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Abstract

The status of concepts and techniques for the
design of on-board flightpath menagemadt systems is
reviewed. Such systems are designed to increase
flight efficiency and safety by automating the opti-
misation of flight procedures on-board aircraft.
After a brief eoviw of the origins and functions of
such systems, the paper describes two complementary
methods for attacking the key design problem,
namely. the syntbasis of efficient trajectories.
One method optimizes an route, the other optimises
terminal area flight; both methods are rooted in
optimal control theory. Simulation and flight-test
results are reviewed to illustrate the potential of
these systems for fuel and cost savings.

Partial List of Svmbole

C f .Ct = unit cost of fuel and time. $/lb, $/sec,
respectively

D	 - drag force. lb

df .dc , - desired range, cruise range, climb range.
descent range, respectively, ft or n. mi.

dup'ddn

E,Ei. - energy, initial energy, final energy, and
Ef ,Ec	cruise energy. respectively, ft

Ecopt - energy at which cruise cost is a minimum

g	 M acceleration of gravity. ft /sect

H	 - Hamiltonian, aluo ground heading. depend-
ing on context

Hi ,Hf - initial and final ground heading.
respectively

h,hi .hf - altitude, initial altitude, final alti-
tude, respectively, ft

J	 - cost function, $

Kup .Kdn - climb and descent term in Hamiltonian

L	 - lift force. lb

P	 - differential cost, $ per sec

V.Vc, . airspeed, cruise airspeed, climb airspeed,
Vup ,Vdn descant airspeed, rasoaetiveiv. et see

or knots

Vg	 - ground speed, ft /sat

Vw 	- rind speed, ft/sac

W,Wf	- aircraft weight, Lb, and total fuel con-
sumed. 110, respectively,

'-'up' n distance, climb distance, descent dis-
xdn	 tance variables, respectively

Xi ,Xf - initial and final x coordinates in
Cartesian syst-em

Yi ,Yf - initial and final y coordinates in
Cartesian system

a	 - angle of attack; deg

Y	 - flightpath angle with respect to air
uses. dog or red

1 ' lopt ' cruise. cost, minimum of cruist coat withrespect to energy. respectively

v	 - thrust vector ankle, seasur6d rea.ltive to
fuselage refairance uirection

n.tr	 ,
UP - throttle control var ' abloo

^dn

- bank anf'le, dog

p ' pE' p
x - costate variables

Introduction

Theodore von Kdrmin is renowned for his
research and leadership in helping to establish the
scientific foundation of aeronautical engineering.
As a researcher at NASA I have admired his brilliant
contributions on many occasions. Therefore, I u
deeply honored and privileged to be abld to pay
homage to this great scientist by doliverinit the
10th von Kgrmin Memorial Lecture.

During his long and brilliant scientific career
von Kdrmdn not only contributed eminently to the
various disciplines of aeronautical engineering; he
also played a major role in founding several of
them. Thus. I would like to believe that were he
here today he would find something of interest in
the relatively new topic of my lecture. which com-
bines elements of performance analysis, guidance
and control theory. and system science.

Previous von KLrmdn lectures often presented a
broad survey of the lecture topic. Nwever, my
topic is of too recent origin to make this approach
worthwhile. instead. I believe that the reader is
served beat by focusing on a few critical results
that are representative of the current auto of
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knowledge in the young and evolving field of auto-
matic flightpath management. Furthermore, I shall
emphasise research conducted primarily at Ames
Research Center during the last several years.

The automation of on-board flightpath manage-
ment sarkz the beginning of a new phase in the evo-
lution of automatic flight control. For the first
rime, on-board computer systems will augment or
possibly even replace the pilot in planning and
executing complex flightpaths. This degree of
on-board automation exceeds that of existing
autopilot/navigation systems. which provide auto-
matic guidance only along pilot-specified flight-
paths. The higher level of automation will benefit
both the aircraft operator as w,A1 as the air
traffic system through increased.. safety and fuel
efficiency. and reduced pilot workload. The van-
guard of such on-board systems, also referred to as
flight and performance management computer systems
(FPMC's), will soon enter commercial service in
several types of jet transport aircraft.

Automated flightpath management is here broadly
defined as computer logic for generating a safe,
comfortable, and economical trajectory, on-board in
real time. This paper presents flightpath manage-
ment techniques and algorithms developed primarily
for transport aircraft. Moreover. the paper empha-
sizes techniques that have been evaluated in piloted
simulation and flight tests and are being imple-
mented in commercial systems.

Because interest in automated flightpath man-
agement has been motivated primarily by increasing
fuel costs. the focus of research has been on find-
ing computer-implemented solutions to the minimum-
fuel and cost-trajectory problems. Therefore, the
main purpose of this paper is to describe currently
used algorithms for on-board calculation of fuel and
cost efficient trajectories. Also, the interface of
0' .) algorithm wit'A pilot displays and other guidance
systems will be reviewed. with reference to an
implementation recently evaluated in flight tests at
Ames Research Canter. Finally. results from simula-
tion and flight tests will illustrate the efficacy
of these systems to optimize typical airline flight
missions.

The paper begins with an overview of the func-
tions and general structure of flightpath management
system. To simplify on-board implementatiou, the
analysis is divided into two complementary problems:
en route and terminal area flight. Each of the two
problems is examined in separate sections, which are
complete in themselves in that they include the
derivation of the on-board algorithm and simulation
or flight-test results. The sections are organized
to satisfy two classes of readers: those interested
in the analysis and on-board implementation who will
find analytical details sufficient to translate the
algorithms into computer code; and those seeking a
quick overview, who can skip the analysis and con-
centrate on the introductory and results subsections.

Flightpath Management Functions and Problems

A conventional autopilot is designed to track
various types of flightpaths, the simplest of which
are holding a specified altitude. speed, and head-
ing. More complex tasks performed include tracking
of three- or four-dimensional curved trajectories
(the fourth dimension is time). The simplified block

diagram of a flightpath tracking autopilot is
embedded in Fig. 1. Its key elements are a compen-
sator module, a sensor/estimator/navigation system
module. and a summing junction. Errors between
commanded and aircraft states are continuously
nulled by the action of the feedback loop. Hereto-
fore, command inputs to the autopilot have been
generated by the pilot, but current developments
are changing this process.

HEAL 
TIME 

INPUTS
• PERFORMANCE CRITERION
• WINDS

• COORDINATES OF NEARBY NC r.^^^^^^^^^1
• LANDING ORDER AND TIME i	 AUTOPILOT	 1

fLIGMT}ATH	 REAL TIME

I
MANAGEMENT	 COMMAND NSA	 A/C
COMPUTER	 GENERATOR I ^	 1

.	 I

I
I
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DATA sASE: j	 SENSOR!,	 I
lSTIMATORS ' 1• A/C I	 NAVIGATION• ROUTE STRUCTURE SIISTEM

• CONSTRAINTS, FLIGHT RULES
L---------oSTATEs• TERRAIN/AIRSPACE MODEL r

Fig. I Structure of flightpath management system.

Automation of flightpath management is the
process of generating intelligent command inputs to
the autopilot by an on-board computer, as illus-
trated in Fig. L The data base for such a system
is extensive. It includes a detailed model. often
stored in multidimensional tables, of aerodynamic
and propulsion system performance. Other elements
contained in it are airline routes. terrain and
airspace models for terminal areas, the aircraft
operational envelope, and flight rules. In summary.
the computer must have available the same kind of
information required by a pilot for safe and effi-
cient aircraft operation. The items listed under
real time inputs in Fig. 1 are so defined because
they are frequently updated during flight either by
the pilot. the navigation system, or by a data link
to a ground facility. such as an air traffic control
center. Perhaps it is surprising that the perfor-
mance objective is included as a real-time input;
however, many conditions can arise that will require
it to be changed during flight.

The data base and the real time inputs are
operated upon by the algorithms in the flightpath
management computer to generate efficient and
conflict-free trajectories. This process is analo-
gous to the work of the flight crew, in that it
involves planning. monitoring, and revising the
trajectory throughout the flight. Trajectories are
first synthesized (planned) in "fast time"
that is, in a time interval that is a small fraction
of the actual flight time. In this crucial step,
the algorithm computes the entire future flight
history frou the current position to the landing
point. Then the computed trajectory is stored and
finally transformed into real time command inputs
for the autopilot. During flight the system moni-
tors the trajectory for incipient conflicts with



Intruding aircraft and for excessive tracking errors
caused by unsod*led winds and other disturbances.
It also monitors pilot inputs. such as changes in
the performance criterion or destination point.
These and other conditions can trigger a revision
or complete recalculation of the trajectory by the
fast-time algorithm. Lest anyone tries to acquire
a system with these capabilities. I hasten to add
that some of the "smart" functions envisioned here
are not yet available in the current generation
flightpath management computers. However, research
is rapidly moving the state of the art toward their
realization.

Of the functions outlined above. on-board
optimization of trajectories has received the most
attention, since it lies at the heart of the flight-
path management problem. In airline operations it
is generally agreed that the most useful performance
criterion is the total cost. J. of a mission, which
is defined as the sum of fuel cost and time cost,
J - CfWf + Cttf. with flight time tf unspecified.
Minimum fuel and minimum time criteria are special
cases obtained by setting C t or Cf to zero,
respectively. In order to meet an ais ,line flight
schedule or an assigned landing time slot,. minimis-
ing J with specified arrival time is also of
interest.

It is convenient to separate trajectory prob-
lems into two clasoes; namely. on rout* problems
with flightpathe longer than approximately 50 n. ai.,
and terminal ores problems with paths shorter than
50 n. mi. In an rout* flight, the paths are pre-
dominantly long sections of straight lines with a
negligible percentage of the flight tifte spent in
turns. Thus, turning dynamics can be neglected and
only vertical plane dynamics need to be modeled in
optimizing the on rout* came. This problem is
studied in the next section. In terminal-area
flight, vertical and turning maneuvers tend to occur
simultaneously and in comparable time intervals.
Thus the dynamics of both types of motion must be
modeled in trajectory optimization. This more dif-
ficult problem is studies last. Although solution
to both problems have been carried into simulation
and flight tests, the merging of the solutions
required in a full-mission flightpath management
system remains to be accomplished.

En Route Flithtpath Optimization

The point mass equation of motion for flight in
the vertical plane can be written as

dV/dt - g(T - D)/W - g sin y 	 (1)

dh/dt - V sin y 	 (2)

dx/dt	 V cos y	 (3)

In normal flight maneuvers of transport aircraft the
flightpath angle rates are such that yV/g « 1 and
jyj <_ 10'. These conditions allow us to take flight-
path angle as a control variable with lift calcu-
lated from the constraint L - W cos y and to
approximate the cos y factors in the above equa-
tions by unity. The effect of a horizontal wind,
when its magnitude is a smell fraction of the air-
speed (one third or less), can be included by modi-
fying Eq. (3) as follows:

dx/dt - V + Vw = Vg	(4)

where Vw is the component of horizontal wind
velocity along the ground track direction. The
quantity Vw can be a function of altitude, but
dynamic effects of wind shear as well as the verti-
cal component of the wind do not play a significant
role here and are neglected. in airplanes, unlike
In most typos of smiles. mass flow awing to fuel
burn is relatively slow and does not need to be
modeled by a state equation. Instead, the slowly
changinil mesa of the aircraft will be treated as a
time-varying parameter.

In this paper the equations of motion are
further simplified by combining altitude and air-
speed into a singl.a state variable, specific energy:.

6 - h + (1/200	 (5)

Differentiating Eq. (5) with respect to time and
substituting Eqs. (1) and (2) into Eq. (5) yields

dZ/dt - (T - D)V/W = 1	 (6)

The control variables in Eq. (6) are airspeed V
and thrust T, or its related quantity, throttle
setting e. This is the so-called energy-state
model. which has been widely used in trajectory
optimization problems.'" Its utility depends
entirely on the nature of the application. For the
quasi-study trajectories comonly found in climb.
cruise, and descent of transport aircraft, the
energy-state model provides especially simple
on-board algorithms, as we shall see.

Optimal Control Formulation

In a previous section. the most important per-
formanc* criteria that arise on-board flightpath
management were enumerated. These criteria will be
shown here to be essentially equivalent when formu-
lated as problems in optimal control.

Consider first the minimum-cost criterion with
a specified range to fly and no explicit constraint
on flight time. This criterion can he written as
an integral cost function:

	

J - !tf(CfWf + Ct)dt 	 !tf P dt	 (7)

With Eqs. (4) and (6) as the state equations. the
Hamiltonian of optimal control is

H • Cf0f + Ct + yrE(T - D) W + Wx (V + Vw) (8)

where *E and px are the eostates. On an extremum
trajectory the Hamiltonian achieves its minimum
with respect to the controls V and T. and the
costates obey the linear differential equations

3(CfW
f + C 	 3[(T - D V/WJ

^E -	 aE	 - ^E	 3E	 (9)

^ - 0
or	

x	
(10)

Wx - constant

Since specific energy and range at the final time
are specified, the values of the costates at tf
are free constants. which are used to determine the
dealred final states Ef and df. The proper choice
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IMIROV

of these constants comprises the well-known two-
point boundary value problem of optimal control.
The solution of this problem will be addressed in
the next section. Because the final time is uneop-
strained, the Hamiltonian also obeys the condition,

N - 0
	

(11)

for all t. Note that iE is ta function of time
whereas Wx is a constant independent of time.
However, it to not necessary to integrate Eq. (9)
along the trajectory to obtain q(E). Equation (11)
provides a first integral and when combined with
Eq. (e) yields Vag algebraically.

Consider next the sue performance criterion
as Eq. (7) but with the final time t f specified.
This changes only Eq. (tl), which becomes

it - Ct	 (12)

where. C t is a constant for each trajectory. but
for each constant at obtained for a particular
fixed-time optimum trajectory, one can define
Cj n Ct - Ct and consider the same trajectory also
to be a solution of the free-time problem, with Ct
replaced by Ct. Obviously, the time-cost factor
cannot be specified 1,ndapendently in the fixed-time
problem. Thus, the fixed-time problem with specified
range makes physical sense only for the minimum fuel
performance index, C t - 0. Moreover, every fixed-
time, minimum fuel problem can be formulated as a
free-time problem with the time-cost factor Ct
chosen so as to achieve the desired final time.

Finally, consider the minimum fuel performance
index, C t - 0, with fixed final time and no con-
straint on range. This problem occurs in generating
minimum fuel delay maneuvers. Here the transversal-
ity conditions of optimal control require yx - 0
(Ref. 4) and a particular solution will generally
yield a nonzero ti. stay C t , and some range af.
However, this solution will be identical to the
free-time, fixed-range problem in which C t - -Ct
and df - df.

The essential equivalence of the various prob-
lems implies we call 	 without loss of
generality, on algorithms that solve the free-final-
time problem.

Solution Based on a Simplified Approach

We now introduce the approach of Ref. 3 by
assuming that the trajectories are composed of three
segments; namely, :a 	 a cruise at constant
:specific energy, and a descent, ae illustrated in
Fig. 2. The cost function (1) can then be written
as the alas of the costs of the three segments.

tc	 t 
.I * f	 P dt + (d f - dup - ddo)l + 

f	 P dt	 (13)
td

climb cost	 cruise cost	 descent cost

where \ designates the cost of cruising at a given
specific energy Ec . Next, we tm.%sform the inte
gral cost terms in Eq. (13) by changing the-indepen-
dent variable from time to sppecific energy, using
the transformation dt --W E:

RAMON, n

Fig. 2 Assumed structure of optima trajectories.

J
 - f

E
c ( P /91E, o )dE + (drt - dup	 ddn)'

Ei

+ f E 

c(P/1ki lk")a	 (14)
Ef

where Ei and Ef are the given initial sllmb and
final descent energies. respectively. Th:x trans-
formation uses the assumption that the energy
changes monotonically in the climb and decent.
This places strict inequality constraints on 6, as
shown in Eq. (14), Also in Eq. (14), the integr
tion limits have been reversed in the descent co:;st
term. In this formulation the cost function is of
mixed form, containing two integral cost terms and
A terminal cost term contributed by the cruise
segment.

With the change in independent variable from
time to energy, the state equation for specific
energy is eliminated, leavin g Eq. (4) as the only
state equation. Furthermore, we note that the
performance function (Eq. (14)) depends on the dis-
tance state x only through the sum of the final
values of climb and descent distances du f,* ddn-
Therefore, the state equation for the distance is
rewritten in terms of thin sum:

d(xup + xdn) /dE - (V up+ Vwupvilj o

+ (Vdn + Vwdn )/IE IE'o

(15)

Here. the transformation dt - dE /6 was used again.
Also. Eq. (15) provides for independence in the
specification of the climb and descent wind veloci-
ties Vwup and Vwdn . Generally, different wind
conditions will prevail in physically different
locations of climb and descent. The wind velocities
can also be altitude dependent. The effect of
altitude-dependent winds on the optimum trajectories
is discussed in Ref. 5.

Necessary conditions for the minimisation of
Eq. (14). subject to the state equation (Eq. (15))
_yield the following expressions for the Hamiltonian
and costate equations. respectively:
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P
H min	

^,.	 +(7 1P I )i<0Vup'Vdn>o 

°up' °dn

+	
p Vest+ + 

Vwp + 
Vdn + Vwdn	 (16)

	

d9/dE	 (3H/3(xup + xdn)) n 0	 (l7)

The Hamiltonian is minimized with respect to
two pairs of control variables, one pair applicable
to climb (Vup and yrup ) and the other to descent
(Vdn and rrdn). Note that throttle-setting n
rather than thrust is used as a control variable.
In general, thrust and fuel flow are nonlinear
functions of >r as well as of altitude, Mach num-
ber, and temperature. Since each term under the
minimization operator in Eq. (16) contains only one
of the two pairs of control variables, the minimise-
tion simplifies into two independent minimizations,
one involving climb controls, the other, descent
zontrols. Also, since the right-hand side of the
coatate equation (Eq. (17)) is zero, 9 is constant.

Next we examine the transversality conditions
applicable to this formulation. The basic con-
straint in this problem is that the range of the
trajectory be df. However, df is a parameter in
the transformed cost function, Eq. (14), and not a
state v:,.t'iable. The final value of the state
variable dup + ddn is, in this fomulation, sub-
ject only to the inequality constraint dup + ddn l d f-
This constraint is, of course, necessary for a
physically meaningful result. The inequality con-
straint can be handled by solving two optimization
problems, one completely free (du + ddn < df), the
other constrained (dup + ddn d fI. and then choos-
ing the trajectory with the lowest cost. Physically,
the comparison is between a trajectory with a cruise
segment, and one without a cruise segment. Consid-
ering first the free-terminal-state case
dup + ddn < df, we obtain the following relation for
the final value of the coatate fir:

3 ( d f - xUP- xdn ) i
c 3(x up +

 xdn)
En

(18)

This is the transvertzlity condition for the free-
finLl-state problem with terminal cost.'' It shows
that the constant costate value is the negative of
the cruise cost.

Next, consider the case of trajectories with
no cruise segment. Then, the middle term of
Eq. (14) drops out and the performance function
contains only the integral cost terms. This is the
case of the specified final state df n dup + ddn;
the corresponding transversality condition yields

W(Ec) n constant. In practice it is not necessary
to compute the constrained terminal-state trajectory
if a valid free-terminal-state trajectory exists,
that is, one for which df > dup + ddn, since the
addition of a terminal constraint can only increase
the cost of the trajectory. Therefore, this case is
not considered further in this paper.

In both cases i:he choice of a coatate deter
-mines a particular range. Since the functional

relationship between these variables cannot be
determined in closed form, it is necessary to iter-
ate on the eostate value in order to achieve a
specified range df,

The last necessary condition applicable to
this formulation is obtained by making use of the
fact that the final value of the time-like indepen-
dent variable E is free. Its final value is the
upper limit of integration Ec in Eq. (14). Appli-
cation of thu free-final-time traneversality condi-
tion in Ref. 4 provides the following condition:

(H + 0)(df - dup - ddn)a(E))/3E)) EnEc 
n 0

(19)

which, when evaluated becomes

(H + (dc(d1/dE))) EnEc n 0	 (20)

where dc is the cruise distance.

Fquation (20), together with knowledge of the
salient characteristics of the cruise cost a and
the Hamiltonian H, can be used to determine the
structural dependence of the optimum trajectories
on the range.

Cruise cost at a cruise energy Ec and cruise
speed Vc is computed from the relation

a(Ec ,Vc )	 P(T,Ec ,Vc ) /(Vc + Vw) 3

T	
D	

(21)

constraints: (
4 n W

where the denominator is the ground speed in the
flightpath direction. Examination of the teem
containing a in tho relation for the performance
function ( 14) shows chat the value for A should
be as small as possible at each cruise energy in
order to minimize the total cost J. Therefore, the
cruise-speed-dependence of a is eliminated by
minimizing the right side of Eq. (21) with respect
to Vc:

1(Ed n min P(T,Ec' Vd /(Vc + Vw )	 (22)
Vc

In this paper, A and Vc are always; assumed to
be the optimum cruise cost and cruise speed, respec-
tively, at a particular cruise energy Ec.

Except in high wind shear, the cruise cost as
a function of cruise energy exhibits the parabolic-
like shape shown in Fig. 3. For subsonic transport
aircraft, the minimum of the cruise cost with
respect to energy occurs close to the maximum energy
boundary. This characteristic of the cruise cost
prevails for essentially all values of the perfor-
mance function parameters Cf and Ct . The quanti-
ties defining the optimum cruise conditions are

Ecopt and aopt . In Eq. (20), the derivative of the
cruise-cost function multiplies the cruise distance.
Except under extreme wind-shear conditions, the
derivative is monotonic and crosses the zero axis at
Ec	 Ecopt. by observing that climb and descent
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controls do not occur simultaneously in the terms of
Eq. (16). and by substituting Eq. (=8) in Eq. (16),
we can separate H into climb and descent compo-
nents as follows:

HIE.A(Ec )) n 
Iup + I

dn	 (23)

where

P - A (Vup + Vwp )
Iup • min	 ,

Vup	 EJE>c

e
up

F A(Vdn
(24)

 + Vwdn)
Idn	 min	 IE I'•

dnL	 E<o

Vdn

Numerical studies of Eq. (23) for several
models of subsonic turbofan aircraft show
H(Ec ► A(Ec)J z 0. for Ec <- Ecopt• Consider first
the case in which H(Ec,A(Ec)) > 0; then Eq. (20)
can be solved for the cruise distance dc;

do n -HIEc,A(Ec))/(dA/dE)En E 
c.	

(25)

Since dA/dE < 0 for Ec < Eco t. and dA/dE
approaches zero as Ec approaches 

t .

opp
tl

 the
cruise distance must increase without limit u Ec
approaches Ecopt•Although numerical calculations
show that the value of H tends to decrease as Ec
increases, the rate of decrease in dA/dE is more
rapid and dominates the behavior of de. Figure 4
shows the family of trajectories, obtained if H > 0
for all values of Cc. In this case, interestingly,
nonzero cruise segments occur at short ranges and at
energies below the optimum cruise energy Ecopt•

Consider next the case In which
H(Ec,A(Ec)J n 0. Then. do - 0; that is. no cru'.le
segment is present for dA /dE < 0. However,
Eq. (20) allows do to be nonzero if dA/dE n 0.
This implies that for H n 0, cruise flight is opti-
mum only at the optimum cruise energy Eco t•
Figure 5-shows the family of trajectories ^or this
case.

Fig. 5 Energy ve range, H n 0 at Be-

Thrust Optimisation for Minimum fuel Traiactorias

Evalwtiun of the HainGtonian would be simpli-
fied if one of the two pairs of control variables,
airspeed or throttle, could be eliminated a priori
from the minimisation. Since the pair of throttle
setting rup and *du is thought to be near its
limit. we shall look for conditions where extreme
setting of the throttle are optimum. We examine
here only the minimum fuel case Cf n 1 and
Ct n 0. with winds set to sero in order to simplify
the derivation. However, the results can be
extended to the case in which C t 0 0.

For minimum fuel performance. the two term in
the Hamiltonian Eq. (24) become

Iup . min K
uP 

, Idn n min Kdn (26a)
it 'V
	 rdn'Vdn

where

Wf AVu
Kup
	 (T - D)V_! W

IT(w UP ))-D

(26b)
41f - LVdn

Kdn ° T - D Vd^
T(edo)<D

An accurate model for thrust and fuel flow
generally includes the functional dependencies.
T(*.V,h) and Wf (e,V,h). In addition. these func-
tions must be corrected for nonstandard temperatures
and bleed losses.
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In earlier work on aircraft trajectory optimi-
zation, = a simpler model for fuel flow and thrust
was often used;

4  a TS FC (V,h) ; Tmin(V,h) S T S Tesx (V ,h) (27)

The critical assumption in Eq. (27) is indepen-
dence of the specific fuel consumption S FC from
thrust. The virtue of this model lies in the
insight it yields into the minimum fuel problem. If
Eq. (27) is substituted into Eq. (26h). one obtains

K	 S 

!C 

^

up - (a/SFC )V 	

^

up

up Vu
P 	 Tup- D Tup D

(2Q)

K
	

SFC— rTdn - (11/SFC)Vdnl
do Vdn 

IL T^ do —D I JTdnQ

For any fixed values of Vup or Vdn, the
operand functions Kup and Kdn with respect to
thrust are hyperbolas with poles at Tup n D and
Tdn a D, respectively. The numeratorzero with
respect to thrust  must be to the left of the pole on
the thrust axis for specific energies less than
cruise energy. This implies that maximum thrust
minimises Kup and idle thrust minimizes Kdn for
any E r Ec. and prows that the limiting values of
thrust are optimum for this propulsion model
throughout the climb and diseent trajectories. This
result also implies that the departure from the
limiting thrust values found for the more general
propulsion model is directly attributable to the
nonlinear dependence of fuel flow on thrust. Con-
versely. the need for throttle-setting optimisation
can be determined a priori from the fuel flow versus
thrust dependence for a particular engine. Such
data are found in the engine manufacturer's perfor-
mance handbook.$

Effect of Model Characteristics

We have seen in a preceding section that the
value of the Hamiltonian computed at cruise energy
Ec determines the structure of the trajectories
near cruise. It is possible to relate the existence
of cruise below Ecopt to specific engine and aero-
dynamic model parameters. This is done by substi-
tuting truncated Taylor series expansions of fuel
flow and drag as functions of airspeed and thrumt
into the expression for the Hamiltonia... The loca-
tion of the minimum with respect to the controls as
well as the value of H can then be determined as
functions of the Taylor series coefficients at
E n Ec. These and other calculations are carried
out in Ref. 3. Here the results are summarized for
two types of engine characteristics.

Case A: SFC Independent of Thrust. The
structure of the trajectories for the case in which
specific fuel consumption is independent of thrust
is given by the family of trajectories in Fig. S.
In these trajectories no cruise segment occurs
unless the range exceeds a certain minimum range,
and than cruise takes place at the optimum cruise
energy Ecopt• Furthermore, it can be shown that
the optimum climb and descent speeds are equal to
the cruise speed at the cruise enerp . t Thus there
is continuity of the optimum speeds at entry and
exit of the cruise segment, if it is present, or at

the transition from climb to descent, if it is not
present. The continuity of the speeds simplifies
the design of the interface between this algoril
and the guidance system for flying the trajectory.

Previously it was shown that for the thrust-
independent SFC case, the optimum climb thrust is
the maximum thrust, and the optimum descent thrust
is the minimum or idle thrust. These and the above
simplifying characteristics emphasize the importance
of the assumption underlying Came A. It suggests
that even if the assumption is not completel y satis-
fied, one should evaluate its effect on the opti-
mslity of the trajectories.

Case B: SFC Thrust Dependent. Figure 6 plots
SFC and fuel flow as a function of thrust for a
typical in-service turbofan. Over the complete
thrust range, SFC is seen to be strongly thrust
dependent, approaching infinitN at low thrust
values. However. at typical c.imb or cruise
thrusts, corresponding to the upper half of the
thrust range, the variation in SFC is only about
52. The dashed line through the origin gives the
best constant SFC approximation to the fuel-flow
function. Comparison indicates an excellent match
at high thrust, but significant errors at low
thrust. For some applications, the constant SFC
assumption of Case A may still be adequate, if
errors in fuel flow at low thrust are considered
unimportnat.
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Fig, 6 SFC and fuel flow vs thrust typical
turbofan.

By using an engine model similar to that
defined in Fig. 6. it was shown in Ref.. 3 that if
thrust is a free but bounded control variable, the
optimum climb and descent thrusts and airspeeds
converge toward the optimum cruise thrust and air-
speed as the climb and descent energies approach
the cruise energy. This result applies to all
cruise energies, including those less than the opti-
mum cruise energy Ecopt. The structure of the
trajectories is similar to thatshown in Fig. S,
except that at the maximum (or cruise) energy the



trajectories will have a rounded rather than a
peaked appearance (because of the continuity of
thrust at maximum energy). Minimisation of H by
computer has shown that the thrust is maximum or
idle for about the lower three fourths of the energy
range between initial (or final) and maximar energy
and amen converges to the cruise value as cruise
energy is approached. This corroborates the theory
that the optimum cruise energy is approached asymp-
totically as the specified range increases without
bound.

A different result is obtained if this fuel-
flow model is used in conjunction with the constraint
that thrust be set to its maximum value in climb and
to its minimum value in de,ucent. Such a constraint
might be invoked in order to simplify the minimiza-
tion of the Hamiltonian, and it gives rise to non-
zero cruise segments below the optimum cruise energy.
The structure of the trajectories in this case is
illustrated in Fig. 4. Again, optimum cruise energy
is approached asymptotically for large ranges.

Computer Algorithm, The climb and descent pro-
file* are generated by integrating the state equa-
tion (15) from the initial energy Ei to the
maximum or cruise energy Ec . For this purpose,
Eq. (15) is separated into its climb and descent
components as follows.,

dxu
JEP . (Vup cos Yup t Vrup )A]£ap i xup(Ei)00

i	

(29)

E° - (Vdn cor Ydn + Vwdn)I I E^J F<u' xdn(Ef) - 0

with B	 (T - D)V/W. Flightpath angles are not
defined within the reduced dynamics of the energy
state model and were previously assumed to be small.
Nevertheless, during the integration of the trajec-
tory, the flightpath angles for climb and descent,
Yup and Ydn' can be computed by using value of
altitude and distance from two successive energy
levels. The use of these computed flightpath angles
in Eq. (29) increases somewhat the accuracy of the
climb and descent distance integrations. In addi-
tion, equations for time and fuel are also inte-
grated during climb and descent.

At each energy level the optimum airspeeds and
thrust settings are obtained as the values that
minimize the two components of the Hamiltonian in
Eq. (24). The minimization of the Hamiltonian is
carried out by the Fibonacci search technique.?
Fibonacci search is bauically a one-variable mini-
mization procedure. It is adapted here to two
variables by applying the technique to one variable
at a time, while holding the other variable fixed.
Convergence to the minimum is achieved by cycling
between the two variables several times. Prior to a
search over a given control variable, the limits of
the regions for Ku and Kdn, are computed in order
to keep the search interval as small as possible.

As previously explained. the choice of a in
the Hamiltonian determines the range of the trajec-
tory, but the exact functional dependence between 1
and range cannot be determined explicitly for the
various weights, wind profiles, and other parameter
values encountered in real-time operation. Itera-
tion on 1 must therefore be used to achieve a
specified range. Since each iteration step requires
integrating Eqs. (29). it is important to minimize

the number of iterations. This is accomplished by
mate of # at each iterationupdating the sati

xtep, using an approximation of the functional rela-
tionship between A and d f . as illustrated in
Fig. 7 for a typical transport aircraft. For any
range d f 4 dm x , the estimate is computed from

A • A/d f i a	 (30)

where the constant@ A and g are updated after each
trajectory integration. Further details of this
procedure are given in Ref. 7.
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Fig. 1 Typical cruise cost ve range relationship
for example aircraft.

If in addition to range the time of flight is
also specified, a second iteration loop involving
the time-cost factor C t must be implemented. This
loop uses a procedure analogous to the one in the
range iteration.

Another element of the algorithm compensates
for the weight change caused by fuel burn. The
effect of the change in weight on the optimum tra-
jectory is estimated by two methods. The first
merely updates the weight in the calculation of E
during climb and descent. This ensures that the
trajectories generated by integrating Eq. (29) are
based on an accurate model of the aircraft.

The second method attempts to correct the
optimisation of the trajectories by estimating the
change in the rruise cost X. rhis is done by
using the weight of the aircraft at the and of
climb. that is, at snarly Ec to compute the value
of 1. It is important to use the weight at Ec
rather than the weight at Ei to compute 1
because the sensitivity of the optimum controls to
changes in \ increases as the aircraft energy
approaches Ec. The fuel consumption for the entire
climb trajectory. Fu pp , is estimated at the start of
climb from the empicical relation

Fup ` K 1 (Ec - EI)WI/Wref	 (31)

"hare K 1 is an aircraft-dependent constant, and
Wref is a typical initial climb weight. This rela-
tion estimates the climb fuel weight to about 10%
accuracy, which is adequate for this purpose. Simi-
larly, the weight at the and of cruise, if a cruise
segment is present, is used to compute a for the
descent optimization. The cruise fuel consumpr'on
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Fc is dete mined from the relation

F  . Wdc /Ya	(52)

where W is the average fuel-flow rate and V the
avert$* ground speed during cruise. The calculation
of W and Ol is described in Ref, 7.

Tits computer implementation includes both the
free- and constrained-thrust cases. For the
constrained-thrust ease, the cruise distance is
computed from Eq. (25). However, because dA/dE
approaches zero as Cc approaches E, thliro is
a practical limit to the use of Eq. ($1S t, deter-
mined by the numerical accuracy of computing dA/dE
for Ec in the neighborhood of Ecopt• A practical
limit for Ec is that value for which
1 n 1.011opt . The total range of the trajectory
obtained for this value of 1 is referred to so
desx. All trajectories requiring longer ranges
than dmax are assumed to cruise at Ecopt and to
contain cruise segments of length de n d f - dupp - ddn,
where dup and ddn are computed for A a 1.OlAopt.
In the free-thrust case, numerical difficulties can
arise in minimizing Eq. (24) an Ec approaches
Ecop t . The value of l.Olaopt has also been found
to serve as a practical criterion for computing the
longest range without a cruise segment at Ecopt•

A computer program of the algorithm has been
Implemented in MATRAN IV and in described in detail
in Ref. 7. There sTs approximately 2,400 FORTRAN
instructions in the program.

Optip-t,m Time-Delay Trajectories

Many air travelers have experienced in-flight
delays at their destination airports. Such occur-
rences lead to the important flightpath management
problem of minimizing the fuel loss for a specified
delay in the landing time. Assuming it is not .ea-
sible to absorb the delay on the ground or at an
alternative airport, we can divide delay maneuvers
into two types: slow-down and path -stretching (the
latter may also include speed changes).

The problem of determining the tpcismr,4 delay
trajectories can be solved by examining the loci for
fuel consumption versus time for the minimum fuel

specified-range (SR) and minimum fuel specified-time
(ST) problems plotted in Fig, 8. First observe that

SR LOCUS

INCREASING
RANGES —d4	 STsd'	

d=
S

d2	
I

._	 d1

PATH STRETCHING
REOUIRED FOR .o. o
I '^ t„y (di I

Cruise cost:

flew

for a fixed final time ca t , the fuel consumption
as read from the ST locus must its lama than the
fuel consumption as read from the SR locus. More-
over, at tat the corresponding range d, on the
SR locus mot be greater than the range do on the
ST locus, These characteristics follow from the
optimality of the loci. As the time-cost factor
Ct is changed over a range of positive and negative
values with range held fixed at d l , the fuel-time
locus NCO,) of all minimum coat, tree-time tra-
jectories is gener4ted. The minimum of this locus
with respect to fuel consumption is attained at
Ct • 0 and contributes one point on the SR locus,
Points to tits left of the minimum correspond to
Ct > 0 and points to the right to C t t 0. From
arguments in a preceding section (Optimal Control
Formulation), the MC(d l ) locus must have one point
In common with tltA ST locus; namely, at the time
ted in Fig 8. Furthermore, the two loci must be
tangent at that time and can have no other points
In common.

Assume that the specified final time t 1 is
such that taf -< t, -< ted, The difference
tj	 tmf is the delay with respect to the minima
fuel final time. Also asauma that d, is the
shortest distance from the current aircraft position
to the destination point, We now As. whether a
stretched path, say d, > dj can give lower fuel
consumption than d t , But it follows from the rela-
tionship illustrated in Fig. 8 that MC(dr) 	 MC(dj)
for d = > d, and t, r tmd. Thus path stretching
is not optimum for t 3 S tmd,

Next assume that the specified final time tZ
is greater than tmd. There the fuel consumption
read from the ST locus at t 2 will be equal to or
lose than that read from the MC locus for all
d = d i . It will be exactly equal for the value of
d - d i e namely, where the two loci are tangent to
each other, Thus, in order to minimise fuel con-
sumption for t .i > tmd , the minimum distance path
of length d, should be stretched by the differ-
ence dz - d l . The detailed shape of the path-
stretch maneuver is not critical. However, turns
should be done at small bank angles so as to mini-
mize bank-angle -induced drag, which was neglected
in this derivation.

The final r'tep in rolving hs optimum delay
problem is to chow hod tud, the tuuxi ua time to
fly a specified range d 1 , can be computed from the
algorithm developed in he preceding section. The
Hamiltonian, the state equation, the cruise cost C
and the tranoversality condition for the fixed-time
problem with specific energy as independent
variable are

CfWf - C(Ec) CfW f - 4(EC)
H ^ min	 +	 (73)

Vup' Aup	 ESE> o	 AEI!?<0

Vdn'Itdn

tup ( Ei ) - 0 ,	 tdn ( Ef ) ' 0

Idtl
	

d(tup + tdn )/dE n 1 /kl t ,,o + 1/Jili,e

tT1	 4	 t,,,,	 12
TIME DURATION OF TRAJECTORY

Fig. 8 Fuel-time loci of optimum trajectories

C(Ec) - min C fW f (Vc ,Ec) = C fW fain (Ed
c	 (14)

Constraint: T n D, L - W
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where tup is a time instant during climb, td a
time instant in descent measured positive in t9s
backward time direction, and ec^ is the time
spent in cruise, To yield the sap to 	 trajec-
tory. the Hamiltonians of Eqs. ( 16) and (33) must
become identical. This requires that W	 -11 in
Eq. (16) be zero. or from Eq. (22).

C 	 +C
t1(E c) - min f	 n 0	 (36)

Vc 	c

At the value of V = Vcopt that minimise* the
operand in Eq. (36^. we must have

Ct 
0 

_Cf4f
	

(37)	 (a) Altitude-rangs profiles.

But from Eq.(34). W f n Wf n ; therefore,

Ct - -CfWfmin( Ec )• When tOs expression for Ct is
substituted into Eq. (36), the minimisation operation
does indeed yield % - 0 at the minimising value of
Vc. Thus, at each e."uise energy Ec a time cost
computed from

C t (Ed r -min C f4 f 	(38)
Vc

will yield the maximum delay trajectory. The trans-
versality condition (Eq. (35)) transforms to the
following expression:

(H + do 
00 fain (E

c )/d%)) - 0	 (39)

Examples of optimum delay trajectories com-
puted by the procedure described here as well as an
alteraatative derivation can be found in Ref. 8.

Examples of Optimum Trajectories

This section presents several examples of fuel
and cost optimum trajectories. Additional examples.
including the effects of winds and of air traffic
control constraints, are given in Ref. 7.

Minimum Fuel Traieetories. Figure 9a shows
examples of minimum fuel trajectories for ranges of
100. 200, and 1,000 n. mi. The lift, drag, and
propulsion models used in these examples are repre-
sentative of the Boeing 727-100 equipped with
JT 8D-7A engines. The takeoff weight is 150,000 lb.
winds are zero, and the atmospheric model is the
1962 ICAO Standard. For the 200-n. mi. range, both
the constrained-thrust (solid line) and the free-
thrust (dashed line) trajectories are shown. Also.
for the 200-n. mi. range. Fig. 9b shows the corre-
sponding altitude versus airspeed profiles. The
constrained-thrust trajectories for the 100- and
200-n. mi. ranges contain short cruise segments
below the optimum cruise altitude of 32,000 ft.
Optimum cruise altitude is reached for ranges
greater than about 230 n. mi. For the 1.000-n. mi.
flight, the optimum cruise altitude increases at a
rate of about 2.5 ft/n. mi., because of fuel burn
off. Differences between the constrained- and free-
thrust trajectories are apparent only near the top
of the climb, where the free-thrust trajectories do
not contain a cruise segment. The difference in
fuel consumption between the constrained- and
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(b) Airspeed-altitude profiles, 200-n. mi. range.

Fig. 9 Minimum-fuel trajectories.

free-thrust trajectories for the 200-n, mi. range
is 23 lb out of a total of 4.800 lb. This role-
tively small difference would seem to justify the
computationally simpler constrained-thrust mode.
especially in an on-board implementation. The simi-
larity of the climb and descent profiles for dif-
ferent ranges also offers opportunities for
simplifying the on-board algorithm.

Evaluation in Piloted Simulator. Frequently
the question is asked how much fuel we and costa
can be reduced by using on-board flightpath opti-
mization in airline operations. For several
reasons. this question is not easy to answer.
First, there does not exist a standard reference
trajectory for comparison. Second, there can be
significant variations in flight techniques between
different pilots. Third, it is difficult to achieve
repeatability in trajectories because of unknown
disturbances from weather and air traffic control.
Realistic evaluations, therefore, should include
statistical analyses of savings from a large number
of trial flights. Here we excerpt results from a
limited evaluation, using a piloted simulator.9

The constrained-thrust version of this algo-
rithm was implemented on a DC-10 simulator and
integrated with flight director and autopilot sys-
tems. Qualified DC-10 airline pilots first flow
the simulator on a 220-n. mi. flight in a manner
recommended by their airline flight manual. Then
they repeated the flight, wing the flight director

10



CAPTURE TRAACTOPIV

to follow trajectories generated in real time by the
algorithm. Three representative trajectories from
these simulator flights are plotted in Figi 10 as
altitude versus fuel consumed. Note that takeoff
And touchdown altitudes are 3,000 ft and 200 ft,
respectively, corresponding to the altitudes of
runways at the particular city pairs used in the
simulator flights.
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T rsinal-Ards Fliahtpath Manaaessnt

Terminel-area I ll,ghtpath manag- 't problems
are conceptually and analyticall y more diffls:utt
than the an route problems discussed In the preeed-
ind section. Their complexity arises from the
dynamically sore complex models required for synthe-
staing efficient and flyable trajectories The
synthesis problem can be stated as specify ing an
algortths for generating a tralectory from an
arbitrary initial state vector (Xi,Y 1,h1,11t.Vi) to
a final state vector (Xf,Yf,hf,Hf,Vf' 	 This
so-called capture trajectory problem is illustrated
In fig, 11, Note that in the figure the final point
Lies on a backl4ard extension of the runway cetlter-
line and that the final heading is equal to the
runway heading. The distance from the final point
to touchdown to pilot-specified The capture algo-
rithm must synthesize efficient trajectories
rapidly and without failure for a vide range of
Initial and final state vactorl,

t for
Pit IXI, Yp hp Ill , VII

FUEL CONSUMl0, at

Fig. IO Standard airline procedure compared with
fuel- and cost-optimal trajectories, 220-n. mi.
range -

The fuel consumed and flight time for the stan-
dard airline procedure were 9,500 lb and 37 sin,
respectively. Cruise altitude was 24,000 ft. The
fuel-optimum trajectory climbed staeply and mote
slowly to 32,000 ft, whereupon it began immediately
an idol-thrust descent. The fuel consumed and the
flight time were 8,750 lb and 42 sin, respectively.
The fuel saving of 750 lb, or 8% of total fuel, is
highly significant in airline economics where sav-
ings of only 1% are considered Important. On the
other hand, the increased flight time may be unde-
sirable, but reflects the fact that the chat of time
is assumed to be zero In the fuel optimum ease. To
eliminate the time-fuel trade-off from the compari-
sons, a cost-optimum trajectory was flown with the
time-cost factor Ct selected so as to achieve the
same flight time, 37 min, as the standard sirlir3
procedure. This trajectory required 9,150 lb of
fuel. Thus, even at fixed arrival time the optimum
trajectory reduced fuel consumption 350 lb, or 3.7%,
relative to the airline standard procedure. Clearly,
the fuel consumption difference at fixed arrival '
time provides a useful measure of the efficiency of
an airline flight procedure. Fuel savings on
longer-range flights were similar in magr4tude but
less when expressed as ,I 	 of total fuel
consumed.

Pilots judged the optimum trajectorics flown
with the aid of a flight director no more difficult
to fly than the standard procedure. They considered
the cost-optimization feature an essential element
of a future on-board system. Variatians of this
algorithm have been incorporated in performance-
management systems being built by several avionics
manufacturers.

CAPTURE POINT
». . ,...	 Pl .xl vf . bl, w,. v.l

4&

Fi,S. 11 The capture trajectory problem in the
terminal area.

At the present it is not tensible to implement
the optimal control solution for this five-state-
variable problem, as we were able to do for the
one-state-variable an route carte. Nevertheless,
optimal-control theory played 1 crucial role in
deriving the algorithm. It was first used to derive
the structure and characteristics of extrasum tra-
jectories (those that satisfy necessary conditions
of optimality; see Ref. 4) for Iwo reduced-urder
subproblass of the original five-state-variable
problem. Then some of the derived characteristics
were incorporated in the design if the algorithm.

Thus, the first step in deriving a, practical
algorithm is to separate the synthesis into two
essentially independent problems that can be solved
in sequence,: The first consists of synthesizing a
horizontal plane (two-dimensional) trajectory that
connects the initial position and heading (Xi,Yi,Ht)
to the final position and heading (Xf.Yf,Nf). The
second consists of synthesizing airspeed and alti-
tude profiles that connect initial and final speeds
and altitudes (Vi,h i) and (vf.hf), respectively,
along the known horizontal path. This technique
was described in Ref. 10 in connection with a study
of four dimensional guidance and has been refined

y



several times. 11,1: Although each subproblem is
indepeoJently optimized. combining the trajectories
from ,:he two subproblems does not generally yield
optimum solutions to the original problem. Never-
theless, trajectories for the most frequently
encountered initial conditions have been found to
give performance reasonably close to the optima.
Most importantly, piloted simulations and flight
tests have shown that the efficiency of the computed
trajectories exceeds that of pilot-generated flight
paths.

Synthesis of Horizontal Flisht Paths

Horizontal plans trajectories are chosen to
minimize the length of the path or, equivalently,
the time to fly at constant airspeed and zero winds.
This problem can be formulated as a minima time
optimal control problem with state variables X. Y.
and H. and with bank angle 0 as the control
variable. Analysis shows that the extremum trajec-
tories consist of an initial turn, followed by
either a straight line or another turn in the oppo-
site direction, and a final turn." Turns are flown
at maximum bank angle (oesx), and the min mum turn
radius gain is computed from the relation

%I, ' V'/g an #max	
(40)

where Vg is the ground speed. A representation
of the solution in terms of maneuvering regions
covering the entire three-dimensional state space
is given in Rat. 14.

The computationally most efficient solution and
one that has been implemented in a flight system is
based on a set of closed-fora equations for comput-
ing all possible extremum trajectories. 13 For each
sat of initial and final conditions, the algorithm
computes up to six different extremum trajectories
and then chooses the one with the shortest path
length. The minimum turn radius for each turn is
specified separately in the algorithm, using
Eq. (40). Since airspeeds and ground speeds will
not actually remain constant, an estimate of the
imximum ground speed is used in Eq. (40) to ensure
that the chosen turn radius will not cause the bank
angle limit to be exceeded. A conservative estimate
for the maximum ground speed is the algebraic sun of
the maximum airspeed in the turn and the wind speed.
Note that estimating the 

maximum implies a weak
interaction between the assumed independence of the
horizontal and vertical synthesis problems.

The horizontal capture algorithm. combined with
continuous display of the trajectory on an electronic
map, has received many favorable coonsnts by flight-
test pilots. Furthermore, it can be used as a sub-
program in algorithms for computing variable-radius
turns and trajectories through a sequence of way-
points. For thee* reasons the derivation of the
algorithm is included in the appendix.

Synthesis of Airspeed-Altitude Profiles

The dominant feature of the airspeed-altitude
profiles in the terminal area is the deceleration
and descent segment to achieve landing approach
conditions. In this segment. the flaps are extended.
and, for certain types of V/STOL aircraft, the thrust
is vectored to increase drag and to compensate for
diminished aerodynamic lift at low speed. Similar
changes, except in reverse order. occur in the

takeoff and climb-out profiles. Clearly, the opti-
mization of such changes in aircraft configuration
is an integral part of profile synthesis.

Both optimisation of the configuration ind the
synthesis of efficient profiles can be handled with
a reformulated version of tho energy-state model
developed for the on route case.

The energy rate. Eq. (6). can be written in
the form

	

ae - de + a^	 (41)

By wing the relation dh/dt a vy in Eq. (41) and
dividing Eqs. (6) and (41) b V, we obtain two
expressions for a quantity. defined as the
normalized energy rate

in - [T(7r)cos(a + v) - D(a,6f,V))/W	 (42)

	

En * y + i ^	 (43)

with L m W as a constraint. The coo(* + v) fac-
tor accounts for the possibility of thrust vector-
Lag. Equations (42) and (43) provide a simplifying
dichotomy in the profile synthesis. At a particu-
lar airspeed the (normalized) energy rate is first
determined from Eq. (42) by choice of appropriate
controls, including thrust T, thrust-vector angle
v, flap angle 6f, and angle of attack m. Then,
the chosen energy rate becomes an input to Eq. (43).
which determines the airspeed-altitude profile by
specifying either y or dV/dt.

Since a conventional aircraft has three con-
trols and a typical V/STOL aircraft has four to
achieve a specified energy rate, we have an excess
of one and two controls * respectivelyt over the
minimum number needed for a unique simultaneous
solution to Eq. (42) and L - W at a given altitude
and airspeed. These extra degrees of freedom in
the controls can be exploited to minimize thrust
and, therefore, fuel flow at every specified energy
rate. altitude, and airspeed. This optimization
problem is restated in equivalent form as the maxi-
mization of energy rate for a given thrust setting:

(TO - max T D	 (44)
n	

v,o.6f	
W

with constraint L(n,v,a.6f) - W. The maximization
must also obey various inequality constraints on the
controls, such as limits on the flaps, the angle of
attack. and thrust-vector angle. We may interpret
the maximization operation as a technique for col-
lapsing the multiple controls into the single
variable kn.

The lover bound of energy rate attainable by
choosing the controls by the process of Eq. (44) is
the maximum energy rate attainable at minima- or
idle-thrust setting. (In a V/STOL aircraft, at low
speed, the minimum thrust may be higher than idle.)
However, more negative energy rates. if the aircraft
can attain them, must also be generated by the
model in order to encompsen the entire flight anve-
lope of the -aircraft. For in aircraft without
thrust vectoring, such rates are obtained simply by
increasing the flap angle bnyond the optimum
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obtained from Eq. (44), For a V/STOL aircraft with
thrust vectoring the problem is more complex, In
this case, the introduction of it second criterion,
which minimizes the throat deflection angle for
each specified energy rate, helps to generate the
remainder of the attainable energy rate region.12

In a practical impt4mentation of thin procedure
for a vectored -thrust ST01, aircraft, the functional
relations between the eaargy rate and the optimised
controlo are precomputod andstored in the on-board
computer in multidimensional tables . ta Interpola.
tion of entries In the tables determines the optimum
controls for specified values of energy rats. air-
speed. altitude. ambient temperature, aircraft
Wight. and bank angle, by noodimansionaliaing and
combining some of thane variables, the storage
requirement for the tables wait 	 to only
600 words. even for tho relatively complex vectored-
thrust STOL aircraft, The storage requirement would
be considerably less for a conventional Jet trans-
port aircraft. A simplified version of these tables
for the STOI, aircraft example i s given in Fig. 12
as pinto of maximum and	 umminim energy rates. Enmax
and 9nmin versus the oqu.ivalent airspeed,
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,2	 /	 MFGION Of THRUST GRSATE
THAN TOLE, No THRUST
VECTORING

c REGION OF
W vlCT$11et+

0 \	 THRUST

q WITH THRUST
GREATER

..1 s	 \THAN ► DLE

.._ REGION OF IDLE THRUST
j	 WITH THRUST VECTORING

InMIN soUNOARY

100	 120	 Its	 in
INDICATED AIRSPEED, Mow

Fig. 12 Envelope of euurgy rate for a vectored--
thrust STOL aircraft: W - 38.000 .lb, sea level.
standard temperature.

After developing the method for selecting the
controls, we can now proceed with the aynthesis of
the profiles. In principle, this probltw is idonti-
cal to the fixed-ran ge, an routs problou previously
solved. However. the short !an;lea and variety of
operational constraints characteristic of terminal-
area flight Justify a simplified approach based on
matching the general charmeturistics of optimum fuel
airspeed -altitude profiles. We briefly explain the
rationale for this method with reference to descent.
which is the most difficult case.

Minimum fuel descent trajectories such as those
illustrated in Fig. 9 are characterised by a mono-
tonic decrease in energy from cruise until the
specified final ( landing) airspeed slid altitude are
mete Furthermore, at teminal- area altitudes below
10.000 ft, the trajectories first descend at
approximately constant indicated airepodd of
240 knots (for a lidding 727) and idle throttle to
the landing{ altitude. The descent is follow :d by
rapid docaLeration to the .landing speed At nearly

constant altitude. However. obstructions and notes
restrictions along the approach path usually do not
permit level-flight deceleration at low altitude,
Instead. the doeslurstion La performed in shallow
descant or in level flight at attitudes between
1,000 and 2.000 ft above the runway.

To provide flexibility in the shaping of the
profiles during simuttansous deceleration and
descent, families of decreasing (and by extension,
increasing) enargy profiles are generated as a
function of two parameters. o and c, The first
parameter, o, selects the fraction of minimum
(maximum) available unergy rate, 6nain, (Inmax) to
5o used for decreasin (increasing) energy , The
values of knoin and 	 x are precomputed and
storod at each indicate airspeed. as previously
explained, The second parameter, c, determines
the fraction of the selected energy rate to be used
for deceleration (acceleration)	 Then, for particu-
lar choices of a and t, the energy rata, Airspeed
rate, flIghtpath aogta. altitude rate, And ground
speed are computed os follows.

gn ` ol"nmin	
o 3	 5 h	 (45)

V	 A# n .	 0	 t	 (46)

Y • (I - C)6n	(47)
it - V)	 (48)

i - V coo Y + Vw	(49)

Note that in.iin < 0 And c	 provides deceler-
ation Without descent; 4 a 0 rrovides descent with-
out deceleration; and 0 < C <	 provides simul-
taneouo deceleration and deecen - Minimum fuel
descent at altitudes nearly the same as landing
altitudes usually requires following the knmin
contour in the onergy-rate tables, Thus, the opci-
mum value of o in unity. Howrover, for some air-
craft, such as the vectored-thrust STOL type men
tioned previously, the optimum value may yield
energy rates too negative for aafe operation. A
value Idea than I in also necoomary to reserve a
margin for closed-loop ^,ontrol. along the computed
path. A practical upper limit for a is about 0.9.
Furthermore, maximum deceleration and eeacenh limits
are alto enforced during profile synthesis.

The structure of the profiles is modeled after
that In Fig. 2. excupt that an Addittonal constraint
Is imposed. An aircraft flying in the tominal area
is generally not allowed to climb above its initial
approach altitude hi for the purpose of optimising
the trajectory. Rather, it must hold this altitude
until starting the descent for landing. However.
while flying at altitude hi, it may change to A
fuel-efficient terminal-area airspeed V t . For the
STOL aircraft, V t x 140 and for a ,jet tran^;iort,
such as a 727 Vt T 240 knots IAS. Another cri-
terion for choosing Vt in to most a specified
landing time, as required in four-dimensional
guidance applications.

The various rule@ above can now be combined
to generate complete profiles, The synthesis begins
with Lite backward time Integration of Byo. (46),
(48), and (49) from final conditions h f . Vf , using
the specified o and c. It the altitude reaches its
target value of hi before the airspeed reaches its
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target value of V t , we eat c - l and then con-
tinue the backward time integration until the air-
speed has also achieved its target value. When
setting c - 1. the flightpath angle to forced to
zero and the energy rate is used entirely for accel-
orating (in backward tams) toward V t . On the other
hand if the airspeed reaches its target value before
the altitude does. we not c - 0. This stops the
airspeed change and causes the energy rate to be
used entirely for increasing the altitude toward Its
target value of hi. When the second and last.
variable reaches its target value, we set a a 0,
that is. 16 - 0, thus completing the backward time
integration. Next, we begin a forward time integra-
tion from *-he current aircraft position to get the
distance required to change speed from Vi to Vt
with c . 1. Let the distances for the backward
and forward integrations be dib and dif, respes-
tively. A valid trajectory line been generated it
the cruise distance dc, computed from

do ' df - dtb - dif, is nonnogative, that is, if
do < 0. If do is negative. the synthesis has
failed, because the aircraft is too close to the
capture point Pf. For purposes of on-board imple-
mentation, the important feature of this algorithm
is that it synthesizes an efficient trajectory in a
single integration.

Figure 13 illustrates the various segments of
a synthesized approach trajectory for a STOL air-
craft, with o = I and e - O.S. We assume for
simplicity that Enmin - -0.13, a constant, Other
parameters are indicated in the figure. Note that
the initial descent at y - -7,5' reduces to
Y + -3.75' in order to allow the aircraft to decal-
*rate to the landing speed of 100 ft/sec.
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The algorithm also corrects the airspeed decel-
eration for known wind shears, which are computed
from a knowledge of Vw(h) if available. The wind-
shear correction factor is

AV - (dVw/dh)Vy

which is added to the right side of Eq. (46) to
obtain the wind-shear-corrected airspeed rate.
Furtherswre, the reference controls are corrected
for the effect of nonsero bank angle on induced
drag by modifying the weight in the lift equation
as follow: L - W/cos #.

Integration time-steps vary during synthesis.
During turns, decelerations. and accelerations it
is 1 sec; during altitude changes at fixed speed
and heading it is 5 sec. Total time for synthesiz-
ing a complete trajectory consisting of a complex
horizontal path. such as that shown in Fig. 16 in
the Appendix, and an airspeed-altitude profile,
similar to the one shown in Fig. 13, to about 2 sec
on the particular airborne computer used in a
recent flight experiment. This computer has an add
time of 6 pose and a waltiply/divide time of
24 lose. When the trajectory synthesis is time-
shared with navigation and other necessary computa-
tions. the computing time increases to about 6 sec.

Noncircular Capture Trajecto ies

The computational simplicity of the preceding
algorithm depended on the a priori aaparetion of
the synthesis problem into (nearly) independent
solutions for the horizontal paths and airspeed-
altitude profiles and on the choice of simple geo-
metric foram for horizontal paths. Recently.
Kraindler and Neuman ly studied fuel-optimus capture
trajectories under less restrictive conditions.
For trajectories containing a fairly long straight-
line segment between the lethal and final turns.
they found that the extresus trajectories had
approximately the following characteristics. As
before, the airspeed in the straight-line segment
tends to be close to the minimum-fuel-per-unit-
distance spud. However. the final turn is flown
at maxisus bank angle while the aircraft is decal-
rating to the landing speed. Equation (40) shows
that the resulting turn is a spiral of decreasing
turn radius. For turns with large heading changes
(-180') this saves fuel by reducing the time and
distance flown.

The horizontal capture algorithm for circular
turns can be used in several seeps to generate
approximately constant-bank-angle spiral turns, as
shown in Ref. 18. The method is illustrated in
Fig. 14. for simplicity, assume that the initial
turn has fixed turn radius Ri. Using Eq. (40)
calculate R, at Pf for a bank angle a few
degrees Aa less than vmax and Vg - V f + VW1.

al	 as

Al

S	 04C1LIQATING
SEGMINT

►I
Fig. 13 Example airspeed-altitude profile for a 	 Fig. 14 Illustrating construction of noncircular

vectored-thrust STOL aircraft. 	 final turn.
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where Vw, is the wind-speed component in the final
hsadi,tg direction. Then calculate the circular
hori,sontal path with final turn radius Rf n R1.
lvtnt integrate the speed. altitude, and range equa-
tcuns, Eqn. (46). (47). (46), and (49) backward
from Pf until the ground spud V g is such that
¢ ^^ with radius R 1 . This completes the first
step. Xt that point compute a new and larger turn
radius R2 using Vg n V= t Vw Z , where V 2 and Vwr
are the airspeed and along-track components of the
wind-speed vector at the and of the first step.
Then apply the circular-turn algorithm a second
time and resume the backward integration. Continue
stepping the turn radius until either the cruise
speed is achieved or the beginning of the final turn
is reached during the backward integration. In the
example of Fig. 14, four such steps were necessary.

Obviously this horizontal path algorithm
requires somewhat more computations for each syn-
thesis. The spud of the available on-board com-
puter will determine if it can be used in an
application.

Svstem Tmolementation and Tliaht-Tent_Result_s

The on-board implementation of the system is
bamcd on two modes of operation. In the first mode,
referred to as the "predictive" mode. new trajec-
tories are synthesized one after the other as
rapidly as possible. Upon completion of each syn-
thesis. the system checks to determine whether the
pilot has called for the second, or "track" mode to
be engaged. If such is the case. the predictive
mode is terminated. Than the most recently synthe-
sized trajectory is regenerated and tracked in real
time by a closed-loop guidance law.

The pilot activates the predictive mode by
selecting a waypoint to be captured on a fixed tra-
Joctory. which is prestored. Synthesis of tits cap-
ture trajectory begins after the navigation system
has computed the current position and velocity com-
ponents of the aircraft. The first step in the
synthesis computes the horizontal trajectory param
rters; it is always successful, The second stop
computes the airspeed and altitude profile; some-
times it can fail. For example, if the horizontal
path is very short and the difference in energy
between initial and final positions is large, a
flyable trajectory along that path may not exit.
However, a failure to synthesize is unlikely in land-
ing approaches initiated several miles from the
capture point, the usual situation. If it occurs, a
diagnostic message is displayed to the pilot indi-
cating the reason for the failure. After a failure.
the algorithm automatically repents the synthesis
process, using updated position and velocity vectors.
Also, the pilot can always correct the failure to
synthesise by flying the aircraft away from the cap-
ture point or by selecting a more distant waypoint.

Synthesized trajectories are displayed to the
pilot on a map-like cathode ray display called a
multifunction display (MFD): Figure 15 gives an
example of trajectories displayed on the MFD. The
pilot has selected waypoint 3 on the fixed trajec-
tory (drawn solid) as the capture waypoint. The
dashed-line trajectory starting at aircraft position
P, indicates to the pilot that a valid capture
trajectory has been synthesized. In the example the
pilot did not engage the track soda at P t but
instead flow the aircraft in the direction of P2.
Between P 1 and P. the dashed capture trajectory

M."CTOnY

CA"U060
SILICTIDI

RUNWAY

wAYMNT 

D^
A/C POSITHM

,t n, WA.

Fig. 15 Horizontal flightpaths displayed on multi-
function display.

was refreshed approximately every 6 sec. With the
new generation of airborne computers. the refresh
rate. which is determined by the speed of synthesis.
can be increased to a more desirable once-per-second
rate. When the aircraft ruched P, the pilot
elected to engage the track mode. causing the last
capture trajectory to be frozen and redrawn as a
solid line on the MFD. At that time. closed-loop
tracking of the frozen capture trajectory was
initiated.

It should be toted that in the track mode * the
synthesised trajectory is not refreshed. though
this may be desirable if winds or transients in
navigation introduce, large tracking errors. The
software of the on-board operating system has been
configured to add this capability in the future.

Closed-loop tracking is performed by a pertur-
bation guidance law specifically designed to operate
in concert with the output of the trajectory synthe-
sis algorithm. Perturbation states in the feedback
law include errors in airspeed, altitude, flightpath
angle. and cross-track position. Controls are
thrust. thrust angle, pitch, and roll angle. The
feedback law was designed with the help of quadratic
optimal synthesis techniques and thus differs in
several respects from conventional autopilots.
Details of the design for a voctorod-thrust STOL
aircraft are given in Ref. 12.

A powered-lift. vectored-thrust STOL aircraft.
referred to by NASA as the Augmentor Wing Jot STOL
Research Aircraft, was selected as the test vehicle
for evaluating the concept. 12 This aircraft is
equipped with a general purpose digital computer
and flexible navigation and control systems. The
complex aerodynamic and operational characteristics
of this aircraft presented major challenges in the
design as well as opportunities for demonstrating
the value of automated flightpath management. One
test sequence compared the fuel consumption of a
synthesized and a pilot-flown approach trajectory.
Both approaches began at the same initial distance-
to-touchdown (40,000 ft). airspeed (140 knots), and
altitude (3,000 ft). The pilo.-flown approach was
made with the aid of a flight director system. The
automatic approach consumed 381 lb of fuel, and the
manually flown one consumed 500 lb. The difference

r
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between thsa is considered fairly representative
over a wide range of initial conditions.

4

Concluding Remarks

Trajectory optimisation occurs as an essential
atop in the design of on-board flightpath asnagement
system. Optiml control thuory provided the neces-
sary analytical framework for gaining insight into
the characteristics of efficient solutions and for
unifying diverse problem. However, the derivation
of practical on-board algorithms was more strongly
dependent on physical reasoning hnd on judicious
simplifications of Chu problem than on exact imple-
mentation of optiasl-control theory. In practice,
the critical test of an algorithm in not whether it
is optimum in a mathematically precise sense, but
whether it can consistently outperform its competi-
tor, who in this case is the unaided pilot. Simla-
tion and flight tests have shorn that both the
an route and the terainal-area algorithm met this
criterion.

Nevertheless, since the techniques described
here are first-generation solutions, opportunities
are abundant for further improvewnts in performnes
and for automation of other difficult pilot task&.
Chief among such tasks are following behind an air-
craft at a specified minimum distance and merging
smoothly into a stream of aircraft on landing
approach. Attention also needs to be given to
integrating the an route and terainal-area flight-
path management algorithms.

The potential for computer-directed trajectory
management in military applications is widely recog-
nosed, but on-board algorithms that outperform an
experienced pilot in, for example. typical air-
combat situations art far more difficult to obtain.
In the near ten, promising areas for applying the
approach developed here are in automated guidance
of remotely piloted vehicles and in noncombrt flight-
path mnagament.

Appendix

The expressions for synthesising horizontal
capture trajectories for flying an aircraft from a
given initial position and heading to a specified
final position and heading in a minimum distance
are derived below.

Turn-Straight-Turn Trajectories

The turns are arcs of circles and the straight:
portion of the trajectory must be tangent to the
initial and final circles. Since the initial and
final turns my be either clockwise or counterclock-
wise, there are four possible combinations of turn-
ing directions. two with the initial and final turns
in the *am direction and two with them in opposite
directions. Figure 16 illustrates one solution of
each type. If a given pair of circles is entirely
separate. that is, if no curt of one circle lies
within the other, it is possible to draw four tan-
gent lines between the pair. However. vector D
along the tangent line lion the initial to the final
circle coincides with the direction of rotation at
both tangent points for only one of the four tangent
lines as shown in the figure.

Fig. 16 Turn-straight-turn canes.

In Fig. 16, the final position and the origin
of the coordinate system are located on the runway
centerline; however. the derivation is for arbitrary
locations. Furthermore. all variable@ are defined
so that the derivation applies to all possible
combinations of turning directions.

figure 16a is for the case in which both turns
are in the sane direction. and the tangent vector
6 does not cross 0; in Fig. 16b, the turns are in
opposite directions. and D crosses 4. Initially
the aircraft is at (Xi.Y i) in sons inertial Car-
tesian coordinate system with heading Hi, defined
as positive clockwise from the X-axis, and 9 1 is
a unit vector in the direction of the velocity.
The vector distance from (Xi.Yi) to the center of
the turn i• given by 0 1 R 1 where R1 is the radius
of turn, and at is a unit vector normal to Vi
and positive to the right of 9 1 . Therefore. the
vector from (Xi.Yi) to the center (XC 1 ,YC 1 ) in
R ID, for a right turn and -R 10 1 for a left turn.
The directions of the turns are accounted for by
writing the radius vector as R 1 S 1U 1 , where S 1 - +1
for right turns and 5 1 - -1 for loft turns. Simi-
larly. the direction of the final turn is denoted by
92.

The aircraft moves along the circle from
(Xi.Yi) to the tangent point ( X 2 . Y 2 ), which tray a
radius vector R1S 1 U,. The tangent vector from
(X29 Y2 ) at the end of the initial turn to (XS,YS)
at the beginning of the final turn is D. The
radius vector at (X S .Y,) is RSZU36 but since Q,
and 0 3 must be normal to a, 6 2 • Q S . Likewise,
the headings H 2 and N S at the two tangent points
are equal. The final turn ends at (Xf,Yf) with
heading Hf and radius vector R2S2U,,.

Using this notation we can write

D + R 2 U 2 Se a R ID I S 1 + Q

or

Q - D + 0 2 (R% S 2	 R1S1)	 , (Al)
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, n

and, therefore, since 	 and 0 2 are perpendicular,	 D cos No n (XC, - XC 1 ) + (y, - R.S 1 )s1n H,

D 1	 (R=S, - R 13 1 )-1	(A2)	 D sin N, • (YC 2 - YC 1 ) - (R,3 t - R,3 1 )cos N2

where by definition 	 (Al2)

Q ;E A "ma - XC 1 t YC= - YC 1 7

	

	 (AS) Squations (Al2) can be solved for the tangent of
N2:

it can be seen from Rq. (A2 that no real solution
exists it Q < IR,S 2 - R is,i. When the turns are in
opposite directions, S, • -So, and there is no real
solution for Q < (R 1 + R2 ), that is, if the circles
intersect. On the other hand, for rotations in the
same directions, S i - S 2 . and a real solution exists
unless Q < JR, - R 1 ^, that la o unless one circle
lies entirely within the other. From geometric
construction It can be shown that there always exist
at least two real solutions. From the definition of
the radius vectors, one can write for the real
solutions:

RIS1sin Ni
R1Q 1 $ 1 •

R131 cos Ni

and

R1 U131 
•

CC,

C 1 - Xi(AS)

 Yi/

Equating Eqs. (A4) and (AS) gives

XC 1 • X1 - R 1S 1 sin Hi
(A6)

YC 1 - Y 1 + R1S1 cos Hi

Similarly,

(YC2 - YC 1 )D - (go$, - R 1S 1 )(XC, - XC1)
tan N= •	

_ - % 1 D + (R2S, - R 1 3 1 )(VC, - YC1

(A13)

Squatione (A6)-(A9)% and Sq. (AM completely specify
a capture trajectory for any combination of 3 1 and
3 2 . However, the length of the trajectory is also
needed in order to determine which of the feasible
trajectories gives the minimum distance, The first
turn angle is

TR1 - (H 2 - Hi ) + 2WCIS1

10 if S I N,- Hi ) t 0
C 1 • 	 (A14)

1 if S 1 (N2 - Hi ) , 0

and the second turn angle is

Tit, • ( Hf - H=) * 21VC,S

where

C1 •
10 if S 2 (Hf - H 2 ) L 0

(A1S)
I it S 1 (Hf - N2 ) '' 0

(A4) where

XC 2 - Xf - R2S2 sin H 	 Finally, the total length of the capture path is

YC 2 - Y  - R2S 2 cos H f.	
(A7)	 df - 151 + R 1 1TR 1 + R,,TR 2 	(A16)

The radius vectors at the tangent points can be used
in the same manner to compute the components of
X, and Is

X2 - XC 1 + R 1S 1 sin No (Aga)

Y 2 a YC 1 - R1S 1 cos H2 (Aft)

X 1 - XC 2 + R 2 S 2 sin No (Age)

Y 1 - YC 2 - R 2 S2 cos H 2 (A9b)

Subtracting (Aga) from (Aga) and (ASb) from (A9b)
gives the components of a:

X 2 	X 2 - XC 2 - XC 1 + (R 2 S 2 	R 1 S 1 )sin H2
(A10)

Y 1 - Y 2 - YC 2 - YC 1 - (R2 S 2 	R 1 S 1 )cos No

Another expression for the components of D is:

X 1 - X 2 - D cos No
(All)

Y 1 - Y 1 - D sin H2

Equating the corresponding pairs in Eqs. (A10) and
(All) gives

Turn-Turn-Turn Tralectories

There are at most four turn-turn-turn-type
trajectories for the horizontal-capture problem;
namely. two each of the right-left-right and left-
right-left patterns. However, we eliminate two of
them by requiring that the middle turn exceed n
radiane.19

The problem is illustrated in Fib. 17 for the
right-left-right pattern. The vectors in the figure

o	 x} Y3 FINAL
TURN
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Fig. 17 Turn-turn-turn case.
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are defined as before, recognising that in this came
S 2 - S i . To satisfy the requirement that the middle
turn exceed rr radians, its center must be on the	 where
opposite aids of 4 from the straight segment of
the right-straight-right solution shown for compari-
son. Furthermore, no three-arc solution exists for
Q > R 1 + R2 + 219.

TR2 n (H* - Hs ) + 2eCS S I	(A27)

C6 =
(0 if (H,- Hs )a 1 0

C1 if (H" - HdS < 0 .r

Let HQ	be the heading of defined in the
TRS	 (Ho - H' )	 - 2*CrS i	(A28)text. and define a unit vector QS with heading

angle, He as follows: where

Hs a HQ + $ I
0 if (H S - H5 )S I	0

C7 n
Then	 G o is perpendicular to and points in the 1 if (H S - Hd S I < 0
direction of flight where	 4	 intersects the circle
of the initial turn. 	 Form the law of cosines

The total length of the trajectory is therefore

cos
Q2 + (RI + RS ) , -

A' n
(R2 + Rr)2

(A17)
d	 n R 1TR

1
1
 

+
[	 1 R_ ITR.,;	 + R	 !TR	 '	 (A29)

2Q (R I + RI)

Q2 + (R2 + Rr) 2 - (RI + RS)2
cos B'	 2Q 12 + RS)	 (A18)

The direction of turn is accounted for by defining

The length of trajectories for all feasible
pairs of 3 1 and S 2 is computed and the trajectory
with the shortest length is selected. A FORTRAN
listing of the algorithm and some applications are
given in Ref. 15.

A n SIAt
	

(A19)	
References

and

B - S IB ,	(A20)

Using these definitions it can be seen from the
Fig. 17 that

HS n He + A
(A21)

Hi n H o	I-Bta

From the definition of H e and the equations derived
previously

SI(YC2 - YCI)
sin H e n 	

Q	
(A22)

_S L (XC 2 - XCI)
cos He

	

	 (A23)
Q 

Equations (A21) can be used with double-angle trig-
onometric identities to obtain expressions for
sin Hs, cos Hs. sin H S , and cos Hs. in terms of Ho.
A, and B. Changing appropriate subscripts in
Eqs. (A8) and (0) gives

Xs - XC I + RIS I sin HS	
(A24)(A24)

Y S - YC I 	 RIS I cos HS

Xo - XC 2 + R2S I sin H4
(A25)

YS - YC2 - RIS I cos He

The turn angles are calculated as follows

TAI - Qis - H I ) + 2rC 3S I	(A26)

where

10 if (H S - HI )S I a 0
Cs n

1 if (Hs - HIM, < 0
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