WRITE 'COMMENT. CREATE THE SOURCE FILE ' ,.05
CONTROL/WRITE 'CONMENT.',.D6
CONTROL/WRITE IATTACH,ISISGET/l\A.',.07
K := .100 (* INCREMENT BY .001
LOOP

ASK S,'SYSLIB.ISIS.SOURCE.: I; EXITIF (S=") OR (S=I?I)
S := CAT('SYSLIB.ISIS.SOURCE. I ,S) (* CHECK IF EXISTS
XEQ CAT('SHOW PAGES ',CAT(S,I:KEEP '))
SHOWN/IF .F<=.L THEI,) (* PAGE DOES EXIST

CONTROL/WRITE CAT('ISISGET,T. ',S),K
CONTROL/WRITE 'REWIND,T.', K+.OOOI
CONTROL/WRITE 'COPYCF,T,I~.',K+.0002

CONTROL/WRITE 'RETURN,T.', K+.0003
K := K+.OCll

ELSE (* REPORT FAILURE TO USER
PRIHTLN S,I DOES NOT eXIST.'

END
EIJD
IF s=" THEn (* NORr·IAL TERrlINATION

conTROL/I'iRITE 'PACK, I:J, HJ. ' , K
CONTROL/\;RITE 'RETURN, ISISGET.' ,1\+.001
CLEAR RUN; CONTROL/RUN:NK (* COpy TO RFILE FOR SEND
PRINTLN 'READY TO SEND I

ELSE (* USER WANTS TO TRY AGAIN
PRI:JTL;'J I XXX RESTARTED XXX I

EtlD
ELSE (* USER ;Ji\!·lTS TO ABORT

PRINTLll 'xxx ASORTED XXX'
END

END
UNTIL s<>'?'

Figure 3.3. Listing of SYSLI~.ISIS.BUILD.Pl\SCl\L.ENTER

-:? 1-

"

-- .
,...... -..-

USER IUV'1E: 46 (} (} (} (J 1, invoke
TERMINAL: 4, NAMIAF
RECOVER/ CH1~GE: charge,m46eOi,isis

TO GET NEHS AND THE TERIHNAL DEFINITION CHARS, TYPE * I:,F01111, tJEilS*.
TO WIRE SUGGESTIONS, * ItlFORI1, SUGGEST*.
ItlFORHATION ABOUT THE SYSTE~l HALFutlCTION ON 7/23/79 I S ON THE *i; EvlS* .

CHARGE.
/attach,isis. notice that user input is in lower case
/isis.

ISIS MONITOR V 1.00 79/08/05. 13.10.40.
13.10.40?use sys1ib.isis.source.item.access (* fix a bug

SYSLIB.ISIS.SOURCE.ITEN.ACCESS USED AS WORK
13.11.16?list 'ITMREPLC' (* locate the area of interest

70. = ITI1COUNT,ITtILISTF,ITI-lREPLC,
458. = IF OP=ITliREPLC THEN
533. = ITI·jREPLC,ITtlCHANG,ITf>lADDST,
13.11.48?list 533(4)
533. = ITMREPLC,IT~CHANG,ITMADDST,

534. = ITl-lnODIF: BEGIN OPCLASS := (OP=IT~CHAiJG) OR (OP=ITr.1ADDST);
535. = IF ECHO OR NOT OPCLASS THEN ITI'JOUT(l,KEYA);
536. = IF ITMRPL THEN (* POSSIBLE CHECK VETO FIRST *)
13.12.06?~elete 535 (* eliminate bad line
535. = IF ECHO OR NOT OPCLASS THEN ITMOUT(l,KEYA);
13.12.49?insert 535//.1 (* insert correction
535. = if opclass then (* check echo flag *)
535.1 = begin if echo then itmout(l,keya);
535.2 = end else itmout(options,keya);
535.3 = «GR[A!~»

INSERT TER~INATED.

13.14.15?list 533/536 (* verify correct data entry
533. = ITIJREPLC,ITfiC:IAIJG,ITl'lADDST,
534. = ITl;I:ODIF: BEGIN OPCLASS := (OP=ITI1CHAl-;G) OR (OP=I'i'f,jADDST);
535. = IF OPCLASS THEN (* CH~CK ECHO FLAG *)
535.1 = BEGIn IF ECHO THE!'; ITi·!OUT(l,KEYA) i

535.2 = END ELSE ITHOUT(OPTIOI,lS,KEYA) i

536 . = I F I Tf·jRPL TI1 EI: (* POSS E LE 0: CC1< 'IETO F I RS'l' *)

13.16.06?sQve* (* Dake changes permanent
SYSLIC. ISIS.SOURCE. ITEII,i;CCESS SAVED.

13.16.52?

FisurE: 3.4. Sdld!?le ISIS Session (Part 1 of 2)

13.2I.59?use build.pascal.enteri exec (* SYSLIB.ISIS assumed by
SYSLIE.ISIS.BUILD.PASCAL.ENTER USED AS WORK
FUl'lCTION «?> FOR HELP) «CR> TO ABORT): ?
SYSLIB .ISIS .CONTROL.PASCAL .ONLY

. UPDATE
•LOAD
.SPECIAL
.SIHPLE
.COH

FUNCTION «?> FOR HELP) «CR> TO ABORT): load
SYSLIB.ISIS.CONTROL.PASCAL.LOAD USED AS CONTROL
PASSHORD: invoke
SYSLIB.ISIS.SOURCE.: program.head
1 ITENS H1SERTED. LAST ITEr-! INSERTED :i:N SHmm 1.
SYSLIB. IS IS. SOURCE. : i tern. acess
SYSLIB.ISIS.SOURCE.ITEM.ACESS DOES NOT EXIST.
SYSLIB.ISIS.SOURCE.: item.access
1 ITEilS INSERTED. LAST ITSl·1 Il~SERTr;D n: SHOi'lN 1.
SYSLIB.ISIS.SOURCE.: program.tail
1 ITEr·iS INSERTED. Ll\ST ITEH INSERTED IN SHOml 1.
SYSLIB.ISIS.SOURCE.:
Hut; CLSARED.
45 ITEMS I~ SPECIFIED RANGE.
READY TO SEND
13.24.38?send (* submit to batch internal reader

'AAKAQZV' SENT TO BATCH EXECUTION.
13.25.11?stop

ISIS TER;iI~)ATED. (ADDRESS: 5)
- LOAD FL 042512 STACK FL 025266
/attach,ixix. access experireental ISIS just created
/ixix.

ISIS MONITOR V 1.00 79/08/05. 13.27.26.
FRi\;·IE SHmn: (SHOlin 1 RECOVERED:
FHA:iE \lOR!: [1'.'ORI~ 1 F:ECOVERED: SYSLIE. IS IS. BUILD. PASCAL. EtJTER
FR1~i'lC CO~j':'ROL [i:ORKI] RECOVERED: SYSLIE.ISIS.CONTROL.PASCAL.LOAD
13.27.2G?re~1~ce 533:nl (* check operation of correction

IlO ITEi·IS rr~ SPECIFIED RANGE.
13.28.14?re?lace .f:nl (* try a9 ai n

1. =succcss.

1 ITEliS H~ SPECIFIED RANGE.
13.29.CI?stop

ISIS TERllINATED. (ADDRESS: 5)
- LOAD FL O~2516 STACK FL 025262
/'oye

Figure 3.4. Sample ISIS Session (Part 2 of 2)

-23-

ORIG~NAl P/I.GE rs
OF POC~ QUALITY

4. Stability and Transportability of ISIS

A central goal of ISIS is that of stability. ISIS achieves
this goal by having minimal dependence upon the host operating

system. It is interesting that nost of the tactics used to
attain stability are applicable to a type of transportabilIty.

That is, ISIS can easily be transported to a new computer;
however, certain details of its operation will not be the same
from machine to machine.

4.1 PASCAL Coding

ISIS is coded almost entirely in PASCAL. Since no standard
has yet been adopted, only a subset of the PASCAL language is
used. There are no labeJs, GOTOs, SETs or NDvs. Packing is
used sparingly and with consideration of how the structures
might be implemented on a variety of machines.

The ISIS code has a very shallow structure. That is, there
are few routines which are nested ~ore than two levels deep.

This is partially becau~e filost routines are used in fi":ore than
one context. It is also because of the l71echanism that was used
during the development of ISIS to avoid having to completely
recompile ISIS every time a change is l:.ade. The only exception
to this shallow structure is in the recursive descent parsing.

~.2 Operating System Independence

Achieving total operating system inde?endence is not
possible; however, considerable care ~as been exercised in
designing the interface between ISIS and its host operating
system. This has resulted in an interface that is relatively
insensitive to operating system changes and is impler.lentable on
a broad range of computers. This interface is used to access
and control the host operating system's capabilities for file

-24-

manipulation, disk input/output, multi-user scheduling, and

remote terminal communications.

ISIS assumes that the host operating system provides a
~asic file system that allows for creating, accessing, extending
and destroying files. Each ISIS library corresponds to a file
in th! host file system. In addition, the host file system must

allow temporary files for each ISIS user. Since some file
systems do not allow dynamic creation of these temporary files,

ISIS has a limit on the number of frames a user can have a~ any

point during a session.

ISIS uses only two disk data structures. The first is a
sequential file. This structure is used for input, temporary
storage and output. Frames and libraries are stored as "direct
access files". That is, ISIS issues requests for randomly
reading or writing fixed-Ienyth records by specifying their

relative position within the file. These organizations are
available on almost all operating systems.

ISIS is coded as a single-user system. The only
interaction between users occurs as c0nte~tion for a library.
To prevent deadlock, each time a statement uses a library, ISIS
9ains exclusive control of the library, performs the statement
and releases control of the library. Since no statenlent

ref ere nce s Po: 0 ret hc. nonelibra ry, c1 e ad I 0 c l~ i s i Pol P0 S sib1e .

ISIS cOflmunicates to tiie terminal viC! the SYSIN ana SYSLN
routines. SYSIN is straight-forward Ln that a prompt is written
to the terminal and input is accepted from the user. SYSU: is
called at the termination of each line to be written to the
terminal. The line to be transmitted is placed in the standard
OUTPUT file. On r.lost systems, SYSLN IS Iilerely a \iRITELtJ of the

OUTPUT file.

-25-

=

4.3 Operating Systen, cHId Hachine Dependencies

TherE ure sev2ral dependencies upon the host operut:ng
system and the host machine for which no attempt hus been made
to guin independence. These dependencies include the

iGiosyncracies of the teleprocessing monitor, the character sel,
and the accuracy of integers and reals.

ISIS assumes that there exists a teleprocessing monitor for
communicating with the t~rminal. The characteristics of

available monitors varies significantly. Most monitors allow
for a "backspace" key, an "input abort" key and an "output
abort" key. However, the association of which key performs
which function is not standardized.

ISIS uses the character set of the host PASCAL compiler.
Similarly, the accuracy of integer and real values is precisely
that provided by the PASCAL compiler.

-26-

5. Current Status and Conclusions

ISIS was specified during 1976-77, designed during 1977-78

und an engineering prototype was implemented during 1978-79.

During the year that it has been available for testing, ISIS ha3
pr oven i t3el f to be a ve ry '.vell-·behaved and powe r ful sys tern.

Interestingly, users with little previous interactive computing
experience have found it easier to learn ISIS than experienced
users. This is apparently due to the fact that experienced
users have worked in environments where they are expected to
remember a large numb~r of details about how to use a system.
They have some trouble adjusting to the ability of ISIS to
perform most of these details, leaving them free to concentrate
upon the more interesting problems of software development.

The current implementation of ISIS is an engineering
prolotype and, as such, it is still evolving. The interactive
programming language and the text editor are now relatively
stable, the file manager and system invoker are nearing
completi('!1 and the data editor is being implemented. It is
hoped that full production status will be reached by July 1980.

Efforts have already begun on rehosting ISIS to IBM and DEC
equipment. In addition, a research effort has been initiated to
allow ISIS to be distributed over several cooperating
processors.

-27-

,

I
I
.~
.~

·1

J
'j

(

1111~~~lr~I(IJ~(~~~lmiimlllll
3 1176 01306 6486

. -.

