NASA-CR-159152
1982 00T 794/
NASA Cortrartar Renort 159152

CR-/59 /52—

o (NASA-CR=159152) FUNCTICNAL DESCRIETICN OF N82-15¢14
;o THE 1ISIS SYSTEM (Virginia Univ.) 28 g
HC AQ03/MF AO01 CSCL 093
Unclas

G3/61 08730

. FUNCTIONAL DESCRIPTION OF THE ISIS SYSTEM

W. Joseph Berman

UNIVERSITY OF VIRGINIA
Charlottesville, Virginia 22904

NASA Contract NAS1-14862 .
October 1979 ﬂé

P

BRARY GOPY

L ¥

aD

R R Ta Tl
AT 1996

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

b

J
Id

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

Functional Description of the ISIS System

l. Introduction

The development of software for avionic and aerospace
applications (flight software) is influenced by a unigue
combination of factors. This combination of factors includes
the length of the life-cycle of each project, the necessity of
cooperation between the aerospace industry and NASA, the need
for flight software to be highly reliable, the increasing
complexity and size of flight software, the high quality of the
programmers and the tightening of project budgets. The
Interactive Software Invocation System (ISIS) is designed to
overcome the problems created by this combination of factors.

The life-cycle of flight software is usually several years.
During this period, there is a need for a stable software
development environment. Furthermore, flight software for NASA
is usually a cooperative effort between one or more aerospace
contractors and one or more NASA centers. This cooperation
would be significantly simplified if the software development
environment were transportable. ISIS achieves stability and
transportability by having a minimal dependence upon its host
Operating system and by being written in the higher-order
language PASCAL.

Flight software must be highly reliable. Consequently,
large quantities of information are required during the
specification, design, integration and testing of flight
software. This information includes data which is organized
into tables (e.g., sensor characteristics) as well as textual
data (e.g., source code). 1ISIS includes a powerful data editor
to manipulate this diverse data, and a sophisticated file
manager to facilitate the storage and retrieval of this data.

As the reliability and power of flight computer .ardware
have increased, the tasks assigned to the flight computer have
significantly increased in complexity and scope. In order to
generate the necessary software, assembly language is being
dropped in favor of higher-order languages (HOLs). 1In addition,
many new tools have been developed for assisting in the process
of writing correct software. The ISIS text editor has been
designed for the new capabilities of expression (e.g., mnemonic
names of arbitrary length and non-rigid format) that are found
in HOLs, and ISIS has a simple, yet sufficient, capability for
"invoking" software tools.

The real-time aspect of flight software makes it difficult
to write. While the introduction of HOLs and tools will help,
it will remain true that flight software requires specialized
programming skills, In order to attract and retain high quality
programmers, high salaries are common., At the same time,
however, flight software projects are under strict budget
requirements. This suggests that the software development
environment should facilitate programmer productivity as much as
possible, ISIS increases programmer productivity by being
highly interactive, and by having a consistent, easy-to-use
unified command language.

1.1 Development of ISIS

A contract was awarded to Dr. W. Joseph Berman at the
University of Virginia to develop an engineering prototype of
ISIS. The design and implementation of ISIS was evolutionary in
nature. Preliminary versions of 1SIS were installed at Langley
Research Center (LaRC) to allow testing of the "feel" and
effectiveness of both the functional capabilities of the systen
and the command syntax. Once sufficient capabilities were
available, ISIS was used to complete its own implementation.

ISIS was originally developed under the CDC NOS-BE
operating system at the University of Virginia and the CDC NOS

POTMITSS

5w o kol At Rt

1.2 operating system at LaRC. The transportability of ISIS is
being tested by efforts to rehost it to an IBM 370 system and to
a PDP-11 machine. Further research is planned into allowing
ISIS to be distributed over several processors.

1.2 Organization of the Report

This report presents an overview of the capabilities of
ISIS and the flavor of the language syntax. It contains actual
examples of ISIS operation, but is not meant to be complete or
to be used as a guide for system operation. The ISIS User's
Manual contains a detailed description of how to access ISIS
and of the complete syntax for all system commands. The ISIS
User's Manual, instead of this document, should be used to
answer detailed questions regarding ISIS operation.

Chapter 2 of this report presents an overview of the
capabilities of ISIS. It includes a discussion of the system's
structure, the basic functions of each system component, and
examples of command language syntax. Chapter 3 is an example of
how ISIS can be used; it illustrates how ISIS was used to
develop itself and includes a sample file management
organization and a sample interactive session. In Chapter {4,
the underlying stability and transportability of ISIS are
investigated. Finally, Chapter 5 presents the current status
and future plans for ISIS.

2. A Functional Overview of ISIS

ISIS is an interactive software development environuent.
It is powerful enough to handle almost all data management
requirements of the software developer, yet it can easily be
used by clerical personnel. This flexibility is achieved by
having a uniform, integrated interface between ISIS and the
user.

In order to present a uniform interface to the user, the
ISIS command language is an interactive programming language.
This language is patterned after PASCAL and gives the user such
familiar constructs as declarations, assignments, conditionals,
loops and input/output statements, Modifications to the PASCAL
syntax are minimal and all are motivated by the demands of an
interactive environment.

In addition to traditional programming constructs, ISIS
includes statements for controlling the three special functional
components of ISIS. These components are the text/data editor,
the file manager and the tool invoker. Because these components
are totally integrated within ISIS, the user can freely intermix
statements controlling these components. This is a major
advantage over the use of a set of independent tools to perform
these same tasks.

2.1 Flow of Control and Data within ISIS

There are many interrelationships among the interactive
programming language, the text/data editor, the file manager and
the tool invoker. Figure 2.la shows the flow of control in
ISIS. This is a simple tree structure in which the user always
communicates control information to ISIS via the interactive
programming language.

Figure 2.1b shows the flow of data in ISIS. This diagram
is complicated by the data transfers which can be initiated.

User

Interactive Programming
/ Language \
/ I \
/ | \
¥ l Y
Text/Data Editor | File Manager
|

Tool Invoker

I

Software Tools

Figure 2.la. Flow of Control in ISIS

-------------- User
/ l
I Y
| Interactive Programming
| £ Language x
| / f
I / \
/Y l X
Text/Data Editor <-------- tommm——e s > File Manager
\ f 4
\ ! /
\ I /
| Y /
Tool Invoker /
[/
l /

4

Software Tools

Figure 2.1b. Flow of Data in ISIS

e e TG S A ot AR e T e o . . - PR -

SRR W

L PP

The user supplies data for the INSERT, REPLACE and MOv. r'Y
statements of the text/data editor (see Secticn 2.3). Data is
transferred between the text/data editcr and the file manager in
response to the USE and SAVE statements (see Section 2.4). Data
from the text editor can also be moved to the tool invoker via
the RUN statement (see Section 2.5). Finally, software tools
can access and update an ISIS library by use of the ISISGET and
ISISPUT utilities (see Secction 2.6).

2.2 The ISIS Interactive Programming Language

The user communicates with ISIS via "commands", where a
command is defined as a sequence of one or more "statements".
Figure 2.2 is a list of the programming statements currently
implemented in ISIS. These statements are in two distinct
categories. The declarative statements (ABBREV, TYPE, VAR and
ERASE) are executed as soon as they are parsed. For the other
statements, intermediate-language code is generated as the
statement is parsed. When the entire command has been parsed
and no error has been encountered, the generated code is
executed.

As indicated in Figure 2.2, therc are some interesting
differences between PASCAL and 1SIS. These differences are
discussed in the following paragraphs.

The ISIS interactive programming language supports the
PASCAL concept of types., In ISIS, the built-in types include
INT (PASCAL's INTEGER), REAL, BOOL (PASCAL's BOOLEAN) and
STRING. STRINGs are arbitrarily-long character sequences since
fixed-length strings are difficult to use in an interactive
environment, As in PASCAL, these simple types nay be combined

to form complex data structures by use of the ARRAY and RECORD
type constructors,

Because of the diversity of allowed data types and the
desire to allow the use of mnemonic identifiers, all variables

i g b PRI L
Sl ST LIRS L TR

e ——— ———— —

e M

:
. 3
Declarative Statements Wf
.

ABBREV AB, ABR:ABBREV (* Statement verb abbreviations ;

TYPE VECTOR:ARRAY [1..9] OF INT (* Type for future use, as in PASCAL ',

VAR M1,M2 :VECTOR (* Variables of specified type Q

ERASE ABR,VECTOR, M1 (* Eliminate ABBREV, TYPE or VAR)
Code-Generating Statements

Assignment Statement:

M1[TRUNC(LN(EXP(3)))] := MI[TRUNC(LN(EXP(3)))] + 1

Control Statements:

LOOP EXITIF I>8; I := I+l; J := J-1; EXITIF J<@; END
REPEAT EXITIF I>0; I := I+l; J := J-1; UNTIL J<@

WHILE I<=0 DO I := I+1; J := J-1; EXITIF J<0; END
FOR I :=1TO 0 DO J := J-1; EXITIF J<0; END

IF (I<8) AND (J>8) THEN
I :=1I+1: J := J-1;
ELSE
I :=1I-1; J := J+1;
END

Compile-and-Execute Statements:

XEQ 'I := 17; PRINTLN I (* Do statements in STRING
EXEC (* Do statements in ACTIVE text frame

Terminal Input/Output Statements:

e T

ASK S,'VALUE TO BE ASSIGNED TO S = ' (* Prompt for terminal input
PRINT "INT I=', I, '; REAL R=', R:12:4 (* Terminal output
PRINTLN '; BOOL B=', B, '; STRING S=', § (* Carriage Return at end

e ST

Figure 2.2, ISIS Programming Statements

GR.G NALL FAGE 15

OF POOR QUALITY

must be declared. However, the user does not have to exn1/ .itly
declare all of his variables: if an undeclared identifi~: is
encountered during parsing, the user is prompted for the
identifier's declaration. Another modification of the PASCAL
use of identifiers is that identifiers must be explicitly
ERASEd, This is because of the lack of block structure during an
interactive sessicn,

In PASCAL, each control structure allows only one
statement, This restriction is circumvented by use of tLhe
BEGIN/END compound statement. In ISIS, each control structure
allows multiple statements, has its own terminator, and may
have "EXITIF condition" clauses among its controlled statements.

While user-defined procedures and functions similar to
those of PASCAL are part of the ISIS design, they have not yet
been implemented. There are, however, two statements which are
similar to "parameterless procedures". The XEQ statement causes
ISIS to treat the contents of a STRING variable as a command to
be executed. The EXEC statement causes the contents of a text
frame (see Section 2.3) to be treated as a command,

In contrast to PASCAL, there are two sets of input/output
statements in ISIS. The ASK/PRINT statements are used to
communicate with the user at the terminal, while the READ/WRITE
statements are used to communicate with an editor frame (see
Section 2.3).

Since PASCAL is a programming language which is compiled
as a batch process, some information kept by the compiler is
either inappropriate to display or is displayed in tabular form.
In an interactive environment, the user often needs to gain
access to this information., The SHOW statement is used in ISIS
to display this information. Figure 2.3 lists several of the
options of the SHOW statement.

System Information

ro

SHOW RESERVED

(* Displays the

SHOW STATEMENTS (* Displays the

SHOW SETS
SHOW CLEARS
SHOW SHOWS
SHOW OPTIONS

SHOW ID id(s)

SHOW ABBREVS
SHOW TYPES
SHOW VARS

(* Displays the
(* Displays the
(* Displays the
(* Displays the

(* Displays the

ISIS reserved words
ISIS statement verbs

options
options
options
options

current

of the SET verb
of the CLEAR verb
of the SHOW verb
for editor output

use of the specified

(* abbreviation(s), type(s), variable(s) or frame(s)ﬁi

(* Cisplays the current user-declared abbreviations
(* Displays the current user-declared types
(* Displays the current user-declared variables

Figure 2.3. The SHOW Statement

o weewn Ty s, e i RN ol Tl e

2.3 The 1SIS Text/Data Editor

The ISIS text/data editor is a line editor similar to the
WYLBUR system developed at Stanford University. This editor
was chosen as the best editor for the slow (3¢0-1200 baud)
terminals used at Langley Research Center. The ISIS editor has
several improvements over the WYLBUR editor. The most
important of these is the ability to edit multiple "frames"
simultaneously.

A "frame" is a named unit of storage that consists of
"items" that are always maintained in ascending order by their
associated item-numbers (in the range 0.008 to 999.999). An item
is either a STRING or a RECORD, and all of the items of a frame
must be of the same type. If they are all STRINGs, the frame is
a "text frame" and the data editor is called a text editor. If
the items of a frame are RECORDs, the data editor resembles a
simple version of a Relational Database system (this option has
not yet been fully implemented).

The text editor allows the user to edit scveral frames
simultaneously. Two frames, SHOWN and WORK, are predeclared by
the system; the user may use the FRAME statement to create
additional frames., Since a user will typically edit one frame
at a time, ISIS allows the user to identify this frame as being
ACTIVE. Unless a frame is referenced in a statement using a
prefix of the form "frame-id/", the ACTIVE frame is used for all
editing statements.

Figure 2.4 illustrates the operations which may be
performed on a frame. Text to be stored in frames may be
entered from the terminal (INSERT) or by use of the WRITE
statement. When replacing, modifying, deleting or retrieving,
the affected items may be specified by constraints on both the
items' numbers and their contents (including column
restrictions). A special retrieval statement is the FOREACH
ctatement, an iterative statement similar to the WHILE
statement, On each iteration, the next item satisfying the

-10-

B el St S

B R
X el iy

RO DI TP ARt

IR e el e

SfAs

ARy L)

|
Ft“_,wﬁt

clara
FRAME DATA,AUX,BLD:STRING (* Create editing frames of specified type

ERASE DATA,AUX (* Eliminate frames
ACTIVE BLD (* Specify the ACTIVE editing frame

Code-Generating Statements

Item Entry Statements:

WRITE 'A NEW LINE',.L+l1 (* Write a new item at end of frame
INSERT 1.5, 2.1/2.4/.1 (* Prompt user for 1.5, 2.1, 2.2, 2.3, 2.4

Item Editing Statements:

REPLACE 4 (* Get replacement for item 4
MODIFY L.F(4) (* Get alterations to first 4 items
ADD '*' AT 1 IN ALL (* Place a * in column 1 of every item

CHANGE '*' T0 '+' IN .L :M (* All * in the last item become +
Item Removal Statements:

DELETE NOT '*! (* Remove all items which do not contain *
VOID (* An efficient form of 'DELETE ALL'

Item Retrieval Statements:

COUNT '*' IN 10/1€0 (* Tally items in items 10 thru 1008 with *
LIST '*' AND NOT '**'(]) (* Print items with * but not ** in column 1
READ S, .F (* Read first item and place in variable §

FOREACH S IN .F(20) DO (* Iterate for the first 20 items
PRINTLN ,K,LEN(S) (* Print item-nunber and item's length
END
Item tanipulation Statement:
MOVE 1/5 TO .L+1//1 (* Reposition items 1 thru S to end of frame

copy 2/4 TO 5.1//.1 (* Duplicate items 2 thru 4 at 5.1 by .1
REKEY ALL TO 10//10 (* Resequenced item-numbers are 10, 20, 3¢,

Figure 2.4. Frame Editing Statenents

-11-

i

e

A it e Y

TR ALY

retrieval criteria is assigned to an ISIS variable and ca.. be
processed using the ISIS programming language. Items can also
be COPYed and MOVEd, even from one frame to another.

Frames are only used for temporary storeje. In order to
retain the editted data, it is necessary to SAVE a frame as a
page in an ISIS library using the 1S8IS file manager.

2.4 The ISIS File Manager

The file manager controls access to a hierarchical file
structure, 1In contrast to other file systems, the ISIS
hierarchy is of fixed depth and each level has a name. The
highest level of the hierarchy is the "library". Within the
library are the "shelf", "book", "chapter" and "page" levels., A
frame is stored as a page in this structure. Pages are
identified by names of the form:

library.shelf.book.chapter.page

Figure 2.5 lists the statements which relate to an ISIS
library. The SHOW PAGES statement displays the contents of an
ISIS library. The output generated by this statement is
controlled by the optional specification of shelf, hook, chapter
or page identifiers, The effect is to perform a pattern-match
over the library's directory.

The USE statement is used to retrieve data from an ISIS
library and place it in a frame for editing. In transferring
the contents of the page to the frame, the pagename is
associated with the frame. This name may be changed by using
the SET NAME and CLEAR NAIMNE statements, and its current value
may be determined by SHOW NAME. This name 1is important because
the SAVE and SAVE* statements use this name to determine the
page in which a frame will be stored. All of these frame/page
statements may be prefixed by a frame-id to access a frame other

-12-

Code-Generating Statements

Directory Display Statement: |
!

R N R L AN S RN L P O P W)

SHOW PAGES SYSLIB.ISIS.SOURCE. . (* Display pages which match pattern

s e
Pplinly

Frame/Page Interaction Statements:

USE SYSLIB.ISIS.SOURCE.IPL.TAIL (* Transfer from page to frame %

2

,‘t
SET MAME SYSLIB.ISIS.SOURCE.IPL.HEAD (* Change pagenare of frame ﬁ
SHOW NAME (* Display pagename cf frame
CLEAR NAME (* Set pagename of frame to nil i
SAVE (* Transfer from frame to page 5
SAVE* (* Overwrite page in library y

Page Removal Statement:

cogng e A A

PURGE SYSLIB.ISIS.SOURCE.IPL.BAD (* Eliminate page from library

P

Index Statements: g

SET INDEX HOLD ON SYSLIB.ISIS.SOURCE.IPL.TAIL (* lake association 3

SHOW INDEXES OVER SYSLIEBE (* Display indexes in use
SHOW INDEX HOLD (* Display pages with index :
SHOW INDEXES ON SYSLIB.ISIS.SOURCE.IPL.TAIL (* Display indexes on page “

PRI SR JRRLIW.

CLEAR INDEX HOLD ON SYSLIB.ISIS.SOURCE.IPL.TAIL (* Cisassociate
CLEAR INDEX HOLD (* Eliminate an index
CLEAR INDEXES ON SYSLIB.ISIS.SOURCE.IPL.TAIL (* Eliminate indexing

4 s athe Dodia il

Y

Figure 2.5. File Managing Statements

-13-

CRIGINAL Fros s

iy
. OF POOR ounliry
than the currently ACTIVE frame, TR

The PURGE statement eliminates a page from a library. if
this is the last page of a chapter, the chapter is alsc
eliminated. This process is continued through the boock and
shelf levels, |

In addition to a hierarchical storage organization, the
ISIS file manager allows "indexing". An index term is a keyword
that may be associated with one or more pages using the SET
INDEX statement. There are no limits on the rnumber of index
terms over a library, on the number of pages which can be
indexed by a single term, nor on the number of indexes which may
be associated with a given page. The SHOW INDEX and SHOW
INDEXES statements allow display of the index terms and their
current associations. The CLEAR INDEX and CLEAR INDEXES
statements can be used to disassociate index terms from pages.

2.5 The ISIS Tool Invoker

The tool invoker is used to send textpal information to the
host computer's internal reader. This is a primary mechanism
for creating extensions to the standard ISIS system. Chapter 3
includes an example of the use of this mechanism.

There are three statements that form the basis of the tool
invoker. The RUN statement causes textual information to be
appended to a special sequential file. Before this file can be
submitted to the host operating system, it must form an
acceptable input to the host operating system. This typically
means that it includes job control statements specifying the
sequence of tasks to be performed.

The SEND statement causes the contents of the RUN file to
be submitted to the host operating system's batch internal
reader. This mechanism initiates a batch program which will be
executed separately from the ISIS interactive session, possibly

-14-

on a different computer. Because the user can continue his
interaction with ISIS in parallel with the execution of his
tool, this approach is very attractive if the tool does not
involve user interaction. Another advantage is that existing
tools can easily be made available to ISIS users. The only
problem is that of accessing ISIS libraries from the tool. This
is accomplished by use of the I1SIS utilities ISISGET and ISISPUT
(see Section 2.6).

If a tool requires user interaction, it could be
implemented using the ISIS interactive programming language.
This alternative will be more attractive when user-defined
procedures and functions can be "compiled" into the ISIS
intermediate language. However, existing interactive tools and
large, complex interactive tools cannot use this alternative.
Instead, they can use the STOP:SEND statement,

The STOP statement is used to terminate an ISIS session.
If this statement has the option ":SEND", the termination of
ISIS is accompanied by the submittal of the RUN file to the host
operating system's jinteractive internal reader. This

initiates 'n interactive program which temporarily replaces
ISIS. When this tool reaches completion, it can return to ISIS
via the host operating system., The advantage of this approach
is that, as with batch tools, the tool is essentially
independent of ISIS. The disadvantage is that the user will
probably perceive a distinct change in the style of his dialogue
with the system, contradicting the ISIS goal of uniformity. As
with batch tools, interactive tools can gain access to ISIS
libraries by use of the ISIS utilities ISISGET and ISISPUT (see
Section 2.6).

2.6 The ISIS Utilities
Currently, there are three ISIS utilities. Of these,

ISISGEN is used least frequently. It simply creates a new ISIS
library. The other two utilities are ISISGET and ISISPUT.

-1 5-

R R TR

e R R L I T

aa Bk e St Sa b . e itk e b o Cant on

PR TR '4-'_:".‘ Vel es Iy B1-;1;_‘;&;;}:@;.,2};3...-‘

ORIG!NAL PAGE IS
OF PCCR QUALITY

ISISGET is used to retrieve textual data stored in an .JsIS
library. The inputs to this program are the name of a local
file into which the text is to be placed and the name of a
page. ISISGET retrieves the specified page and writes it as a
standard sequential file in the local file.

ISISPUT reverses the processing of ISISGET. It takes the

textual contents of a local file and stores it in a named page.
If the page already exists, it is overwritten.

-16-

:,1. e

.-

3. Using the ISIS System

In order to show how ISIS might be used to solve some of
the problems of software development, this chapter discusses how
ISIS is being developed using ISIS. All of the data concerning
ISIS is stored in the "SYSLIB" library. Since SYSLIB contains
data on several software projects, the ISIS information is
stored on the "ISIS" shelf of SYSLIB.

3.1 Storing the ISIS Source

The "SOURCE" book on the "ISIS" shelf contains all of the
source code for ISIS. This book consists of 11 chapters and a
total of 64 pages (see Figure 3.1). The chapters are based
upon the functional organization of the ISIS software. Some of
the pages contain part of a routine (e.g., IPL.HEAD), some
contain a routine (e.g., PROGRAM.FATAL) and some contain several
routines (e.g., ITEM,UTILITY). The pages containing only a part
of a routine are used as part of a special technique that avoids
having to recompile all of the ISIS source whenever only a few
routines are modified. The rule used to create the remainder of
this structure is that several short routines accessing a single
data structure are stored together to sinplify editing.

There are two important reasons why this structure is
only two levels deep. First, this structure reflects the highly
modular design of the ISIS software. Second, this structure
makes it easier to remember where a particular routine is
located since the "SYSLIR.ISIS.SOURCE." part of the page name is
the same for all of these source pages.

3.2 Control of the ISIS Tecol Invocations
The "CONTROL" book on the "ISIS" shelf contains several

pages with job control statements. Each of these pages
corresponds to a particular tool invocation used in creating

-17-

A R A S T R A T R TR arkaan
Syt S8 M KA e et T e e S S L B i 4 oy 4 7

R AL S RSt A Al by s NG S

”A s o .,,..A. e 4
e <o it S
~~
6]
o) x
© LA, 1 (%)
Loz [ol %]
o &i=o) (&% (&3] < (¢
4mA N L2, [eS3 g
YA —~m = == . L1, K L, .,
S om0 o= oo D] ot =
1 B fad (2] oL = m > E—E %] <t = — (]
O . > (213 [+ e] [+ == . 1312} = = 78] (&)
=, Qo %] N Qam (o = b m [SS RN G155 © w N o~ o Lo (6] <<
OO o~ [s421 [a]:H 5~ o = o] [o) = = [& T o<t [s4 o
mE= 2 onN %] <2 [, [&17] [o = o -oEm 3 e W v = B [&]
Qs m= = A0 o oz f2, = I, BB 0 v Ja =D 1 <C ==
g E~ =g H< AZ0 am OHO = <<t I %] HO A A | S T 4
[aYA4/] — a <\ = = O m < <¢ [s -2] S S-S ood % B-ad o] —H <t om -4
el I M= (1] <<t B~ E [O W) < O @ om o D0 o<t v
<O0n. [o H AL M [25 < [~ OO < OB OWm == @ O
=m O ENEKZ>< M= -0 =t 3 O (@] [- 1 5% B °9 [s gt Shol &) = D DO mE=m M < =
~=a, - 4 OMEHT @ B 3 -ODXE [&] <O oo <<= OAOVH HHO meza, H
o [o 3= OV LN<t M — Omum A B M [ZREHO [=22 A<tz =g S) A =
lnw fr, B4 (0 . [aY N PY-B mi mLO O © = O > HAMHE = DoY) <D HaZHOA, mel = HO =
wS oW L] & Ve NEHIIO v =0 =O i, e O <€ O gl Jan| (8] mOoOHOW D) Onm NZLMNLCO= <<
~ Aamo —NIZZEIHO =~ < =0 1 @ D oA = CEbl<t O A< HENWHNOE HHOLIZS S HH o
O =opm nNOoOCOEZTOQ = A, O b =0 W =M)<t = L0 EHONIHWMOO NIOOIIHEE Ol
LD <:E VIO O - - 53 <G 0 A O <O Ot @ D mu QM MmO OIZL O H>0OA O HO@mCOMItD OJ
o. o IS IO e oz LO=ZE- 04 ~ W o Ol O = WLoOm > omzmooa: CALNONLIAN KO
i moeQAd Jos=<o - 113 = A OD=MH a A 3 AA BHEOME W Hom <Nma.o NEHEE O mE v fan [P
AnK <5 m MLOIINKAZO Ok, WA WM O = MO L, V) IO O ([WDANOMEH O WMWLOHIA O
Nnu SZEMO < ODxmUC<<t ,JOO M HMA<] oOmm- <@ <03 , LI WOV AV >H OO0 <l 2+ LJIXZZO0 o=
= 0O OO0 H - OHK<K [, O i<t @ O << s A -~ O e [[Y1) HOL ZEef)<t < [e S~ AR e o3 23]
o Q. —HEmX mOAJdHAMmER mEmEHO) B =Sl gL %) QMK NDIENEY) HHO MO OV AmM@m@ONHZED VDX Q<G T
o i, <in=Z < O HLMZOMH v ~A.00 AMUO MOV MWIEHII mMNO Ol I O<OM [Mem ZHO0O <z D
L, A<t S>ZEOHAMHE ZL0Jd< 1 =Zom A < WM<l ZREGEDN ZNm FNO000 A DI Om<m @ L OO
OO0 N = S12] ZOHZ OoOoMm> HOD I X [2 CHH O~ Mo O =IO NAMMW<C, HHIGELDOLIONNW
oI > KMAA<ONH OD < mHO - A <O L, <tOLfz, 3 OH QU mmH<tme QWILI<CHEEZT > Wi 22 -
gt A MQA<t I MEE= <[+ M~ M -~ [D O Mm=x ZOZ >ZNMHA ZEHE@MSLC N <€ O NI W < 30
T ZMZOINMDI M WMME M aSm <<num Mo <@L <O | <A TN M) TP HIGED <

<t ON<COHW O<< LN OB <M Ay [72 B T < PR €3 P QMM =< O~ HNEEI+ CND<CZ~D W
=LY A<t RN O g AOZA> HEKMK « A0 & HQAQ HO A v OMOLIN DOMmMIE <Lz ALl nmneEy
ZH H <CHZNKONMY LLHEBEEFAO EAaHSZE <00A A0AM QNI <O O000UVUA NAOHIWMEWMEFY OO0m=MITO o HE
O=Ziny) MED<CHMOHN<E Di<<tf, MIA@O0 =>=0oAa OouAa HMA<t <l Jgmgez DamAlgo OO NAEOoO =<
OHHMH AT <CQ<A, MAANOD BHCOO oo Dl NMIm o> o006+ .<<aHNOA Q<CE>UIEEHLIO 0 HO

W, L IR IR IR I B E- 3R 3% % WM »n* W K K WM e M LB BRI] n m W W M o W W X R e Nt N M W W oWt M MR M N R R AW

T B i et A e R R e A e e R et NP R e e W i g NI e N A
= I & A >4 >4 = o [N
13 & m @ (YA s nm - I o O o =
- 1% MOZ= @ D .33 [LNE> HE 0> — O > AOLE- o« Dos Lo W
A< N<CQIEMOZH [WA.<Of, AJJOME Mo DH<i JID L0 = 0 W J M Tom= <= QAZOO0WM ©NONE.J

SN EEHZNEZONY WEROV ZHZDM MEOA MUAM HOAAQOX XOCHAQOSAeamAkNa0oHH HO <Opimye <<z=mHH
LM ZL DL T DODDLISOLREHHOER Do ALK HxAOMEM<CEHIME IS HIHEMD.AHEANMIIN WD OOMM <<
LR SAQREHEFEO>NA, MAQAMQCZEHDODNAHMLMCED DD DH<CIMOHME>CMAIAOH<TA U HNOY) T30 LI - 30O Ao =

o] 3] =3 -~ [+ 4 &3] = = [o m

o (%2} [72] = [a €8] - m [| 3
= > <t | 2 = (e} B~ n) a. a.
o 0 m 7] = = - (&% . - -

.ISIS.SOURCE Booxk

Contents of SYSLIZB
-18-

1.

Figure 3

and maintaining the ISIS system. Figure 3.2 is a listing of

one of these CONTROL pages. Coding of these pages requires
expertise in writing job control statements; however, once they
are written, they should not have to be redone unless there is a
change in the host operating system. These pages are under the
control of the BUILD pages described in the following paragraph.

The "BUILD" book on the "ISIS"™ shelf contains several EXEC
pages. When they are EXECed, they obtain the appropriate
CONTROL page, ask the user for additional information, and
create a RUN file. The user can then use either the SEND or
STOP:SEND statements to invoke the tool, Figure 3.3 is a
listing of the BUILD code associated with the CONTROL
information of Figqure 3.2. These pages require expertise in
writing ISIS commands; however, once they are written, they are
an easy-to-use mechanism for making standard tool invocations,

3.3 A Typical Interactive Session

Figure 3.4 shows how the SOIUJRCE, CONTROL and BUILD pages
night be used in a typical session. First, the WORK frame is
used to hold the source code while it is being editted. Once
this editing is completed, the appropriate BUILD page is loaded
into the WORK frame and EXECed. The BUILD code then creates the
CONTROL frame to hold the CONTROL page and asks the user for
information which is added to the CONTROL frame. Once this
frame is completed, its contents are transferred to the RUN
file. In this case, a batch execution of the tool is invoked.

-19-

COMMENT.

COMMENT, ACCESS THE FASCAL COMPILER AND COMPILE THE SOURCE
CONMMENT,
ATTACH,PASCAL=PASCALR,PASLIB=PASLIBR/UN=LIBRARY, NA.
LIBRARY,PASLIB.

DEFINE,OUT=SYSOUT/M=1,NA.

ATTACH,OQUT=SYSOUT/M=W,NA.

PASCAL, IN,OUT,F=120000.

COMMENT.

COMMENT. STORE THE RELOCATABLE OBJECT DECKS IN A SYSTEM LIBRARY
COMHENT,

ATTACH,ISISOBJ/M=W,NA,
LIBEDIT,I1=0,P=ISISOBJ,N=ISISLGO,L=1,B=LGO,C.

COMMENT,

COMMENT. LOAD THE RELOCATABLE OBJECT DECKS TO FORM IXIX

COMMENT. IXIX IS THE EXPERIMENTAL VERSION OF ISIS
COMMENT,

liAP,OFF,
GET,SEGIN,ISISIO/NA.
DEFINE, IXIX/HM=,NA.
ATTACH, IXIX/M=W,NA.
SEGLOAD(I=SEGIN,B=IXIX)
LOAD(ISISOBJ,ISISIO)
MNOGO,

Figure 3.2. Listing of SYSLIB.ISIS.CONTROL.PASCAL.LOAD

ERASE S,K,CONTROL; VAR S:STRING; VAR K:KEY; FRAME CONTROL:STRING
REPEAT
ASK S, 'FUNCTION (<?> FOR HELP) (<CR> TO ABORT): '
IF S='?' THEN (* WANTS HELP .-
SHOW PAGES SYSLIB.ISIS.CONTROL.PASCAL. e
ELSE g

IF S<>'' THEN (* GET CONTROL CARDS g
XEQ CAT('CONTROL/USE SYSLIB.ISIS.CONTROL.PASCAL.',S) Bt
(* ADD ACCOUNTING INFORMATION 5
CONTROL/WRITE 'ISIS,T77,CM1200860. BERMAN/DAMACS',.01 T
ASK S,'PASSWORD: '; (* PASSWORD IS ONLY VOLATILE INFO $< 3
CONTROL/WRITE CAT('USER,4600081,',CAT(S,'."')),.02 k"
CONTROL/WRITE 'CHARGE,M46601,ISIS.',.03 B
(* CREATE CONTROL CARDS TO FORM SOURCE FILE P

CONTROL/WRITE ‘'COMMENT.',.04
CONTROL/WRITE 'COMMENT. CREATE THE SOURCE FILE',.05
CONTROL/WRITE 'COMMENT.',.06
CONTROL/WRITE 'ATTACH,ISISGET/Na.',.07
K := .100 (* INCREMENT BY .001
LOOP
ASK S, 'SYSLIB.ISIS.SOURCE.: '; EXITIF (S='') OR (8='?") ‘
S := CAT('SYSLIB.ISIS.SOURCE.',S) (* CHECK IF EXISTS fﬁ
XEQ CAT('SHOW PAGES ',CAT(S,':KEEP'))
SHOWN/IF .F<=.L THEN (* PAGE DOES EXIST
CONTROL/WRITE CAT('ISISGET,T. ',S),K
CONTROL/WRITE 'REWIND,T.', XK+.0001
CONTROL/VIRITE 'COPYCF,T,IN.',K+.0002
CONTROL/WRITE 'RETURN,T.', K+.0003
K := K+.001

e o
TS i

ELSE (* REPORT FAILURE TO USER ?ﬂ
PRINTLN S,' DOES NOT EXIST.' g
END 8. |
END .)
IF §='"' THEN (* HNORMAL TERMINATION -
CONTROL/VWRITE 'PACK,IN,IN.', K
CONTROL/VWRITE 'RETURN,ISISGET.',XK+.001 &
CLEAR RUN; CONTROL/RUN:NK (* COPY TO RFILE FOR SEND o
PRINTLN 'READY TO SEND !

ELSE (* USER WANTS TO TRY AGAIN
PRINTLN 'XXX RESTARTED XXX'
END
ELSE (* USER JAHNTS TO ABORT
PRINTL! 'XXX ABORTED XXX'
END :
END -
UNTIL $<>'2! X

Figure 3.3. Listing of SYSLIG.ISIS.BUILD.PASCAL.ENTER

_2]-

. I et el s A o L s [PO ~ oL,

USER NAME: 46800001, invoke
TERMINAL: 4, MAMIAF
RECOVER/ CHARGE: charge,m4600i,isis

TO GET NEWS AND THE TERMINAL DEFINITION CHARS, TYPE *INFORI,NEUS*,
TO MAKE SUGGESTIONS, *INFORM,SUGGEST*.
INFORMATION ABOUT THE SYSTEM MALFUNCTION ON 7/23/79 IS ON THE *i(EWS*.

CHARGE.
/attach,isis. notice that user input is in lower case
/isis.

ISIS MONITOR vV 1.00 79/08/05. 13.10.40.

13.10.40?use syslib.,isis.source,item.access (* fix a bug
SYSLIB.ISIS.SOURCE.ITEN.ACCESS USED AS WORK
13.11.16?1ist 'ITMREPLC' (* locate the area of interest

70. = ITHCOUNT, ITHLISTF, ITHREPLC,
458. = I¥ OP=ITHREPLC THEN
533. = ITMREPLC, ITHCHANG, ITMADDST,

13.11.482?1ist 533(4)

533. = ITMREPLC, ITHCHANG, ITHMADDST,

534. = ITIMODIF: BEGIN OPCLASS := (OP=ITIICHANG) OR (OP=ITMADDST):;
535. = IF ECHO OR NOT OPCLASS THEN ITHMOUT(1l,KEYA);
536. = IF ITHMRPL THEN (* POSSIBLE CHECK VETO FIRST *)
13.12.06?delete 535 (* eliminate bad line

535. = IF ECHO OR NOT OPCLASS THEN ITMOUT(1,KEYA);
13.12.49?insert 535//.1 (* insert correction

535. = if opclass then (* check echo flag *)

535.1 = begin if echo then itmout(l,keya);

535.2 = end else itmout(options,keya);

535.3 = <<BREAKRD>

INSERT TERNIMNATED.
13.14.1521ist 533/536 (* verify correct cata entry

533. = ITHREPLC, ITHCIHANG, ITMADDST,

534. = ITH!NODIF: BEGIN OPCLASS := (OP=ITHCHANG) OR (OP=ITIMADDST) ;
535. = IF OPCLASS THEN (* CHICK ECHO FLAG *)

535.1 = BEGIN IF ECHO THEN ITHOUT(1,XKEYA);

535.2 = END ELSE ITHOUT(OPTIONS,KEYA);

536. = IF ITHRPL THEN (* POSSISLE CHECK VETO FIRST *)

13.16.06?save* (* make changes permanent
SYSLIB.ISIS.SOURCE.ITE!l,ACCESS SAVED.
13.16.52? 1

Ficure 2.4. Sawnple ISIS Session (Part 1 of 2)

13.21.59?use build.pascal.enter; exec (* SYSLIB.ISIS assumed by context.
SYSLIE.ISIS.BUILD.PASCAL.ENTER USED AS WORK ‘
FUNCTION (<?> FOR HELP) (<CR> TO ABORT): ?
SYSLIB ,ISIS .CONTROL.PASCAL .ONLY

. . . .UPDATE

. . . .LOAD

. . . .SPECIAL

. . . .SIMPLE
.COH

FUHNCTION (<?> FOR HELP) (<CR> TO ABORT) : load
SYSLIB.ISIS.CONTROL.PASCAL.LOAD USED AS CONTROL
PASSWORD: invoke

SYSLIE.ISIS.SOURCE.: program.head

1 ITEMS IISERTED. LAST ITEM INSERTED IN SHOWN : 1.
SYSLIB.ISIS.SOURCE.: item.acess
SYSLIB.ISIS.SQURCE.ITEN.ACESS DOES NOT EXIST,
SYSLIB.ISIS.SOURCE.: item.access

1 ITEIIS INSERTED. LAST ITEHM INSERTED IN SHOWN : 1.
SYSLIB.ISIS.SOURCE.: program.tail
1 ITENMS INSERTED. LAST ITEM INSERTED IN SHOWN : 1.

SYSLIB.ISIS.SOURCE.:
RUN CLEARED.
45 ITEMS I SPECIFIED RANGE,
READY TO SEND
13.24.38?send (* submit to batch internal reader
"AAKAQZV' SENT TO BATCH EXECUTION.
13.25.11?stop

ISIS TERIIMNATED. (ADDRESS: 5)
- LOAD FL 542512 STACK FL 025266
/attach,ixix. access experimental ISIS just created
/ixix.
ISIS MONITOR Vv 1.00 75/08/05. 13.27.26.
FPRAIE SHOWL [SHOIN] RECOVERED:
FRAME WORX [*ORK] RECOVERED: SYSLIB.ISIS.BUILD.PASCAL.ENTER
FRAME CONTROL [V/ORK1 } RECOVERED: SYSLIBE.ISIS.CONTROL.PASCAL.LOAD

13.27.26?reglace 533:n1 (* check operation of correction
1O ITENMS IN SPECIFIED RANGE.
13.28.14%replace .f:nl (* try again
1. =sucCcess,
1 ITEIIS IN SPECIFIED RANGE.
13.29.€1?stop

ISIS TERLIINATED. (ADDRESS: 5)
- LOAD FL 042516 STACK FL §25262
/bye

Figure 3.4. Sample ISIS Session (Part 2 of 2)

-23-

GRIG!INAL PAGE IS
OF PCCR QuUALITY

4. Stability and Transportability of ISIS

A central goal of ISIS is that of stability. ISIS &achieves
this goal by having minimal dependence upon the host operating
system. It is interesting that most of the tactics used to
attain stability are applicable to a type of transportability.
That is, ISIS can easily be transported to a new computer;
however, certain details of its operation will not be the same
from machine to machine.

4.1 PASCAL Coding

ISIS is coded almost entirely in PASCAL. Since no standard
has yet been adopted, only a subset of the PASCAL language is
used. There are no labels, GOTOs, SETs or NEWs. Packing is
used sparingly and with consideration of how the structures
might be implemented on a variety of machines.

The I1SIS code has a very shallow structure. That is, there
are few routines which are nested more than two levels deep.
This 1s partially because nost routines are used in more than
one context. It is also because of the mechanism that was used
during the development of ISIS to avoid having to completely
recompile ISIS every time a change is made. The only excepticon
to this shallow structure is in the recursive descent parsing.

4.2 Operating System Independence

Achieving total operating system independence is not
possible; however, considerable care has been exercised in
designing the interface between ISIS and its host operating
system. This has resulted in an interface that is relatively
insensitive to operating system changes and is implementable on
& broad range of computers. This interface is used to access
and control the host operating system's capabilities for file

_24-

manipulation, disk input/output, multi-user scheduiing, and
remote terminal communications.

ISIS assumes that the host operating system provides a
basic file system that allows for creating, accessing, extending
and destroying files. Each ISIS library corresponds to a file
in th» host file system, 1In addition, the host file system must
allow temporary files for each ISIS user. Since some file
systems do not allow dynamic creation of these temporary files,
ISIS has a limit on the number of frames a user can have ac any
point during a session.

ISIS uses only two disk data structures. The first 1s a
sequential file. This structure is used for input, temporary
storage and output. Frames and libraries are stored as "direct
access files". That is, ISIS issues requests for randomly
reading or writing fixed-lenygth records by specifying their
relative position within the file., These organizations are
available on almost all operating systems.

ISIS is coded as a single-user system. The only
interaction between users occurs as conteation for a library.
To prevent deadlock, each time a statement uses a library, ISIS
gains exclusive control of the library, performs the statement
and releases control of the library. Since no statement

references more than one library, deadlock is impossible,

ISIS comnunicates to tie terminal via the SYSIN ana SYSLN
routines, SYSIN is straight-forward .n that a prompt is written
to the terminal and input 1s accepted from the user. SYSLN is
called at the termination of each line to be written to the
terminal. The lire to be transmitted 1s placed in the stancdard

CUTPUT file. On nost systems, SYSLN 1s merely a WRITELN or the
OUTPUT file.

Tk s 1 A v

PRSI
NG aEs

4.3 Operating System and Machine Dependencijes

There are several dependencies upon the host operating
System and the host machine for which no attempt has becen made
to gain independence. These dependencies include the

1diosyncracies of the teleprocessing monitor, the character set,
and the accuracy of integers and reals,

ISIS assumes that there exists a teleprocessing monitor for
communicating with the terminal, The Characteristics of
available monitors varies significantly. Most monitors allow
for a "backspace" key, an "input abort" key and an "output

abort" key, However, the association of which key performs
which function is not standardized.

ISIS uses the character set of the host pascar compiler,
Similarly, the accuracy of integer and real values is

Precisely
that provided by the pascal compiler,

26

e

5. Current Status and Conclusions

I1SIS was specified during 1976-77, designed during 1977-78
and an engineering prototype was implemented during 1978-79.
During the year that it has been available for testing, ISIS has
proven itself to be a very well-behaved and powerful system.
Interestingly, users with little previous interactive computing
experience have found it easier to learn ISIS than experienced
users. This is apparently due to the fact that experienced
users have worked in environments where they are expected to
remember a large number of details about how to use a system.
They have some trouble adjusting to the ability of ISIS to
perform most of these details, leaving them free to concentrate
upon the more interesting problems of software development.

The current implementation of ISIS is &n engineering
prototype and, as such, it is still evolving. The interactive
programming language and the text editor are now relatively
stable, the file manager and system invoker are nearing
completion and the data editor is being implemented. It is
hoped that full production status will be reached by July 1988.

Efforts have already begun on rehosting ISIS to IBM and DEC
equipment. In addition, a research effort has been initiated to
allow ISIS to be distributed over several cooperating
processors.

27

o R e ey L e

