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A 11,xODIFIED DODGE ALGORITHM FOR THE PARABOLIZED NAVISR-STO S

EQUATIONS AND COMPRESSIBLE DUCT FLOWS

By

w	 C. H. Cooke*
k

7

SUMMARY

A revised version of Dodge's split-velocity method for numerical cal-

culation of compressible duct flow has been developed. 	 The revision ineoirp-

orates balancing of mass flow rates on each marchlAg step in order to main-

tain ;Front-to-back continuity during the calculation. 	 The (checkerboard)

zebra algorithm is applied to solution of the three-dimensional continuity

equation in conservative form. 	 A second-order A-stable linear multistep

method is employed in affecting a marching solution of the parabolized

momentum equations. 	 A checkerboard iteration is used to solve the resulting

systems 	 f finite-difference equations which govern step-implicit nonlinear-o	 H	 6	 p

wise transition.	 Qualitive agreement with analytical predictions and exper-
^f

imental results has been obtained for some flows with well.-known solutions. k

o

1

*Profeessoro Department of Mathematteal Sciences, Old Dominion Uni,versi.ty$
Norfolk, Virginia 2350$.
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INTRODUCTION

It has been said that the full Navier-Stokes equations represent the

ultimate mathematical model upon which to base numerical algorithms for

predicting flows of practical significance. However, even with the advent

of the so-called veavor computers with vast virtual memory and quadrupled

processing speeds, extant'-numarical and computational difficulties are

sufficient to merit a search for simpler mathematical mo4els and less com-

plicated numerical methods which can still provide useful solutions to prob-

lems of interest, 'Thus, considerable analysis and numerical experiment has

been devoted to the exploitation of parabolized marching methods for flow

prediction. References I, to 7 1epresent a perhaps typical but by no means

exhaustive sampling of the available literature on this subject.

The parabolized marching methods are somewhat more general in applies -

ti.on than the classical boundary-layer approach, since transverse pressure

gradients are not disregarded and, in some Gases, upstream influences can be

transmitted through the pressure field, However, the basic assumption that

streamwise visGouv, diffusion cats be neglected restricts application to flows

with a Primary flow direction, limited upstream influence., and which may

exhibit, at worst, arossplane recirculation. Unfortunately, in subsonic and

transonic wind-tunnel, flows_, the elliptic upstream influence can be a aig"

nifitant .factor in the flow dynamics; hence, interest arises in simpler

Mathematical modals which parmit this interaction. A case in point has been

the development of Dodge's velocity splitting method, which allows global

propagation of influence through the pressure field and which has met with

I
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successes in both unconfined compressible and confined compressible flows

(refs. 7-10). However, the method is not yet fully proven.

In this paper we shall be concerned with the application of a. compres-

sible formulation of Dodge's split velocity technique (ref. 9) to the calcu-

lation of developing flow irk a :square duct. The original method has been

revised to effect constant mass flow rate on each transverse plane while

marching down the channel. Parabolized momentum equations are employed.

However, a fully elliptic pressure field is allowed by the iterative manner

in which the solution of the continuity equation is coupled. into the calcu-

lation procedure. Application of the presently developed computer algorithm

is restricted to subsonic flow. It could readily be altered to allow tran-

sonic calculations through modification or replacement of the algorithm used

to solve the conservative continuity equation.

Computational simplicity as well as numerical stability is achieved in

marching the momentum equations with an A stable (ref. 11) implicit linear

multistep method, the equations of which are iteratively solved at each step

by employing checkerboard successive overrelaxation. While this solution

procedure may be considered expensive, the presence of quadratic as well as

higher order nonlinearities in the parabolized momentum equations requires

that some iteration be employed to improve accuracy. As an extra benefit,

the wide-ranging stability of the resulting marching equations appears well

worth the cost.

Finally, the peak efficiency of the methods developed is undoubtably,

best realized on the computer system for which it is has been designed,

namely, the Cyber 203. For puch machines, a numerical algorithm must

effectively exploit the array-processing capabilities: otherwise, methods

F

0
I
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which are not highly vactorizable misuse the available computing 'potential

and can result in quite ordinary processing speeds. The explicit nature of

the checkerboard algorithm yields a 'highly vectorizable method ideally suit-

ad for the array processor•

In certain parabolized marching schemes for confined flow (ref. 1), it

has been the practice to decouple streamwise and transverse pressure gradi-

ents. Some argue (ref. 12) that this is necessary in order to obtain mean-

ingful physical solutions with parabolized equations. While results are

still inconclusive, computational experience gained in the current research

appears to support this belief, Weak, but not total, uncoupling of the

streamwise pressure gradient has appeared necessary, although this may stem

from the manner in which local f.,ontinuity of mass flow is enforced.

As noted by 1'4tanker and Spalding (ref. 6), t19e description of a numar-

ital procedure for solving the Navier-Stokes equations can have two Aims,

which are seldom possible or desirable to accomplish &kmiultaneously- The

first aim is to convey to the reader an understanding of the major prin-

ciples in sufficient detail that someone with a backgruund in the area could

improvise the remainder for himself. The second aim is to present the par-

ticular equations and all approximAtions employed to a degree that the com-

putational experiment could be identically reproduced * However, the second

mode requires such proliferation of detail that moot4 'reading Is impeded

and understanding is inhibited. Therefore, the first aim has been chosen

for the present paper, and this will be attempted in the following sec-

tions•
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LIST Of SYMBOLS

f	 C	 ,C spec ific h4ats
P	 v

P static pressure

P density

W tbiree-dimensional velocity vector

P }/iacosity

Re Reynolds number, Po._ao
^o

Y
P/

T temperature

,p	 ,P	 ,a	 ,N reservoir values for temperatgre, pressure, density,0	 0	 0	 0	 o speed of sound , and v is cos ity
Scalar potential

a relaxation of parameter

U channel half-width

M Mach slumber

Vx/U ratio of :channel streanrwise velocity component to
entrance value

J

o
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PARABOLIZED GOVERNING 'EQUATIONS

The nondimensional Navier-Stokes equations for compressible steady flow

with which we shall be concerned are presented 'below.

Continuity:

V 0 Pw a O	 (^)

Momentum:

p^w ^)w -VP - VxVxw + G 3 ReV w	 (2^

Energy:

2
T 

To 1 w
	 ()

2

Here, fror flow it% ducts with non ondnct ,n.g wa,lls 9 the vaua;l -energy equation

has been replaced by the algebraic constant total temperature relation (eq.

(3)). The constitutive relations are

P = Y	 11 pT	 (4)

and the viscosity approximation

u _ (Y	 1)T.	 (5)

For subsonic flow the governing equations are elliptic. However, a

common approximation used to parabolize these equations (refs. 1,2) is ob-

tained by neglecting streamwise diffusion terms in equation (2). With the

exception of the entry region, the approximation is considered valid for

flow in channels whose lengths are large compared to half--width (ref. 2).

6



Perhaps it should be remarked that when Dodge's method is applied in ob-

taining numerical solutions of these equations the approximation is only a

partial parabolization, since the pressure field is obtained from an

elliptic boundary value problem. This, of course, allows global propagation

of disturbances, through the pressure field and the iteration process.

11
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	 DODGE'S MTHt)r;,

l
introduction

In Dodge's method, the total velocity vector	 is arbitrarily de-
U

composed as a sum of rotational and irrotational parts:

w	 + u	 (6) R

where	 is a scalar potential. Pressure is hypothesized to depend solely

upon the irrotational velocity accoTding to the is+entropic. relationship

2) Y/Y"1
P = Po 1 2T	

(7)
o

However, density is decomposed as t'ne sum of a viscous contribution pv

and an isentropic contribution p*:

P - p v

where

21 /1f-1
P* P 

(4 
0

Substituting equations (6), (7), and (9) in equations (1) and (2) leads to

the so-called split equations

V • PVf w - V • pu	 (10)

and

P(w' . V)w - P*(V	 V)V^ + Vx Re Vxw - V 3	
V w	 0	 (11)

Equations (10) and (11), are to be iteratively solved: equation (10) with a

3-D relaxation method for elliptic equations, following which the para-

bolized version of equation (11) is mas hed downstream by employing a check-

8



erboard iteration to solve an implicit system of equations at each step. A

synopsis of the iteration procedure is now pr6aantad.

Overview of Iteration Procedure

(1) Determine a suitable initial pressure distribution Po by estimating
Y	

a global + distribution. In this investigation, pressure on the

first pass is assumed Lo be a function of only stvaamwise displacement,

and a mass-balancing operation estOlishes the initial pressure. field.

(2) Employing the current pressure field, march a parabolized version of

equation (11) down the duct, simultaneously storing the right-hand side

of equation (10). (See also eq. (17)).

(3) Solve equation (10) (or eq. (17)) to obtain an updated pressure field.

(4) Repeat the computatio4tel pass consisting of steps (2) and (3) until

sufficient passes and a converged pressure* field are obtained.

Dodge's Method Revised

Dodge (ref. 9) reports problems arising from adjustment of front"to-

baick continuity requirements with an iteration which is similar to that

previously outlined. It is .expected that this slow convergence stems from
a

incomplete satisfaction of the continuity equation which could, for example,

be solved after the momentum march terminates in some, form such as

V . pnpfn	 _ v . 
(PU)n-1 	

(12)

This is in contrast to the usual parabolized marching methods, for which'

both mass and velocity variables are updated at each marching step.

Physically, in ordgr to maintain continuity in a channel, flow # the mass

flaw rate:

9
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W w
^ f P^ + U dydz w II pnormaldydz 	(13)

most remain constant at each transverse plane * however, in Dodge ' s (unre-

vised) method this provision is only weakly incorporated through equation
	

j>

(10), which is solved globally upon termination of amarching pass. Thus,

poor satisfaction of mass 'balancing during the momentum marching process is

only to be expected, as numerical experimentation indicates.

Consequently, we have chosen to revise the Dodge technique in a manner

which alleviates this difficulty. This was at first attempted by employing

. x	8(9)dc + Ox,y x)	 (14)

to write equation (12) in the form

V	 (PVC)"" " P ' (PU)	
8 (

pg)	 (15)n	 n-1 .. ^^	 n-1

The function g is determined by iterating the numerical counterpart

of the parabolized eq.a cion (11) At each fixed marching step until numerical

balance of mass flow rate is achieved. This is accomplished through gradual

changes in streamwise velocity, pressure, and density effected by the equa-

tion

9 k+1 9k .. a ^ ^. f f 
(Pwnormal )kdyd x ] + l l kdyd z	 (16)

with o a relaxation parameter. Aside from the benefit of an instanteous

balance in mass flow rate, another merit of this device is that fewer global

iterations are required in the relaxation solution of equation ( 15), as it

Is now more nearly satisfied at the outset.



However, this approach. was found defective, in theory as well as in

fact. The solving of equation (15) in the form indicated yields nonphysical

results, as it provides a quasi-full potential transonic flow equation whose

elliptic-hyperbolic: transitiott point can differ markedly from Mach 1. This

difficulty can be largely alleviated, although not totally circumvented, by

replacing equation (15) with the equation

V . (Pvf )n 	V • (Pu)n-1 	(17)

whose point of transition more closely approximates the physics of the flow.

Pressure gradients in Dodge's unrevised method would be computed in

pass n from the equation

axi
L y	 . -

Xn the revised version, pressure gradients are allowed to develop

during the mass-balancing iteration according to the equations

n,k	 *	 I

2x ,.
	

Pk,n^$ gx + ^ 0 ^ $^ 0 )	 (.15)

n,k

gay	 y Pk^nCgk xy +
^y yy + ^z ^y

z )

OPn ,k	 *	 k n + rl n + n n	 (21)
ai	

Pkxn(g xz
	 y ^yz	 ? ZZ)

The quantity g is determined through equation (16), and g x by

second-order backward differencing. This precedure represents a weak de

coupling of the streamwi gc pressure gradient, since the g terms are the

(2Q)
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dominant contributions and, a since these contributions are determined from

S local plane-to-plane continuity considerations, somewhat independently of
G

the output from the global continuity equation (eq. (17)j on the previous

pass.



NUMIMICA14 ANALY$X$

The algorithm deemed moist efficient for numerically solving;

(17) on the arroty-proeosain$ computer is t1to zebra algorithm of South at al.

(rof. . 13). Thin 3-D relaxation technique is In some 'toop'acts similar to the

bopocotchmothod of Courlay (ref. 14). In equation (17) control differences

are applied to all derivative terms * Variables in plane i are updated in

ohoo.karboard fashion t pland by plane in a downstraAM swoop, using already

updated values at plane i - I and old iteration values in plane i + I.

TtarotIva repetition of downstream sweeps 
is 

used to converge the field$

with it relaxation parameter employed to apaed cottvarganoo-P

A second-order itoeurato ) implicit linear multistep method is used on

equation (11) to march in the stepwise dirtetion. Ilia implicit equations

are iteratively solved using a checkerboard auccosstvo overralaxation

scliame ) with mass balancing built in an previously described. Stronmwise

derivatives are backward Ufforatteed second-order accurata t while deriv-

ativas 
in 

the (tronaversa) croam-plana 
are 

approximated second-order using

central differences * A pradiationof form

f L - 2f A-1 - f Jw2	 (22)

is used to initially estimate a velocity 'variable in plane i. 'Ma chocker-

board method is then employed on the differaucad counterpart of equation

(11) to update viriablos 
in 

pla:na i in two cyclasa with values updatad an

cycle I fad into the suc-coading, cycle. This -two-cycle update process is

itQrated $ amploying Qquations (16) and (19) to (21) to alter the flow speed

ao4 prosoure gradients until; a bitlanco in mass flow is achieved.

13



DEVELOPING FLOW IN A STRAIGHT DUCT

The revised method of Dodge ties been employed to develop a finite-dif-

ference numerical model for three-dimensional viscous flows in confined

regions, For boundary .layer resolution, the capabij#y to allow individual
I

coordinate stretching in each coordinate direction ties been incorporated.

The method so developed has been programmed using the SLI vector language

for the Oybor 203 array processor, and appears debugged. The 32-bit half-

word option of SLX has been employed in programming the zebra relaxation

algorithm for solving equation (17), while 64-bit full-word arithmetic is

used in programming the checkerboard matching algorithm. The program line

been tested by application to the problem of computing the steady developing

flow in a straight duct (sea fig. 1). Boundary conditions for the problem

are now given.

Boundary Conditions

Inflow: T w To - 1 U

2
specified velocity profiles, too - 11(y,z),

Pi . R(y oz). Pi constant

^X ( O ,Y, Z ) - 8( 0 )	 $o

Duct walls: velocity no slip, ^ 
n 

w 0 0 T w Twx P " PW

Outflow: P v extrapolated, ^ - gym l S M extrapolated

Artificial barriers , The computational domain is taken to be one
quarter of the total, duct cross section, and symmetry 'conditions
are applied at the two resulting (nonwall) artificial barriers.
Here the normal velocity component vanishes together with normal
derivatives of + and the other velocity variables. The variables
P and T, of course, depend on ^ and velocity at these boundaries.
However, for constant total temperature, vanishing normal derivative
In T) p is the natural boundary condition.

14



COMPUTATIONAL RESULTS

Introduction

An assessment of approximation error inherent in numerical solutions of

parabolized flow models computed with the revised Dodge's method has been

undertaken. This has been accomplished for certain flows whose solutions

have been either analytically or experimentally determined and which are

available for comparison with numeri
c
al results.

Two-Dimensional Channel Flows Re * 100

Numerical solutions for two-dimensional, low Mich number (H > 0.05)

flow in a straight channel have been computedo employing as uniform mash of

17 X 11 X 100 nodes. The development of the normalized centerline velroc..ity

component VX/U charactarizing 'the two-dimensional channel and the correo-

ponding results of Goldstein and Xreid (ref. 15) for three-dimensional flow

in a squ&ra duct are compared in figure Is For the fully developed ease

Sthliqting (ref. 16) gives a limiting value Vx/U - 1.52. The corres-

ponding maximum value from the computational results of figure 1 is Vx/U

1.425. This represents a relative error of six percent or less, depending

upon how fully developed the numerically calculated flow is considered to

be. One should perhaps also bear in mind that Schlicting's results come

from matched asymptotic expansions, which are in themselves approximate

methods. Figure 2 exhibits typical spanwise deviation from a parabolic

profile characteristic ofvx at ntmerical full development. the maximum

error is again on the order of five or six percent.

15



Three Dimensional Duct Flow, Ra - 100

A 32 X U X 100 ma y h line been employed to compute low Mach number,

threw-dimenp,ional flow in a square duct. Streamwist variation in centerline

velocity componant Vx and pressure P are shown iq figures 3 and 4. A

comparison between numerical calculations for V./U and the corresponding

experimental results of Goldstein and Kraid (ref. 15) is shown in figure 5.

Comparative fully developed values for V x/U at cooterlind for the two

cases arc 1.93 and 2.10. Including grid Watching in the calculation Im-

proved the former value to 1,9725. This again represents as relative error

in the vicinity of six percent,

Figures 6 to 8 show numerical parformanca indicators which trace the

-=ft . typical, .U1 le A,	 1-1^uP a ca' latI . ti	 wo Inds o out'ouara t k f 	 flconver-ence hist. - 	 ow

boundary conditions for solution of the elliptic velocity potential equation

have been tested. For the calculation represented by figure 8, a Diriclilat

condition was applied. Although a seemingly more rapidp nonoscillatory

convergence history is ob p!4rved, distortion in streamwiso velocity and pros-

sure profiles near the channel exit accompanied its application. A Neumann

boundary condition appeared to eliminate thasa nonphysical distortions ) but

at the misfortune of a more sluggish, oscillatory, convergence history (see.

figs. 6-7). The Neumann condition was chosen for the calculations hereto-

Toro discussed.

Figures 9 and 10 show characteristics of the exit crossflow and bound-

ary-layer profiles for the streamwisa velocity component. In calculating

the fully developed crosaflow of figure 10, a cliannel, length of % - 12

16



units with a coarse mesh having 144 downstream nodes was employed. The sink

irregularity near channel centerline in figure 9 was observed to move closer

to channel center as 
the 

length increased, and appeared to have coalesced

with it in the calculation of figure 10. The tendency of the core flow to

be directed towards channel centerline (see figs, 9 and 10) is in qualita-

tive agreement with the the=atical predictions of Rubin (ref. 4) concerning

the asymptotic behavior of duct crossflow,

CPU Time

A computer code for the revised version of Dodge's method employs the

SM-language for the Cyber 203 version of the CDC-STAR computer. With a

17 x 17 X 196 mash, measured time for program execution was found to average

2.3 x 10-4 p) resource units (OPLU's) per node per model equation per

pass * (This assxmias on'.7 four made #4 11 t ana

 
since the energy equation

was replaced with 
an 

algebraic relationship.) A pass consisted of marching

the momentum equations once down the duet, iteratively solving an implicit

system for velocity propagation at each streamwise station using a checker-

board scheme, and then finding the zebra solution of the threw-dimensional

velocity potential equation. When measuring performance in CPU seconds per

node per model equation per pass, the corresponding figure becomes 4.14 X

10-4.

17



SMARY AND CgNCLUSlANS

'E	 I
A revised version of Dodge's velocity-split method for numerical solu-

tion of compressible confined flow has been developed. Numerical results

from test calculations for low Reynolds number flow appear encouraging. In

particular, qualitative but not wholly satisfactory quantitative agreement

between present calculations and analytical, predictions of Schlicting (ref. 	 +.^

16) and Rubin (ref. 4), together with experimental measurements of Goldstein

and Kreid (ref. 15), has been achieved.

However, the method is by no means fully understood or exhaustively and

conclusively tested. A curious feature of the present approach is the need

for weak d000upling of the streamwise pressure gradient, found necessary in

order to achieve a convergent numerical solution. however, Spalding (ref.

12) alleges that to obtain meaningful solutions using parabolized equations

such a full decoupling is necessary. Further, Briley (ref. 1) reports sue-

cessful and quantitatively accurate calculations obtained with an algorithm

which. incorporates this practice. Be that as it may, in this study conver-

Bence problems, first manifested by irregularities in the entrance region of

the duct, were observed, but disappeared upon weakly decoupling the strea m-

wise pressure gradient. Even so, the numerical calculations appeared overly

sensitive to the treatment of the inflow, s characteristic of parabolized

duct flows perhaps hinted at by Briley's suggestion of shutting off the

crossflow in the first few steps of the march (ref. 1). Rubti (ref. 4)

alleges that the full Navier-Stokers equations are required to properly model

entry region flow. Hence, the failure to properly smear errors in this



region may have been the root problem, assuming such errors can be widely

propagated, either upstream or down, in solving the elll_ptic velocity poten

tial equation.

In additon to cases previously recorded, a convergent numerical solu-

t	 tion for Re - 1,000 flow in a duct of length X. - 6 has been achieved.

However, for satisfactory calculations at high Reynolds numbers, or for

longer ducts, a more powerful adaptive grid capability than is to be afford-

ed by simple stretchings in individual coordinates appears necessary. In

duct flow the driving mechanism is streamwise boundary-layer growth and

concomitant flow acceleration in the core, with the induced crossflow

strongest away from the walls. Hence, as the flow develops near-wall grad-

ients decrease, or spread in extent, while core gradients grow. 1'or high
L1

Reynolds numbers the result is that a grid system with a simple stretching

mechanism set to capture entry region boundary layers is likely to become

insufficient for resolving the more complex global patterns which emerge as

the flow develops. Since boundary-layer thickness is thought to grow pro-

portional to (x/Re) 1/2 , it appears that the ideal grid should adaptively

relax near-wall clustering in some such fashion.

The revision of Dodge's method reported herein as regards mass balanc-

ing is new, although classical in its physical origins and used previously

with many other computational schemes. For flow in a straight duct it

appears to be highly useful. However, that original intent of this invest-

igation of Dodge's method was to discover its possible utility as a tool for

solving the slotted wind-tunnel problem, where it was felt that the upstream

influence permitted by the elliptic velocity potential equation would be

highly desirable. This could well be so, were the method found workable

19
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without resort to the mass-balancing stratagem.	 however, it is not felt

u

that the present formulation with added on mass-balancing can be useful.

This ^s because of the 	 ossiblit	 of large pressure var iations from tunnelp	 y	 g	 p	 y
l

to plenum, which would make the simultaneous balancing of mass on a plane
t
P

extending over two essentially disparate channels with limited communication l

through the slots unfeasible, as balancing over the entire region would have

to be accomplished through tuning tfhe streamwise pressure gradient. a

Possibly the most successful innovation of this investigatipn is the

use of the checkerboard iteration as a tool for solving at each marching
i

3

plane the implicit finite-differenced momentum equations. 	 It should be '(

noted that the checkerboard al gorithm used is different from either the
j

}

hopscotch method used by Rudy (ref. 17) or the recent hopscotch innovation

of Greenberg (ref. 18). 	 In both cases, iteration is not practiced is

i

solving an implicit system; hence, the well-known ,inconsistency of %;he

hopscotch method becomes significant, at least during the transient calcu-

lation.	 In the present case no transient exists, since the steady equations

are being solved.	 The inconsistency of the usual hopscotch method is thus

hard to bear, as it could lead to problems in solution accuracy.

Zn
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Vigure 1. Comparison of normalized centerline velocity development
for two and three-dimensional channel flow.
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Figure 2. Deviation from a parabolic profile of the streamwise velocity
component at outflow - two-dimensional flow.
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Figure 3. Flow development for streamwise velocity component - three-
dimensional duct flow.
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P£aute 4. Stzeamwise development for centerline  pressure - three-
dimensional duct flow.



Figure 5. Lxperkdental versus computed development for streamwise
velocity component - three-dimensional duct flow.
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Figure 6. Iteration history, corner and centerline pressure at the
outflow - Neumann condition.,
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Figure 7. Iteration history, streamwise increment in velocity potential -
Neumann condition at outflow.
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Figure 8. Iteration history, corner and centerline pressure at outflow -
Dirichlet condition on velocity potential.
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Figure 9. Crosaflow and boundary-layer profile for streamwise velocity
component at channel exit, Re - 100, Xm ^-- 3.0.
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Figure 10. Fully developed exit flow, Re . 100, m . 12.0.
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