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ABSTRACT

This research project was designed to evaluate the effect of environmental
variables on the crack initiation stageof corrosion fatigue. The materials studied were
six high strength aluminum alloys which are frequently used In the aircraft Industry.
The research plan was to study fatigue initiation resulting from cyclic loading
superimposed on a constant stress. The specimen were exposed in equal increments of
atmospheric corrosion between the cyclic stressing so that the initiation of fatigue
could be evaluated as a function of corrosion.

In order to obtain the equal increments of atmospheric corrosion, an Atmosphere
Corrosion Rate Meter was developed. The ACRM is capable of measuring and recording
the corrosivity or rate of corrosion of the atmosphere. A brond range of corrosivity can
be measured which include two ranges of environmental conditions, one when the
specimen is wet and one when the specimen is relatively dry. The "time of wetness"
is also recorded. The Atmospheric Corrosion Rate Meter has the potential of
standardizing atmospheric corrosion tests.

For the investigation a test specimen was - squired which would produce a constant
stress on the material to which a cyclic fatigue stress could be superimposed. Such
a specimen was developed as the Hole In The Square or HITS specimen. The specimen
is capable of developing a constant residual stress to which a fatigue stress can be
superimposed. The stress concentrations at the fatigue loading holes limited the life
of the specimen during fatigue tests. During the experiments stress corrosion initiated
failures were observed.

The tests made at different stress levels revealed that a residual stress as low
as 30% of the yield strength would cause stress corrosion cracking in some of the
alloys. The stress corrosion susceptibility of the alloys was the dominating factor and
obscured any other initiation of corrosion fatigue. The HITS specimen proved to be
an excellent stress corrosion test specimen with a self induced residual stress which
was easy to duplicate and gave reproducable results.



EFFECTS OF ENVIRONMENTAL VARIABLES ON THE CRACK

INITIATION STAGES OF THE CORROSION FATIGUE OF HIGH STRENGTH

ALUMINUM ALLOYS

OBJECTIVES

To determine quantitatively the effects of environmental variables on the

Initiation of corrosion fatigue cracking in high strength aluminum alloys. To predict

the corrosion fatigue life using a statistical model derived from atmospheric corrosion

data. To provide the designer of aerospace structures with an analytical tool that can

be used to prevent corrosion fatigue failures, yet allowing the optimum use of the

mechanical properties of high strength aluminum alloys.

INTRODUCTION

Failure analyses of aircraft components reveal that a large fraction of components

which cracked apart did so by metal fatigue 
(1) 

The ability to account for fatigue life

is broken down into two parts; crack initiation and crack propagation. (2) The development

of fracture mechanics in the last two decades has permitted a good understanding of

the latter phenomenon (3) One of the key assumptions usuai;y made is that a given

structure will contain a flaw which will allow a crack to begin growing from the time

the structure is fabricated and put into service. Actually, this can be an excessive

penalty to pay, considering that most aircraft are examined thoroughly before use and

then frequently during their lifetime. The problem becomes one of assejsing the

probability that a surface defect will be the initiation site for the fatigue crack. This

most often .results from an interaction between the metal and its environment, a process

defined as corrosion. The ultimate tool desired is an analytical model of the environment

which will predict the time required to initiate a corrosion fatigue crack. Then, coupled

with a knowledge of propagation, an accurate predicting can be made of the life of

the- structure. As examples, such models have already been developed for the pitting
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of aluminum in supply waters, (4) in seawater, 
(5) 

and the atmospheric corrosion of

low alloy steels. (6)

i

	

	
In order to assess the present position with high strength aluminum alloys, a

review of the literature was made. While a large amount of information is available
(	 k

I^ for the standard aircraft alloys, such as 2024, 7075 and 7079, they are being replaced

in the newer designs by 2124, 7475 and 2219. These latter alloys are tougher, largely

due to a lowered content of intermetallics. Unfortunately, this alteration in composition

tends to make the alloys more susceptible to deep isolated pitting in place of the fine,

widely scattered superficial attack characteristic of the behavior of the older alloys.

Therefore, it is highly important that a study be made of such failure mechanisms as

corrosion fatigue, since Wep, isolated pits are generally conceded to be more serious

crack starters than shallow, well distributed ones.

As reported in a ASTM symposium, 0? several programs involved with long term

atmospheric corrosion studies are being completed, Scientists are able to define the

environmental parameters causing corrosion problems. The data from environmental

studies, plus the emphasis being placed on air quality has provided impetus for the

detailed analysis of atmospheric corrosion phenomena.

Some years ago, one of the investigators was responsible for testing large numbers

of stress corrosion specimens in the atmosphere. Many of these were exposed on the

roof of our laboratory building. One of the technicians noted that he always had a rash

of failures after it had gained. These failures, by the way, were taken at the time of

first appearance of a crack under low power magnification. Consequently, the parameter

measured was crack initiation and not total life which would have included a significant

fraction of propagation time.

This instance is cited to support a major assumption in this work; that the

corrosive agent causing stress cracking is water (fully aerated, of course). The amount

of dissolved solids is less significant as only a few parts per million of chloride ion,



for example, will cause pitting attack on aluminum. 	 Chlorides are not even necessary

to produce stress corrosion cracking as found several years ago (8)	 Thus, the major

environmental parameter to be studied is that known as ' +time-of-wetness". Sea salt

tends to prolong this period due to its hygroscopic nature. Thus, a marine atmosphere

does tend to be more corrosive than an inland, but equally wet climate. Temperature,

of course, also has an effect but in the range of ambient temperatures of interest, it

primarily shows up in the rate expression and does not control the initiation stages.

A second mayor assumption is that most structures are under a static stress most

of the time to which cyclic stresses are added during random periods of use. See Figure

1, taken from Anderson's work. (9) Therefore, it is permissable to study the initiation

of corrosion tatigue cracking using an intermittent cyclic loading on top of a static

stress. (10) The problem becomes one of judicious choosing of stress levels, so that

the fatigue process is not unduly hurried and yet the corrosion fatigue component is

not entirely masked by either stress corrosion cracking or failure under loading due to

loss in net section area by pitting. This latter phenomenon is a problem with some of

the smaller stress corrosion specimens in common use today.

TEST SPECIMEN

To fully evaluate the material, a test specimen was necessary which would

duplicate the actual condition of stress and corrosion to which the material is subjected

during use. These conditions are 1) a constant stress, 2) a superimposed alternating

stress and 3) a corrosive atmosphere. The stresses could be applied to any part of

the metal but for aluminum the most critical orientation for stress corrosion is normal

to the rolling plane in the short transverse direction in the plate.

'there are many standard tests and test specimens for subjecting a metal to

stress and corrosion as indicated in ASTM Standard G30, G38 and G39(11). These tests

are designed for constant levels of stress or stress intensity. While altornating stresses



could be superimposed, the retention and evaluation of the constant stress component

would be difficult.

CONSTANT STRESS SPECIMEN

In 1971, Anderson (9) presented a concept of a self-stressed stress corrosion

specimen. This concept, based on a SCC ring specimen, was designed as a square

specimen with a round hole in the center. He suggested that if the specimen was

compressed until it plastically deformed, a residual tensile stress would be retained

after the load was removed. Initial experiments with a specimen of this type showed

that a residual tensile strain was produced in the specimen when compressed, but the

strain (and presumably the related stress) was developed in the sides normal to the

compressive load and not in the sides which were compressed, as he had postulated.

To determine, if the hole-in-the-square (HITS) specimen would be suitable as a

constant test specimen, a series of experiments were run to determine the stress

distribution on the surface of the specimen and to evaluate the residual tensile stresses

retained when the compression load was removed.

From these tests it was concluded that the HITS specimen makes an excellent

constant stress specimen with reproducable and predictable residual stresses. The

residual stress is a tensile stress on the inside surface. The specimen can perform as

a stress corrosion type specimen or as a preload specimen.

A description of these tests and their results is presented in the First Progress

Report dated 1 February 1970#(12)

An alternating stress can be superimposed on the residual stress by adapting the

r specimen to a fatigue machine. Eight one-quarter inch holes were drilled in the

specimen as shown in Figure 2 for adapting specimens to the fatigue machine. Holes

were located in areas which had not been plastically deformed. The capacity of the

fatigue machine was 5,000 pounds. A small tensile load was required as a minimum

alternating load to keep the machine and specimen steady. Therefore, loads of 400 to



4000 pounds were selected as the minimum and maximum loads on the fatigue machine.

Based on the 0 .750 square inch area, the maximum tensilo stress superimposed on the

static stress was 5300 psi.

The limiting factor on many of the test specimen was failure of the specimen

at the fatigue loading holes. Abo,at 50% of the specimen failed prematurely which

precluded a true evaluation of the alloys under fatigue conditions.

Of the specimen which did not fail in the fatigue loading holes, only those

specimen which developed stress corrosion cracking failed during the test. The sequence

appeared to be SCC cracking and then propagation of the SCC crack during the fatigue

loading. No evidence was observed where pitting initiated fatigue cracks, The premature

failure of the loading holes may have eliminated this type of fatigue.

To verify the HITS specimen as a SCC test specimen, a series of tests were

made under SCC conditions. Of primary concern was the effect of residual stress on

the reaction of the specimen. Two aluminum alloys were selected for these tests:

2024 T351 and 7075 T7351. The mechanical properties of these alloys were determined

as follows:

Alloy	 Orientation Str^en thh Yield Modulus of
Inn"al_ to enT sJe

Rssi
Siren th

K'i
Elasticity
FSTTTP

2024 T351	 Short Transverse 57.8 45.0 9.33
2024 T351	 Transverse 67.2 47.6 10.15

2024 T351	 Longitudinal 68.3 54.0 9.80
7075 T7351	 Short Transverse 70.7 60.0 10.90
7075 T7351	 Longitudinal 75.1 67.0 9.25

As described previously (12), HITS specimens were selected for testing using the

selected orientations in the 3 inch plates as shown in Figure 3.	 Strain gages were used

to measure strain and stress in the specimen. They were attached as shown in Figure 2

and loads applied as indicated. 	 Loads were applied to produce residual stresses in the

specimen as a percentage of the alloys yield strength. The result of load vs. the



residual stress is shown in Figure 4. To Insure that the test leg of the specimen was

not loaded beyond the elastic limit, the test specimen was sectioned after the final

4	 loading. Once sectioned, the residual stress returned to zero as was found in the

original tests which were previously reported.

HITS specimens of both alloys were loaded to produce residual stresses of 0, 150

30 0 45 and 60% of the yield strength of the alloy. The first aeries were exposed up to

55 days to the atmosphere at the previously described test racks near Biscayne Bay.

Results of these tests were as follows:

Alloy: 2024 T351
Environm-nt:	 Bean Front Atmosphere
Orientati cn: Short Transverse Stremed %rection

SIN
Percent
of YS

Applied
Load (lb.)

Residual
Stress ([psi)

Visual
Observations

F75 0 0 0 Light corrosion in 8 weeks
F74 15 35200 6750 Light corrosion in 6 weeks
F65 30 42000 13500 SCC In 3 weeks
F66 45 47500 20250 SCC in 3 weeks
F69 60 52000 27000 SCC in 3 weeks

Alloy: 7075 T7351
Environment: ocein Front Atmosphere
Orientation: Short Transverse Stressed Orientation

Percent Applied Residual 'Visual
SIN of YS Load (lb.) Stress (esi) Observations

C57 15 46500 9150 Light corrosion in 8 weeks
C51 30 54000 18000 SCC in 4 weeks
C5.2 45 60000 27000 SCC in 4 weeks
C61 60 66000 36000 SCC in 4 weeks

To determine the effect of sea water on the test specimen, a second series of

specimen were loaded and immersed in fresh Dowing sea water. The average temperature
r

of the sea water well 230C. The results were as follows:



rate — was incorporated In the meter so that "time of wetness" could still be evaluated.

Several modification were also made to the sensor to Improve its response and accuracy.

Teats made with the sensor In an enclosed chamber and when exposed to outdoor

atmosphere near salt water resulted in excellent correlation between the counts recorded

by the meter and the atmospheric conditions of relative humidity, temperature, rain

(wetness) and chlorides (as measured by a salt fall gage). In addition, short term

corrosion tests on several alumiriun a';loys indicated an excellent correlation between

rate meter counts and weight loss for each alloy. Details of the development of the

design and testing of the sensor and the corrosion rate meter are presented in the

Second Progress Report dated February 1, 1979.(16)

one of the projected applications of the corrosion rate meter wes to evaluate

the corrosion environmrna of aircraft. To accomplish this a completely portable unit

was designed. Mark III was designed for battery operation with all components selected

or minimum current drain. The meter would sample the corrosion current at selected

periods and store the Information. The last two meters, Mark IV and Mark V, were

the final products. They were fully enclosed with LED readout thru a window with

monantary on switches used to call for retrieval of data and to momentarily turn on

the LED's. Three buttons were used one for high count data, one for low count data

and one for time of high count (time of wetness).

Initial calibration of the instruments showed Inconsistant results. After final

adjustments and recalibration all meters produced consistent results. A description of

the final design of the meter including the mathematics of the counting sequence is

given in the Second Progress Report 
(16) 

and described below. This design produced

a meter which was portable, easily read and depending on frequency of corrosion rate

count could operate portable for two to six months.



Alloys. 2024 T351
Environment: 7 Water
Orientation: Shtwt Transverse Direction

Percent Applied Residual Visual
SIN of YS Load (lb.) Strew (psi) Observations

'	 F73 15 35200 6750 Light pitting In 8 weeks
F64 30 42000 13500 SCC in 3 weeks
F70 45 47500 20250 SCC in 3 weeks
F67 60 52000 27000 SCC in 3 weeks

Alloy:	 7075 T7351
Environment^^►: Water
Orientation: Short Transverse Direction

Percent Applied Residual Visual
SM of YS Load (lb.) Stress (psi) Observations

C60 0 0 0 Light corrosion in 8 weeks
C59 15 46500 8150 Light pitting in 8 weeks
C50 30 54000 18000 SCC in 2 weeks
C53 45 60000 27000 SCC in 2 weeks
C56 60 68000 36000 SCC in 2 weeks

Alloy 2024 T351 stressed in the longitudinal direction gave the following results

when exposed in sea water:

Alloy:	 2024 T351
Environments a Water
Orientation: Longitudinal Direction

Percent Applied Residual Visual
1N of YS Load Ob.) Stress (psi) Observations

F68T 30 45000 16200 SCC in 4 weeks
F79T 60 54000 32400 SCC in 4 weeks

From these tests it was concluded that the HITS specimen performed perfectly as

a stress corrosion test specimen. The minimum residual stress to cause cracking in

these two alloys was between 15% and 30% of the yield strength whether in the

atmosphere or in sea water.



ATMOSPHERE CORROSION RATE METER

V

The originalconcept of this project was to expose high strength aluminum alloys

k 

	 to alternate corrosion and fatigue conditions. Because of the uncertainty of both
k

corrosion and fatigue initiation, an attempt would be made to use equal increments of

corrosion. Because the most active corrosion occurs while the specimen are exposed to

an electrolyte, the "time of wetness" concept would be used and if specimen were

exposed to equal time of wetness periods they should be exposed to equal corrosion (13).

The original concept of a corrosion measuring instrument was to use a zero resistance

current meter as a simple current integrator connected to a galvanic cell which would

produce current when wet and thus measure time of wetness. The original meter

produced poor resolution. Aluminum has low corrosion rates in the atmosphere and thus

a high degree of sensitivity is required if accurate corrosion time is to be measured.

When the redesigned galvanic cell was in the wet condktion, it produced too much

current and destroyed the recording elements in the Curtis meter.

To find an Instrument which would over come this limitation, a review of available

instruments used for corrosion evaluation was made 
(14)(15) and a design similar to one

used by Kueera and Mattsson (14) was selected. The instrument constructed proved to

be satisfactory and measured and recorded corrosion rates over a very wide range. A

total of five instruments have been constructed based on this design. Mark I was

electro-mechanical in design and closely followed the design of Kucera and Mattsson.

Two count ranges were utilized and the upper limit on each was the response time of

the relays which operate to activate the counters. To overcome this and improve the

accuracy of the meter, a new design using all solid state electronics was made. Mark

II like Mark I was a laboratory unit which operates on 115 volts AC power. This

eliminated the response limitation of mechanical relays and counters. The concept of

two ranges of corrosion — wet or fast corrosion rate and not wet or slow corrosion



Camion Rate Rotor — FkW Design

The final design consisted of two units, the sensor, which is placed in the

environment to be evaluated and the meter which is connected to the sensor by two

shielded wires. The meter can be at any location for ease in reading.

The sensor

The sensor used with the corrosion are basically a copper-aluminum cell. It is

constructed from 4 inch square aluminum and copper plates .050 inch thick. The sensor

has alternating copper and aluminum plates insulated with 0.004 inch double stick Teflon

tape between the plates. There are four plates of copper and four plates of aluminum.

All four aluminum plates are connected with one brass bolt, wid the copper plates are

connected with a second brass bolt. The bolts are the electrical contacts.

A hole 2" in diameter is drilled in the center of the plates. The entire sensor

is insulated from the atmosphere except the area of the hole. This insulation is obtained

by acrylic laquer on the flat surfaces and liquid plastic on the edges and electrical

contact bolts. This configuration was designed to match the corrosion specimen (THIS)

with the same Brea exposed to the environment and the same expostme geometry.

The Meter

The assumption is made that the current-time integral of the output of the

sensor will be proportional to the amount of corrosion. Early models of the atmospheric

corrosion rate meters have evaluated this integral by actual integration of the current

and then rezeroing the integrator. The problem with this approach was the relatively

large power requirements of this continuous integration. The portable, battery operated

models operate by a periodic sample of the current and summing the values of current

measured.

To meter logic diagram is shc.wn in Fig. 5. There are several main sections of

the meter as described below.



The input from the sensor goes directly to the current to voltage amplifier. The

sensor is considered to be a current source. The current to voltage amplifier acts like

a zero resistance ammeter with the voltage output equal to 10 4 time the sensor output.

This section is operational at all times so that the sensor always sees a short circuit on

Its output. The current requirements for this section are 20 A from the +12 volt supplies.

The next section is the high-low range comparator. The high range has been

determined by previous tests to be about 1 MA output from the sensor. There are

three main characteristics of this comparator. The reference voltage for the threshold

is set by an offset voltage trim pot. The output is limited to +12 volt and minus 0.2

volts by a zenor diode in the negative feedback circuit. There is a resistor in the

positive feedback circuit to give 1 my hysteresis. This circuit is always on as the

current needed is only 20 microampere.	 P

The control section of the meter controls the sample interval and samp)o time.

It is driven by a 4,096 Hz clock. There is a manual samp)e interval control. This

allows the user to program the sample interval at 5 min., 10 min., or 20 min. The

outputs from this section are as follow:

A control line to the switchable ,regulated power supply goes low when power is

needed for the voltage-frequency (v-f) converter. The v-f converter draws 6 tra during

operation and myds a regulated supply. The high power requirements of the v-f is

the reason for the switc-Mole supply.

After the power supply and v-f converter are allowed to stOilize for .5 see.,

the sample interval is outpout. This controls the length of time in which the output of

w	 the v-f converter is counted. The high-low range signal tells the gating control section

to channel the output from the v-f converter to the low range accumulator, if necessary.

The last section of the meter is the accumulator and data output section. Both

the low and high range accumulators have six digits. The high time accumulator has
r=

three digits. The manual output control signals the demu)tiplexer as to which



accumulator to output to the LED display. The manual output control consists of three

momentary push button switches. One button for each of the accumulators. When one

of the push button is depressed thre functions are implemented. First the multiplexed

output, of the accumulators are activated. By not having the accumulator outputs

active at all times gives a 25% savings in standby current. The second function of

the push button is to select the desired accumulator. The third function is to activate

the LED display. The LED uses a separate battery. The current draw is about 60 ma

during display and zero when deactivated.

The battery supply section (not shown in the diagram) consists of three 500 ma-

hr 12.6 volt batteries. Two of the batteries are used for the +12 volt supply. They

are connected in parallel and each battery is protected by a diode. The current drawn

from the positive supply is about 450 microampere during standby and 600 microampere

during data output, and 6 m during acquisition. With the meter in the 5 min.

sample interval mode the positive supply batteries will last at least two months.

The -12 volt supply has a single 500 ma-hr 12.6 volt battery. This battery also

has a diode in series with it to equalize the positive and negative supplies. This battery

will probably last about 1.5 years as the current drawn is only 40 microampere.



!lummay +and Coneha kwo

This project has been carried out over a period of S years and under the direction

of two principal investigators. Two of the objectives of the project were never fully

obtained. The effect of environmental factor on the Initiation phase of corrosion

fatigue under static and alternating stresses was not achieved. Neither was a statistical

model to predict corrosion fatigue life. These objectives were incompleted because of

the premature failure of many specimens due to simple fatigue and because of the

overriding factor of stress corrosion cracking in these alloys.

This project did have, however, two major accomplishments. The first was the

development of a self induced stress specimen for stress corrosion cracking. The

specimen provided a test specimen in which a controlled amount of residual stress could

be Induced which was easy to machine and which gave reproducible results. With

modifications, the specimen could be made adaptable for Its original purpose of a

preloaded specimen for corrosion fatigue.

The second accomplishment of this project was the design and construction of

a portable meter designed to measure and record the corrosivity of the atmosphere.

The meter not only measures the"time of wetness !' but measures the degree of

corrosivity during the "dry" time and during the "wet" time. The meter can be used at

any location to evaluate the environment for degree of corrosion exposure. Applications

tyre many but it could be used to measure corrosion of a component which has a known

corrosion life or it could be used to monitor the environment of a component under

unknown or severe corrosion conditions.

The meter, once standardized, has the potential of being able to compare the

corrosivity of the atmosphere at different locations at different times. This could lead

to more standardized, corrosion tests and correlation between atmospheric corrosion

data at different locations.

a
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ATMOSPHERIC CORROSION RATE METER
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