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AN INVESTIGATION OF AUTOMATIC GUIDANCE CONCEPTS TO STEER A,

VTOL AIRCRAFT TO A SMALL AVIATION FACILITY SNIP

J.A. Sorensen, T. Goka, A.V. Phatak, and S.F. Schmidt

Analytical Mechanics Associates, Inc.
Mountain View, California 94043

SUMMARY

The objectives of this study were to develop a detailed system model

of a VTCI. aircraft approaching a small aviation facility ship, to use this

model to investigate several approach guidance concepts, and to conduct

a preliminary analysis of the aircraft-vessel landing guidance require-

ments. This report presents a summary of the system model and the results

of the analytical investigation.

In this report, the various sub-elements and constraints of the flight

i system are first described including the landing scenario, lift fan air-

'

	

	 craft, state rate feedback flight control, MLS-based navigation, Sea State

5 induced ship motion, and wake turbulence due to wind-over-deck effects.

r

	

	 These elements are integrated into a systems model with various guidance

concepts. Guidance is described in terms of lateral, vertical, and
longitudinal axes steering modes and approach and landing phases divided

by a nominal .hover (or stationkeeping) point defined with respect to the

landing pad. The approach guidance methods are evaluated, and the two

better steering concepts are studied by both single pass and Monte Carlo
d

statistical simulation runs. The simulation results are used to recommend

further cockpit simulator studies. Four different guidance concepts are

defined for further analysis for the landing phase of flight.

xiv
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I

INTRODUCTION

W

u

The NAVTOLAND project is the Navy's integrated systems approach to

improve the V/STOL aircraft and helicopter operational capabilities at

sea and at tactical sites. This improvement consists of upgrading the

system from the present capability of 60m (200 ft) ceiling, 0.5 n.mi.

visibility, Sea State 3 ship motion limits to zero ceiling, 213m (700 ft)

visibility, Sea State 5 ship motion limits. The coordinated development

includes

a) aircraft flight control and display systems to provide

handling qualities with s,, J sfactory pilot workload,

b) shipboard approach and landing guidance systems and

visual aids to effect precision in touchdown, and

c) improved guidance and control techniques for all-weather

and rough seas operation with both current and future

Navy V/STOL aircraft.

The effort reported in this document is part of the overall NAVTOLAND

project objectives. It focuses on the requirements for automatic guid-

ance to steer a VTOL aircraft to a small aviation facility ship.

The project has unusual complexities because of several factors.

Among these are:

a) The ship is small (either a Spruance class destroyer or

frigate), so that the wave action (up to Sea State 5)

causes a larger than typical carrier landing vessel motion

during the landing approach.

b) The mission way be sea rescue or some other objective which

requires both night and all-weather (down to Cat IIIA) condi-

tions to be within the 'landing scenario possibility.

c) Because the vessel approach and landing is at the end of the

mission, the aircraft will be low on fuel. It is important

1



that the landing take place in a safe, efficient manner with
a high probability of success on the first pass.,

These and other factors are described in further detail in this report.

The specific objectives of Ofis project have been the following,,

1_	 To develop a flight system mathematical model and computer
simulation that describes the approach and landing scenario

in sufficient detail so that various guidance sensitivity

studies and error effects can be evaluated, This niodel has

consisted of integrating the results of various previous
studies which describe the lift fan VTOL aircraft, the model-

following flight control system, an MLS- based navigation

system, six-degree-of-freedom vessel motion, and turbulence

due to wind over -deck effects,

2,	 To use this model (and simpler variations of it) to analyze

the types of automatic approach guidance techniques which

Would be most suitable for achieving landing success on this

mission, (Here, approach is defined as being that phase of

flight down to some hover point offset from the landing pad,

This obJectivo included defining all the fatztors and constraints

relevan't to selecting the approach guidance concept.

3. To outline briefly the similar factors and methodology which

should be followed to determine automatic guidance concepts

for the landing phase, Landing is defined as going from the

hover (or stationkeeping) point down to the landing 'pad.

4, To define the additional cockpit, simulator studies which are

required to answer pilot preference (human factor) questions

that cannot be answered by matheinatical analysis and computer

simulation alone,

This undertaking has benefitted greatly from the work of many,

 studies and the opinions and suggestions of many researchers, The
key sources are referenced throughout this report.
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Chapter II describes the many facets and elements of the flight system

model. This includes the modes of the approach and landing phases, the

elements of the flight system model, and the constraints placed upon the

guidance system,

Chapter III presents guidance concepts for lateral, longitudinal, and

vertical modes of the approach phase, Then, the results of using a point-

mass simulation of the aircraft to narrow down the guidance concepts are

described.

Chapter IV outlines a brief, preliminary evaluation which has been

made of 'the landing phase of flight. Here, emphasis is placed on des-

cribing what motion prediction and guidance alternatives are potentially

possible to facilitate landing the aircraft.

Chapter V presents the results of using the computer simulation,

(based on the model described in Chapter II) to evaluate two approach

guidance concepts (selected in Chapter III) in more detail. The sensitivity

of guidance performance to various navigation and flight control sensor

errors, ship motion, and wind-over-deck turbulence is examined. Both

single pass and Monte Carlo cases are used to make the evaluation-.

Statistical evaluation results of an open loop landing guidance concept

are also included.

Chapter VI summarizes the conclusions made in this study and outlines

a cockpit simulator test program for answering remaining questions.

Appendices A through H are included to give further details to

elements of the system model, the mechanization details for the two guid-

ance concepts studied, and organization of the computer program based on

these details.
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II

SYSTEM MODEL

The key initial step to determining guidance, navigation, or flight

control requirements for landing a VTOL aircraft on a small aviation ship

under adverse weather conditions is to develop a thorough understanding

of the system structure. This understanding comes from formulating a

mathematical model of the system including each of its important elements.

Those elements which must be considered for analyzing automatic guidance

requirements include:

1) The approach geometry and phases of flight the aircraft is

expected to go through,

2) Sub-elements of the system and their inter-relationship, and

3) Various types of constraints.

The constraints that are included in the approach guidance problem can

be classified as follows:

a) Environment and landing scenario,

b) Navigation and control system factors,

c) Pilot/crew factors,

d) Flight path end conditions, and

e) Guidance command considerations.

This chapter describes each of the flight phases, system elements, and

constraints.

Overview

The problems of landing a VTOL aircraft on a relatively small aviation

facility ship under adverse weather conditions are, in a word - complex.

At this stage of analyzing such a complex system, it is mandatory to make

several assumptions concerning the configuration of the system. This is

required to reduce the number of options so that meaningful quantitative

and qualitative results can be obtained within the available study budget.

5



Throughout this chapter and the associated appendices, these assumptions

are indicated, Thus, the reader should keep in mind that alternative
assumptions could lead to different results aid conclusions.

The first assumption concerning the landing process is that it con-

sists of two phases separated by a hover point. These phases have the

following steps

Phase 1 Approach to the hover (rendezvous) point near the moving vessel.

a) Cruise and .speed reduction,

b) Transition from aerodynamic to powered lift,

c) Capture of approach initial conditions,

d) Constant speed approach,

e) Deceleration (flare), heading alignment, and rendezvous, and

f) Stationkeeping.

Phase 2 Landing (hover to touchdown)

a) Stationkeeping,

b) Letdown (transition from local level to ship-fixed coordinates), and

c) Touchdown (or wave-off/go-around).

An alternate scheme which has been suggested is to eliminate the hover point

and to proceed directly to touchdown without a stationkeeping step. How-

ever, using a hover point does not appreciably affect the sequence of the

previous steps of the approach, so it is included.

This study is mainly directed toward analyzing the automatic guidance

requirements for Phase 1. However, both phases must be considered in design-

ing the guidance system because the Phase 2 requirements place constraints

(boundary conditions) on the Phase 1 flight paths.

The sub-elements of the flight system and their inter-relationship

an be described in terms of the block diagram shown in Fig. 1. This block

iagram is based on further assumptions that are discussed shortly. The

lock diagram forms the basis for constructing a digital simulation of the

ystem and evaluating its performance. Performance evaluation and measure-

6
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ment of its sensitivity to variations in parameters of the model are in-

& cated by dashed lines in Fig. I. The simulation and performance evalua-

tion of the flight system are discussed in Chapter V.

System Elements

Geometric definitions and the system elements depicted in Fig. 1,

except for Desired Flight paths, Nominal Guidance Parameters, and Pertuba

tion and Total Guidance Comm°nds, are now described qualitatively. The

guidance techniques (which include the desired paths and guidance commands)

are discussed in Chapters III and 1V.

Many of the system element models used in this study have been

developed under a series of previous studies by government and indus-

trial researchers. These sub-models have been appropriately modified

and integ rated to form a suitable working model of the system. In des-

cribing the model elements, then, the following descriptions are summaries

of source references which are cited. In many cases, these sub-models

have been developed by prev'jus integration of other models as can be

seen by checking their references. The primary sub-model sources are.

Wind/Sea State/Ship Dynamics - R.L. Fortenbaugh, et al - Vought Corp. [11

Navigation System and Sensor Models - S.F. Schmidt, et al - AMA, Inc. [21

Flight Control Scheme	 V.K. Merrick, et al - NASA Ames Research Center (3)

RTA Lift Fan Aircraft Dynamics - M.P. Bland, et al - McDonnell Douglas Corp.
(4)

These references provide descriptive detail. Technical summaries of each

are found in Appendices A-E.

Approach Geometry Definitions Before proceeding with description of

the system elements, the reference frames and approach geometry involved in

the overall problem are first defined, Figure 2 shows the relationship of

the VTOL aircraft to the hover point in the horizontal plane, The hover

PP°-..
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Figure 2. Sketch Showing Relative Locations of Ship c.g., MLS
Station, Landing Pad Bullseye, Hover Point, and Aircraft During

Approach.
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r.

point is defined to be at some average location away from the landing pad

bullseye. This is shown as distance d and components (xh ,yh ) in the ship

reference frame (X s ,Y s ). Because the ship is "tossed around" by the heavy

seas, the hover point is considered to be located at an average position

with respect to the bullseye. Thus, the vector d is time varying.

Notice also in Fig. 2 that the bullseye is not located at the ship

center of gravity (c.g.), In addition, the aircraft obtains position measure-

ments of its location with respect to the shipboard MLS. The MLS is not

located at the bullseye or the c.g. The airborne navigation system must

be able to work with all these reference points.

Figure 3 defines several velocity vectors projected into the hori-

zontal plane. Here, the reference direction is along the average heading

of the ship centerline X s . As shown on the left side of Fig. 3, the air-

craft 'longitudinal axis X  is rotated an angle 
V'B 

with respect to X s . The

aircraft horizontal component of the airspeed vector Va has sideslip angle

S and is rotated 
^a 

with respect to X s . The wind vector V  i added to

V  to obtain the aircraft inertial velocity vector V I . The wind vector

is rotated an angle ^w with respect to Xs.

The right side of Fig. 3 defines the wind-over-deck vector V WOp	 It

is obtained by subtracting the ship velocity Vs from Vw , and it describes

the wind an observer on the deck of the oving ship would feel. V Woo has

heading angle VWOO with respect to Xs.

Also defined in this sketch is the velocity of the aircraft relative to

the ship V R . It is obtained by subtracting ship velocity V s from aircraft

inertial velocity V I . V  has heading angle 
^R 

with respect to X s . In

this study, no ocean current effects are assumed to be present so that the

inertial velocity of the ship V s is also the velocity with respect to the

water mass.

10
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Vessel Geometry	 It is assumed that a DD963 Spruance class destroyer

is the vessel being used.. The profile of this vessel is shown in Fig. 4

A detailed schemetic of the landing pad is shown in Fig. 5. The location

of a roll-pitch stabilized gli& slope indicator also being considered is

shown in Fig. 6, It is assumed in this study that the MLS antenna is

located at the same point as this glideslope indicator. However, for

this study, it is assumed that the MLS transmitter is not attitude

stabilized, For computational ease, the geometries of Figs. 5 and 6 are

combined to the simplified form shown in Fig, 7. A candidate hover point

is shown directly over the landing pad bullseye and on the 3 0 glideslope

beam eminating from the MLS. The vessel geometry depicted in Fig. 7 is

used throughout the remainder of this report.

Wind, Sea State, and Ship Dynamics The Navy mission requirements

include landing on a ship that is underway and traveling at speeds of up

to 30 kts, The requirements also include landing in the presence of rough

seas. This roughness is measured by the energy distribution and frequency

content of the surface waves, and it is specified in practical terms by

sea state, Sea State 5 conditions with wave heights of up to 4 m (12 ft)

must be considered.

The ship motion, wind-over-deck (airwake), and sea state models have

been unified into a compatible set for thirteen different environmental

scenarios by Fortenbaugh (1,51, These conditions, which relate sea state,

ship speed, wind speed, wave height, and five other parameters are pre-

sented in Table C.I. Appendices C and D are summaries of the ship motion

and environmental wind modeling.

Briefly, the ship motion is mo4v,0 ed in six degrees of freedom - roll,

pitch, yaw, surge, sway, and heave. Each degree-of-freedom is modeled as

the sum of six sine waves, where the six frequencies, their amplitudes,

and their phase angles are chosen to span the wave encounter frequency

driving the ship's motion. For each of the thirteen conditions of Table

C.1, there is a set of six frequencies, amplitudes, and phase angles for

each degree of freedom. The simulation is constructed so that choosing

which of the thirteen conditions of Table C.1 to study also selects the

12
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TOP_ VIEW
	 i

27°

SIDE VIEW

25.8'

MLS

MLS

` BULLSEYE
,

CANDIDATE
/HOVER POINT,

-
-

24.2'

._i__I	 t: 
50.6'-^

53.6'	 i
69.75'

117.7'

• C, G.
2.4	

WATER LINE

MLS #1	 (-67.' ,. -25.8', -51.2 1 ) w.r.t. ship c.g.

Hover Point (-11,7.7', 0., -53.33')	 w.r.t. ship c.g.

Bullseye	 (-117.7', 0., 29.1')	 w.r.t. ship c.g.

Figure 7. Standard Ship Geometry for Computation Purposes
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appropriate coefficients for the sum-of- sine-waves model. An example o

actual Sea State 5 motion for the USS Bowen is shown in Fig. 8. Figure

shows 90 sec of simulated Sea State 5 motion using the sum-of-sine-wave

mode. Here, the surge, sway, and heave accelerations are in m/s 2 , and

the roll, pitch, and yaw are in degrees.

The ship motion causes several problems to the approach and landing

process. Chief among these are:

1) The aircraft must somehow land on a pad that is moving with six

degrees of freedom. This implies that either (a) the aircraft

control system must have the authority and bandwidth to bring

the aircraft into synchronized motion with the ship, or (b)

the guidance system must be able to predict when an acceptable

lull exists in the ship motion so that it is safe to land, or

(c) the aircraft structure, landing gear, and pilot protection

devices must be constructed to withstand the impact between

the aircraft and ship at touchdown.

2) A computation sequence must be made, as part of the approach

guidance mechanization, which defines where the hover point is.

In this study, the hover point is chosen as an average position

above the center of the moving landing pad. Thus, the hover point

computations must account for the ship's motion.

3) The aircraft determines its position and velocity relative to

the moving ship and the hover point by use of an MLS system

fixed to the ship deck. It is assumed that the MLS system is

not attitude stabilized. Thus, additional computations and

sensor measurements are required to compensate the nonsteady

MLS navigation signals for the ship motion.

Coupled to the ship's motion are the wind-over-deck effects, as

described in Appendix D. The wind-over-deck is a model of the wind

turbulence caused by the assumed constant wind (taken from Table C.1)

reacting with the ship superstructure. This model, devised by Fortenbaugh,

was based on the work reported in Ref. 6. The model includes three

orthogonal mean wind terms plus three orthogonal random terms. The

17
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magnitudes of the six terms are dependent upon the geometric position with

respect to the ship deck. Thus, the wind model is attached to the ship

and moves with the ship motion. Also, the wind turbulence that the air-

craft experiences in flying through the wind-over-deck is dependent upon

the specific path followed in going to the hover point. Examples of the

variation in the three components of wind-over-deck magnitude are shown

in Fig. 10. More detail on the geometric variation is presented in Appendix

D.

The wind-over-deck turbulence causes variations to both the aero-

dynamic loads on the aircraft and to the thrust provided by the lift fans.

In a study of manual approaches of a VTOL aircraft to a destroyer with a

cockpit z-),imulator at NASA Ames Research Center (Autumn, 1979), the wind-

over-deck effects proved to cause unacceptable handling qualities [7, 23].

However, in similar tests at Ames with a different aircraft, the wind-over-

deck effects were regarded as secondary [8]. At this writing, the reason

why different wind-over-deck effects were experienced and their relative

significance have not been determined. (As shown later, this may be due

to the hover altitude.)

Aircraft Flight Control and Dynamics 	 The aircraft model used in this

study is the lift/cruise fan V/STOL research technology aircraft (RTA).

This model was developed by McDonnell Douglas [4]. This design is a modi-

fied T-39 Sabreliner powered by three turbojet engines which drive three

fans. A more complete description is given in Appendix A. The aircraft

transitions from aerodynamic control to the powered lift mode below 120 kt.

In this study, the approach phase is considered to begin when the aircraft

is in the powered lift mode.

It is assumed that the RTA aircraft has a flight control system

based on the state rate feedback implicit model following (SRFIMF) con-

trol concept of Merrick [3]. A description of this flight control philo-

^o phy is given in Appendix B along with block diagrams of the control

logic associated with the RTA aircraft. The basic idea of this control

is to cancel the aircraft dynamics by introducing an equivalent inverse

into the control logic. If this cancellation can be accomplished, then

the aircraft can be controlled with some desired response characteristics.

l
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The success of applying this philosophy to the RTA aircraft, under somewhat

ideal conditions (perfect sensors), is reported in Ref. 3.

A convenient way of characterizing the dynamics of the RTA aircraft/

SRFIMF flight control combination can be obtaining by examining the step

response to inputs into the primary control axes. This was done for roll

angle and longitudinal, ver;'cal, and lateral speed commands when the

aircraft was traveling at 20, 60, and 120 kt in level flight,

Figures lla-d show the roll response to a ± 5 0 command, longitudinal

speed to a + 1.5 m/s (+ 5 ft/sec) command, vertical speed to a + 1.5 m/s

(± 5 ft/sec) command, and lateral speed to a + 1.5 m/s (+ ft/sec) command

at 20 kt. Figures 12 and 13 show similar responses at 60 and 120 kt.

Each of these responses exhibits approximately a 0.7 damping ratio, The

reason for lack of symmetry in these responses is under current investiga-

tion. The output-to-input transfer function is approximately second

order and of the form,

2
O(s)  =	 wn

s	 s2 + 2pwn s + wn2

Table 1 shows the corresponding natural frequencies for each axis.

Table 1. Natural Frequencies of Given Step Responses
(rad/sec)

Axis/Speed 20 knot 60 knot 120 knot

Roll
0.29 0.35 0.32

W C)

Longitudinal

(V/Vc)
0.19 0.20 0.18

x	 x

Vertical
0.19 0.18 0.18

(6/Ac)

Lateral
0.21 N/A N/A

(Vy/Vyc)

z
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From these results, there emerges two important conclusions; (1) For
8,11 practical purposes, the RTA with SRFIMF controller can be considered

as a decoupled linear second order system for each axis, and (2) the res-

ponse of mach axis is independent of flight speed, Point (1) implies

that simple guidance and navigation analysis can be carried out using the

simplified second order dynamics; hcv4ever, the external disturbances,

most dominent of which is the wind-over-deck turbulence effect, cannot be

analyzed using the above models because the resulting aerodynamic and
engine effects are not included in such simplified models, Point (2)

implies that the guidance law design can be simple, since there is no

need for decoupling axes nor gain scheduling with respect to the speed,

Another issue which required investigation is the effect of flight

control sensor errors to the performance of the RTA/SRFIMF. A discussion

of the effects of simulated flight sensor errors on the overall system

performance is presented in Chapter V.

r
'd

From an approach guidance requirements point-of-view, the aircraft

and flight control system introduce particular response lags into the

overall performance of the system. In addition, the lift fans have

deadbands which can produce limit cycles in the guidance response. (These

non-linear effects were not investigated in this study). Finally, the

dynamic characteristics of the aircraft/1"light control system interact

with the dynamics of the navigation filters and steering laws; overall

guidance performance must take into account possible degradation due to

this dynamic coupling,

Navigation The approach and landing navigation system is explained

in Appendix E and is based on Refs. 2 and 22. The shipboard segment of this

•	 system has an MLS/DME, three-axes body-fixed attitude gyros, and three-axes

linear accelerometers. In addition, a shipboard computer is used to

estimate an average position of the ML.S antenna, This estimate is used

to remove the effects of roll and heave on the nominal location of the

antenna position. These computations determine a "landing pad deviation

vector" which is data-linked to the aircraft, Ship velocity is also data

linked to the aircraft.

1
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The aircraft segment of the navigation system includes the MLS /nME

receivers, three-axes body-fixed linear accelerometers and attitude gyre

and a navigation computer. The aircraft segment uses the landing pad

deviation vector to compensate the MLS-derived range, azimuth, and eleva

tion signals partially for ship motion effects, The airborne navigation

computer resolves the MLS/DME measurements, landing pad deviation vector,

and aircraft accelerations into a common inertial reference frame, Then,

three-axes complementary filters are used to determine estimates of the

aircraft position and velocity with respect to the MLS antenna, These

state estimates are used by the guidance system for steering to the hover

poi nt.

The navigation software has several additional features such as

rejecting bad data points, re-initializing after prolonged data loss,

and variable filter gains to account for improving position measurement

accuracy during approach. Each of these features is discussed in Ref. 2.

From the guidance point-of-view, the aircraft will be ,steered, based

on where the navigation system estimates the aircraft is relative to the

desired approach trajectory. Thus, time-varying navigation errors will

cause variations in the path followed. Also, limitations in the MLS

coverage constrain where the aircraft can be flown.

Sensor Errors Sensors on both the ship and aircraft are used for

navigation purposes. In addition, sensors on the aircraft are used for

flight control. Outputs from the airborne linear accelerometers, attitude

gyros, and MLS are used for both navigation and flight control. The air-

craft also uses rate gyros and angular accelerometers to provide appro-

priate inputs to the SRFIMF controller. Thus, errors in these sensors

affect the guidance system's performance because they enter both the navi-

gation and flight control computations. Error models for the various

sensors are described in Appendix G.

System Constraints

Earlier in this chapter, we listed five different types of constraints

that must be considered with regard to approach and landing of a VTOL air-
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craft on a small aviation ship. These constraints are now described in

more detail. For completeness, this discussion includes mention of con-

straints not specific to the RTA aircraft and other elements of our chosen

system configuration. Those constraints which are particularly pertinent

are identified so that they can be examined in the subsequent study,

Environment and landing scenario constraints As described earlier,

the aircraft is required to rendezvous with a moving landing pad, This is

because the ship is underway and may be traveling up to 30 kts with res-

pect to the sea. The sea may have currents which add to the ship's iner-

tial speed,	 In addition, the ship is subject to the effects of winds and

wave motion up to Sea State 5 in magnitude,

A high wind environment must also be considered. Wind effects in-

clude those due to gusts, shear, and variable direction. In addition, as

the aircraft approaches the vessel, it is subject to wind-over-deck tur-

bulence caused by the normal wind going past the ship superstructure.

The aircraft must land in visibility conditions as low as those equi-

valent to Category IIIA. (zero ceiling; 213 m (700 ft) runway visual

range). Thus, the position and velocity error at the hover point must be

small enough to allow visual inspection and possible manual letdown to

the landing pad. This affects placement of the hover point.

The deck structure itself represents a landing constraint in ,several

ways. The approach path must be designed so that if an aborted landing

and go-around are required, there will be no interference from the deck

superstructure. The landing pad is of finite dimensions, and this places

a constraint on the allowable errors at hover and touchdown. Figure 5

shows the landing pad of the DD-963 Class destroyer. If a latching device

is available as part of the system design, more error is allowable in the

landing phase. Also, there are ground effects that take place between

the aircraft and ship deck. With lift fans or rotors, these can be com-

pletely different. Also, the possibility exists that one wing of the air-

craft can be experiencing ground effects while the other is over open

water, These ground effectR are not considered as part of this approach

guidance study.
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The aircraft structure also must be considered in the 'landing analysis.

First, the structural limits of the landing gear may restrict the closing

velocity between the aircraft and deck at touchdown. Because both the

ship and aircraft have attitude motion, there is increased possibility of

wing damages or tipping at touchdown, Also because of possible surge and

sway motion of the pad, the aircraft may experience skidding which could

lead to going off the pad. These effects are not important for approach

guidance analysis.

Navigation and control related constraints The MLS system is subject

to coverage limitations. (For example, it could have a + W azimuth cover-

age, + 20^ O elevation coverage, and 15 n,mi range limit) This system is

assumed to not be attitude stabilized, and it signals move with the ship

motion.	 It has normal radio signal-in-space errors. In addition, in

rough seas, it is subject to multi-path effects by reflecting off the sea

surface.

The presence of coverage limitations would restrict the approach path

that could be followed. For example, an approach from the bow of the

vessel could not be used. Also, a go-around maneuver could move out of

the normal MLS coverage, and would require that the aircraft fly back to

behind the vessel before re-establishing the approach.

The characteristics of the navigation, signals will affect the position

and velocity errors sent to the guidance steering computations, The choice

of steering law gains must take into account the navigation error character-

istics so that (a) the aircraft response is fast enough to null out per-

ceived errors as the hover point is approached, but (b) the aircraft does

not chase high frequency errors.

The aircraft is limited in both response speed and control authority.

Thus, the nominal trajectory must be designed to be well within these limits

so that a margin is available to be used for perturbation control. During

the landing phase, the aircraft control limits govern whether the aircraft

can be synchronized with the ship motion or whether the aircraft must be

steered to land when the ship state is acceptable for touchdown.
i
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For helicopters, the attitude and translational motion are directly

related. This constrains the type of maneuvers that can be made, especially

during the landing phase. Also, because the vessel may be traveling at

up to 30 kt, the helicopter may have to be in a relative hover condition

at a state where it has relatively poor handling qualities. (For the

UH-DH helicopter, this occurs around 30 kt.) For this study, the RTA

aircraft essentially has decoupled attitude and translational control

capabilities during slow speeds because of the SRFIMF flight; control sys-

tem. Thus, some problems which affect helicopter performance do not

have to be considered here.

Pilot/human factor constraints It is assumed for this study, that

the approach and landing guidance are automatic. In this case, the pilot's

roles are (a) to monitor and approach for purposes of assuring that the

path followed is reasonably correct, (b) to detect system faults, and (c)

to takeover and fly the aircraft manually in case of a detected fault.

From a guidance system point-of-view, the approach and landing trajectory

then must be designed (a) to allow the pilot to perform the monitoring

and fault detection roles with reasonable accuracy, and (b) to ensure pilot

ride quality and safety at touchdown.

To obtain specific, quantitative constraints on the guidance system

and nominal approach to ensure that the above human factors are met, fur-

then study is required using a cockpit simulator. However, we can list

general points which should be used for preliminary guidance system design.

First of all, the approach path should offer the pilot a reasonable

perspective of the landing pad through the aircraft canopy. If a heads-

up display (HUD) is to be used, the landing pad should be located (in

an angular tense) so that it falls within the HUD dimensions throughout

most of the approach. It is desirable that the landing pad perspective

time history be similar to the view of a runway that the pilot has been

trained to land on.

The flight trajectory should also provide appropriate motion cues

and display information so the pilot can assess the quality of the approach.

This is especially true for low visibility approaches.
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The approach and landing trajectory must be reasonably smooth, and

the sequence of events must be favorable in terms of the monitoring work
load. Enough time must be available (that is, the approach speed must
be slow enough) to allow the pilot to take over and manually abort the
approach in case of a problem.

Finally, the touchdown part of the landing phase must consider the

pilot's safety and physical comfort. The aircraft may be designed to

take a sharp impact with the deck, but this contact must also consider

what impact loads are reasonable for the pilot to experience,

Hover point constraints An important decision in designing the nominal

approach trajectory is where to place the hover point. Some items to con-

sider are:

1) From the hover, point, the pilot should have some visibility of

the landing pad and deck officer, or other landing cues of

adequate information, so that he can assess whether the landing

phase should take place.

2) There should be adequate maneuver space for a safe letdown

from the hover point. That is, there should be adequate air-

space between the hover point and the landing pad to allow

nulling out aircraft state errors which exist at hover.

3) The hover point should allow complete safety of the aircraft

with respect to the ship superstructure, ►his must be true

for both a letdown trajectory and one that would be followed in

an aborted letdown.

4) The hover point should be selected so that the aircraft has a

favorable position with respect to the ship and the direction of

the prevailing wind. This is a consideration of wind-over-deck

effects, Perhaps the hover point could be adjusted based on the

prevailing wind conditions.

The hover point location will, in turn, specify how accurate the

state of the aircraft must be at this point to allow a safe letdown-phase.
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This places constraints on (a) the accuracy of the navigation system at

this point, and (b) the ability of the aircraft flight controller to

cancel the effects of wind disturbances so that the aircraft can be adequately

held in the stationkeeping condition.

Guidance command considerations	 In addition to the above, there are

two other constraints regarding the guidance system, First the guidance

software should be relatively simple, It must be placed within the limita-

tions of the airborne computer where navigation, flight control, display

generation, and other avionics functions are probably present,

Second, the approach trajectory must take into account (a) that the

aircraft has limited fuel, (b) that most of the fuel may be gone near the

end of a mission, and (c) that the fuel burn rate is probably high when

using the lift fans. It is advisable to design an approach trajectory

that is both safe and fuel efficient,

Each of the above constraints was considered when evaluating possible

approach guidance concepts, as discussed in Chapter 111,
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PRECEDING PAGE BLANK NOT FILMED

APPROACH GUIDANCE TECHNIQUES

The purpose of the approach guidance system is to steer the aircraft

to approach the ship along some desirable flight path. The definition of

this path (approach trajectory) includes the specification of relative

velocity and acceleration limits at each point, The desired path may be

either pre-determined so that it is always the same, or it may be com-

puted in real time,

In Fig, 1, the guidance technique is contained in three blocks;

	

1,	 Desired Flight Paths - This block is not part of the mechanized

guidance equations, However, it contains a physical description

of the guidance concept or of the path relative to the ship that

the aircraft is to be steered to follow. From it, the nominal

guidance technique is derived. Also, the resulting ideal path

that the aircraft is expected to follow can be computed in this

block. This is compared with the actual path to compute the

aircraft guidance errors as functions of time and range-to-go.

	

2.	 Nominal Guidance Parameters - This block represents actual

mechanized software which -is used to compute parameters for

following the desired path. If the desired path is pre-deter-

mined (e.g., constant bearing lateral approach), the parameters

which describe this path are contained in this block, 	 If the

desired path is computed in real time, (e.g,, pursuit lateral

approach), the equations and parameters which are required for

this computation are included. The outputs of this block are the

nominal path guidance parameters for translational control of

the aircraft,
C
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3,	 Perturbation and Total Guidance Commands 	 This block mechanizes

the guidance commands in the form of a translational guidance

law, This guidance law nulls out perceived path errors by com-

paring the desired aircraft state with that measured by the

navigation system. The guidance law issues simultaneous com-

mands for removing the path perturbation and following the

desired path,

In choosing possible guidance concepts to consider, the various con-

straints described in Chapter 1I were taken into account, Actually, there

are numerous paths that join some arbitiary starting point to the chosen

hover point near the ship's landing pad, The system constraints were used

to eliminate many of these. Then, digital simulation of the aircraft being

steered by each of the remaining concepts was used to reduce the choices

further,

The digital simulation first used to examine the guidance concepts

was based on a simplified system model which emphasized the guidance aspects

of the problem, The assumptions used in constructing this program in-

cluded the following;

1, The aircraft was treated as a point mass with three degrees of

translational freedom. Guidance commands were converted directly

to inertial accelerations in a North-East-Dawn reference frame,

No flight control or aircraft response lags were assumed,

2, The aircraft was assumed to follow coordinated turns, Thus,

the bank angle (^) was computed from the commanded lateral

acceleration. The pitch angle (a) was assumed to equal the

flight path angle (y). The aircraft yaw angle (q)) was set equal

to the heading of the aircraft velocity,

3, Perfect navigation was assumed, Also, no ship motion, other

than constant velocity, was assumed,
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4,	 Although the wind-over-deck was computed, it was assumed to

have no effect on the aircraft dynamics,

To simulate the path that the aircraft would follow under each guidance
scheme required mechanizing the associated guidance law. In this way, we

were able to evaluate the relative complexity required for'` digital on -board

mechanization of a given concept. Various guidance laws that were mechanized

are presented in Appendix Fk

The output of the point mass simulation included the following:

1..	 The horizontal and vertical paths (x vs y; z vs range) that

the aircraft would follow to reach the (lover point.

2,	 The idealized attitude angles 	 that the aircraft would

have in following a given translational path with some com-

manded acceleration/deceleration schedule.

3. The look angles (azimuth and declination as measured with res-

pect to the aircraft body axes) to the landing pad that the

pilot would perceive visually as the aircraft would automatically

follow a given trajectory, These angles included those to the

bullseye plus the perspective of the landing pad out of the

cockpit window,

4. The approximate wind-over-deck turbulence components that the

aircraft would encounter during the final portion of the approach

path.

Examples of this output are presented and discussed shortly.

Guidance Concepts Considered

The approach guidance commands were decoupled into lateral, vertical,

and longitudinal components. In this study, four lateral, five vertical,

and two longitudinal steerin g concepts were examined. The equations re-

quired to mechanize these concepts are presented in Appendix F. The con-

cepts were;
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Lateral

1, Pursuit - Here, the horizontal component of the aircraft

inertial velocity is directed to point at the hover point, (Eq. F,3).

2, Constant bearing	 The horizontal component of the aircraft

velocity relative, to the ship is directed to lie in a vertical

plane with constant bearing relative to the ship heading,
This plane contains the hover point, The constant bearing

angle 'is fixed and is predetermined, (Eq. F,12 - F,14).

3, Zero bearing rate (Variable bearing angle) - ThQ horizontal

component of the aircraft velocity relative to the ship is

directed to point at the hover point, This nominally results

in a constant bearing approach. 	 However, the bearing angle is

dependent on the initial position and velocity of the air-
craft, Perturbations cause the aircraft to obtain new bearing

angle approaches,	 (Eq. F.11).

4. Constant heading - The aircraft is steered to follow a constant

inertial heading to intercept the ship, The heading angle is

chosen at the beginning of approach so that by following a

fixed longitudinal deceleration schedule, intercept will occur

when the aircraft speed is equivalent to the ship speed, (Eq. F.4 -

F.6).

Vertical

I. Pursuit - The vertical component of the aircraft inertial velo-

city is directed to point at the hover point, 	 (Eq, F.3).

2. Constant elevation angle (relative glideslope) - The aircraft

is steered either to stay at a constant altitude or to follow

a fixed constant elevation angle relative to the plane crn-

taining the deck of the ship. 	 (Eq. F.12 - F.14),

3, Zero elevation rate (var i able elevation angle) - The vertical

component of the aircraft velocity relative to the ship is set

so that a constant elevation angle is maintained relative to

the hover point. Thr elevation angle is dependent on the initial
position and velocity of the aircraft.	 (Eq. F.11).
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4. Constant inertial glideslope - The aircraft is steered to fo

a constant inertial glideslope to intercept the ship or to ii

cept the altitude of the hover point. The glideslope may be

either predetermined (fixed constant) or it may be computed

line.	 (Eq. F.4 - F.6).

5. Constant sink rate - The vertical component of the aircraft

inertial velocity is set at a constant value until the altit

of the hover point is reached. At that altitude, sink rate

is set to zero. (Eq. F.16).

Longitudinal

1. Constant speed/constant deceleration - Mere, the aircraft main-

tains constant closing speed until a fixed, predetermined range

from the ship is reached. 'Then, the aircraft decelerates at a

constant rate to reach the flare point (a small distance from

the hover point) at a fixed closing speed relative to the hover

point. A deceleration proportional to the closing speed then

brings the aircraft speed to match the ship speed.

2. Step guidance - This is a combination of constant longitudinal

deceleration followed by constant speed at a fixed altitude

alternating with constant elevation angle/constant speed until

a lower fixed altitude is reached. As many segments as desired

can be used.

Point Mass Simulation Results

The point mass aircraft simulation was set up to simulate flight to

the nominal hover point shown in Fig. 7. The hover point was selected to

be 7.4m (24.2 ft) directly above the landing pad bullseye. This places the

hover point on the line with 27 0 azimuth and 3° elevation from the assumed

location of the MLS antenna. The ship was assumed to have a velocity vector

of 20 kts heading due North, The aircraft was initially located near a

35° azimuth line at an initial range of about 5 n.mi.	 Initial altitude was

426,7m (1400 ft) above the hover point.
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Figure 14 shows the horizontal path followed by the aircraft relative

to the ship for the last 2 n.mi. Each of the four lateral guidance con-

cepts causes a different approach path to be followed. The aircraft begins

with a velocity of 1.20 kt relative to the ship. At about 1 n.mi. range,

the aircraft nominally decelerates at 0.19 (3.22 ft.sec 2 ) until 30 ft behind

the hover point. Then, the linear flare law is used to drive the aircraft

velocity to match that of the ship. The constant deceleration causes the
constant heading final approach to be normal to the x (North) axis in Fig,

14. Because the ship is moving ahead, the pursuit guidance causes the

final approach to be along the x axis.

Figure 15 illustrates the vertical paths followed (altitude vs. range)

for the various vertical guidance concepts. The constant elevation angle

concept has two paths shown - one for a constant 3° elevation angle and

one for alternating between altitude hold and a constant 6 0 elevation angle.

The latter vertical approach is associated with the longitudinal vertical
step guidance illustrated in Fig. 16. N,,+ e in Fig, 15 that the constant

sink rate of 4.5 m/s (15 ft/s) causes the aircraft to reach the hover

altitude when range is still 2286 m (7500 ft), This is before deceleration

has begun. The sink rate can be regulated so that the hover altitude is

reached at an arbitrary range-to-go.

Figures 17-22 show the following combinations of lateral and vertical

guidance concepts on the movement of the bullseye look angles in the cock-

pit window:

Fig. 17:	 Constant 27 0 and constant 3° elevation angle;

Fig. 18:	 Lateral pursuit and constant (15 f/s) sink rate;

Fig. 19:	 Zero bearing rate and zero elevation rate;

Fig. 2.0- Constant heading and constant 3° inertial glide slope;

Fig. 21:	 Constant 27 0 bearing and constant (15 f/s) sink rate;

Fig, 22:	 Constant 27° bearing, step vertical/longitudinal guidance,

Azimuth and elevation are measured with respect to the longitudinal axis

of the aircraft which is assumed to be the same axis the pilot's eyes

would see if he looked straight ahead. Also tihown in Figs, 17-22 are the
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perspective views of the landing

and 30m (2000, 1000, 500, 200, a

views that the pilot would have.

which would occur because of the

(This geometry was not available

craft.)

pad at ranges-to-go of 600, 300, 150, 60,

id 100 ft), These represent idealized

No account is taken of the blocked view

fuselage walls and canopy structure.

for the conceptual design of the RTA air-

Figures 17-22 do give an idea of how the landing pad perspective

would move in time and what the pilot would tend to see. Note in Fig.

17 that for constant bearing lateral steering, the 27 0 marking on the

landing pad tends to be parallel to the pilot's vertical axis. Note in

Fig. 18 that for lateral pursuit, the bullseye tends to be very close to

the zero azimuth. Both of these locations and perspectives have advantages

from a visual cue point of view,

Figure 20 shows that for a constant heading approach, the bullseye

tends to move out the side of the canopy. Movement would continue to a

90° azimuth if a switch to zero bearing rate were not made.

Figure 22 illustrates that constant relative speed keeps the bullseye

on a vertical line in the cockpit window. (2000, 1000, 500 ft points).

Constant deceleration causes the bullseye to move to the left (200, 100 ft

points).

The approaches shown in Figs. 14-22 did not take into account the

region of the predominant wind-over-deck turbulence. That is, for a wind-

over -deck angle i W00 of -30° (see Fig. 3b), these approaches fly through

the region where the turbulence amplitudes are high. This could have been

avoided by approaching the vessel from the port side. This was not done

because the wind-over-deck effects on the guidance errors could not be

assessed by using the point mass model. Wind-over-deck effects are dis-

cussed further in Chapter V.
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Figure 21. Constant Bearing/Constant Sink Rate Approach

55

I



Figure 22. Constant Bearing/Step Vertical-Longitudinal Guidance Approach
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Approach Guidance Critique

The guidance concepts can be mixed in several combinations when one

considers that four lateral, five vertical, and two longitudinal methods

are available. In addition, lateral guidance, for example, can begin

with one type of steering and then transition to another, Thus, there

are many possibilities to consider.

The purpose here is to review a number of these possibilities and

to reduce them to two choices so that a more detailed, but managable set

can be examined further. In this regard, five cowbinations of lateral

and vertical guidance are reviewed based on the results of the point mass

simulation and the software mechanization requiremenLS presented in

Appendix F, The longitudinal guidance concepts are reviewed separately.

Lateral/Vertical

1.	 Constant bearing/constant elevation measured in ship_MLS axes)

Possible advantages	 The landing pad lights are nominally

aligned for a 27 1 bearing approach. The 27 0 constant bearing

approach then provides improved visual cues for night landing or

in time of limited visibility flight, Furthermore, if a visual

glideslope indicator such as shown in Fig. 6 is used, the constant

3 0 elevation angle approach would have the same advantage in the

vertical plane,

The guidance software for steering to a constant bearing and

constant elevation is easy to mechanize. A vertical plane can

be defined containing the 27 0 bearing line, and lateral position

and speed errors can be computed based on the aircraft's position

with respect to this plane. Likewise, a plane containing the 30

elevation line can be used to compute vertical errors.

Using standard bearing and elevation angles ensures that the

final approach is always standard, That is, the final portion

of the automatic approach will always be the same, regardless of

the aircraft initial position when beginning the approach. Thus,

the pilot would have a single standard approach to learn.

1
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The constant bearing angle concept is flexible in that any angle
can be used, Thus, ft,r example, a 0 0 rear approach could be

mechanized using this concept.

The 27 0 lateral approach allows deck overflights which avoid the

superstructure in case of an overflight. This provides a safety

convenience to the pilot in that relative forward motion of the

.ircraft can always be maintained,

Using constant bearing/constant elevation angle guidance pro-

vides a means of position control all the way to the hover point.

Some of the other guidance concepts do not provide a definition

of position error at hover, and thus a transition to position

control ;rust be made,

Possible disadvantages 	 As seen in Fig, 17, for constant 27Y

bearing guidance with a decelerating relative velocity, the hover

point and landing pad move out the left side of the canopy.

(This is actually an aircraft crab angle relative to the landing
pad). This may be a disadvantage for providing visual cues and

for implementation on a heads-up display (HUD). This type of

question would have to be answered by use of cockpit simulator

experiments,

Another disadvantage of fixed bearing/fixed elevation angle

approaches is that they may not be convenient for the particular

initial position of the aircraft relative to the vessel. If the

aircraft begins on the port side of the vessel, it must fly to

the 27° bearing plane on the starboard side before rnntinuing to-

ward the vessel. This can prolong the landing time.

A third possible disadvantage of this type of approach is during

the presence of gusts and steady cross winds. The gusts drive

the aircraft off the 27° path, and control effort would be re-

quired to return to this path. Steady cross winds would intro-

duce an additional crab angle requirement to hold the aircraft on

this path.
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2. Lateral and vertical pursuit

Possible advantages	 The pursuit guidance directs the aircraft

inertial velocity vector to always point toward the hover point.

This velocity orientation causes the aircraft velocity vector to

become aligned with the ship velocity. Ship velocity alignment

produces a rear approach that is similar to a standard runway

approach. The rear approach may be prOerable to the side approach

from a pilot acceptance point-of-view.

The pursuit guidance is adaptable to any starting position of

the aircraft. Steering is always toward the single hover point.

As seen in Fig. 18, the landing pad bullseye (or the hover point)

is always near the center of the forward cockpit window. This

would be advantageous for HUD mechanization, and it may be superior

From a pilot's vii,wpoint.

Possible disadvantages	 As seen in Appendix F, mechanizing the

pursuit guidance requires knowing the ship velocity (heading and

speed). Thus, these are two extra pieces of information that must

be transmitted from the ship to the aircraft. (The MLS-based

navigation system provides aircraft velocity relative to the ship.

For constant bearing guidance, this is all that is required).

Pursuit guidance does not allow deck overflight in case of an

aborted approach. A solution is to place the hover point off the

side of the ship. This is a 'loss of flexibility, however.

r

	

	 Pursuit errors are not defined near the hover point. Thus, this

guidance must transition to a different position error nulling

guidance for hover point control.

The pursuit guidance system does not allow use of visual landing

lights as the constant bearing/elevation guidance does.

3. Zero bea.^ring rate/zero elevation rate

Possible advantages	 This is an easy type of guidance to mechanize

The MLS azimuth and elevation angles initially measured are
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held, If wind or other perturbations cause the aircraft to deviate

off, the new angles are held instead. Thus, this type of guidance

is very adaptable to any initial condition.

Possible disadvantages This type of guidance usually provides a

non-standard approach. Neither a fixed bearing angle nor a rear

approach (as with pursuit: guidance) is provided, Thus, the pilot

perspective will always be different.

Again, as with constant 27 4 bearing guidance, the landing pad

perspective may move out of the field that is visible from the

cockpit window.

Because of the variation that is possible in the approach

direction, the ability to overfly the deck and avoid the super-

structure may not be present,

4.	 Constant Inertial Heading and Guidance Intercept Guidance)

Possible advantages	 This type of guidance provides the most

direct path from the starting initial relative position of the

aircraft to the hover point. It is the most natural type of

guidance to use at large ranges.

Once the heading and g lideslope are set, this type of guidance

produces the least attitude motion of the aircraft. Thus, during

the approach, the aircraft would move most like a land-based

approach to a fixed runway.

Possible disadvantages	 The equations to mechanize this type of

guidance are the most complex. Anticipation of the ship's future

position is required, and changes in either deceleration rate or

intercept point have to be made continually.

This type of guidance requires greater lateral MLS coverage from

the vessel because the final approach is from 90° with respect to

the vessel velocity vector. Also this non-standard lateral and

vertical approach causes the landing pad to deviate the most with

respect to the cockpit window centerline.
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The constant heading angle causes the aircraft velucity vector to

cross the ship vector. Guidance redefinition is required to align

these vectors.

5.	 Constant Sink Rate Vertical Guidance

Possible advantages	 This type of guidance is easy to mechanize.

The altitude is commanded either to be constant or to change at

a fixed rate. This may alleviate some of the precision required

on the Elevation measurement from the MLS.

If the final hover altitude is reached before the hover point

range is reached, the final portion of the approach is at con-

stant altitude. This provides a low final approach that keeps

the landing pad bullseye high in the cockpit window,

Possible disadvantages With constant sink rate vertical guid

ance, there is no constant elevation angle cue from the ship.

Also the range-to-go at bottom of descent will vary depending

on relative speed of the aircraft and the range when the des-

cent begins.

Longitudinal

i.	 Longitudinal— Guidance - Constant Speed Followed by Constant

Deceleration

Possible advantages 	 This type of guidance is simple to mechanize.

it has only one change in mode, and it requires only a measure of

range-to-go. Also,, because deceleration is all at the end, it is

an efficient type of approach from a time and fuel usage point-of-

view.

Possible disadvantages	 All the forward relative speed of the

aircraft is killed off at the end of the approach. The pilot may

prefer that the speed be changed in small steps as approach con-

tinues.
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2, Step Vertical/Longitudinal Guidance Alternates Constant

Deceleration at Constant Altitude with Constant Glideslo e/

Constant Speed Descent)

Possible advantages 	 The pilot may prefer to have deceleration

occur during level flight and have constant speed during descent.

Also, this guidance allows the approach to continue at slower

speeds. It reduces the deceleration period required during the

final approach.

Possible disadvantages 	 This type of guidance is more difficult

to mechanize from an automatic point-of-view. The alternating

altitude hold and vertical descent phases must be solved before

approach occurs.

The landing pad and bullseye will have a varying view angle

(elevation) as the descent segments are traversed. This would

not provide a convenient visual landing cue sequence.

Finally, this type of longitudinal approach takes longer to reach

the hover point and therefore requires a greater expenditure of

fuel than the constant deceleration guidance.

Choices for Detailed Simulation Study Some of the questions raised

above about the advantages and disadvantages of particular approach guid-

ance concepts cannot be answered without further, more detailed digital

simulation and cockpit simulator studies. However, based on the above

arguments, the choices were narrowed to two sets of combinations.

These are, for lateral and vertical guidance:

I.	 Constant bearing and constant elevation angle; and

2.	 Lateral pursuit combined with constant vertical sink rate.

Vertical pursuit could also be used, but the above combinations produce

choices with distinct, alternate characters. The constant bearing/constant

elevation angle has been studied the most. It is known to work well but

it has some noted disadvantages. The pursuit guidance removes some of

these disadvantages but has disadvantages of its own. Constant vertical

sink rate combined with altitude hold provides a distinct alternative to

constant elevation descent control.
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For longitudinal

concept was selected.
sufficient advantages
plementation point-of
be available anyway.
this decision.

guidance, the constant speed/constant deceleration

The second alternative did not seem to have
to warrant its further study from an automatic im-

For manual approach control, it would always

Pilot opinion can perhaps shed some further light on
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IV

LANDING GUIDANCE

This section considers the problem of bringing the VTOL aircraft from

the stationkeeping (or hover) point to a touchdown at the center (bullseye)

of the ship's landing pad. A sketch illustrating the relative geometry

of the terminal shipboard landing scenario is given in Fig. 23. Both the

aircraft and the ship landing pad motions are defined with respect to a

ship-fixed local level reference frame (X s ,Y s ,Zs ) centered at the average

position of the bullseye and with the X.-axis aligned with the ship longi-

tudinal axis, The stationkeeping point (x h ^ y h , z h ) represents the posi-

tion of the aircraft at the end of the approach phase and prior to the

initiation of the landing maneuver. The landing pad is far from being

stationary. In fact, it is being continually aisturbed because of chip

pitch, roll and heave motions in response to heavy seas and adverse

weather conditions.

Landing	 Approach

Destroyer Deck

-xs

Figure 23. Shipboard Landing Scenario
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The objective of the landing guidance system is to maneuver the air-

craft from the hover point to touchdown on-board the ship's landing pad

in a safe and efficient manner. As a minimum, the aircraft should be able

to land on the deck without damaging its landing gear or skidding off

the deck. This requirement imposes a minimal constraint on the rela-

tive position 
(xa/s'ya/s'za/s), 

translational velocity (xa/s'ya/s'ia/s)'

attitude (q)a/s,0a/s'^a/s), and angular velocity (pa/s'qa/s'ra/s) vectors

of the aircraft with respect to the landing pad at touchdown.

Thus, the landing control task under ideal conditions consists of

maneuvering the aircraft from the hover point to a touchdown such that

the relative errors in position, velocity, orientation and angular velo-

city of the aircraft with respect to the landing pad are approximately

zero. However, this assumes that an ideal aircraft is present with un-

limited control authority and speed of response (bandwidth) in all six

degrees of freedom. Additional operational constraints on the landing

pad position and orientation at touchdown must be imposed because of air-

craft limitations, human factors requirements and environmental and

safety considerations.

Operational Constraints

In order to achieve a safe landing on-board the ship, the aircraft

must be able to follow the ship motions in the six degrees of freedom

prior to touchdown. However, under most realistic operational conditions,

the principal problem lies in following or matching the deck motions in

the vertical (Z s ), pitch (a s ), and roll ($ s ) degrees of freedom. Ueck motions

in the remaining degrees of freedom - namely surge (X s ), sway (Y s ) and

yaw (US ) are relatively easy to follow within the capabilities of existing

aircraft flight control system characteristics and limitations.

`rhe control system characteristics of the lift-fan VTOL aircraft con-

sidered in this study must be understood before proceeding with the design

of a letdown guidance law. 	 Step response data for 'the roll and vertical

(SRFIMF) control system are presented in Figs. 24 and 25, respectively.
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The roll system transfer function (c/¢ c ) is approximately second order
with unity gain, damping r, = 1.0 and natural frequency w 

	
1,0 rad/s

(or 0,16 Hz)	 The vertical system ( h /hc ) is also second order with unity
gain, damping	 = 0.7 and natural frequency `gin = 0.82 rad/s (or 0,1.3 Hz)

Thus, it takes approximately 2-4 seconds for either system to follow a

step change in commanded position or attitude. Additional velocity and

acceleration constraints on the actuator servos further limit the dynamic

range and speed of response of these control systems.

The vertical and lateral impact velocity limits and skid characteristics

of the landing gear must be considered in defining acceptable touchdown disper-

sions in relative vertical velocity, lateral velocity, and roll attitude.

The shipboard landing of VTOL aircraft constitutes an exceptionally

demanding task which must be performed under hostile environmental con-

ditions, Additional constraints on the ship's attitude (pitch and roll)

may be necessary from an operational safety viewpoint. The severity of

these constraints would depend upon the level of sophistication employed

in securing the landing gear following touchdown. Clearly, the absence

of any specific clamping or clasping mechanism would necessitate the

deck being relatively level at touchdown. Additional requirements on

the deck heave position at touchdown may also be imposed to account for

the aircraft vertical control system's bandwidth limitations.

As a result of the above factors, the following constraints on accep-

table landing pad motion at touchdown may be necessary;

1) The pad vertical position with respect to its average value

shall be greater than zero.

2) The vertical velocity of the pad shall be positive (moving

upward) but shall be less than some prescribed value (e.g.,

0.6 m/s).

3) The pitch and roll attitudes of the pad shall be less than

some prescribed value (e.g., 3 0 ), and

4) The pitch and roll angular velocities of the pad shall be less

than some prescribed value (e.g., 0.30/sec).
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The constraints listed above represent one plausible set and provide

an example for elucidating the basic concept.

Landing Controller , Design

The basic objective of landing guidance is to bring the aircraft to

a gentle touchdown, under varying environmental conditions, while staying

within its control system limitations, The principal problem here lies

in the vertical control of the aircraft. Therefore, the following dis-

cussion on shipboard landing is limited to the design of letdown guidance

and vertical control system design.

Two types of vertical letdown guidance laws with no future ship

motion prediction may be formulated;

1) Designs based upon present and past information alone that

are independent of future deck motion forecasting, and

2) Designs based on availability of future deck motion forecasts.

In the absence of ship motion forecasting, there are two design

options available. Figure 26 illustrates the design where the guid-

ance law is basically open loop and commands the aircraft to follow

a prescribed rate of descent or vertical velocity 
zAc 

to touchdown,

The relative velocity at impact is given by JiAc - i s (t f )+ where t f is

the touchdown time, The maximum impact velocity would depend upon the

maximum upward deck heave velocity 
{zsimax 

and the maximum downward air-

craft guidance velocity error. This open loop guidance law would be

acceptable for sea states where (Iigci + 
!i s l max ) " ZRmax' 

Here' 
2Rmax

s the maximum allowable relative impact velocity at touchdown. For high

sea states,^ s^zmax may be greater than	 thereby renderin g this con-
r;ma x

trol law unacceptable, This type of open loop landing guidance was in-

vestigated in this study, and Monte Carlo results of typical landing dis-

persions in vertical impact velocity and horizontal position errors are

presented in Chapter V.
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Figure 26. Openloop Control Without Deck Motion Prediction.

The open loop control law of Fig, 26 does not allow the aircraft to

respond to measured altitude and sink rate with respect to the deck, An

approach to reducing relative impact velocity at touchdown is to super-

impose a feedback controller on the nominal open loop control so as to

attempt to follow or track the instantaneous deck vertical motion N time,

This leads to a closed loop feedback controller design as shown in Fig.

27. Typical response of this design is illustrated in Fig, 28. The total

control command ACT is the st,tm of the nominal open loop feed-forward

command 
ACNom 

and a closed loop control A Cf . Thus,

A CT	 ACNom + ACf '

	
(1)

where 
ACNom 

corresponds to a nominal sink rate, of say 1 m/s, that would

be used in the absence of any deck motion, The term 
hCf 

is the feed-

back control required in an attempt to follow the vertical deck motions.

The design of the feedback controller may be carried out using classical

and/or modern control theor y methods depending upon the nature and quality

of the a priori information (i,e. mathematical models for the aircraft,
deck motion dynamics and external disturbances),
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The closed loop letdown law of fig, 27 can be successfully used only

if the aircraft can follow the deck heave motions with reasonable fidelity,
This would require the aircraft vertical control axis to have a sufficiently
high bandwidth (a.t least 3 times the highest significant frequency in the
deck vertical motions), servo actuator velocity, and acceleration authority

limits to allow successful implementation; However, for the lift-fan VTOL air

craft, the vertical system has a bandwidth of 0,82 rad/s, which is within

the frequency spectrum of the deck heave motions (0,3 -- 2 rad/s), Hence,

this aircraft would not be capable of following any but the lower frequency
components of deck heave motion, Furthermore, maximum vertical velocity and

acceleration may be as high as 10 - 15 ft/s and 0.05 - 0.1 g in magnitude,

respectively, This requires aircraft control authority limits of compar-

able value or greater,. Existing VTOL aircraft do not have large values

for control authority, and would, at best be marginally acceptable. Even

if such a high authority aircraft were available, the resulting imple-

mentation may be unacceptable to the pilots from ride and handling quality

considerations, in addition to being very fuel inefficient,

An alternative approach is to use some kind of ship motion forecasting

algorithm to predict future deck motion time histories, Ship motion pre-

diction algorithms can be based on modeling the motion in terms of a Gauss-

Markov process in state space [9] or autoregressive, moving average (ARMA)

formulations [10]. Standard Kalman filtering or time series analysis pre-

diction methods can be used to forecast future statistics (mean and co-

variance) of the key variables, The xubject of forecasting techniques is

an area of on-going research , [2,21] However, this subject is beyond the

scope of this present effort and therefore is not discussed further at

this point.

Nevertheless, letdown guidance laws can be investigated by assuming

that ship cation forecasts (mean and covariance) are available, Again, two

types of vertical lewdown guidance laws may be formulated;

1.	 A nominal open loop control law to bring the aircraft from the

stationkeeping point, at time t, to touchdown at some acceptable

predicted deck position at future time t + tf,
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2,	 A nominal open loop law plus some perturbation closed loop la

which removes effects due to gusts and errors in the ship mot

prediction as the touchdown print is reached,

The design of these nominal and perturbation controllers could be carried

out using modern control methods or by using ao intuitive ad-hoc technique,

Finally, ship motion forecasting is not a deterministic process and

is subject to error even under ideal conditions, Consequently some mecha-

nism must be provided to carry out the following higher level supervisory

functions:

1. Determine at prescribed intervals the "acceptability" of

forecasted deck positions for successful landing - time,

state, and confidence limits,

2. Choose a predicted touchdown point or landing window for

initiation of landing,

3,

	

	 Implement the control law for landing at the predicted

touchdown point,

4. Continue updating the location of the landing window at

prescribed intervals,

5. Decide if the nominal control law needs to be recomputed

and implement the decision, and

6. Abort the letdown if the confidence in the forecasted time

histories degrades substantially or if a landing window is

suddenly disqualified.

The specific criteria for acc:.eptability of a forecasted deck position

for landing would depend upon the stipulated touchdown constraints dis-

cussed earlier and on the aircraft control system limitations.
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Study Requirements
	 t

The above discussion indicates the complexity of the problems associated
with the final phase of shipboard landing of VTOL aircraft. A fundamental

conclusion of this investigation is that the various components of the

system (namely, the aircraft characteristics, the ship rnotion prediction

algorithms, and operational factors) are closely connected and must be con-

sidered together in designing suitable letdown guidance laws.

A combined analytical and computer simulation investigation of alter-

nate letdown guidance schemes is recommended, A combination of a tracking

or feedback controller with a nom 4 nal open'-loop control law based on ship

motion forecasts may prove to be the best compromise. The feedback con-

troller may be able to follow the lower frequency components of deck motion

thereby requiring a shorter forecasting interval for successful landing.

The following overall approach to the problem is recommended:

1. The shipboard landing problem must be approached in an

integrated way. Landing controller design is effected by

aircraft control system and structural characteristics as

well as ship motion prediction capabilities. The two as-

pects are intimately related and shoulu not be artifically

separated during the design stages.

2. An evaluation of both model-based and multivariate time

series analysis methods of forecasting is recommended.

Such an evaluation should provide the theoretical limits

on prediction accuracy versus lead time of forecasts for the

tw,; approaches.

3. Optimum forecasts (mean and covariance) may be used to compute

the probability of the ship motion satisfying the touchdown

constraints and hence the relative frequency of landing



4, Conversely, definition of landing pad opportunities, con-

straints at touchdown and the desired frequency of landing

may be us?d to determine the requirements on prediction

accuracy of the ship motion forecasts.

5, The results may be used to establish the inverse relationship

between the tightness of the landing pad constraints at touch-

down and the required level of prediction accuracy.

6. The results of such a study can be used towards the design

of a safe and efficient landing controller design.

7. Finally, a computer simulation investigation should prove

extremely useful in evaluating alternate control laws and

system performance under perfect a priori assumptions about

models for ship motion, aircraft dynamics and environmental

disturbances. Results of such a study would show the rela-

tionship of touchdown dispersions to forecasting accuracy

and aircraft control system characteristics,
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V

ANALYSIS AND SIMULATION RESULTS

This chapter presents the simulation results of the combined system

model used to study the chosen two types of approach guidance described

in Chapter III, Fir added interest, a simple open-loop letdown guidance

procedure was added to the simulation so that landing position dis-

persions could be related to those at the hover point. An overview of

the simulation study is first given, followed by a discussion of single

pass and Monte Carlo results.

Overview

Each of the system elements discussed was put into a digital program

MAALS resident at NASA/Ames Research Center. The program is organized in

modular form as depicted by the system block diagram of Fig. 1. The

program contains convenient input and output subroutines which facilitate

parameter changes and plotting of results. Its made to accomodate

both a single pass simulation and multiple (Monte Carlo) passes with mean

and variance computation.

Appendix H gives the MAALS program macro flow charts and explains

each of the modules. Appendix F presents details of the guidance law

and logic developed for the approach guidance study.

Figure 29 shows the nominal appr=oach path that was used in this study

to establish standard initial conditions. In the simulation scenario, the

RTA aircraft is initially positioned at 4 km (10,065 ft) with a 27 0 bear-

ing with respect to the ship at an altitude of 137 m (450 ft) above the

ship c.g, (400 feet above the average landing pad). The ship is underway

at a speed of 20 kt with Sea State 5 conditions. The aircraft ground

speed is 120 kt resultin g in a 100 kt relative speed. The speed range

below 120 kt corresponds to the powered lift flight regime for the air-

craft. For both the constant bearing (27°) and elevation (3 0 ) and the
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pursuit guidance modes, it takes approximately 115 seconds of flight time

before touchdown, Initially, the aircraft is flown with altitude held,

ground speed hold, and wings level modes of guidance until the navigation

filter is initialized (5 seconds). Immediately, the 27 0 reference

bearing and 3 0 reference elevation are captured and tracked. At 40 seconds,

the longitudinal deceleration maneuver at 0.1 g is initiated. At 80

seconds, the final approach mode for the lateral axis is initiated. Se-

veral simultaneous maneuvers are commanded:

I.	 the aircraft heading is aligned t' 	 lie ship heading,

2, the reference bearing is slewed to zero,

3, roll-to-level is commanded, and

4.	 the lateral velocity command mode is activated,

At approximately 85 seconds, flare maneuvers for the longitudinal and

vertical axes are initiated to bring the aircraft smoothly to the hover

point (station keeping state). At 110 seconds, the letdown maneuver of

3 ft/sec is initiated strictly on an open loop basis. The aircraft

touches Jown 7 seconds 'later. The wake turbulence caused by the wind-

over-deck becomes effective approximately 60 seconds into the flight.

For the pursuit and constant sink rate, the guidance scenario remains

essentially the same except that the sink rate command of nominally 10

ft/sec is initiated at 30 seconds.

Nominal Case

Figures 30 through 37 show the constant bearing (27 deg) and elevation

(3 deg) and the pursuit and constant sink rate (10 ft/sec) guidance cases

side by side. The cases correspond to (a) no MLS errors, (b) no aircraft

or ship sensor errors, (c) no wind, and (d) no ship motion.



Figure 30 shows the (x,y) and (range, altitude (z)) plots with res-

pect to the ship axes. The (x;y) plots show the difference in the lateral

trajectories. The constant bearing approach shows the straight line with

the bearing angle of 27 deg; it shows an initial transient due to the re-

ference capture maneuver and also a small transient at the end due to the

guidance mode switching. The (x,y) plot for the pursuit guidance shows

the typical "chase" trajectory exemplified by the aircraft coming in from

the ship's stern. The pursuit trajectory overshoots the ship's extended

centerline which is caused by the guidance gain "mismatch". More re-

sults showing the effect of pursuit guidance gain changes are presented

later. Never the less, both of these guidance methods successfully bring

the aircraft to the landing pad.

The range/altitude plots show a marked difference in the vertical

trajectory profiles. The constant elevation (left) plot shows that the

altitude holds smoothly until it transitions to the elevation reference

mode. It has a final vertical flare for 5ta tior,keeping. The trajectory

is approximately a straight line of 3 deg with respect to the ship.

The plot on the right shows the altitude hold transitioning to the con-

stant sink rate (10 ft/sec) and flaring to the stationkeeping point.

The trajectory is concave down with respect to the ship axes, even though

the altitude plot with respect to time is linear. The concaveness is

the result of the longitudinal deceleration maneuver. Again the corres-

ponding guidance 'laws bring the aircraft to the landing pad as is expected.

Figure 31 shows the time plots of along-t, ,ack, cross-track and altitude

above the stationkeeping point. The along-track plots show a similar

characteristic, because the longitudinal guidance law is the same. They

show the straight line followed by a parabola caused by a constant de-

celeration.

The next plots show the cross-track components. For the constant

bearing guidance, the heading hold mode is followed by the reference

capture and track
	

At 70 sec, the aircraft transitions to the final mode.
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Vote the cross-track error transient induced by the heading alignment

maneuver. For the pursuit mode, the cross-track error is not defined

(this is indicated as a zero value until the final mode switching). At

75 sec, the final lateral mode is initiated. (The switching is incor-

porated in order to have better control of lateral position during the

hover.) The effect of the pursuit overshoot (see Fig. 30) is apparent

at this point.

The bottom plots show altitude vs time. The constant elevation

guidance shows a concave up characteristic caused by longitudinal de-

celeration, It is noted that for the constant sink rate guidance the

aircraft spends more time in the altitude hold mode; this is because

the vertical velocity for this mode is independent of the longitudinal

velocity.

Figure 32 shows the time plot of along-track, cross--track and ver-

tical velocities for the nominal cases. The along-track velocity plots

are almost identical including the final flare maneuver. The next plot

shows the "cross-track" components. In the left plot, two transient

activities are prominent; the first one is caused by the bearing re-

ference capture mode. The second transient, occuring at 70 sec, is

caused bly switching to the final mode, The plot on the right shows the

cross-track velccity for the pursuit guidance. Initially, the guidance

law attempts to orient itself to the pursuit trajectory by banking to

the left. Because of a low guidance gain, the pursuit trajectory over-

shoots and starts correcting back to the desired trajectory. The

correcting process lasts until mode switching. (The effect of guidance

gain variations for the pursuit trajectory is shown later.)

The bottom plots shows the vertical velocities. The left plot shows

the constant elevation guidance. After the altitude hold mode, the 3 deg

reference is captured and tracked by holding the steady sink rate of

2.8 m/sec; as the longitudinal speed slows due to the deceleration, the

sink rate becomes smaller, and it terminates with the flare and hover

m..neuvers. The let-down sink rate of 1 m/sec is apparent at the end of

the hover. The plot on the right shows the constant sink rate case.
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r,

After the altitude hold mode, a 3 m/sec (10 ft/sec) sick rate is commanded

and held. The exponential flare is commanded at the proper tine which

brings the vertical speed to zero smoothly for stationkeeping. The guid-

ance law becomes identical after that time.

Figure 34 shows the total position errors from the guidance reference.

The top plot shows the actual along-track position. The middle plots

show the cross-track errors. These are identical to those of Fig. 31:

The bottom plots show the vertical errors. On the left, the 3 deg/sec

capture maneuver is apparent. After 35 sec, this plot shows a small

hang-off error which is caused by the cross-feed of the longitudinal de-

celeration. On the right, the vertical error is indicated to be zero

until 65 sec. This is due to the fact that for the constant sink rate

mode, vertical error is not defined. The exponential flare maneuver is

apparent followed by hover and let-down after 65 sec.

Figure 35 shows the corresponding velocity errors. The top plots

show the longitudinal velocity errors. Note, the error transient at

35 sec is due to deceleration maneuver initiation. Also, the transients

due to the lateral final mode switching are apparent for both cases. The

next plots show the cross-track velocity errors, which are identical to

those of Fig. 32. The bottom plots show the vertical velocity errors

from the references. The left side shows the transient due to the glide-

slope capture. This proves essentially that the glideslope track mode

combined with the constant deceleration longitudinal mode provides con-

tinuous guidance._ The plot on the right shows two transients; one is at

the initiation of the constant sink-rate maneuver, and the other is for

the exponential flare. The transient shapes are different, because the

former uses the guidance law with the velocity feedback only, and the

latter uses position and velocity feedback.

Figure 36 shows the aircraft attitude angles, angle-of-attack and

sideslip angle. The top plots show the roll angle. For the constant

bearing mode, there is a roll excursion of ± 20 deg for the capture maneuver

(guidance gains are four times larger). The roll angle steadies out to a
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small value as the reference is tracked. It developer a small offset va

due to the longitudinal deceleration and then goes to zero as roll-to-

zero is commanded during the hover and let down period. The plot on the

right shows the roll attitude for the pursuit guidance. The roll and

heading angles reflect the characteristics of the pursuit guidance, viz.

it requires a constantly changing cross-track velocity..

The next p"ot shows the pitch attitude which is held constant through-

out the flight. (It is not used to control guidance deviations specifically.)

A very small effect of the vertical cross feed can be seen.

The next plots show the heading angle. The left plot shows the tran-

sient due to the roll maneuver for capture. The aircraft holds a steady

heading until longitudinal deceleration begins. As the lateral mode switches,

the result of the heading alignment maneuver is apparent as it terminates at

the ship heading of 23 deg. The right plot shows the resulting heading

due to pursuit. Because of the initial relative heading between the air-

craft and the ship, the aircraft heading initially swings to align itself

and overshoots. It then starts correcting itself in chasing the ship heading.

At the terminal stage, the aircraft heading overshoots the ship heading

by five degree, but the alignment mode brings it back smoothly.

The angle-of-attack shown in the next plots exemplifies the inertial

flight path angles for the nominal case, because pitch angles are constant

and there is no wind. Notice the angle-of-attach during the letdown; even

through the aircraft is stationary with respect to the ship, it is non-

zero due to the inertial flight path angle caused by the sink rate of

1 m/sec (3 ft/sec) and the ship velocity of 10 m/sec (20 knot). The side-

slip angles ( , shown in the bottom two plots show the results of the coor-

dinatO turn prior to the final lateral mode (the yaw axis is "slaved" to the

roll axis). The sideslip -ancients during the final mode show the effect of

actively controlling the heading angle.

Figure 37 shows the time plots of the various aircraft control actuator

input signals as well as the fan RPM. The first plots show the nozzle angle

input. Combined with the throttle actuator signal (third plot), they control

.^,.
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the longitudinal and Vertical thrust vector components in unison, There-

fore, the differences in both of these plots are caused by the difference

in vertical guidance, For example, the effects of the longer altitude

hold mode for the constant sink rate guidance can be seen; The second

plot show the side vane actuator signals which becomes active during the

final mode to control the side velocity, Therefore, these reflect the

cross track error during the lateral final mode. The bottom plots show the

fan RPM which provides the thrust for the direct powered lift flight regime,

It is seen that the engine and fan dynamics are evidently very fast, because

the RPM plots look almost identical to the throttle actuator input signals.

Cain Effects for Pursuit Guidance

It was noted previously that the pursuit guidance performance is re-

lated to the guidance gains. The applicable guidance law is giver) by

Vc

c = tan-I k^ Y_

where

qc = roll command,

V 
	 = lateral velocity command,

g	 ; gravitational constant (32.2 ft/sec), and

k	 = guidance law gain,

In order to test the sensitivity of the guidance gain to the performance,

simulation runs were obtained with three different gains: k = -0.8, -0.4

and -0,1.

Figure 38 shows the flight path results plotted for the three cases,

`	 The top plot shows the horizontal trajectories with respect to the ship

body axes, The second plot shows the cross-track errors after 70 second

v
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(zero value prior to it indicates that the error is not defined): 'this

shows the performance of the different gains at the terminal condition.

The bottom plot shows the lateral velocities until 70 seconds, After

70 sec, these errors are nulled. These. lots show that a high gain tends

to over compensate for the "ideal" pursuit trajec o ry at the initial

time by aligning the aircraft heading to that of the ship too quickly;

the aircraft thus puts itself into an overshoot situation. The low gain

law tends to hesitate and let the kinematics align the velocity vectors.

This phenonomenon is evidenced by the tendency of pursuit guidance to

undershoot the target ship.

To say that low gains are better because the transient induced by the

cross-track errors at the onset of mode switching are smaller is not en-

tirely correct. It is true for this particular set of initial states;

however, for a different set of initial conditions, the conclusion may be

different. Further resolution must come from more extensive simulation

study.

Error Sensitivity Analysis of the SRFIMF Flight Controller

The SRFIMF flight contoller was designed from the deterministic in-

put/output point of view using classical design techniques.. See Appendix

B for a more detailed account. It was never tested nor analyzed as to
its sensitivities to the errors 'in the feedback signals which exist in-

herently in the aircraft body sensors. A simple and heuristic arguement

has been given for this type of flight controller's applicability.

Flights were simulated with two different sets of sensor error mag-

nitudes with the guidance laws using error free positions and velocities.

i

	
(i.e., for this test, it was assumed that navigation was perfect, and the

only errors were due 'to flight control instrumentation.) Therefore, in

these cases, the differences in total errors from the nominal case were

induced solely by the sensor errors in the flight controller feedback

loop. Table 2 summarizes the magnitudes of the sensor errors used in the

experiments.	 1.2,191
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Table 2, Aircraft Body Sensor Error Characteristics

Standard Inertial Platform Model

Type	 Nigh	 Nigh
FI°equenc _	 Frequency (bias )

Attitude	 0.1° (lo; 10 sec)	 O,ln

Attitude Rate 0.5°/sec(lo; 10 sec) 0,5Q/s

Attitude Accel, 0.1"/sec2(1o; 10 sec) 0.1°/s2

Linear Accel.	 0,1 ft/sec(lo; 10 sec) 	 0,7 ft/sect

Strap-down Model

Attitude	 1 0(10; 10 sec)	 0.5°

Attitude Rate 0.5"/ s(1(1; 1'0 sec) 0.5"/s

Attitude Accel. V/s2(1o; 10 sec) 1°/s2

Linear Accel.	 0.5 ft/sec ? (lo; 10 sec)	 0,5 Tt/sec2

Figures 39 and 40 show the total position and velocity errors with

respect to the guidance references for the corresponding sensor error

characteristics given in Table 2, along with the nominal case.

In Figure 39, the second plot shows the cross-track errors. The

deviations from the nominal case are small except immediately after the

reference capture. The bottom plot shows the vertical position errors.

The nominal and the platform error cases are almost identical except for

a small stand-off error. The strap-down case shows approximately 1 meter

of .stand-off errr,,r. Also, note the presence of a medium frequency excur-

sion in the latter case. The hang-off error is thought to be caused by

the interaction of the steady state value of the integral compensator with

respect to the vertical acceleration bias.
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In Figure 40, the top plot shows the along-track velocity errors.

The second plot shows the cross-track velocity errors, and the bottom, the

vertical velocity errors. The deviations are very small for all axes The

strap-down case tends to introduce a small medium frequency excursion
caused by the pitch activities due to the pitch attitude feedback loop in

the flight controller,

In conclusion, the ,sensor errors in the flight controller feedback
loop do not materially degrade the guidance performance by itself. The

controller remains stable in the presence of the sensor errors. Other
errors such as guidance errors and linear velocity errors due to naviga-

tion have a much 'larger impact on the total position errors, The study of
the guidance errors caused by the feedback sensor errors was not carried

out in .detail, because the filter is not optimized for the degraded strap-
down body sensor error characteristics. Also, the SRFIMF controller used

in this study was based on perfect knowledge of the aircraft dynamics, It

is not known what the effect aircraft modeling errors would have on this

performance.

Figures 41 and 42 show the navigation position and velocity errors

that result due to the sensor error magnitudes shown in Table 2. As can

be seen, these errors are adequately small near the ship (after 70 sec).

Single Pass Studies

In order to obtain the sensitivities of the total system performance

with respect to the system components, single pass simulated flights were

performed with various system configurations. As expected, the ship motion

and the wind-over-deck turbulence had the most dominant effect in terms of

aircraft accelerations and actuator responses.

For brevity, two cases among many that were actually made are shown

and discussed here. The cases are the constant bearing/elevation guidance

and the pursuit/constant sink rate guidance under the same environmental,

sensor error and navaid error characteristics. Table 3 shows the summary

of simulated error characteristics used. The ship was subjected to the

Sea State 5 condition shown in Figure 43. Figure 44 shows the corresponding

estimates of the "landing pad deviation vector" and its rate. Wind-over-

deck turbulance was caused by a mean wind of 20 knots and a relative direc-

tion of 30 deg with respect to the ship heading.
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Table 3, Summary of Simulated Error Models

(Standard Deviations Listed)

..Type	 High Frequency T Bias

Ship Sensors

Attitude - deg	 011.	 011

Acceleration - ft/s 2	0,1	 0.1

Ship Speed - kt	 010	 1.

MLS

DME	 ft	 3	 3

Azimuth	 deg	 0.1	 0.1

Elevation - &Aq-	 0.1	 0.1

Aircraft Sensors

Attitude Angle	 - deg 0.1 0—I

Attitude Rate - deg 0,5 0.5

Angular Acceleration 0.1 0.1

- deg/s

Translational	 Acceleration 0.1 0.1

-	 ft/s

Figures 45 and 46 show the plots of navigation position and velocity

errors respectively for the pursuit case. The navigation errors are not

sensitive to the guidance concepts, and they seem to be almost identical.

Errors prior to 40 sec are caused by MLS biases and the fact that the

navigation filter has not reached the steady state operating condition.

Medium frequency errors in x and y (along-track and cross-track) are

caused by the ship's pitch and roll excursions. It is seen that the roll

influence on the y error is more prominent than that of pitch on x. The

same comment applies to the x and y velocity errors. The lack of a similar

error in the z-axis is due to the fact that the vertical position of the

MLS antenna with respect to the ship c.g, is well compensated by the landing

pad deviation vector estimation. 	 It is seen that navigation errors in the

immediate vicinity of the ship are typically less than 2 meters in position

and 1 m/sec in velocity.

P:
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Figures 47 through 53 show the time plots of various quantities of

interest for the single pass runs. The plots on the left correspond to

the constant bearing /elevation guidance; the plots on the right correspond

to the pursuit/constant sink rate guidance,

Figures 47 and 48 show the total position and velocity errors with
respect to the guidance references, The top plots of Figures 47 are the

actual along track positions; they look almost identical because the
longitudinal guidance laws are the same. The next plots show the cross

track errors. The left plot shows the effects of the ship rolling motion,

wind-over-deck turbulence and the mode switching. The lateral error

during the hover period is within 3 meters. The plot on the right is zero

until 75 seconds (the cross track error is not defined prior to that time).

Then, the cross track error is shown during the final mode.. Both plots

exhibit the same characteristic low frequency excursion due mainly to

the ship roll. The bottom plots show the vertical errors. The transient

due to turbulence which occurs at 75 sec is apparent on the left plot.

For the constant elevation case, the vertical error is within 5 m. During

hover, it is less than 1 m.

Figure 48 snows the velocity error plots. The top plots show the

along-track velocity errors which are similar except that the constant

bearing approach shows a little more turbulence effect. Except for the

flare maneuver (at approximately 80 sec), errors are small (within 1 m/sec).

The next plots show the cross-track velocity errors. The constant

bearing case has a large error due to the capture maneuver followed by

a medium frequency excursion. This is the result of trying to track and

regulate lateral position which is constant (due to ship motion). The

same error characteristics appear during the final mode. The advantage

of the pursuit guidance (combined with a relatively low guidance gain) is

apparent on the right plot. During the pursuit trajectory, the velocity

error does not show the same characteristics as in the constant bearing

track. This is because the guidance does not try to control position error

by compensating for the ship roll motion that is in effect. During the

final mode (after 75 sec), the error characteristics are the same.
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The bottom plots show the vertical velocity errors, The some com-

ments regarding the type of guidance used apply to the vertical axis,

Controlling the vertical position induces a vertical velocity error, The

guidance law forces the aircraft to follow the ship motion within the

system bandwidth. The constant sink rate guidance does not show much

error, because it only corrects sink rate independent of ship motion,

The turbulence effect on the constant elevation guidance is apparent at

70 sec. As can be seen later, the constant bearing guidance trajectory
passes through the severest portion of the wind-over--deck turbulence pro-
file for this mean wind heading relative to the ship heading.

Figures 49 and 50 show the time plots of total aircraft position

and velocity with respect to the references.

Figure 51 shows the time plots of wind and aircraft acceleration,

(This and the next two figures are plotted every 50 msec rather than

0,5 sec in order to indicate the details,) The top three plots show
the north-east-down components; the bottom three show the aircraft body

accelerations. The constant bearing guidance experiences the severest

turbulence, For example, the equivalent vertical wind shear at 70 sec

is calculated to be 3 m/sec/sec (23 knot of wind change over 7 sec time

period). The tine period of 65 to 75 sec exhibits the worst wind varia-

tion of peak-to-peak value of * 7 m/sec; afterwards, this subsides to

± 3 m/sec. The acceleration plots essentially reflect the prevalent wind

condition. The vertical acceleration, for example, shows the peak-to-

peak value of ± 1.5 m/sec. The vertical axis seems to be most sensitive

to the WOD turbulence. This high acceleration rate would seem to be quite

disturbing to the pilot,

On the other hand, the wind and acceleration ex;>erienced by the pur-

suit trajectory is very much milder; it completely avoids the worst wind pro-

file location relative to the ship. However, the wind and the resultant
aircraft accelerations after 90 .sec are the same.

It is false to conclude that the pursuit guidance is better suited

for the approach since its trajectory avoids the severe wind-over-deck

turbulence.	 If the wind heading is along the ship longitudinal axis,

then the complete opposite re ,4M t is true.
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Figure 52 shows the aircraft attitude angles, ► ,A, angle-of-attack x,

and side slip angle r^ for the two approaches, The roll and yaw attitudes

are fairly smooth and quiet. The pitch attitude shows a little faster

frequency activity mostly caused by the vertical turbulence or cross-

coupling from the vertical or longitudinal axes. The yaw attitude on the

left plot shows the effect of the heading alignment maneuver of 32 deg.

The large high frequency excursions in the angles a and k, are directly

caused by the WOO turbulence,

The results shown in these plots seem somewhat unexpected considering

the given turbulence; the attitude angles $ r 6 and ^ do not show much effect

from the wind, This can he explained by the fact that in this simulation

the turbulence adds only to the (translational) forces but not to the (rota-

tional) moments, The WOO turbulence effects on the aircraft rotational

aerodynamics are not known or modeled at this time. There may be other

effects missing such as the engine fan inlet dynamics due to wind varia-

tions, It is recommended that an investigation be conducted to provide

information so that the wind-over-deck turbulence can be more accurately

modeled.

Figure 53 shows the translational control actuator signals and fan

rpm for the same two approaches, Compared to the nominal cases shown in

Fig, 37, these signals show considerable control activity, In a sense,

these plots indicate the soundness of the design philosophy behind the

SRFIMF controller. The controller is generating the actuator signals to

overcome the WOO turbulence so that the kinematic states are "wind proofed".

Therefore, the controller seems to be suitable to the aircraft with the

difficult mission requirements such as described above.

As has been shown, one of the nominating factors contributing to the

difficulty of landing a VTOL aircraft onto a small landing pad is the WOO

turbulence. Constant bearing approaches are vulnerable to the wind from

the opposite side; the pursuit approach is vulnerable to the head wind. One

way to avoid most of the severe turbulence is 'to fly higher. An experiment

was performed for the constant bearing/elevation approach where the hover

altitude was set to 30 m (100 ft) above ship c.g. instead of 15 m (50 ft).
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Figures 54 through 56 show time plots of the pertinent variables,
Figure 54 shows the WOD turbulence (iYFD) components and body accelerations,
Comparison of Fig, 54 with Fig, 5,1 reveals that the peak-to-peak values of

the turbulence during the worst: period is reduced by half. The corresponding

accelerations are also 50 1ft smaller,

The angles, x and i,, in Fig, 55 show the reduced r lit-to -peak excur-

sion due directly to the redu,tion of WOD turbulence, I'ne aircraft actuator

commands shown in the next figure have far less activity, This will un-

doubtedly reduce wear to the aircraft mechanical and electrical actuator

components, It also would provide a smoother ride to the pilot,

The higher hover altitude approach seems to help avoid the severe WOD

turbulence, However; it also poses certain operational problems,,

1.	 the ML,S azimuth and elevation coverage may need to be expanded

(for the above example, the largest elevation angle was, 40 deg),

2, the approach geometry may not be compatible to the landing aid
lighting system, and

3, the letdown period is longer which requires a longer letdown

relative motion prediction period,

Monte Carlo Studies

Discussion	 Single pass cases are very useful when analyzing and

expanding peculiar phenomenon associated with the sequential events along

the flight trajectory. However, in order to evaluate the expected per-

formance of a given system, a statistical methodology becomes mandatory.

Two popular methods frequently used are (i) lineari:zed analysis by the use

of standard linear covariance propagation, and (ii) nonlinear analysis by

using the Monte Carlo method, The former was used for example by the Vought

Corp. in their study of the similar problem (20]. Some of the drawbacks of

the covariance propagation method are that (a) a linearized system model

must be obtained, (b) the nominal states and controls must be known, and

(c) the state dimension cannot be too large, As a result of these draw-

backs, the problem formulation may become unduly and unrealistically

1.15
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simplified to the point that some of the important details may be lost.

The Monte Carlo method is opposite in philosophy, The purpose is to

u	 make the simulation model as realistic and detailed as possible and then

perform as many statistical experiments (with repeated runs) as is re-
quired, Some drawbacks of this approach are (a) such a detailed model

may not be available, and (b) computational cost in terms of computer
time may become prohibitive. As a result, sufficient statistics may not
be obtained to draw meaningful conclusions.

In this study effort, the Monte Carlo method was used. The two

approaches discussed in the previous section were chosen for the Monte

Carlo runs, Initially, each case had fifteen passes. Time statistics

(mean and standard deviation along the time axis) were computed and

plotted of the navigation and guidance errors. In addition, four event

points were chosen along the flight profile, and at each point, the mean,

standard deviation and correlation coefficients were computed. These

four event points are:

(i) at the end of the constant elevation or the constant sink rate

track mode,

(ii) at the end of the vertical flare maneuver,

(iii) at the end of hover, and

(iv) at touchdown.

The points are flight critical (high work load), and they are connected

by difficult maneuvers. For example, point (i) constitutes the initial

state for the flare maneuver, so the success or the failure of the maneuver

depends on the initial state being within a certain envelope. This implies

that if the error at point (i) is too large and outside the acceptable

bound, then the vertical flare maneuver should not be initiat:.ed; the approach

should be aborted. In other words, the guidance performance at these points

would be the key decision factor as to whether to go on to the next step.

This notion is equivalent to the error criteria at the decision height for the

CAT I11 landing approach, If the lateral error is greater than 22.5 m (75 ft)
and the vertical error is greater than 6 m(20 ft) at the 15 m (50 ft)

1	
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decision height, the landing must be aborted. A statistical analysis based

on a detailed simulation such as the one developed here yields this type

of information.
R

w

In addition to the Monte Carlo simulation consisting of fifteen

passes, cases with thirty and forty-five passes were obtained in order

to determine the convergence sensitivities of various statistical para-

meters. This adds credibility to the statistical inferences drawn from

the simulation consisting of the relatively small sample sizes.

Results	 Figures 57 and 58 show the time plots of navigation error

statistics in term of mean plus or minus one standard deviation (± lo).

T! ►e results were obtained for the constant bearing case; however, the pur-

suit case results do not differ much. The top plot of Fig. 57 shows the

along-track error. The initial transient in the mean error is due to the

filter dynamics and the attitude bias error. The standard deviation of

approximately 1 m is caused by the MLS/DME random noise directly. The

second plot shows the cross-track error. The mean value represents mostly the

MLS/azimuth bias and the standard deviation caused by the azimuth noise.

The bottom plot shows the vertical error. The mean and standard deviation

are caused by the MLS/elevation bias and noise. The cross-track and

vertical errors show the range effects. During hover, the x, y and z

errors are less than 0.5 m (1o)

Figure 58 shows the velocity errors. The mean errors are typically

small for all axes. The standard deviations at steady state are also

small, being less than 0.5 m/sec. The initial transient in the standard

deviations in y and z are caused by the filter gains being raised for

the convergence mode. The standard deviations during the hover were 0.22,

0.66 and 0.11 m/sec, respectively. Larger values for the cross track

error were apparently caused by the ship rolling motion. At any rate,

the resulting navigation errors for the given sensors and navaids seem

reasonably small so that no landing problems would occur because of them.
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Figures 59 and 60 show the time plots of statistics of the constant

bearing/elevation guidance errors. The top plot of Fig. 59 show-- the

actual along-track position. On this plot, scale details are lost. The

standard deviation during hover is less than 0.5 m. The second plot shows

the cross-track error. The mean value essentially reflects various tran-

sients such as the bearing reference capture and final mode switching.

The standard deviation is caused by the navigation noise. This becomes

apparent by comparing the corresponding navigation error plots. The

bottom plot shows the vertical error statistics. The mean error repre-

sents the maneuver transients. The standard deviation is caused by the

navigation error as well as variability of the constant elevation capture

maneuver, During hover, the standard deviations are less than 0.5 m for

the long-track and vertical components and less than 1 m for the cross-

track position. The somewhat larger error in cross-track is due to ship

roll. Considering how large the WOD turbulence is, it is surprising that

the turbulence does not have much effect on the position errors, This is

due to the fast response time of the SRFIMF controller.

The top plot of Fig. 60 shows the along-track velocity errors. The

error during the ground speed track mode is negligible. The mean error

excursion is caused by the longitudinal maneuver. The standard deviation

is caused by the navigation error. It is noted that the maneuver tran-

sient also contributes to the speed error. The second plot snows the

cross-track ve 0city error. Again, the same comments apply. The bottom

plot shows the vertical velocity error. The elevation reference capture

maneuver effects are apparent. The WOD turbulence effect can be seen at

70 sec; however, its magnitude is small. During the hover mode, velocity

errors are typically less than 0.3 m/sec in along-track and vertical and

0.7 m/sec for cross-track.

Tables 4 and 5 summarize the statistics at various flight critical

points. Figure 61 shows the various to error rectangles. The touch-down

footprints in x and y were 0.46 ± 0.74 and 0.01 ± 1.1 meters respectively.

Compared to the landing pad dimension of + 11 m for x and + 8 m for y, the

performance of the open loop letdown strategy is credible (the letdown

maneuver affects mainly the vertical impact velocity and the relative

attitudes of the aircraft with respect to the ship.) The vertical impact

velocity had a statistical value of -1.17 + 0.6 (0.17 min, 2.16 max) m/sec.
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Table 4. Navigation and Guidance Error Statistics for

15 Monte Carlo Passes

(m and m/sec)

At the transition from glideslope or sink rate track to flare

1

x

, 381

y z x y z pxy
pxz pyz

NAVIGATION 1.17 0.0 .1,0 .07 -.05 -..01

ERRORS 220 -.308 -.243
.52 .57 25 .45 i.06

GUIDANCE -69.2 -1.54 -.26 .60 1.99 0.0
ERRORS 20.3 2.46 .49 .44 .82 .18

O1

At the transition from flare to hover

x y z x y z pzy pxz °yz

.89 .40 .05 .O1 .18 -.O1
_ 372 .612 -.291ORSERRORS .34 .53 .47 .20 .43 .05

GUIDANCE 31.3 -2.40 -.29 -1,39 .06 .03

ERRORS 14.1 1.65 .63 .57 .79 .17
253

At the transition from hover to letdown

x y z x y Z pzy pxz pyz

NAVIGATION .80

1
-.20 -.06 -.10 -.03 .03

- 797 244 -.443
ERRORS .31 .58 .41 .17 .44 .05

GUIDANCE .82 .22 -.03 -,O1

.24
1

.02 .01 _ ,619
ERRORS .59 1.19 .51 .56 .12

At touchdown

x y z x y z pzy p xz pyz

NAVIGATION
1.0 -.31 -.02 .04 -.13 0.0

•4 22 '•188 0.005
ERRORS .29 .41 .53 .15 .37 .05

FOOTPRINT 0.46 0.01 _ _ _ 1.17
0.307 - -

IMPACT 0.74 1.1 0.6

VELOCITY
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Table 5. Navigation and Guidance 1 a r Error Ellipses for

15 Monte Carlo Passes

(m and deg)

At the transition from flare to hover

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0,70 0.24 -56.24

GUIDANCE 0.56 1.01 83.63

At the transition from hover to letdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.70 0.21 -64,31

GUIDANCE 0.33 0.48 73.50

At touchdown

PRINCIPLE AXIS MINOR AXIS RQTATION ANGLE

NAVIGATION 0.25 0.41 -25.03

GUIDANCE 0.68 1.14 1.8.52

127



128

v).

I

°3

G CJ

L L
N 4!

v O4. =

L
CJ

C >
O O
.r 2
i-^
r O
C 4-)

^ L
^7 tfJ

E
O

VL—

wu

F1

^ L

• ^ L►J ^ W
zr'-1

1

6.J

E

IN

C	 p►

4

S	 °

C ^t c

i.►

in

 L
Q	 ^O

^	 0!

cm
C

A

41ua
b

L
OLLW
4)uc
.Q
•r

L7

O
^	 C

O
u	 I-

^"	 Q1

Q	 •^z
u

L

^r
LL

1>1
l>>

ra

f



Figures 62 and 63 show the time plots of statistics for the pursui

constant sink rates guidance errors, The top plot of Figure 62 shows

the along-track position, The next plot shows the cross-track error,
error is not defined until 75 sec. After that, the error is with respe

to the ship longitudinal axis. A transient due to the final mode switc

is apparent, The bottom plot shows the vertical error, The error at

the beginning of the flight (until 30 sec) is caused by the navigation

error, and the constant sink rate maneuver, The error after 75 sec is

caused by the vertical flare maneuver, This part of the error shows one
of the disadvantages of taking the time statistics, i,e,, taking the

statistical data at the same time point, The vertical T are maneuver is

initiated by the appropriate state variables and not by time, It is

suprising that the flare initiation spans some 1.5 sec, This phenomenon
is believed to be caused by the constant sink rate initiation ic`;yic, Never-

theless, the flare maneuver is successful in that the position error mean

and standard deviation are brought to small values,

Figure 63 shows the pursuit guidance velocity errors. The top plot

shows the along-track velocity error which looks almost identical to the

constant bearing case, The next plot shows the cross-track velocity, One

of the advantages of the pursuit guidance is apparent, viz., there is no

violent transition due to the bearing reference capture. The standard

deviation seems to be a little larger then the constant bearing guidance,

This may be due to the lower guidance gain, After the final mode transi-

tion, the error characteristics are similar to the previous case. The

bottom plot shows the vertical velocity error, The same comments apply

as in the vertical position error.

Tables 6 and 7 summarize the statistics at various flight critical

points for pursuit guidance, Figures 64 shows the various 10 error rec-

tangles, During the hover mode, the position errors were 0,5 m along-

track and vertical, and 1 m for cross-track. The velocity errors were

less than 0,25 m/sec and 0.7 m/sec respectively for these directicns,

The touchdown footprint (1:° values) was within 1 m for x and y, and the

vertical impact velocity had a statistical value of 1.31 ± 0.55 (0.33 min,

2,21 max) m/sec.
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Table 6. Navigation and Guidance Error Statistics for

15 Monte Carlo Passes

(m and m/sec)

At the transition from olideslope or sink rate track to flare

x y z x y z pxy pxz pyz

NAVIGATION 1.04 1.03 .48 .03 -.07 -.06
-• 33 .5 -.37 ERRORS , 27 .45 .62 .17 .34 ,07

GUIDANCE 205.
-

_ -.48 4.56 .05
N/AERRORS 87. .34 .91 .09

At the transition from flare to hover

x y z z Y' z pzy pxz yz

NAVIGATION	 1,06 .77 .2 .08 -.03 0.06
•47 -.31 .06ERRORS	 .31 .5,1, .58 .19 .48 .06

GUIDANCE	 -133. -1.14 4.68 -.65 4.28 -1.69
- 07ERRORS	 54. 4.40 - t 52 .51 1.30 .15

At the transition from hover to letdown

x y z x y z pzy pxz Pyz

NAVIGATION .8 -.22 .04 -.09 -.03 •02 _.81 .34 -.5ERRORS .34 .51 .43 .14 .48 .05

GUIDANCE .72 .04 -.02 -.02 .03 0.0
ERRORS .47- 1.03 .49 .22 .66- .11

At touchdown

x y z x y z pzy Pxz pyz

NAVIGATION 1.01 -.24 -.05 .08 -.07 .01
-.18 -.09 -.11

ERRORS .29 .41 .5 .17 .31 .05

FOOT PRINT 0.53 0.14 1.31
AND

IMPACT 0.47 1,04

_

r

_

0.55
-0.02

VELOCITY
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Table 7. Navigation and Guidance 1 a Error Ellipses for

15 Monte Carlo Passes,

(m and deg)

At the transition from flare to hover

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.4817 0.2939 12.084

GUIDANCE 0.5271 2.3025 -89.537

At the transition from hover to letdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 1.5004 0.1907 -54.667

GUIDANCE 0.3391 0.4208 73.521

At touchdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.27 0.42 -13.5

GUIDANCE 0.47 1.04 0.0
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Figure 65 through 68 show the navigation and guidance error statistics

plots for a Monte Carlo run consisting of 30 samples. Here, constant

bearing/elevation angle guidance is used. Tables 8 and 9 summarize the

statistics at the prescribed points, and Fig. 69 shows the various la

error rectangles.

Figures 70 through 73 show the navigation and constant bearing guidance

error statistics plots for a Monte Carlo run consisting of 45 samples.

Tables 10 and 11 summarize the statistics at prescribed points, and Fig.

74 shows the various la error rectangles.

The time plots do not show any marked difference. However, the la

error rectangles show differences in size and orientations. This can be

verified from the tabulated data also. This probably means that the

correlation coefficient are not easily identified especially when the

random variables are practically independent. Rectangle sizes are similar

for 30 and 45 samples.

Conclusions

As. can be seen from this chapter, the fast-time simulation developed

from the system model described in Chapters II, III, and the appendices

can be used to produce many interesting and quantitatively informative

performance results. In this chapter, we examined both the constant

bearing/glideslope and pursuit/constant sink rate guidance techniques.

Also examined were (a) the effects of sensor errors on navigation, guid-

ance and SRFIMF flight control performance, (b) the effects of changing

pursuit guidance constants, (c) the comparison of both guidance techniques

with respect to the wind-over-deck wake turbulence, and (d) the improvement

in turbulence reduction created by having a higher hover altitude. In

addition, navigation and guidance errors statistics were computed using

the Monte Carlo option for the constant bearing guidance concept with 15,

30, and 45 passes.

The conclusions were as follows:

134



V-

O c

r 0
h

A J
L

1- ov
L llrV

a► O	 Ei
i

V^

i
C/

C >
O

•^ O
N ^c
A C1L L
1- b
r

C LL
E

Q 4-

b

K	
r► _

E

I	 ILC`` I

-w ^w
r._,
M	 ►

1	 1
L._•^

E.-r

C

	

L	 N
	Q 	 N̂

	

O	 ^

	

^	 O

	

G	 1d
u

	

•p	 N

	

r	 +^

H

	

M	 r+
d

	

v	 y1
dr
CT
C
A
u

ooc

b

i

i
W
NuC
A

C

	

C	 A
3

	

o	 c

	

^	 O

	

L	 r

	

O	 ^.

1-

	

Q	 Z

u	 v

0
i

01

ri

I>,

i>,

1(

t^

E
v-i

/

135



10

s
a

r 0

z° -5

-10

Q..	 a0	 ^o	 e

n
20 -

ISE

10

..S

0 ............................	 ..	
....

-5

-10

0	 20	 10	 6

35

'!4

E 20

10

^..... .....	 ........Np

> -10

-IS-

'20

!0

I rn gc 011.ica.vnaa.3

Figure 65. Navigation Position Error Statistics for 30 Samples.



S-

1-

E 2~
I

i

t
0

L.
	 •z

Z -3

-5
0

e

0 +

E

r	 p	 .
4j
N
ro
W -+

-e
0

2

^ 1
E

i

r 0
roU
•r

L '^

-2

-	 ou	 ICU	 120

Time in Seconds

Figure 66. Navigation Velocity Error Statistics for 30 Samples.

131

^y

43

:z



low

0

-loco
U
(C X00
L.
4)

rn
# ."M

0 -4000

$000

aw

E
I	 ISO

-NC
U	 100

o

-50

10

-10

-IS

O

................	 .................

40 Mo	 120

Time in Seconds

Figure 67. Guidance Position Errors for 30 Samples.

138



^► 	 1s
E

S.
U
ML

1	 -S
C►c
0
r-
a 

-1S
0

H du

E 10
1

Y 0t^
b

-10
1

vi -20

U -30

-40

5
4

vi	 3

E 2

I	 i

rt
0

U -i

+-+	 -2L
a -3

-s

20	 40	 80	 80	 100	 170

0

120

Time in Seconds

Figure 68. Guidance Velocity Errors for 30 Samples.

139

k



Table 8. Navigation and guidance Error Statistics for

30 Monte Carlo Samples

(m and m/sec)

At the transition from glideslope or sink rate track to flare

x y z x Y z
Pxy P xz Pyz

NAVIGATION
ERRORS

1.06 .08 .16 .09 -.09 -.01
" .24 -.30 -.07

,34 .48 49 .23 .35 .06

GUIDANCE -73.4 -.55 -.35 -.61 -1.69 -.01
26

ERRORS 22.9 2.82 .53 .36 1.09 1.70
L

At the transition from flare to hover

x y z is Y z
Pzy Pxz Pyz

NAVIGATION	 .92 .23 .04 -.02 .13 -.02
-•4 •31 .07ERRORS	 .33 .54 .48 .23 .40 .05

GUIDANCE	 -34.3 -2.2 -.45 -1.24 -.23 .02
-.12

ERRORS	 15.9 1.48 .60 .68 1.08 .16

At the transition from hover 'to letdown

x y z x Y z Pzy Pxz Pyz

NAVIGATION .82 -.16 .11 -.06, .03 .02
_.69 .43 -.42

ERRORS .30 .55 .39 .16 .43 .04

GUIDANCE .76 .15 -,14 .02 .09 01 _ _ 57
ERRORS .66 1.09 .46 .22 .57 10

At touchdown

` x y z x Y z Pzy Pxz Pyz

NAVIGATION .98 -.25 -.06 .06 -.09 -.02
_.3 -.,19 -.02

ERRORS .31 .38 .46 .17 .36 .04

FOOT
 ND

INT 0.46 0.26 1.31_ _ _
0,163 - -

IMPACT 0.47 0.79 0.5

VELOCITY

R

^^ u
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Table 9	 Navigation and Widance 1 o Error Ellipses for

30 Monte Carlo Samples

(m and deg)

At the transition from flare to hover

PRINCIPLE AXIS MiINOR AXIS ROTATION ANGLE

NAVIGATION
0.4561 0.2587 74,603

GUIDANCE 0.6237 0.8782 -86,81.4

At the transition from hover to letdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.6229 0.1925 -65.099

GUIDANCE 0.3185 0,4150 74.728

At touchdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.31 0.40 -26.2

GUIDANCE 0.46 0.8 - 8.36
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Table 10. Navigation acid Guidance Error Statistics for

45 Monte Carlo Passes

(m and m/sec)

At the transition from glideslope or sink rate track to flare

x y z x y z p xy p xz pyz

NAVIGATION 1.03 .11 .23 .07 -408 -.01.
-.35 -.33 -.03ERRORS .34 .49 .48 .25 .37 .06

GUIDANCE -76.9 .01 -.46 -.54 -1.7 -.04
-

_ _,39
ERRORS 23.9 3.12 .58 .38 1.04 .16

At the transition from flare to hover

x y T x
0.

Y z pZy px pyz
NAVIGATION . 90 . 20 . 12 . OI .  07 -. 02

-•32 .33 -.08ERRORS .37 .51 .48 .22 .43 .06

GUIDANCE -36;8 -2.36 -.59 -1.23 -.49 .02
-•03ERRORS 16.8 1.36 .62 .69 1.2 .1.7

At the transition from hover to letdown

x y z x y z pzy pxz pyz

NAVIGATION .87 -.25 .16

.41 1
-.04 .02 .01

_.56 - -.36
ERRORS .29 58 .17 .41 .05

GUIDANCE .90 -.04 -.20 .O1 01 .01 _ _ .56
ERRORS 64 1..3 .48 .20 .55 .10

At touchdown

7^^ x y z x y z pzy pxz pyz

NAVIGATION .93 -.22 -.04 .05 -.05 -.02 _ 4
-.32 .197

ERRORS .34 .42
1

.51 .16
.

.36 .05

FOOT PRINIT
0.42 0.28 1.24

AND - - - 0.312 - -

IMPACT 0.5 0.94 0.5

VELOCITY
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Table 11i Navigation and Guidance 1 o Error Ellipses for

45 Monte Carlo Passes

(m and deg)

At the transition from flare to hover

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.523 0.2440 -66.259

GUIDANCE 0.6292 0.8454 -89.044

At the transition from hover to letdown

PRINCIPLE AXIS MINOR AXIS ROTATIO14 ANGLE

NAVIGATION 0.5939 0.2232 -67.297

GUIDANCE 0.3401 0.5161 77.120

At touchdown

PRINCIPLE AXIS MINOR AXIS ROTATION ANGLE

NAVIGATION 0.285 0.463 -31.0

GUIDANCE 0.475 0.873 -24.84
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a). The SRFIMF flight controller does an excellent job of cancelling

the effects of turbulence with the price of high control activity.

There still remains fairly high aircraft accelerations (± 1 m/s 2	r
Y i!

vertical). However, these accelerations might be even higher

without this controller, Even so, the accelerations would prove
S

uncomfortable to the pilot. The SRFIMF controller performance

also is quite robust with respect to errors in the inputs from

typical strapdown sensors. The effects of aircraft dynamics

modeling errors were not investigated.

b). The pursuit guidance avoids the turbulence region that the con-

stant bearing approach encounters for a wind-over-deck angle

^W00 or 30 0 . The opposite would be true for a head-on wind.

Raising the hover altitude 15 m reduced the turbulence effects

50%.

c). Both guidance concepts do an excellent ,job of bringing the air-

craft to within acceptable error envelopes at hover and touch-

down. Standard deviations at hover were less than + 1 m. This

was true for the 15, 30, and 45 pass cases. The number of passes

primarily altered the correlation coefficient, although 30 passes

reduced the dispersions somewhat. Touchdown dispersions of ± 2 m

were primarily due to ship motion following the open-loop let-

down maneuver.

d). These studies did not point out any significant differences in

performance which could be obtained from the two types of guid-

ance. Pilot visibility and other consideration will have to

be used to select the desired concept. This information re-

quires cockpit simulation.

e). Because wind-over-deck turbulence can have a significant effect

on control activity and accelerations experienced by the pilot,

it is important that this phenomena be carefully examined and

modeled. This is an important area of investigation for future

research.
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VA

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Approach Guidance Two types of approach guidance for bringing a

VTOL aircraft to a small aviation facility ship have been selected and

analyzed. The two types of approach guidance are divided into lateral,

vertical, and longitudinal axes modes with multiple phases for each axis.

These types of guidance are:

Laterdl axis, constant bearing and pursuit

Vertical axis: constant elevation angle and constant sink rate

Longitudinal axis: constant speed followed by constant deceleration.

The arguments for these choices are presented in Chapter III. Further

description of these guidance concepts, their phases, and their mechaniza-

tion requirements are presented in Appendix F.

The.advantages and disadvantages of constant bearing/constant eleva-

tion angle approach guidance are:

1. This type of approach can take advantage of vessel landing

lights to indicate being on the constant (hearing or constant

elevation lines eminating from the vessel. This also can

include constant azimuth and elevation signals eminating from

t;i^ ship-board MLS system.

2. Using a standard bearing and elevation angle ensures that the

final approach is standard, and the pilot need only be familiar

with this single approach.

3. The constant bearing angle can be flexible. For example, a 00

stern approach could be mechanized.

4. A 27 0 lateral approach (which is the current bearing defined by

deck lights) allows deck overflights to miss the deck superstruc-

ture in case of an aborted approach.
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5. The constant bearing/elevation line p rovides a means of position

control all the way to hover,

6. A possible disadvantage is that a constant 27 0 bearing angle

combined with decelerating longitudinal speed causes the visual

perspective of the landing pad, as seen from the cockpit, to

move out the left side of the canopy. This required crab angle

would be a disadvantage to the pilot for heads-up display
mechanization and obtaining visual approach cues.

7, Another disadvantage is that restricting the aircraft to a con-

stant approach line may not be efficient for particular initial

positions of the aircraft away from this line.

8.	 Finally, this guidance law requires control activity to maintain

the aircraft on the 27 path in the presence of gusts and an

additional crab angle to compensate for crosswinds.

The advantages and disadvantages of lateral pursuit/constant sink

rate approach guidance are:

1. ' Lateral pursuit causes the aircraft velocity vector to point

toward the hover point and eventually to be aligned with the

ship Velocity. This produces a rear approach similar to a

standard runway approach but starting from any initial position.

2. For pursuit guidance, the hover point and landing pad bullseye

are always near the centerline of the forward cockpit window.

This is advantageous for HUD mechanization and obtaining pilot

visual cues.

3. Constant sink rate guidance is easy to mechanize, and it alle-

viates the need for precise elevation measurements from the MLS

if precise altitude could be obtained from other sources.

4,	 Constant sink rate guidance keeps the landing pad bullseye high

in the cockpit window near the end of the approach.

5.	 A disadvantage of pursuit guidance is that the ship velocity

must be transmitted to the aircraft for mechanization.
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6. Pursuit guidance does not allow deck overflight in case of an
aborted approach because the final longitudinal path is in
conflict with the ship superstructure,

7. Pursuit guidance does not have a lateral error defined at the

hover point. Thus, a different position error nulling guidance

law (such as constant bearing) must be used in the hover point

vicinity.

8, Disadvantages of constant sink rate guidance are that there is

no constant elevation angle cue from the ship, and the bottom

of descent will vary with ship speed and the range to the ship

where the constant sink rate command begins.

?

	

	 These two guidance concepts were further evaluated and compared using

a detailed simulation with MLS-based navigation, state rate feedback im-

plicit model following (SRFIMF) flight control, a model of the research

technology lift fan VTOL aircraft (RTA), a model of the vessel motion in

Sea State 5, anu a model of the wind-over-deck wake turbulence. From

this simulation, it was concluded that both guidance concepts do excellant

jobs of bringing the aircraft to within acceptable error envelopes at the

hover point. Standard de-iiations of position error at hover were less

than + 1 m when standard navigation and flight control instrumentation

(with nominal error magnitudes) were used. These studies did not point

out any significant differences in performance which could be obtained

from the two types of guidance. Further evaluation will require cockpit

simulator studies with test pilot opinions being obtained.

Landing Guidance	 Four different letdown guidance approaches can be

used to land the VTOL aircraft on the ship landing pad:

1.	 Guidance based on the present state of the aircraft relative

to the ship.

a). Letdown with an open-loop guidance law. Here, no attempt

F

	
is made to null out relative state errors because of, for

example, excessive relative touchdown velocity.
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b). Nominal open-loop guidance with closed loop perturbation

guidance. Here, an attempt is made to null out perturba-

tions in the relative letdown motion due to vessel motion

and aircraft perturbations due to wind effects.

2.

	

	 Guidance based on future prediction (forecasting) of vessel deck

motion. This requires that algorithms be developed for motion

prediction based on past and current measurements. These measure-

ments include ship-board attitude, attitude rate, and transla-

tional acceleration.

a). Letdown with open-loop guidance. Here, an acceptable

landing envelope is defined. Whenever the future presence

of such an envelope is forecast, the letdown guidance is

initiated so that touchdown occurs during the time the

landing pad is within that envelope.

b)

	

	 Closed-loop preturbation guidance and continuous landing

pad state forecasting so that the relative touchdown state

can be updated and adjusted during the letdown phase.

Chapter V presented preliminary statistical results of the landing dis-

persions resulting from using open-loop letdown with no motion prediction.

A more complete study approach is to devise each of the four schemes and

then to evaluate them through simulation as has been done for the approach

phase of the flight. The limits on touchdown dispersion and landing gear

constraints should be factored into this analysis. Results would include

the recommended landing guidance scheme, a specification of implementation

requirements, and recommendations for further research.

Recommendations

There are three specific areas of further research that this study

points to. These are: (a) piloted simulation evaluation of approach guid-

ance, (b) analysis of landing guidance requirements, and (c) more detailed

investigation of the wind-over-deck wake turbulence model.

Piloted Simulation	 In deciding between the two types of automatic

approach guidance - constant bearing/elevation and lateral pursuit/constant

sink rate, several advantages can be found for both on analytical bases.
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However, these points are not sufficient cry themselves to make a final

selection, Issues have been raised concerning which concept would be

favored from a pilot monitoring point-of-view. The constant bearing

approach is favorable to the pilot for deck light and MLS signal reasons.:

The lateral pursuit approach appears to be favored from the HUD mechaniza-
tion and cockpit window perspective point-of-view. (Although a Zero de-

gree constant bearing approach would have the same advantage.)

It is recommended that a piloted cockpit simulation study be made

which can be used to resolve these questions. This study should be in

sufficient detail so that a clear choice of approach technique can be

made. This means that the cockpit should have a layout similar to what

would be envisioned for the RTA or other advanced aircraft cockpit, This

possibly includes a HUD mechanization. It also would have visual per-

spective limitations and realism so that the pilot could evaluate the

optical cues that each approach provides.

At least three pilots should be used in this experiment. They should

have small aviation facility ship landing experience. They should also

have sufficient training with the guidance concepts so that they can

realistically monitor the automatic approaches and takeover control in

case of a severe guidance error.

A fixed base simulation would be sufficient because the primary mo-

tive of these experiments would be to obtain pilot evaluation of visual

cues. Five passes should be made with each guidance concept and each plot,

and random error sequences should be used. This would require a total of

thirty passes on the simulation. Questionaires should be developed to

obtain pilot opinion of each guidance concept.

Landing Guidance Analysis	 The landing guidance study requirements

are described in Chapter IV. An analysis of vessel motion predic J on

schemes should be made based on models of ship motion and assumptions of

various shipboard sensors being available. This analysis would determine

how well ship motion forecasting could be done and if it could be used as

part of the letdown guidance scheme.
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R J^

1

1

A second analysis should be made of the four automatic landing guid-

ance schemes outlined in Chapter IV. Two are with and two are without
	

S

future ship motion forecasting, This analysis would include a computer 	
4

simulation so that landing dispersions could be computed as functions of

sea state, hover point initial conditions, and instrumentation accuracy,

The output of this study will be a recommended landing guidance scheme

to complement the approach guidance results of this study.
f

Wind-over-deck Modeling The chief disturbance to the aircraft

during the final portion of the approach phase appeared to be due to the

wind-over--deck wake turbulence. There has beer differences -in opinion

and simulation results among the researchers involved in examininy the

effects of the wind-over-deck. The existing model was based on limited

data taken from finite points in a one-fiftieth scale wind tunnel. Be-

cause this turbulence can have significant importance on approach and

landing performance, it is recommended that a new wind-over-deck wake

turbulence model be developed. This would include rotational disturbances

and effects on the engine inlets that do not exist in the current model.

Then, care must be used in creating new and modified simulations so that

the model is used correctly.

Other Research Areas	 This study used specific models of the RTA

aircraft and SRFIMF flight control. The SRFIMF control needs to be

examined in much further detail to evaluate effects of aircraft model

uncertainty and other sensor error magnitudes. This can be done with

the current system model and simulation developed for the current study.

It would be useful to examine the approach and landing requirements

with additional flight control concepts and additional VTOL, aircraft and

helicopters. In particular, if an existing flight system (such as the

Harrier or SH-53 helicopter) were used for the analysis, then the possi-

bility exists of continuing the research through flight test. It is

recommended that future guidance requirements research include both

existing and potential future aircraft (such as the RTA lift fan model).
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APPENDIX A

The Lift/Cruise Fan V/STOL

Research Technology Aircraft (RTA)

The simulated aircraft used in this study (Figure A.1) is the Lift/

Cruise Fan V/STOL Research Technology Aircraft (RTA) which is a conceptual

modification of a McDonnell Douglas T-39 Sabreliner. Table A.1 presents

physical dimensions of this aircraft. The aircraft is powered by three

turbojet engines which drive three fans. One of the fans is located in

the forward fuselage and is used only during powered-lift flight. During

the aerodynamic portion of flight the forward fan, called the lift fan,

is shut duwn and its air duct is closed to reduce aerodynamic drag. The

other two fans, called the lift/cruise fans, are installed at the wing

roots and are used ;'firing powered-lift and aerodynamic flight. Their

exhau5t nozzles can be deflected such that their thrust can be vectored

at any angle between horizontally or vertically. In addition, all three

fans possess the capability to have their thrust deflected for sideforce

generati6n.

Two basic methods of energy transfer between engines and fans are

modeled; (1) the gas-coupled configuration which uses the high energy

heated air to drive the "tip turbine" fans, and (2) the mechanically

coupled configuration which uses a shaft, clutches, and gear boxes to

drive the fans. In either configuration, engine outputs are cross- and

inter-connected to minimize unbalanced forces and moments due to an engine

failure. The mechanically coupled configuration is used for the simulation

study. Figure A.2 shows the macro flow chart of the overall ;mathematical

model for this configuration.

In the cruise (or aerodynamic) flight, the controls are conventional

(i.e., aileron, rudder and elevator control roll, yaw and pitch axes, res-

pectively). Forward velocity is controlled by adjusting the lift/cruise
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Figure A.1 Lift/Cruise Fan V/STOL Research Technology Aircraft

Modified Sabreliner (T-39)
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Table A.1 - Physical Dimensions of the RTA

Symbol Quantity Magnitude

S WING  AREA 342.05 ft2

b WING SPAN 44.43 ft

F MEAN AERODYNAMIC CHORD 3.38 ft

S t HORIZONTAL TAIL AREA 75.10 ft2

t TAIL MOMENT ARM 21.20 ft

` t TAIL MOMENT ARM 8.17 ft

W WEIGHT 21,1000 1 b

I x 19,400 slug ft2
iy

MOMENTS OF INERTIA 52,400 slug ft

I Z 67,500 slug ft2

Ixa 2,575 slug ft2

fan RPM via engine throttle. Below 120 knot IAS, the powered lift mode is

phased in. The separation of the flight regimes is shown in Fig. A.3. In

the powered lift flight regime, change of forward speed, at a constant pitch

angle, is achieved via thrust vectoring of three fans. Lateral translation,

at a constant bank angle, is achieved via lateral deflexion of the thrust

vector magnitude via fan RPM. Attitude angles (roll, pitch and yaw) are

controlled via differential thrust modulation. For the guidance analysis

of this study, the aircraft is in the powered-lift mode for most of the

approach.

Orginially, the aircraft model used in the simulation program contained

a response feed back stability and control augmentation system (SCAS)

model for the flight controller. However, it was replaced by a state rate

feed-back implicit model - following (SRFIMF) flight controller developed

by NASA/Ames Research Center which is described in Appendix B.
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Figure A.3. Aerodynamic and Powered Lift Regimes of the RTA Aircraft

Further descriptions of the aircraft in terms of aerodynamic stability

and control derivatives, engine and fan characteristics and response

characteristics are contained in Reference 4. The simulation program

representing the RTA aircraft used for pilot-in-the-loop experiments at

the Flight Simulation for Advanced Aircraft (FSAA) facility at NASA Ames

is described in Reference 11.
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APPENDIX B

State Rate Feedback Implicit Model Following (SRFIMF) Controller

The purpose of any stability (and command) augmentation system is

to ;modify the inherent dynamic response behavior of a given aircraft so

as to approximate some desired input-output characteristics. This

transformation is achieved by application of a controller design based

on response feedback or model following concepts. Historically, res-

ponse feedback controllers represent the conventional approach to air-

craft stability augmentation design, where the basic idea is to use

output feedback with dynamic compensation and gain scheduling algorithms

to realize a desired invariant, multi-input/multi-output transfer

function matrix. The principal criticism of this approach is the need

for detailed apriori knowledge of the basic aircraft dynamics for a

variety of flight conditions. However, the development of advanced

V/STOL aircraft (having greatly expanded flight envelopes, and, there-

fore, variations in'inherent dynamics) has led to the design of the so-

called model-following controllers which are supposed to be intrinsically

insensitive to aircraft parameter variations and flight'conditions.

The SRFIMF controller represents one such design based on the implicit

model following control concept. 'In the following, an analysis of the

SRFIMF controller structure including an interpretation of the underlying

design rationale is presented. The discussion is limited to the single axis

case for clarity and ease of exposition.

Ideal SRFIMF Flight Controller

Figure B.1 shows the block diagram for an ideal SRFIMF controller.

G(s) represents the plant dynamics and D(s) the disturbance input transfer

function. The basic idea of this controller structure is to effectively

cancel the plant dynamics G(s) by introducing an equivalent inverse

s
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a

SRFIMF Controller

1

Figure B.1. Ideal SRFIMF Controller

transfer function 1/G(s) between u and w. Thus, loop 1,2,3,4 reduces to

W(s)	
T - (1 —777s] "I

[u(s) - D(s) d(s))

7—s) fu(s) - D(s) d(s)]
	

(B.1)

x 

The equivalent block diagram is shown in Figure B.2.

	

d	 Equivalent SRFIMF

r — — — — — -tontro11 e 

	

I	 I

	

I	 D(s)

x	 ul	 1	
w^

Xc	
-	 s+ KX	 1	

s- 4 I
3L---------J

d

G(s)
	 x

Figure B.2. Equivalent SRFIMF Controller Structure
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However, this formulation of the SRFIMF controller is considered to

be unrealizable for practical reasons. A practical or physically realizable

version of the controller involves modification of the loop 1.2.3,4 in

Figure B.I. Two types of physically realizable SRFIMF controllers corres-

ponding to position and velocity command systems are shown in Figures B.3

and B.4, respectively.

The equivalent transfer function between w(s) and o(s), d(s) is

w ) = [!^-s ] u(s) + Cw s	
d(s)	 (B.2)

	

eq	
(,	

eq

where	 w(s)I	 =	 1	 ; Position	 (B.3)

u	 eq	 1	 [A(s) - s K H(s) G(s))	
Controller

1	 Velocity
1 - [A(s) - sK H s 	 s ]	 Controller	 (B•4)

and	 w{s),e 

q 
= - S D(s) [ (S)w

1
eq 

I	 Controller	
(B'5)

	

2	 w	

1 eq]	
Velocity

- s D(s) IU(s)Controller(B'6)

Transfer function A(s) is of the form

A(s) = 1 - s H(s) J(s)

HN(s)	 h No s k + - - + 1
where H(s) = N s
	 - h	 nD	 i s +--+1

and	 J(s) _ io TT (s + pr)''
r=1

(B.7)

(B.8)

(B.9)
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The degree L of J(s) is chosen so as to guaranteee a type 1 position

(or velocity) control system and is determined by the expression

t = n - k - 1.	 (B.10)

Thus, given equations (B.3) - (B.10),

-wS 
)1 eq

=	 1 
y	

: q = 1 Position Controller
 s H(s)[J(s) + s K G(s)]	 q	 0 Velocity Controller

(B.11)

Equivalent block diagrams for the physically realizable position and velocity

controller are as shown in Figs. B.5 and B.6, respectively. In both of

these controllers, the equivalent open loop transfer function between u and

R is given by

k sq K G s) 	 q= 1 Position Controller

u(s)	 J(s) + s q K G(s)	
q = 0 Velocity Controller	

(B•12)

d	 d

s D(s)	 IS D(s)

uXc	
KX	

o	 -	 u	 s KGs	 X+ 1
Js +sKGs	 s

KX

Figure B.5. Equivalent SRFIMF Position Controller Structure

X
	

x
s
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d	 I d

s D(s)	 s p(s)

Xc	 Kx	
u 	 _ u	 K G

s+Kx	
s 4+c

j s +KGs x

1	 I

Figure B.6. Equivalent SRFIMF Velocity Controller Structure

For large values of K (K	 the transfer function

K:w ^(s) - 1.	 (B.13)

This is based on assuming that all the roots of the characteristic equation

A(s) = 1 + s
q K Gss	

(B.14)

not converging on the zeros of s q K G(s) are stable for sufficiently large

values of K. This is one of the fundamental assumptions made in develop-

ing the concept of the SRFIMF controller, When this assumption holds, the

equivalent open loop transfer function becomes

^(s)1	 =	
ss+ 

n ; Inj ^ 0	 position controller

	

k large	
(B.15)

1	 Velocity controller
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Therefore, for sufficiently large value of K, the resulting closed loop

transfer functions for both controllers are:

x(S)
c

_(S)
c

kx

S2 + kAs{kx

kX

S2+ kks + k^

: Position controller	 (B.16)

: Velocity controller 	 (B.17)

as desired.

The SRFIMF controller design may have problems in practical implementa-

tion if for any reason the characteristic equation e(s) of Eq. (B,14) has roots

which go unstable or lightly damped for sufficiently large values of K.

This may occur for any of the following reasons:

1) The assumed actuator transfer function H(s) is not identical to

the actual dynamics;

2) The function J(s) is of order 2 or higher;

3) The transfer function G(s) has higher order dynamics;

4) The digital implementation leads to system instability.

Finally, the SRFIMF controller may have additional problems in gust

alleviation if the acceleration feedback (state-rate) signal is corrupted

by measurement noise.

The SRFIMF controller concept was applied to ail axes of the aircraft.

The attitude "'light controller (AFC) which used the position controller

concept is shown in Fig. 8.7. The flight path flight controller (FPFC)

which used the velocity controller concept is shown in Fig. B.8. The

command signals were obtained from the pilot inputs; AFC comes from the

stick and pedal, and FPFC comes from the power management console. In the

fully automatic system, it was assumed that the pilot actuators, which are

essentially equivalent to the guidance commands, were driven by instantaneous
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and unity gain servos, Table 6.1 shouts the available control modes for AFC

and FPFC, from which the most suitable ones are chosen for the automatic

guidance.

The suitability of the SRFIMF controller design for the multiaxes

application should be checked through careful analysis and simulation.

As a minimum, multivariable linearized models for the given aircraft and

transfer function analysis should be used in conducting the investigation.

h
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APPENDIX C

Ship Motion Modeling

The most severe environment that the VTOL aircraft will have to

land in is Sea State 5. Under these conditions, the shi p motion and wind-
over-deck (air wake) effects must be r;+odeled together. The ship

motion and air wake models used for this study were based on those

compiled by Fortenbaugh [1,5] for previous studies. This Appendix

summarizes the ship motion modeling, and Appendix D summarizes the air-

wake model. 'Details of the model development and sources of data can

be found in Reference 2.

Nine environmental parameters must be specified to quantify the

airwake and ship motion models:

1. Wind over deck magnitude (VWOD)
2. , Wind over deck direction relative to the ship NOD)
3. Ambient wind magnitude (V WIND )
4. Ambient wind direction relative to the ship ('WIND)

5. Ship speed (Vs)

6. Ship heading relative to predominant wave direction (us)

7. Significant wave height (Hs)

8. Modal wave period (To)

9. Sea State (SS)

These parameters are related in various equations and empirical results.

For example, the relationships between modal wave period (T o ), significant

wave height (H s ), and ambient wind speed (VWIND ) are depicted in Fig. C.1.
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Inherent in the model used by Fortenba.ugh is the assumption that

the seaway is long crested so that ambient winds and waves are parallel

and uni-directional. This assumption is valid because ship motion in

long crested seas is greater and more severe then short crested, confused

seas.

To reduce the number of possible sea and wind conditions which

would have to be used in a reasonable experiment and yet provide a

suffiicient variety of operational conditions, F'ortenbaugh developed the

thirteen sets of compatible environmental parameters shown in Table C.I.

Table C.1. Sets of Compatible Environmental Parameters

Relating Ship Motion and Wind-Over-Deck Effects.

ndition
Sea

State
Vs
(kt)

us
(deg)

1 6 25 1?0

2 5 25 120

3 5 20 120

4 5 10 135

5 5 25 160

6 5 5 180

7 4 25 105

8 3 25 105

9 3 20 105

10 3 25 90

11 3 15 120

12 3 25 180

13 3 6 180

*WIND OWOD WIND VWOD
(deg) (deg) (kt) (kt)

-60 -30 25.00 43.30

-60 -30 25.00 43.30

-60 -30 20.00 34.64

-45 -30 19.32 27.32

0 0 20+24 45+49

0 0 20+24 25+29

-75 -30 17.68 34.15

-75 -30 17.68 14.15

-75 -30 14.14 27.32

-90 -30 14.43 28.87

-60 -30 15.00 25.98

0 0 14+18 39+43

0 0 14+18 19+23

Hs To

(ft) (sec)

18 15.13

12 13.50

12 13.50

12 13.07

12 12.07

12 11.51

6.9 10.6

4.6 8.8

4.6 8.8

4.6 8.8

4.6 8.8

4.6 8.8

4.6 8.8

177



The most widely applied, accepted, and proven technique for modeling

ship motions was introduced in the classic paper of St. Denis and Pierson.

[12]. This technique has been computerized by many organizations. The

NAEC version [13), was used by Fortenbaugh. Basic inputs to the computer

program include RAO (Response Amplitude Operator) data for the ship being

studied, Hs and To for the wave spectrum model, and us and V s . Program

outputs include gains, phases, and frequencies of sinusoids which are

summed to produce ship motion time histo

RAO's are ship motion frequency responses, one for each degree of

freedom, and are quantified as gains and phases which are functions of

input frequencies. The gains are the magnitude squared of the ship

motion responses at each of theinput frequencies. The RAO's cannot

be represented by analytic, forms but must be calculated or measured

at discrete frequencies. These data are produced either by measuring

ship model responses in towing tanks or by analytically determining the

respon-^zs with the Meyers, Sheridan, Salveson program. [14] The DD 963

data Uase [15] was generated by this program and covers V s from 5 to 25 kt

in 5 kt increments and 
ps from 0 (following seas) to 180 (head seas)

deg in 15 deg increments. RAO's are established in the encountered

frequency (w.) domain which is mathematically related to the natural

frequency (w) domain by the frequency mapping relation:

w2Vscosus

where we is encountered frequency (rad/sec)

w is natural wave frequency (rad/sec)

g is acceleration due to gravity
(= 32.2 ft/sect)

Physically, the encountered frequency is the natural wave frequency seer,

by a ship moving through the waves.

b
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n

The two-parameter Bretschneider wave spectrum was adopted by Fortenba

for this application because it has been demonstrated by DTNSRDC to pro-

vide more realistic ship responses in mild and heavy seas:

SW
(w)  _ 483.5 H s 2 e _ 1944.5/(wTo)4

 To ww'—
(C.2)

Note that the wave spectrum is defined in the natural wave frequency (w)

domain. Two important features of the spectrum are as follows:

1. Hs is only a scaling parameter.

2. To shifts the peak of the spectrum as shown in Fig. C.2.

The frequency at the peak (w
max

) is only a function of To:

w
max - 6.64/To

This feature is the basis for ^p-yctrom tuning.

A ship motion spectrum is calculated from an RAO and a wave spectrum

as depicted in Fig. C.3 using the relation:

(V
ii (we )	 SW (we ) aw

e
 RAOi(we)	

(C.3)

where	
4)ii(we) 

is the spectrum in the we domain for the i

degree of freedom

SW (we )	 is SW (w) transformed to the L. e with the frequency

mapping relation (Eq. C.1)

RAOi (u6) is the gain of the RAO for the i degree of freedom

aw
e
	 required because the w—w E mapping is not a

e	
unity transformation.

0

5
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The determination of T o 's in Table C.1 was aided by a compendium

of DO 963 ship motion statistics and spectra generated by inputting a

white noise spectrum to all the RAO data in the DD 963 data base. The

To 's which matched the TAO peaks were noted. If T o was outside the To

range of the Sea State for a Table I condition, it was set to the maxi-

mum or minimum as appropriate for that Sea State.

Spectral decomposition of the motion spectra (m il ) results in the

specification of component frequencies and associated gains and phases

for the sum of sinusoids ship model form. For spectral decomposition

the NAFC program approximates a motion spectrum as shown in Fig. C.4

for all frequencies where the spectrum amplitude exceeds 4% of its max-

imum value.

INCOUMT" IQIOUI.MCY 1_1 MADISIC

A l = (P ii (Wel),lwe

A2 = 
^ ii (we2 )Awe	 with this approximation to the

spectrum 4) ii (we), the time history

of ship motion variable is given by
A6 = I)ii(we6)Awe

6
i(t) _ I 1 ,^cos(we t - 

d in + En)n

where ^i = Rao phase angle at wenn
	E 	 = random phase associated with the

	

n	 wave spectrum at we n (-180 0 < F n < 1800)

Figure C.4. Decomposition of Ship Motion Spectra into Six
Components
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Assuming that the thirty two component approximations represent

actual ship motion statistics, Ref. 5 showed that the six component

approximations result in less than 5% error in most cases for RMS posi-

tions, rates, and accelerations of each degree of freedom. Since all

three statistical measures were matched equally we'll with six components,

it was concluded by Fortenbaugh that six components will give an excellent

approximation for ship motions, at least for studies which involve rela-

tively short times of exposure to the ship environment. Studies directed

to the flying qualities and flight control aspects of launch and recovery

on small ships would fall in this category.

Reference 5 contains tables of the seventy eight numbers required to

model the ship motions of each of the conditions in Table C.1. These

include the gain (Ai n ) and phase (mi n ) of each of the six degrees of free-

dom at each of the six component frequencies (wen ) which are common to

all degrees of freedoms These data were calculated by the NAEC ship motion

program [131 for the ship c,g. and are listed in Ref. 5. As an example,

Table C.2 contains the data for representing the ship motions of Condition

2 of Table C.1.

Table C.2, Ship Motion Model Parameters for Environmental
Condition 2

(Ts - 25 lit, Ye n 120 dy , Me - 12.0 H., % - 13.50 •ee)

r of
freedoo swag Me•ve Noll Mch T•v

4
A T

6Tn
1 66 As den A6n 66nteen A%. X n

A%n 6tn ^n n

.3325 04056 92.15 11309 91.59 .1130 -.16 o3684 144.17 .01401 ..65.73 .0055 4 3 - 131.86

.534 8 •5216 87.29 1.$83 94,25 2.783 -.20 ',213 -143.11 .4148 C4. 9t .2570 -159.45

.'623 .3934 84.00 1,01 4 91.68 2,815 1.53 1.560 -75.16 .6943 -53.93 Zj q 8 - 164.97

L w 5 .1838 84.20 4292 87.36 2.450 2:.93 ,8392 -60.93 .6524 _, 3.9 4 ` .1896 1H .0+

1.293 .05932 T5.18 ,1244 8).01 .8887 92.45 .3678 -56.88 .2838 23.Lr . ro3 165.53

1.596 .03103 56.83 .02075 -14.17 ,1109 69.58 .1788 41.00 .1472 50. 4 2 .0994 153.1.7

P=	 A} . A T . Ax air ft; At , Ae , A+ are deA, 111 I 1 'e are dy.
n	 R	 n	 n	 •	 N	 •
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The form of the sum of sinusoids model is given on Fig. C.4. The

RAO phase angles (mi n ) enable the model to maintain correlation between

the various ship motion degrees of freedom. The random phases (cn)

associated with each of the six frequencies in the model are selected at

simulation initialization and remain constant during each simulated

approach or landing operation. These phases introduce seaway randomess

into the problem.

As noted previously, O in , wen , and Ai n are tabulated in Reference 5

for the thirteen conditions in Table C.1. The parameters are calculated

for ship c.g. motions; the motions of any other location on the ship (e.g.

the touchdown point) are obtained by an Euler transformation using ship

pitch, roll, and yaw angles. These tabulated data were used in the systEm

simulation of this study to represent typical ship motion under one of

the conditions, chosen from Table C.1.
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APPENDIX D

A

Environmental Wind Modelling

The environmental flight conditions in the vicinity of the moving

DD 963 ship are simulated for a limited number of sea states and corre5-

ponding wind velocities as presented in Table C.1. The average "wind..

over deck" is constrained to either of two directions with respect to

the ship's average heading: ^WOD = 0 0 and ^ WOD = -30 0 . This angle is

implied by the vector difference of the wind velocity and the ship

velocity, relative to the fixed earth, The wind-over-decd: model is

derived from the work of Fortenbaugh [1,51. The wind-over-deck has

.''	 three orthogonal position-dependent mean values plus three orthogonal

random components with standard deviations which are also position

dependent. The values are obtained in what is defined as a wind-axis

system centered at the ship landing pad.

The subroutine WINDEK which computes the wind components can be

called by any program for which these components are needed. The re-

quired input quantities are:

1. Ship Location - coordinates of the ship e.g. 
(XSI' Y SI' ZSI)

relative to an inertial axis system at mean sea level, directed

north, each and down.

2. Ship Attitude	 These include the mean heading clockwise from

north ( ^so ) and the small Euler attitude angles ( ^s' 6 s' ^s)
relative to this mean heading.

3. Aircraft Location - coordinates of the aircraft c.g. (XAI,

YAI ,
 ZAI) relative to the inertial system which is oriented

north, east, and down.

4. Aircraft Attitude - Euler angles (^A , aA , ^O ) describing the

aircraft attitude relative to the inertial system,
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5. Wind Parameters	 Wind velocity relative to earth  (VWINC) ► and

direction relative to ship centerline (mWOD ), The wind speed

must exceed Vss n(OWOD)

The computations begin by calculating the earth-axis coordinates of

the touchdown point (XTDI' Y
TDI' ZTD1)' which depend only upon the ship

c,g. location, the ship attitude, and the known coordinates in ship axes

of the touchdown point relative to the c,g.

The aircraft position relative to the touchdown point is next ex-

pressed in wind axes as (XASW' YASW' ZASW ) ' Wind axes are centered at

the landing pad and are aligned with the mean relative wind. That is,

the x-axis is horizontally directed into the relative wind (0 0 or 30°

left of the ship longitudinal axis), the y-axis is directed horizontally

to the right, and the z-axis is directed down. These coordinates are

then multiplied by the factor .85 (the ratio of beam widths of the

FF1052 and the DD963 ships), to correspond to the aircraft location

relative to a FF1052 ship. This is done because the wind data have

been numerically determined with respect to the smaller FF1052 ship,

and the relative position coordinates (X 1052' Y 1052' Z1052) are scaled

for this reason. Brief computations also yield values for the position-

dependent break frequencies of the white-noise filters which generate

random airwake -omponents for the FF1052, at a reference wind-over-deck

airspeed of 45 kts (76 fps),. These frequencies are then scaled to

equivalent values for the DD963 ship; for an arbitrary value of wind-over-

deck airspeed.

The wind-axis aircraft coordinates 
(X1052' 

etc.) and the wind direc-

tion (^WOD) relative to th y? ship centerline are next input to subroutine

SHAPE, which determines the shaping function logic for data-base extrapola-

tion to free-stream conditions, to the side of or far behind the ship. 	 3

The logic 1 olds a geometrically-dependent numerical factor F1, which falls

between 0 and 1. and which is used to modulate the magnitude of the air-

wake velocities in the volume of airspace immediately adjacent to the

landing pad., That is, if F1 = 1, the aircraft is located inside the ,3-

dimensional data base wnere the wind velocity components (and their 	 ti
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*----VWOOcos^WOD

UAW

standard deviations) are specified numerically on a point-by-point basis..

In this case, linear interpolation gives the value of velocity as a

linear combination of the eight corner-values specified by the data.

If the aircraft is outside of this data base region but is inside

the larger volume to the side or rear of the ship, the perturbed air-

speed components, to which the aircraft is subject, are extrapolated

toward zero, An idealized one-dimensional version of this data-varia-

tion is shown in Fig. D.1.

Figure D.1. Representation of Perturbed Airflow Near Ship

The sketch (Fig. D.1) shows the variation, with distance aft of the

landing pad, of the mean vertical wind velocity along a locus which is

25 ft above the landing pad. A similar sketch could indicate the varia-

tion with x of the standard deviation of the vertical wind velocity.

Sharp spatial veriations of both of these parameter, are found in the

data, as tabulated in subroutine INTPOL. For example, the mean and

standard deviation of the perturbed wind velocity can change from 20 + 4 fps

to 4 + 12 fps between two adjacent geometric points.

The total wind velocity at a given point relative to 	 landing pad

is then the sum of the mean value (V XAWB , etc.) and a random component

of specified standard deviation (V XR , etc). Both of these components are

measured in the fixed-earth axis system. The total wind velocities are

summed in the bnip wind axes, and these are converted first to earth axes

(VXAW , etc.) and then to aircraft body axes (U AW , VAW , WAW ), in terms of

heading and orientation angles.
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A representative trajectory for a 30 0 relative wind angle is shown

on the ship-fixed wind-axis system in Fig. 0.2, The wind velocity rela-

tive to earth is equal to the ship velocity of 20 kts (':#,3.$ fjs). The

figure shows the relatively small volume behind the landing pad in which

wind velocity perturbations are given tabularly. The indicated trajectory

of the aircraft is nominally a constant--heading patty , which is aligned

with the landing pad, at 27 0 to the ship centerline. The aircraft

trajectory enters the perturbed wind volume when the range ,-to-go is

about 300 m (1000 ft). The "wind decay zone" is a volume inside of which

the wind velocities vary smoothly from the steady wind value to the

values at the edge of the zone labelled "wind specified". This smooth
variation has the form of a cosine wave in both x and y directions,

and the wind outside this zone is unaffected by the pressence of the ship.

A representative trajectory entering the dashed volume aft of the

ship leads to modifications in the aerodynamic forces, engine thrust,
and to subsequent changes in the aircraft path relative to the no-wind

pa tit.

i
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APPENDIX E

The Ship Approach and Landing Navigation System

The ship approach -,nd 'landing navigation system provides the

relative aircraft position and velocity estimates to be used by the

guidance sy ,;tem. While there are many navigation configurations and

schemes possible, one based on shipboard MLS/DME (microwave landing

system and distance measurement equipment) has been used in this study.

It is based on previous work described in more detail in Ref. 2

Basic elerri;nts for this configuration are :,hipboard MLS/DME, airborne

MLS receiver/DME transmitter, ship attitude and acceleration sensors,

aircraft attitude and acceleration sensors, an uplink channel from

ship to aircraft, and both airborne and shipboard digital computers.

Figure E.1 depicts the interconnections among the various components

of this system.

The MLS/DME antenna is fixed to the ship and located forward of the

landing pad. The antenna is not pitch, roll or yaw stabilized. This

system provides azimuth and elevation angles and range measurements of

the aircraft relative to the ship. The MLS/DME signals are corrupted

by random and bias errors. The measurement equations are given by

(range)	 r = [x r2 (1) + x r2 (2) + xr2 ( 3 )1" + r,

(azimuth)	 Az = tan-1 (xr(2) /xr(1) )	 + A
z 
	 (E.1)

(elevation) Ek = tan -1 (-xr(3)/lxr(1)I)	 + ER,

where x r (1), x r (2), ,(3) are the Cartesian coordinates of the aircraft

position with respecL to the MLS/DME antenna location. The term r, Az,

and ER represent the measurement errors (see Appendix G).

The ship attitude and acceleration sensors (vertical and direction

gyros; linear accelerometers) are used to track the MLS/DME antenna position
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and ship attitude with respect to some "average" antenna position and ship

attitude, A ship in a high sea state undergoes considerable motion due

to wave action. Because the MLS/DME antenna is fitted to the ship, the

signals contain the ship motion component, as well as the aircraft motion

which, if uncompensated, would induce undesirable aircraft steering

activity. Ship motion effects on the MLS signal are reduced by use of

the landing pad deviation vector. The landing pad deviation vector (LPDV)

is an estimate of the landing pad position from some "average" position;

it is defined by

zt sin ^s sin *s
xf	 z, ;, in  ^s cos ^s	 (E.2)

0(s) is

where

z 
	 = landing pad height above the ship center of gravity,

^s	 ship roll attitude measurement,

'l)s = ship yaw attitude (heading) Measurement,

2	 = ship vertical acceleration measurement,

}	 s	 E36(s) 
Y (s + 0,05)(s + 0.3535s + 0.0025) 	 (	 )

vertical filter transfer function.

Note that this last term is in the form of a complementary filter

for the vertical direction. The position measurement is set to an

average constant value above sea level, and the complementary filter

estimates the landing pad vertical motion about this average,

The ship speed can be obtained by blending longitudinal acceleration

with measurements from the ship speed log. Ship heading is obtained from

the directional gyro. The average ship speed and heading can also be

entered manually into the shipboard part of the navigation system. The

LPDV art ship's velocity vector estimates are uplinked to the aircraft.

The LPDV is used for navigation, and ship velocity is used for pursuit

guidance,
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The ship attitude measurements are corrupted by colored noise with

nominal standard deviations of 0.1 deg. The ship accelerometer errors

consist of colored noise with nominal standard deviation of 1 ft/sect

and misalignment of the accelometers with respect to the ship body

axes. The aircraft attitude and acceleration sensors are modeled

similarly to the ship sensor models.

Figure E.2 shows the overall block diagram of the simulated naviga-

tion iystem. Starting in the upper lefthand corner, the MLS/nME

measures of relative aircraft position are converted to the ship landing

pad Cartesian reference frame. The transformation matrix representing

ship attitude (computed from ship gyro measurements) is used to trans-

form relative aircraft position to the N-E-D (north-east-down) reference

frame. The landing pad deviation vector is added to these transformed

measurements. The result is the raw position of the aircraft in the

N-E-D reference frame origined at the "average" landing pad position.

The aircraft attitude sensor (directional and vertical gyros or

IMU) signals are used to transform the aircraft accelerations (body

mounted accelerometers) into the N-E--D frame, and the gravity effect

is removed. The resulting acceleration measurements are compatible with

the raw position measurements. These measurements are combined by the

airborne complementary filter to generate; the relative position and

velocity estimates of the aircraft relative to the landing pad.

A three-state complementary filter algorithm is used to obtain the

position and velocity estimates for each axis. First, the estimates are

initialized by a linear regression technique with a 5 second span of

data. The filter gains are obtained depending on the aircraft geometry 	
P^

relative to the ship to minimize the signal to noise ratio. The filter

residual is passed through a data rejection algorithm to protect the

filter from "bad" data. When a bad data is detected, the filter operates

in the dead reckoning mode by integrating the acceleration signals. A

more detailed description of the navigation .system can be found in	 a
Ref , 2.
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APPENDIX F

AUTOMATIC APPROACH GUIDANCE TECHNIQUES

The purpose of the approach guidance system is to steer the aircraft

to null out position and velocity errors and to approach the ship along

some desirable path. The position and velocity errors are determined

(by the MLS-based navigation system described in Appendix E) by comparing

the measured aircraft relative state to that of the desired approach

trajectory. This desired path may be either pre-determined or it may be

computed in real time.

u
The approach guidance commands are decoupled into lateral, vertical,

and longitudinal components. In this study, four lateral, five vertical,

and two longitudinal steering concepts were examined. The results of this

examination are the subject of Chapter III. In the following, the mathe-

matical formulations of the different guidance concepts are first pre-

sented. These are followed by specific implementation details of the two

sets of guidance concepts studied in more detail. Other descriptions of

guidance schemes are found in Refs. 17 and 18.

Mathematical Formulation of Guidance Concepts

Define the following vectors:

= position of the aircraft with respect to the ship hover point,

= velocity of the aircraft with respect to the ship,

4s = commanded ship velocity telemetered to the aircraft, and

Va = I + Is = computed inertial velocity of the aircraft.

With these quantities, four different lateral guidance laws can be commanded.
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Pursuit Guidance	 This is also called homing guidance or "tail

chase" guidance. The idea is to orient the inertial velocity vector of

the aircraft to point at the stern of the ship (or at an offset hover

point). The law can be implemented in the horizontal, and vertical, or

both planes:

The pursuit law comes fron,^ forming the hector nor=! to Va and X,

Vn	 a Ia x_./ ^a	 s i na ^n	 ►	 (F-1)

1^1

Here, I n is the normal snit vector, an(i J Va j sin a is the velocity to be

gained normal to V  to 'turn V  Into 1, Then, define

	X Va

	
(F.2)

^	 n	
I1ai

in the direction of the acceleration to accomplish this change. The

guidance law is then

^
Kv 

I  
x 

I a
V
	(F.3)
al

=K 
[('ax

x
v 	 V `

where, K. is the desired acceleration per unit error. Note that implementa-

tion of this law requires that the nominal ship velocity V'
s
 be transmitted

to the aircraft.
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Constant Heading Guidance This type of guidance would be used to

fly the aircraft along a fixed inertial path that intercepts the ship at

a future point in time, It is depende pt upon the ability of the aircraft

system to predict the future position of the ship. It also must consider

the longitudinal deceleration used to bring the aircraft to ship's speed.

Again, assume than V s is transmitted to the aircraft and that a

standard approach consists of (a) flying with fixed airspeed Va for a

period t l , (b) decelerating at a fixed rate a t for a period t 2 , and

(c) following a linear flare law to drive the airspeed and position errors

to 4ero with respect to the hover point, Assume that the third phase

(c) begins with distance and speed (rf , Vf ) with respect to the hover

point.

The distance and speed (r l , V,1 ) at the beginning of the second phase

(b) can be computed from

V 
	 = V 1 - a t t2	(F.4)

r  = r 1 + V 1 t2 - at t2/2

Thus,

t2 = (V 1 - V f )/a t ,	 (F.5)

r  - rf	
-V1(V1 - V f)/

a t + (V 1	 V f ) 2/2a t ,	 (F,6)

and V 1 is set equal to the approach speed Va.
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(r.,Vo)

s.	 _	 ..^.._ V S i

(rf *Vf)
Y

O 	 r

Vn

Figure F.I. Approximate Geometry of Constant Heading Guidance

From the above figure, we can work with the three legs of the triangle

(r®, VS T, and Va t, + Ir 1 - rf). Define,

'T - t 1 + t2 `	 (F.7)

Let

r2	 r1-rf
	

(F.8)

Then,

YO  
+ (xo + V S T) 2 = (Vat, + r2)2,

or

yo 2 + [xo + Vs(t1 + t 2 )l 2 - (Vat 1 + r2)2

From this,

(Va2- Vs2)t12 + ( 2Var2 - 2Vs(xo+V s t2 ))t 1 + (r2 2 -yo 2 -(xo+V5 t2 ) 2 ). = 0.

(F.9)

This quadratic equation is solved for t 1 . Then, T is computed from Eq. (F.7)
so that the approximate future intercept point (ro + VS T) is known.

Let

f z ro + VST (F. 10)

a
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Then, 1, is substituted for 4 in Eq, (F.3) to obtain the constant heading

guidance law. If the aircraft is perturbed laterally or updated ship

velocity is obtained, Eq. (F.10) must be recomputed to produce a new inter-

cept. One mathod of compensating for longitudinal perturbations is to

recompute the deceleration constant a T (Eq. F.4.) in real time to maintain

the same intercept point:

Variable and Constant Bearing A variable hearing guidance law would

cause the aircraft to tend to fly along the constant bearing direction to

the ship from wherever the aircraft happens to be. This could also be

referred to as zero bearing rate guidance. In this case, V is substituted

for ^a in Eq. (F.3), and

-x- x
I	

V	
(F.11)

ICI	 Iii

This law will null out any initial bearing rate. However, if the wind

perturbs the aircraft off a given path, a new bearing will be eventually

followed.

For the constant bearing guidance law, both position and velocity

errors are computed with respect to a vertical plane fixed with a constant

bearing passing through the hover point.. If U x is a horizontal unit vector

in the constant bearing plane, then the lateral position error is

le	 (-j x U x ) x Ux ,	 (F. 12)

and the lateral velocity error is

le = 0 x U x ) x Ux	(F.13)

The=se can be removed by the guidance law

I	 K  le + Kv 'le	 (F.14)

,
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Vertical Guidance The previous four mentioned guidance concepts

were mainly discussed in the context of nulling out lateral errors. They

each have their counterparts in the vertical direction. pursuit guidance

expressed by Eq. (F.3), also is valid fry- vertical steering. Constant

heading guidance, expressed by Eq. (F,10), also represents constant iner-

tial glideslope in the vertical plane. Variable bearing angle (zero

bearing rate) guidance, expressed by Eq. (F.11), can also be used for

variable elevation angle (with respect to the hover point) guidance.

Constant bearing angle guidance (Eq. (F.14)) is equivalent to constant

elevation angle guidance.

Guidance in the vertical plane can be broken into segments based on

the distance-to-go to the hover point. For example, the aircraft can be

commanded to fly at constant altitude by

z = Kz (z - h` ) + K 
	 (F„ 1,S)

where h e is the desired altitude, and 'z and	 are the actual altitude and

its rate. This cowjz^oi can be maintained until the aircraft reaches the

point where it intersects the constant elevation angle or glideslope. Also,

the aircraft can be commanded to reach the hover point altitude before it

gets there along the longitudinal axis. Again, Eq. (F.15) is used to main-

tain the hover altitude.

The vertical guidance path can be broken into a number of steps where

the aircraft alternately holds constant altitude and constant glideslope.

This is often how the pilot likes to fly where deceleration takes place

during the constant altitude portions of the approach.

An alternative to flying along a constant angle in the vertical plane

is to hold a constant sink rate to change altitudes. Here, the guidance

command is simply

z= Kv (i - id
	

(F.16)
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where is is the desired sink rate. This option was combined with lateral

pursuit guidance for detailed investigationt as reported in Chapter V,

1'4	

Longitudinal Guidance	 Two types of longitudinal guidance were
studied up to the point of linear flare (about 30 ft before the hover

point is rear ied) 4 These were:

a) Constant speed/constant deceleration 	 In this case, the aircraft

holds constant speed (e.g., 120 kt) until it reaches the point
where by constant deceleration (e.g., 0.1g), it reaches the

linear flare point at the appropriate forward speed relative to

the ship.

b) Step guidance	 This is a combination of constant longitudinal

deceleration/constant speed at fixed altitudes alternating with

constant descent glideslope/constant speed segments. An example

is shown in Fig. F,2,

For both of these types of guidance, the nominal trajectory is found by

integrating simple equations, such as Eq. (F.4), backwards in time and

by matching appropriate boundary conditions,

Various deceleration schedules could be used in place of constant

values, However, no particular advantage is derived (in an automatic

sense) from other than constant values, so non-constant values were not

examined in this study.

The longitudinal flare transition is going to the hover situation

uses ,a separate control law which is explained later.
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Guidance Law Development and Mechanization

y

	

	 The guidance laws are now developed for the corresponding concepts

discussed previously. The guidance laws and thc1'r mechanization were made

realistic so that the software developed here may be transferred directly

to an airborne computer for an actual man-in-the-loop simulation. This

section gives additional details concerning development and implementa-

tion of the guidance laws for the three main control axes.

The SRFIMF flight controller (inne r loop) has capability of accepting

lateral velocity commands (y c ) at the lower relative speed of less than

30 knots as well as r,,^1; 4c ), longitudinal velocity (Vc) and vertical

velocity (AC ) commands for lateral, longitudinal and vertical axes. Table

F,1 summarizes the appropriate command modes over the speed range. The

speed range of the table corresponds roughly to the powered lift flight re-

;	 gime for the RTA aircraft.
i

Step responses of the aircraft closed with the SRFIMF controller are

given in ` Figure 11 through 13. They show the performance and limitations

of the flight controller which must be kept in mind when designing and

implementing the guidance (or outer-loop) laws. Thus, the guidance law

must interface with the flight controller in such a manner that com-

patible and stable commands are generated to steer the aircraft along

the desired trajectory, given the aircraft position and velocity estimates.

Guidance Mode Flags, Logic, and Guidance Laws

The guidance modes implemented for this simulation are directed by

several mode flags, called autopilot directors. They are irreversible and

point to the desired mode for each axis. Table F.2 summarizes the auto-

pilot director functions. In an actual airborne implementation, they will

service the flight sequencing light to keep the pilot updated. The auto-

pilot switching logic and the associated guidance laws are now explained

in detail for each axis.
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Table F.I. SRFIMF Flight Control Command Modes

at Various Relative Speeds.

Attitude Flight Translational Flight
Relative Controller Controller

Speed Roll Pitch Yaw Longitudinal Lateral Vertical
Range (knots) axis axis axi s axis	 axis axis

0 Roll- Zero Heading Velocity	 Side Vertical
to- Pitch Hold/ command	 velocity velocity
zero HOLD Align- command command

ment

30 Roll Blend Phase
Com- Out
ma nd

120 Turn
coordina
tion

-

I0

Yt

tsk ]

k

t'

Longitudina l Axis - Referring to Figure F.3, if IVG = 1, then a check

is made to see whether it is time to initiate the constant deceler' ion

maneuver. This test is performed by computing the reference velocity at

that range,

Vref	 [a • (2k - Ro)]	 (F.17)

with

a - desired deceleration nominally 0.1g,

R = estimated range, and

Ro = the range of the hover point.

The value is compared with the current estimated speed, Vx . I 1f Vx is less

than the reference, then it is not time to switch; therefore, the ground

speed hold mode remains in force. In this case, the velocity command,

Vx, is given by

Vx =f K (Vx - Vref(0))dt,
	 (F.18)_
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Table F.2. Autopilot Directors and Their Definitions

Longitudinal
Autopilot Longitudinal Autopilot Monists
Director

(IVG)

1 Ground Speed Hold (used as initial mode)

2 Constant deceleration

3 Exponential Flare

4 Longitudinal hover

Lateral
Autopilot Lateral Autopilot Mode
Director
(ILOC)

1 Heading hold or level 	 flight (used as initial mode)

2 Localizer (constant bearing) mode, and

Lateral pursuit mode

3 Heading alignment,

Transition to lateral 	 velocity anode

Roll-to-zero

Reference bearing slew

Vertical
Autopilot Vertical Autopilot Mode
Directors

(IGS)

1 Altitude hold	 (used as initial mode)

2 "Glide Slope" capture mode (not applicable for constant

sink rate mode)

3 "Glide Slope" track mode, or

Constant sink rate

4 Exponential	 flare

5 Vertical hover

6 Let down
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where 
Vref(0) 

is the ground speed at the engagement, and K is the control

gain.

if V. becomes less than the reference, V ref • then it is time to

initiate the constant deceleration mode.	 This is done by setting :IVG	 2.

When IVG - 2, it is checked to see whether it is time to initiate a flare

maneuver to hover. This test is performed by computing the quantity,

XTST = § [§ + Tx Vxi .	 (F. 19)

where T x (= 5 sec) is the flare initiation time constant. When XTST be-

comes less then zero, then the aircraft has less than 5 seconds to hover

at the current range and speed; therefore, the flare-to-hover is initiated

by setting IVG = 3. If XTST remains positive, then the constant decelera-

tion mode is in effect, and the corresponding command, Vx is given by (see

Figure FA(a))

Vx = 1 {a + k [Vx - Vrefa dt	 (F.20)

During the flare maneuver, the command is generated by

Vc = J	 [k 1 (t) 'R' + k 2 (t) V x + k 3 (t) Vc j dt ,	 (F.21)

where k i (t) are time varying gains to facilitate a smooth flare maneuver

(see Fig. F.4 (b)). The hover state (IVG = 4) is declared when the above

gains become the steady state regulator values. The time varying flare

law is discussed in more detail later.

Lateral Axis	 Referring to Fig. F.5, first, the navigation status

flag is checked; if it is initialized, then the constant bearing (localizes)

or pursuit 90 dance mode is initiated by setting the director, ILOC, to 2.

Otherwise, the wing level mode is commanded by ^c	 0.
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a	
10 ft/sectV	

cVx	

k	

+	 I	 Vx

v	 +

	

Vx	 longitudinal speed error

	

a	 nominal deceleration command ( 0 for speed hold mode)

	

VX	 longitudinal speed commend to flight controller

a). Ground speed hold or constaot deceleration mode.

	

R	 = longitudinal distance-to-go

	

Vx	= longitudinal speed

k x ,kv ,kc - time varying gain for flare and track

b). Exponential flare and hover mode.

Figure F.4. Longitudinal Guidance Law
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When ILOC = 2, it is checked to see whether it is time to initiate the

final mode for the lateral axis. Currently, this test consists of checking 	 l

to see if the longitudinal speed, v M , is less than 50 ft/sec, If it is,	 U

the final ,,ode is initiated by setting ILOC = 3. Otherwise, the constant

bearing or pursuit mode is in effect. The corresponding roll command, c,

is given by (see Fig. F.6)

c - tan
-1 j kyay + 

ky^y^

	g 	
constant bearing

(F.22)

	

I k^, yc	 1	 ^.
c = tan 1 i M 	 pursuit,9 

i
where ky , ky, k'y are the guidance law gains, Ay and try are the cross-

track error and its rate, Yc is the pursuit command given by Eq. (F.3),

and g is the gravity constant.

When in the final mode (ILOC = 3), several maneuvers take place

simulteneously. These are;

(i) The reference bearing is slewed to zero (from the nominal

27 deg) at 0.65 deg/sec for the constant bearing guidance

and set to zero for pursuit;

(ii) Roll-to-zero is commanded at 2 deg/sec;

(iii) The lateral velocity command mode is initiated; and

(iv) The aircraft heading is aligned with that of the ship at

2 deg/sec,

Figure F.7	 shows the mechanization of these maneuvers. It is

noted that prior to the final mode, the yaw axis is slaved to the roll

axis; the yaw axis is used to coordinate the turn. In the final mode,

the yaw axis flight controller picks up ILOC = 3 and goes into the

coarnanded heading node. Also, for the pursuit guidance, the roll com-

mand, Vic , essentially nulls out the lateral velocity error. Therefore,

in order to null out both the lateral position and velocity errors, pur-

suit guidance is switched to the constant bearing guidance with the re-

ference angle of 0
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lay = lateral error

	

4Y
	

lateral error rate

	

f AY
	

integral of lateral error

	

9
	

32.2 ft/sect

	

ky1
	 proportional gain (= 0 for pursuit)

	

ky2
	

derivative gain

	

ky 3
	

integral gain

Figure F.6, Lateral Guidance Law for the

Roll Mode.
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Vertical  --Axis 	 First, constant elevation (or glideslope) guidance

is explained, Referring to Fig. Fa, when IGS - 1, a check is made

to see whether it is time to copture the glideslope, For this test,

the quantity, VTST, is computed as follows

VTST = Ah (A + ihAh)

N	 A

where Ah, A are the vertical error and its rate from the glides ,)Pe

(nominally 3 deg with respect to the landing pad), Also, T ins
h is the

glideslope capture time constant of 5 seconds, When VTST becomes nega-

tive, then there is less than 5 seconds to the glideslope at the current

closing rate, Therefore, the glideslope mode is initiated by setting
IGS = 2, Otherwise, the altitude at the time of engagement is held by

the guidance law,

(F,23)

ic	 f [k	
Zref)

z	 k
2
 i + k 3

 i C ) dt	 (F,24)
+ 

where ki I s are the regulator gains,

When in the glideslope mode (IGS = 2), the following guidance

law 'is used

. Cz	 = f ( k 1, (t) Ah + 
k 2 (t) 

A + k 
3 
(t) (i c - i ref) ) dt	 (F.25)

where k i lt) are time varying gains and 'ref is the nominal vertical

speed on the glideslope. It is given by

z
ref	

Vref tan 3 1 .	 ( F.26)

This mechanization is shown In Fig, F-9,

For the constant sink rate guidance, the associated logic differs

a little. Now referring to Fig. F.8(b), when IGS = 1, then the

altitude hold command is given by Eq. (F.24), The test to initiate the

constant sink rate command is as follows, First, time-to-go to the

hover altitude. TTGV is computed by
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)GS	 IGS = Z	 IGS = 3

IS IT

	
's

TIME	 ye	 IS IT TIME	 yes
?

sTO COMMAND ?	 TO FLARECOMMAND
SINK RATE
	

no

I no
	 I

	

I IGS	 3	 JIGS	 4 j

LALT HOLD	 CONSTANT -SINK J

n

Figure F.8(b), Vertical Guidance Logic for Constant Sink Rate

215



I

it

^I

^I

a^

zc
	 = commanded altitude, (z

e = z for constant sink rate)

is	 = commanded altitude rate,

z,i	 T estimated altitude a ,id	 rate,

} c sink rate command to flight controller
kilk 22 k 3 =	 control gains whose values depends on the

vertical	 mode.

Figure F.9	 Vertical Guidance Law
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TTGV = i/ic

where is is the nominal commanded sink rate of 10 ft/sec. Next, time-

to-go to the longitudinal hover point, TTGL, is computed by

TTGL = (Vvo - vF ) /a + ( R - 'Ro)/Vx

where

v 
	 _ speed at the deceleration maneuver initiation,

VF = speed at the desired range of 600 ft,

a = nominal deceleration,

R = current estimated range,

Ro = range at deceleration maneuver initiation, and

vx = current estimated speed.

(F.27)

(F.28)

The test consists of comparing TTGV and TTGL. If TTGV becomes less than

or equal to TTGL, then the constant sink rate mode is initiated by setting

IGS	 3. The commanded sink rate is given by

z c = z ref + k(i - iref)	
(F.29)

The constant sink rate command initiation logic was implemented

in order to prevent the situation where the aircraft reaches the hover

altitude prematurely. When this occurs, then the aircraft will experi-

ance a long period of level flight at the hover altitude (nominally 50

feet above the MLS) before it catches up to the ship horizontally. With

the above logic, the aircraft will come down to the hover altitude when

it is in the immediate vicinity (200 -- 300 feet) of the landing pad

longitudinally.

Now going back to Fig. F.8 (a), when IGS = 3, it is checked to see

whether it is time to initiate the vertical flare to the hover altitude.

This check is done as in Eq. (F.23) except that it uses the altitude and

its rate with respect to the landing pad, or

VTST = h(h + Th h) (F. 30)

217



If VTST is negative, then there is less then 5 seconds to go to the hover
altitude (h = Q); therefore the vertical flare maneuver is initiated by
setting IGS	 4.

The vertical flare guidance law is exactly the same as the glide-

slope capture and track law of Eq. (F,25) except that the deviations are
based on the average landing pad position. The hover mode is declared
by setting IGS = 5, when the time varying gains become the regulator gains
for the vertical guidance.

When IGS	 5, then a check is made to see whether it is time to

initiate the letdown maneuver, Currently this test is purely time de-

pendent. The let-dowrniode (IGS = 6) is initiated 15 seconds into the

vertical hover mude (IGS - 5) stricitly on an open loop basis, When this

happens, the let -down maneuver is initiated at .9 m/s (3 ft/s) using the con-

stant sink rate mode,

In the future, more elaborate and realistic logic and guidance law

will be designed which incorporates ship motion or landing pad motion

predictors, a "lull" predictor, or the feed forward command to overcome

the dynamic lag.

Exponential Flare Law Design	

,

A transition (or a flare) maneuver is needed to smoothly transfer the

aircraft state from one reference to another. A typical example of such

a maneuver is transitioning from constant sink rate to the hover mode,

In this case, the vertical speed must be reduced from the nominal 3 m/s

to zero without inducing undue acceleration. A typical guidance law is

the exponential flare law given by

h e -	 - 
T 

h	 (F.31)

where l c is the commanded velocity, h is the current altitude, and 'r is

the flare time constant, If the dynamic delay is neglected, then the

solution is given by	 I_

r
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h(t)	 h(0)exp(- ;^) .
	

(F.32)

Therefore, the altitude is reduced to zero from the initial altitude very

smoothly, However, a few of the shortcomings of Eq. (F.31) are,

(i) The initial acceleration is too large,

(ii) The maneuver is sensitive to the initial altitude error, and

(iii) The, dynamic lag is not explicitly taken into account.

It is noted that the ideal exponential flare law traces a straight line

through the origin in the (h,6) phase plane as 1epicted in Fig, F.10.

A modified exponential flare law was designed for this simulation,

The dynamic delay due to the inner control loop is assumr^d to be a first

order lag, even though the step response is more like a second order

system, With this assumption, the dynamic equation is given by

dt h	
ti

(F.33)

h = - - h + I h e,
D	 D

where 'D represents the dynamic delay time constant. A suitable accelera-

tion command for a regulator is given by

h e = d - ti c = k 1 h + k 2 6 + k 3 1 c
	

(F. 34)

By concatenatin g Eqs. (F.33) and (F.34), the following matrix equation

is obtained,

h	 0	 1	 0	 h

dt	 h	 0	 - D	 D	

h
	

(F.35)

h e	k1	 k2	 k3	 tic
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Figure F.10,	 Ideal Exponential Flare Law
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k 2 and k3The gains k l ,	 are chosen so that the closed loop characteristic	
a

{	 function is given by

f(s) =	 (s	 +	 ) 2	(s + 'X +	 1	 ) (F.36)

D

The quantity ti of 0.5 approximately produces desired effect for a time

constant 
TD 

of 1.5 sec,

'	 The main idea of the modified exponential law is to make the gains
time scheduled	 (k i (t))	 so that the initial acceleration command is zero.

After a sufficient period of time, the gains become those of the regulator.

This	 is done as linear functions of time as follows:

Y

ki(t)	 -	 [G 1 -(T-t)	 +	 k l -t]/T 0 < t < T

k 1 t > T

kL(t)	 _	 [G2 =(Tat)	 +	 k 2 •tl/T 0 < t < T	 (F.37)

=	 k 2 t > T

4i
k3(t)	 -	 k 3 •t/T 0 < t < T

k 3 t	 T

where G 1 and T are the parameters to be adjusted by experiment, and

G 2 is given by

G
1
h(0) + G 2QO) = 0.	 (F.38)

For the approximate time constant of 1.5 sec, G l is 0.5k 1 , and T is

2.5 Tp. These values were chosen for the example flare which initiates

the maneuver at 5 seconds to qo,

h( h + 5h)	 0	 (F.39)

Figure F.11 compares the modified and the classical exponential

flare law in the (h,l) phase plane. Peak accelerations were 2.5 ft/sect 	 a

I at t of 2 sec for the modified and 2.5 at t of 0 sec for the classical
flare law.

221



U
v

v

v

^r
N

1C

nd

4.5

10	 20	 30	 40	 50
Alt (ft)

j.

System A. Modified	 System B. Classical

Figure F.11. Comparison of Modified Exponential Flare and
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Advantages of the modified exponential flare law are

(i) the acceleration command at the initiation time is small,

(ii) it is the position/velocity feedback law,

(iii) there is no need to "switch" gains for the regulator (or hover)

mode,

(iv) it is very simple to implement, and

(v) the law is robust in the sense that a simple dynamic model is

needed,

The modified flare law was used in two axes. For the longitudinal
axis, it was used to transition from the constant deceleration to the

hover mode. For the vertical axis, it was used to transition from the

altitude hold to glideslope capture and track and from the glideslope

or the constant sink rate to vertical hover mode, From the results of
the six-degree-of-freedom nonlinear model, the performance of the modified

law is as expected, This indicates that (a) the modified transition

(or flare) guidance law is a reasonable alternative, and (b) for the

guidance law design, the f irst order lag model used for the simplified

inner loop and aircraft is sufficiently accurate, Point (b) is a

useful fact when the more elaborate let-down law is synthes,i;zed,
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APPENDIX G

Sensor Error Models

The sensor data used for VTOL, aircraft navigation, guidance, and

flight control are modified by several types of errors. These errors

change each measured variable's magnitude from its true time history.

Nonlinear, stochastic, and time-varying effects are all present. This

appendix reduces these effects to parameters contained in simple linear

error equations suitable for analysis. In the analysis and simulations

k used for this study, these errors are simulated by these model equations

and the error effects are evaluated.

The instrumentation system is mathematically represented by a set

of equations describing each data channel. (See Refs. 2, 19 for more details.)

Figure G.1 is a block diagram which illustrates major sources of error

which affect the data. The exact form of the submodels contained within

each block of the figure may change somewhat from channel to channel, as

is explained shortly. Figure G.1 shows the typical sequence of error

effects which modify a variable y l starting from its assumed true value

yli and ending with the recorded value 
y, 

used in the airborne computer.

The as,;umed true value of the variable (ti; li ) is first, subjected to the

dynamic response of the sensor which is indicated in Fig. G.1 by the second-

order term. Such a model approximately characterizes the response of a

rate gyro, for example. For some instruments, such as the airspeed measure-

ments and rate integrating gyros, this term is more appropriately modeled

as a first-order term.

The measurement is next subjected to a scale factor error indicated

by E ll . This term is assumed to be constant; however, it encompasses the

effects of non-linear scaling and time-varying scaling such as scale factor

3
errors caused by temperature and power supply variations.
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Bias and
Correlated Noise	 CorrelatedNo se

	

el + nl	 n1

ua'_
	

fl	 ^4

Yli	 '24W	 W3	
i. • cal	

f^.

Sensor Dynamics Scale Factor	 Data PrefilterinQ
Error 	 Effect	 Time

e 'S1 i 	Delay

Y2
	 C12 	 E ff ^a is

Cross-Coupling
Error (Misaligiunent)

Sampling

	

Quantization	 Effect

FIGURE G.1 - BLOCK: DIAGRAM OF BASIC MEASUREMENT ERROR MODEL

Another error term is the cross-coupling between the measurements.

This is indicated by the term E 12 which multiplies the variable y2 before

it is added to y l . Such terms exist when the measurements of one variable

are affected by changes in mignitude of other variables. Sources of cross-

coupling error are instrument misalignment, center of gravity (c.g.) and

instrument location uncertainty, and linear acceleration dependent terms

of the gyro and angular accelerometer readings.

Other error terms which affect data accuracy are instrument bias b 

and noise n l . The noise is due to vibration, electrical sources, unsteady

aerodynamics and various other sources. The noise can be modeled as white

noise passed through a shaping filter, and as sinusoidal terms. However,

this noise can be encompassed into the bias term; also, prefilters may be

used to remove the noise and sinusoidal terms adequately so that n  can

be neglected.

I	 9
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Next, the measurement is subjected to another dynamic term shown in

Fig. G,1 as a first-order lag. This represents the prefilter, The phase

error front this filter- has usually higher than first-order characteristics,

But the model constant f t can be adjusted so that phase lag is approximately

correct for frequencies in the region of the prefilter break frequency,

The filter terms in each data channel usually produce lower cutoff

frequencies than the basic sensor response dynamics, so the effect of the

instrument dynamics can usually be ignored. This isn't true for pressure

dependent measurements however.

After passing through the prefiltering, other white noise due to

various electrical sources or from transmission affects the data. Thi l; is

modeled by the addition of the term n2,

a

Up to this point, the data which exist in each channel are considered

l	 to be in continuous analog form, However, for data transmission the data

are usually sampled and digitized. The data are sampled at regular inter-

vals and converted to a digital number at each sample point, The data

from several channels are typically sequentially sampled so that the data

points taken from each channel are not taken simultaneously. This effect

can be modeled as a variable time delay in each channel represented by

e -s `', where 
i1 

is the delay time.	 Error here is also due to the difference

in the delay times T I . If sampling is done rapidly enough (e.g., ten

times highest system frequency which is to be measured), this error is

insignificant,

The data is sampled once every 7 2 seconds and passed through a quantizer>

For most flight instrumentation systems, the standard deviation (o) of the

signal noise is much larger than the quantization level Q, Thus, it can be

assumed that the distribution of the noise error on the final digitize('

output y Io is the same as that for the noise n2.
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To summarize, for the example of the variable 
yl 

just discussed, the

following random error sources are assumed to be predominant:

ll'l	 scale factor error

t''12 ; cross coupling error

b 
	 bias

11 2 	; white noise

All these random terms can be assumed to have Gaussian distribution, Any

of them may have nonzero mean values. Installation errors, such as ground

loops, are ignored because they are assumed to be removed during calibra-

tion,

There are several sources of phase la,g due to dynamic effects (sensor

response, high order prefilters) in each channel. However, these effects

can be lumped into one first-order lag represented by the inverse time

constant f l . This represents the overall dynamics of the specific channel,

In this study, these dynamic effects are ignored.

The noise n l is assumed to be removed by filtering. Also, it is

assumed that the time delay e
-
 
STS 

due to sequential sampling is removed in

data processing, and quantization effects (Q) are negligible. The scale

factor errors and biases are set large enough to encompass the effect of

nonlinear type errors (e.g., threshold, hysteresis) and time-varying errors

(e.g., power supply fluctuation),

The scale factor errors and cross-coupling terms (such as c 13 
and E12)

are included in a matrix T, In T, the diagonal terms represent scale

factor errors, and off-diagonal terms represent cross-coupling errors. Also,
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the bias terms and the noise (such as 
bl 

and n 2 ) are represented by vecto

Q and n, respectively, Then, the final indicated output vector yo is des

cribed by the vector equation

Yo = Ty +El+n

These simple models of the error sources are used in the analysis of
error effects on guidance system performance. They contain most of the

elements required to determine the effect of different kinds of errors,

The Monte Carlo analysis computer program developed for this study is

flexible such that if increased complexity of the models is desired, the

programs can readily be changed.

(G,

I:n order to study the quantitative effects of instrument errors,

numerical values of the parameters in the error models must be known.

Ranges of values of typical instrumentation errors are presented in Table

G,1, These numbers represent statistical variations; they are based on

summarizing absolute values given in Refs, 2 and 19 and conversations with

several individuals, Manufacturers' absolute accuracy ranges were assumed

to be + 2c values which provides a conservative estimate of the instrument

quality available. The random numbers are assumed to have Gaussian dis-

tribution unless otherwise stated.

s

	

	
The values for the range of errors given ii Table G,1 represent the

authors' best judgements of the state of typical flight test instrumenta-

tion accuracy based on available information, There exist considerable

manufacturers' data on available accuracies of rate gyros, rate integrating

gyros, and linear accelerometers, Thus, the numerical values for the first

{
	

three rows of Table G.1 have sufficient supporting verification. Generally,

test center 'laboratory calibration of gyros and accelerometers confirm

manufacturers' claims; thus, manufacturers' specifications have a high

probability of being correct,
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The error magnitudes used for the QMf and MLS angular measurements are

based on projected accuracies which can be expected from a ship-board

system, The shipboard system will be developed based on experience obtained

with various permanent and poi°tible MLS system now being used for flight

tests,

The instrument whose accuracy is least known is the angular acceler-

ometer, Angular accelerometers are seldom used and only limited manufac-

turers data exists on them. The results in row 4 of Table G.1 are based

on conservative generaliza".ion of the values presented in Ref. 19.

The numbers presented in Table G.1 are the range of the instruments'

outputs, noise, bias, scale ftctor, and typical cross coupling terms. From
these values, a set of numbers can be selected to model a typical instrument
set, Table G,1 was used to select typical error magnitudes for the error

analysis which was conducted in this study. The results are presented in

the fifth chapter along with a discussion of the relative importance of

each of the error sources.
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APPENDIX H
a,

Simulation Program Description - MAAtS

The purpose of this appendix is to give a brief functional descrip-
tion of the digital simulation program developed for this study. It is

referred to as MAALS - for Marine/Aircraft Approach and Landing Simula-

tion. The program includes all the simulation model elements which were

"

	

	 previously discussed. It is resident on a CDC 7600 computer at NASA Ames

Research Center

u

	

	 Figure H.1 shows the macro flowchart for the ship motion and naviga-

tion and guidance blocks. Table H.1 gives a brief description of the

corresponding subroutines.

Figure ;i.2 shows the macro flowchart for the flight controller,

engine, aerodynamics, wind model and integration subroutines. Table H.2

gives a brief description of the corresponding subroutines. This part
a

	

	
of the program is organized similar to the Ames BASIC standard real time

aircraft simulation configuration.

The whole program, including the aerodynamic and engine static and

dynamic data tables, occupies some 62 K bites of core. The CPU-to-real-

time ratio is approximately 1 to 7 (it takes 14.5 CPU seconds for 107

seconds of simulated flight time) at an integration cycle time of 50 msec,
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ALAND

FASTP

Figure H.1 Macro Flow Chart for Navigation, Guidance and

Ship Simulation
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COMNAV -	 DriverMain(	 )	 program.

NAVSIM -	 Navaid, sensor and filter driver routine

,	 SHPSIM -	 Computes ship position, Velocity, attitude and its rate

and linear acceleration and also antenna dynamics.

MEASIM -	 Computes navigation aid	 signals received by the aircraft.

IMUSIM
{

-	 Aircraft inertial measurements

d	 ACCOMP -	 Computes aircraft acceleration in north reference from gyro

and accelerometer data on-board aircraft.

DRIVTS -	 Computes landing pad deviation vector, transform navaid signals,

4 and estimates positions and velocities of the aircraft with

respect to the ship reference coordinate.

`	 RTACFT -	 Computes the guidance references, guidance deviations and

flight controller commands.

ALAND
i

-	 Computes open loop	 letdown command.

FASTP -	 Aircraft flight controller, actuator, engine,	 aerodynamics

t
and	 kinematics.	 (see	 Fig.	 H.2 and Table H.2)

ROVLY

BLKDAT
_	 Loads	 input commons with simulation parameters.

LRFCOM -	 Initialize	 the aircraft dynamic variables.

OUTPCF Output routines for line printer and tape units for
OUTNAV

WRTPLT
-	 printing and plotting of the results.

l	 BARNVI -	 Random number (uniform or normal) generator.

GTRN
f

-	 Transformation matrix from one reference frame to another.

MVFRN

4

-	 Matrix vector multiplication.

Table H.1. Brief Functional Descriptions of Navigation,
Guidance and Ship Simulation Subroutines.
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FASTP	 CONTR2	 FPCONT

C0NTR3

ENGINE	 ENGINS	 (Table-Look-Up

WINDC	 SWIND

WINDEK	 WINTP
	

'Table-Look-Up

SHAPE	 iTable-Look-Up)

AER02	 {Table- Look-Upl

SMART	 ARDC62	 {Table- Look-Up)

Figure H.2, Macro Flow Chart for Inner Loop, Engine Dynamics,
Actuators, Wind, Aerodynamics and Integration.
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FASTP -	 Driver routine for aircraft simulation.

CONTR2 -	 SRFIMF attitude	 flight controller,

FPCONT -	 SRFIMF translational	 flight controller..

CONTR3 Control	 actuators,

ENGINE -	 Throttle,	 fan,	 nozzle and vane actuators

ENGINS -	 Engine statics and dynamics

WINDC -	 Wind generator

BWIND -	 Constant and Dreyden turbulence model

WINDEk Wind-over-deck turbulence with interpolation

WINTP

SHAPE
-	 and	 shaping filters,

AERO2 -	 Aerodynamic forces and moments,

SMART -	 Total	 forces and moments, accelerations, attitude

and kinematic integrations.

ARDC62 -	 Air density and ambient temperature table,

Table H.2, Brief Functional Descriptions of Flight Controller

and RTA Subroutines.
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