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A MODIFIED DODGE ALGORITHM FOR THE PARABOLIZED NAVIER-STOKES
EQUATIONS AND COMPRESSIBLE DUCT FLOWS

By
Ce He Cookew

SUMMARY | ;

A revised version of Dodge's split-velocity me;hod for numerical cal-
culation of compressible duct flow has been developed. The revision incorp-
orates balancing of mass flow rates on each marching step in order to main- %
tain front-to-back continuity during the calculation. The (checkerboard)
zebra algorithm is applied to solution of the three-dimensional continuity
equation in conservative form. A second-order A-stable linear multistep
method is employed in effeciing a maéching solution of the parabolized
momentum equations. A checkerboard iteration is used to solve the resulting
implicit nonlinear systems of finite-difference aquations which govern step-
wise transition. Qualitive agreement with analytical predictions and expex-

imental results has been obtained for some flows with well-known solutions.

*Professor, Departmeht of Mathematical Sciences, Old Dominion University,
Norfolk, Virginia 23508. ‘




INTRODUCTION

It has been saild that the full Navier-Stokes equations represent the
ultimate mathematical model upon which to base numerical algorithms for
predicting flows of practical significance. Howevet.‘even with the advent
of the so-called vector computers with vast virtual memory and quadrupled
processing speads, extant numerical and computational difficulties are
sufficient to merit a search for simpler mathematical models and less com=
plicated numerical methods which can still provide useful solutions to prob-
lems of interest. Thus, considerable analysis and numerical experiment has
been devoted to thea exploitation of parabolized marching methods for flow
prediction. References 1 to 7 vepresent a perhaps typical but by no means
exhaustive sampling of the available literature on this suhject.

The parabolized marching methods dre somewhat more general in applica-
tion than the classical boundary-layer approach, since transverse pressure
gradients are not disregarded and, in some cases, upstream influences can be
transmitted through the pressure field. However, the basic assumption that
streamwise viscous diffusion can be neglected restricts application to flows
with a primary flow direction, limited upstream influence, and which may
exhibit, at worst, crogsplane recirculation. Unfortunately, in subsonic and
transonic wind-tunnel flows, the elliptic upstream influence can be a sig-
nificant factor in the flow dynamics; hence, interest arises in simpler
mathematical models which permit this interactiou. A case in point has been
the development of Dodge's velocity splitting method, which allows global

propagation of influence through the pressure field and which has met with
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successes in both unconfined compressible and confined compressible flows
(refs. 7=10), However, the method is not yet fully proven.

In this paper we shall be concerned with the application of a compres—
sible formulation of Dodge's split velocity techanique (ref. 9) to the calcu-
lation of developing flow in a square duct. The original method has been
revised to effect constant mass flow rate on each transverse plane while
marching down the channel. Parabolized momentum equations are employed.
However, a fully elliptic pressure field is allowed by the iterative manner
in which the solution of the continuity equation is couplad into the calcu~
lation procedure. Application of the presently developed computer algorithm
is restricted to subsonic flow. It could readily be altered to allow tran-
sonic calculations throﬁéh modification or replacement of the algorithm used
to solve the conservstive continuity equation.

Computational simplicity as well as numerical stability is achieved in
marching the momentum equatione with an A-stable (ref. 11) implicit linear
multistep method, the equations of which are iteratively solved at each step
by employing checkerboard successive overrelaxation. While this solution

procedure may be considered expensive, the presence of quadratic as well as

higher order nonlinearities in the parabolized momentum equations requires .

that some iteration be employed to 1mprovg accuracy. As an extra benefit,
the wide-ranging stability of the resulting marching equations appears well
worth the cost.

Finally, the peak efficiency of the methods developed is undoubtably
best realized on the comﬁﬁter system for which it is has been designed,

namely, the Cyber 203. For puch machines, a numerical algorithm must

effectively exploit the array-processing capabglities; otherwise, methods

14
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which are not highly vectorizable mlsuse the available computing potential
and can result in quite ordinary processing speeds. The ekplicit nature of
the checkerboard algorithm yields a highly vectorizable method ideally suit-

ed for the array processor. _ ¢

o
fame Sy

In certain parabolized marching schemes for confineq_flow (raf. 1), it
E has been the practice to decouple streamwise and transvaié& pressure gradi-
L) ents. Some argue (ref. 12) that this is necessary in order to obtain mean-
% ingful physical solutions with parabelized aquations. While results are
; still inconclusive, computational experience gained in the current research
S« appears to support this belief. Weak, but not total, uncoupling of the
streamwise pressure gradient has appeared necessary, although this may stem
from the manner in which local zontinuity of mass Elow is enforced. £
As noted by Patanker and Spalding (ref. 6), the description of a numer= :
iecal procedure for solving the Navier-Stokes equations can have two aims,
which are seldom possible or desirable to accomplish simultaneously. The
first aim is to convey to the reader an understanding of the major prin-
ciples in sufficient detail that someone with a background in the area could
improvise the remainder for himself., The second aim is to present the par-
ticular equations and all approximations employed to a degree that the com-

putational experiment could be identically reproduced. However, the second

BT T S TSI
»

mode requires such proliferation of detail that smooti: reading ils impeded

TRy

and understanding is inhibiteds Therefore, the first aim has baen chosen

for the present paper, and this will be attempted in the fullowing sec-

<

tions.
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specific heats
static pressure
density

tﬁ&ee~dimensional velocity vector
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yiscosity
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reservoir values for temperature, pressure, density,
speed of sound, and viscosity

scalar potential
relaxation of parameter
chiannel half-width
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entrance value
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PARABOLIZED GOVERNING EQUATIONS

The nondimenisional Navier-Stokes equations for compressible steady flow

with which we shall be concerned are presented below.

Continuitz:

Voepw=0 (1)

Momentum:

p(w » V)w = =VP = Vx o=Wow + VgV o W )

Energz:

Here, for flow in ducts with nonconducting walls, the ugual energy equation

has been replaced by the algebraic constant total temperature relation [eq.

(3)]. The constitutive relations are

P ..I._%_l._.pT (4) :

and the viscosity approximation

p=(y = 1)T. (5)

For subsonic flow the governing equations are elliptic. However, a
common approximation used to parabolize these equations (refs. 1,2) is ob-
tained by neglecting streamwise diffusion terms in equation (2). With the
exception of the entry region, the approximation is considered valid for

flow in channels whose lengths are large compared to half-width (ref. 2).
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Perhaps it should be remarked that when Dodge's method is applied in ob-
taining numerical solutions of these equations the approximation is only a
partial parabolization, since the pressure field is obtained from an

elliptic boundary value problem. This, of course, allows global propagation

of disturbances, through the pressure field and the iteration process,

"
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DODGE'S METHOD

Introduction
In Dodge's method, the total velocity vector W is arbitrarily de-

composed as a sum of rotational and irrotational parts:

VeVt u (6)
where ¢ 1is a scalar potential. Pressure is hypothesized to depend solely

upon the irrotational velocity according to the isentzopic relationship

2 .
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However, density is decomposed as the suy of a viscous contribution p,

and an isentropic contribution p*:

p=p, + p* (8
where .
2\1/vy-1
1 -V
p* = o -—5522- (9)

Substituting equations (6), (7), and (9) in equations (1) and (2) leads to

the so-called split equations

v-pv¢u—Vop: (10)

and

p(W « W = oV + 7IV4 + Ux[he T —eeLly.F)-0 an

Equations (10) and (11) are to be iteratively solved: equation (10) with a

3-D relaxation method for elliptic equations, following which the para=

bolized version of equation (11) is marched downstream by employing a check=

e i

e
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erboard iteration to solve an implicit system of equations at each step. A

synopsis of the iteration procedure is now pregaunted.

Overview of Iteration Procedure
(1) Determine a suitable initial pressure distribution P, by estimating
a global ¢ distributicn. In this investigation, pressure on the
first pass 1s assumed ic be a function of only streamwlise displacement,
and a mass~balancing operatior. estaklishes the initial pressure field.
(2) Employing the current pressure field, march a parabolized version of
cquation (11) down the duct, simultaneously storing the right-hand side
of equation (10)« [See also eq. (17)]. ’
(3) Solve equation (10) [or ag. (17)] to obtain an updated pressure £ield.
(4) Repeat the computatiodel pass consisting of steps (2) and (3) until

sufficient passes and a converged pressure field are obtained.

*

Dodge's Method Revised
Dodge (ref. 9) reports problems arising from adjustment of front~to-
back continuity requirements with an iteration which is similar to that
previously outlined. It is expected that this slow convergence stems from

incomplete satisfaction of the continuity equation which could, for example,

be solved after the momentum march terminates in some form such as
7. p“%n - = Yo (pu)n_1 (12)
This is in contrast to the usual parabolized marching methods, for which'’

both mass and velocity variables are updated at each marching step.

Physically, in order to maintain continuity in a channel flow, the mass

flow rate

J i b
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w = [fp _g_:;:;, uldydz = ffow o dydz ' (13)

must remain constant at each transverse plane. However, in Dodge's (unre=-
vised) method this provision is only weakly incorporated through equation
(10), which is solved globally upon termination of a marching pass. Thus,
poor satisfaction of mass balancing during the momentum marching process is
only to be expected, as numerical experimentation indicates.

Consequently, we have chosen to revise the Dodge technique in a manner

which alleviates this difficulty. This was at first attempted by employing
>4 . "~ P
¢ = [F 8(E)E + $x,y,2) (14)

to write equation (12) in the form
oy Lo _ 3
ANCO R RS ENCO RS I (15)

The function g 1s determined by iterating the numerical counterpart
of the parabolized equatlion (11) ai each fixed marching step until numerical
balance of mass flow rate is achieved. This {3 accomplished through gradual
changes in streamwise velocity, pressure, and density effected by the equa-

tion

k+l k - v K. . k
g omg u[us - ”(pwnormal) dyd.z] + [ffp dydz] (16)
with o a relaxation parameter. Aside from theVbenafit of an instanteous
balance in mass flow rate, another merit of this device 1is that fewer global

iterations are required in the relaxation solufion of equation (15), as it

is now more nearly satisfied at the outset.




However, this approach was found defective, in theory as well as in
fact, The solving of equation (15) in the form indicated yields nonphysical
results, as it provides & quasi~full potential transonic flow equation whose
elliptic-hyperboiic transition point can differ markedly from Mach l. This
difficulty can be largely alleviated, although not totaliy circumvented, by

replacing equation (15) with the equation
Voo (ov) = =V e (pw) %))
whose point of transition move c¢losely approximates the physics of the flow.

Pressure gradients in Dodge's unrevised method would be computed vn

pass n from the equation

-—-i- - - {p*m . v.w«,s]:

~~
i
A

In the revised version, pressure gradients are allowed to develop

during the mass=~balzncing iteration according to the equations

k
) * k-k n ,n n . n .
i x - - pk,n(g gx + ¢y ¢xy +'¢z ¢xz) (19)
k
ap™ . - ok k. n n,n , .0 n:
' a,.k .
L Pt % ¢ kon nmoano o onom (21)
) 9z pkin(g ¢xz + *y ¢yz + ¢, ¢zz)

The quantity g 1is determined through equation (16), and 8x by
second-order backward differencing. This precedure represents a weak de-

coupling of the streamwie~ pressure gradient, since the g terms are the ;_
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dominant contyibutions, and since these contributions are determined from

local plane-to-plane continuity considerations, somewhat independently of
the output from the global continuity equation [eq. (17)] on the previous

pass.




NUMERTCATL, ANALYSIS

The algorithm deemed wmost aefficient for numerically solving equation
(17) on the array=-processing computer is the zebra algorithm of South et al.
(refs 13). This 3~ relaxation technique is in some respacts similar to the
hopscoteh mathod of Gourlay (refs 14)e In equation (17) cantral differances
are appliad to all derivative terms. Variables in plane 1§ are updated in
checkerboard fashion, plana by plane in a downstream sweep, using alraady
updated values at plane {1 = 1 and old iteration values in plane i + L.
Tterativa repetition of downstream aweaps i8 used to convarge the fleld,
with a relaxation parametar amployed to spaed convargenca.

A second~oxder accurate, implicit linear multistep method is used on
equation (11) to march in the stapwise dirsction. The implicit equations
ave itaeratively solved using a checkerboard successive overrvelaxation
schaeme, with wmass balaneaing built in as previously duscribed. Streamwise
derivatives are backward differanced sacond-ordar accurate, while derdv=
atives in the (transversa) cross=plane ara approximated second~order using

santral diffarences. A predietion of Fform

I L S (22)

is used to initially estimate a velocity variable in plane 1. The checker—
board method f& then employed on the differenced ceunterpart of equation
(11) to update variables in plane i in two cycles, with values updated on
eycla 1 fed into the succeeding cycla. This two-cycle update process is
iterated, employing equations {16) and (19) to (21) to alter the flow speed

and prassure gradients until a balance in mass flow is achleved.

13
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DEVELOPING FLOW IN A STRAYGHT DUCT

The revised mathod of Dodge has been employed to develop a finite-dif-
kf : ferenca numerical model for threa-dimensional viscous flews in confined

- reglona. For boundary-layer resolution, the capability to allow individual

coordinate stratching in each coordinate direction has beén incorporated.
The method so daeveloped has baen programmed using the SLI vector language
for the Cybar 203 array processor, and appears debugged. The 32-bit half=
word option of SLI has been employed in programming the zebra relaxation
algorithm for solving equation (17), while 64~bit full-word arithmetic is
uged in programming the chaeckerboard marching algorithm. The program has
baen tested by application to the problem of computing the steady devaloping
flow in a straight duct (see fig. 1). Boundary conditions for the problem

L are now given.

Boundary Conditions E

1 2
Inflow: T = T ==y,
e 4 1

spacified velocity profiles, W, = n(y,=),

Py ™ R(y,z), Pi w constant

0. (0sy,8) = g(0) = g

Duct walls: velocity no slip, ¢n =0, T = Tw’ p=p
Outflow: Py extrapolated, ¢ = @m, 8y axtrapolated

Artificlal barriers: The computational domain is taken to be one
quarter of the total duct cross section, and symmetry conditions
are applied at the two resulting (nonwall) artificial barriers.
Here the normal velocity component vanishes together with normal :
derivatives of ¢ and the other velocity variables. The variables :
P and T, of course, depend on ¢ and velocity at these boundaries. i
However, for constant total temperature, vanishing normal derivative
in T, @ is the natural boundary condition.

w

14
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COMPUTATIONAL RESULTS

Introductien
An assessment of approximation error inherent in numarical solutions of
parabolized flow models computed with the revyised Do&ge's method has been
undertaken. This has bean accomplished for certain flows whose solutlons
have baen either analytically or experimentally determined and which are

available for comparison with numerical results.

Two=Dimensional Channel Flow, Re = 100
Numerical solutions for two~dimensional, low Mach number (M > 0.05) !
flow in a straight channel have been computed, employing a uniform mesh of
17 x 17 % 100 nodes. The development of the normalized centerline velsuity
component: V*/U charactarizing ‘the two-dimensional channel and the corred-

ponding results of Goldstein and Kreid (ref. 15) for three-dimensional £low

in a square duct are éompated in figure l. For the fully developed case
Schlicting (refs 16) gives a limiting value V,/U = 1.52. The corres-
ponding maximum value from the computational results of figure 1 is Vx/U -
1.425. This represents a relative error of six percent or less, depending
upon how fully developed the numerically calculated flow is considered to
bas One should perhaps also bear in mind that Schlicting's results come
from matched asymptotic expansions, which are in themselves approximate
mathods. Figure 2 exhibits typlcal spanwise deviation from a parabolic
profile characteristic of V, at numerical full development. The maximum

arror is again on the order of five or six percent.
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Three Dimensional Duct Flow, Ra = 100
A 32 % 32 X 100 mesh has been employad to compute low Mach number,

threa~dimenzional flow in a square duct. Streamwise variation in centerline

velocity dgmponent Vx and pressure P are shown in figures 3 and 4. A
comparison batween numerical calculations for V./U and the corresponding
experimental results of Goldstein and Kraid (ref. 15) is shown in figure 5.

Comparative fully daveloped values for V,./U at centerline for the two

cases are 1493 and 2,10, Including grid stretching in the calculation im=
proved tha former value to 1.9725. This agaln represents a relative error
in the vicinity of six percent.

Figures 6 to 8 show numarical performance indicators which trace tha
convargance history of & typleal calgulation. lHere two kinds of outflow
boundary conditions for solution of the elliptic velocity potential equation %
hava baen tested. For the calculation represented by figure 8, a Dirichlet ?
condition was applied. Although a seemingly wmore rapid; nonoscillatory
convergence history is obparved, distortion in streamwiss velocity and pras-
sure profiles near tha channel exit accompanied its application. A Neumann
boundary condition appaared to eliminate these nonphysical distortions, but
at the misfortune of a more sluggish, oscillatory, convergence history (see
figs. 6-7). The Neumann condition was chosen for the calcoulations hereto-
fore discussad.

Figuraes 9 and 10 show charactaristics of the exit crossflow and bound-

° ary~layer profiles for the streamwise velocity component. In caleulating % fj

the fully developed crossflow of figurae 10, a chamnel length of X = 12 ;

16 .
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units with a coarse mesh having l44 downstream nodes was employed:s The sink
irregularity near channel centerline in figure 9 was observed to move closer
to channal center as the length increased, and appeared to have coalesced
with it in the calculation of figure 10, The tendency of the core £low to
be directed towards channel centerline (sea figs., 9 qnq 10) is in qualita-
tive agreement with the theoratical predictions of Rubin (ref. 4) concerning

the asymptotic behavior of duct crossflow.

CPU Time

A computer code for the revised version of Dodge's method employs the
SLl~language for the Cyber 203 version of the CDC-STAR computer. With a
17 ®x 17 % 196 mesh, measured time for program execution was found to aver&ge
2.3 x 107" computer resource units (CRU's) per node per model equation per
pass. {This assumas only four model aquations, since the energy equation
was replaced with an algebraic relationship.) A pass consisted of marching
the momentum equations once down the duct, iteratively solving an implicit
system for velocity propagation at each streamwise station using a checker-
board scheme, and then finding the zebra solution of the three~dimensional
velocity potential equation. When measuring performance in CPU seconds per

node per model equation per pass, the corresponding figure becomes 4 14 X

1074,

17




SUMMARY AND CONCLUSIONS

A revised version of Dodge's velocity-split method for numerical solu=-
tion of compressible confined flow has been developed. Numerical results

from test calculations for low Reynolds number flow Appear encouraging. In

particular, qualitative but not wholly satisfactory quantitative agreement
between present calculations and analytical predictions of Schlicting (ref.
16) and Rubin (ref. 4), together with experimental measurements of Goldstein
and Kreid (ref. 15), has been achieved.

However, the method is by no means fully understood or exhaustively and
conclusively testeds A curlous faature of the present approach is the need
for weak dechupling of the streamwise pressure gradient, found necessary in
order to achleve a convergent numerical solution. However, Spalding (ref.
12) alleges that to obtain meaningful solutions using parabolized equations
such a full decoupling is necessary. Further, Briley (ref. 1) reports suc-
cassful and quantitatively accurate calculations obtained with an algorithm
which incorporates this practice. Be that as it may, in this study conver=-
gence problems, first manifested by irregularities in the entrance region of
the duct, were observed, but disappeared upon weakly decoupling the stream=—
wise pressure gradient., Even so, the numerical calculations appearad overly
sensitive to the treatment of the inflow, a characteristic of parabolized
duct flows perhaps hinted at by Briley's suggestion of shutting off the
crossflow in the first few steps of the march (ref. 1). Rubin (ref. 4)
alleges that the full Navier-Stokes equations are required to properly model

entry region flow. Hence, the failure to properly smear errors in this

18
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reglion may have been the root problem, assuming such errors can be widely

propagated, either upstream or down, in solving the elliptic velocity poten=
tial equation.

In additon to cases previously recorded, a convergent numerical solu-

e

tion for Re = 1,000 flow in a duct of length X = 6 has been achieved.

2L AR

However, for satisfactory calculations at high Reynolds numbers, or for
longer ducts, a more powerful adaptive grid capability than is to be afford-
ed by simple stretchings in individuwal coordinates appears necessary. In
duct flow the driving mechanism is streamwise boundary-layer growth and i
concomitant flow acceleration in the core, with the induced crossflow
strongest away from the walls. Hence, as the flow develops near-wall grad- %
ients decrease, or spread in extent, while core gradients grow. For high
;” : Reynolds numbers‘the result is that a grid system with a simple stretching
mechanism set to capture entry region boundary layers is likely to become

insufficient for resolving the more complex global pactterns which emerge as

the flow develops. Since boundary-layer thickness is thought to grow pro-
portional to (x/Re)l’/2, it appears that the ideal grid should adaptively
relax near-wall clustering in some such fashion.

The revision of Dodge's method reported herein as regards mass balanc-
ing is new, although classical in its physical origins and used previously
wvith many other computational schemes. For flow in a ctraight duct it
appears to be highly useful., However, ths original intent of this invest-
igation of Dodge's method was to discover its possible utility as a tool for
solving the slotted wind-tunnel problem, where it was felt that the upstream
influence permitted by the elliptic velocity potential equation would be %

highly desirable. This could well be so, were the method found workable




without xesort to the mass~balancing stratagem. However, it is not felt

that the present formulation with added on mass-balancing can be useful.

.

@ This is because of the possiblity of large pressure variations from tunnel

to plenum, which would make the simultaneous balancing of mass on a plane

extending over two essentially disparate channels with limited communication

cT TR R

through the glots unfeasible, as balancing over the entire region would have

i i
to be accomplished through tuning the streamwise pressure gradient, ’

B -
fore

Possibly the most successful innovation of this investigatign is the }
use of the checkerboard iteration as a tool for solving at each marching
plane the implicit finite-differenced momentum equations. It should be
noted that the checkerboard algorithm used is different from either the
hopscotch method used by Rudy (ref, 17) or the recent hopscotch innovation
of Greenberg (ref. 18), 1In both cases, iteration is not practiced in
solving an implicit system; hence, the well~known inconsistency of kﬁe N

hopscotch method becomes significant, at least during the transient calcu-

lation. In the present case no transient exists, since the steady equations L

e o T o S

are being solved. The inconsistency of the usual hopscotch method is thus

| hard to bear, as it could lead to problems in solution accuracy.
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Figure 1. Comparison of normalized centerline velocity development
for two and three-dimensional channel flow.
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