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The subject of elastohydrodynamic lubrication is identified

with situations in which elastic deformation plays a significant

role in the hydrodynamic lubrication process. This chapter is

concerned with the basic equations used in the analysis of hy-

drodynamic lubrication. Basic elasticity theory is also consid-

ered in this chapter, and elastohydrodynamic theory is developed

in Chapter 7.

Lubricants are usually Newtonian fluids, in which the rate

of shear is linearly related to the shear stress. (A notable

exception is grease, which behaves as a solid at shear stresses

that are less than a threshold value and as a viscous fluid at

higher stress levels.) The fluid is normally assumed to experi-

ence laminar flow. Navier (1823) derived the equations of fluid

motion for these conditions from molecular considerations and

from the introduction of Newton's hypothesis for a viscous

fluid. Stokes (1845) also derived the governing equations of

motion for a viscous fluid in a slightly different form, and the

basic equations are thus known as the Navier-Stokes equations of
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motion. The Navier-Stokes equations will be derived as simply

as possible.

The study of hydrodynamic lubrication is, from a mathemati-

cal standpoint, the application of a reduced form of these

Navier-Stokes equations in association with the continuity equa-

tion. The resulting differential equation was formulated by

Reynolds (1886) in the wake of a classical experiment by Tower

(1883) in which tile existence of a thin fluid film was detected
m

from measurements of pressures within the lubricant. Petrov

(1883) had simultaneously recognized the existence of a coherent

fluid film between the rotating shaft and stationary bearing in

an extensive investigation of the friction of journal bearings.

The Reynolds equation can be derived either from the Navier-

Stokes and continuity equations or from first principles, provi-

ded of course that the same basic assumptions are adopted in

each case. Both methoas will be used in deriving the Reynolds

equation, and the assumptions inherent in reducing the Navier-

Stokes equations will be specified.

The Reynolds equation contains viscosity and density

terms. These properties of the lubricant depend on temperature

and pressure, and hence it is often necessary to couple the

Reynolds equation with the energy equation. This chapter

therefore deals with these lubricant properties and the energy

equation.
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The Reynolds equation also contains the film thickness as a

parameter. The film thickness is a function of tne elastic be-

havior of the bearing surface, and the governing elasticity

equation is therefore presented in this chapter. The coupling

of the Reynolds equation with the elasticity equation is consid-

ered in Chapter 7, where the basic concepts of elastonydrody-

namic lubrication theory are developed.

5.1 Navier-Stokes Equations

The Navier-Stokes equations carl be derived from a consider-

ation of the dynamic equilibrium of an element of fluid. It is

necessary to consiaer

(i) Surface forces

(2) Body forces

(3) Inertia

5.1.1 Surface Forces

Figure 5.1 shows the stresses on the surfaces of a fluid

element in a viscous fluid. Across each of the three mutually

perpendicular surfaces there are three stresses, yielding a

total of nine stress components. Of the three stresses acting

on a given surface the normal stress is denoted by a and the

shear stress by T. To avoid overcrowding, the stresses on the



surface perpendicular to the z axis have been omitted. The

first subscript on the shear stresses refers to the coordinate

direction perpendicular to the plane in which the stress acts,

and the second designates the coordinate direction in which the

stress acts. The following five relationships should be noted

in relation to surface stresses:

(i) For equilibrium of the moments acting on the fluid ele-

ment, the stresses must by sy_etric; that is, the subscripts on

the shear stresses can be reversed in order.

Txy = Tyx, TXZ = TZX, Tyz = Tzy (5.1)

(2) The hydrostatic pressure p in the fluid is considered

to be the average of the three normal stress components.

ox + Oy + oz = -3p (5.2)

The minus sign is used because hydrostatic pressures are com-

pressive, whereas positive stresses are tensile.

(3) The magnitude of the shear stresses depends on the rate

at which the fluid Js being distorted. For most fluids the de-

pendence is of the form

• =n\T xj+ xi/ (5.3)

where

n = a constant of proportionality known as the coefficient of

absolute viscosity

u = components of velocity vector



The terms in parentheses in equation (5.3) are a measure of the

distortion of tile fluid element.

(4) The magnitude of the normal stresses can be written as

_ui

°i = - P + _a_ + 2_ _xi (5.4)

where

(5.5)= _x + + _z

and

_a = a second coefficient of viscosity

The divergence of the velocity vector, the dilatation, _ mea-

sures the rate at which fluid is flowing out from each point;

that is, it measures the expansion of the fluid. The factor 2

is introduced in equation (5.4) as a consequence of the defini-

tion of the coefficient of viscosity for a Newtonian fluid. A

Newtonian fluid is one in which the shear stress is directly

proportional to the rate of shear. This point is discussed in

detail in texts on hydrodynamics where the relationship between

shear and rate of strain components is considered in the

direction of the principal axis (e.g., Lamb, i_32).

(5) By making use of equation (5.4) the following can be

written

ox + Oy + oz = - 3p + (3_a + 2n)_ (5.6)



This equation shows that the average of the normal stresses

differs from that previously described in equation (5.2). For

these expressions to be compatible, the following must apply:

ha_ 23 n C5.7)

The forces due to the stress gradients must be added to the

external body forces. Three stresses tend to move the element

in the x direction. Thus the change of Txy , for example,
m

across the element and through a distance dy is (_xy/_y)dy.

This stress acts on the face of the fiuid element with area

dx dz and produces a force (_Txyl_y)d x dy dz. There are

similar expressions for ox and _xz"

5.1.2 Body Forces

The forces needed to accelerate an element of fluid may be

supplied in part by an external force field, perhaps gravity,

associated with tile whole body of the element. If the compo-

nents of the external force field per unit mass are Xa' Ya'

and Za, these forces acting on an element are

Xap dx dy dz, Yap dx dy dz, Zap dx dy dz (5.8) .
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5.1.3 Inertia

The three componentsof accelerationof the fluid are the

three total derivatives Du/Dt,Dv/Dt, and Dw/Dt. The signifi-

cance of the total derivativescan be seen from the following.

Considerthe x componentof velocity u. In general,

u = f(x,y,z,t). The change _n u that occurs in time dt is

approximately

_u _u Bu _u
Du : -_ dt +-_x dx +-_ dy+ -_zdz (5.9)

In the limit as dt + 0, dx/dt = u, dy/dt = v, and dz/dt = w.

Therefore,ifequation(5.9)isdividedthroughoutby dt,while

makinguse of theabove,we can writethetotalderivativefor

the u componentas

__ _u _u _uDu = Bu + u + v + w-- (5.10)
Dt _t -_x _y Bz

Similarlyfor the v and w componentsof velocitywe can write

Dv _v _v _v _v

Dt - _t + U-_x + V-_Y + w_z (5.11)

__ = __ _w _w _wDw _w+ u + v + w-- (5.12)
- Dt _t _x _y BZ

Tiletotal time derivativemeasuresthe change in velocityof one

elementoffluidas itmovesaboutinspace.Theterm B/at is

knownasthelocalderivativesinceitgivesthevariationof
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velocity with time at a fixed point. The last three terms are

grouped together under the heading "convective differential."

The mass of an element of fluid having dimensions dx, dy,

and dz is p dx dy dz; thus the components of the resultant

forces required to accelerate the element are

Du Dv dx dy dz, Dw .......
P _ dx dy dz, P _ P _ dx dy dz (5.13)

5.1.4 Equilibrium

Having defined the body, surface, and inertia forces acting

on a fluid element, we can now state the requirement for dynamic

equilibrium mathematically. Whenthe commonfactor dx dy dz

is eliminated from each term and the resulting surface and body

forces are related to the acceleration of an element of fluid,

it is found that

• BTxz
De B°X _xy+__ (5.14)P _t = PXa +--_-x + By Bz

Also there are similarexpressionsfor stress gradientsand body

forces that tend to move the elementin the y and z direc-

tions.

_T 3o @T

Dv xy +y+ yz (5.15)P D--t= PYa + _x _y @z

_gzDw
P D-t = PZa +_+ @y _z (5.16)
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The Navier-Stokes equations or the equations of motion can

be obtained in terms of the velocity derivatives by substituting

tile results of equations (5.3) to (5.7) into equations (5.14) to

(5.16). The resulting equations are

Du = _p + 2 ; _u _v + 2 _ _u _w
P D--t OXa - _x -3 _--x -3 _--x _x

+_ + +_ +

Dv _p + 2 _ _v _u 2 _ _v _w
P _ = oYa - _y -_ '_y _x + "3-_y

(5.z7)

+Tx Ty+_ +_L\_= +

P D--t= 0Za - _z 3 _z _Z 3 _--_ _z

+Ty + +_ +

The terms on the left side of these equations represent inertia

effects, and those on the right side are the body forces, pres-

sure gradient, and viscous terms in that order. Equations

(5.17) are the most general form of the Navier-Stokes equations

for a Newtonian fluid.

For an incompressible fluid these equations reduce to



Du _ + q V2
O _ = PXa - Bx u

Dv _P + n V2 " (5.18)
P D---{PYa 3y

Dw 3p+nv 2
o Dt 0Za 3z

where

V2 32 32 32_ +-- +--
3x2 3y2 3z2

In cylindrical polar coordinates with rc' _c' and z sucll

that x = rc cos _6c and y = r c sin ¢c' equations (5.17) can be

rewritten as

3u _u + v 3u + w 3z r = PXc-
p + u -_rc .rc Fq)c 3rc

+ n IV2 u 2 3v )u r2 r2 _.
c c

I

3(_ 3v v 3v 3v _ i _p
0\_t+ u _ + --rc3qOc-+ w -_z+ rc/ = 0Yc - --rc3q)c (5.20)

+n 2v- +r2
c c

P + u + +w - w
rc _q)c = pzc 3z

I0



where

V2 _2 1 B 1 B2 B2- + + + -- (5.21)
_r2 rc @rc r2 2 z2

c c _c

In spherical polar coordinates with rs, es, and _s such

that x = r s sin e s cos _s, Y : rs sin e s sin _s, and z = r s

cos es, the Navier-Stokes equations for an incompressible

fluid are

I__ _u v _u w _u v2 + w2hP + U_rs + rs _Os + rs sin 0s 8_s - rs J

IV 2U 2 BV 2V COt Os 2 B___WWh= PXs + _PBrs + n 2 u r2s r2s Bes r2s r2ssin 8s

I_ w2 cot e!l

Bv Bv v Bv w Bv uv

p + u Brs + rs Bes + rs sin 8s _s rs rs

i B£ V2 2 _u v _ 2 cos %s Bw
= PYs - rs B8s + n v + r2 B8s - r2 sin20 r2 sin20 B_s

S S S S S

I_t vw cot 8s)

_w ____q_w+ v _w w _w + w_£+

P + u _rs rs _8s + rs sin 8s _%0s rs rs

_2 w 2 _u

1 _E + n w - +
= PZs - rs sin Os _s r2 sin20 r2 sin e _s

S S S S

2 cos 8s _v1+ r2 sin28 _-@s
s s

(5.zz)
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where

V2 _ r2 _rs + r2 sin es _@s in @ +s r2s sin2Os _q02

(5.23)

5.2 Continuity Equation

The Navier-Stokes equations contain four unknowns: u, v,

w, and p. The viscosity and density can be written as func-

tions of pressure and temperature. A fourth equation is sup-

plied by the continuity equation.

In continuous motion the increase in the mass of fluid

within a fixed control volume in time dt must be equal to the

excess of mass that flows in over the mass that flows out. Con-

sider the mass flow across a fluid element such as that shown in

Figure 5.1. The mass flowing into the element in the x direc-

tion in time dt is {pu + [a(pu)/_x]dx}dy dz dr; thus the ex-

cess of mass flow into the element in the x direction is

-[a(pu)/ax]dx dy dZ dr. Similarly, when the directions y and

z are considered, the total excess of mass flow into the ele-

ment in time dt is

- _ (pu) +-_y (pv) +-_z (pw dx dy dz dt

12



Now the original mass inside the element is o dx dy dz

and the increase in mass inside the element in time dt is

(apiat)dx dy dz dr. Thus

ata-2+ -_x (Pu) + _y (pv) + _z (Pw) = 0 (5.24)

This then is the continuity equation in Cartesian coordinates.

If the flow is steady, ap/at = O. Also if the fluid is incom-

pressible, p is constant and the continuity equation reduces to

au av aw

+ + = o 15. 5)

5.3 Reynolds Equation

The differential equation governing the pressure distribu-

tion in a fluid-film bearing is known as the Reynolds equation.

As pointed out earlier, this equation was first derived in a

remarkable paper by Reynolds (1886). Reynolds' classical paper

contained not only the basic differential equation of fluid-film

lubrication, but also a direct comparison between his theoreti-

cal predictions and the experimental results obtained by Tower

(1883). Reynolds, however, restricted his analysis to an incom-

pressible fluid. This is an unnecessary restriction, and

Harrison (1913) included effects of compressibility and dynamic

loading in a later analysis. In this section a generalized

Reynolds equation is derived from the Navier-Stokes and contin-
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uity equations after assumptions that are normally valid for

fluid-film lubrication llave been introduced. The Reynolds equa-

tion is also derived directly from the principle of mass conser-

vation and simple expressions for Couette and Poiseuille flow.

The various terms in the Reynolds equation are discussed, and

various forms of the Reynolds equation as they apply to particu-

lar cases of bearing operation are presented at the ena of this

chapter.

5.3.1 Derivation of Reynolds Equation From the Navier-Stokes

and Continuity Equations

The basic equation of fluid-film lubrication, the Reynolds

equation, can De derivea from the reduced form of the Navier-

Stokes and continuity equations. Recall that a Newtonian fluid

was assumea in the derivation of the Navier-Stokes equations. A

minimum number of restrictive assumptions are introduced that

enable a general form of the Reynolds equation to be estab-

lished. The assumptions are

(1) Inertia and body force terms are negligible compared

with the pressure and viscous terms.
J

(2) There is a negligible variation of pressure across the

fluid film (ap/_z = 0).
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(3) Owing to the geometry of the fluid film the derivatives

of u and v with respect to z are much larger than tile

other derivatives of velocity components.

The last two assumptions arise from the geometrical form of

the lubricating film. If h and _ represent typical dimen-

sions of film thickness and bearing length, respectively, it is

found that the ratio h/_ rarely exceeds 10-2 , is often as

small as 10-4, and is most con_,only about 10-3 . The lubri-

cating film can thus be seen as a long, thin channel of small

taper in all realistic bearing configurations.

The application of these assumptions allows the Navier-

Stokes equations expressed in equations (5.17) to be reduced to

_x _--7.n
(5.2b)

_p_ _ (_v)_y _z q T_z

Since the pressure has been assumed to be a function of x

and y only, these equations can be integrated directly to give

general expressions for the velocity gradients:

A
?__u=_z___+_
_z q _x q

(5.21)
a_z _z_ c
_z = n •_y + q

where A and C are constants.

15



Now the viscosity of the lubricant may change considerably

across the thin film (z direction) as a result of temperature

variations that arise in some bearing problems. In this case,

progress toward a satisfactory Reynolds equation is considerably

complicated.

An approach that is satisfactory in the majority of fluid-

film applications is to treat n as the average value of the

viscosity across the film. Note that this does not restrict the

variation of viscosity in the x and y directions. This ap-

proach is pursued here, but a more general derivation of the

Reynolds equation that takes account of fluid property varia-

tions along and across the film and that discusses in detail the

assumptions made earlier has been presented by Dowson (1962}.

With n representing an average value of viscosity across

the film, the velocity components become

z2 _p zu- +A--+B
2n _x

z2___p_ z=-- --+D
v 2n _Y + C n

if we assume zero slip at the fluid-solid interface, the

boundary values for velocity are

z = 0, u = Ub, v = Vb_

z h, u ua , v va

16



The subscripts a and b refer to conditions on the upper

(curved) and lower (plane) surfaces, respectively. Therefore

Ua, Va, and wa refer to the velocity components in the

x, y, and z directions of the upper surface and Ub, Vb,

and wb refer to the velocity components of the lower surface

in the same directions.

With the boundary values given in equation (5.29), the

velocity gradients and components can be written as

uo
(5.30)

Vb-Va-_z = h
.,J

zu = - z + ub + ua

(5.31)

z_h - zh_p (h - z1 zv--- k-_-_}_y+vb_.1+ vbh

With these expressions for the velocity gradients ano tne veioc-
i

ity components we can now derive expressions for the surface

stresses and the volume flow rate.

Surface Stresses

The viscous shear stresses acting on the solids as defined

in equation (5.3) are (n _u/_Z)z= 0 and -(n _u/aZ)z=h.

These expressions can be evaluated from equation (5.30) as

17



n 3u_ _ h _p n(Ub - Ua) "J-_zz=0 2 _x h

(5.32)

(n -_Z) - n(ub - Ua)
_ _u h _p+

z=h 2 _x h

Volume Flow Rate

The volume rates of flow per unit width in the x and y

directions are defined as

yo yoqx = u dz and qy = v dz (5.33)

Substituting equation (5.31) into equation (5.33) while integra-

ting gives

h3 ___+_ub + Ua) _qx - 12n _x _ 2 h
I

> (5.34)

qY = - 12n _y 2 h

The first term on the right side of these equations represents

the well-known Poiseuille (or pressure) flow, and the second

term represents the Couette (or velocity) flow.

Returning to equation (5.31), the Reynolds equation is

formed by introducing these expressions into the continuity

18



equation'(5.24). Before doing so, however, it is convenient to

express the continuity equation in integral form.

+T_ (_u) +T_y(_v) +_z (p" dz : 0

Now a general rule of integration is that

h h

[f(x,y,z)] dz - _x f(x,y,z)dz - f(x,y,h) -_x

0 0

Hence, if the density o is assumed to be the mean density

across the film, the integrated continuity equation becomes

Ih _-P-+-_-_ u d - pu _h +____ v d
_t 8x a 8x 8y

0 0

....

_h+ p 0 (5.35)- PVa 8y (Wa - Wb) :

The integrals in this expression represent the volume rate

of flow per unit width (qx and qy) described in equation

(5.34). When these flow-rate expressions (which are derived

•. from the Navier-Stokes equations) are introduced into the inte-

grated continuity equation, we obtain

_ < ph3 _8-_x)+ _ I- 0h3 8p+> 8 I?(Ub + Ua)hl+ _ I_0(Vb + Va)h___x - 12n Tyy 12_1 _y _x 2 Tyy 2

____h_h 8h+ h88__t= 0 (5.36)+ P(Wa - Wb) -QUa _x - Ova _--y
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The first/two terms are Poiseuille terms and describe the net

flow rates due to pressure gradients witI1in the lubricated area;

the third and fourth terms are the Couette terms and describe

the net entraining flow rates due to surface velocities. The

fifth, sixth, and seventh terms describe the net flow rates due

to a squeezing motion, and the last term describes the net flow

rates due to local compression. The last four terms can be com-

bined and written as _(ph)/at. The generalized Reynolds equa-

tion then becomes

+ _(oh)
\_-_ :Txx 2 Tyy 2 _t\iTCh +

(5.37)

Equations (5.36) and (5.37) represent the general form of the

Reynolds equation within the range of assumptions discussed.

5.3.2 Direct Derivation of the Reynolds Equation From the Laws

of Viscous Flow and the Principle of Mass Conservation

The Reynolds equation can be derived airectly by consider-

ing a control column fixed in space and extending across the

film. Before aiscussing the control volume, however, we note

tl_at three additional assumptions were introduced into the deri-

vation outlined in the previous section. These additional as-

sumptions were
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(1) The flow is laminar. Turbulent flow is sometimes en-

countered in high-speed, fluid-tilm bearings, and a modified

Reynolds equation is required for this condition.

(2) There is no slip between the fluid and bearing solids

at common boundaries.

(3) The lubricant properties (viscosity and density) are

constant across the thickness of the film.

If these three assumptions, along with those given at the begin-

ning of the previous section, are used, the two approaches to

the derivation of the Reynolds equation will be compatible.

Consider the rate of mass flow through a rectangular sec-

tion control volume of sides Ax,ay fixed in the coordinate

system and extending across the lubricant film between the two

bearing surfaces as shown in Figure 5.2. Note that one bearing

surface is represented by the plane z = 0 ana the other by a

curved surface such that the film thickness at any instant is a

function of x and y only. This is exactly the coordinate

system used in the previous derivation of the Reynolds equation.

The mass of lubricant in the control volume at any instant

is ph ax Ay. The rate of change within the control space

arises from the change in both the density and the height of the

column and is given by [(a(ph)/at)]AX Ay. The difference be-

tween the rate of mass flowing into the control space and the

rate of mass leaving the control volume is -(aqX/aX)AX Ay in

tile X direction and -(aqy/ay)AX ay in the y direction.

21



The principle of mass conservation demands that the rate at

which mass is accumulating in the control space (_(ph)/at) must

be equal to the difference between the rates at which mass en-

ters and the rate at which mass leaves. Therefore

_qx _
- _---x--- _y - _t (ph) (5.38)

But

_h _p
_--_(oh) = p -_ + h _--_

and

( - Wb Ua _h _T_y) _P (5.39)_t (ph) = p wa - -_x- Va + h _t

By making use of equations (5.39) and (5.34), equation

(5.38) can be rewritten as

_X \T_-h_ /ph3 -_x) 4- Tyy \-i-_h_ Fph3 _y) -- ox_ f ph(ub-" "2+ Ua)t +__y fP.h(Vb2 + Va)-_

+ P Wa - Wb - Ua _x Va + h" _t

This is a generalized Reynolds equation for the assumptions dis-

cussed and is exactly the same as that derived in the previous

section (see equation (5.36)). The equation can of course be

reduced to

--_X_ \12_FOh3 _P_xlH-_y\l-_q/ph3 -_y)= --_-_FO(Ua +Ub)__xL 2 +_y[p(Va +Vb)-_2 l-Tt _ (ph)

(5.41)

to be consistent with equation (5.37).
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5.3.3 Standard Reduced Forms

The specification of boundary velocities Ub, Vb, and wb

for the plane surface does not present any difficulty. In gen-

eral the surface velocities of the upper bearing components need

to be related to the translation of the component parallel to

the coordinate axes and the rotation of the component about its

own center. In subsequent chapters we shall be concerned with

boundary velocities confined to the following values:

ub ub , vb O, wb 0

u = u , v = O, w = u _h (5.42)a a a a a

where ub and u a are the surface velocities of the two

bearing components in tne x direction. Note that the coordi-

nate x was associated with the semiminor axis of elliptical

contacts in Section 2.2.4. If the surface velocities Go not lie

in the direction of the semiminor axis, the coorGinate x

should always be taken as the direction of surface motion, even

if k is then less than unity.

For steady-state conditions the Reynolds equation (as

stated in equation (5.40)) becomes

a_p_+ = 12u a(ph) (5.43)
ax ax -_y ax

wnere

+ U
Ua b (5.44)U =

2
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Again it snoula be emphasized that equation (5.43) allows

for variation of the viscosity arld density in the x and y

directions. If, however, tile fluid properties do not vary sig-

nificantly, the corresponding Reynolds equation is

3 _h
h3 + = 12un (5.45)

Equation (5.43) not only allows the fluid properties to

vary in the x and y directions, but also permits the bearing

surfaces to be of finite length in the y direction. Side

leakage, or flow in the y direction, is associated with the

second term in equation (5.43). If the pressure in the lubri-

cant has to be considered as a function of x and y, the solu-

tion of equation (5.43) can rarely be achieved analytically.

Approximate numerica] solutions are therefore sought as outlined

in Chapter 7, where the elastol_drodynamic theory for elliptical

contacts is developed.

In many conventional lubrication problems side leakage can

be neglected, and this often leads to analytical solutions. If

side leakage is neglected, equation (5.43) reduces to

a--_ = 12u _(_h) (5.46)_x

This equation can be integrated with respect to x to yiela the

familiar integrated form of the Reynolds equation

d_p_=12nu --- (5 47)
dx ph3 ] "
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where the subscript m refers to the conditions at points

where dp/dx = O, such as the point of maximum pressure. If the

lubricant is incompressible, equation (5.47 reduces further to

dp = 12nu (5.48)

5.4 Viscosity

The viscosity of a fluid may be associated with its resis-

tance to flow, with the resistance arising from intermolecular

forces and internal friction as the molecules move past each

other. Thick fluids, like molasses, have relatively higl_ vis-

cosity; they do not flow easily. Thinner fluids, like water,

have lower viscosity; they flow very easily.

Simple kinetic tneory gives a good molecular description of

the phenomenon of viscosity in gases, but a physical description

of the viscosity of liquids, where molecular activity is re-

stricted, is less well developed.

The foundations of modern viscous flow theory were laid in

the seventeenth century by Sir Isaac Newton, who proposed a

method of quantifyin_ the viscosity of a fluid. He considered

the flow to be equivalent to a large number of thin layers of

fluid sliding over each other. The internal friction or viscos-

ity of the fluid was assumed to give rise to shear stresses T

between the sliding layers. These stresses act in such a way
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that they tend to retard the faster moving layers and accelerate

the slower layers. Newton (16_7) postulated that the viscous

shear stresses were directly proportional to the shear strain

rate. The relationship for internal friction in a viscous fluid

(as proposed by Newton, 1687) can be written as

du
T = n-- (5.49)

dz
where

T = internalshear stress in the fluid

n = coefficientof absoluteor dynamicviscosityor coefficient

of internalfriction

du/dz = velocitygradientacrossfilm

It followsfrom equation (5.49)that the unit of viscosity

must be the unit of shear stressdividedby the unit of shear

rate. In the newton-meter-secondsystem,the unit of shear

stressis the newtonper squaremeter. Hence, the unit of vis-

cositywill be newtonper squaremeter multipliedby second,or

N s/m2. In tae SI systemthe unit of pressureor stress (N/m2)

is known as a pascal, abbreviated Pa, and it is becoming in-

creasingly commonto refer to the SI unit of viscosity as the

pascal second (Pa s). In the cgs system, where the dyne is the

unit of force, viscosity is expressed as dyne-second per square

centimeter. This unit is called the poise after Poiseuille who,

though primarily interested in the movement of olood, studie_

the flow of distilled water in very narrow tubes. ,It happens
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that a viscosity of 1 poise is rather high; hence the frequent

use of the centipoise (cP).

Conversion of viscosity from. one system to another can be

facilitated by Table 5.1. To convert from a unit in the column

on the left side of the table to a unit at the top of the table,

multiply by the corresponding value given in the table. For

example, n = 0.04 N s/m2 = O.04xl.45x10 -4 Ibf s/in 2 =

5.8xi0 -6 Ibf s/in 2. Three metric and one English system are

presented - all based on force, length, ann time. Metric units

are the centipoise, the kilogram-second per square meter, and

the newton-second per square meter (or Pa s). The English unit

is pound-second per square inch, or reyn, in honor of Osborne

Reynolds.

Viscosity is the most important property of the luoricants

employed in hydrQdynamic and elastohydrodynamic lubrication. In

general, however, the viscosity of a lubricant aoes not simply

assume a uniform level in a given bearing. This results from

the nonuniformity of the pressure and/or temperature prevailing

in the lubricant film. Indeed many elastohydrodynamically lu-

bricated machine elements operate over ranges of pressure and/or

temperature so extensive that the consequent variations in the

viscosity of the lubricant may become substantial and, in turn,

may dominate the operating characteristics of the bearing.

Consequently an adequate knowledge of tlle viscosity-pres-

sure and viscosity-pressure-temperature relationships of lubri-
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cants is indispensable. The next two sections therefore deal

with such relationships.

5.4.1 Effect of Pressure on Viscosity

As long ago as 1893, Barus proposed the following formula

for the isothermal viscosity-pressure dependence of liquids:I

where

n = viscosity at gauge pressure

nO = viscosity at atmospheric pressure

a = pressure-viscosity coefficient of lubricant

The pressure-viscosity coefficient _ characterizes the liquid

considered and depends only on temperature, not on pressure.

Although equation (5.50) is extensively used, it is not gener-

ally applicable and is valid as a reasonable approximation only

in a moderate-pressure range.

Because of tne shortcomings of equation (5.50), several

isothermal viscosity-pressure formulas have been proposed that

usually contain two or moreparameters instead of the single

parameter suggested oy Barus (1893). One of these approaches,

which is used in this book, was developed by Roelands (i966),

log denotes the commonor Briggsian logaritnm, lOglo;

In denotes the natural or Napierian logarithm, log e.
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who undertook a wide-ranging study of the effect of pressure on

the viscosity of lubricants. For isothermal conditions the

Roelands (1966) formula carl De written as

Z1

log n + 1.200 = log no + 1.200 1 + 2000
where

p = gauge pressure, kgf/cm 2

ZI = viscosity-pressure index, a dimensionless constant

By taking the antilog of both sides and rearranging terms,

equation (5.51) becomes

(l+p/2Ooo)Zl Z1.2_(1+p/2000) i _
n = no x i0

By writing this in dimensionless terms and rearranging,

n - no- (_.52)

where
rj

%0 = 6.31x10-5 N s/m2 (9.15xi0 -9 lof s/in L)

c = 1.96x108 N/m2 (28,440 Ibf/in 2)

In equations (5.51) and (5.52), care must be taken to ensure

that the same dimensions are used in defining the constants.

In the Roelanas (1966) formulation the lubricant is defined

by the atmospheric viscosity no, the viscosity-pressure in-

dex ZI, and the asymptotic isoviscous pressure Piv,as"

The equation describing the latter quantity can be written as

= no f dp (5.53)Piv,as n
J0
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Blok (1965) arrived at the very important conclusion that all

elastohydrodynamic lubrication results achievea hitherto for an

exponential-pressure dependence (see equation (5.50)) can, to a

fair approximation, be generalizea simply by suDstituting the

reciprocal of the asymptotic isoviscous pressure i/Piv,as

for the viscosity-pressure coefficient a occurring in those

results. This implies that

i
_ {5.54)

Piv,as

°

5.4.2 Effects of Pressure and Temperature on Viscosity

The viscosity is found to be extremely sensitive to botll

pressure and temperature. This extreme sensitivity forms a con-

siderable obstacle to the analytical description of the conse-

quent viscosity changes. Roelands (1966) noted that at constant

pressure the viscosity increases more or less exponentially with

the reciprocal of absolute temperature. Similarly at constant

temperature the viscosity increases more or less exponentially

with pressure as shown earlier in this chapter. 111general,

however, the relevant exponential relationships constitute only

first approximations and may be resorted to only in moderate-

temperature ranges.

From Roelands (1966) the viscosity-temperature-pressure

equation can be written as
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log(log n + 1.200) = - S0 log 1 +

ID (iTm)_ ( )---P--+ 2- C2 log +_ log 1+2000 + log GO

Taking the antilog we get

__p___-C2i°g(l+Tm/135)+D2
l + 2000J (5.55)

log n + 1.200 = GO (i Tmh S0+ 135J

According to equation (5.55) four parameters GO, SO, C2, and

D2 are sufficient to enable the viscosity n to be expressed

in centipoise as a function of temperature Tm in degrees

Celsius and gauge pressure p in kgf/cm 2.

5.5 Density

The effects of temperature on viscosity were found in the

preceding section to be most important. For a comparable change

in pressure and/or temperature the density change is small com-

pared with the viscosity change. However, very high pressures

exist in elastohydrodynamic films, and the liquid can no longer

be considered as an incompressible medium. It is therefore

necessary to consider the dependence of the density on pressure.

The variation of density with pressure is roughly linear at

low pressures, but the rate of increase falls away at high pres-

sures. The limit of the compression of mineral oils is only
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25 percent for a maximum density increase of about 33 percent.

From Dowson and Higginson (1966) the dimensionless density for"

mineral oil can be written as

- = p = 1 + O.6 p (5.56)
P Po 1+ 1.7 p

where j
q

P0 = density at atmospheric conditions

p = gauge pressure, GPa

Therefore the general expression for the dimensionless density

can be written as
.

-- APE'
p=Z+

1 + BPE' (5.57) ,

where A and B are constants dependent on the fluid.

i

5.6 Energy Equation

The equation used to determine the distribution of tempera-

ture within the fluid is a mathematical statement of the princi-

ple of energy conservation. As the lubricant is sheared, work

is done on it, and there is a temperature rise that in turn

changes the viscosity of the fluid. This variation of viscosity

must be included in many solutions of the Reynolds equation,

particularly when sliding occurs. Likewise from the standpoint

of heat transfer and thermal distortion it is desirable to de-

termine the temperature gradients of the energy equation for a

fluid, and the full equation can be written as
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dEa _Tml +-_-_ k -_z/J -p +_y +_Z) + YqT=J* i]_-j_y -T_-y)2,

I I
Convection Conduction Adiabatic

compression
Viscous
dissipat on

(5.5_)

where

:

The convection term can usually be dropped from the energy

equation in an analysis of elastohydrodynamic lubricating

films. Likewise the rate at which heat can be conducted along

the film (i.e., in the x and y directions) is small compared

with the rate of conduction to the bearing surfaces. The sig-

nificant terms in the viscous dissipation expression are seen to

be those involving differentials of u and v in the z di-

rection, and the reduced energy equation for lubricating films

thus becomes

J*_ _-_}-p _+Ty+Tz +n +\_z}3=o

(5.60)
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If the lubricant is considered to be an incompressible

fluid, the adiabatic compression term in equation (5.60) is

zero. Furthermore the thermal conductivity of liquid lubricants
i

can often be treated as a constant in lubrication problems, and '
i

if both these assumptions are acceptable, the energy equation

adopts the following form:

3*k---_m+ n -- + = 0 (5.61)

o

This equation represents a balance between the rate of heat pro-

duction within the film by viscous action and the rate of heat

conduction from the film to the solids.

5.7 Elasticity Equation

The next task is to calculate the deformation in the ellip-

soidal solias that represent an elastohydrodynamic contact as

shown in Figure 2.18. Dowson (1965) distinguished between two

modes of deformation that may exist in machine elements. In one

mode the contact geometry may be affected by overall distortion

of the elastic machine element resulting from applied loads, as

shown in Figure 5.3(a). In the other the normal stress distri-

bution in the vicinity of the contact zone may produce local

elastic deformations that are significant when compared with the

lubricant film thickness, as shown in Figure 5.3(b). This is
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the mode of deformation with which this book is concerned. The

important distinction is that the first form of deformation is

relatively insensitive to the distribution and magnituae of the

stresses in the contact zone, whereas the second mode of defor-

mation is intimately linked to the local stress conditions.

The correct evaluation of elastic deformation on the sur-

face of a solid depends on an adequate representation of the

applied normal pressures. The simplest procedure is to divide

the actual pressure distribution into rectangular blocks of uni-

form pressure and to permit each rectangle to be of such small

dimensions that adequate predictions of elastic displacements

ensue. More complex representations of two-dimensional pres-

sure distributions within each rectangle would generally permit

larger rectangles to be used, but the additional complexity of

the expressions and the added computation times involved in nu-

merical solutions make it desirable to exploit the simpler rep-

resentation to the fullest.

The deformation analysis is developed in general form here

since it is used in Chapter 7 in developing the elastohydrody-

namic lubrication theory. The Dowson and Hamrock (1976) work is

used extensively in this section.

In Chapter 3 the general geometry of two ellipsoidal solids

in elastic contact is described. In the subsequent analysis it

is convenient to consider the deformation of an equivalent elas-

tic half-space subjected to a pressure distribution over the
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ellipse of semimajor and semiminor axes a and b as previous-

ly defined in equations (3.13) and (3.14). The resulting

elastic deformation can be considered to be equivalent to the

total deformation of two elastic ellipsoids having elastic

constants Ea,va and Eb,vb, respectively, if the half-space is

allocated the equivalent elastic parameter E' defined by equa-

tion (3.16).

Figure 5.4 shows a rectangular area of uniform pressure

with the coordinate system to be used. From Timoshenko and

Goodier (1951) the elastic deformation at a point (x,_) of a

semi-infinite solid subjected to a pressure p at the point

(_i,_i) can be written as

2p dxI dyI

_E'r

The elastic deformation at a point (_,y) due to the uniform

pressure over the rectangular area 2a x 2b is thus

_ 1/2

a -b

Integratingthe precedingequationgives

= _ PD (5.62}
where

36



D" = (x + b') In _-(Y + -_) + [(y + -_)2 + (-_+ _)211/2_

L

I 1/2]+ (-Y + a) in (-x + "B)_+ [(-_ + _-)2 + (_, + "_')_ 1/2J(x- b) + _7 + a) 2 + (x- _)2--1

. ](y'+ a) + + a) 2 + (_ _')211/2

I ' 1+ (y" - a) in (_ - b) + _7 - a) 2 + (x - b)._ 1/2

(5.63)

As a check on the validity of equation (5.62) the following

two cases were evaluated:

Case 1: For b = a and x = y = O, equation (5.62) reduces to

p

: 16 p_ In(l + V/2) (5.64)"IT

Equation(5.64)representsthe elasticdeformationat the center

of the squareof uniformpressure. This equationis in exact

agreementwith that presentedby Timoshenkoand Goodier(lY51).

Case 2: For b = a and _ = _= _, equation(5.62) reducesto
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Equation(5.65)representstheelasticderogationat thecorner

of a squareof uniformpressure.Thisequationis alsoin

agreementwiththeresultpresentedbyTimoshenkoandGoodier

(1951).Fromequations(5.64)and(5.65)we findthecorner

defo_ationto beone-hailthedefomation:_tthecenterof a

squareblockof uniformpressure.

Nowtheterm 6 inequation(5.62)representstheelastic

deformationat a point(_ dueto a rectangulararea 2ax

ofuniformpressurep. If thecontactellipseisdividedinto

a numberof equalrectangularareas,thetotaldeformationat a

point(_,y)dueto thecontributionsof thevariousrectangular

areasof uniformpressureinthecontactellipsecanbe evalua-

tednumerically.Figure5.5showshowtheareainsideandout-

sidethecontactellipsecanbe dividedintoa numberof equal

rectangularareas.Forillustrationthecontactisshowndivi-

dedintoa gridof 6 x 6 rectangularareas.Thearrangement

illustratedinFigure5.5canbeusedtoevaluatethetotal

elasticdeformation,causedby therectangularareasof uniform

pressurewithinthecontactellipse,at anypointinsideorout-

sidethecontactellipseas

6 6 ...........

_k,£= 7 Pi,jDm,s (5.66)

j=l,2,..,i=i,2,...
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w_lere
__ °

= Ik- il + 1 (5.bll

s = I* - JJ+ 1 (5.6u)

Note that DI,1 would be D in equation(5.63)evaluatedat

x = O, y = O, while D2,3 would be evaluatedat x = 2b, y = 4_.

The elasticdeformationat the centerof the rectangular

area a9,5 shown in Figure 5.5, caused by the pressureof the

variousrectangularareas in the contactellipse,can be written

as

_T2<p i_ P2,1D8,5-- P6,lD4,5--
69,5 - I,_9,5 + + "'" +

+ PI,2D9,4 + P2,2D8,4 + ... + P6,2D4,4

• -__ "__ "_

+ PI,6D9,2 + P2,6D8,2 + ... + P6,6D4,

(5.69)

Equation(5.69)pointsout .,oreexplicitlythe meaningof

equation(5.66).A numericalanalysisof theelasticdeforma-

tionof a contacting ellipsoidal solid and plane was performed

by Dowson and Hamrock (1976)• The analysis assumed that the

pressure in the contact zone was Hertzian. It also assumed that

the contact zone could be divided into rectangular areas with

uniform pressure within each rectangular area. The resulting

equations were programmed on a digital computer. Four limiting

conditions were evaluated. They consisted of two extremes of

applied normal load: a light load of 8.964 N (2 Ibf), and a
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heavy load of 896.4 N (200 Ibf). The two other extremes are of

the curvature of the contacting solids: two equal spheres in

contact, and a ball and outer race of a ball bearing. It was

speculated that conclusions drawn from the results obtained for

these limiting conditions could also be made for any interme-

diate condition.

Figures 5.6, 5.7, and 5.8 illustrate the results of an in-

vestigation of the effects of mesh size on the accuracy of the

calculations of elastic deformation presented by Dowson and

Hamrock (1976). In these figures the solid curve represents the

case of equal spheres in contact in which Rx = Ry = 0.005558 m

(0.2188 in.), and the dashed curve represents the contact be-

tween a ball and outer race in a bearing in which Rx = 0.0128 m

(0.5055 in.) and by R = 0.150 m (5.B1 in.).Y

Figure 5.6 shows how the percentage difference in elastic

deformation varies along the semimajor axis when m = 3, 4,

and 5 - the predictions being related to more exact solutions

for three times as many divisions of the axes in each case

(i.e., m = _, 12, and 15, respectively), in this figure, we see

a large drop in the error term 100 [(a_ - 63_)Ia3_ ] when

going from m = 4 to m = 5. It was therefore argued that a

value of m of 5 would yield acceptable accuracy with nlinimum

computing effort under most conditions.

The ratio of the elastic deformation to the distance separ-

ating the two undeformed solids in contact is shown as a func-
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tion of the distance along the semimajor and semiminor axes in

Figures 5.7 and 5.8, respectively. These figures show that the

elastic deformation ceases to be a significant component of the

overall separation of the solids at modest distances away from

the edge of the Hertzian contact zone. To be more specific,

from the curves shown in Figures 5.7 and 5.8 we see that for

equal spheres in contact, represented by solid lines in the

figures, a/S < 0.05 corresponds to x > 2.6 b and y > 2.6 a.

This means that the elastic deformation is less than 5 percent

of the film thickness due to the geometry of the undeformed

solids at distances of only 1.6 times the semiaxes dimensions

beyond the edge of the Hertzian contact zone. For the ball-and-

outer-race example a value of a/S < 0.05 is achieved when

y > 1.9 a and x > 4.0 b. This means that the elastic deforma-

tion is less than 5 percent of the film shape due to the unde-

formed geometry at distances beyond the contours of the Hertzian

ellipse of only 0.9 and 3.0 times the semimajor and semiminor

axes, respectively.

The great simplicity introduced into the calculation of

elastic deformations by the assumption that the pressure is uni-

form over rectangular blocks has already been mentioned. This

assumption enabled the wide range of approximate numerical solu-

tions required to generate the empirical film thickness equa-

tions to be obtained in an acceptable time and with a justifi-

able computing effort. Evans and Snidle (1978) have discussed a
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refinement to the numerical procedure based largely on a more

detailed approach to the calculation of elastic deformations.

In this approach the elastic deformation at any point resulting

from a block of pressure in region A is determined by dividing A

into two regions, B and C, and adopting different procedures for

the evaluation of the basic integrals in the two regions. In

the central region, C, where a singularity occurs in a straight-

forward approach to the problem, the pressure function is ap-

proximated by a biquadratic polynomial to facilitate numerical

analysis. In the remaining region, B, the integral is evaluated

in a straightforward manner by the application of Simpson's rule.

Evans and Snidle (1978) provided two full solutions to the

elastohydrodynamic problem for nominal point or circular con-

tacts (k = 1) that revealed most clearly all the characteristics

of film shape and pressure distribution associated with the

problem. They also investigated the influence of lubricant

starvation, as determined by the location of the inlet boundary

and the location of the side boundary to the computing zone, on

film thickness. They concluded that both factors could play an

important part in determining the accuracy of numerical solu-

tions, and both factors are considered in detail in the numeri-

cal solutions presented in this text.
J

A comparison between the predictions of the film thickness

equations developed in this text, which are based on solutions

of the elasticity equation as outlined in this chapter, and the
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refined approach presented for only two conditions by Evans and

Snidle (1978) provides justifiable confidence in the adequacy of

the numerical procedures adopted. In one particular case, cor-

reponding to a sphere of radius 0.025 m rolling near a plane

with a velocity of 0.5 m/s while supporting a load of 120 N, the

central and minimum film thicknesses calculated by Evans and

Snidle (1978) were predicted to within 0.3 and 1.4 percent, re-

spectively, by equations (8.41) and (8.23) in this text. Weare

grateful to Dr. Snidle (private communication, April 1980) for

the information that enabled this comparison to be made.

5.8 Closure

This chapter has dealt with the basic lubrication and elas-

ticity equations used in the study of hydrodynamic lubrication.

The Navier-Stokes equations have been derived in general form

and then reduced within the framework of assumptions that are

deemedto be valid for lubricating films. The Reynolds equation

was then derived in two different ways: one from the coupling

of the reduced Navier-Stokes equations with the continuity equa-

tion, the other from first principles and the direct combination

of well-established viscous flow expressions with a statement of

flow continuity. The ReynQlds equation contains viscosity and

density as parameters. These properties depend on the tempera-

ture and pressure, and it is therefore necessary to establish
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expressions relating these quantities. The energy equation,

which governs the temperature distribution within the lubricant,

is also presented in this chapter. It is noted that solutions

to both the energy and Reynolds equations may be required in

some situations.

The Reynolds equation also contains the film thickness as a

parameter. The film thickness is a function of the undeformed

geometry and of the elastic behavior of the bearing surfaces.

The elasticity equation has therefore been developed in this

chapter. The coupling of the Reynolds and elasticity equations

will be dealt with in Chapter 7, where the full theory of elas-

tohydrodynamic lubrication is developed.
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SYMBOLS

A constant used in equation (3.113)

C*,_ relaxation coefficients
A*, B*,

l

D*, L*, M* J

Av drag area of.ball, m2

a semimajor axis of contact ellipse, m

a/2m

B total conformity of bearing

b semiminor axis of contact ellipse, m

b/2_

C dynamic load capacity, N

Cv drag coefficient

CI,...,C 8 constants

c 19,609 N/cm2 (28,440 Ibf/in 2)

number of equal divisions of semimajor axis

D distance between race curvature centers, m

D material factor

defined by equation (5.63)

De Deborah number

d ball diameter, m

number of divisions in semiminor axis

d overall diameter of bearing (Figure 2.13), m
a

db bore diameter, m

d pitch d ameter, m
e

d' pitch diameter after dynamic effects have acted on ball, me

di inner-race diameter, m

d outer-race diameter, m
0
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i

E modulus of elasticity, N/m2

E' effective elastic modulus, 2 _a + _ , N/m2

Ea Eb

E internal energy, m2/s2
a

E processing factor

E1 [(Hmi n - Hmin)/Hmi n] x 100

E elliptic integral of second kind with modulus (i - i/k2) I/2

approximate elliptic integral of second kind

e dispersion exponent

F normal applied load, N

F* normal applied load per unit length, N/m

F lubrication factor

F integrated normal applied load, N

F centrifugal force, Nc

F maximumnormal applied load (at. _ = 0), Nmax

F applied radial load, Nr

Ft applied thrust load, N

F_ normal applied load at angle 4, N

_- elliptic integral of first kind with modulus (i - 1/k2) I/2

approximate elliptic integral of first kind

f race conformity ratio

fb rms surface finish of ball, m

f rms surface finish of race, mr

G dimensionless materials parameter, aE

G* fluid shear modulus, N/m2

harane_s factor

g gravitational constant, m/s2
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gE dimensionless elasticity parameter, W8/3/U2

gv dimensionless viscosity parameter, GW3/U2

H dimensionless film thickness, h/Rx

: .2 2n3
dimensionless film thickness, H(W/U)2 F2h/u no_x

Hc dimensionless central film thickness, hc/R x

H dimenslonless central film thickness for starved
C,S

lubrication condition

Hf frictional heat, N m/s

Hmin dimenslonless minimum film thickness obtained from EHL

elliptical-contact theory

H dimensionless minimum film thickness for a rectangular
min,r

contact

H dimensionless minimum film thickness for starved
min,s

lubrication condition

H dimensionless central film thickness obtained from
c

least-squaresfit of data

H_'min . dimensionless minimum film thickness obtained from

least-squ.ares fit of data
i

H dimensionless central-film-thickness - speed parameter,c

HcU-O-5

Hmin dimenslonless minimum-film-thickness - speed parameter,

HminU-O'5

HO estimate of constant in.film thickness equationnew

h film thickness, m

hc central film thickness, m

h. inlet film thickness, m
1
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h film thickness at point of maximum pressure, where
m

dp/dx = O, m

minimum film thickness, m
hmin

h0 constant, m

I diametral interference, md

I ball mass moment of inertia, m N s2
P

I integral defined by equation (3.76)r

I t integral defined by equation (3.75) .

j function of k defined Dy equation (3.8)

J, mechanical equivalent of heat

polar moment of inertia, m N s2

K load-deflection constant

k ellipticity parameter, a/b

approximate ellipticity parameter

thermal conductivity, N/s °C

kf lubricant thermal conductivity, N/s °C

L fatigue life

L adjusted fatigue lifea

Lt reduced hydroaynamic lift, from equation (6.21)

LI,...,L 4 lengths defined in Figure 3.11, m

LIO fatigue life where 90 percent of bearing population will

endure

L50 fatigue life where 50 percent of bearing population will

endure

bearing length, m

constant used to determine width of side-leakage region

M moment, Nm
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M gyroscopic moment, Nm
g

Mp dimensionless load-speed parameter, WU-0"75

M torque required to produce spin, N m
S

m mass of Dall, N s2/m

m* dimensionless inlet distance at boundary between fully

flooded and starved conditions

dimensionless inlet distance (Figures 7.1 and 9.i)

number of divisions of semimajor or semiminor axis

mW dimensionless inlet distance bounoary as obtained from

Wedeven, et al. (1971)

N rotational speed, rpm

n number of balls

n* refractive index

constant used to determine length of outlet region

p dimensionless pressure

PD dimensionless pressure difference

Pd diametral clearance, m

p free endplay, me

PHz dimensionless Hertzian pressure, N/m2

p pressure, N/m2

i Pmax maximumpressure within contact, 3F/2_ab, N/m2

isoviscous asymptotic pressure, N/m2
Piv,as

Q solution to homogeneousReynolds equation

Qm thermal loading parameter

dimensionless mass flow rate per unit width, qno/PoE'R 2

qf reduced pressure parameter

qx volume flow rate per unit width in x direction, m2/s
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qy volume flow rate per unit width in y direction, m2/s

R curvature sum, m

Ra arithmet_ical mean deviation defined in equation (4.1), m

Rc operational hardness of bearing material

Rx effective radius in x direction, m

Ry effectiGe radius in y direction, m

r race curvature radius, m

r }
ax' rbx' radii of curvature, m

ray, rby

rc' _c' z cylindrical polar coordinates

rs' es' _s spherical polar coordinates

defined in Figure 5.4

S geometric separation, m

S* geometric separation for line contact, m

SO empirical constant

s shoulder height, m

T _O/Pmax

tangential (traction) force, N

Tm temperature, °C

* ball surface temperature, °CTb

Tf* average lubricant temperature, °C

AT* ball sL_rface temperature rise, °C

T1 (_O/Pmax)k: I

Tv viscous drag force, N

t time, s

t a auxiliary parameter

uB velocity of ball-race contact, m/s
5O



u velocity of ball center, m/s
c

U dimensionless speed parameter, nou/E'R x

u surface velocity in direction of motion, (ua + Ub)12, m/s

number of stress cycles per revolution

au sliding velocity, ua- Ub, m/s

v surface velocity in transverse direction, m/s

W dimensionless load parameter, F/E'R 2

w surface velocity in direction of film, m/s

X dimensionless coordinate, x/Rx

y dimensionless coordinate, y/R X

Xt' Yt dimensionless grouping from equation (6.14)

Xa' Ya' Za external forces, N

Z constant define_ by equation (3.48)

Z1 viscosity pressure index, a dimensionless constant

x, x, x, x1

Y, _, 7, _1_ coordinate system
/

- 7,71j
Z, Z,

pressure-viscosity coefficient of lubrication, m2/N

radius ratio, Ry/Rx_a

B contact angle, rad

Bf free or initial contact angle, rad

B. iterated value of contact angle, rad

r curvature difference

viscous dissipation, N/m2 s

total strain rate, s-1

_e elastic strain rate, s-I

iv viscous strain rate, s-I
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flow angle,degYa

a total elasticdeformation,m

a* lubricantviscositytemperaturecoefficient,°C'I

6D elasticdeformationdue to pressuredifference,m

radial displacement, mr

6t axial displacement, m

displacement at some location x, mx

approximate elastic deformation, m

elasticdeformationof rectangulararea, m

€ coefficient of determination

cI strainin axial direction

c2 strain in transversedirection

angle betweenball rotationalaxis and bearing

centerline(Figure3.10)

_a probabilityof survival

n absoluteviscosityat gauge pressure,N s/m2

dimensionless viscosity, n/n O

no viscosity at atmospheric pressure, N s/m2

n= 6.31xi0 -5 N s/m2(O.0631 cP)

o angle used to define shoulder height

A film parameter (ratio of film thickness to composite

surface roughness)

x equals I for outer-racecontrolana 0 for inner-race

control

x secondcoefficientof viscosity
a

_b Arcnard-Cowkingside-leakagefactor,(1 + 2/3 :a)-1

relaxation factor
c 52



coefficient of sliding friction

.*

Poisson's ratio

divergence of velocity vector, (_u/_x) + (_v/ay) + (_wl_z), s-I

p lubricant density, N s2/m4

dimensionless density, P/PO

P0 density at atmospheric pressure, N s2/m4

a normal stress, Nlm2

Ol stress in axial direction, N/m2
shear stress, N/m2" T

TO maximumsubsurface shear stress, N/m2

shear stress, Nlm2

equivalent stress, N/m2e

limiting shear stress, Nlm2
L

ratio of depth of maximumshear stress to semiminor axis of

contact ellipse

@. PH3/2

_i (_)k=l

auxiliary angle

_T tnermal reduction factor

angular location

_ limiting value of

_i absolute angular velocity of inner race, rad/s

absolute angular velocity of outer race. rad/s
_o

angular velocity, rad/s

mB angular velocity of ball-race contact, rad/s

_b angular velocity of ball about its own center, raa/s
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angularvelocityof ball aroundshaft center,rad/sc

ball spin rotationalvelocity,rad/ss

Subscripts:

a solid a

b solid b

c central

bc ball center

IE isoviscous-elasticregime

IR isoviscous-rigidregime

i inner race

K Kapitza

min minimum

n iteration

o outer race

PVE piezoviscous-elastic regime

PVR piezoviscous-rigid regime

r for rectangular area

s for starved conditions

x,y,z coordinate system

Superscript:

(--) approximate
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